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Abstract. We consider the Connected Facility Location problem. We
are given a graph G = (V, E) with cost c. on edge e, a set of facilities
F C V, and a set of demands D C V. We are also given a parameter
M > 1. A solution opens some facilities, say F', assigns each demand j to
an open facility i(j), and connects the open facilities by a Steiner tree T'.
The cost incurred is 37, o fi + 2 cp djcigy; + M Y- o ce. We want a
solution of minimum cost. A special case is when all opening costs are 0
and facilities may be opened anywhere, i.e., F = V. If we know a facility
v that is open, then this problem reduces to the rent-or-buy problem.
We give the first primal-dual algorithms for these problems and achieve
the best known approximation guarantees. We give a 9-approximation
algorithm for connected facility location and a 5-approximation for the
rent-or-buy problem. Our algorithm integrates the primal-dual approaches
for facility location [7] and Steiner trees [1, 2]. We also consider the con-
nected k-median problem and give a constant-factor approximation by
using our primal-dual algorithm for connected facility location. We gen-
eralize our results to an edge capacitated version of these problems.

1 Introduction

Facility location problems have been widely studied in the Operations Research
community(see for e.g. [14]). These problems can be described as follows : we
are given a graph G = (V, E), a set of facilities F C V, and a set of demands
D C V. Facilities may have opening costs. We want to open some facilities from
the set F and assign each demand to one of these open facilities. We consider a
setting where besides opening the facilities, we also want to connect them by a
Steiner tree. This will allow the facilities to communicate easily with each other.
For example, the facilities could be caches or file servers which need to com-
municate with each other to maintain consistent data, and the clients could be
users or processes requesting data items. Another example is telecommunication
network design. Designing the network involves selecting a subset of core nodes,
connecting the selected core nodes, and routing traffic from the endnodes to the
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selected core nodes. Here the clients are the endnodes of the network, and the
facilities are the core nodes. The opening cost of a facility corresponds to the
switch cost of the corresponding core node.

The problems mentioned above are instances of the Connected Facility Lo-
cation problem (ConFL). We are given a graph G = (V, E)) with cost ¢, on edge
e, a set of facilities 7 C V and a set of demand nodes or clients D C V. Let ¢;;
be the shortest path distance between i and j (with respect to the costs c.). We
are also given a parameter M > 1. Client j has d; units of demand and facility
7 has an opening cost of f;. A solution has to open a set of facilities F', assign
each demand j to an open facility i(j), and further has to connect the open
facilities by a Steiner tree T". The cost of connecting facilities is simply the cost
of the Steiner tree T scaled by a factor of M. The total cost of this solution is
doier fi+ 22 ep dicig; + M 3 cp ce. We want to find a solution of minimum
cost. This problem has attracted the interest of both the operations research
community [10, 12, 13] and the computer science community [5, 8, 9].

The Rent-or-Buy Problem. A special case of this problem is when all open-
ing costs are 0 and facilities may be opened anywhere, i.e., 7 = V. Suppose we
know that facility v is opened by an optimal solution. Then the problem becomes
a special case of the single-sink buy-at-bulk problem with two cable types, also
known as the rent-or-buy problem. Here we want to route traffic in a minimum-
cost way from the clients to the sink v by installing capacity on edges. We can
either rent capacity on an edge paying a cost proportional to the capacity rented,
or buy unlimited capacity on an edge by paying a large fixed cost of M.

This problem arises in various scenarios. Karger & Minkoff [8] reduced the
maybecast problem to this special case of ConFL. Gupta et. al. [5] arrived at this
problem by considering the problem of provisioning a virtual private network.

Our Results. We give a primal-dual 9-approximation algorithm for the con-
nected facility location problem and a 5-approximation algorithm for the rent-
or-buy problem. Previously the best known approximation guarantees for these
problems were 10.66 and 9.001 respectively [5]. But these results were obtained
by solving an exponential size linear program using the ellipsoid method, making
the algorithm very inefficient in practice. Karger & Minkoff [8] gave a combina-
torial algorithm, but the constant guarantee was much larger.

