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Abstract

We consider the design of strategyproof cost-sharing
mechanisms. We give two simple, but extremely ver-
satile, black-box reductions, that in combination reduce
the cost-sharing mechanism-design problem to the al-
gorithmic problem of finding a minimum-cost solution
for a set of players. Our first reduction shows that
any truthful, α-approximation mechanism for the social-
cost minimization (SCM) problem satisfying a technical
no-bossiness condition can be morphed into a truthful
mechanism that achieves an O(α log n)-approximation
where the prices recover the cost incurred. Thus, we de-
couple the task of truthfully computing an outcome with
near-optimal social cost from the cost-sharing prob-
lem. This is fruitful since truthful mechanism-design,
especially for single-dimensional problems, is a rela-
tively well-understood and manageable task. Our sec-
ond reduction nicely complements the first one by show-
ing that any LP-based ρ-approximation for the prob-
lem of finding a min-cost solution for a set of players
yields a truthful, no-bossy, (ρ + 1)-approximation for
the SCM problem (and hence, a truthful (ρ + 1) log n-
approximation cost-sharing mechanism).

These reductions find a slew of applications, yield-
ing, as corollaries, the first or improved polytime cost-
sharing mechanisms for a variety of problems. For
example, our first reduction coupled with the cel-
ebrated VCG mechanism shows that for any cost-
sharing problem (with a monotone cost function) one
can obtain a truthful mechanism that achieves an
O(log n)-approximation where the prices recover the
cost incurred. Other applications include O(log n)-
approximation mechanisms for: survivable network de-
sign problems, facility location (FL) problems including
capacitated and connected FL problems, and minimum-
makespan scheduling on unrelated machines. Our re-
sults demonstrate that in contrast with our current un-
derstanding of group-strategyproof and acyclic mecha-
nisms, strategyproofness allows for ample flexibility in
cost-sharing mechanism design enabling one to effec-
tively leverage various algorithmic results.
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1 Introduction

Consider a setting where n self-interested players com-
pete to receive a service or good. Each player has a
private value for receiving the service, and may declare
a bid that deviates from her true value if that increases
her utility. The service provider has to decide which set
S of players will receive the service and at what prices,
incurring a publicly-known cost C(S). We assume that
C(.) is monotone: C(S) ≤ C(T ) if S ⊆ T . How can
one design a computationally-efficient protocol or mech-
anism that incentivizes truthful bidding where the out-
come computed has good social welfare and the prices
charged recover the cost incurred? This is the subject of
cost-sharing mechanism design. More formally, a mech-
anism consists of an algorithm that outputs a solution,
and a pricing scheme for specifying prices charged to
the players; the utility earned by a player is her value
under the algorithmic outcome minus the price she has
to pay. A mechanism is said to be truthful or strate-
gyproof if each player maximizes her utility by declar-
ing her true private value regardless of what the other
players declare. Three basic desirable properties of cost-
sharing mechanisms that pervade the literature on cost-
sharing mechanisms are: (a) strategyproofness (SP) (or
stronger notions like group-SP (GSP)); (b) cost recov-
ery, i.e., the revenue of the mechanism is at least the
incurred cost; and (c) economic efficiency, i.e., social-
welfare maximization. In algorithmic mechanism design
we also require that the mechanism be computationally
efficient. The standard notion of social-welfare yields an
ill-behaved optimization problem for which no approxi-
mation guarantees are achievable in polytime [19]. So,
following [50], we formalize economic efficiency using the
social-cost minimization (SCM) objective: minimize the
sum of the cost incurred and the total value of players
who do not receive service.

In light of the impossibility of achieving all three
requirements [22, 47] much effort has been devoted into
approaches that relax, or drop, one of the requirements.
General (algorithmic) mechanism-design techniques are
much sought after, but quite rare. Before describing
our results, which make progress in this direction, we
briefly discuss some known generic constructions. The
celebrated VCG mechanism [53, 14, 23] satisfies (a) and
(c) (for any cost function) but achieves poor revenue
and is computationally intractable in general. (No such



analogue, achieving (a) and relaxed versions of (b), (c)
is known for general cost-sharing problems.) At the
other end, Moulin mechanisms [43] (in general) satisfy
(a) and (b) at the expense of efficiency. A Moulin-style
mechanism is an iterative mechanism where prices are
offered in each iteration to the current set of players;
players who cannot afford to pay these prices drop
out and we iterate with the remaining set of players.
The mechanism halts when all (current) players accept
their prices. Different variants arise depending on how
exactly (i.e., simultaneously or one at a time) players are
offered prices and drop out. Moulin [43] proved that if
the price-sequence offered to a player is nondecreasing—
a property called cross-monotonicity—and the prices
recover the cost incurred for the current set, then the
resulting mechanism is GSP and satisfies cost-recovery.
[50] recently showed that if the price-sequences satisfy
a property called summability, then one can also bound
the approximation of the resulting Moulin mechanism.

Moulin’s result has fueled much work on the de-
sign and analysis of such price sequences (also called
cost shares) for various problems [44, 33, 50, 46, 49, 34,
12, 26, 7]. We emphasize however that all these re-
sults are tailored to the problem at hand. There is no
known black-box way of leveraging Moulin mechanisms
(in conjunction with approximation algorithms) to ob-
tain cost-sharing mechanisms that satisfy (a), relaxed
versions of (b), (c). In fact, as shown in [31], designing
suitable cost shares can often be much more challenging
than the underlying algorithmic problem. For example,
for vertex cover, cross-monotonic cost shares cannot re-
cover more than O(1/|V |1/3)-fraction of the cost [31],
and hence no Moulin mechanism that recovers the cost
can achieve approximation better than Ω(1/|V |1/3) (see
Section 2). As a means of overcoming these limitations,
Mehta et al. [41] propose acyclic mechanisms, which are
also Moulin-style mechanisms. They show that for var-
ious problems, one can adapt known primal-dual algo-
rithms for the underlying cost-minimization problem to
obtain suitable cost shares, which yield acyclic mecha-
nisms with improved guarantees. But their techniques
do not yield an automatic way of obtaining suitable cost
shares from primal-dual algorithms and again the con-
struction of cost shares is problem dependent.

Our results. We give two simple, but extremely
versatile, black-box reductions, that in combination re-
duce the cost-sharing mechanism-design problem to the
algorithmic cost-minimization (CM) problem of finding
a minimum-cost solution for a set of players.

Informal statement of reductions (1) Any truthful,
α-approximation mechanism (for the SCM problem)
that satisfies an additional no-bossiness property can
be transformed in polytime into a truthful, O(α log n)-

approximation mechanism that fully recovers the cost.
(2) For a large family of cost-sharing problems, any
LP-based ρ-approximation algorithm for the CM prob-
lem yields a polytime truthful, no-bossy, (ρ + 1)-
approximation mechanism.

(No-bossiness is the condition that if a winning player is
unaffected by changing her bid, then neither is the out-
come computed.) Thus, our first reduction (Section 3)
conveniently decouples the task of truthfully computing
a solution with near-optimal social cost (i.e., proper-
ties (a) and (b) above) and the cost-recovery require-
ment (c). We emphasize that this reduction applies to
any (monotone) cost function. The log n factor matches
the approximation lower bound proved by Dobzinski et
al. [17] for truthful cost-sharing mechanisms (for subad-
ditive cost functions), which shows that the reduction
is tight (up to constant factors). This reduction is quite
fruitful since (as our second reduction shows) truth-
ful mechanism-design, especially for single-dimensional
problems, is a relatively well-understood and manage-
able task. One of the most widely used and remarkably
successful paradigms in the design of approximation al-
gorithms, is that of expressing a relaxation of the prob-
lem as a linear program (LP) and using this to design
the approximation algorithm, either via LP rounding or
via a primal-dual approach. Our second reduction (see
Section 4) shows that any LP-based approximation al-
gorithm for the CM problem can be used to obtain a
truthful, no-bossy, approximation mechanism that can
be fed as input to the first reduction. Thus, in combina-
tion, our reductions yield a generic way of exporting LP-
based approximations for the CM problem into truthful,
cost-recovering mechanisms with related approximation
guarantees. In contrast (to our liberal requirement of
having an LP-based approximation algorithm), much
of the extant work on cost-sharing mechanisms requires
the use of cost shares satisfying various properties to ob-
tain (good) cost-sharing mechanisms. (Observe that an
LP-based ρ-approximation for the SCM problem is also
an LP-based ρ-approximation for the CM problem.)

With subadditive costs, our mechanisms (in addi-
tion to individual rationality) also ensure that no player
i is charged a price larger than C({i}), a property we
call individual competitiveness (ICT). This is desirable,
as otherwise an over-charged player has an incentive to
refuse participation (and try to obtain the service from
elsewhere at lower cost). A related point is that we do
not insist that the mechanism’s revenue be at most β
times the cost incurred (for some β > 1). (This con-
dition along with cost-recovery is called β-budget bal-
ance.) The usual rationale for the upper bound is that
one does not want the coalition of winning players to
have an incentive to secede from the mechanism and



Problem category Problem Previous results Our results

Survivable network
design problems (SNDPs)

(rmax = maximum requirement)

Edge-disjoint SNDP – O(logn)
Element-Disjoint SNDP – O(logn)
Vertex-Disjoint SNDP – O(r3max log2 n)
Steiner-Tree O(log2 n) [50] O(logn)
Steiner-Forest O(log2 n) [12] O(logn)

Facility location (FL)
Uncapacitated FL O(logn) [49, 41] O(logn)
Soft- capacitated FL (CFL) – O(logn)
Multicommodity connected FL O(log2 n) [49] O(logn)

Covering problems
Set cover O(log2 n) [41] O(log2 n)
Vertex cover O(logn) [41] O(logn)

Scheduling problems
Makespan minimization on

– O(logn)
unrelated machines

Table 1: Summary of approximation results. All cited mechanisms are (at least) truthful. When citing previous work, we
scale prices to ensure cost-recovery; this scaling factor thus appears in the approximation.

obtain the service from elsewhere at lower cost. Since
we focus on strategyproofness, we explicitly do not con-
sider the effect of coalitions; focusing on individual play-
ers yields ICT instead as the natural requirement.

A key feature of our reductions is their general-
ity. An immediate notable implication is that taking
the VCG mechanism as input in the first reduction,
we obtain, for any cost function, a truthful, O(log n)-
approximation, cost-recovering mechanism. Previously,
such a result was known only for subadditive cost func-
tions [5]. For a wide variety of cost-sharing problems,
we obtain the first, or improved polytime cost-sharing
mechanisms simply by plugging in a suitable LP-based
algorithm. We consider a few representative applica-
tions in Section 5, and summarize our results in Table 1.
We believe that our reductions will find many more ap-
plications. Section 6 considers some extensions to multi-
dimensional cost-sharing problems. Our results demon-
strate that in contrast with our current understanding
of group-strategyproof and acyclic mechanisms, strate-
gyproofness allows for ample flexibility in cost-sharing
mechanism design enabling one to effectively leverage
various algorithmic results.

