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Abstract. We investigate multidimensional covering mechanism-design
problems, wherein there are m items that need to be covered and n
agents who provide covering objects, with each agent i having a private
cost for the covering objects he provides. The goal is to select a set of
covering objects of minimum total cost that together cover all the items.
We focus on two representative covering problems: uncapacitated facility
location (UFL) and vertex cover (VC). For multidimensional UFL, we give
a black-box method to transform any Lagrangian-multiplier-preserving ρ-
approximation algorithm for UFL to a truthful-in-expectation, ρ-approx.
mechanism. This yields the first result for multidimensional UFL, namely
a truthful-in-expectation 2-approximation mechanism.
For multidimensional VC (Multi-VC), we develop a decomposition method
that reduces the mechanism-design problem into the simpler task of con-
structing threshold mechanisms, which are a restricted class of truthful
mechanisms, for simpler (in terms of graph structure or problem dimen-
sion) instances of Multi-VC. By suitably designing the decomposition and
the threshold mechanisms it uses as building blocks, we obtain truthful
mechanisms with approximation ratios (n is the number of nodes): (1)
O(r2 logn) for r-dimensional VC; and (2) O(r logn) for r-dimensional VC
on any proper minor-closed family of graphs. These are the first truthful
mechanisms for Multi-VC with non-trivial approximation guarantees.

1 Introduction

Algorithmic mechanism design (AMD) deals with efficiently-computable algo-
rithmic constructions in the presence of strategic players who hold the inputs
to the problem, and may misreport their input if doing so benefits them. The
challenge is to design algorithms that work well with the true (privately-known)
input. In order to achieve this task, a mechanism specifies both an algorithm and
a pricing or payment scheme that can be used to incentivize players to reveal
their true inputs. A mechanism is said to be truthful, if each player maximizes his
utility by revealing his true input regardless of the other players’ declarations.

In this paper, we initiate a study of multidimensional covering mechanism-
design problems, often called reverse auctions or procurement auctions in the
mechanism-design literature. These can be abstractly stated as follows. There are
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m items that need to be covered and n agents who provide covering objects, with
each agent i having a private cost for the covering objects he provides. The goal is
to select (or buy) a suitable set of covering objects from each player so that their
union covers all the items, and the total covering cost incurred is minimized. This
cost-minimization (CM) problem is equivalent to the social-welfare maximization
(SWM) (where the social welfare is − (total cost incurred by the players and the
mechanism designer)), so ignoring computational efficiency, the classical VCG
mechanism [26, 4, 15] yields a truthful mechanism that always returns an optimal
solution. However, the CM problem is often NP-hard, so we seek to design a
polytime truthful mechanism where the underlying algorithm returns a near-
optimal solution to the CM problem.

Although multidimensional packing mechanism-design problems have received
much attention in the AMD literature, multidimensional covering CM problems
are conspicuous by their absence in the literature. For example, the packing
SWM problem of combinatorial auctions has been studied (in various flavors)
in numerous works both from the viewpoint of designing polytime truthful,
approximation mechanisms [10, 21, 9, 13], and from the perspective of proving
lower bounds on the capabilities of computationally- (or query-) efficient truth-
ful mechanisms [20, 14, 11]. In contrast, the lack of study of multidimensional
covering CM problems is aptly summarized by the blank table entry for results
on truthful approximations for procurement auctions in Fig. 11.2 in [25] (a recent
result of [12] is an exception; see “Related work”). In fact, to our knowledge,
the only multidimensional problem with a covering flavor that has been stud-
ied in the AMD literature is the makespan-minimization problem on unrelated
machines [22, 2], which is not an SWM problem.

Our results and techniques. We study two representative multidimensional cov-
ering problems, namely (metric) uncapacitated facility location (UFL), and vertex
cover (VC), and develop various techniques to devise polytime, truthful, approx-
imation mechanisms for these problems.

For multidimensional UFL (Section 3), wherein players own (known) different
facility sets and the assignment costs are public, we present a black-box reduc-
tion from truthful mechanism design to algorithm design. We show that any ρ-
approximation algorithm for UFL satisfying an additional Lagrangian-multiplier-
preserving (LMP) property (that indeed holds for various algorithms) can be con-
verted in a black-box fashion to a truthful-in-expectation ρ-approximation mech-
anism (Theorem 3). This is the first such black-box reduction for a multidimen-
sional covering problem, and it leads to the first result for multidimensional UFL,
namely, a truthful-in-expectation, 2-approximation mechanism. Our result builds
upon the convex-decomposition technique in [21]. Lavi and Swamy [21] primar-
ily focus on packing problems, but remark that their convex-decomposition idea
also yields results for single-dimensional covering problems, and leave open the
problem of obtaining results for multidimensional covering problems. Our result
for UFL identifies an interesting property under which a ρ-approximation algo-
rithm for a covering problem can be transformed into a truthful, ρ-approximation
mechanism in the multidimensional setting.



In Section 4, we consider multidimensional VC, where each player owns a
(known) set of nodes. Although, algorithmically, VC is one of the simplest cover-
ing problems, it becomes a surprisingly challenging mechanism-design problem
in the multidimensional mechanism-design setting, and, in fact, seems signifi-
cantly more difficult than multidimensional UFL. This is in stark contrast with
the single-dimensional setting, where each player owns a single node. Before
detailing our results and techniques, we mention some of the difficulties encoun-
tered. We use Multi-VC to distinguish the multidimensional mechanism-design
problem from the algorithmic problem.