In many settings there is an additional requirement that at most k facilities
can be opened. We call this variant of ConFL the Connected k-Median problem.
We use our primal-dual algorithm to get a 20-approximation algorithm for this
problem. To the best of our knowledge, this is the first time anyone has consid-
ered this problem, though the connected k-center problem has been considered
earlier [4]. We generalize our results to an edge capacitated version of these prob-
lems. These differ from the uncapacitated versions in the facility location aspect.
We now require clients to be connected to facilities via cables which have a fixed
cost of o per unit length and a capacity of u. Multiple cables may be laid along
an edge. The cost of connecting facilities is still M times the cost of the tree T.
We give a constant-factor approximation for these capacitated variants.



Our Techniques. Connected Facility Location has elements of both facility
location and the Steiner tree problem. Without the connectivity requirement,
the problem is simply the uncapacitated facility location problem. If we know
which facilities are open we only need to connect them by a Steiner tree. How-
ever, simply running a facility location algorithm and then a Steiner tree al-
gorithm does not work, since we are ignoring the connectivity requirement. In
the rent-or-buy problem, this would just open a facility at each demand point,
but connecting all the open facilities might incur a huge cost. The connectivity
requirement implicitly imposes a facility opening cost so that it is only profitable
to open a facility if it serves a significant demand. Previously [8] the clustering
of demands around facilities was achieved by solving a Load Balanced Facility
Location (LBFL) instance, where we want each open facility to serve at least
M clients. The disadvantage with this approach is that (1) we only know a bi-
criteria approximation for LBFL, so the demand lower bound on a facility is
only approximately satisfied, and (2) the LBFL instance is solved using a black
box, so we do not use anything specific to the ConFL instance. In particular
we make no use of the fact that the need to cluster demands is imposed by the
connectivity requirement of ConFL.

Our algorithm is based on a novel application of the primal-dual schema.
The algorithm is in two phases. First, we decide which facilities to open, connect
demands to facilities, and cluster demands at each open facility. At the end of this
phase, we obtain a feasible dual solution and a primal facility location solution
where each open facility serves at least M demand points, satisfying the demand
lower bound. We do this by charging some of the cost incurred to the Steiner
tree portion of the dual solution, thereby exploiting the fact that any ConFL
solution also needs to connect the open facilities. Despite the added clustering
requirement, our algorithm has a fairly simple description. Each demand j keeps
raising its dual variable, o, till it gets connected to a facility and is ‘near’ a point
at which M demands are clustered. All other variables simply respond to this
change trying to maintain feasibility or complementary slackness. Phase 2 is a
Steiner phase where we connect the open facilities by a Steiner tree. The dual
solution constructed in this phase is not feasible, but the infeasibility is bounded
by a small additive factor.

Very recently, Kumar et al. [11] have subsequently obtained a constant-factor
approximation for a multicommodity rent-or-buy problem. Their algorithm is
however much more involved and they get a much worse approximation factor.
A very interesting open problem is to see whether the techniques used here and
in [11] can be extended to solve the multiple source-sink buy-at-bulk problem
with multiple cable types.

Previous Work on Primal-Dual Algorithms. Our work reinforces the be-
lief that the primal-dual schema is extremely versatile. The first truly primal-dual
approximation algorithm was given by Bar-Yehuda & Even(see [3]) for the vertex
cover problem. Subsequently, primal-dual algorithms have especially flourished
in the area of network-design problems. One of the first such algorithms was by
Agrawal, Klein & Ravi [1] for the generalized Steiner problem on networks. Goe-



mans & Williamson [2] further refined the primal-dual method and extended
it to a large class of network-design problems; see [3, 17] for a survey of this
and earlier work. The basic mechanism involves raising the dual variables and
setting primal variables till an integral primal solution is found satisfying the
primal complementary slackness conditions. Next a reverse delete step is used to
remove any redundancies in the primal solution. This relaxes the dual slackness
conditions. The approximation ratio of the algorithm is this relaxation factor.

Jain & Vazirani [7] gave an elegant primal-dual algorithm for various facility
location problems which could not be solved by the earlier schema. They remove
redundancies while relaxing the primal slackness conditions. They also show that
their algorithm can be used to solve other facility location variants, most notably
the k-median problem using a Lagrangian relaxation.

2 A Linear Programming Relaxation

In what follows, ¢ will be used to index facilities, j to index the clients and e
to index the edges in G. We will use the terms client and demand point, and
connection cost and assignment cost interchangeably.