Our constructions are quite intuitive and easy to
describe. For the first reduction, we first observe that
regardless of the cost shares used, the allocation rule f
of a Moulin-style mechanism is always monotone, and
hence one can find prices {pi} such that

(
f, {pi}

)
is

a truthful mechanism. Now we simply initialize the
Moulin mechanism with the outcome returned by the
input truthful mechanism and then use the uniform cost
shares C(S)/|S|. Since the Moulin mechanism preserves
truthfulness, the resulting mechanism is truthful, while
the cost shares prescribed ensure cost recovery at the
expense of a log n-factor loss in approximation. The
second reduction proceeds by rejecting all the players
who are rejected fractionally in the SCM LP, and using

the LP-based algorithm for the CM problem to compute
a solution for the remaining players. Simple LP theory
shows that for a broad class of LPs, this mechanism has
all the desirable properties.

Related work. Moulin [43] and Moulin and
Shenker [44] developed the theory of Moulin mech-
anisms. Subsequently, suitable cost-sharing methods
were developed for various combinatorial-optimization
problems, such as Steiner tree [33], Steiner forest [34],
facility location [46], connected facility location [27, 39],
and scheduling problems [4]. Prior to [50], such re-
sults focused on the design of cross-monotonic, approx-
imately budget balanced (BB) cost shares; the result-
ing Moulin mechanisms do not however come with any
(SCM-) approximation guarantees. Immorlica et al. [31]
exposed an inherent limitation of this method by prov-
ing lower bounds on the BB-factor achievable by cross-
monotonic cost shares for various problems. Devanur
et al. [16] designed truthful, cost-recovering non-Moulin
mechanisms for set cover and facility location, but do
not prove any approximation guarantees.

Roughgarden and Sundararajan [50] proposed the
social-cost objective, and isolated a property of the cost-
sharing method called summability that bounds the ap-
proximation of the resulting Moulin mechanism. Sub-
sequent work designed new cost-sharing methods [49,
26, 7, 6] and/or re-analyzed previous cost-sharing meth-
ods [12, 50, 49] to also show summability bounds. [50, 7]
also prove lower bounds on the summability and/or
BB factor of cost-sharing methods, and [50] observed
that such lower bounds, translate to poor approxima-
tion and/or poor BB for Moulin mechanisms. Mehta et
al. [41] proposed acyclic mechanisms, which also require
suitable cost shares, as a means of circumventing these
obstacles. They show that for certain problems, primal-
dual algorithms for the underlying cost-minimization
problem can be easily adapted to yield acyclic mech-



anisms with good guarantees.
None of these results yield generic ways of translat-

ing algorithmic results for the SCM problem into anal-
ogous cost-sharing mechanisms. The design of cross-
monotonic cost-shares satisfying various properties is
tailored to the problem at hand and often quite in-
tricate. [41] obtain some success, but they too are
not able to automatically translate primal-dual algo-
rithms into suitable cost shares and have to proceed
in a problem-dependent way. The work of Bleischwitz
et al. [5] is perhaps closest in spirit to our work. They
show that for subadditive cost functions, one can obtain
(not necessarily polytime) truthful (also, weakly GSP),
O(log n)-approximation, 1-BB mechanisms. Let Alg be
a ρ-approximation algorithm Alg for the CM problem.
[5] also show that if the cost function induced by Alg,
denoted CAlg, has a certain ordering property, then one
can obtain a polytime truthful, polytime, O(ρ log n)-
approximation mechanism. However, this property is
not known to be satisfied for various problems of inter-
est; e.g., Steiner tree, facility location etc. Brenner and
Schafer [8] show that if the cost function satisfies a dif-
ferent ordering property, then Alg can be used to obtain
an acyclic mechanism with ρ-BB; if CAlg and C satisfy
some other conditions they also obtain approximation
guarantees. In comparison with our requirement that
Alg be an LP-based algorithm, these conditions on Alg
and C seem much more restrictive; indeed, the applica-
tions in [5, 8] are limited to scheduling problems.

In the area of social-welfare-maximization (SWM)
packing problems, more success has been obtained in de-
vising black-box reductions. Lavi and Swamy [37] and
Dughmi and Roughgarden [18] show how to translate
certain algorithms into truthful-in-expectation mecha-
nisms with the same approximation guarantee; [37] re-
quire an integrality-gap verifying approximation algo-
rithm, whereas [18] require an FPTAS. We note that
our requirement of “LP-based ρ-approximation” is much
weaker than the integrality-gap requirement in [37].
Most recently, Huang et al. [30] showed that for a sym-
metric single-dimensional SWM problem, any approxi-
mation algorithm can be converted to a truthful mech-
anism with the same approximation. If one relaxes the
truthfulness condition to Bayesian incentive compatibil-
ity, then black-box reductions were recently obtained by
Hartline and Lucier [29] in the single-dimensional set-
ting, and [2, 28] in the multidimensional setting. None
of these reductions translate to the cost-sharing domain.

2 Preliminaries

In a cost-sharing mechanism-design problem, we have n
players with private types who compete for some service
or good, and each outcome specifies a set S ⊆ [n] of

players who will receive the service. Let [n] denote
the set {1, . . . , n}, and A ⊆ 2[n] denote the set of all
possible outcomes. Also, there is a publicly-known cost-
function C : A 7→ R≥0 that specifies the cost incurred
for serving a given set of players; we use C(i) to denote
C({i}). As is standard, we assume thatA is downwards-
closed and C is monotone, that is, if T ∈ A and
S ⊆ T , then S ∈ A and C(S) ≤ C(T ). In keeping
with the vast literature on cost-sharing mechanisms,
we focus for the most part on single-dimensional cost-
sharing problems, wherein each player i’s private type
consists of a single nonnegative parameter vi specifying
her value for receiving the service. We use v to denote
the tuple (v1, . . . , vn) and v−i to denote the tuple
(v1, . . . , vi−1, vi+1, . . . , vn).

A (direct revelation) mechanism for a cost-sharing
problem consists of an allocation rule (that is, an
algorithm) f : Rn+ 7→ A, and a pricing scheme pi :
Rn+ 7→ R for each player i. Each player i reports a
type vi (possibly deviating from his true type), and
the mechanism computes the outcome f(v) and charges
price pi(v) to player i. We sometimes refer to the
players in f(v) (i.e., who receive service) as “winners”.
Throughout we use vi to denote the true type of player
i. The utility ui(vi; vi, v−i) player i derives when she
declares vi and the others declare v−i is vi − pi(vi, v−i)
if i ∈ f(vi, v−i) and −pi(vi, v−i) otherwise, and each
player aims to maximize her own utility.

We are interested in designing mechanisms where
the outcome computed approximates the optimum so-
cial cost with respect to the players’ true types, which
is defined as minS∈A

(
SC(v;S) := C(S) +

∑
i/∈S vi

)
, and

the prices recover the cost incurred by the mechanism.
More precisely, we formalize this by requiring a cost-
sharing mechanism M =

(
f, {pi}

)
to satisfy the follow-

ing desirable properties:

• M is strategyproof (a.k.a truthful), which means that
each player maximizes her utility by revealing her
true value: for any i, v−i, and any vi, v

′
i, we have

ui(vi; vi, v−i) ≥ ui(vi; v′i, v−i). We use the terms strat-
egyproofness and truthfulness interchangeably from
now on.

M is individually rational (IR) and has no posi-
tive transfers (NPT), i.e., ui(vi; vi, v−i) ≥ 0 and
pi(vi, v−i) ≥ 0 for every i, vi, v−i. (In the sequel,
whenever we say truthful, we mean truthful, IR, and
NPT.)

• (Approximation) f is an α-approximation algorithm
for the social-cost minimization (SCM) problem: for
every input v = (v1, . . . , vn), we have SC(f(v)) ≤
α
(
minS∈A SC(v;S)

)
. We drop the input v in SC(.; .)

when this is clear from the context.



• (Cost recovery) The prices recover at least a β-fraction
of the mechanism-designer’s cost: for every input v,
we have

∑
i pi(v) ≥ C

(
f(v)

)
/β.

We call such a mechanism a truthful, α-
approximation, β-cost-recovering mechanism. (We ab-
breviate 1-cost-recovering to cost-recovering.) Often,
computing C(S) for a set S turns out to be NP-
hard, and a polytime mechanism must therefore also
specify a candidate (low-cost) solution for the set of
players it serves. In such settings, the approxima-
tion and cost-recovery requirements are modified to
CM (f(v)) +

∑
i/∈f(v) vi ≤ α

(
minS∈A SC(v;S)

)
, and∑

i pi(v) ≥ CM (f(v))/β, where CM (f(v)) is the cost
of the solution computed by M for the set f(v).

We say that an allocation rule f is implementable if
there exist prices {pi} such that

(
f, {pi}

)
is a truthful

mechanism. For single-dimensional problems, we have
the following well-known and useful characterization
of implementable allocation rules. Call an allocation
rule f (for a single-dimensional problem) monotone if
i ∈ f(vi, v−i) and v′i > vi implies that i ∈ f(v′i, v−i)
(i.e., a winning player remains a winner by increasing
her bid).

Theorem 2.1. ( [45, 1]) Given an allocation rule f ,
there exist prices {pi} implementing f iff f is monotone.
Suppose that f is monotone and for every i and v−i,
there is a well-defined threshold ti(v−i) such that for
any input (v, v−i), player i wins when v > ti(v−i) and
loses when v < ti(v−i). Then, setting pi(v) = ti(v−i)
if player i wins and 0 otherwise for every i, gives the
unique prices that implement f and ensure IR, NPT.

We say that a cost function is subadditive if C(S)+
C(T ) ≥ C(S∪T ) for every S, T ∈ A such that S∪T ∈ A.
The vast majority of cost-sharing problems that have
been studied in the literature involve subadditive func-
tions (e.g., Steiner forest, vertex cover, facility location).
For subadditive cost functions, an additional desirable
property that we would like to achieve is that the price
charged by the mechanism to a (winning) player does
not exceed the cost of serving her individually. We call
this property individual competitiveness (ICT).

• (Individual competitiveness) pi(v) ≤ C(i) for every
player i.

(If C is not subadditive, then ICT conflicts with cost-
recovery, so we impose ICT only when C is subadditive.)
We view individual competitiveness as a basic sanity
check: in its absence, a player i who is charged a price
larger than C(i) has an incentive to secede from the
mechanism and find alternate means of obtaining the
service (by herself, or from a competitor) at a cost

lower than the price she currently pays. This is the
same rationale as the one used to motivate the core of
a cooperative cost-sharing game. But since our focus
is on strategyproofness we explicitly do not consider
collusions among players; focusing on individual players
yields ICT instead as the natural requirement. A
related point is that our β-cost-recovery condition is
subtly different from the β-budget balance condition
that is used in the literature, wherein we require that
C(f(v))

β ≤
∑
i pi(v) ≤ C(f(v)) (or equivalently, via

scaling,
∑
i pi(v) ∈

[
C(f(v)), βC(f(v))

]
). As in the

case of the core, the usual rationale for imposing the
upper bound is that in its absence the coalition of
winning players has an incentive to secede from the
mechanism. As before, since we explicitly focus on
individual players and not coalitions, we drop this
upper-bound requirement, and insist on (approximate)
cost-recovery and ICT.

Our first reduction (Section 3) requires as input
a truthful, approximation mechanism that satisfies an
additional technical condition called no-bossiness, which
is defined as follows: an allocation rule f satisfies no-
bossiness if for every i, v−i and v, v′, if i ∈ f(v, v−i) and
i ∈ f(v′, v−i), then f(v, v−i) = f(v′, v−i). That is, if a
winning player remains a winner by changing her bid,
then the outcome computed is unaffected.