For single-dimensional problems, a simple monotonicity condition character-
izes the implementability of an algorithm, that is, whether it can be combined
with suitable payments to obtain a truthful mechanism. This condition allows
for ample flexibility and various algorithm-design techniques can be leveraged
to design monotone algorithms for both covering and packing problems (see,
e.g., [3, 21]). For single-dimensional VC, many of the known 2-approximation al-
gorithms for the algorithmic problem (based on LP-rounding, primal-dual meth-
ods, or combinatorial methods) are either already monotone, or can be modified
in simple ways so that they become monotone, and thereby yield truthful 2-
approximation mechanisms [7]. However, the underlying algorithm-design tech-
niques fail to yield algorithms satisfying weak monotonicity (WMON)—a nec-
essary condition for implementability (see Theorem 2)—even for the simplest
multidimensional setting, namely, 2-dimensional VC, where every player owns at
most two nodes. In the full version of the paper, we give examples that show this
for various LP-rounding methods and primal-dual algorithms.

Furthermore, various techniques that have been devised for designing poly-
time truthful mechanisms for multidimensional packing problems (such as com-
binatorial auctions) do not seem to be helpful for Multi-VC. For instance, the
well-known technique of constructing a maximal-in-range, or more generally,
a maximal-in-distributional-range (MIDR) mechanism—fix some subset of out-
comes and return the best outcome in this set—does not work for Multi-VC [12]
(and more generally, for multidimensional covering problems). (More precisely,
any algorithm for Multi-VC whose range is a proper subset of the collection of
minimal vertex covers, cannot have bounded approximation ratio.) This also
rules out the convex-decomposition technique of [21], which we exploit for mul-
tidimensional UFL, because, as noted in [21], this yields an MIDR mechanism.

Thus, we need to develop new techniques to attack Multi-VC (and multi-
dimensional covering problems in general). We devise two main techniques for
Multi-VC. We introduce a simple class of truthful mechanisms called threshold
mechanisms (Section 4.1), and show that despite their restrictions, threshold
mechanisms can achieve non-trivial approximation guarantees. We next develop
a decomposition method for Multi-VC (Section 4.2) that provides a general way
of reducing the mechanism-design problem for Multi-VC into simpler—either in
terms of graph structure, or problem dimension—mechanism-design problems by
using threshold mechanisms as building blocks. We believe that these techniques
will also find use in other mechanism-design problems.



By leveraging the decomposition method along with threshold mechanisms,
we obtain various truthful, approximation mechanisms for Multi-VC, which yield
the first truthful mechanisms for multidimensional vertex cover with non-trivial
approximation guarantees. Let n be the number of nodes. Our decomposition
method shows that any instance of r-dimensional VC can be broken up into
O(r2 log n) instances of single-dimensional VC; this in turn leads to a truthful,
O(r2 log n)-approximation mechanism for r-dimensional VC (Theorem 13). In
particular, for any fixed r, we obtain an O(log n)-approximation for any graph.
We also give a decomposition method that yields an improved O(r log n) ap-
proximation (Theorem 15) for any proper minor-closed family of graphs (such
as planar graphs). This guarantee improves to O(log n) (for a proper minor-
closed family) when no two neighbors of a node belong to the same player.

It is worthwhile to note that in addition to their usefulness in the design of
truthful, approximation mechanisms for Multi-VC, some of the mechanisms we
design also enjoy good frugality properties. We obtain (Theorem 16) the first
mechanisms for Multi-VC that are polytime, truthful and simultaneously achieve
bounded approximation ratio and bounded frugality ratio with respect to the
benchmarks in [5, 19]. This nicely complements a result of [5], who devise such
a mechanism for single-dimensional VC.

Related work. As mentioned earlier, there is little prior work on the CM prob-
lem for multidimensional covering problems. Dughmi and Roughgarden [12] give
a general technique to convert an FPTAS for an SWM problem to a truthful-
in-expectation FPTAS. However, for covering problems, they obtain an additive
approximation, which does not translate to a (worst-case) multiplicative approx-
imation. In fact, as they observe, a multiplicative approximation ratio is impos-
sible (in polytime) using their technique, or any other technique that constructs
a MIDR mechanism whose range is a proper subset of all outcomes.

For single-dimensional covering problems, various other results, including
black-box results, are known. Briest et al. [3] consider a closely-related gen-
eralization, which one may call the “single-value setting”; although this is a
multidimensional setting, it admits a simple monotonicity condition sufficient
for implementability, which makes this setting easier to deal with than our mul-
tidimensional settings. They show that a pseudopolynomial time algorithm (for
covering and packing problems) can be converted into a truthful FPTAS.

Single-dimensional covering problems have been well studied from the per-
spective of frugality. Here the goal is to design mechanisms that have bounded
(over-)payment with respect to some benchmark, but one does not (typically)
care about the cost of the solution returned. Starting with the work of Archer
and Tardos [1], various benchmarks for frugality have been proposed and inves-
tigated for various problems including VC, k-edge-disjoint paths, spanning tree,
s-t cut; see [18, 6, 19, 5] and the references therein. Some of our mechanisms for
Multi-VC are inspired by the constructions in [19, 5], and simultaneously achieve
bounded approximation ratio and bounded frugality ratio.

Our decomposition method, where we combine mechanisms for simpler prob-
lems into a mechanism for the given problem, is somewhat in the same spirit as



the construction in [24]. They give a toolkit for combining truthful mechanisms,
identifying sufficient conditions under which this combination preserves truth-
fulness. But they work only with the single-dimensional setting, which is much
more tractable to deal with.