ConFL can be formulated naturally as an Integer Program. Suppose we know
that a facility v is opened and hence belongs to the Steiner tree constructed by
the optimal solution. We can make this assumption because we can try all |F]|
different possibilities for v.

We can now write an integer program (IP) for ConFL as follows :

min Z fzyz + Z dj Z CijTij + M Z CeZe (IP)
% J g e

s.t. inj >1 for all j (1)
ij < Ys for all 7, j (2)
Yo =1 3)
injg Z Ze forall SC Vv ¢S, j (4)

€S e€d(S)
Tij, Yi, ze € {0,1} (5)

Here y; indicates if facility ¢ is open, x;; indicates if client j is connected to
facility ¢ and z. indicates if edge e is included in the Steiner tree. Relaxing the
integrality constraints (5) to x;j, s, 2z > 0 gives us a linear program (LP).

3 A Primal-Dual Approximation Algorithm

We now show that the integrality gap of (LP) is at most 9 by giving a primal-
dual algorithm for this problem. For simplicity, we assume that all d; are equal
to 1. We show how to get rid of this assumption in section 5.



3.1 The Rent-or-Buy Problem

We first consider the case where all opening costs are 0 and F = V|, i.e., a facility
can be opened at any vertex of V. The linear program (LP) now simplifies to :

min Z Zcijxij + MZceze (P1)
7 % e

s.t. Zl‘zj >1 for all j
i
Zﬂfz‘jﬁ Z 2 forall SCV,o ¢S, j
i€S e€d(S)
Tij,2e 2 0

The dual of this linear program is :
max Z o (D1)
J

st oo <+ Z 0s,; foralli#v,5  (6)
SCV:ieSwgs

a; < cyj for all j (7)

Z Z s,; < Mc, for all e (8)

J SCV:e€d(S),v¢S
aj,0s; >0

Intuitively, o; is the payment that demand j is willing to make towards
constructing a feasible primal solution. Constraint (6) says that a part of the
payment «; goes towards assigning j to a facility <. The remaining part goes
towards constructing the part of the Steiner tree which joins i to v.

Algorithm Description

We begin with a simplifying assumption. We assume that a facility can be opened
anywhere along an edge. We collectively refer to vertices in V' and internal points
on an edge as locations. We reserve the term facility for vertices in F. Clearly
the metric ¢ can be extended to a metric on locations.

The intuition behind our algorithm is as follows. Suppose all demands were
of size at least M. Then, the optimal solution would locate a facility at each
of these demands and connect them by a Steiner tree. So, our algorithm first
clusters the demands in groups of M and then builds a Steiner tree joining these
clusters.

Initially, all the dual variables are 0. The algorithm runs in two phases. In
the first phase, we cluster the demands in groups of M. Once we have this, we
run the second phase where we build the Steiner tree.



Phase 1. We raise the dual variables o; for all demands in this phase. We have
a notion of time, ¢. Initially ¢ = 0. At some point of time, we say that demand j
is tight with a location ¢ if a; > ¢;;. Let S; be the set of vertices which j is tight
with at some point of time. When we raise aj, we also raise fs, ; at the same
rate. This will ensure feasibility of constraints (6). So, it is enough to describe
how to raise the dual variables «;.

Initially, all locations are closed. We shall tentatively open some locations.
Initially v is tentatively open. Demands can be in two states : frozen or unfrozen.
When a demand j gets frozen, we stop raising its dual variable «;. After j is
frozen, it does not become tight with any new location, i.e., a location not in S;.
Initially, all demands are unfrozen.

We start raising the o; of all demands at the same rate until one of the
following events happen (if several events happen, consider them in any order) :

1. j becomes tight with a tentatively open location i : j becomes frozen.
2. There is a closed location ¢ with which at least M demands are tight :
tentatively open 4. All of the demand points tight with ¢ become frozen.

We now raise the a; of unfrozen demands only. We continue this process till
all demands become frozen. Note that although there is a continuum of points
along an edge, to implement the above process we only need to know the time
when the next event will take place. This can be obtained by keeping track of,
for every edge and every j, the portion of the edge that is tight with j.

Now we decide which locations to open. Let F’ be the set of tentatively open
locations. We say that 7,7’ € F’ are dependent if there is demand ;7 which is
tight with both these locations. We say that a set of locations is independent if
no two locations in this set are dependent. We find a maximal independent set
F of locations in F’ as follows : arrange the locations in F’ in the order they
were tentatively opened. Consider the locations in this order and add a location
to F' if no dependent location is already present in F'. We open the locations in
F. Observe that v € F.