Lower bounds. Dobzinski et al. showed that
for the public-excludable good problem (CPEG(S) = 1 if
S 6= ∅ and is 0 otherwise) any truthful mechanism for
the SCM problem achieving β-budget balance must be
Ω(log n/β)-approximate. It is easy to that their proof
also holds for β-cost-recovering truthful mechanisms.
Since CPEG can be encoded as the cost function of
many problems (e.g., Steiner tree, vertex cover, facility
location), this implies an analogous lower bound for
these cost-sharing problems.

Moulin-style mechanisms. A Moulin-style
mechanism works as follows. The mechanism takes as
input a cost-sharing method ξ : 2[n] × [n] 7→ R+. Given
a current set S (initialized to [n]) of candidate players
for receiving service, the mechanism tentatively asks
each player i ∈ S if vi ≥ ξ(S, i). If this is true for
all players, then the mechanism outputs S and charges
each player i ∈ S the price ξ(S, i) (and 0 to the other
players). Otherwise, the mechanism drops one, some,
or all of the players who have vi < ξ(S, i), and iterates
with the remaining set of players (we call the latter the
“all-drop” rule.) Different variants arise based on the
exact rule for dropping players. Moulin [43] showed that
if the cost-sharing method is cross-monotonic, —that
is, ξ(S, i) ≤ ξ(T, i) for every S ⊆ T, i ∈ S—then all
variants yield the same mechanism and this mechanism



is strategyproof (in fact, group-strategyproof (GSP)).
Moreover, if

∑
i∈S ξ(S, i) ≥ C(S) for all S, then the

mechanism satisfies cost-recovery.
Say that a cost-sharing method ξ is competitive if

ξ(S, S) ≤ C(S) for all S; say that ξ is cost-recovering
if ξ(S, S) ≥ C(S) for all S. Define the budget-
balance (BB) factor of a cost-sharing method ξ to be
max

{
maxS C(S)/ξ(S, S),maxS ξ(S, S)/C(S)

}
. Immor-

lica et al. [31] proved lower bounds on the BB-factor
achievable by competitive, cross-monotonic ξ for vari-
ous problems. Clearly, this also implies lower-bounds
for cost-recovering, cross-monotonic ξ. [50] observed
that the approximation of the Moulin mechanism Mξ

constructed from a competitive, cross-monotonic ξ is
Ω(BB-factor of ξ). We observe that the same holds for
cost-recovering ξ. Coupled with the lower bounds in [31]
for various cost functions, this implies lower bounds
on the approximation of every cost-recovering Moulin
mechanism for these cost-functions.

Lemma 2.1. Let ξ be cost-recovering and cross-
monotonic with BB-factor β. Then, Mξ has approxi-
mation ratio Ω(β).

Proof. Let S be an inclusion-wise minimal set such that
ξ(S, S) = βC(S). So ξ(S, i) > 0 for all i ∈ S. Consider
the following input. Set vi = ξ(S, i) − ε > 0 for all
i ∈ S, where ε > 0 is negligible, and vi = 0 for all
i /∈ S. Mξ will return the empty set and incur social
cost ξ(S, S)− |S|ε, whereas choosing S as the outcome
yields social cost C(S). Thus the approximation ratio
tends to β as ε goes to 0.

3 A black-box way of injecting cost-recovery

In this section we prove the following theorem, which
reduces the cost-sharing (i.e., truthful, approximation,
cost-recovering) mechanism-design problem to the task
of truthful and no-bossy approximation mechanism
design.

Theorem 3.1. Given a truthful, α-approximation
mechanism M =

(
g, {qi}

)
satisfying no-bossiness, we

can obtain a mechanism M ′ such that: (a) M ′ is
a truthful, O(α log n)-approximation, cost-recovering
mechanism, and is polytime computable if M is; (b) if
M is ICT and C is subadditive, then M ′ is ICT.

The proof follows from two constructions. The first
construction is quite simple to describe and illustrates
many of the ideas involved. The idea here is to simply
initialize the Moulin mechanism with the output of the
mechanism M and then use the uniform cost shares
ξ(S, i) = C(S)/|S|. Since the Moulin mechanism
preserves truthfulness, the resulting mechanism inherits

truthfulness from M , while the uniform cost shares
ensure cost-recovery while degrading the approximation
by a log n-factor. The resulting mechanism satisfies
all the properties mentioned in Theorem 3.1 except
ICT. (As mentioned earlier, for non-subadditive cost
functions, we cannot hope to achieve both cost-recovery
and ICT.) Next, for subadditive cost functions, we show
how one can also obtain ICT by suitably refining the
first construction. We describe this construction after
detailing the first construction. For a set S ⊆ [n], we
define R(S) = {i ∈ S : vi < C(S)/|S|}.

Mechanism M1 =
(
f1, {p1,i}

)
Given: a truthful, α-

approximation mechanism M =
(
g, {qi}

)
satisfying no-

bossiness. On input v, we do the following.

C1. Initialize j ← 0 and S0 ← g(v).

C2. While R(Sj) 6= ∅, set Sj+1 ← Sj \R(Sj) and j ← j + 1.

C3. Return Sj as the winner set. The prices, as specified
via Theorem 2.1, equate to (see Lemma 3.1) p1,i(v) =

max
{
qi(v), C(S0)

|S0|
, . . . ,

C(Sj)

|Sj |

}
if i ∈ Sj , 0 otherwise.

Lemma 3.1. Mechanism M1 satisfies property (a) of
Theorem 3.1.

Proof. We assume here for simplicity that C(.) is poly-
time computable, in which case it is clear that M1 is
polytime computable if M is; Remark 3.1 shows that
with a slight modification to the above construction,
this continues to hold even otherwise. Consider any in-
put v, and let g(v) = S0 and f1(v) = W ⊆ S0. Let
OPT = minS∈A SC(v;S). (Note that M1 always re-
turns a feasible solution, since it returns a subset of
g(v), and A is downwards closed.)

Fix a player i who is a winner in M1 under the input
v, and let v′i > vi. Since i is a winner, we have i ∈ S0.
Observe that g(v′i, v−i) = S0 since g is monotone (so i
remains a winner in M) and satisfies no-bossiness. So
since v′i > vi, mechanism M1 proceeds identically on
the inputs v and (v′i, v−i), and hence i remains a winner
under the input (v′i, v−i).

We have C(S0) +
∑
i/∈S0

vi ≤ αOPT . Let k = |S0|
and let S0 \ W = {i0, . . . , im}, where the players are
arranged in the order they were dropped (breaking ties
in the players dropped in the same iteration arbitrarily).
Then, we must have C(i`) ≤ C(S0)/(k−`) since if player
i` was dropped from the set Sr, then we have C(i`) ≤
C(Sr)/|Sr| and |Sr| ≥ |S0|−` (since i` is the `-th player
to be dropped). So C(i`) ≤ C(S0)/(k−`), and hence, it
follows that SC(W ) = C(W )+

∑
i/∈S0

vi+
∑
i∈S0\W vi ≤

c(S0) +
∑
i/∈S0

vi + C(S0) ·Hk ≤ α(1 +Hn)OPT .
To argue that M1 satisfies cost-recovery, we prove

that the threshold of each winner i is given by



τi := max
{
qi(v), C(S0)

|S0| , . . . ,
C(Sj)
|Sj |

}
. This implies that

the prices specified in the construction are indeed
those determined by Theorem 2.1, which immedi-
ately yields cost-recovery since then

∑
i∈W p1,i(v) ≥∑

i∈W C(W )/|W | = C(W ). Consider some input
v′ = (v′i, v−i). Suppose that i wins in M1 un-
der v′. Since M is truthful and no-bossy, and i ∈
g(v′), this implies that v′i ≥ qi(v

′) = qi(v) =
(i’s threshold value in M for v−i), and g(v′) = g(v).
Notice then that M1 proceeds identically on both v and

v′. So we must have v′i ≥ max
{C(S0)
|S0| , . . . ,

C(Sj)
|Sj | }. Also

note that player i wins in M1 for any v′i > τi. This
implies that i’s threshold in M1 is τi.

Remark 3.1. When C(.) is NP-hard to compute, we
cannot necessarily compute R(S). Also, as discussed
earlier, M1 must now also specify a solution for the set
of winners. Both issues can be handled as follows. We
make the very mild assumption that a solution for S0

also induces a solution of no greater cost for any subset
of S0. We now redefine R(S) as RS0(S) = {i ∈ S : vi <
CM (S0)/|S|}, and the solution we return for the winner
set W = Sj is the one induced by S0. Mimicking the
proof of Lemma 3.1, it is easy to see that CM1

(W ) +∑
i/∈W vi ≤ (1 + Hn)CM (S0) +

∑
i/∈S0

vi ≤ α(1 +
Hn)OPT , and

∑
i∈W p1,i(v) ≥ CM (S0) ≥ CM1

(W ).
Also, notice that if we use CM (S0)/β|S| in the def-

inition of RS0(S), where β ≥ 1, then the proof of
Lemma 3.1 shows that we get O(α log n/β) approxima-
tion and β-cost recovery.

One noteworthy application of the above construc-
tion is the following very general result, which can be
viewed as an analogue of VCG for cost-sharing prob-
lems. Taking M to be the VCG mechanism, which
solves the SCM problem exactly and can be assumed
to be no-bossy by fixing a rule for breaking ties be-
tween multiple optimal solutions, we obtain that for any
monotone cost function, there is a truthful, O(log n)-
approximation, cost-recovering mechanism. No such
general result was previously known.

Individual competitiveness with subadditive
cost functions. We now describe how to refine the
construction of M1 so as to obtain individual com-
petitiveness when C(.) is subadditive. A natural first
attempt would be to set the threshold for a player
i to remain in the current candidate set S to be
min{C(i), C(S)/|S|} (instead of the uniform threshold
C(S)/|S|). This however fails to ensure cost-recovery:
the problem arises because one may accept a winner-
set W where only a small subset T ⊆ W of winners
pay the price C(W )/|W |, which could be much smaller
than C(T )/|T |. To rectify this, we need a more sophis-
ticated scheme. Given the current candidate set S, we

keep track of the set T (S) of players in S for which
C(i) < C(S)/|S|. The players in T (S) are asked to pay
their individual price C(i) and are (permanently) ac-
cepted or rejected based on whether they can do so. If
T (S) 6= ∅, we update S to S\T (S) and iterate with this
set. Otherwise, the players in S are asked to pay the
price C(S)/|S|. The players who cannot do so are re-
jected and we iterate with the remaining set of players.
The resulting mechanism is described in detail below.
Recall that R(S) = {i ∈ S : vi < C(S)/|S|}. We also
define the sets T (S) = {i ∈ S : C(i) < C(S)/|S|} and
R′(S) = {i ∈ S : vi < C(i)}.

Mechanism M2 =
(
f2, {p2,i}

)
Given: a truthful, α-

approximation mechanism M =
(
g, {qi}

)
satisfying no-

bossiness. On input v, we do the following.

D1. Initialize j ← 0 and S0 ← g(v). Also, set A← ∅, R← ∅.
D2. While T (Sj) ∪R(Sj) 6= ∅, proceed as follows.