Finally, as noted earlier, there are a wide variety of results on truthful
mechanism-design for packing SWM problems, such as combinatorial auctions [10,
21, 9, 13, 20, 14, 11].

2 Preliminaries

In a multidimensional covering mechanism-design problem, we have m items
that need to be covered, and n agents/players who provide covering objects.
Each agent i provides a set Ti of covering objects. All this information is public
knowledge. We use [k] to denote the set {1, . . . , k}. Each agent i has a private
cost (or type) vector ci = {ci,v}v∈Ti , where ci,v is the cost he incurs for providing
object v ∈ Ti; for T ⊆ Ti, we use ci(T ) to denote

∑
v∈T ci,v. A feasible solution or

allocation selects a subset Ti ⊆ Ti for each agent i, denoting that i provides the
objects in Ti. Given this solution, each agent i incurs the private cost ci(Ti). Also,
the mechanism designer incurs a publicly-known cost pub(T1, . . . , Tn). The goal
is to minimize the total cost

∑
i ci(Ti) + pub(T1, . . . , Tn) incurred. We call this

the cost minimization (CM) problem. Note that we can encode any feasibility
constraints in the covering problem by simply setting pub(a) = ∞ if a is not
a feasible allocation. Observe that if we view the mechanism designer also as
a player, then the CM problem is equivalent to maximizing the social welfare,
which is given by

∑
i−ci(Ti)− pub(T1, . . . , Tn).

Various covering problems can be cast in the above framework. For example,
in the mechanism-design version of vertex cover (Section 4), the items are edges
of a graph. Each agent i provides a subset Ti of the nodes of the graph and
incurs a private cost ci,v if node v ∈ Ti is used to cover an edge. We can set
pub(T1, . . . , Tn) = 0 if

⋃
i Ti is a vertex cover, and ∞ otherwise, to encode that

the solution must be a vertex cover. It is also easy to see that the mechanism-
design version of uncapacitated facility location (UFL; Section 3), where each
agent provides some facilities and has private facility-opening costs, and the
client-assignment costs are public, can be modeled by letting pub(T1, . . . , Tn) be
the total client-assignment cost given the set

⋃
i Ti of open facilities.

Let Ci denote the set of all possible cost functions of agent i, and O be
the (finite) set of all possible allocations. Let C =

∏n
i=1 Ci. For a tuple x =

(x1, . . . , xn), we use x−i to denote (x1, . . . , xi−1, xi+1, . . . , xn). Similarly, let
C−i =

∏
j 6=i Cj . For an allocation a = (T1, . . . , Tn), we sometimes use ai to

denote Ti, ci(a) to denote ci(ai) = ci(Ti). A (direct revelation) mechanism
M = (A, p1, . . . , pn) for a covering problem consists of an allocation algorithm
A : C 7→ O and a payment function pi : C 7→ R for each agent i, and works as
follows. Each agent i reports a cost function ci (that might be different from his
true cost function). The mechanism computes the allocationA(c) = (T1, . . . , Tn),
and pays pi(c) to each agent i. Throughout, we use ci to denote the true cost
function of i. The utility ui(ci, c−i; ci) that player i derives when he reports ci



and the others report c−i is pi(c) − ci(Ti), and each agent i aims to maximize
his own utility (rather than the social welfare).

A desirable property for a mechanism to satisfy is truthfulness, wherein every
agent i maximizes his utility by reporting his true cost function. All our mecha-
nisms will also satisfy the natural property of individual rationality (IR), which
means that every agent has nonnegative utility if he reports his true cost.

Definition 1. A mechanism M =
(
A, {pi}

)
is truthful if for every agent i, every

c−i ∈ C−i, and every ci, ci ∈ Ci, we have ui(ci, c−i; ci) ≥ ui(ci, c−i; ci). M is IR
if for every i, every ci ∈ Ci and every c−i ∈ C−i, we have ui(ci, c−i; ci) ≥ 0.

To ensure that truthfulness and IR are compatible, we consider monopoly-
free settings: for every player i, there is a feasible allocation a (i.e., pub(a) <∞)
with ai = ∅. (Otherwise, if there is no such allocation, then i needs to be paid
at least minv∈Ti ci,v for IR, so he can lie and increase his utility arbitrarily.)

For a randomized mechanism M , where A or the pi’s are randomized, we say
that M is truthful in expectation if each agent i maximizes his expected utility
by reporting his true cost. We now say that M is IR if for every coin toss of the
mechanism, the utility of each agent is nonnegative upon bidding truthfully.

Since the CM problem is often NP-hard, our goal is to design a mechanism
M =

(
A, {pi}

)
that is truthful (or truthful in expectation), and where A is a ρ-

approximation algorithm; that is, for every input c, the solution a = A(c) satisfies∑
i ci(a) + pub(a) ≤ ρ ·minb∈O

(∑
i ci(b) + pub(b)

)
. We call such a mechanism a

truthful, ρ-approximation mechanism.
The following theorem gives a necessary and sometimes sufficient condition

for when an algorithm A is implementable, that is, admits suitable payment
functions {pi} such that

(
A, {pi}

)
is a truthful mechanism. Say that A satisfies

weak monotonicity (WMON) if for all i, all ci, c
′
i ∈ Ci, and all c−i ∈ C−i, if

A(ci, c−i) = a, A(c′i, c−i) = b, then ci(a) − ci(b) ≤ c′i(a) − c′i(b). Define the
dimension of a covering problem to be maxi |Ti|. It is easy to see that for a
single-dimensional covering problem—so Ci ⊆ R for all i—WMON is equivalent
to the following simpler condition: say that A is monotone if for all i, all ci, c

′
i ∈

Ci, ci ≤ c′i, and all c−i ∈ C−i, if A(ci, c−i) = a, A(c′i, c−i) = b then bi ⊆ ai.