We assign a demand j to an open location as follows. If j is tight with some
1 € F, assign j to 7. Otherwise let 7 be the location in F” that caused j to become
frozen. So j is tight with . There must be some previously opened location ¢/ € F
such that ¢ and i’ are dependent. We assign j to 4’

We still have to build a Steiner tree on F'. First we augment the graph G
to include edges incident on open non-vertex locations. Let {i1,...,i;} be the
open locations on edge e = (u,w) ordered by increasing distance from u, with
i1 # u, i # w. We add edges (u,i1), (41,12), ..., (tk—1, %), (i, w) to G.

Phase 2. For a location i € F, let D; be the set of demands tight with 4. Let
D' = Uz‘eF—{v} D;. Initially, we set o;j = 0 for all j. We raise the a; value of
demands in D’ only, and simulate the primal-dual algorithm for the (rooted)
Steiner tree problem.

Initially, the minimal violated sets (MVS) are the singleton sets {i} for i €
F—{v}. For aset S, define Dg = | J;c gnp Di- The tree T' that we shall construct



is empty to begin with. For each MVS S, j € Dg, we raise «; at rate 1/|Dg].
We also raise g ;, at the same rate. This ensures that Zj 0s; grows at rate 1
for any MVS S. Note that we are not ensuring feasibility of constraints (6), (7).
We say that an edge goes tight if (8) holds with equality for that edge. We
raise the dual variables till an edge e goes tight. We add e to T' and update the
minimal violated sets. This process continues till there is no violated set, i.e., we
have only one component (so v is in this component). Now we perform a reverse
delete step to remove any redundant edges from 7T'. This is our final solution.

Analysis

Let (al, 91)7 (ozz, 92) be the value of the dual variables at the end of Phases 1
and 2 respectively.

Lemma 3.1. The dual solution (al,el) is feasible.

Proof. It is easy to see that (6) is satisfied. Indeed, once j gets tight with ¢, «;
and ) g e ,¢5 0s,; are raised at the same rate. Similarly, (7) is satisfied.

Now consider an edge e = (u,w). Let I(j) be the contribution of j to the left
hand side of (8) for this edge, i.e., {(j) = X g.ce5(5),0gs 05.5- Suppose cju < ¢ju.
So, j becomes tight with u before it gets tight with w. Consider a point p on the
edge (u, w) at distance  from w. If p were the last point on this edge with which
J became tight with (before it became frozen), then I(j) < x. Define f(j,x) as 1
if j is tight with p and j was not frozen at the time at which it became tight with
p, otherwise f(j, ) is 0. So, we can write I(j) < Oce f(j, x)dx. Interchanging the
summation and the integral in (8), we get

)SID DRTED B RN ITRTEY B SECLE

Jj SCV:e€d(S),v¢S

Now for any z, (ZJ f(, x)) < M. Otherwise, we have more than M demands

tight with a point such that none of these demands are frozen — a contradiction.
So the integral above is at most Mc, which proves the lemma. O

Lemma 3.2. At the end of Phase 1, demand j is assigned to an open location
i such that c;; < 304]1-.

Proof. This clearly holds if j is tight with a location in F. Otherwise let j be
assigned to i. Let 7’ be the tentatively open facility that caused j to become
frozen. It must be the case that 7 and i’ are dependent. So there is a demand k
which is tight with both ¢ and . Let ;s be the time at which i’ was tentatively
opened. Define ¢; similarly. It is clear that a; > ¢;.

Now, cij < cik + Crir + cirj < 2a,1§ + a}. Also, ai < t;. Otherwise, at time
t = aj, kis tight with both ¢ and i’. Suppose it becomes tight with i first (the
other case is similar). If 7 is tentatively open at this time, then k will freeze and
so it will never become tight with i’. Therefore, ¢ can not be tentatively open at
this time. But then, k must freeze by the time ¢ becomes tentatively open, i.e.,
aj <t; <ty.So, aj <ty < aj. This implies that ¢;; < 3%1-. O



Lemma 3.3. Let i be an open location. If j is tight with i, then the assignment
cost of 7 is at most ozjl-.

