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Abstract

We consider the design of strategyproof cost-sharing mechanisms. We give two sim-
ple, but extremely versatile, black-box reductions, that in combination reduce the cost-
sharing mechanism-design problem to the algorithmic problem of finding a min-cost
solution for a set of players. Our first reduction shows that any truthful, e-approximation
mechanism for the social-cost minimization (SCM) problem satisfying a technical
no-bossiness condition can be morphed into a truthful mechanism that achieves an
O(a log n)-approximation where the prices recover the cost incurred. Thus, we de-
couple (modulo no-bossiness) the task of truthfully computing an outcome with near-
optimal social cost from the cost-sharing problem. This is fruitful since truthful mechanism-
design, especially for single-dimensional problems, is a relatively well-understood and
manageable task. Our second reduction nicely complements the first one by showing
that any LP-relative p-approximation for the problem of finding a min-cost solution for
a set of players yields a truthful, no-bossy, (o + 1)-approximation for the SCM problem
(and hence, a truthful (o + 1) log n-approximation cost-sharing mechanism).

These reductions find a slew of applications, yielding, as corollaries, the first or im-
proved polytime cost-sharing mechanisms for a variety of problems. For example, our
first reduction coupled with the celebrated VCG mechanism shows that for any cost-
sharing problem (with a monotone cost function) one can obtain a truthful mechanism
that achieves an O(logn)-approximation where the prices recover the cost incurred.
Other applications include O(logn)-approximation mechanisms for: survivable net-
work design problems, facility location (FL) problems including capacitated and con-
nected FL problems, and minimum-makespan scheduling on unrelated machines. We
also obtain some extensions of these results to multidimensional settings.
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1. Introduction

In a cost-sharing problem, various strategic players compete to receive a service
or good. Each player has a private value or type for receiving the service, and may
misreport her type if that increases her utility. The service provider has to decide
which set § of players will receive the service and at what prices, incurring a publicly-
known cost C(S). We assume that C(.) is monotone: C(S) < C(T)if S C T. How can
one design a protocol or mechanism for such a cost-sharing problem that incentivizes
truthful bidding, and where the outcome computed has good social welfare and the
prices charged recover the cost incurred? This is the topic of study in cost-sharing
mechanism design. More formally, a mechanism consists of an algorithm that outputs
a solution, and a pricing scheme for specifying prices charged to the players; the utility
earned by a player is her value under the algorithmic outcome minus the price she has to
pay. A mechanism is said to be dominant-strategy incentive-compatible, if each player
maximizes her utility by declaring her true private value regardless of what the other
players declare. Throughout, we will use the more-compact phrase, strategyproofness
or truthfulness, to denote dominant-strategy incentive-compatibility.

Three basic desirable properties of cost-sharing mechanisms that pervade the litera-
ture on cost-sharing mechanisms are: (a) strategyproofness (SP) (or stronger incentive-
compatibility notions like group-strategyproofness (GSP)); (b) cost recovery, i.e., the
revenue of the mechanism is at least the incurred cost; and (c) economic efficiency. In
algorithmic mechanism design, we also require that the mechanism be computationally
efficient. As is common in Computer Science, we use the lens of worst-case perfor-
mance guarantees to compare different cost-sharing mechanisms. Also, as is standard
in Computer Science, we say that a mechanism is computationally efficient if the num-
ber of steps it takes to compute its output (i.e., both the solution and the prices charged)
is polynomial in the size of the input (i.e., the number of bits required to represent it);
we call such a mechanism a polytime (or polynomial-time) mechanism. The stan-
dard means of quantifying economic efficiency via social welfare maximization (i.e.,
maximize total value earned — cost incurred) yields a rather ill-behaved optimization
problem for which no meaningful worst-case guarantees are achievable in a computa-
tionally efficient manner [20]. Therefore, following [53] (and much of the subsequent
work in cost-sharing mechanism design), we formalize economic efficiency using the
social-cost minimization (SCM) objective: minimize the sum of the cost incurred and
the total value of players who do not receive service.

In light of the impossibility of achieving all three requirements (a)—(c) simultane-
ously [24, 50], much effort has been devoted into approaches that relax, or drop, one of
these requirements. With the above notions in place, we can formalize this by seeking,
for a given cost-sharing problem, a truthful mechanism that computes a solution whose
social cost is within « times the optimum social cost and charges prices that recover a
é-fraction of the cost incurred for every choice of players’ private values. We call such
a mechanism, a truthful, a-approximation, 5-cost-recovering mechanism; when g = 1,
we simply say cost-recovering. General (algorithmic) mechanism-design techniques
for developing such cost-sharing mechanisms are much sought after, but quite rare.
Before describing our results, which make progress in this direction, we briefly discuss
some well-known generic constructions. The celebrated VCG [57, 15, 25] family of



mechanisms satisfies requirements (a) and (c) (for any cost function) but does not yield
good revenue guarantees, and moreover is often computationally intractable. (Prior to
our work, no analogue of VCG that simultaneously achieves (a) and relaxed versions
of (b), (c), was known for general cost-sharing problems.) At the other end, Moulin
mechanisms [46] satisfy (a) and (b) at the expense of social-cost approximation. A
Moulin-style mechanism is an iterative mechanism where prices are offered in each
iteration to the current set of players; players who cannot afford to pay these prices
drop out and we iterate with the remaining set of players. The mechanism halts when
all (current) players accept their prices. Different variants arise depending on how ex-
actly (i.e., simultaneously or one at a time) players are offered prices and drop out.
Moulin [46] proved that if the price-sequence offered to a player is nondecreasing—a
property called cross-monotonicity—and the prices recover the cost incurred for the
current set, then the resulting mechanism is GSP (i.e., no coalition of players can bene-
fit by lying) and satisfies cost-recovery. [53] recently showed that if the price-sequences
satisfy an additional property called summability, then one can also bound the approx-
imation of the resulting Moulin mechanism.

Moulin’s result and [53] have fueled much work on the design and analysis of such
price sequences (also called a cost-sharing method) for various problems [47, 36, 53,
49, 52, 37, 13, 28, 8]. We emphasize however that all these results are tailored to
the problem at hand. There is no known black-box way of leveraging Moulin mech-
anisms in conjunction with approximation algorithms for the SCM problem to obtain
truthful mechanisms with analogous approximation and cost-recovery guarantees. (An
a-approximation algorithm for a minimization problem is one that returns a solution
of cost at most « times the optimum on every instance.) In fact, as shown in [34],
designing suitable cost shares can often be much more challenging than the underly-
ing algorithmic problem. For example, for vertex cover, cross-monotonic cost shares
cannot recover more than O(1/|V|'/?)-fraction of the cost [34], and hence no Moulin
mechanism that recovers the cost can achieve approximation better than Q(1/ [V|1/3)
(see Section 2). As a means of overcoming these limitations, Mehta et al. [44] pro-
pose acyclic mechanisms, which are also Moulin-style mechanisms. They show that
for various problems, one can adapt known primal-dual algorithms for the underlying
cost-minimization problem to obtain suitable cost shares, which yield acyclic mecha-
nisms with improved guarantees. But their methods also do not yield an automatic way
of obtaining suitable cost shares from primal-dual algorithms and again the construc-
tion of cost shares is problem dependent.

Our results. The above state of affairs motivates the following natural question, which
is the starting point for our work: is there a generic, that is, black-box, way of trans-
forming approximation algorithms for the SCM problem into truthful, approximation,
cost-recovering mechanisms? Questions of this flavor lie at the heart of algorithmic
mechanism design and have spurred much research in this field. Various advances
in this direction have been made in the area of social-welfare-maximization (SWM)
problems [40, 19, 33] with an especially crisp positive answer known for Bayesian
incentive-compatibility [2, 30]. But the above question is largely unanswered for cost-
sharing mechanism design, with most prior work concentrating instead on the design
of suitable cost shares. In order to better understand the interplay between the three



Problem category Problem Previous results | Our results
Edge-disjoint SNDP - O(logn)
Survivable network Element-Disjoint SNDP - O(logn)
design problems (SNDPs) Vertex-Disjoint SNDP - o(rd log® n)

(rmax = Maximum requirement) Steiner-Tree O(log2 n) [53] O(logn)
Steiner-Forest 0(10g2 n) [13] O(logn)
Uncapacitated FL O(logn) [52,44] | O(logn)
Facility location (FL) Soft- capacitated FL (CFL) - O(logn)
Multicommodity connected FL O(log2 n) [52] O(logn)

. Set cover O(log” n) [44] O(log” n)
Covering problems Vertex cover O(log n) [44] 0(10§ n)

. Makespan minimization on

Scheduling problems unrela tI; d machines - O(logn)

Table 1: Summary of approximation results. n always denotes the number of players. All cited mechanisms
are (at least) truthful. When citing previous work, we scale prices to ensure cost-recovery; this scaling factor
thus appears in the approximation.

competing objectives in cost-sharing mechanism design (requirements (a)—(c)), we de-
couple the approximation and cost-recovery objectives to refine the above question into
the following two fundamental questions.

— Can one “inject” cost-recovery into a truthful, approximation mechanism?

— Can one convert an approximation algorithm into a truthful, approximation mecha-
nism?

We give two simple, but extremely versatile, black-box reductions, that affirma-
tively (almost) answer the above two questions, and in combination, reduce the cost-
sharing mechanism-design problem to the algorithmic cost-minimization (CM) prob-
lem of finding a minimum-cost solution for a set of players. (Notice that the CM
problem is easier than the SCM problem: a p-approximation algorithm for the SCM
problem can be used to obtain a solution of cost at most p-C(S) for any set S of players
by setting player i’s value to be oo (i.e., very large) if i € S and 0O otherwise.)

Informal statement of reductions (/) Any truthful, a-approximation mechanism that
satisfies an additional no-bossiness property can be transformed in polytime into a
truthful, O(a log n)-approximation, cost-recovering mechanism for n players.

(2) For a large family of cost-sharing problems, any LP-relative p-approximation algo-
rithm for the CM problem yields a polytime truthful, no-bossy, (p + 1)-approximation
mechanism.

(No-bossiness is the condition that if a winning player is unaffected by changing her
bid, then neither is the outcome computed.) Thus, our first reduction (Section 3) con-
veniently decouples (modulo no-bossiness) the task of truthfully computing a solution
with near-optimal social cost and the cost-recovery requirement. We emphasize that
this reduction applies to any (monotone) cost function. The logn factor matches the
approximation lower bound proved by Dobzinski et al. [18] for truthful cost-sharing
mechanisms (for subadditive cost functions), which shows that the reduction is tight
(up to constant factors). This reduction is quite fruitful since (as our second reduc-
tion shows) truthful mechanism-design, especially for single-dimensional problems, is




a relatively well-understood and manageable task.

One of the most widely used and remarkably successful paradigms in the design of
approximation algorithms, is that of expressing a relaxation of the problem as a linear
program (LP) and using this to guide the design and analysis of the approximation al-
gorithm, either via LP rounding or via a primal-dual approach. Many approximation
algorithms are thus LP-relative approximation algorithms, where the approximation
guarantee is proved by comparing the solution cost against the optimal value of the
LP-relaxation. Our second reduction (see Section 4) shows that any LP-relative ap-
proximation algorithm for the CM problem can be used to obtain a truthful, no-bossy,
approximation mechanism that can be fed as input to the first reduction. Thus, in com-
bination, our reductions yield a generic way of exporting LP-relative approximations
for the CM problem into truthful, cost-recovering mechanisms with related approxi-
mation guarantees. In contrast (to our liberal requirement of having an LP-relative ap-
proximation algorithm), much of the extant work on cost-sharing mechanisms requires
the use of cost shares satisfying various properties to obtain (good) cost-sharing mech-
anisms. (Observe that an LP-relative p-approximation for the SCM problem yields an
LP-relative p-approximation for the CM problem.)