Theorem 2 (Theorems 9.29 and 9.36 in [25]). If a mechanism
(
A, {pi}

)
is

truthful, then A satisfies WMON. Conversely, if the problem is single-dimensional,
or if Ci is convex for all i, then every WMON algorithm A is implementable.

3 A black-box reduction for multidimensional metric UFL

In this section, we consider the multidimensional metric uncapacitated facility
location (UFL) problem and present a black-box reduction from truthful mecha-
nism design to algorithm design. We show that any ρ-approximation algorithm
for UFL satisfying an additional property can be converted in a black-box fashion
to a truthful-in-expectation ρ-approximation mechanism (Theorem 3). This is



the first such result for a multidimensional covering problem. As a corollary, we
obtain a truthful-in-expectation, 2-approximation mechanism (Corollary 5).

In the mechanism-design version of UFL, we have a set D of clients that
need to be serviced by facilities, and a set F of locations where facilities may
be opened. Each agent i may provide facilities at the locations in Ti ⊆ F . By
making multiple copies of a location if necessary, we may assume that the Tis are
disjoint. Hence, we will simply say “facility `” to refer to the facility at location
` ∈ F . For each facility ` ∈ Ti that is opened, i incurs a private opening cost of
f i,`, and assigning client j to an open facility ` incurs a publicly known assign-
ment/connection cost c`j . To simplify notation, given a tuple {fi,`}i∈[n],`∈Ti of
facility costs, we use f` to denote fi,` for ` ∈ Ti. The goal is to open a subset
F ⊆ F of facilities, so as to minimize

∑
`∈F f ` +

∑
j∈Dmin`∈F c`j . We will as-

sume throughout that the c`js form a metric. It will be notationally convenient
to allow our algorithms to have the flexibility of choosing the open facility σ(j)
to which a client j is assigned (instead of argmin`∈F c`j); since assignment costs
are public, this does not affect truthfulness, and any approximation guarantee
achieved also clearly holds when we drop this flexibility.

We can formulate (metric) UFL as an integer program, and relax the inte-
grality constraints to obtain the following LP. Throughout, we use ` to index
facilities in F and j to index clients in D.

min
∑
`

f`y` +
∑
j,`

c`jx`j s.t.
∑
`

x`j ≥ 1 ∀j, 0 ≤ x`j ≤ y` ≤ 1 ∀`, j. (FL-P)

Here, {f`}` = {fi,`}i∈[n],`∈Ti is the vector of reported facility costs. Variable y`
denotes if facility ` is opened, and x`j denotes if client j is assigned to facility
`; the constraints encode that each client is assigned to a facility, and that this
facility must be open.

Say that an algorithm A is a Lagrangian multiplier preserving (LMP) ρ-
approximation algorithm for UFL if for every instance, it returns a solution(
F, {σ(j)}j∈D

)
such that ρ

∑
`∈F f`+

∑
j cσ(j)j ≤ ρ ·OPT(FL-P). The main result

of this section is the following black-box reduction.

Theorem 3. Given a polytime, LMP ρ-approximation algorithm A for UFL,
one can construct a polytime, truthful-in-expectation, individually rational, ρ-
approximation mechanism M for multidimensional UFL.

Proof. We build upon the convex-decomposition idea used in [21]. The random-
ized mechanism M works as follows. Let f = {f`} be the vector of reported
facility-opening costs, and c be the public connection-cost metric.

1. Compute the optimal solution (y∗, x∗) to (FL-P) (for the input (f, c)). Let
{p∗i = p∗i (f)} be the payments made by the fractional VCG mechanism that
outputs the optimal LP solution for every input. That is, p∗i =

(∑
` f`y

′
` +∑

`,j c`jx
′
`j

)
−
(∑

`/∈Ti f`y
∗
` +

∑
`,j c`jx

∗
`j

)
, where (y′, x′) is the optimal solution

to (FL-P) with the additional constraints y` = 0 for all ` ∈ Ti.
2. Let Z(P ) = {(y(q), x(q))}q∈I be the set of all integral solutions to (FL-P).
In Lemma 4, we prove the key technical result that using A, one can compute,



in polynomial time, nonnegative multipliers {λ(q)}q∈I such that
∑
q λ

(q) = 1,∑
q λ

(q)y
(q)
` = y∗` for all `, and

∑
q,`,j λ

(q)c`jx
(q)
`j ≤ ρ

∑
`,j c`jx

∗
`j .

3. With probability λ(q): (a) output the solution
(
y(q), x(q)

)
; (b) pay p

(q)
i to agent

i, where p
(q)
i = 0 if

∑
`∈Ti f`y

∗
` = 0, and

∑
`∈Ti f`y

(q)
` ·

p∗i∑
`∈Ti

f`y∗`
otherwise.