We now bound the cost of the tree T'. Define Dy as U;cpD;.

Lemma 3.4. cost(T) < 2- ZjeDv a?.

Proof. Consider Phase 2. At any point in time, define the variable 6g, where S
is a minimal violated set, as ) ; 0s.;. We observed that 65 grows at rate 1. Thus,
Phase 2 simulates the primal dual algorithm for the rooted Steiner tree problem
with v as the root. So, the cost of the tree is bounded by 2 -3¢ 0% [3, 1, 17],
where the sum is over all subsets of vertices S. But ). ¢ 0% = > ieDy o O
Lemma 3.5. Consider a demand j. Ifi # v, then a? < agl+cij+25gv:ies,u¢5 0?97]».
Further, a? < ozjl- + Cyj-

Proof. Fix a demand j and facility 4, ¢ # v. During the execution of Phase 2,
let S; be the component to which j contributes at time ¢. Consider the earliest
time ¢’ for which ¢ € Sy. After this time, both the left hand side and right hand
side of (6) increase at the same rate, so we only need to bound the increase in
o by time ¢'. Let [ be the location that j is assigned to in Phase 1. Since we
are raising a;, it must be the case that j € D; and so, ¢;; < aj. We claim that
t’ < Mcy;. This is true since S; always contains [, and by time ¢ = M¢y; all of
the edges along the shortest path between [ and ¢ would have grown tight.
Note that o rises at a rate of at most 1/M. Indeed, initially, |D{i}{ > M for
any open location 4, and as new components S form, |Dg| can only increase. So,
the increase in ¢; by time ¢’ can then be bounded by % < @aj+cij < o +cij.
This proves the first inequality. The second inequality is proved similarly. a

It is clear that the 6% ; values satisfy (8), so we have shown that (o, 6?) is a

feasible dual solution, where o; = max(a3 — aj,0). We can now prove the main
theorem. Let OPT be the cost of the optimal solution.

Theorem 3.1. The above algorithm produces a solution of cost at most 5-OPT.

Proof. Note that o} < o + aj. So, Lemma 3.4 implies that the cost of T'is at
1 1
most 23 ;i +2> . cp a; <2-OPT+2% . aj.
If j € Dy, Lemma 3.3 implies that its assignment cost is at most ajl. Oth-
erwise by Lemma 3.2, its assignment cost is at most 3(1}. Adding all terms, we
see that the cost of our solution is at most 5- OPT. a

Our solution may be infeasible since a non-vertex location may be opened
as a facility. Let e = (u,w) be an edge and suppose we open locations on the
internal points of e. Let D, be the set of demands that reach their assigned
location on e via u, i.e., ¢;(j); = Cuj + Ci(j)u for j € Dy. Dy, is defined similarly.
T must contain at least one of v or w. If both w,w € T, we assign clients in D,,
to w and clients in D,, to w without increasing the cost. Suppose u € T,w ¢ T.
We assign all demands in D,, to u. If |D,,| < M, we assign clients in D,, to u
and remove edges in T that lie along e; otherwise we reassign all clients in D,,
to w and add all of e to T. It is easy to see that the total cost only decreases.



3.2 The General Case

We now consider the case where F, need not be V' and facility ¢ has an opening
cost f; > 0. For convenience we assume that f, = 0. Clearly, this does not affect
the approximation ratio of the algorithm. The primal and dual LPs are :

min Z fiyi + Z Z CijTij + M Z CeZe (P2)

i#v J
s.t. inj >1 for all j
' Zij < Y for all i £ v, j
Loy S 1
dowp< > forall SCV,u ¢S, j
i€S e€s(S)
Tijy Yir ze > 0

max Z o — Zﬁvj (D2)
J J

s.t. (&%} S Cij + ﬂij + Z 95‘7]‘ for all 4 7é ’U,j (9)
SCV:eSw¢s
a;j < cpj + Boj for all j (10)

d Bi<fi foralli £v  (11)
J
> > 0s,; < Mce for all e (12)

Jj SCV:e€d(S),v¢S
aj, Bij, 055 >0

Phase 1. Most of the changes are in this phase. We now also have to pay for
opening facilities. Besides opening facilities and connecting clients to facilities,
we will also form some components. These will act as the terminals for the
Steiner tree constructed in Phase 2. A location still refers to a vertex in V or a
point along an edge. We will only open facilities at locations in F C V.