D2.1. If T (Sj) 6= ∅, then set R ← R ∪ R′(T (Sj)) and
A← A ∪ T (Sj) \ R′(T (Sj)). Set Sj+1 ← Sj \ T (Sj).

D2.2. Otherwise (i.e., T (Sj) = ∅, R(Sj) 6= ∅), set R ←
R ∪R(Sj) and Sj+1 = Sj \ R(Sj).

D2.3. Update j ← j + 1.

D3. Return A∪Sj as the winner set, and let {p2,i(v)} be the
corresponding prices as specified by Theorem 2.1. We
show that if qi(v) is given then p2,i(v) can be computed
in polytime (see Lemma 3.2).

As before, if C(.) is NP-hard to compute (but say
C(i) is polytime computable, as is often the case), then
we can redefine R(S) and T (S) as RS0

(S) = {i ∈ S :
vi < CM (S0)/|S|} and TS0

(S) = {i ∈ S : C(i) <
CM (S0)/|S|}, and return the solution induced by S0

for A ∪ Sj . With this modification, M2 is polytime
computable if M is. Also, as before, we can trade off
approximation with cost-recovery.

Lemma 3.2. Given the prices {qi}, the prices {p2,i}
implementing f2 can be computed in polytime. Theo-
rem 3.1 is satisfied by taking M ′ = M2.

Proof. Consider any input v, and let g(v) = S0 and
f2(v) = W ⊆ S0 and OPT = minS∈A SC(v;S). The
proof of monotonicity of f2 and approximation follow by
mimicking the proof of Lemma 3.1. Since M is truthful
and no-bossy, if a winner i in M2 raises her bid, then
M will return the same set S0 and hence, M2 proceeds
identically on v and the new input, and so i remains a
winner. Let i` be the (` + 1)-th player dropped from
S0. Suppose i` ∈ Sr \ Sr+1, so |Sr| ≥ k − `. If i` ∈
R′(T (Sr)), then vi < C(i) < C(Sr)/|Sr|; otherwise,
i` ∈ R(Sr) and we again have vi < C(Sr)/|Sr|. So in



both cases, vi < C(Sr)/|Sr| ≤ C(S0)/(k − `); hence∑
i∈S0\W vi ≤ C(S0) · Hk which in turn implies that

SC(W ) ≤ α(1 +Hn)OPT .
We now show that M2 is ICT if M is. Fix any

winner i ∈W . It suffices to argue that if vi ≥ C(i) then
i will be chosen as a winner in M2. Since vi ≥ C(i) ≥
qi(vi, v−i), i is in S0. Suppose i ∈ Sr. If i ∈ T (Sr), then
clearly i is added to A; otherwise, we have i ∈ Sr+1,
since i /∈ R(Sr) as vi ≥ C(i) ≥ C(Sr)/|Sr|. It follows
that if i /∈ A, then i is in the final set Sj . So i is a
winner.

Next, we show that the prices implementing f2
can be computed efficiently. Consider a player i ∈
W and some input v′ = (v′i, v−i). Suppose that i
wins in M2 under v′. As before, since M is truth-
ful and no-bossy, we have v′i ≥ qi(v

′) = qi(v) =
(i’s threshold value in M for v−i) and g(v′) = g(v), so
M2 proceeds identically on v and v′. Now, i is cho-
sen as a winner either because (1) it is added to A at
some point when our candidate set was, say, Sr; or be-
cause (2) i is part of the final set Sj . Importantly, since
(fixing v−i) M2 proceeds identically on every winning
bid of i, which of these two cases happen does not de-
pend on i’s (winning) bid. If the former case happens
(for every winning bid), then we must have v′i ≥ C(i);
also, i wins in M2 whenever v′i > max{qi(v), C(i)}. So
here, we have p2,i(v) = max{qi(v), C(i)}. In the lat-
ter case, let S ⊆ {S0, S1, . . . , Sj} be the collection of
sets for which T (S) = ∅. Then, we must have v′i ≥
maxS∈S C(S)/|S|, and moreover, i wins in M2 whenever
v′i > max

{
qi(v),maxS∈S C(S)/|S|

}
. So if this case hap-

pens, we have p2,i(v) = max
{
qi(v),maxS∈S C(S)/|S|

}
.

In particular, we note that since Sj ∈ S, we have
p2,i(v) ≥ C(Sj)/|Sj |.

Finally, cost-recovery follows because∑
i∈W p2,i(W ) ≥

∑
i∈A C(i) +

∑
i∈Sj

C(Sj)/|Sj | ≥
C(A) + C(Sj) ≥ C(A ∪ Sj) where the last two
inequalities follow from subadditivity.

4 Obtaining truthful, no-bossy, approximation
in a black-box fashion

Complementing the construction described in Section 3,
we now describe how to obtain a truthful, (ρ + 1)-
approximation mechanism satisfying no-bossiness in a
black-box fashion from an LP-based ρ-approximation
algorithm for the cost-minimization problem of find-
ing a min-cost way of serving a given set of players.
Combined with the reduction in Section 3, this yields a
truthful, O

(
(ρ+1) log n

)
-approximation cost-recovering

mechanism. These reductions find numerous applica-
tions, which we discuss in Section 5.

A generic LP-model. We describe two LP-
models for the cost-minimization (CM) problem and the
associated SCM problem. The first model captures gen-
eral covering problems without multiplicity constraints;
the second allows for multiplicity constraints but cap-
tures a restricted class of general covering problems that
nevertheless includes {0, 1}-covering problems. We fo-
cus on the first model below, and discuss the second
model later. Consider a cost-sharing problem where the
problem of finding a min-cost solution for a set S of
players admits an LP-relaxation of the following form.

min cTx (C1-P)

s.t. A(i)x ≥ b(i) for all i ∈ S
Bx ≥ d
x ∈ Rm+ .

Here A(i)x ≥ b(i) denotes some constraints specific to
player i that arise because i has to be served, and
Bx ≥ d models various global constraints. We re-
quire that d ≥ 0 and A(i), b(i) ≥ 0 for every i, and
OPTC1-P(S) ≤ C(S) for every set S (where C1-P(S)
denotes (C1-P) for the set S). These conditions are
satisfied by the LP-relaxations of many combinatorial-
optimization covering problems, such as {0, 1}-covering
problems (which includes various cost-sharing problems
studied in [33, 46, 34, 50, 41]). We give two exam-
ples (see also Section 5). (1) Survivable-network de-
sign problem (SNDP), where each player i is an (si, ti)
pair requiring ri edge-disjoint paths, and multiple (un-
restricted number of) copies of an edge may be in-
cluded. This non-{0,1}-covering problem can be cast
as (C1-P). We have an xe variable for every edge e;
the player-specific constraints are: x

(
δ(Q)

)
≥ ri for

every si-ti cut Q, and there are no global constraints.
(2) Makespan-minimization problem on unrelated ma-
chines, where jobs are players: we have a variable x`i
for every machine ` and job i, and a variable T . We want
to minimize T subject to the player-specific constraints∑
x`i ≥ 1 (for every job i ∈ S), and the global con-

straints T −
∑
i p`ix`i ≥ 0, T −

∑
` p`ix`i ≥ 0 ∀i, `.

Given the LP-relaxation (C1-P) for the CM prob-
lem, the corresponding SCM problem can be encoded
as follows. For each player i, we introduce a vari-
able zi that indicates that i does not receive service.
The player-i-specific constraints then get modified to
A(i)x + b(i)zi ≥ b(i). So we obtain the following LP-
relaxation for the SCM problem.

min cTx+ vT z (SC1-P)

s.t. A(i)x+ b(i)zi ≥ b(i) for all i (4.1)

Bx ≥ d (4.2)

x ∈ Rm+ , z ∈ Rn+.



Observe that a feasible solution x to C1-P(S) extends
to a feasible solution to (SC1-P) by setting zi = 1 for
i /∈ S.

Constructing the mechanism. Suppose we have
an algorithm Alg that for every set S, returns a solution
of cost at most ρ · OPTC1-P(S). We use Alg to devise
a polytime mechanism M = (g, {qi}) as follows. On
input v, we compute an optimal solution (x∗, z∗) to
(SC1-P) using some fixed total ordering over vectors
(e.g., lexicographic ordering) to break ties if there are
multiple optimal solutions. We refer to (x∗, z∗) as the
optimal solution for input v. We return g(v) = W =
{i : z∗i = 0} as the winner set, and use Alg to compute
a solution for W . Let {qi} be the prices implementing
g (which we prove are polytime computable).

Theorem 4.1. M is a polytime truthful, no-bossy, (ρ+
1)-approximation, ICT mechanism for any SCM prob-
lem for which the cost-minimization problem is captured
by (C1-P).

Proof. Lemma 4.1 proves the approximation guaran-
tees, and Lemma 4.2 shows that M is ICT and the
prices implementing g are polytime computable. We ar-
gue that g is monotone and satisfies no-bossiness. Con-
sider some input v, and let W = g(v). Let (x∗, z∗)
be the optimal solution to (SC1-P) for input v. Fix
any winner i ∈ W . Let v′i > vi, and let (x′, z′) be
the optimal solution computed to (SC1-P) for input
v′ = (v′i, v−i). It is easy to see that z′i ≤ z∗i = 0:
adding the inequalities cTx∗ + vT z∗ ≤ cTx′ + vT z′

and cTx′ + v′T z′ ≤ cTx∗ + v′T z∗ and simplifying gives
(vi − v′i)(z∗i − z′i) ≤ 0. Hence, i remains a winner under
input v′.

Further, we claim that (x′, z′) = (x∗, z∗). Observe
that (vi − v′i)(z∗i − z′i) = 0 implies that cTx∗ + vT z∗ =
cTx′ + vT z′ and cTx′ + v′T z′ = cTx∗ + v′T z∗. So both
(x∗, z∗) and (x′, z′) are optimal solutions for both v and
v′. So since we use a fixed tie-breaking rule, this means
that (x∗, z∗) = (x′, z′). Thus, M computes the same
solution for both v and v′, which means that M satisfies
no-bossiness.

Lemma 4.1. M achieves a (ρ+ 1)-approximation.

Proof. Fix an input v. Let W = g(v), and (x∗, z∗)
be the optimal solution to (SC1-P) for input v and
OPT denote its value. The social cost of the solution
computed by M for W is CM (W ) +

∑
i:z∗i>0 vi. Notice

that x∗ is a feasible solution to (C1-P(W )), so the
performance guarantee of Alg implies that CM (W ) ≤
ρ · OPTC1-P(W) ≤ ρ · cTx∗. So it suffices to argue that∑
i:z∗i>0 vi ≤ OPT . This follows by looking at the dual

of (SC1-P), and complementary slackness. The dual of

(SC1-P) is

max
∑
i

b(i)
T
µi + dTω (SC1-D)

s.t.
∑
i

A(i)Tµi +BTω ≤ c (4.3)

b(i)
T
µi ≤ vi for all i (4.4)

µi, ω ≥ 0.

Here µi and ω are nonnegative dual variables corre-
sponding respectively to the primal constraints (4.1)
and (4.2), and (4.4) is the dual constraint corresponding
to the primal variable zi. Let

(
{µ∗i }, ω∗

)
be an optimal

dual solution. By complementary slackness, if z∗i > 0

then b(i)
T
µ∗i = vi and hence,

∑
i:z∗i>0 vi ≤

∑
i b

(i)Tµ∗i ≤
OPT ; the last inequality follows from strong duality and
since dTω∗ ≥ 0.