Clearly, M runs in polynomial time. Fix a player i. Let f i and fi be the
true and reported cost vector of i. Let f−i be the reported cost vectors of the
other players. Let (y∗, x∗) be an optimal solution to (FL-P) for (f, c). Note
that E

[
pi(f)

]
= p∗i (f) since

∑
q λ

(q)y(q) = y∗` for all `. (If
∑
`∈Ti f`y

∗
` = 0

then p∗i (f) = 0.) So E
[
ui(fi, fi; f i)

]
= E

[
pi
]
−
∑
q λ

(q)
∑
`∈Ti f `y

(q)
` = p∗i (f) −∑

`∈Ti f `y
∗
` . Since p∗i and y∗ are respectively the payment to i and the assignment

computed for input (fi, f−i) by the fractional VCG mechanism, which is truthful,
it follows that player i maximizes his utility in the VCG mechanism, and hence,
his expected utility under mechanism M , by reporting his true opening costs.

Thus, M is truthful in expectation. This also implies the ρ-approximation
guarantee because the convex decomposition obtained in Step 2 shows that the
expected cost of the solution computed by M for input (f, c) (where we may
assume that f is the true cost vector) is at most ρ·OPT(FL-P)(f, c). Finally, since
the fractional VCG mechanism is IR, for any agent i, the VCG payment p∗i (f)

satisfies p∗i (f) ≥
∑
`∈Ti f`y

∗
` , and therefore p

(q)
i ≥

∑
`∈Ti f`y

(q)
` . So M is IR. ut

Lemma 4. The convex decomposition in Step 2 can be computed in polytime.

Proof Sketch. It suffices to show that the LP (P) can be solved in polynomial
time and its optimal value is 1. Recall that {(y(q), x(q))}q∈I is the set of all
integral solutions to (FL-P). The LP (D) is the dual of (P).

max
∑
q

λ(q) (P)

s.t.
∑
q

λ(q)y
(q)
` = y∗` ∀`

∑
j,`,q

λ(q)c`jx
(q)
`j ≤ ρ

∑
j,`

c`jx
∗
`j∑

q

λ(q) ≤ 1, λ ≥ 0.

min
∑
`

y∗`α` +
(
ρ
∑
j,`

c`jx
∗
`j

)
β + z (D)

s.t.
∑
`

y
(q)
` α` +

(∑
j,`

c`jx
(q)
`j

)
β + z ≥ 1 ∀q (1)

z, β ≥ 0.

Clearly, OPT (D) ≤ 1 since z = 1, α` = 0 = β for all ` is a feasible dual solu-
tion. If there is a feasible dual solution (α′, β′, z′) of value smaller than 1, then

the rough idea is that by running A on the UFL instance with facility costs {α
′
`

ρ }
and connection costs {β′c`j}, we can obtain an integral solution whose constraint
(1) is violated. (This idea needs be modified a bit since α′` could be negative.)
Hence, we can solve (D) efficiently via the ellipsoid method using A to provide
the separation oracle. This also yields an equivalent dual LP consisting of only
the polynomially many violated inequalities found during the ellipsoid method.
The dual of this compact LP gives an LP equivalent to (P) with polynomially
many λ(q) variables whose solution yields the desired convex decomposition. ut



By using the polytime LMP 2-approximation algorithm for UFL devised by
Jain et al. [17], we obtain the following corollary of Theorem 3.

Theorem 5. There is a polytime, IR, truthful-in-expectation, 2-approximation
mechanism for multidimensional UFL.

4 Truthful mechanisms for multidimensional VC

We now consider the multidimensional vertex-cover problem (VC), and devise
various polytime, truthful, approximation mechanisms for it. We often use Multi-
VC to distinguish multidimensional VC from its algorithmic counterpart.

Recall that in Multi-VC, we have a graph G = (V,E) with n nodes. Each
agent i provides a subset Ti of nodes. For simplicity, we first assume that the
Tis are disjoint, and given a cost-vector {ci,u}i∈[n],u∈Ti , we use cu to denote
ci,u for u ∈ Ti. Monopoly-free then means that each Ti is an independent set. In
Remark 11 we argue that many of the results obtained in this disjoint-Tis setting
(in particular, Theorems 13 and 15) also hold when the Tis are not disjoint (each
Ti is still an independent set). The goal is to choose a minimum-cost vertex cover,
i.e., a min-cost set S ⊆ V such that every edge is incident to a node in S.

As mentioned earlier, VC becomes a rather challenging mechanism-design
problem in the multidimensional mechanism-design setting. Whereas for single-
dimensional VC, many of the known 2-approximation algorithms for VC are
implementable, none of these underlying techniques yield implementable algo-
rithms even for the simplest multidimensional setting, 2-dimensional VC, where
every player owns at most two nodes (see the full version for examples). More-
over, no maximal-in-distributional-range (MIDR) mechanism whose range is a
proper subset of all outcomes can achieve a bounded multiplicative approxi-
mation guarantee [12]. This also rules out the convex-decomposition technique
of [21], which yields MIDR mechanisms.

We develop two main techniques for Multi-VC in this section. In Section 4.1,
we introduce a simple class of truthful mechanisms called threshold mechanisms,
and show that although seemingly restricted, threshold mechanisms can achieve
non-trivial approximation guarantees. In Section 4.2, we develop a decomposition
method for Multi-VC that uses threshold mechanisms as building blocks and
gives a general way of reducing the mechanism-design problem for Multi-VC into
simpler mechanism-design problems.

By leveraging the decomposition method along with threshold mechanisms,
we obtain various truthful, approximation mechanisms for Multi-VC, which yield
the first truthful mechanisms for multidimensional vertex cover with non-trivial
approximation guarantees. (1) We show that any instance of r-dimensional VC
can be decomposed into O(r2 log n) single-dimensional VC instances; this leads
to a truthful, O(r2 log n)-approximation mechanism for r-dimensional VC (Theo-
rem 13). In particular, for any fixed r, we obtain an O(log n)-approximation. (2)
For any proper minor-closed family of graphs (such as planar graphs), we obtain
an improved truthful, O(r log n)-approximation mechanism (Theorem 15).