Initially all dual variables are 0 and only facility v is tentatively open. As
before, a demand can be frozen or unfrozen. Further, a demand may be connected
or unconnected. Initially, all demands are unfrozen and unconnected. As before,
we say that a demand j gets tight with a location ¢ if a; > ¢;;. We say that a
facility ¢ has been paid for if > j Bi; = fi. The weight of a location [ is defined
as the number of connected demands j which are tight with [.

The basic idea is similar to the algorithm in the previous section. Earlier we
tentatively opened any location with which M demands became tight, but we
cannot do that here because of two reasons — (1) we cannot open any location;
the set of candidate facillity locations, F, may be a very small subset of V, (2)
we need to pay a facility opening cost before we can open a facility.



At any point of time, define S; to be the set of facilities that a demand j is
tight with. When j becomes tight with a facility 4, we have two options — we can
raise 3;; or we can raise s, ;. If none of the facilities in S; have been paid for,
we raise 3;; for all i € S; at the same rate. If there is a facility ¢ € S; which has
been paid for, then we raise fs; ; and do not raise 3;; for any ¢ € S;. Thus, it is
enough to describe how the ;s get raised.

We now describe the algorithm in more detail. We raise the «; of all unfrozen
demands uniformly till one of the following events happen :

1. An unconnected demand j becomes tight with a tentatively open facility i :
j becomes connected to i. If i = v, freeze j. Otherwise, as described above,
we raise g, ; at the same rate as ;. Further we do not raise any variable
Bir; for any facility ¢’ from now on.

2. A facility i gets paid for, i.e., Zj Bij = fi : tentatively open 7. If an uncon-
nected demand j is tight with ¢, connect j to . From this point on we only
raise g, ; as described above.

3. The weight of some location [ becomes at least M : declare [ to be a terminal
location. Freeze all unfrozen demands which are tight with [.

4. A connected demand j becomes tight with a terminal location [ : freeze j.

We continue this process until all j become frozen. Let (al, 8t 91) be the dual
solution obtained. Note that ﬂij is 0 for all j.

Let L be the set of all terminal locations. As in the previous section, we
greedily select an independent set of terminal locations from L and assign j to
a terminal location o(j). We say that locations [ and I’ in L are dependent if
there is a demand tight with both these locations. We look at the locations in L
in the order they were declared to be a terminal location, and greedily select a
maximal independent subset L’ of L. If demand j is tight with a location I’ € L/,
set o(j) =1'. Otherwise let [ be a location in L that caused j to get frozen, and
" € L' be some location such that [ and I’ are dependent. Set o(j) = I’. Note
that if j is tight with v, o(j) = v.

Now, consider a location | € L’. [ may not be in the set F of candidate
facilities. So, we need to locate a facility i € F near [ and open it. Let j be
the demand tight with [ having the smallest value of a}. J is connected to a
tentatively open facility i. Call ¢ a terminal facility. We say that i is the terminal
facility corresponding to the terminal location [. Let F' be the set of all terminal
facilities. Add v to F'. Again, we have a notion of dependence among facilities in
F. We say that two facilities 7,4 are dependent if there is a demand j with both

ilj, L ; > 0. We select a maximal independent set from /' — call it ”. Note that
v € F' because ﬂij = 0 for all j. We open all the facilities in F”.

A demand j is assigned to a facility in F’ as follows : if there is a facility
1 € F’ such that Z-lj > 0, assign j to 4. If o(j) = v, assign j to v. Otherwise, let
i be the be terminal facility corresponding to the terminal location o(j) € L. If
i € F', assign j to 1. Otherwise, there is a facility i’ € F’ such that ¢ and i’ are
dependent. We assign j to ¢’. Let i(j) be the facility that j is assigned to.

Let L; be the terminal locations in L’ such that the terminal facilities cor-
responding to them are in F’. We now add some Steiner edges. We initialize



the Steiner tree T' to the empty set. For each terminal location [ € L; with
corresponding terminal facility ¢ € F’, we add all edges along a shortest path
between [ and i to the set T'. Break any cycles by deleting edges.