With subadditive costs, our mechanisms (in addition to individual rationality) also
ensure that no player i is charged a price larger than C({i}), a property we call individual
competitiveness (ICT). This is desirable, as otherwise an over-charged player has an
incentive to refuse participation (and try to obtain the service from elsewhere at lower
cost). A related point is that we do not insist that the mechanism’s revenue be at
most B times the cost incurred (for some S > 1). (This condition along with cost-
recovery is called S-budget balance.) The usual rationale for the upper bound is that
one does not want the coalition of winning players to have an incentive to secede from
the mechanism and obtain the service from elsewhere at lower cost. Since we focus
on strategyproofness, we explicitly do not consider the effect of coalitions; focusing on
individual players yields ICT instead as the natural requirement.

A key feature of our reductions is their generality. An immediate notable impli-
cation is that taking the VCG mechanism as input in the first reduction, we obtain,
for any cost function, a truthful, O(log n)-approximation, cost-recovering mechanism.
Previously, such a result was known only for subadditive cost functions [5]. For a wide
variety of cost-sharing problems, we obtain the first, or improved polytime cost-sharing
mechanisms simply by plugging in a suitable LP-relative algorithm. We consider a few
representative applications in Section 6, and summarize our results in Table 1. We be-
lieve that our reductions will find many more applications. Section 7 considers some
extensions to multidimensional cost-sharing problems. Our results demonstrate that
in contrast with our current understanding of group-strategyproof and acyclic mecha-
nisms, strategyproofness allows for ample flexibility in cost-sharing mechanism design
enabling one to effectively leverage various algorithmic results.

Our constructions are quite intuitive and easy to describe. For the first reduction, we
first observe that regardless of the cost shares used, the allocation rule f of a Moulin-
style mechanism is always monotone, and hence one can find prices {p;} such that
(f,{pi}) is a truthful mechanism. Now we simply initialize the Moulin mechanism
with the outcome returned by the input truthful mechanism and then use the uniform
cost shares C(S)/|S|. Since the Moulin mechanism preserves truthfulness, the resulting



mechanism is truthful, while the cost shares prescribed ensure cost recovery at the
expense of a log n-factor loss in approximation. The second reduction proceeds by
rejecting all the players who are rejected fractionally in the SCM LP, and using the
LP-relative algorithm for the CM problem to compute a solution for the remaining
players. Simple LP theory shows that for a broad class of LPs, this mechanism has all
the desirable properties.

Related work. Moulin [46] and Moulin and Shenker [47] developed the theory of
Moulin mechanisms. Subsequently, suitable cost-sharing methods were developed for
various combinatorial-optimization problems, such as Steiner tree [36], Steiner for-
est [37], facility location [49], connected facility location [29, 42], and scheduling
problems [4]. Prior to [53], such results focused on the design of cross-monotonic,
approximately budget balanced (BB) cost shares; the resulting Moulin mechanisms do
not however come with any (SCM-) approximation guarantees. Immorlica et al. [34]
exposed an inherent limitation of this method by proving lower bounds on the BB-
factor achievable by cross-monotonic cost shares for various problems. Devanur et
al. [17] designed truthful, cost-recovering non-Moulin mechanisms for set cover and
facility location, but do not prove any approximation guarantees.

Roughgarden and Sundararajan [53] proposed the social-cost objective, and iso-
lated a property of the cost-sharing method called summability that bounds the ap-
proximation of the resulting Moulin mechanism. Subsequent work designed new cost-
sharing methods [52, 28, 8, 6] and/or re-analyzed previous cost-sharing methods [13,
53, 52] to also show summability bounds. [53, 8] also prove lower bounds on the
summability and/or BB factor of cost-sharing methods, and [53] observed that such
lower bounds, translate to poor approximation and/or poor BB for Moulin mecha-
nisms. Mehta et al. [44] proposed acyclic mechanisms, which also require suitable
cost shares, as a means of circumventing these obstacles. They show that for certain
problems, primal-dual algorithms for the underlying cost-minimization problem can be
easily adapted to yield acyclic mechanisms with good guarantees.

None of these results yield generic ways of translating algorithmic results for the
SCM problem into analogous cost-sharing mechanisms. The design of cross-monotonic
cost-shares satisfying various properties is tailored to the problem at hand and of-
ten quite intricate. [44] obtain some success, but they too are not able to automat-
ically translate primal-dual algorithms into suitable cost shares and have to proceed
in a problem-dependent way. The work of Bleischwitz et al. [5] is perhaps closest
in spirit to our work. They show that for subadditive cost functions, one can obtain
(not necessarily polytime) truthful (also, weakly GSP), O(log n)-approximation, 1-BB
mechanisms. Let Alg be a p-approximation algorithm Alg for the CM problem. [5]
also show that if the cost function induced by Alg, denoted Cpyg, has a certain ordering
property, then one can obtain a polytime truthful, polytime, O(p log n)-approximation
mechanism. However, this property is not known to be satisfied for various problems
of interest; e.g., Steiner tree, facility location etc. Brenner and Schafer [9] show that
if the cost function satisfies a different ordering property, then Alg can be used to ob-
tain an acyclic mechanism with p-BB; if Cajg and C satisfy some other conditions they
also obtain approximation guarantees. In comparison with our requirement that Alg be
an LP-relative algorithm, these conditions on Alg and C seem much more restrictive;



indeed, the applications in [5, 9] are limited to scheduling problems.

In the area of social-welfare-maximization (SWM) packing problems, more suc-
cess has been obtained in devising black-box reductions. Lavi and Swamy [40] and
Dughmi and Roughgarden [19] show how to translate certain algorithms into truthful-
in-expectation mechanisms with the same approximation guarantee; [40] require an
integrality-gap verifying approximation algorithm, whereas [19] require an FPTAS.
We note that our requirement of “LP-relative p-approximation” is much weaker than
the integrality-gap requirement in [40]. Most recently, Huang et al. [33] showed that
for a symmetric single-dimensional SWM problem, any approximation algorithm can
be converted to a truthful mechanism with the same approximation. If one relaxes the
truthfulness condition to Bayesian incentive compatibility, then black-box reductions
were recently obtained by Hartline and Lucier [31] in the single-dimensional setting,
and [2, 30] in the multidimensional setting. None of these reductions ensure cost re-
covery.

2. Preliminaries

In a cost-sharing mechanism-design problem, we have n players with private types
who compete for some service or good, and each outcome specifies a set S of players
who will receive the service. Let [n] denote the set {1,...,n}, and A € 20" denote
the set of all possible outcomes. Also, there is a publicly-known cost-function C :
A — Ry that specifies the cost incurred for serving a given set of players; we use
C(i) to denote C({i}). As is standard, we assume that A is downwards-closed and C is
monotone, thatis,if 7 € Aand S C T, then S € A and C(S) < C(T). In keeping with
the vast literature on cost-sharing mechanisms, we focus for the most part on single-
dimensional cost-sharing problems, wherein each player i’s private type consists of a
single nonnegative parameter v; specifying her value for receiving the service. We use
v to denote the tuple (vi,...,Vv,) and v_; to denote the tuple (Vi, ..., Vi—1, Vitls---» V).

A (direct revelation) mechanism for a cost-sharing problem consists of an allocation
rule (that is, an algorithm) f : R} +— A, and a pricing scheme p; : R} — R for
each player i. Each player i reports a type v; (possibly deviating from his true type),
and the mechanism computes the outcome f(v) and charges price p;(v) to player i.
We sometimes refer to the players in f(v) (i.e., who receive service) as “winners”.
Throughout we use v; to denote the true type of player i. The utility u;(v;; v, v—;) player
i derives when she declares v; and the others declare v_; is v; — p;(v;, v_;) if i € f(v;,v_;)
and —p;(v;, v_;) otherwise, and each player aims to maximize her own utility.

We are interested in designing mechanisms where the outcome computed approxi-
mates the optimum social cost with respect to the players’ true types, which is defined
as Minge#(SC(v; §) := C(S) + ;g5 Vi), and the prices recover the cost incurred by the
mechanism. More precisely, we formalize this by requiring a cost-sharing mechanism
M = (f,{pi}) to satisfy the following desirable properties:

o M is strategyproof (a.k.a truthful), which means that each player maximizes her util-
ity by revealing her true value: for any i, v_;, and any v;, v;, we have u;(v;; v, v_;) 2
u;(vi; v, v_;). We use the terms strategyproofness and truthfulness interchangeably
from now on.



M is individually rational (IR) and has no positive transfers (NPT), i.e., u;(v;; vi, v—;) =
0 and p;(v;,v—;) = 0 for every i,v;, v_;. (In the sequel, whenever we say truthful, we
mean truthful, IR, and NPT.)

e (Approximation) f is an a-approximation algorithm for the social-cost minimization
(SCM) problem: for every inputv = (v1,...,v,), we have SC(f(v)) < a(mingcq SC(v;S)).
We drop the input v in SC(.;.) when this is clear from the context.

e (Cost recovery) The prices recover at least a é—fraction of the mechanism-designer’s
cost: for every input v, we have Y ; p;(v) = C(f(v))/B.

We call such a mechanism a truthful, a-approximation, B-cost-recovering mecha-
nism. (We abbreviate 1-cost-recovering to cost-recovering.) Often, computing C(S') for
aset S turns out to be NP-hard. This is problematic since although the mechanism may
choose a “good” set S of players, it may not be able to efficiently compute a solution
of cost comparable to C(S) (rendering cost-recovery, as stated above, meaningless).
Therefore, we require a polytime mechanism to also specify a candidate (low-cost)
solution for the set of players it serves. In such settings, the approximation and cost-
recovery requirements are modified to Cy(f(v)) + Xig s Vi < a(minges SC(v; S)), and
>i pi(v) = Cy(f(v))/B, where Cyp(f(v)) is the cost of the solution computed by M for
the set f(v).

We say that an allocation rule f is implementable if there exist prices {p;} such
that (f, {p;}) is a truthful mechanism. For single-dimensional problems, we have the
following well-known and useful characterization of implementable allocation rules.
Call an allocation rule f (for a single-dimensional problem) monotone if i € f(v;,v_;)
and v > v; implies that i € f(v},v_;) (i.e., a winning player remains a winner by
increasing her bid).

Theorem 2.1 ( [48, 1]1) Given an allocation rule f, there exist prices {p;} implementing
fiff f is monotone. Suppose that f is monotone and for every i and v_;, there is a well-
defined threshold t;(v_;) such that for any input (v,v_;), player i wins when v > t;(v_;)
and loses when v < t;(v_;). Then, setting p;(v) = t;(v_;) if player i wins and 0 otherwise
for every i, gives the unique prices that implement f and ensure IR, NPT.

We say that a cost function is subadditive if C(S) + C(T) > C(S U T) for every
S, T € Asuchthat S UT € A. The vast majority of cost-sharing problems that
have been studied in the literature involve subadditive functions (e.g., Steiner forest,
vertex cover, facility location). For subadditive cost functions, an additional desirable
property that we would like to achieve is that the price charged by the mechanism to
a (winning) player does not exceed the cost of serving her individually. We call this
property individual competitiveness (ICT).

o (Individual competitiveness) p;(v) < C(i) for every (winning) player i.

(If C is not subadditive, then ICT conflicts with cost-recovery, so we impose ICT
only when C is subadditive.) We view individual competitiveness as a basic sanity
check: in its absence, a winner i who is charged a price larger than C(i) has an in-
centive to secede from the mechanism and find alternate means of obtaining the ser-
vice (by herself, or from a competitor) at a cost lower than the price she currently



pays. This is the same rationale as the one used to motivate the core of a cooperative
cost-sharing game. But since our focus is on strategyproofness we explicitly do not
consider collusions among players; projecting the core-condition to individual play-
ers yields instead the ICT requirement. A related point is that our S-cost-recovery
condition is subtly different from the B-budget balance condition used in the litera-
ture, wherein we require that @ < i pi(v) < C(f(v)) (or equivalently, via scaling,
> pi(v) € [C(f (), BC(f(v))]). As in the case of the core, the usual rationale for im-
posing the upper bound is that in its absence the coalition of winning players has an
incentive to secede from the mechanism. As before, since we explicitly focus on indi-
vidual players and not coalitions, we drop this upper-bound requirement, and insist on
(approximate) cost-recovery and ICT.