Lemma 4.2. M is ICT and the prices implementing g
are polytime computable.

Proof. Fix an input v and a winning player i. Let
OPT (t) denote the optimal value of (SC1-P) for (t, v−i).
The threshold value at which i wins is the smallest value
t such that there is some optimal solution

(
x(t), z(t)

)
to

(SC1-P) for (t, v−i) with zi(t) = 0. This is because for
any t′ > t, every optimal solution to (SC1-P) must have
zi = 0 (by the monotonicity proof in Theorem 4.1). So
i wins under every bid t′ > t and loses under every bid
t′ < t. Let OPT ′ denote the optimal value of (SC1-P)
when we force zi = 0. Notice that OPT (t) ≤ OPT ′,
and when zi(t) = 0, we have OPT (t) = OPT ′. So
the threshold value is given by min t s.t. OPT (t) ≥
OPT ′. Notice that OPT (t) ≥ OPT ′ is equivalent to the
condition that there exists a feasible solution

(
{µi}, ω

)
to (SC1-D) (for (t, v−i)), and a feasible solution (x, z)
to (SC1-P) with zi = 0, such the value of

(
{µi}, ω

)
is at

least the value of (x, z). Thus, the threshold value can
be computed efficiently by solving an LP.

Suppose that
(
{µ∗i }, ω∗, x∗, z∗

)
is an optimal value

to this “threshold-LP”. Then, observe that (µ∗i , ω
∗)

is a feasible solution to the dual of C1-P({i}). So

t = b(i)
T
µ∗i ≤ b(i)

T
µ∗i + dTω∗ ≤ OPTC1-P({i}) ≤ C(i).

Hence, M satisfies ICT.

Cost-minimization problems with multiplic-
ity constraints. We now consider the following LP-
relaxation for the CM problem, which closely resembles
(C1-P), but allows for multiplicity constraints.



min cTx (C2-P)

s.t. A(i)x ≥ b(i) for all i ∈ S
Bx ≥ d

0 ≤ x ≤ u ∈ Zm+ .

min cTx+ vT z (SC2-P)

s.t. A(i)x+ b(i)zi ≥ b(i) for all i (4.5)

Bx ≥ d (4.6)

0 ≤ x ≤ u, z ∈ Rn+.

As before, we require that d ≥ 0 and A(i), b(i) ≥ 0
for every i, and OPTC2-P(S) ≤ C(S) for every set S.
Further, we also require that B ≥ 0, and for every i, if

A
(i)
re > 0 and ue > 0 then A

(i)
re ue ≥ b

(i)
r . (SC2-P) is the

corresponding LP-relaxation of SCM problem.
Mechanism M is constructed in exactly the same

way as before; the only obvious change is that we now
solve (SC2-P) (instead of (SC1-P)) to get (x∗, z∗).

Theorem 4.2. M is a polytime truthful, no-bossy, (ρ+
1)-approximation, ICT mechanism for any SCM prob-
lem for which the cost-minimization problem is captured
by (C2-P).

Proof. The argument for the monotonicity and no-
bossiness of the allocation rule is exactly as in the proof
of Theorem 4.1. The proof that prices are polytime
computable mimics the proof of Lemma 4.2.

We now prove the approximation ratio and that M
is ICT. Fix an input v. Let W = g(v) and (x∗, z∗)
be the optimal solution to (SC2-P) for input v. As
in the proof of Lemma 4.1, it suffices to show that∑
i:z∗i>0 vi ≤ OPT = OPT SC2-P. Again the key is to

consider the dual of (SC2-P).

max
∑
i

b(i)
T
µi + dTω − uT θ (SC2-D)

s.t.
∑
i

A(i)Tµi +BTω − θ ≤ c (4.7)

b(i)
T
µi ≤ vi for all i

(4.8)

µi, ω ≥ 0, θ ∈ Rm+ .

Here θ is the new dual variable corresponding to the x ≤
u multiplicity constraints. Let

(
{µ∗i }, ω∗, θ∗

)
be an opti-

mal dual solution. Then
∑
i:z∗i>0 vi =

∑
i:z∗i>0 b

(i)Tµ∗i .

Note that θ∗e > 0 implies that x∗e = ue, so

∑
e:θ∗e>0 uece =

∑
e:θ∗e>0 ue

(∑
i,r A

(i)
re µ∗ir +

∑
r Breω

∗
r −

θ∗e
)
. So we have

∑
i:z∗i>0 b

(i)Tµ∗i +
∑
e:θ∗e>0 uece =∑

i,r µ
∗
irκir +

∑
r,e:θ∗e>0 x

∗
eBreω

∗
r − uT θ∗ where κir =

b
(i)
r +

∑
e:θ∗e>0 ueA

(i)
re if z∗i > 0 and κir =

∑
e:θ∗e>0 ueA

(i)
re

otherwise.
We claim that µ∗irκir ≤ µ∗irb

(i)
r . This is true if

z∗i = 0 since then µ∗irκir = µ∗ir
(∑

e:θ∗e>0 ueA
(i)
re

)
≤

µ∗ir
(∑

e x
∗
eA

(i)
re

)
= µ∗irb

(i)
r . If ue ≥ 1, z∗i > 0, and

µ∗ir > 0, then if A
(i)
re > 0 we must have θ∗e =

0. Otherwise, we have x∗e = ue ≥ 1, and hence,∑
e′ A

(i)
re′x

∗
e′ + b

(i)
r z∗i > b

(i)
r since A

(i)
re ue ≥ b

(i)
r , which

contradicts complementary slackness. Therefore, we

have µ∗irκir ≤ µ∗irb
(i)
r . Also,

∑
r,e:θ∗e>0 x

∗
eBreω

∗
r ≤∑

r,e x
∗
eBreω

∗
r = dTω∗. So

∑
i:z∗i>0 vi ≤

∑
i,r µ

∗
irκi,r +∑

r,e:θ∗e>0 x
∗
eBreω

∗
r−uT θ∗ ≤

∑
i b

(i)Tµ∗i+d
Tω∗−uT θ∗ =

OPT .
Let t∗ be the price of a winning player i. For

any t < t∗, we know that every optimal solution(
x(t), z(t)

)
to (SC2-P) for (t, v−i) must have zi(t) > 0.

Let
(
{µ∗i }, ω∗, θ∗

)
be an optimal solution to (SC2-D),

Then t = b(i)
T
µ∗i and the argument above shows that

t+
∑
j 6=i b

(j)Tµ∗j ≤
∑
j b

(j)Tµ∗j + dTω∗ − uT θ∗, that is,

t ≤ b(i)Tµ∗i + dTω∗− uT θ∗. Finally, observe (µ∗i , ω
∗, θ∗)

is a feasible solution to the dual of C2-P({i}), so t ≤
OPTC2-P({i}) ≤ C(i). This holds for all t < t∗, so
t∗ ≤ C(i). This proves that M is ICT.

Remark 4.1. We remark that although our con-
struction is described in terms of an LP model for
the CM problem, our ideas have wider applicability.
In particular, we can also allow for a semidefinite-
programming- (SDP) or convex- relaxations of the CM
and SCM problems that involve covering constraints.
The proof of monotonicity and no-bossiness is un-
changed. Examining Lemma 4.1, the only property
we need is that the optimal Lagrangian multipliers
(i.e., dual values) for the constraints involving the zi
variables can “pay” (approximately) for

∑
i:z∗i>0 vi.

Lemma 4.2 easily extends: if OPT (t) denotes the
optimal value of the convex-program for the SCM
problem for (t, v−i), then the price of a winner
i under v−i is the minimum t such that OPT (t) ≥
optimum value of the SCM problem when we fix zi = 0,

which can be efficiently computed since OPT (t) is a
concave function of t.

5 Applications

We showcase the versatility of our reductions by con-
sidering cost-sharing problems from various domains for



which our constructions yield the first or improved re-
sults. In each case, we only need to verify that the
cost-minimization problem admits an LP-relaxation of
the form (C1-P) (or (C2-P)) and we have a suitable ap-
proximation algorithm for it. The cost function in all
of these applications is subadditive, so all our resulting
mechanisms are polytime and ICT.

Survivable network design problems
(SNDPs). SNDPs are cost-minimization prob-
lems where each player is an (si, ti) pair who requires
ri edge-, or element-, or vertex- disjoint paths between
si and ti (giving rise to EC-, ELC-, VC- SNDP respec-
tively). We consider the setting where an unrestricted
number of copies of an edge may be bought, in which
case SNDP can be cast as (C1-P). Section 4 shows
this for EC-SNDP. This also holds for the standard
LP-relaxations for ELC-SNDP and VC-SNDP (see,
e.g., [20] and [10]) as shown below. Let V be the
node-set and T =

⋃
i{si, ti}. For ELC-SNDP, the

player-i constraints A(i)x ≥ b(i) consist of

x(P,Q) ≥ ri − |V \ (P ∪Q)|
∀P,Q ⊆ V, P ∩Q = ∅, si ∈ P, ti ∈ Q,P ∪Q ⊇ T.

For VC-SNDP, player i’s constraints comprise

x(P,Q) ≥ ri − |V \ (P ∪Q)|
∀P,Q ⊆ V, P ∩Q = ∅, si ∈ P, ti ∈ Q.

These problems admit LP-based approximation al-
gorithms with the following guarantees: 2 for EC-
SNDP [32] and ELC-SNDP [20], and O(r3max log n) for
VC-SNDP [13]. (Although not explicitly stated, the al-
gorithm of [13] also obtains an LP-relative approxima-
tion. Also, improved LP-based guarantees are known
for the single-source and all-pairs versions of VC-SNDP,
which translate to our mechanisms.)

Theorem 5.1. There are truthful, cost-recovering
mechanisms for EC-SNDP, ELC-SNDP, and VC-SNDP
with approximation ratios of O(log n), O(log n) and
O(r3max log2 n) respectively.

These are the first results for SNDP cost-sharing
problems. Previously, cost-sharing mechanisms were
only known for the special cases of Steiner tree and
Steiner forest; even for these, our result improves upon
the O(log2 n)-approximation achieved by Moulin mech-
anisms [50, 12] and acyclic mechanisms [41].

Facility location (FL). Various FL problems
(where the clients are players) are captured by (C1-P).
In all such problems, we have variables {y`} for the facil-
ities and variables {x`i} for (facility, client) pairs, and
A(i)x ≥ b(i) corresponds to the constraints

∑
` x`i ≥

1. In uncapacitated FL (UFL), the global constraints
Bx ≥ d are: y` − x`i ≥ 0 for every i, `; in soft-
capacitated FL (soft-CFL), the global constraints also
include u`y` −

∑
i x`i ≥ 0 for every `. (Notice that al-

though the LP for a client-set S has variables also for
clients not in S, we include the

∑
` x`i ≥ 1 constraints

only for players in S, so this does indeed model the
min-cost problem for S.)