Theorem 16 shows that our mechanisms also enjoy good frugality properties.
We obtain the first mechanisms for Multi-VC that are polytime, truthful, and
achieve bounded approximation ratio and bounded frugality ratio. This comple-
ments a result of [5], who devise such mechanisms for single-dimensional VC.

4.1 Threshold Mechanisms

Definition 6. A threshold mechanism M for Multi-VC works as follows. On
input c, for every i and every node u ∈ Ti, M computes a threshold tu = tu(c−i)
(i.e., tu does not depend on i’s reported costs). M then returns the solution
S = {v ∈ V : cv ≤ tv} as the output, and pays pi =

∑
u∈S∩Ti tu to agent i.

If tu only depends on the costs in the neighbor-set N(u) of u, for all u ∈ V (note
that N(u) ∩ Ti = ∅ if u ∈ Ti), we call M a neighbor-threshold mechanism. A
special case of a neighbor-threshold mechanism is an edge-threshold mechanism:

for every edge uv ∈ E we have edge thresholds t
(uv)
u = t

(uv)
u (cv), t

(uv)
v = t

(uv)
v (cu),

and the threshold of a node u is given by tu = maxv∈N(u)(t
(uv)
u ).

In general, threshold mechanisms may not output a vertex cover, however it
is easy to argue that threshold mechanisms are always truthful and IR.

Lemma 7. Every threshold mechanism for Multi-VC is IR and truthful.

Proof. IR is immediate from the definition of payments. To see truthfulness, fix
an agent i. For every ci, ci ∈ Ci, c−i ∈ C−i we have ui(ci, c−i; ci) =

∑
v∈Ti:cv≤tv (tv−

cv). It follows that i’s utility is maximized by reporting ci = ci. ut

Inspired by [19, 5], we define an x-scaled edge-threshold mechanism as follows:

fix a vector (xu)u∈V , where xu > 0 for all u, and set t
(uv)
u := xucv/xv for

every edge (u, v). We abuse notation and use Ax to denote both the resulting
edge-threshold mechanism and its allocation algorithm. Also, define Bx to be
the neighbor-threshold mechanism where we set tu :=

∑
v∈N(u) xucv/xv. Define

α(G;x) := maxu∈V
(
maxS⊆N(u):S independent

x(S)
xu

)
.

Lemma 8. Ax and Bx output feasible solutions and have approximation ratio
α(G;x) + 1.

Proof. Clearly, every node selected by Ax is also selected by Bx. So it suffices
to show that Ax is feasible, and to show the approximation ratio for Bx. For
any edge (u, v), either cu ≤ xucv/xv and u is output, or cv ≤ xvcu/xu and v is
output. So Ax returns a vertex cover.

Let S be the output of Bx on input c, and let S∗ be a min-cost vertex
cover. We have c(S) = c(S ∩ S∗) + c(S \ S∗) ≤ c(S∗) +

∑
u∈S\S∗ tu = c(S∗) +∑

u∈S\S∗
∑
v∈N(u) xucv/xv. Note that S \ S∗ is an independent set since S∗ is

a vertex cover, so
∑
u∈S\S∗

∑
v∈N(u) xucv/xv ≤

∑
v∈S∗

cv
xv

∑
u∈N(v)capS∗ xu ≤∑

v∈S∗ cv ·α(G;x). Hence c(S) ≤ (α(G;x) + 1)c(S∗). It is not hard to construct
examples showing that this approximation guarantee is tight. ut



Corollary 9. (i) Setting x = 1 gives α(G;x) ≤ ∆(G), which is the maximum
degree of a node in G, so A1 has approximation ratio at most ∆(G) + 1.
(ii) Taking x to be the eigenvector corresponding to the largest eigenvalue λmax

of the adjacency matrix of G (x > 0 by the Perron-Frobenius theorem) gives
α(G;x) ≤ λmax (see [5]), so Ax has approximation ratio λmax + 1.

Although neighbor-threshold mechanisms are more general than edge-threshold
mechanisms, Lemma 10 shows that this yields limited dividends in the approxi-
mation ratio. Define α′(G) = minorientations of G

(
maxu∈V,S⊆N in(u):S independent |S|

)
,

where N in(u) = {v ∈ N(u) : (u, v) is directed into u}. Note that α′(G) ≤
α(G; 1) ≤ ∆(G). If G = (V,E) is everywhere γ-sparse, i.e., |{(u, v) ∈ E :
u, v ∈ S}| ≤ γ|S| for all S ⊆ V , then α′(G) ≤ γ; this follows from Hakimi’s
theorem [16]. A well-known result in graph theory states that for every proper
family G of graphs that is closed under taking minors (e.g., planar graphs), there
is a constant γ, such that every G ∈ G is has at most γ|V (G)| edges [23] (see
also [8], Chapter 7, Ex. 20); since G is minor-closed, this also implies that G is
everywhere γ-sparse, and hence α′(G) ≤ γ for all G ∈ G.

Lemma 10. A (feasible) neighbor-threshold mechanism M for graph G with
approximation ratio ρ, yields an O

(
ρ log(α′(G))

)
-approximation edge-threshold

mechanism for G. This implies an approximation ratio of (i) O(ρ log γ) if G is
an everywhere γ-sparse graph; (ii) O(ρ) if G belongs to a proper minor-closed
family of graphs (where the constant in the O(.) depends on the graph family).