Phase 2. This phase is very similar to that of the previous section. For any [ € L,
let D; be the set of demands which are tight with . Define Dr,, = e, Di- G is
augmented as before to include edges incident on locations [ € L;. We initialize
our minimal violated sets to the components of T'. All dual variables are initially
0. We do not raise any f;; in this phase. We shall raise the o; value of demands
in Dy, only. For a set S, define Dg to be UleSﬁLl D;. The rest of the procedure
is identical to Phase 2 of the previous section. This yields the tree T connecting
all the open facilities. Let (a2, %) be the dual solution constructed by this phase.

Analysis
The proof of the following lemma is very similar to the proof of Lemma 3.1.

Lemma 3.6. (al,ﬁl,ﬁl) s a feasible dual solution.

Lemma 3.7. Consider a demand j with o(j) = 1. Let i be the terminal facility
corresponding to l. Then, c;; < 504}. If j € D; then ¢;; < 3%1-.

Proof. Let k be the demand with smallest ay; which is tight with [. k is connected
to . So, ¢;; < clj+2a,1c. If j is tight with [, then ¢;; < a}, otherwise by Lemma 3.2,
ey < 304]1-. Further, a} < a} (this is true if if j € D, otherwise we can argue as
in Lemma 3.2). So ¢;; < 301} if j € Dy and ¢ < 50[]1 otherwise. a

Lemma 3.8. The cost of opening facilities and connecting demands to facilities
- 1 1
is at most 3Zj€DL1 aj + 7Zj¢DL1 aj.

Proof. For an open facility i, define C; as the set of demands j for which ilj > 0.
Note that the sets C; are disjoint, and all demands in C; are assigned to i. We
charge the cost of opening a facility at ¢ to the demands in C;. Each j € C; is
charged 521] Let C'pr = Ujepr C;. So, the cost of opening facilities and connecting
demands in Cpr to facilities is at most 3, | (cigy; + ﬂil(j)j) <Xjec, .

If j € Dr,, we know by the previous lemma that c;(;); < Sa;. So, assume
j ¢ Dr, UCF:. By the previous lemma, we know that there is a terminal location
[ such that the terminal facility ¢ corresponding to [ is at most 504]1- from j. If 4
is open, we are done. Otherwise, there is a facility ' and a demand ;' such that
i’ is open and [, B0 > 0.

Since 7 is the terminal facility corresponding to [, there is a demand k such
that aj is smallest among all the demands tight with [ and & is connected to
i. Let t; and t; be the times at which k and j’ get connected respectively. Let
t; and t;; be the times at which ¢ and i’ become tentatively open. Since both
Bij, Birjr > 0, we have ¢;;r, ¢irjr <t and t;7 < t;,ty. Since k is connected to ¢/,
i <t < a}f. Further, cu,lC < cvjl». So, ¢ij < cpp+ceijr ey < 504} + 2t < 704}‘ O



Lemma 3.9. The total cost of the Steiner edges added to the set T in Phase 1

is at most 2y at.

JjE€EDL, 7J

Proof. Consider a terminal location [ € L; with terminal facility ¢. Let k be the
demand in D; with smallest a So, k is connected to i and ¢j; < 20&3. Note that
|D;| > M. Further if j € D, then Oz} > aj. So, 2Zj€Dl a]l > Mecy;. O

Theorem 3.2. The above algorithm produces a solution of total cost at most
9-OPT and is thus a 9-approzimation algorithm for ConFL.

Proof. The cost of opening facilities and connecting clients to facilities in Phase
1 is bounded by SZjEDLl o + 7Zj¢DL1 o (Lemma 3.8). Let T” be the set of

edges added to T in Phase 2. The cost of tree T is at most cost(T")+2 ZjEDLl o

by Lemma 3.9. Finally cost(T") < 2- OPT + QZjEDLl o since (a/,0,60%) is a

feasible dual solution where o = max(aj — @;,0) (Lemma 3.5). Adding, the

total cost is at most 2 - OPT + 7Zj a; <9.0PT!. ]

4 The Connected k-Median Problem

The Connected k-Median problem is the same as ConFL with the additional
constraint that at most k facilities can be be opened. Since v is already open,
this extra constraint adds the following inequality to the linear program (P2) for
ConFL : >°, ., vi <k —1. This changes the objective function of the dual (D2)
tomax > a; — >, By; —k'A, where k' = k — 1. Constraint (11) in the dual LP
gets replaced by >, Bi; < fi + .