(C1-P) also captures connected facility location
(ConFL) problems [25, 52, 36]. In the general version,
multicommodity ConFL (MConFL), each player i is an
(si, ti) pair. Serving a set S of players involves assign-
ing the sis and tis to nodes called facilities, and build-
ing a network where for every (si, ti) pair, the facili-
ties catering to si and ti are interconnected. The LP-
relaxation of Kumar et al. [36] for MConFL is of the
type (C1-P):

∑
` x`si ≥ 1,

∑
` x`ti ≥ 1 for every i ∈ S

are the player-specific constraints, and the global con-
straints are the remaining constraints that also involve
edge variables {we}: w(δ(Q)) −

(∑
`∈Q x`si − x`ti

)
≥

0, w(δ(Q))−
(∑

`∈Q x`ti − x`si
)
≥ 0 for every `, i and

node-set Q.
Both UFL and soft-CFL have LP-based O(1)-

approximations; see, e.g., [9] and [40] and the refer-
ences there in. [36] designed an O(1)-approximation for
MConFL relative to the LP described above. So we ob-
tain the following results which, match the guarantees
known for UFL [49, 41], yield the first results for soft-
CFL, and improve upon the O(log2 n)-approximation
for MConFL [49].

Theorem 5.2. UFL, soft-CFL, and MConFL have
truthful, O(log n)-approximation, cost-recovering mech-
anisms.

Set-cover problems. In the cost-sharing prob-
lem the players are the elements to be covered. The
natural LP-relaxation for set cover (and hence vertex
cover) is easily seen to be a special case of (C1-P).
Set cover and vertex cover have LP-based O(log n)-
and 2-approximation algorithms respectively. A di-
rect application of Theorems 4.1 and 3.1 yields an
O(log2 n)-approximation for set cover (and O(log n)-
approximation for vertex cover). But as observed in
Remark 3.1, for any β ≥ 1, we can obtain O(log2 n/β)-
approximation and β-cost-recovery. So we obtain the
following, which matches the results in [41].

Theorem 5.3. There are truthful, cost-recovering
mechanisms for vertex cover and set cover with ap-
proximation ratios of O(log n) and O(log2 n) respec-
tively. For set cover, we also obtain an O(log n)-
approximation, O(log n)-cost-recovering mechanism.



Scheduling. We now consider scheduling prob-
lems where the jobs are players and the cost of a set S
of jobs is the minimum makespan incurred for schedul-
ing jobs in S on a given set of unrelated machines. An
LP-relaxation for this problem was given in Section 4
and shown to be of the form (C1-P). Correa et al. [15]
devise a 4-approximation relative to this LP. Thus, we
obtain the following theorem.

Theorem 5.4. There is a truthful, O(log n)-
approximation, cost-recovering mechanism for
makespan-minimization on unrelated machines.

6 Extensions to multidimensional settings

In this section, we show that our ideas can be applied
to obtain guarantees also for various multidimensional
cost sharing problems. We consider two types of
multidimensional settings.

In the first setting (Section 6.1), which we call
the multi-element (ME) setting, each player i ∈ [n]
now controls a publicly known disjoint set of elements
Ei and outcomes are now subsets of E :=

⋃
iEi (so

A ⊆ 2E). We consider additive valuations, so player
i’s private type is a vector vi ∈ REi

+ with vi,e > 0
denoting the value i gets if element e ∈ Ei is served;
the value of a player i under an outcome T ⊆ E is
vi(T ) :=

∑
e∈T∩Ei

vi,e. Correspondingly, the social
cost of outcome T is now given by SC(T ) := C(T ) +∑
i vi(Ei \ T ).

The second multidimensional setting (Section 6.2)
is the multi-demand (MD) setting considered by [41].
Here each player i ∈ [n] has a publicly known maximum
level of service Ri ∈ Z+. An outcome is now a vector
` = (`1, . . . , `n), with `i ∈ [Ri] representing the level of
service offered to player i. Player i’s private type is a
vector vi ∈ RRi

+ with vi,k > 0 denoting the additional
value to i of level k over level k − 1. We assume that
these marginal values are nonincreasing with k (i.e., a
player’s true type and her reported type should satisfy
this requirement). The value of player i under outcome

` is
∑`i
k=1 vi,k and hence, the social cost of outcome ` is

now given by SC(`) := C(`) +
∑
i

∑Ri

k=`i+1 vi,k.

Two related, but distinct, difficulties arise when
considering multidimensional cost-sharing problems.
First, we no longer have a simple condition like (value)
monotonicity [45] for the implementability of an allo-
cation rule. The implementability condition is now
much more demanding, requiring it to satisfy cycle-
monotonicity [48] in general, or weak-monotonicity with
convex domains [3, 51]. Second, the specification of
prices implementing an allocation rule is significantly
more involved; prices are obtained by computing short-
est paths in a certain allocation graph (see, e.g., [24, 38])

whose size is polynomial in |A|.
We avoid these difficulties by essentially reduc-

ing the multi-dimensional problem to the single-
dimensional problem. By suitably adapting the con-
structions and arguments in Sections 3 and 4, we then
obtain guarantees for the multidimensional problem.

6.1 The multi-element setting. Notice that since
a player’s valuation is additive, algorithmically, the
multi-element SCM problem is identical to the SCM
problem where we consider each element e ∈ E to be
a player whose value is vi,e if e ∈ Ei. So we can work
with the same LP-models (C1-P), (C2-P) for the CM
problem (where now S ⊆ E) and (SC1-P), (SC2-P)
for the SCM problem. We now say that a mechanism(
f, {pi}

)
is individually competitive if pi(v) ≤ C(f(v)∩

Ei) for all i. A special case of the ME problem is the
single-dimensional problem where player i has the same
value vi ∈ R+ for getting any of her elements served; so
vi(T ) := vi|T∩Ei| and SC(T ) = C(T )+

∑
i vi|Ei\T |; we

call this the multi-element single-dimensional (MESD)
problem. We obtain the following results. An LP-based
ρ-approximation algorithm for the CM problem refers
to an algorithm that always returns a solution of cost
at most ρ times the optimal value of the LP-relaxation
((C1-P) or (C2-P)) of the CM problem.

Theorem 6.1. Let k = maxi |Ei| and λ(v) =
maxi

[
vi(Ei)/mine∈Ei

vi,e
]
. Given an LP-based ρ-

approximation algorithm for the CM problem, we can
obtain a truthful, cost-recovering mechanism that has
approximation ratio: (a) O

(
ρk log n

)
for the ME prob-

lem with subadditive C; (b) O
(
(ρ + k) log n

)
for the

MESD problem, and is ICT if C is subadditive; and
(c) O

(
ρλ(v) log n

)
on input v for the ME problem, and

is ICT if C is subadditive.

To the best of our knowledge, these are the first
results for multi-element cost-sharing problems. Notice
that our guarantees are weaker than those obtained for
the single-dimensional problem. In light of this and the
aforementioned difficulties involved in multidimensional
cost-sharing mechanism-design, one can ask which of
the tasks performed by our two reductions—(1) trans-
lating approximation algorithms to truthful, approxi-
mation mechanisms, and (2) translating truthful, ap-
proximation mechanisms to cost-sharing mechanisms—
becomes harder in the multidimensional setting. We
give a partial answer to this question. We show that (see
Theorem 6.2) if one has an LP-based ρ-approximation
algorithm for the SCM problem that satisfies an ad-
ditional property then one can obtain a truthful-in-
expectation, ρ-approximation mechanism for the SCM
problem. Unfortunately, we do not how to modify this



mechanism so as to achieve cost-recovery, and in fact,
in the multidimensional setting, we do not know of any
black-box way of injecting cost-recovery into a (deter-
ministic) truthful, approximation mechanism (that is
possibly required to satisfy some additional properties).
We leave the question of whether one can obtain reduc-
tions for multidimensional problems that are analogous
to those in Sections 3 and 4, as an open problem.

Proof of Theorem 6.1. Part (a) follows from the fol-
lowing simple reduction to the single-dimensional set-
ting. We partition E (=

⋃
iEi) into k sets U1, . . . , Uk

such that |Uj ∩ Ei| ≤ 1 for all i and j. (It is easy to
construct such a partition by repeatedly picking a new
element from the Eis to construct a new part Uj .) Each
Uj induces a (one-element) single-dimensional problem
where player i has the element Ei ∩ Uj ; if Ei ∩ Uj = ∅,
then player i does not participate. We use the con-
structions in Sections 3 and 4 to solve this problem. Let
Tj ⊆ Uj be the set served, and pj,i be the prices charged
to player i in the j-th problem; we set pj,i(v) = 0 if i
does not participate in the j-th problem. We return the
set
⋃k
j=1 Tj , and charge player i the price

∑k
j=1 pj,i.

Since valuations are additive, the utility of player i
is the sum of her utilities in the k single-dimensional
problems, and hence, the mechanism constructed is
truthful. Since

∑
i pj,i ≥ C(Tj) for each j and the cost

function is subadditive, cost-recovery follows. The ap-
proximation guarantee follows from noting that the op-
timal solution induces a solution to the j-th problem
of cost at most OPT (since C is monotone). There-
fore, C(Tj) +

∑
i

∑
e∈(Ei∩Uj)\Tj

vi,e = O(ρ log n)OPT ,

and since C is subadditive SC
(⋃

j Tj
)
≤
∑
j

[
C(Tj) +∑

i

∑
e∈(Ei∩Uj)\Tj

vi,e
]

= O(ρk log n)OPT .

Parts (b) and (c). We use a different reduction to
the single-dimensional setting, where we consider “all-
or-nothing” outcomes; that is, for each player i, we
either serve all of Ei, or no elements of Ei. Given an
LP-based ρ-approximation algorithm Alg for the CM
problem, we describe how to obtain a truthful, no-bossy
(defined precisely later) mechanism M with (ρ + k)-
and (ρ + 1)λ(v)- approximations for the MESD and
ME problems respectively. The procedure for injecting
cost-recovery into M is the same in both cases. Let
A′ := {S ⊆ [n] :

⋃
i∈S Ei ∈ A}. (Recall that

A ⊆ 2E is the (downwards-closed) set of all outcomes.)
We simulate the construction from Section 3 for the
cost function C ′ : A′ 7→ R+ defined by C ′(S) :=
C(
⋃
i∈S Ei). Note that A′ is downwards closed and, if C

is subadditive then so is C ′. Thus, each player i is now
a single-dimensional player (owning one element) whose
value is vi(Ei). So Theorem 3.1 combined with the
above results shows that we obtain (polytime) truthful,

cost-recovering mechanisms with approximation O((ρ+
k) log n) and O

(
ρλ(v) log n

)
for the MESD and ME

problems respectively. Moreover, these mechanisms are
ICT if C is subadditive.

Constructing a mechanism from Alg. The LP-
relaxation of the SCM problem is (SC1-P) or (SC2-P)
(depending on whether (C1-P) or (C2-P) captures the
CM problem) where we consider each e ∈ Ei to be a
player with value vi,e. So we have variables zi,e for every
i, e ∈ Ei. Let (SC-P) denote this LP.
The single-dimensional MESD problem. On
input v, we compute the optimal solution

(
x∗, z∗

)
to

(SC-P). Let OPT denote its value. Let z∗i (Ei) denote∑
e∈Ei

z∗i,e. We return g(v) :=
⋃
i:z∗i (Ei)=0Ei as the

outcome, and use Alg to compute a solution for g(v).
In the sequel, we say that “i wins” if Ei is served. Let
ti(v−i) denote the smallest value of vi|Ei| under which
i wins. We set qi(v) = ti(vi) if i wins and 0 otherwise
for all i. We argue that M =

(
g, {qi}

)
is polytime,

truthful, ICT, achieves a (ρ+k)-approximation, and has
the following no-bossiness property: if Ei ⊆ g(vi, v−i)
and Ei ⊆ g(v′i, v−i) then g(vi, v−i) = g(v′i, v−i).