Our first reduction (Section 3) requires as input a truthful, approximation mecha-
nism that satisfies an additional technical condition called no-bossiness, which is de-
fined as follows: an allocation rule f satisfies no-bossiness if for every i, v_; and v,V’,
ifi e f(v,v_;))and i € f(V',v_;), then f(v,v_;) = f(v/,v_;). That is, if a winning player
remains a winner by changing her bid, then the outcome computed is unaffected.”

Lower bounds. Dobzinski et al. showed that for the public-excludable good problem
(CPEG(S) = 1if S # 0 and is O otherwise) any truthful mechanism for the SCM
problem achieving S-budget balance must be Q(log n/B)-approximate (see Theorem 1
in [18]). In fact, their proof actually shows that this holds for 8-cost-recovering truthful
mechanisms. Since C”E® can be encoded as the cost function of many problems (e.g.,
Steiner tree, vertex cover, facility location), this implies an analogous lower bound for
these cost-sharing problems.

Moulin-style mechanisms. A Moulin-style mechanism works as follows. The mecha-
nism takes as input a cost-sharing method ¢& : 2I1 x [n] — R,, where £(S, i) represents
intuitively the amount charged to player i when S is the set of winners. Given a cur-
rent set S (initialized to [n]) of candidate players for receiving service, the mechanism
tentatively asks each player i € S if v; > &(S,i). If this is true for all players, then
the mechanism outputs S and charges each player i € S the price &(S,i) (and O to
the other players). Otherwise, the mechanism drops one, some, or all of the players
who have v; < &(S, i), and iterates with the remaining set of players (we call the latter
the “all-drop” rule.) Different variants arise based on the exact rule for dropping play-
ers. Moulin [46] showed that if the cost-sharing method is cross-monotonic—that is,
&(S,i) > &(T,i) for every S € T,i € S—then all variants yield the same mechanism
and this mechanism is strategyproof (in fact, group-strategyproof (GSP)). Moreover, if
Dies €(S,0) = C(S) for all §, then the mechanism satisfies cost-recovery.

Define &(S,T) := X7 €(S,i). Say that a cost-sharing method & is competitive if
&(S,S) < C(S) forall §; say that £ is cost-recovering if £(S,S) > C(S) for all S. Define

20ur no-bossiness condition is slightly different from the non-bossiness notion introduced by Satterth-
waite and Sonnenschein [55]. Their notion imposes a condition on the mechanism (as opposed to only the
allocation rule): a mechanism M = (f,{p;}) satisfies non-bossiness if whenever i € f(v,v_;), i € f(V',v_;)
and p;(v,v—;) = p;(v,v_;), we have f(v,v_;) = f(v',v_;) and p;(v,v_;) = p;(v',v_;) for all players j.



the budget-balance (BB) factor of a cost-sharing method & to be maxs{%, %}

Immorlica et al. [34] proved lower bounds on the BB-factor achievable by competi-

tive, cross-monotonic ¢ for various problems. Clearly, this also implies lower-bounds

for cost-recovering, cross-monotonic &. [53] observed that the approximation of the
Moulin mechanism M; constructed from a competitive, cross-monotonic & is Q(BB-factor of £).
We observe that the same holds for cost-recovering £. Coupled with the lower bounds

in [34] for various cost functions, this implies lower bounds on the approximation of

every cost-recovering Moulin mechanism for these cost-functions.

Lemma 2.2 Let € be cost-recovering and cross-monotonic with BB-factor 3. Then, M,
has approximation ratio Q(B).

Proof : Let S be an inclusion-wise minimal set such that £(S,S) = BC(S). So
&(S,i) > Oforalli € §. Consider the following input. Set v; = £(S,i) — € > 0 for all
i € §, where € > 0 is negligible, and v; = 0 for all i ¢ §. M, will return the empty set
and incur social cost £(S,S) — |S|e, whereas choosing S as the outcome yields social
cost C(§). Thus the approximation ratio tends to 3 as € goes to 0. [ |

3. A black-box way of injecting cost-recovery

In this section we prove the following theorem, which reduces the cost-sharing
(i.e., truthful, approximation, cost-recovering) mechanism-design problem to the task
of truthful and no-bossy approximation mechanism design.

Theorem 3.1 Given a truthful, a-approximation mechanism M = (g,{q;}) satisfying
no-bossiness, we can obtain a mechanism M’ such that: (a) M’ is a truthful, O(a log n)-
approximation, cost-recovering mechanism, and is polytime computable if M is; (b) if
M is ICT and C is subadditive, then M’ is ICT.

The proof follows from two constructions. The first construction is quite simple to
describe and illustrates many of the ideas involved. The idea here is to simply initialize
the Moulin mechanism with the output of the mechanism M and then use the uniform
cost shares &£(S,i) = C(S)/|S|. Since the Moulin mechanism preserves truthfulness,
the resulting mechanism inherits truthfulness from M, while the uniform cost shares
ensure cost-recovery while degrading the approximation by a log n-factor. The result-
ing mechanism satisfies all the properties mentioned in Theorem 3.1 except ICT. (As
mentioned earlier, for non-subadditive cost functions, we cannot hope to achieve both
cost-recovery and ICT.) Next, for subadditive cost functions, we show how one can also
obtain ICT by suitably refining the first construction. We describe this after detailing
the first construction. For a set § C [n], we define R(S) ={i € S : v; < C(S)/|S|}.

Lemma 3.2 Mechanism M, satisfies property (a) of Theorem 3.1.

Proof : We assume here for simplicity that C(.) is polytime computable, in which case
it is clear that M, is polytime computable if M is; Remark 3.3 shows that with a slight
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Mechanism M; = (f1,{p1;}) Given: a truthful, @-approximation mechanism M = (g,{q;})
satisfying no-bossiness. On input v, we do the following.

C1. Initialize j « O and S « g(v).

C2. While R(S;) # 0,set Sy < S;\R(S;)and j « j+ 1.

C3. Return §; as the winner set. The prices, as specified via Theorem 2.1, equate to (see

CSp) )
[Sol > 7772 1Sl

Lemma 3.2) p;;(v) = max{q;(v), }ifi € S, 0 otherwise.

modification to the above construction, this continues to hold even otherwise. Consider
any input v, and let g(v) = Sg and fi(v) = W C Sy. Let OPT = mingc# SC(v; S). (Note
that M, always returns a feasible solution, since it returns a subset of g(v), and A is
downwards closed.)

Fix a player i who is a winner in M under the input v, and let v > v;. Since i is a
winner, we have i € §. Observe that g(v;,v_;) = S since g is monotone (so i remains
a winner in M) and satisfies no-bossiness. So since v; > v;, mechanism M, proceeds
identically on the inputs v and (v, v_;), and hence i remains a winner under the input
Wi, va).

We have C(So) + Xigs, vi < @OPT. Let k = |Sol and let So \ W = {ip,...,in},
where the players are arranged in the order they were dropped (breaking ties among the
players dropped in the same iteration arbitrarily). Then, we must have v;, < C(S¢)/(k—
¢) since if player i, was dropped from the set S, then we have v;, < C(S,)/|S,| and
IS = 1Sol — ¢ (since i, is the {-th player to be dropped). So v;, < C(So)/(k — ¢), and
hence, it follows that SC(W) = C(W)+ 345, Vit Diesow Vi < C(S0)+ Xigs, Vi+C(So)-

H, < a(l + H,)OPT.

To argue that M, satisfies cost-recovery, we prove that the threshold of each winner
i is given by 7; := max{q;(v), Cléso ‘l‘), ey Clés,"')}. This implies that the prices specified
in the construction are indeed those determined by Theorem 2.1, which immediately
yields cost-recovery since then ;e p1.i(v) = Xiew C(W)/|W| = C(W). Consider some
input v/ = (v},v_;). Suppose that i wins in M| under v'. Since M is truthful and no-
bossy, and i € g(v'), this implies that v} > ¢;(v') = g;(v) = (i’s threshold value in M for v_;),
and g(v') = g(v). Notice then that M| proceeds identically on both v and v'. So we must
have v/ > max{ C‘(SSOT), cens C‘(Ss‘f)}. Also note that player i wins in M for any v; > ;. This
implies that i’s threshold in le is ;. [ |

Remark 3.3 When C(.) is NP-hard to compute, we cannot necessarily compute R(S).
Also, as discussed earlier, M| must now also specify a solution for the set of winners.
Both issues can be handled as follows. We make the very mild assumption that a
solution for S also induces a solution of no greater cost for any subset of S,. We now
redefine R(S) as R, (S) ={i € S : vi < Cy(S0)/IS|}, and the solution we return for the
winner set W = § ; is the one induced by §g. Mimicking the proof of Lemma 3.2, it is
easy to see that Cp, (W) + X iew vi < (1+H,)Cy(S0) + Xigs, Vi < a(l+H,)OPT. Also,
we now have pi;(v) = max{g;(v), Y2} so that Cp, (W) < Ci(s0) < Siew pri(v) <
2iiew 4i(v) + Cu(So).

Also, notice that if we use Cp(S0)/BIS| in the definition of Rs,(S), where 8 > 1,
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then the proof of Lemma 3.2 shows that we get O(a log n/3) approximation and 5-cost
recovery.

One noteworthy application of the above construction is that taking M to be the
VCG mechanism, which solves the SCM problem exactly and can be assumed to be no-
bossy by fixing a tie-breaking rule we obtain the following very general result, which
can be viewed as an analogue of VCG for cost-sharing problems. No such general
result was previously known.

Corollary 3.4 For any monotone cost function, there is a truthful, O(log n)-approximation,
cost-recovering mechanism.

Individual competitiveness with subadditive cost functions. We now describe how to
refine the construction of M| so as to obtain individual competitiveness when C(.) is
subadditive. A natural first attempt would be to set the threshold for a player i to
remain in the current candidate set S to be min{C(7), C(S)/|S|} (instead of the uniform
threshold C(S)/|S]). This however fails to ensure cost-recovery: the problem arises
because one may accept a winner-set W where only a small subset 7 € W of winners
pay the price C(W)/|W|, which could be much smaller than C(T)/|T|. To rectify this,
we need a more sophisticated scheme. Given the current candidate set S, we keep
track of the set 7 (S) of players in S for which C(i) < C(§8)/|S|. The players in 7(S)
are asked to pay their individual price C(i) and are (permanently) accepted or rejected
based on whether they can do so. If 7(S) # 0, we update S to S \ 7(S) and iterate
with this set. Otherwise, the players in S are asked to pay the price C(S)/|S|. The
players who cannot do so are rejected and we iterate with the remaining set of players.
The resulting mechanism is described in detail below. Recall that R(S) = {i € § :
vi < C(S)/IS|}. We also define the sets 7(S) = {i € § : C@i) < C(S)/|S|} and
R(ES)={ieS v <C@)}.

Mechanism M, = (f2,{p,;}) Given: a truthful, e-approximation mechanism M = (g,{g;})
satisfying no-bossiness. On input v, we do the following.

DI. Initialize j « 0 and Sy « g(v). Also, set A « 0, R « 0. (A keeps track of the set of
players who will be winners, and R maintains the set of players who will be rejected.)
D2. While 7(S ;) UR(S ;) # 0, proceed as follows.
D2.1. If 7(S;) # 0, then set R < RUR(7(S;) and A < AUT(S;)) \ R(T(S;)). Set
S_/ur] — S_,' \ T(Sj)
D2.2. Otherwise (i.e., 7(S;) =0, R(S;) #0),setR — RUR(S;)and S j;; = S; \ R(S)).
D2.3. Update j « j+ 1.
D3. Return A U §; as the winner set, and let {p,;(v)} be the corresponding prices as specified

by Theorem 2.1. We show that if ¢;(v) is given then p,;(v) can be computed in polytime
(see Lemma 3.5).