Remark 11. Any neighbor-threshold mechanism M with approximation ratio ρ
that works under the disjoint-Tis assumption can be modified to yield a truthful,
ρ-approximation mechanism when we drop this assumption. Let Au = {i : u ∈
Ti}. Set ĉu = mini∈Au ci,u for each u ∈ V and let t̂u be the neighbor-threshold
of u for the input ĉ. Note that t̂u depends only on c−i for every i ∈ Au. Set tiu :=
min{t̂u,minj 6=i:u∈Tj cj,u} for all i, u ∈ Ti. Consider the threshold mechanism M ′

with {tiu} thresholds, where we use a fixed tie-breaking rule to ensure that we pick
u for at most one agent i ∈ Au with ci,u = tiu. Then the outputs of M on c, and
of M ′ on input ĉ coincide. Thus, M ′ is a truthful, ρ-approximation mechanism.

4.2 A decomposition method

We now propose a general reduction method for Multi-VC that uses threshold
mechanisms as building blocks to reduce the task of designing truthful mecha-
nisms for Multi-VC to the task of designing threshold mechanisms for simpler (in
terms of graph structure or the dimensionality of the problem) Multi-VC prob-
lems. This reduction is useful because designing good threshold mechanisms
appears to be a much more tractable task for Multi-VC. By utilizing the thresh-
old mechanisms designed in Section 4.1 in our decomposition method, we obtain
an O(log n)-approximation mechanism for any proper minor-closed family of
graphs, and an O(r2 log n)-approximation mechanism for r-dimensional VC.

A decomposition mechanism M for G = (V,E) is constructed as follows.



– Let G1, . . . , Gk be subgraphs of G such that
⋃k
q=1E(Gq) = E,

– Let M1, . . . ,Mk be threshold mechanisms for G1, . . . , Gk respectively. For any
v ∈ V , let tqv be v’s threshold in Mq if v ∈ V (Gi), and 0 otherwise.

– Define M to be the threshold mechanism obtained by setting the threshold
for each node v to tv := maxq=1,...,k(tqv) for any v ∈ V . The payments of M
are then as specified in Definition 6. Notice that if all the Mis are neighbor
threshold mechanisms, then so is M .

Lemma 12. The decomposition mechanism M described above is IR and truth-
ful. If ρ1, . . . , ρk are the approximation ratios of M1, . . . ,Mk respectively, then
M has approximation ratio

(∑
q ρq
)
.

Proof. Since M is a threshold mechanism, it is IR and truthful by Lemma 7.
The optimal vertex cover for G induces a vertex cover for each subgraph Gq.
So Mq outputs a vertex cover Sq of cost at most ρq · OPT , where OPT is the
optimal vertex-cover cost for G. It is clear that M outputs

⋃
q Sq, which has cost

at most
(∑

q ρq
)
·OPT . ut

Theorem 13. For any r-dimensional instance of Multi-VC on G = (V,E), one
can obtain a polytime, O(r2 log |V |)-approximation, decomposition mechanism,
even when the Tis are not disjoint.

Proof. We decompose G into single-dimensional subgraphs, by which we mean
subgraphs that contain at most one node from each Ti. Initialize j = 1, Vj = ∅.
While,

⋃j−1
q=1E(Gq) 6= E, we do the following: for every agent i, we pick one of

the nodes of Ti uniformly at random and add it to Vj . We also add all the nodes
in V \

(⋃n
i=1 Ti

)
to Vj . Let Gj be the induced subgraph on Vj ; set j ← j + 1.

For any edge e ∈ E, the probability that both of its ends appear in some
subgraph Gj , for any i = 1, . . . , l, is at least 1/r2. So, the expected value of

|E\
⋃j−1
q=1E(Gq)| decreases by a factor of at least (1−1/r2) with j. Hence, the ex-

pected number of subgraphs produced above is O
( log |E|
log(r2/(r2−1))

)
= O(r2 log |V |)

(this also holds with high probability). Each Gj yields a single-dimensional VC
instance (where a node may be owned by multiple players). Any truthful mech-
anism for a 1D-problem is a threshold mechanism. So we can use any truthful,
2-approximation mechanism for single-dimensional VC for the Gjs and obtain
an O(r2 log n)-approximation for r-dimensional Multi-VC. ut

The following lemma shows that the decomposition obtained above into
single-dimensional subgraphs is essentially the best that can hope for, for r = 2.

Lemma 14. There are instances of 2-dimensional VCP that require Ω(log |V (G)|)
single-dimensional subgraphs in any decomposition of G.

Proof. Define Gn to be the bipartite graph with vertices {u1, . . . , un, v1, . . . , vn}
and edges {(ui, vj) : i 6= j}. Each agent i = 1, . . . , n owns vertices ui and vi.

For n = 2 the claim is obvious. Let qn be the minimum number of single-
dimensional subgraphs needed to decompose Gn. Suppose the claim is true



for all j < n and we have decomposed Gn into single-dimensional subgraphs
D = {G1, . . . , Gqn}. We may assume that V (G1) = {u1, . . . , uk, vk+1, . . . , vn} (if
G1 has less than n nodes, pad it with extra nodes). Let H1 and H2 be the sub-
graphs of G induced by {u1, . . . , uk, v1, . . . , vk} and {uk+1, . . . , un, vk+1, . . . , vn},
respectively. The graphs in D \ {G1} must contain a decomposition of H1 and
a decomposition of H2. So qn ≥ 1 + max(qk, qn−k), and hence, by induction, we
obtain that qn ≥ 1 + (1 + log2(n/2)) = 1 + log2 n. ut

We next present another decomposition mechanism that exploits the graph
structure to obtain an improved approximation guarantee.