Suppose that i is a winner under input v. Let
(x′, z′) be an optimal solution for v′ = (v′i, v−i) where
v′i > vi. Then, as in the proof of Theorem 4.1, it
is easy to see that z′(Ei) ≤ z∗(Ei) = 0 and hence,
that (x′, z′) = (x∗, z∗). Hence, i is also a winner
under v′, and g(v) = g(v′). The proof that M is
ICT and that ti(v−i) is polytime computable follows by
mimicking the proof of Lemma 4.2 (or Theorem 4.2). To
prove the approximation, as before, it suffices to show
that

∑
i:z∗(Ei)>0 vi|Ei| ≤ k · OPT . This follows since∑

i:z∗(Ei)>0 vi|Ei| ≤ k
(∑

i,e:z∗i,e>0 vi
)

and the proofs of

Lemma 4.1 and Theorem 4.2 show that
∑
i,e:z∗i,e>0 vi ≤

OPT .
The ME problem. Recall that to inject cost-recovery,
we considered the cost function C ′ defined by C ′(S) :=
C(
⋃
i∈S Ei), where we treat each player i as a singleton

player whose value is vi(Ei). We construct a mechanism
M for the multi-dimensional problem by simulating the
construction in Section 4 for C ′. Notice that the LP-
relaxation for this modified SCM problem is an LP of
the same form as (SC-P) but where we have a single
variable zi for each player i, with zi = 0 indicating that
Ei is served and zi = 1 indicating that no element of Ei
is served. Let (MSC-P) denote this modified SCM-LP.
(Equivalently, (MSC-P) is (SC-P) with the constraints
zi,e = zi,e′ for all i, e, e′ ∈ Ei.)

On input v, we compute the optimal solution (x̃, z̃)
to (MSC-P). Let ˜opt denote its value. We return
g(v) :=

⋃
i:z̃i=0Ei as the outcome, and use Alg to

compute a solution for g(v). Let ti(v−i) denote the



smallest value of vi(Ei) under which i wins. We set
qi(v) = ti(v−i) if i wins and 0 otherwise for all i. Recall
that λ(v) = maxi

[
vi(Ei)/mine∈Ei

vi,e
]
. We abbreviate

this to λ in the sequel. We show that M =
(
g, {qi}

)
is polytime, truthful, ICT, no-bossy, and achieves a
(ρ+ 1)λ-approximation.

Since M simulates the construction in Section 4
for the singleton modified SCM problem, the proofs
in Section 4 show that (i) g satisfies no-bossiness; (ii)
qi(v) ≤ C(Ei); (iii) g has the monotonicity property
that v′i > v′′i implies that g(v′i, v−i) ⊇ g(v′′i , v−i); and
(iv) ti(v−i) can be computed in polytime for all i, v−i.
To see truthfulness, let vi = (vi,e)e∈Ei

be i’s true
input. Fix v−i. Suppose i wins under (vi, v−i). Her
utility is ui(vi; vi, v−i) = vi(Ei) − ti(v−i) ≥ 0. Since
qi(v) = ti(v−i) if i wins, i cannot improve her utility by
lying. If i loses under (vi, v−i) then (iii) implies that
vi(Ei) ≤ ti(v−i) and so i cannot improve her utility by
lying.

We have shown that M is polytime, truthful, and
ICT. We now prove the approximation guarantee. Let
W = g(v). By Lemma 4.1 and Theorem 4.2 we know
that CM (W ) +

∑
i:z̃i>0 vi(Ei) ≤ (ρ+ 1) ˜opt. Let (x∗, z∗)

be an optimal solution to the original SCM-LP (SC-P)
for v and OPT denote its value. Define zi = z∗(Ei).
Observe that (x∗, z) is a feasible solution to (MSC-P).
Since vi(Ei) ≤ λvi,e for all i, e ∈ Ei, ˜opt is at most

cTx∗ +
∑
i

vi(Ei)zi ≤ cTx∗ +
∑
i,e∈Ei

λvi,ez
∗
i,e ≤ λOPT .

Converting approximation algorithms to
truthful, approximation mechanisms. We say that
Alg is a Lagrangian-multiplier-preserving (LMP) ρ-
approximation algorithm for the SCM problem, if for
every input v, it returns a set S ⊆ E such that
CAlg(S) + ρ

∑
i

∑
e∈Ei\S vi(e) ≤ ρOPT (SC-P). (Recall

that (SC-P) is the LP-relaxation of the SCM problem.)
Such LMP approximations are indeed known for vari-
ous SCM problems, such as Steiner tree [21], set cover,
vertex cover [35], and facility location [11]. A random-
ized mechanism is truthful in expectation, if each player
always maximizes her expected utility by revealing her
true type.

Theorem 6.2. Given an LMP ρ-approximation algo-
rithm Alg for the SCM problem, one can obtain a
truthful-in-expectation, ρ-approximation mechanism for
the ME problem.

Proof. The construction exploits the convex-
decomposition idea used in [37]. This observation

is also used in [42]. On input v, we compute an
optimal solution

(
x∗, z∗

)
to (SC-P). Let OPT de-

note its value. Note that since we solve (SC-P)
optimally, we can use the VCG prices {pi} (which
can be computed efficiently) to obtain a fractional
truthful mechanism. More precisely, this means that
if (x′, z′) is the optimal solution to (SC-P) for input
(v′i, v−i), then we have

∑
e∈Ei

vi,e(1 − z∗e,i) − pi(v) ≥∑
e∈Ei

vi,e(1 − z′e,i) − pi(v
′
i, v−i). We show that

using Alg one can obtain a convex combination of
polynomially many integral solutions to (SC-P) such
that Pr[element e ∈ Ei is not served] = z∗e,i for all
i, e ∈ Ei and the expected cost is at most ρ · OPT .
Our randomized allocation rule chooses an integral
solution with probability equal to its weight in this
convex combination. Let X denote the random set
served. As in [37], we can come up with random prices
{Qi} such that Qi(v) ≤ vi(X) and E

[
Qi(v)

]
= pi(v).

This randomized mechanism clearly achieves a ρ-
approximation. It is truthful in expectation because
a player’s expected utility is the same as her utility
in the fractional truthful mechanism. Formally, if
player i’s true type is vi and the others report v−i,
her expected utility E

[
ui(vi; vi, v−i)

]
when she re-

ports vi is
∑
e∈Ei

ve,i
(
1−Pr[e is not served]

)
− pi(v) =∑

e∈Ei
ve,i(1−z∗e,i)−pi(v), and if she reports v′i, we have

E
[
ui(vi; v

′
i, v−i)

]
=
∑
e∈Ei

ve,i(1 − z′e,i) − pi(v′i, v−i) ≤
E
[
ui(vi; vi, v−i)

]
.

Let {(x(l), z(l))}l∈I denote the collection of all in-
tegral solutions to (SC-P) where ze,i ∈ {0, 1} for all
i, e ∈ Ei. Examining (SC1-P) and (SC2-P) we see that
if (x, z) is a feasible solution, then so is (x, z′) where
z′ ≥ z. Consider the following LP. The index l below
indexes integral solutions and ranges over I.

max
∑
l

γl (P)

s.t.
∑
l

γl ≤ 1 (6.9)∑
l

γlc
Tx(l) ≤ ρcTx∗ (6.10)∑

l

γlz
(l) ≤ z∗ (6.11)

γ ≥ 0.

We claim that a feasible solution to this LP with value 1
(which is therefore an optimal solution) can be modified
so that (6.11) holds at equality. To see this, suppose

that
∑
l γlz

(l)
i,e < z∗i,e. Then, we can take some l

such that γl > 0 and z
(l)
i,e = 0 and transfer some

weight from this integral solution to the integral solution

(x′ = x(l), z′), where z′i,e = 1 and z′i′,e′ = z
(l)
i′,e′ for all



(i′, e′) 6= (i, e). By repeatedly doing this, we can obtain
a convex combination where (6.11) holds at equality. To
show that the optimal value of (P) is 1 and that it can
be solved efficiently, we move to the dual.

min ρ(κcTx∗ + wT z∗) + δ (D)

s.t. κcTx(l) + ρwT z(l) + δ ≥ 1 ∀l
κ, δ, w ≥ 0.

Here δ and κ are the dual variables corresponding to
(6.9) and (6.10) respectively, and ρwe,i is the dual
variable corresponding to the (i, e)-th constraint of
(6.11). Suppose there is some (κ, δ, w) for which the
objective value of (D) is less than 1. Then, since
Alg is an LMP ρ-approximation algorithm, we can
run it on the input (c, w/κ) to obtain an integer
solution (x(l), z(l)) such that cTx(l) + ρwT z(l)/κ ≤
ρ(cTx∗ + wT z∗/κ) < (1 − δ)/κ. But this means that
the corresponding constraint of (D) is violated. This
shows that OPT (D) = OPT (P) ≥ 1, and hence is
exactly one. By using the ellipsoid method with Alg
providing a separation oracle, we can get an LP with
only polynomially many constraints that is equivalent
to (D); taking its dual yields an LP of the form (P)
with only polynomially many variables. Solving this,
and then tweaking the γ values so that (6.11) holds
at equality yields the desired convex combination (with
polynomial support).

6.2 The multi-demand setting. Recall that in the
multi-demand (MD) setting, each player i has a max-
imum level of service Ri. An outcome is a vector
` = (`1, . . . , `n) with `i specifying the level offered to

player i. Player i’s value under ` is vi(`i) :=
∑`i
k=1 vi,k,

where vi ∈ RRi
+ is her private type with vi,k > 0 being

the marginal value of increasing i’s level to k from k−1.
We assume that vi,k is non-increasing with k. The social
cost of outcome ` is SC(`) := C(`)+

∑
i

(
vi(Ri)−vi(`i)

)
and ICT is the condition that the price charged to
a player i is at most C(0, . . . , 0, `i, 0, . . . , 0). We as-
sume that the outcome-set is downwards-closed and C
is monotone: if `′ ≤ ` and `′ ∈ Zn+, then `′ is an out-
come if ` is, and C(`′) ≤ C(`). We say that C is sub-
additive if C(`) + C(`′) ≥ C

(
{max(`i, `

′
i)}i∈[n]

)
. As

in Section 6.1, we also consider the single-dimensional
special case where vi,k = vi for all k ∈ [Ri] (so SC(`) =
C(`) +

∑
i vi(Ri − `i)); we call this the multi-demand

single-dimensional (MDSD) problem.
Analogous to (SC1-P) and (SC2-P), we consider

MD problems where the SCM problem is captured by
(MD1-P) or (MD2-P). Here zi,k = 1 indicates that
player i is offered level of service at most Ri− k. In the

following, we require that b
(i)
r ∈ [Ri] for all i, r.

min cTx+
∑
i

Ri∑
k=1

vi,Ri−k+1zi,k (MD1-P)

s.t.
∑
e

A(i)
re xe +

b(i)r∑
k=1

zi,k ≥ b(i)r ∀i, r (6.12)

Bx ≥ d (6.13)

x ∈ Rm+ , 0 ≤ zi,k ≤ 1 ∀i, k.

min cTx+
∑
i

Ri∑
k=1

vi,kzi,k (MD2-P)

s.t.
∑
e

A(i)
re xe +

b(i)r∑
k=1

zi,k ≥ b(i)r ∀i, r

Bx ≥ d
0 ≤ x ≤ u, 0 ≤ zi,k ≤ 1 ∀i, k.