Lemma 3.5 Given the prices {q;}, the prices {p,;} implementing f, can be computed
in polytime. Theorem 3.1 is satisfied by taking M’ = M,.
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Proof : Consider any input v, and let g(v) = So and fob(v) = W € Sy and OPT =
mingen SC(v; S). The proof of monotonicity of f, and approximation follow by mim-
icking the proof of Lemma 3.2. Since M is truthful and no-bossy, if a winner i in M,
raises her bid, then M will return the same set S and hence, M, proceeds identically
on v and the new input, and so i remains a winner. Let i, be the (£ + 1)-th player
dropped from So. Suppose iy € S, \ S,+1, 80 S, = k—{C. Ifip € R(T(S,)), then
vi, < C(ig) < C(S,)/IS;|; otherwise, iy € R(S ) and we again have v;, < C(S,)/IS,|. So
in both cases, v;, < C(S,)/IS,| < C(So)/(k — {); hence };c5\w Vi < C(So) - Hy which
in turn implies that SC(W) < a(1 + H,,)OPT.

We now show that M, is ICT if M is. Fix any winner i € W. It suffices to argue
that if v; > C(i) then i will be chosen as a winner in M,. Since v; > C(i) > q;(vi,v_;), i
isin S¢. Suppose i € S,. If i € 7(S,), then clearly i is added to A; otherwise, we have
i€ 8,41,sincei ¢ R(S,)asv;, > C@Q) = C(S,)/IS,|. It follows that if i ¢ A, then i is in
the final set S ;. So i is a winner.

Next, we show that the prices implementing f, can be computed efficiently. Con-
sider a player i € W and some input v = (v{,v_;). Suppose that i wins in M, un-
der v'. As before, since M is truthful and no-bossy, we have v > ¢;(v') = ¢;(v) =
(7’s threshold value in M for v_;) and g(+v') = g(v), so M, proceeds identically on v
and V. Now, i is chosen as a winner either because (1) it is added to A at some
point when our candidate set was, say, S,; or because (2) i is part of the final set
S ;. Importantly, since (fixing v_;) M proceeds identically on every winning bid of i,
which of these two cases happen does not depend on i’s (winning) bid. If the former
case happens (for every winning bid), then we must have v > C(?); also, i wins in
M, whenever v > max{g;(v),C(i)}. So here, we have py;(v) = max{g;(v),C(})}. In
the latter case, let S C {So,S,...,S5;} be the collection of sets for which 7(S) =
0. Then, we must have v/ > maxses C(S)/IS|, and moreover, i wins in M, when-
ever v, > max{g;(v), maxses C(S)/IS|}. So if this case happens, we have p,;(v) =
max{g;(v), maxses C(S)/|S|}. In particular, we note that since S ; € S, we have p,;(v) >
C(S /ISl

Finally, cost-recovery follows because Xy p2,i(W) 2 2ijea C()+Xies, C(S /IS j1 =
C(A) + C(Sj) 2 C(AU S ;) where the last two inequalities follow from subadditivity. B

As before, if C(.) is NP-hard to compute (but say C(i) is polytime computable,
as is often the case), then we can redefine R(S) and 7(S) as Rg,(S) ={i € S :v; <
Cu(So)/ISlyand T5,(S) ={i € S : C(i) < Cy(S0)/IS|}, and return the solution induced
by So for A U S ;. With this modification, M, is polytime computable if M is. Also,
as before, we can trade off approximation with cost-recovery. As in Remark 3.3, we
can also upper bound the revenue of this modified M, mechanism by ;e ¢:(v) + (1 +
H,)Cp(So). This upper bound will be useful in Section 5.

4. Obtaining truthful, no-bossy, approximation in a black-box fashion

Complementing the construction described in Section 3, we now describe how to
obtain a truthful, (o + 1)-approximation mechanism satisfying no-bossiness in a black-
box fashion from an LP-relative p-approximation algorithm for the cost-minimization
problem of finding a min-cost way of serving a given set of players. Combined with
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the reduction in Section 3, this yields a truthful, O((o + 1) log n)-approximation cost-
recovering mechanism. These reductions find numerous applications, which we dis-
cuss in Section 6.

A generic LP-model. We describe two LP-models for the cost-minimization (CM)
problem and the associated SCM problem. The first model captures general cover-
ing problems without multiplicity constraints; the second allows for multiplicity con-
straints but captures a restricted class of general covering problems that nevertheless
includes {0, 1}-covering problems. We focus on the first model below, and discuss the
second model later. Consider a cost-sharing problem where the problem of finding a
min-cost solution for a set S of players admits an LP-relaxation of the following form.

min ¢x st ADx>pD  forallies, Bx>d, xeR™ (CI-P)
Here A?x > b denotes some constraints specific to player i that arise because i has
to be served, and Bx > d models various global constraints. We require that d > 0 and
AD p® > 0 for every i, and OPTcy.ps) < C(S) for every set S (where C1-P(S) denotes
(C1-P) for the set S'). However, this latter requirement alone is a rather weak condition:
for example, the LP where b = 0 for all i, d = 0 always has optimal value 0 and sat-
isfies this condition, but this LP clearly carries no information. To ensure that (C1-P)
conveys something meaningful, we stipulate that OPT¢_p(s) provide a “good” lower
bound on C(S) for every set S. More precisely, we require an algorithm Alg that for ev-
ery set.S, returns a solution of cost at most p-OPT c1.ps); thus, Alg is a p-approximation
algorithm for the CM problem relative to the LP (C1-P). (Notice that the existence of
such an algorithm implies that C(S) < p- OPTc.ps) for every set S.) These conditions
are satisfied by the LP-relaxations of many combinatorial-optimization covering prob-
lems, such as {0, 1}-covering problems (which includes various cost-sharing problems
studied in [36, 49, 37, 53, 44]). We give two examples (see also Section 6).

Example 4.1 Survivable-network design problem (SNDP). Each player i is an (s;,1;)
pair requiring r; edge-disjoint paths, and multiple (unrestricted number of) copies of
an edge may be included. This non-{0,1}-covering problem can be cast as (C1-P). We
have an x, variable for every edge e; the player-specific constraints are: x(6(Q)) > r;
for every s;-t; cut Q, and there are no global constraints. There is an LP-relative 2-
approximation algorithm for SNDP [35].

Example 4.2 Makespan-minimization on unrelated machines. Jobs are players; we
have a variable x,; for every machine ¢ and job i, and a variable T. We want to minimize
T subject to the player-specific constraints ), x; > 1 (for every job i € §), and the
global constraints T — Y; pixg; > 0, T — Y ¢ peixei = 0 Vi, £. There is an LP-relative
4-approximation algorithm for this problem [16].

Given the LP-relaxation (C1-P) for the CM problem, the corresponding SCM prob-
lem can be encoded as follows. For each player i, we introduce a variable z; that indi-
cates that i does not receive service. The player-i-specific constraints then get modified
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to ADx + bz > b®. So we obtain the following LP-relaxation for the SCM problem.

min Tx+v'z (SCI1-P)
st. A9x+ b0z > p® for all i 1))
Bx>d 2)

m n
xeRY, zeRL.

Observe that a feasible solution x to C1-P(S) extends to a feasible solution to (SC1-P)
by setting z; = 1 fori ¢ S.

Constructing the mechanism. We use Alg to devise a polytime mechanism M = (g, {g;})
as follows. On input v, we compute an optimal solution (x*, z*) to (SC1-P) using some
fixed total ordering over vectors (e.g., lexicographic ordering) to break ties if there are
multiple optimal solutions. We refer to (x*, z*) as the optimal solution for input v. We
return g(v) = W = {i : z7 = 0} as the winner set, and use Alg to compute a solution for
W. Let {g;} be the prices implementing g (which we prove are polytime computable).

Theorem 4.3 M is a polytime truthful, no-bossy, (o + 1)-approximation, ICT mecha-
nism for any SCM problem where the cost-minimization problem is captured by (C1-P).

Proof : Lemma 4.4 proves the approximation guarantees, and Lemma 4.5 shows that
M is ICT and the prices implementing g are polytime computable. We argue that g
is monotone and satisfies no-bossiness. Consider some input v, and let W = g(v). Let
(x*, z") be the optimal solution to (SC1-P) for input v. Fix any winner i € W. Let v} > v;,
and let (x", ") be the optimal solution computed to (SC1-P) for input v/ = (v, v_;). It

is easy to see that z; < z7 = 0: adding the inequalities ¢’ x* + v/z* < ¢’x’ + vz’ and

"X +v7T7 < c"x*+vTz* and simplifying gives (v; —v))(z} —z}) < 0. Hence, i remains
a winner under input v'.

Further, we claim that (x', ") = (x*,z"). Observe that (v; — v)(z] —z;) = 0 implies
that ¢ x* +viz* = ¢Tx’ + vz and Tx" + v'T7 = Tx* + v'Tz*. So both (x*,z*) and
(x’, ') are optimal solutions for both v and v'. So since we use a fixed tie-breaking rule,
this means that (x*, z*) = (x’,7"). Thus, M computes the same solution for both v and

v/, which means that M satisfies no-bossiness. [ |

Lemma 4.4 M achieves a (p + 1)-approximation.

Proof : Fix an input v. Let W = g(v), and (x%, z*) be the optimal solution to (SC1-P)
for input v and OPT denote its value. The social cost of the solution computed by M
for Wis Cy (W) + Zi;z;>o v;. Notice that x* is a feasible solution to (C1-P(W)), so the
performance guarantee of Alg implies that Cy(W) < p - OPTcipowy < p - ¢Tx*. So it
suffices to argue that Zi:z;>0 v; < OPT. This follows by looking at the dual of (SC1-P),
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and complementary slackness. The dual of (SC1-P) is

max O i+ dw (SC1-D)
s.t. ZA@TM +BTw<ec 3)
b i <v;  foralli 4)

ui,w > 0.

Here p; and w are nonnegative dual variables corresponding respectively to the primal
constraints (1) and (2), and (4) is the dual constraint corresponding to the primal vari-
able z;. Let ({7}, ") be an optimal dual solution. By complementary slackness, if

z; > 0 then b(i)Tu:‘ = v; and hence, Yoo Vi < X b(")T,u;k < OPT; the last inequality
follows from strong duality and since d” w* > 0. [ |

Lemma 4.5 M is ICT and the prices implementing g are polytime computable.

Proof : Fix an input v and a winning player i. Let OPT(¢) denote the optimal value
of (SC1-P) for (¢,v_;). The threshold value at which i wins is the smallest value ¢ such
that there is some optimal solution (x(¢), z(¢)) to (SC1-P) for (¢, v_;) with z;(#) = 0. This
is because for any ' > t, every optimal solution to (SC1-P) must have z; = 0 (by the
monotonicity proof in Theorem 4.3). So i wins under every bid ' > ¢ and loses under
every bid ¢’ < t. Let OPT’ denote the optimal value of (SC1-P) when we force z; = 0.
Notice that OPT(f) < OPT’, and when z;(t) = 0, we have OPT(t) = OPT’. So the
threshold value is given by mins s.t. OPT(t) > OPT’. Notice that OPT(t) > OPT’
is equivalent to the condition that there exists a feasible solution ({1}, w) to (SC1-D)
(for (t,v_;)), and a feasible solution (x,z) to (SC1-P) with z; = 0, such the value of
({u}, w) is at least the value of (x,z). Thus, the threshold value can be computed effi-
ciently by solving an LP.

Suppose that ({x}, w*, x*, ") is an optimal value to this “threshold-LP”. Then, ob-

serve that (4}, w") is a feasible solution to the dual of C1-P({i}). So ¢ = b(i)T,Lt;‘ <
bOT i + d" w* < OPT ey pqyy < C(i). Hence, M satisfies ICT. n

Cost-minimization problems with multiplicity constraints. The following LP-relaxation
for the CM problem closely resembles (C1-P) but allows for multiplicity constraints.

min Tx (C2-P)
st. ADx>p® forallie S 3)
Bx>d

0<x<ueZ?
As before, we require that d > 0 and A?, b > 0 for every i, OPTcops) < C(S) for

every set S, and that we have an algorithm Alg that returns a solution of cost at most
p - OPTcy.ps) for every set S. Further, we also require that B > 0, and for every i, if
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A(,'e) > 0 and u, > 0 then A(rie)ue > bE"). As before, in the corresponding LP-relaxation
(SC2-P) of the SCM problem (see Appendix A), we have a variable z; > O for every
player i, we change the objective function to min ¢’ x + v’ z, and replace constraint (5)
by ADx + bz > b for all i.