Let (F*,C*, S*) be the facility, assignment and Steiner tree cost respectively
of an optimal ConFL solution. Phase 1 generates a partial primal solution (x,y)
and a feasible dual solution (a', 3',6") satisfying 8,; = 0 for all j. Building a
Steiner tree on the open facilities costs at most 25* 4+ 2(C* + ZjEDLl,z' CijTij)-
Suppose we modify the primal-dual algorithm for ConFL so that after Phase 1,

9Zfiyi+3 Z CijTij + Z Cij$¢j§9za;. (13)

JEDL, i J€Dr i J

Now fix A\. We modify the facility opening cost to f; + A for all ¢ # v, and run
Phase 1 of the algorithm to get primal and dual solutions (z,y) and (a?, 3%, 6%).
Let z be denote the Steiner tree on the open facilities. Suppose it so happens that
Z#U y; = k'. Then, (x,y,2) and («, 3,0, \) are feasible solutions to the primal
and dual programs respectively for the connected k-median problem. Further
from (13) we get that 9>, fiy; + Zj’i CijTij + MY, ceze < Q(Zj ozjl- — k’)\) +
2(5*+C*) < 11- OPT. The trick then to guess the right value of A so that when
the facility cost is updated to f; + A, we end up opening k facilities. This idea
was first used by Jain & Vazirani [7].

! In Phase 2, if we use the 1.55-approximation algorithm [16] for the Steiner tree
problem we get a slightly better guarantee of 8.55 (4.55 for the rent-or-buy problem).



We can show that there is a value of A such that depending on how we
break ties, we get two ConFL solutions after Phase 1 — one opening k; < k'
facilities and the other opening ks > k’ facilities. These two solutions can be
found in polynomial time. A convex combination of these two solutions yields
a fractional solution (z,y,z) that opens k' facilities and satisfies 9", fiv; +
3 ZjeDLl,i CijTij + ZjﬁzDLl,i ¢ijzi; < 9- OPT. We can round this solution (as in
[7]) to get a solution which opens k facilities (including v) losing a factor of 2.
Finally we build a Steiner tree on the open facilities. We can show the following.

Theorem 4.1. There is a 20-approzimation algorithm for the Connected k-
Median problem.

To satisfy (13), we do not add any edges to the set T in Phase 1. Instead the
Steiner tree in Phase 2 is built with the terminals being the open facilities.

5 Extensions and Refinements

Arbitrary Demands. All our results generalize to the case where instead of
unit demands, client j may have a demand d; > 0. We can reduce this to the unit
demand case by making d; copies of client j, but this makes the algorithm run
in pseudo-polynomial time. But we can easily simulate this reduction by raising
a; at a rate proportional to d; wherever necessary. All d; units of demand at j
behave identically. The analogues of lemmas proved in section 3 are easily shown
to be true and consequently we get the same approximation ratios.

Generalization to Edge Capacities. We can extend our algorithm to the
following more general problem. We have two types of cables — the first type has
a fixed cost of o per unit length and a capacity of u units. The second cable has a
fixed cost of M per unit length but unlimited capacity. We wish to open facilities
and lay a network of cables so that clients are connected to open facilities using
the first kind of cable, and facilities are connected by a Steiner tree using cables
of type 2. This differs from ConFL only in the specification of the first cable
type. Assuming integer demands, setting o = u = 1 reduces this to ConFL. Ravi
& Sinha [15] gave an algorithm for the case when we only have cables of type 1,
and want to open facilities and connect clients to open facilities.

We get a constant-factor approximation for this problem by solving a re-
laxed ConFL instance and a relaxed Steiner tree instance and combining the
two solutions. The approximation ratios we get are 7.55, 15.55 and 31.1 for the
capacitated versions of the rent-or-buy problem, ConFL, and the connected k-
median problem respectively. We get better guarantees if all demands are 1.

The Case M = 1. We can get significantly better results for this case.
In Phase 1, we run the facility location algorithm of Jain & Vazirani [7]. For
each open facility ¢ we identify a client j that is tight with ¢, and add edges
connecting 7 and j to the set T. In Phase 2 a Steiner tree is built joining the
components of T'. We show that this is a 4-approximation algorithm. This gives a
8-approximation for the the k-median version. This also gives better guarantees
for the capacitated versions of these problems.
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