As before, we require that d ≥ 0 and A(i), b(i) ≥ 0 for
every i. For (MD2-P), we also require that B ≥ 0, and

for every i, if A
(i)
re > 0 and ue > 0 then A

(i)
re ue ≥ b(i)r .

The LP-relaxations corresponding to (MD1-P) and
(MD2-P) for the CM problem where we want to find
the min-cost way of serving each player i at level `i are
obtained by dropping all the zi,k variables, and replacing

b
(i)
r by max{0, b(i)r − (Ri − `i)}. In the sequel, we use

(MD-P) (which is (MD1-P) or (MD2-P)) to denote the
SCM-LP.

As an example of an MD problem modeled by (MD-
P), let us revisit EC-SNDP when multiple copies of an
edge may be picked. Each player i is an (si, ti) pair who
requires Ri edge-disjoint si-ti paths. A feasible solution
may only provide `i ≤ Ri edge-disjoint si-ti and incur a
“penalty” for player i equal to

∑Ri

k=`i+1 vi,k. (Contrast
this with the single-dimensional setting considered in
Section 5, where a solution must either provide 0 or Ri
edge-disjoint si-ti paths and incur the penalty for i in
the former case.) Another example is the set-multicover
problem, where an element seeks to be covered by
multiple sets (and sets may be picked multiple times).

Theorem 6.3. Let Rmax = maxiRi and λ(v) =
maxi

[
vi(Ri)/mink∈[Ri] vi,k

]
. Given an LP-based ρ-

approximation algorithm for the multi-demand CM
problem, we can obtain a truthful, cost-recovering mech-
anism with approximation ratio: (a) O

(
(ρ+Rmax) log n

)
for the MDSD problem; and (b) O

(
ρλ(v) log n

)
on input

v for the MD problem. Both mechanisms are ICT if C
is subadditive.

Thus, we obtain truthful, cost-recovering, ICT
mechanisms for:



• EC-SNDP and ELC-SNDP with approxima-
tion O(Rmax log n) for the MDSD problem and
O(λ(v) log n

)
for the MD problem;

• VC-SNDP with approximation O(R3
max log2 n) for

the MDSD problem and O(R3
maxλ(v) log2 n) for the

MD problem;

• set-multicover with approximation O((log n +
Rmax) log n) for the MD problem and O(λ(v) log2 n)
for the MD problem.

These approximation factors can be improved by a
factor of β at the expense of obtaining β-cost-recovery.

Proof. The proof (as well as the theorem statement)
is along the same lines as that of parts (b) and (c)
of Theorem 6.1. We reduce the multidimensional
problem to the single-dimensional one by considering
all-or-nothing outcomes; that is, outcomes where every
player i is either served at level Ri or not served at
all. For example, the all-or-nothing MD EC-SNDP
problem is precisely the single-dimensional EC-SNDP
problem considered in Section 5, where serving player i
entails providing Ri edge-disjoint paths, and not serving
i involves incurring penalty vi(Ri).

We describe shortly how to obtain a truthful, no-
bossy (defined precisely later) mechanisms with (ρ +
Rmax)- and (ρ+ 1)λ(v)- approximations for the MDSD
and MD problems respectively. The procedure for in-
jecting cost-recovery into this mechanism is the same
in both cases. For a set S ⊆ [n], let LS be the vec-
tor where LS,i = Ri if i ∈ S and is 0 otherwise.
Let A′ := {S ⊆ [n] : LS ∈ A}. (where A is the
(downwards-closed) set of all outcomes.) We simulate
the construction from Section 3 for the cost function
C ′ : A′ 7→ R+ defined by C ′(S) := C(LS). Note that
A′ is downwards closed and, if C is subadditive then so
is C ′. Thus, each player i is now a single-dimensional
player whose value is vi(Ri). So Theorem 3.1 combined
with the above results shows that we obtain (polytime)
truthful, cost-recovering mechanisms with approxima-
tion O((ρ + Rmax) log n) and O

(
ρλ(v) log n

)
for the

MDSD and MD problems respectively. Moreover, these
mechanisms are ICT if C is subadditive.
The single-dimensional MDSD problem. On
input v, we compute the optimal solution

(
x∗, z∗

)
to

(MD-P). Let OPT denote its value. Let z∗i (Ri) denote∑
k∈[Ri]

z∗i,k. Let S = {i : z∗(Ri) = 0}. We return

g(v) := LS as the outcome, and use Alg to compute
a solution for g(v). In the sequel, we say that “i
wins” if i is served at level Ri. Let ti(v−i) denote
the smallest value of viRi under which i wins. We
set qi(v) = ti(vi) if i wins and 0 otherwise for all i.
We argue that M =

(
g, {qi}

)
is polytime, truthful,

ICT, achieves a (ρ + k)-approximation, and has the
following no-bossiness property: if g(vi, v−i)i = Ri and
g(v′i, v−i)i = Ri then g(vi, v−i) = g(v′i, v−i).

Suppose that i is a winner under input v. Let
(x′, z′) be an optimal solution for v′ = (v′i, v−i) where
v′i > vi. Then, as in the proof of Theorem 4.1, it
is easy to see that z′(Ri) ≤ z∗(Ri) = 0 and hence,
that (x′, z′) = (x∗, z∗). Hence, i is also a winner un-
der v′, and g(v) = g(v′). The proof that M is ICT
and that ti(v−i) is polytime computable follows by
mimicking the proof of Lemma 4.2 (or Theorem 4.2).
To prove the approximation, as before, it suffices to
show that

∑
i:z∗(Ri)>0 viRi ≤ k · OPT . If z∗(Ri) > 0

then there is some k such that z∗i,k > 0, so we only
need to show that

∑
i,k:z∗i,k>0 vi ≤ OPT . This is easy

to see if (MD-P) is (MD1-P). Let
(
{µ∗i,r}, ω∗, {π∗i,k}

)
be an optimal dual solution, where µ∗i,r, ω∗, and
π∗i,k correspond respectively to (6.12), (6.13) and the
zi,k ≤ 1 constraint. Then by complementary slack-
ness,

∑
i,k:z∗i,k>0 vi =

∑
i,k:z∗i,k>0

(∑
r:b

(i)
r ≥k

µ∗i,r−π∗i,k
)
≤∑

i,r b
(i)
r µ∗i,r −

∑
i,k π

∗
i,k ≤ OPT .

If (MD-P) is (MD2-P), we again appeal to com-
plementary slackness. Let

(
{µ∗i,r}, ω∗, θ∗, {π∗i,k}

)
be

an optimal dual solution, where θ∗e is value of the
new dual variable corresponding to the xe ≤ ue con-
straint. Now, as in the proof of Theorem 4.2, we
get that

∑
i,k:z∗i,k>0 vi +

∑
e:θ∗e>0 uece =

∑
i,r µ

∗
i,rκi,r +∑

r,e:θ∗e>0 x
∗
eBreω

∗
r−uT θ∗−

∑
i,k π

∗
i,k where κi,r = |{k ≤

b
(i)
r : z∗i,k > 0}|+

∑
e:θ∗e>0 ueA

(i)
re . If there is no k ≤ b

(i)
r

with z∗i,k > 0 then µ∗i,rκi,r ≤ µ∗i,r
(∑

e x
∗
eA

(i)
re

)
= µ∗i,rb

(i)
r .

Otherwise, if ue ≥ 1, µ∗i,r > 0 and A
(i)
re > 0, we

must have θ∗e = 0 (or else
∑
eA

(i)
re x∗e +

∑
k≤b(i)r

z∗i,k >

b
(i)
r ). It follows that µ∗i,rκi,r ≤ µ∗i,rb

(i)
r , and hence,∑

i,k:z∗i,k>0 vi +
∑
e:θ∗e>0 uece ≤

∑
i,r µ

∗
i,rb

(i)
r + dTω∗ −

uT θ∗ −
∑
i,k π

∗
i,k = OPT .

The MD problem. Recall that C ′(S) := C(LS).
We construct a mechanism M for the multi-dimensional
problem by simulating the construction in Section 4 for
C ′. The LP-relaxation for this modified SCM problem
is (MD-P) with the constraints zi,k = zi,k′ for all
i, k, k′ ∈ [Ri]. Let (MMD-P) denote this modified SCM-
LP. Observe that (MMD-P) is of the same form as (SC-
P) (for the corresponding all-or-nothing problem).

On input v, we compute the optimal solution (x̃, z̃)
to (MMD-P). Let ˜opt denote its value. Let S = {i :
z̃i,1 = 0}. We return g(v) := LS as the outcome, and
use Alg to compute a solution for g(v). Let ti(v−i)
denote the smallest value of vi(Ri) under which i wins.
We set qi(v) = ti(v−i) if i ∈ S and 0 otherwise for
all i. Recall that λ(v) = maxi

[
vi(Ri)/mink∈[Ri] vi,k

]
.



We abbreviate this to λ in the sequel. We show that
M =

(
g, {qi}

)
is polytime, truthful, ICT, no-bossy, and

achieves a (ρ+ 1)λ-approximation.
Since M simulates the construction in Section 4 for

the (one-element) modified SCM problem, the proofs
in Section 4 show that (i) g satisfies no-bossiness; (ii)
qi(v) ≤ C ′(i) := C(L{i}); (iii) g has the monotonic-
ity property that v′i > v′′i implies that g(v′i, v−i)i ≥
g(v′′i , v−i)i; and (iv) ti(v−i) can be computed in poly-
time for all i, v−i. To justify truthfulness, let vi =
(vi,k)k∈[Ri] be i’s true input. Fix v−i. Suppose i
wins under (vi, v−i). Her utility is ui(vi; vi, v−i) =
vi(Ri) − ti(v−i) ≥ 0. Since qi(v) = ti(v−i) if i wins,
i cannot improve her utility by lying. If i loses under
(vi, v−i) then (iii) implies that vi(Ri) ≤ ti(v−i) and so
i cannot improve her utility by lying.

We have shown that M is polytime, truthful, and
ICT. We now prove the approximation guarantee. Let
W = g(v). By Lemma 4.1 and Theorem 4.2 we know
that CM (W ) +

∑
i/∈S vi(Ri) ≤ (ρ + 1) ˜opt. Let (x∗, z∗)

be an optimal solution to the original SCM-LP (MD-
P) for v and OPT denote its value. Observe that
since the objective-function coefficients of the zi,ks are
nondecreasing with k, we may assume that z∗i,1 ≥ z∗i,2 ≥
. . . ≥ z∗i,Ri

. Define zi,k = z∗i,1 for all k ∈ [Ri]. Observe
that (x∗, z) is a feasible solution to (MMD-P). Since
vi(Ri) ≤ λvi,k for all i, k ∈ [Ri], we have that ˜opt is at
most

cTx∗+
∑
i

vi(Ri)z
∗
i,1 ≤ cTx∗+

∑
i,k∈[Ri]

λvi,kz
∗
i,k ≤ λOPT .
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