Mechanism M is constructed exactly as before; the only obvious change is that
we now solve (SC2-P) (instead of (SC1-P)) to get (x*, z*). The proof of the following
theorem is very similar to that of Theorem 4.3 and appears in Appendix A.

Theorem 4.6 M is a polytime truthful, no-bossy, (p + 1)-approximation, ICT mecha-
nism for any SCM problem where the cost-minimization problem is captured by (C2-P).

Generalizing Lemma 4.5, we show that when the cost-minimization LP is (C1-P),
the revenue of the constructed mechanism M is at most the optimal value of (C1-P) for
the winner set g(v). This will be useful in Section 5.

Lemma 4.7 [f the LP used for the CM problem is (C1-P), the resulting mechanism M
satisfies Yicq) 9i(V) < OPT cp.p(gvy) < OPTscy.p for any input v.

Proof : Let W = g(v) and fix some i € W. Let (x*,7z") and (u*, w*) be the optimal
solutions to (SC1-P) and (SC1-D) for input v. Recall that g;(v) is the smallest value ¢
such that there is some optimal solution (x(¢), z(¢)) to (SC1-P) for (¢, v_;) with z;(r) = 0.
We claim that ¢;(v) < b(”T,u;‘. Notice that (u*, w*) remains a dual optimal solution

for any input (¢,v_;) where ¢ > b(i)Tu;‘ since it is feasible for the dual and satisfies
complementary slackness with the primal solution (x*,z*). Thus, by complementary
slackness every primal optimal solution for the input (¢, v_;) must have z; = 0.

Observe that (u*, w*) is a feasible solution for the dual of C1-P(W). It follows that

T« T« *
Yiew 4;(v) < X jew bV ;<2 bt M+ d"w* < OPTcipaw). L

Remark 4.8 We remark that although our construction is described in terms of an
LP model for the CM problem, our ideas have wider applicability. In particular, we
can also allow for a semidefinite-programming- or convex- relaxations of the CM
and SCM problems that involve covering constraints. The proof of monotonicity and
no-bossiness is unchanged. Examining Lemma 4.4, the only property we need is
that the optimal Lagrangian multipliers (i.e., dual values) for the constraints involv-
ing the z; variables can “pay” (approximately) for ), -.ov;. Lemma 4.5 easily ex-
tends: if OPT(¢) denotes the optimal value of the convei-program for the SCM prob-
lem for (z,v_;), then the price of a winner i under v_; is the minimum ¢ such that
OPT(t) > optimum value of the SCM problem when we fix z; = 0, which can be ef-
ficiently computed since OPT (t) is a concave function of ¢.

5. Upper bounds on revenue

One criticism that may be levied against our mechanisms is that the mechanism may
perhaps grossly overcharge the players in ensuring cost-recovery, and the potentially
large revenue of the mechanism in not accounted for in any way, either in the SCM
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objective, or the cost-recovery condition. In this section, we address this criticism and
show that our constructions can be adapted in simple ways to obtain revenue upper
bounds.

The conventional way of ensuring bounded revenue is via the S-budget-balance
condition, which requires that the revenue obtained recover the cost and be at most 8
times the cost incurred. We do not know how to obtain such a“two-sided” guarantee
in general®, but we consider an alternate way for upper bounding revenue (subject to
cost-recovery) where we penalize revenue in the objective and seek to minimize the
revenue + total value of excluded players. More formally, we consider the mechanism-
design problem of designing a truthful mechanism M = (f, {p;}) that (approximately)
minimizes e s Pi(v)+ Xig fv) Vi> subject to the constraint 3. ) pi(v) = C(f(v)). This
is equivalent to maximizing the sum of the players’ utilities, an objective considered
in [32]. We call }c s Pi(v) + Xig s Vi the disutility of the mechanism.

Since disutility minimization is not (equivalent to) social-welfare maximization, in
general there is no pointwise-optimal truthful mechanism, i.e., one that has minimum
disutility for every input v. But (unlike the profit-maximization objective, where the
same issue arises) it is easy to choose a benchmark relative to which meaningful guar-
antees may be obtained. This benchmark is simply the optimum social cost for input v,
which is clearly a lower bound on the disutility of a mechanism for input v.

We observe that the constructions in Sections 3 and 4 directly yield cost-recovering
mechanisms with good approximation relative to this benchmark. Consider any cost-
sharing problem where the CM problem is captured by (C1-P). Suppose we have an
LP-relative p-approximation algorithm for the CM problem. Fix an input v. Let OPT be
the optimal social cost for v. Let S = g(v) be the output of the mechanism M = (g, {g:})
constructed in Section 4. Let M} = (f5, { p’2’l.}) be the modified M, mechanism described
at the end of Section 3. Let W C §¢ = f;(v). As noted at the end of Section 3, we have
Diew p’2’i(v) < Diew qi(v) + (1 + H,)Cy(So). We infer that M) has disutility at most
Diew @i(v) + (1 + H,)Cp(So) + Xiew vi- Applying Lemma 4.7 this can be bounded by

OPTCI—P(SU) + (1 + ZHH)CM(S()) + Z v; < (1 +p(1 + 2H,1))0PT
i¢So

Theorem 5.1 Consider any CM problem that is modeled by the LP (C1-P). Given
an LP-relative p-approximation algorithm for the CM problem, we can obtain (in
polytime) a truthful, cost-recovering mechanism with approximation O(p log n) for the
disutility-minimization problem. This mechanism is also ICT if the cost function is
subadditive.

6. Applications

We showcase the versatility of our reductions by considering cost-sharing problems
from various domains for which our constructions yield the first or improved results.

3If C(.) is a symmetric submodular function, then we obtain 2-budget-balance. Taking the input mecha-
nism M in mechanism M of Section 3 to be the VCG mechanism, which satisfies Y ;cy gi(v) < C(W) and is
now polytime, since % increases as |S| decreases, we have Y ;i p1,i(v) < Yiew ¢i(v) + C(W) <2- C(W).
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In each case, we only need to verify that the cost-minimization problem admits an
LP-relaxation of the form (C1-P) (or (C2-P)) and we have a suitable approximation
algorithm for it. The cost function in all of these applications is subadditive, so all our
resulting mechanisms are polytime and ICT.

Survivable network design problems (SNDPs). SNDPs are cost-minimization prob-
lems where each player is an (s;, #;) pair who requires r; edge-, or element-, or vertex-
disjoint paths between s; and ¢; (giving rise to EC-, ELC-, VC- SNDP respectively). We
consider the setting where an unrestricted number of copies of an edge may be bought,
in which case SNDP can be cast as (C1-P). Section 4 shows this for EC-SNDP. This
also holds for the standard LP-relaxations for ELC-SNDP and VC-SNDP (see, e.g.,
[21] and [11]) as shown below. Let V be the node-set and T = (J;{s;, #;}. For ELC-
SNDP, the player-i constraints A?x > b consist of

x(P,Q)=ri—|V\(PUQ) VPOQCV,PNQ=0,5;,¢e PLt;c Q,PUQDT.
For VC-SNDP, player i’s constraints comprise
PO zri—[VN(PUQ)| VYPRQCV.PNQO=0,5s.€P1€Q.

These problems admit LP-relative approximation algorithms with the following guar-
antees: 2 for EC-SNDP [35] and ELC-SNDP [21], and 0(r|31‘1ax log n) for VC-SNDP [14].
(Although not explicitly stated, the algorithm of [14] also obtains an LP-relative ap-
proximation. Also, improved LP-relative guarantees are known for the single-source

and all-pairs versions of VC-SNDP, which translate to our mechanisms.)

Theorem 6.1 There are truthful, cost-recovering mechanisms for EC-SNDP, ELC-
SNDP, and VC-SNDP with approximation ratios of O(log n), O(log n) and O(r},,, log2 n)
respectively.

These are the first results for SNDP cost-sharing problems. Previously, cost-sharing
mechanisms were only known for the special cases of Steiner tree and Steiner for-
est; even for these, our result improves upon the O(log> n)-approximation achieved by
Moulin mechanisms [53, 13] and acyclic mechanisms [44].

Facility location (FL). Various FL problems (where the clients are players) are cap-
tured by (C1-P). In all such problems, we have variables {y;} for the facilities and
variables {x;;} for (facility, client) pairs, and ADx > p® corresponds to the constraints
>¢ Xxei = 1. In uncapacitated FL. (UFL), the global constraints Bx > d are: y, — x4 > 0
for every i,{; in soft-capacitated FL (soft-CFL), the global constraints also include
ueye — > xgi = 0 for every €. (Notice that although the LP for a client-set S has vari-
ables also for clients not in S, we include the )}, x; > 1 constraints only for players in
S, so this does indeed model the min-cost problem for S.)

(C1-P) also captures connected facility location (ConFL) problems [27, 56, 39]. In
the general version, multicommodity ConFL, each player i is an (s;, ;) pair. Serving a
set S of players involves assigning the s;s and #;s to nodes called facilities, and building
a network where for every (s;,1;) pair, the facilities catering to s; and #; are intercon-
nected. The LP-relaxation of Kumar et al. [39] for multicommodity ConFL is of the
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type (C1-P): X, x5, = 1, X xe, > 1 foreveryi € S are the player-specific constraints,
and the global constraints are the remaining constraints that also involve edge variables
(wel: W(E(0)) ~ (Sreq Xes, = Xe) = 0, W(S(0) ~ (S ge Xa, — Xes,) > O for every €,i and
node-set Q.

Both UFL and soft-CFL have LP-relative O(1)-approximations; see, e.g., [10] and [43]
and the references there in. [39] designed an O(1)-approximation for multicommodity
ConFL relative to the LP described above. So we obtain the following results which,
match the guarantees known for UFL [52, 44], yield the first results for soft-CFL, and
improve upon the O(log® n)-approximation for multicommodity ConFL [52].

Theorem 6.2 UFL, soft-CFL, and multicommodity ConFL have truthful, O(logn)-
approximation, cost-recovering mechanisms.

Set-cover problems. In the cost-sharing problem the players are the elements to be
covered. The natural LP-relaxation for set cover (and hence vertex cover) is easily seen
to be a special case of (C1-P). Set cover and vertex cover have LP-relative O(log n)- and
2-approximation algorithms respectively. A direct application of Theorems 4.3 and 3.1
yields an O(log® n)-approximation for set cover (and O(log n)-approximation for vertex
cover). But as observed in Remark 3.3, for any 8 > 1, we can obtain O(log® n/p)-
approximation and S-cost-recovery. So we obtain the following, which matches the
results in [44].

Theorem 6.3 There are truthful, cost-recovering mechanisms for vertex cover and set
cover with approximation ratios of O(logn) and 0(10g2 n) respectively. For set cover,
we also obtain an O(log n)-approximation, O(log n)-cost-recovering mechanism.

Scheduling. We now consider scheduling problems where the jobs are players and
the cost of a set S of jobs is the minimum makespan incurred for scheduling jobs
in S on a given set of unrelated machines. An LP-relaxation for this problem was
given in Section 4 and shown to be of the form (C1-P). Correa et al. [16] devise a
4-approximation relative to this LP. Thus, we obtain the following theorem.

Theorem 6.4 There is a truthful, O(log n)-approximation, cost-recovering mechanism
for makespan-minimization on unrelated machines.

7. Extensions to multidimensional settings

In this section, we show that our ideas can be applied to obtain guarantees also for
various multidimensional cost sharing problems. We consider two types of multidi-
mensional settings.

