Optimal Power-Down Strategies

John Augustine
j ea@cs. uci . edu
School of Information and Computer Science
Univ. of California at Irvine, Irvine, CA 92697

Sandy Irani Chaitanya Swamly
i rani @cs. uci . edu cswanmy@ st . cal tech. edu
School of Information and Computer Science Center for the Mathematics of Information
Univ. of California at Irvine, Irvine, CA 92697 Caltech, Pasadena, CA 91125.
Abstract

We consider the problem of selecting threshold times tcstti@m a device to low-power sleep states
during an idle period. The two-state case in which there imgle active and a single sleep state is
a continuous version of the ski-rental problem. We cons@generalized version in which there is
more than one sleep state, each with its own power consumgztie and transition costs. We give an
algorithm that, given a system, produces a deterministatesy whose competitive ratio is arbitrarily
close to optimal. We also give an algorithm to produce th@mgdtonline strategy given a system and a
probability distribution that generates the length of ttlle period. We also give a simple algorithm that
achieves a competitive ratio 8f+ 2v/2 ~ 5.828 for any system.

1 Introduction

Suppose you are about to go skiing for the first time in youwr. liNaturally, you ask yourself whether to
rent skis or to buy them. Renting skis costs, say, $30, wkdraging skis costs $300. If you knew how
many times you would go skiing in the future (ignoring coropting factors such as inflation, and changing
models of skis), then your choice would be clear. If you knew would go at least 10 times, you would be
financially better off by buying skis right from the begingirwhereas if you knew you would go less than
10 times, you would be better off renting skis every time. sAldie future is unclear, and you must make a
decision nonetheless.

Although theSki-Rentalproblem is a very simple abstraction, this basic paradigisearin many ap-
plications in computer systems. In these situations, tlseaesystem that can reside in either a low-cost or
a high-cost state. Occasionally, it is forced to be in thdugst state (usually to perform some task). A
period between any two such points in time is calledce period

The system pays a per time unit cost to reside in the highstag. Alternatively, it can transition to
the low-cost state at a fixed one-time cost. If the idle peigodng, it is advantageous to transition to the
low cost state immediately; if the idle period is short, ibistter to stay in the high-cost state. An online
algorithm which does not know the length of the idle periodstrhalance these two possibilities.

This problem has been studied in the context of shared mematprocessors in which a thread is
waiting for a locked piece of data and must decide whethegitoa block [9, 11]. Researchers investigating

“Research supported partially by NSF grants CCR-010549&&t+0514082 and by ONR Award N00014-00-1-0617.
fWork done while the author was a student at the DepartmenbaipDter Science, Cornell University, Ithaca, NY 14853.
Research supported partially by NSF grant CCR-9912422.

the interface between IP networks and connection-oriengddorks have discovered this same underlying
problem in deciding whether to keep a connection open betweests of packets that must be sent along
the connection [12]. Karlin, Kenyon and Randall study thePT&a&knowledgment problem and the related
Bahncard problem both of which are at heart ski-rental gnoisl [10]. The problem also arises in cache
coherency in deciding whether to update or invalidate dadéh has been changed in a processor’s local
cache [6, 2].

An important application of the ski-rental problem is in tiniizing the power consumed by devices that
can transition to a low powesteepstate when idle. The sleep state consumes less power; howaeencurs
a fixed start-up cost in making the transition to the high-posctive state in order to begin work when a
new job arrives. At the architectural level, the technigfieloninating power to a functional component
is called clock/power gating. At a higher level, the powededvn component might be a disk drive or
even the whole system (e.g., a laptop that hibernates). mitedded systems community has invested a
great deal of effort into devising policies governing theesgon of power states during idle periods (termed
Dynamic Power Managemeitt their literature); see, for example, [4] for a survey. $heechniques have
been critical to maximizing battery use in mobile systemsil&/jpower is already a first-class parameter in
system design, it will become increasingly important infilieire since battery capacities are increasing at
a much slower rate than power requirements.

Most of the previous work on this problem has been concernddtwo-state systems which have an
active state and singlesleep state. This paper focuses on finding power-down toldsiior systems that
have more than one low-power state. An example of such asystine Advanced Configuration and Power
Interface (ACPI) included in the BIOS on most newer commjterhich has five power states, including a
hibernation state and three levels of standby [1].

2 Previouswork and new results

For the two-state problem, an online algorithm consistssnfigle threshold™ after which time the algorithm
will transition from the active to the sleep state. The infouthe problem is the length of the idle period and
the cost of an algorithm is the total amount of energy it comssi over a single idle period. Typically, an
online algorithm is evaluated in terms of its competitiviaa— the ratio of the cost of the online algorithm
to the cost of the optimal offline algorithm, maximized ovérigputs. When randomized algorithms are
considered where the threshdlds chosen at random, we look at the ratio of the expected €dis¢ @nline
algorithm to the cost of the offline algorithm. Previous whds also addressed the two-state problem when
the idle period is generated by a known probability distidou In this case, the online algorithm will
choose a threshold which minimizes its expected cost, wiherexpectation here is taken over the random
choice of the idle period. We call such algorithprebability-basecdalgorithms.