We use E[S] to denote the set of edges having both end points in S, and
N(S) = {u ∈ V \ S : ∃v ∈ S s.t. (u, v) ∈ E} to denote the neighbors of S. Also,
let δ(S, T ) denote the set of edges of G having one end point each in S and T .
When we subscript a quantity (e.g., δ(S) or N(S)) with a specific graph, we are
referring to the quantity in that specific graph.

Theorem 15. If G = (V,E) is everywhere γ-sparse, then one can devise a poly-
time, O(γr log |V |)-approximation decomposition mechanism for r-dimensional
VC on G. Hence, there is a polytime, truthful, O(r log n)-approximation mecha-
nism for r-dimensional VC on any proper minor-closed family of graphs. These
guarantees also hold when the Tis are not disjoint.

Proof. Set G = G0 = (V0, E0) and n0 = |V0|. Since |E0| ≤ γn0, there are at
most n0/2 nodes with degree larger than 4γ. Let T1 = {u ∈ V0 : δ(u) ≤ 4γ}.
Let H1 be the subgraph of G0 induced by T1. Also, let B1 be the bipartite
subgraph

(
T1 ∪NG0(T1), δG0(T1, NG0(T1))

)
. Now, G1 = G0 \T1 is also γ-sparse.

So, we can similarly find a subgraph H2 that contains at least half of the nodes
of G1, and the bipartite subgraph B2 of G1. Continuing this process, we obtain
subgraphs H1, B1, H2, B2, . . . ,Hk, Bk that partition G, where for every q, the
maximum degree of Hq and the maximum degree of the nodes on one of the
sides of Bq is at most 4γ and |V (Hq)| ≥ |V (G \ (T1 ∪ . . . Tq−1)|/2. Hence, k ≤
log n. Using the (edge-threshold) mechanism A1 defined in Corollary 9, for each
Hq subgraph gives a (4γ + 1)-approximation for each Hq. One can devise an
O(rγ log n)-approximation mechanism for the union of the Bqs. Thus, we obtain
an O(rγ log n)-approximation decomposition mechanism for G. Remark 11 can
be used to argue that this holds also when the Tis are not disjoint.

As noted in Section 4.1, every proper minor-closed family of graphs is ev-
erywhere γ-sparse for some γ > 0. Thus, the above result implies a truthful,
O(log n)-approximation for any proper minor-closed family (where the constant
in the O(.) depends on the graph family; e.g., for planar graphs γ ≤ 4). ut

Finally, we remark that if we consider an Multi-VC instance on an everywhere
γ-sparse graph where no two neighbors of a node belong to the same player, then
one can obtain an O(γ log n)-approximation mechanism for the union of the Bq
subgraphs constructed in the proof of Theorem 15. This yields an improved
O(γ log n) approximation for such Multi-VC instances.



Frugality considerations. Karlin et al. [18] and Elkind et al. [6] propose
various benchmarks for measuring the frugality ratio of a mechanism, which is a
measure of the (over-)payment of a mechanism. The mechanisms that we devise
above also enjoy good frugality ratios with respect to the benchmark introduced
by [6], which is denoted by ν(G, c) in [19] (and NTUmax in [6]).

The frugality ratio of a mechanismM =
(
A, {pi}

)
onG is defined as φM (G) :=

supc

∑
i pi(c)

ν(G,c) . The proof of Lemma 8 is easily modified to show that the x-scaled

mechanism Ax satisfies
∑
i pi(c) ≤

∑
u tu ≤ β(G;x)c(V ), where β(G;x) =

maxu∈V
x(N(u))
xu

. Since [6] show that ν(G, c) ≥ c(V )/2, this implies that φAx
(G) ≤

2β(G;x). Also, if M is a decomposition mechanism constructed from threshold
mechanisms M1, . . . ,Mk, where each Mq satisfies

∑
u t
q
u ≤ φq · c(V (Gq)), then it

is easy to see that φM (G) ≤ 2
∑k
q=1 φq. Thus, we obtain the following results.

Theorem 16. Let G = (V,E) be a graph with n nodes. We can obtain a poly-
time, truthful, IR mechanism M with the following approximation ρ = ρM (G)
and frugality φ = φM (G) ratios.

(i) ρ = (β(G;x) + 1), φ ≤ 2β(G;x) for Multi-VC on G;
(ii) ρ = O(r2 log n), φ = O

(
r2 log n ·∆(G)

)
for r-dimensional VC on G (using

a 2-approximation mechanism with frugality ratio 2∆(G) [6] for single-
dimensional VC in the construction of Theorem 13);

(iii) ρ, φ = O(rγ log n) for r-dimensional VC on G when G is everywhere γ-
sparse; hence, we achieve ρ, φ = O(r log n) for r-dimensional VC on any
minor-closed family.
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11. S. Dobzinski and J. Vondrák. The computational complexity of truthfulness in

combinatorial auctions. In Proceedings of the 13th EC, pages 405–422, 2012.
12. S. Dughmi and T. Roughgarden. Black-box randomized reductions in algorithmic

mechanism design. In Proceedings of the 51st FOCS, pages 775–784, 2010.



13. S. Dughmi, T. Roughgarden, and Q. Yan. From convex optimization to randomized
mechanisms: toward optimal combinatorial auctions. In STOC, 149–158, 2011.
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