In the first setting (Section 7.1), which we call the multi-element (ME) setting, each
player i € [n] now controls a publicly known disjoint set of elements E; and outcomes
are now subsets of E := [ J; E; (so A C 2F). We consider additive valuations, so
player i’s private type is a vector v; € Rf" with v;, > 0 denoting the value i gets if
element e € E; is served; the value of a player i under an outcome 7 C E is v;(T) :=
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YeernE; Vie- Correspondingly, the social cost of outcome T is now given by SC(T) :=
C(T) + X;vi(E;\T).

The second multidimensional setting is the multi-demand (MD) setting considered
by [44]. Here each player i € [n] has a publicly known maximum level of service
R; € Z., and an outcome specifies the level of service offered to each player i. Player
i’s private type is a vector v; € R’f with v;x > 0 denoting the additional value to i of
level k over level k — 1. Section 7.2 contains a precise definition of the problem.

Two related, but distinct, difficulties arise when considering multidimensional cost-
sharing problems. First, we no longer have a simple condition like (value) monotonic-
ity [48] for the implementability of an allocation rule. The implementability condition
is now much more demanding, requiring it to satisfy cycle-monotonicity [51] in gen-
eral, or weak-monotonicity with convex domains [3, 54]. Second, the specification of
prices implementing an allocation rule is significantly more involved; prices are ob-
tained by computing shortest paths in a certain allocation graph (see, e.g., [26, 41])
whose size is polynomial in |AJ.

We avoid these difficulties by essentially reducing the multidimensional problem
to the single-dimensional problem. We consider “all-or-nothing” outcomes, where ei-
ther the entire element-set or demand of a player is served or none of it is served. By
suitably adapting the constructions and arguments in Sections 3 and 4, we then ob-
tain guarantees for the multidimensional problem. However, an artifact of focusing on
all-or-nothing outcomes is that our guarantees degrade with the dimensionality of the
problem. A very interesting open question is to remove or reduce the dependence on
the dimensionality. In this context, we note that a Moulin mechanism equipped with
a cross-monotonic, y-budget-balanced, a-summable (as defined in [53]) cost-sharing
method yields a truthful, (e + y)-approximation, y-cost-recovering mechanism for a
special case of the ME problem called the LinME problem that we define in Sec-
tion 7.1 (see Appendix B). But as remarked earlier, we do not have a black-box way of
obtaining such cost-sharing methods (with small @, y) and they may not even exist! A
challenging open question is whether one can obtain reductions for multidimensional
problems that are analogous to those in Sections 3 and 4.

7.1. The multi-element setting

Notice that since a player’s valuation is additive, the multi-element SCM problem
is algorithmically identical to the SCM problem where we consider each element e € E
to be a player whose value is v;, if e € E;. So we can work with the same LP-models
(C1-P), (C2-P) for the CM problem (where now S C E) and (SC1-P), (SC2-P) for the
SCM problem. Let (C-P) denote the LP used for the CM problem, and (SC-P) denote
the corresponding LP for the SCM problem. As usual, an LP-relative p-approximation
algorithm for the CM problem is an algorithm that always returns a solution of cost at
most p times the optimal value of the (C-P).

We now say that a mechanism (f, {p;}) is individually competitive (ICT) if p;(v) <
C(f(v) N E;) for all i; call the mechanism weakly ICT if pi(v) < X.c g, C(e) for all i.
Intermediate in difficulty between the one-element and the ME problems is the special
case of the ME problem where player i has the same value v; € R, for getting any
of her elements served; so v;(T) := v|T N E;| and SC(T) = C(T) + X; vi|E; \ T|. We
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call this single-dimensional problem the linear multi-element (LinME) problem. An
all-or-nothing mechanism is one where the range of the allocation rule is a subset of
{SCE:SNE;€{0,E;} forall i}.

Theorem 7.1 Let k = max; |E;| and A(v) = max,[v;(E;)/ mineeg, vi.]. Given an LP-
relative p-approximation algorithm for the CM problem, we can obtain a truthful, cost-
recovering mechanism with approximation ratio:

(a) O(pk log n) for the ME problem with subadditive C that is weakly ICT;

(b) O((p + k) log n) for the LinME problem that is ICT if C is subadditive; and

(c) O(pA(v) log n) on input v for the ME problem that is ICT if C is subadditive.

To the best of our knowledge, these are the first results for multi-element cost-
sharing problems. Notice that our guarantees are weaker than those obtained for the
single-dimensional problem. In light of this and the aforementioned difficulties in-
volved in multidimensional cost-sharing mechanism-design, one can ask which of our
two reductions—(1) translating truthful, approximation mechanisms to cost-sharing
mechanisms, and (2) translating approximation algorithms to truthful, approximation
mechanisms—becomes harder in the multidimensional setting. We give a partial an-
swer to this question. Say that Alg is a Lagrangian-multiplier-preserving (LMP) p-
approximation algorithm for the SCM problem, if for every input v, it returns a set
S C E such that Cag(S) + p 2 Deerys vile) < pOPT(scpy). Such LMP approxi-
mations are indeed known for various SCM problems, such as Steiner tree [23], set
cover, vertex cover [38], and facility location [12]. We show that if one has an LMP
p-approximation algorithm for the SCM problem, then one can obtain a randomized
truthful-in-expectation, p-approximation mechanism for the SCM problem. A truthful-
in-expectation mechanism is one where each player always maximizes her expected
utility by revealing her true type.

Theorem 7.2 Given an LMP p-approximation algorithm Alg for the SCM problem,
one can obtain a truthful-in-expectation, p-approximation mechanism for the ME prob-
lem.

The proof of Theorem 7.2 is based on the convex-decomposition idea used in [40]
and appears in Appendix B. Unfortunately, we do not how to modify the mechanism of
Theorem 7.2 so as to achieve cost-recovery, and in fact, in the multidimensional setting,
we do not know of any black-box way of injecting cost-recovery into a (deterministic)
truthful, approximation mechanism (that is possibly required to satisfy some additional
properties).

Proof of Theorem 7.1 : Part (a) follows from the following simple reduction to the
single-dimensional setting. We partition E (= |J; E;) into k sets Uy, ..., Ui such that
[UjNE;] <1 foralliand j. (It is easy to construct such a partition by repeatedly
picking a new element from the E;s to construct a new part U;.) Each U; induces a
(one-element) single-dimensional problem where player i has the element E; N U; if
E; N U; = 0, then player i does not participate. We use the constructions in Sections 3
and 4 to solve this problem. Let T; C U; be the set served, and p;; be the prices
charged to player i in the j-th problem; we set p;;(v) = 0 if i does not participate in the
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Jj-th problem. We return the set Uk'=1 T;, and charge player i the price Zl}:1 pji- Since
pji < C(T; N E;) for all i, j, the mechanism is weakly ICT.

Since valuations are additive, the utility of player i is the sum of her utilities in
the k single-dimensional problems, and hence, the mechanism constructed is truthful.
Since )}, pji = C(T;) for each j and the cost function is subadditive, cost-recovery
follows. The approximation guarantee follows from noting that the optimal solution
induces a solution to the j-th problem of cost at most OPT (since C is monotone).
Therefore, C(T)) + X 2eeinu\1; Vie = O(plogn)OPT, and since C is subadditive
SC(U; T)) < Z;[C(T) + % Lec(ENUNT, vie] = O(pklog n)OPT.

Parts (b) and (c). We now reduce to the single-dimensional setting by considering
all-or-nothing mechanisms. Notice that an all-or-nothing mechanism is equivalently a
mechanism for the (one-element) single-dimensional cost-sharing problem where the
set of outcomes is A’ := {S C [n] : Ujes Ei € A} (which is downwards closed since
A is), the cost function C’ : A" — R, is defined by C’(S) := C(Ujcs Ei) (Which
is subadditive if C is), and player i’s private value is v;(E;). Thus, it suffices to design
truthful, no-bossy, ICT, all-or-nothing mechanisms with approximations (p+k) and (o+
1)A(v) for the LinME and ME problems respectively. We can then inject cost-recovery
by applying the construction from Section 3 on the cost function C’, and appeal to
Theorem 3.1 to obtain the desired guarantees. An all-or-nothing mechanism is no-
bossy if E; € g(v;,v_;) and E; C g(v,v_;) then g(v;,v_;) = g(v},v_;). (Notice that this
is simply the condition that, when interpreted as a mechanism for the corresponding
one-element problem, the mechanism is no-bossy.) We now describe how to obtain the
desired (polytime) mechanisms for the LinME and ME problems. Let Alg be the LP-
relative p-approximation algorithm for the CM problem. Recall that (SC-P) denotes
the LP for the SCM problem (which has variables z;, for every i, e € E;).

The LinME problem. On input v, we compute the optimal solution (x*, z*) to (SC-P).
Let OPT denote its value. Let z;(E;) denote }’.cr, z;,. We return g(v) := Ui:z;(Ei)=0 E;
as the outcome, and use Alg to compute a solution for g(v). In the sequel, we say that
“i wins” if E; is served. Let t;(v_;) denote the smallest value of v;|E;| under which i
wins. We set g;(v) = t;(v;) if i wins and O otherwise for all i. Clearly M = (g,{g:})
is an all-or-nothing mechanism. We argue that M is a polytime truthful, no-bossy,
(o + k)-approximation, ICT mechanism.

Suppose that i is a winner under input v. Let (x’,z") be an optimal solution for
V' = (vi,v_;) where v > v;. Then, as in the proof of Theorem 4.3, it is easy to see that
Z(E;) < 7°(E;) = 0 and hence, that (x’,7") = (x*, z%). Hence, i is also a winner under
v/, and g(v) = g(v’'). The proof that M is ICT and that #;(v_;) is polytime computable
follows by mimicking the proof of Lemma 4.5 (or Theorem 4.6). To prove the approx-
imation, as before, it suffices to show that 3';...g)-0 vilEil < k- OPT. This follows since
iz (g0 VIlEil £ k(Zi ez 0 vi) and the proofs of Lemma 4.4 and Theorem 4.6 show
that Zi,e:zje>0 vi <OPT.

The ME problem. We construct the desired mechanism M by simulating the construc-

tion in Section 4 for the cost function C’. Notice that the LP-relaxation for this modified
SCM problem is an LP of the same form as (SC-P) but where we have a single variable
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z; for each player i, with z; = 0 indicating that E; is served and z; = 1 indicating that no
element of E; is served. Let (MSC-P) denote this modified SCM-LP.

On input v, we compute the optimal solution (%,7) to (MSC-P). Let opt denote
its value. We return g(v) := (J;z-9 E; as the outcome, and use Alg to compute a so-
lution for g(v). Let #;(v_;) denote the smallest value of v;(E;) under which i wins. We set
qi(v) = t;,(v_;) if i wins and O otherwise for all i. Recall that A(v) = max;[v;(E;)/ mineeg, Vie]-
We abbreviate this to A in the sequel. Since M = (g, {g;}) simulates the construction
in Section 4 for the one-element modified SCM problem, the proofs in Section 4 show
that M is polytime, truthful, no-bossy, and ICT.

We next prove that M has approximation ratio (o + 1)1. Let W = g(v). By
Lemma 4.4 and Theorem 4.6 we know that Cyy/(W) + 3250 vi(E) < (o + Dopt. Let
(x*,z*) be an optimal solution to the original SCM-LP (SC-P) for input v and OPT
denote its value. Define z; = z"(E;). Observe that (x*,z) is a feasible solution to
(MSC-P). Since v;(E;) < Av;, for all i, e € E;, we have opt < ¢x* + ¥, vi(E)z <

't + Diieer; AViezi, < AOPT. =

ie —

7.2. The multi-demand setting

Recall that in the multi-demand (MD) setting, each player i has a maximum level
of service R;. An outcome is a vector £ = ({y,...,¢,) with ¢; specifying the level
offered to player i. Player i’s value under ¢ is v;({;) := Zi"zl Vir, where v; € Rf’ is
her private type with v;; > 0 being the marginal value of increasing i’s level to k from
k — 1. We assume that v;; is non-increasing with k. The social cost of outcome ¢
is SC(¢) := C(6) + X;(vi(R)) — vi(£;)) and ICT is the condition that the price charged
to a player i is at most C(0,...,0,¢;,0,...,0). We assume that the outcome-set is
downwards-closed and C is monotone: if £ < £ and ¢’ € Z, then £’ is an outcome if £
is, and C(¢’) < C(£). We say that C is subadditive if C(¢)+ C(¢") > C({max(¢;, K;)}ie[n]).
As in Section 7.1, we also consider the single-dimensional special case where v;; = v;
for all k € [R;] (so SC({) = C(0) + 3, vi(R; — £;)); we call this the linear multi-demand
(LinMD) problem.

Analogous to (SC1-P) and (SC2-P), we consider MD problems where the SCM
problem is captured by one of two candidate LPs. We discuss the analogue of (SC1-P)
below and describe the other LP and the changes required to the proofs in Appendix C.
Variable z;; = 1 below indicates that player i is offered level of service at most R; — k.

R

min ¢"x+ Y vigoknZic (MDI1-P)
i k=1
b0
st > AV + > gz b Vi (6)
e k=1
Bx>d 7
xeRY, 0<zx <1 Vi, k.

As before, we require that d > 0, A?, »® > 0, and b € [R;] for all i,r. The LP-
relaxation corresponding to (MD1-P) for the CM problem where we want to find the
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min-cost way of serving each player i at level ¢; is obtained by dropping all the z;x
variables, and replacing b by max{0, 5" — (R; — £)}.

Example 7.3 As an example of an MD problem modeled by (MD1-P), let us revisit
EC-SNDP when multiple copies of an edge may be picked. Each player i is an (s;, t;)
pair who requires R; edge-disjoint s;-#; paths. A feasible solution may now only provide
{; < R; edge-disjoint s;-#; and incur a “penalty” for player i equal to Zf; (1 Vik-

Another example is the set-multicover problem, where an element seeks to be covered
by multiple sets (and sets may be picked multiple times).

Theorem 7.4 Let Ryax = max; R; and A(v) = max;[vi(R;)/ minger,) vix]. Given an LP-
relative p-approximation algorithm for the multi-demand CM problem, we can obtain
a truthful, cost-recovering mechanism with approximation ratio: (a) O((p+Ruax) log n)
for the LinMD problem; and (b) O(pA(v)logn) on input v for the MD problem. Both
mechanisms are ICT if C is subadditive.

Thus, we obtain truthful, cost-recovering, ICT mechanisms for:

e EC-SNDP and ELC-SNDP with approximation O(R .« log ) for the LinMD prob-
lem and O(A(v) logn) for the MD problem;

e VC-SNDP with approximation O(R3,,, log® n) for the LinMD problem and O(R3,, A(v) log” n)
for the MD problem;

e set-multicover with approximation O((logn + Ry.x) logn) for the MD problem
and O(A(v) log® n) for the MD problem.

These approximation factors can be improved by a factor of 5 at the expense of obtain-
ing B-cost-recovery. The results known in the literature for MD problems are (prices
are scaled to ensure cost-recovery; the scaling factor appears in the approximation): (i)
group-strategyproof (GSP) mechanisms for EC-SNDP and fault-tolerant facility loca-
tion with approximation ratios O(log” Ry log® n) and O(R?, log n) respectively [7];
(i1) weakly GSP mechanisms for set multicover and fault-tolerant facility location with
approximation ratio O(log n(logn + 1og Riax)) [44].

Proof : The proof (as well as the theorem statement) is along the same lines as that of
parts (b) and (c) of Theorem 7.1. We again consider all-or-nothing mechanisms, that
is, mechanisms which return outcomes where every player i is either fully served or not
served at all. For example, the all-or-nothing MD EC-SNDP problem is precisely the
single-dimensional EC-SNDP problem considered in Section 6, where serving player i
entails providing R; edge-disjoint paths and not serving i incurs penalty v;(R;).
ForasetS C [n], let Lg be the vector where Lg; = R; if i € S and is 0 otherwise. An
all-or-nothing mechanism is thus essentially a mechanism for the single-dimensional
problem specified by the outcome-set A’ := {S C [n] : Ly € A} (which is downwards-
closed) and cost function C’ : A’ — R, given by C’(S) := C(Ls) (which is subadditive
if C is), where player i’s private value is v;(R;). We describe how to obtain a truthful, no-
bossy, ICT all-or-nothing mechanisms with (p + Ry,x)- and (p + 1)A(v)- approximations
for the LinMD and MD problems respectively. We can then inject cost-recovery using
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the construction in Section 3 for the cost-function C’. Theorem 3.1 combined with the
above results then yields the stated results. No-bossiness for the one-element problem
(defined by A’,C”) translates to the following no-bossiness condition in the multi-
demand setting: if g(v;, v_;); = R; and g(v},v_;); = R; then g(v;,v_;) = g(v},v_;). Let Alg
be the LP-relative p-approximation algorithm.

The LinMD problem. On input v, we compute the optimal solution (x*, z*) to (MD1-P).
Let OPT denote its value. Let z7(R;) denote Y c(r;) sz' LetS ={i: z"(R;)) = 0}. We
return g(v) := Lg as the outcome, and use Alg to compute a solution for g(v). In the
sequel, we say that “i wins” if i is served at level R;. Let #;(v_;) denote the smallest
value of v;R; under which i wins. We set g;(v) = t;(v;) if i wins and 0 otherwise for all i.

The proof of no-bossiness is as in Theorem 7.1. The proof that M is ICT and
that #;(v_;) is polytime computable follows by mimicking the proof of Lemma 4.5. To
prove the approximation, we show that ;. ..y ViRi < k- OPT. If z*(R;) > O then
there is some k such that z;; > 0, so we only need to show that Zi,k:z;k>0 v; < OPT.
Let ({y;,.}, w*, {ﬂZk}) be an optimal dual solution, where ,ul’.‘J, w*, and nzk correspond
respectively to (6), (7) and the z;; < 1 constraint. Then by complementary slackness,
Stz 50 Vi = Dideer, 50 Dok 5, = T0y) < i B3, = Lia 7y, < OPT.

The MD problem. As in the ME setting, we construct the mechanism M by simulating
the construction in Section 4 for C’. The LP-relaxation for this modified SCM problem
is (MD1-P) with the constraints z;x = z;x for all i,k,k” € [R;]. Let (MMD-P) denote
this modified SCM-LP. Observe that (MMD-P) is of the same form as (SC1-P) (for the
corresponding all-or-nothing problem).

On input v, we compute the optimal solution (%, %) to (MMD-P). Let opt denote its
value. Let S = {i : Z;; = 0}. Wereturn W = g(v) := Lg as the outcome, and use
Alg to compute a solution for g(v). Let #;,(v_;) denote the smallest value of v;(R;) under
which i wins. We set ¢;(v) = t;(v_;) if i € S and O otherwise for all i. Recall that
A= A(v) = max;[vi(R;)/ mingeg, vik]- Since M = (g, {g;}) simulates the construction
in Section 4 for the (one-element) modified SCM problem, the proofs in Section 4 show
that M is polytime, truthful, no-bossy, ICT, and Cp (W) + 35 vi(R)) < (p + 1)opt. Let
(x*, z*) be an optimal solution to the original SCM-LP (MD1-P) for input v and OPT
denote its value. Observe that since the objective-function coefficients of the z;;s are
nondecreasing with k, we may assume that ;| >z, > ... > z; . Define z;x = z;, for
all k € [R;]. Observe that (x*,z) is a fea51ble solut10n to (MMD P) Since v;(R;)) < /lv, k
for all i, k € [R;], we have that opt < ¢/ x* + 3, vi(R; )z < X+ Yikeiry vikzy, <
AOPT. [ ]

8. Conclusions and Discussion

We investigate whether there is a black-box way of transforming approximation
algorithms for the social-cost-minimization (SCM) problem into truthful, approxima-
tion, cost-recovering mechanisms. We provide two reductions that in combination re-
duce the cost-sharing mechanism-design problem to the algorithmic cost-minimization
(CM) problem (of finding a minimum-cost solution for a given set of players) for a
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large class of problems, thereby affirmatively answering the above question. Our first
reduction shows that for any (monotone) cost function, cost-recovery can be injected
into any truthful, approximation mechanism satisfying an additional no-bossiness con-
dition while losing an O(log n)-factor in the approximation ratio. Complementing this,
our second reduction shows that for a broad class of cost-sharing problems, any LP-
relative p-approximation algorithm for the CM problem yields a truthful, no-bossy,
(o + 1)-approximation mechanism.

Our reductions apply to the single-dimensional setting where each player’s private
type consists of a single nonnegative parameter. Although, we also obtain some results
for multidimensional settings in Section 7, our guarantees for multidimensional prob-
lems are weak and suffer from the “curse of dimensionality”. An extremely interesting
and challenging research direction to emerge from our work is to obtain improved
guarantees for multidimensional cost-sharing problems and to investigate whether one
can obtain similar black-box reductions for multidimensional settings. Such reductions
would substantially advance our understanding of cost-sharing mechanism design, and
mechanism design in general, since very few reductions from mechanism design to
algorithm design are known for multidimensional mechanism-design problems.

As Theorem 7.2 indicates, it might be possible to translate approximation algo-
rithms into truthful, approximation mechanisms; however, injecting cost recovery seems
to be a much harder task. One technical difficulty that arises here is that given an input
truthful, approximation mechanism M (to which we want to add cost recovery), we do
not have a good handle on how the output of M changes when a player changes her
bid. In the single-dimensional setting, we avoided this difficulty by imposing the no-
bossiness condition on M, which (along with monotoniciy) conveniently determines
how M’s output (which is the input to M) changes under single-player bid changes. In
the multidimensional setting, it seems rather difficult to define a meaningful notion of
no-bossiness that is both powerful enough to give us a good handle on how the output
of the input mechanism M changes, and weak enough that one can devise a truthful,
approximation mechanism satisfying this condition. The natural extension of the no-
bossiness condition defined in Section 2 is not useful: for example, in the multi-element
setting, this would say that if the chosen set of elements of player i does not change
when her (reported) type changes then the mechanism’s output does not change; but the
chosen set of elements of player i could of course change and then we obtain no infor-
mation about how the mechanism’s output changes. One could define more stringent
no-bossiness conditions but this further complicates the task of designing a truthful,
approximation mechanism satisfying the stipulated no-bossiness condition. Defining a
meaningful and tractable no-bossiness notion for randomized mechanisms seems to be
an even more difficult proposition.

In light of thse difficulties, it would be insightful to understand how critical is the
role played by no-bossiness in the single-dimensional setting. In particular, is it pos-
sible to obtain a reduction of the type described in Section 3 (where we inject cost
recovery) without imposing no-bossiness for the input mechanism? Also, the limita-
tions imposed by no-bossiness are not well understood. For example, can a truthful,
approximation mechanism be made no-bossy efficiently without degrading its approx-
imation factor by much? We leave these as open questions.
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A. Proof of Theorem 4.6

The LP-relaxation of the SCM problem obtained from (C2-P) is as follows.

min cIx+vz (SC2-P)
s.t. ADx 4+ pDz; > p» for all i
Bx>d

m n
0<x<ueZl, zeR].

The argument for the monotonicity and no-bossiness of the allocation rule is exactly
as in the proof of Theorem 4.3. The proof that prices are polytime computable mimics
the proof of Lemma 4.5.

We now prove the approximation ratio and that M is ICT. Fix an input v. Let
W = g(v) and (x*, z*) be the optimal solution to (SC2-P) for input v. As in the proof of
Lemma 4.4, it suffices to show that ). ..o v; < OPT = OPTscyp. Again the key is to
consider the dual of (SC2-P). /

max > i+ d"w - "6 (SC2-D)
s.t. ZA‘i)Tp, +BTw-0<c (8)
b < v, for all i 9)

Hi-w >0, R

Here 6 is the new dual variable corresponding to the x < u multiplicity constraints. Let

({1}, w*,6) be an optimal dual solution. Then ;.. vi = Yin0 b(i)T,LL;‘. Note that

0; > 0 implies that x} = tp, 50 Yogrs0 UeCe = Legzo0 Ue( Tiy Aot + T, Brew} — 63).
NT o« * * * *

So we have 2i:zj>0 b Mt Ze:él;>0 UeCe = Zi,rﬂ,‘r’(ir + Zr,e:0;>0 X, Brow; — u’ §* where

Kir = b(r’) + Ye:>0 ueA(,’e) if z; > 0and k;; = Xpi9:50 ueA§2 otherwise.

We claim that ,u;‘rlq., < ,u;b(,') . This s true if 7 = 0 since then i} k;; = M (X0 ueA(,Q) <
(Do xADY = b I u, > 1,z > 0, and g, > 0, then if Aly > 0 we must
have 6; = 0. Otherwise, we have x; = u, > 1, and hence, } . Ai’e),xj, + bﬁ’)z;‘ > bﬁ')
since A(,'e)ue > b(,’), which contradicts complementary slackness. Therefore, we have
ke < b AlSO, B0 XBrew) < e XiBrew; = d'w'. S0 Niegvi <

* * * * N« * *
Zi,r M Kir + Zr,e:9§>0 XeB,-g(x)r - u’6 < Zi b? M T d"w* —u'¢" = OPT.

Let ¢* be the price of a winning player i. For any ¢ < ¢*, we know that every
optimal solution (x(z), z(#)) to (SC2-P) for (¢, v_;) must have z;(¢) > 0. Let ({}, w*, 6")
be an optimal solution to (SC2-D), Then ¢ = b T,u;‘ and the argument above shows that
EDWRULNTED) J b(j)T/Jj..+ d'w' —u"§", thatis, 1 < b7yt +d"w* — u" 6", Finally,
observe (u;, w*, ") is a feasible solution to the dual of C2-P({i}), so t < OPTca.piy <
C(7). This holds for all ¢ < t*, so t* < C(i). This proves that M is ICT.
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B. Omitted details from Section 7.1

Proof of Theorem 7.2 : The construction exploits the convex-decomposition idea
used in [40]. This observation is also used in [45]. On input v, we compute an
optimal solution (x*,z*) to (SC-P). Let OPT denote its value. Note that since we
solve (SC-P) optimally, we can use the VCG prices {p;} (which can be computed ef-
ficiently) to obtain a fractional truthful mechanism. More precisely, this means that if
(x',7’) is the optimal solution to (SC-P) for input (v, v_;), then we have } g, vi (1 —
z:’l.) = pi(v) = Yep, Vie(l = z’g’i) - pi(vi,v_;). We show that using Alg one can ob-
tain a convex combination of polynomially many integral solutions to (SC-P) such that
Prlelement e € E; is not served] = z; for all i, e € E; and the expected cost is at most
p - OPT. Our randomized allocation rule chooses an integral solution with probability
equal to its weight in this convex combination. Let X denote the random set served.
As in [40], we can come up with random prices {Q;} such that Q;(v) < v;(X) and
E[Q:(v)] = pi(v). This randomized mechanism clearly achieves a p-approximation.
It is truthful in expectation because a player’s expected utility is the same as her
utility in the fractional truthful mechanism. Formally, if player i’s true type is v;
and the others report v_;, her expected utility E[u;(v;;V;,v_;)] when she reports V; is
Yeck; Ve,i(1 =Prle is not served]) — pi(vi, v_i) = Xoep, Vei(1 - z, ;) — pi(Vi, ), and if she
reports v/, we have E[u;(vi; v, v_)] = X,eg, Vei(l = z,) = pi(vi,v=) < E[u;(vi; vi, v_)].

Let {(x,z")},c; denote the collection of all integral solutions to (SC-P) where
Zei € {0, 1} for all i,e € E;. Examining (SC1-P) and (SC2-P) we see that if (x,z) is a
feasible solution, then so is (x,z’) where 7’ > z. Consider the following LP. The index
I below indexes integral solutions and ranges over 7.

max Z Vi P) min pkeTx* +wlz") +6 (D)
! st keI XD+ pwTz0 +6>1 Vi
.. RS (10) CEw30.
1

Z yicTxD <pcx* (11)

[
Yvd<s
! v 2=0.

We claim that a feasible solution to (P) with value 1 (which is therefore an optimal
solution) can be modified so that (12) holds at equality. To see this, suppose that
2171252 < z;,- Then, we can take some / such that y; > 0 and zfl; = 0 and transfer
some weight from this integral solution to the integral solution (x' = x,7"), where
7z, = landz,,, = zg,l)e, for all (i’",e’) # (i,e). By repeatedly doing this, we can
obtain a convex combination where (12) holds at equality. To show that the optimal
value of (P) is 1 and that it can be solved efficiently, we move to the dual (D). Here,
¢ and « are the dual variables corresponding to (10) and (11) respectively, and pw,;
is the dual variable corresponding to the (i, e)-th constraint of (12). Suppose there is
some (k, 6, w) for which the objective value of (D) is less than 1. Then, since Alg is

an LMP p-approximation algorithm, we can run it on the input (¢, w/«) to obtain an
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integer solution (x, z) such that c” x? + pw?z® /k < p(cTx* + wT'z* k) < (1 = §)/«.
But this means that the corresponding constraint of (D) is violated. This shows that
OPT 1y = OPTpy > 1, and hence is exactly one. By using the ellipsoid method with
Alg providing a separation oracle, we can get an LP with only polynomially many
constraints that is equivalent to (D); taking its dual yields an LP of the form (P) with
only polynomially many variables. Solving this, and then tweaking the y values so that
(12) holds at equality yields the desired convex combination. ]

The performance of Moulin and acyclic mechanisms. Let £ : 2" x [n] — R, be
a cost-sharing method for a cost function C. The following notion of summability
was introduced in [53]: say that & is a-summable if for every set S C [n] and every
permutation {sy, ..., s,} of the elements of S, we have .7, £({s1, ..., s}, 5;) < @-C(S).
Say that £ is (8, y)-budget-balanced if C(S)/y < &(S,S) < BC(S) forall S C [n].

Let g; be the allocation rule of the Moulin mechanism M, obtained when we treat
each element e € E; as a player with value v; .

Lemma B.1 Let € be a cross-monotonic, (B,7y)-budget-balanced, a-summable cost-
sharing method. Then, g is an implementable O(a + S(y — 1) + y)-approximation
algorithm for the LinME problem, and the prices implementing it yield y-cost-recovery.

Proof : The approximation guarantee follows from Corollary 6.2 in [53]. To prove
implementability, fix player i and v_;. Consider the runs of M; on the inputs v =
(vi,v—) and v = (v},v_;) where v/ > v;. Let S’(v) and S’(+') denote the current set of
elements in iteration £ of M; in the runs on v and v’ respectively. We need to show that
Ig:(V')N E;j| > |g:(v) N E;|. This follows from the observation that S ‘4" 2 §¢(v), which
follows easily by induction since ¢ is cross-monotonic. In fact, we have the stronger
property that g:(v) € g:(v').

Let g;(r,v_;) be the smallest value ¢ such that |g(t,v_;) N E;| > r; this is co if there
isno such t and O for r = 0. Let T} » = g¢(q(r, v—;), v—;). So by definition |T;, N E;| > r.
Also, T;, € T;,» for all ¥ > r since g;(r,v_;) < gi(r’,v—;). The price charged to
player i on input v is Zlfi(lv)mm qi(r,v_;). So since &(S,S) > C(S)/y forall § C [n], it
suffices to show that g;(r,v_;) > max,cr,, &(T;,, ). Suppose this was false and there is
some e € T, such that ¢;(r,v_;) < &T;,,e). Then, under the input (g;(r, v_;), v_;), the
mechanism would not return 7, as the output, which is a contradiction. [ |

The following examples show that slight extensions of the above lemma—enlarging
the domain of problems, or weakening the conditions on g:—make it false.

Example B.2 g, is not implementable for the ME problem. We have one player who
owns two elements a,b. The cost function is C({b}) = C({a,b}) = 2; C({a}) = 1.
The cost-sharing method is: &({a,b},e) = 1 for e = a,b; £E({b},b) = 2; é({a},a) =
1. Note that C is submodular and ¢ is (1, 1)-budget-balanced. Consider the inputs
v =1(09,19) and v' = (1,1). We have g¢(v) = 0 and g:(v') = {a, b} but this violates
weak-monotonicity since v'({a, b}) < v({a, b}).
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Acyclic mechanisms were defined in [44] in order to leverage cost-sharing methods
that are obtained from primal-dual algorithms but need not be cross-monotonic. We
show that the allocation rule of an acyclic mechanism need not be implementable for
the LinME problem.

Example B.3 We have one player who owns three elements E = {a, b, c}. The offer
function is such that elements are always considered in the order a, b, c. Let C be
an additive cost function with C({a}) = 1, C({b}) = C({c}) = 1 + 2¢. The cost-
sharing method is: £(S,a) = 1 forall S 3 a; £&(E,b) = £(E,c) = 1 + 2¢; £E({b, ¢}, b) =
&({b,c},c) =1 —¢€; and é({a, c},c) = 1 + 2e = &({c}, c). Note that these & values are
compatible with & being valid for 7 (see [44]), and this condition fixes all the remaining
& values. Note that £ is (1 — O(e), 1)-budget-balanced. On input v = 1 — ¢, the acyclic
mechanism drops « in the first iteration, and returns {b, c}. On the input v/ = 1 + ¢, the
acyclic mechanism retains a, drops b, c in the subsequent iterations, and returns {a}.
This contradicts monotonicity.

C. Omitted details from Section 7.2

The second LP-relaxation for the SCM problem, which generalizes (SC2-P), is as
follows.

Ri
min Tx+ Z Z ViR ke 1Zik (MD2-P)
i k=1
B0
s.t. ZAi’e)xe + Z Zig = bY Vi, r
e k=1
Bx>d
O<x<ueZ’ 0<zi<l Vi, k.

We require that d > 0, A?, b > 0, and b € [R;] for all i, . We also require that
B > 0, and for every i, if Aﬁ’e) > 0 and u, > 0 then Agie)ue > b(,i). The corresponding
LP-relaxation for the CM problem where we want to find the min-cost way of serving
each player i at level ¢; is obtained by dropping all the z;; variables, and replacing bY
by max{0, 5 — (R; — £,)}.

We briefly describe the modifications to the proof of Theorem 7.4 if the SCM LP
is described by (MD2-P). The mechanism M for the LinMD and MD problems is
constructed exactly as before. For the MD problem, the modified SCM-LP (MMD-
P) is now of the same form as (SC2-P), and the proof is unchanged with the relevant
arguments from Section 4 now supplied by Theorem 4.6.

For the LinMD problem, no-bossiness follows as in Theorem 7.1. The proof
that M is ICT and prices are polytime computable follows again by mimicking suit-
able arguments from Section 4. To prove the approximation, we again prove that
iz Ry>0 ViRi < k- OPT by showing that Z,-,k:z’?o vi < OPT. Let ({yzr}, w*, 6", {nzk})
be an optimal dual solution, where 6 is value of the new dual variable correspond-
ing to the x, < u, constraint. Now, as in the proof of Theorem 4.6, we get that
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Zi’k:Z:PO Vi + Ze:9:>() UeCe = Zi,rﬂ:‘ir’(i,r + Zr,e:93>() X:Brewi w6 - Zi,k ﬂi,k where
Kip = [k < bP - z;k > 0} + Zeﬁ:w u,AY. 1If there is no k < b WiFh z;, > 0 then
M Kir < (2, x;‘A(,’e)) = ,ujrbg’). Otherwise, if u, > 1, uf, > 0 and AY > 0, we must
have ¢ = 0 (or else 3, A x* + Do Tx > by, Tt follows that M ki < ,uzrbﬁl) , and

. () T T —
hence, 2 ke >0 Vi + Xewgr>0 UeCe < iy M, by" +d' " —u' 0" = 3 miy = OPT.
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