The best deterministic online algorithm will stay in the thigower state until the total energy spent
is equal to the cost to power up from the low power state. Itniewkn that this algorithm achieves the
optimal (deterministic) competitive ratio of 2 [9]. Whenenonsiders randomized online algorithms, the
best competitive ratio achievable improvesetie — 1) [9]. If the idle period is generated by a known
probability distribution, then the algorithm that choo§éso as to minimize the expected cost is always
within a factor ofe/(e — 1) of optimal. Furthermore, this bound is tight since thereds&ibution over the
idle period lengths which will force any online algorithmitecur an expected cost that is a factg(e — 1)
times larger than that incurred by the optimal offline altfori [9].

Note that in the context of power-down systems, it may notieecase that the power usage in the sleep
state is zero or even that the start-up cost in the active &atero. In these cases, both the online and the
offline algorithm will incur an identical additional costhiis, the ratio of the online to the offline cost will
decrease and the optimal competitive ratio will be stritglys than two. However, these additional costs do

not change the optimal online or offline strategy in eitherdbeterministic or the probability-based case, and
the optimal competitive ratio that can be achieved for syshesns can easily be determined as a function
of all the parameters of the system.

We denote the problem that involves powering down thrdugleep state®D (k). A formal description
of the problem is as follows: we are given a sequende-pfl statesS = (s, ..., sx). There is also a vector
of power-consumption rate§ = (xo, ..., xx), Wherek; is the power consumption rate of the system in
states;. We assume as a convention that the states are ordered 89 that; for 0 < ¢ < j < k. S0s is
theactive stateand the system must transitiondg(i.e., power up) at the end of the idle period. There is an
associated transition codt; to move from state; to s;. A systenis described by a paiiC, d). Note that
there can be costs to move from high-power states to low-peta¢es and vice versa. However, the only
power-up costs that are of interest are the costs to tranditom a particular state; to the active statgg
since the only reason to transition to a higher power statdén a new task arrives. gcheduleor strategy
A = (S4,74) consists of a sequence 0f4 + 1 statesS 4 that is a subsequence 8f and a sequence of
transition timesZ 4. Where obvious, we will omit the subscrigt. We require thas(0) = so andT’(0) = 0.

We useA(t) to denote the cost of the schedule produced by stratefyr an idle period of length. We
also consider a generalization 80 (k) that we callPD(k, m) wherein we require that4 < m, where

0 < m < k is some limiting integer constant. This generalization lddae especially useful for engineers
who have a large number of sleep state options availablesiddkign phase, but are required to implement
at most a fixed number of states in the product that rolls dattine market.

The only previous work that examines the multiple-statéfenm PD (k) (from the perspective of worst-
case guarantees) is [7] which considers the special caseevithe cost to power-down is zero and the
algorithm only pays to move from low power states to highexrgostates. Note that this also includes the
case where the transition costs are additikg (+ d; . = d; ;. for i < j < k) since the costs to power down
can then be folded into the costs to power up. [7] gives nhgeraeralizations of the algorithms for the
two-state case both for the case when the idle period lesgthknown and when it is generated by a known
probability distribution. It is shown that when the trarmit costs are additive, the generalized deterministic
algorithm is2-competitive and the probability-based algorithne j$e — 1)-competitive, thus matching the
guarantees in the two-state case.

There are two important directions left open by this work.eThist is based on the observation that
systems, in general, do not have additive transition cdetgany scenarios, additional energy is spent in
transitioning to lower power states. Furthermore, therddcbe overhead in stopping at intermediate states,
resulting in non-additive transition costs (see [4] for aaraple). The second point is that the known upper
bounds are typically not optimé&br the system under considerationhat is, while it is true that therexist
systems for which the optimal competitive ratio that can tieieved by any deterministic algorithm is 2
(ande/(e — 1) by any randomized algorithm), it is possible to achieve geb&tompetitive ratio for many
systems. For multi-state systems, the optimal competititie that can be achieved will, in general, be a
complicated function of all the parameters of the systera fibwer consumption rates as well as transition
costs). For probability-based algorithms, the optimal petitive ratio will also depend on the probability
distribution generating the length of the idle period. V&htl may not be feasible to express the optimal
competitive ratio as a function of all these parameters,stegy designer would, in general, like to design
a power-down strategy that obtains the best possible catmpetatio given the constraints of his or her
particular system.

This paper establishes the following results.

e We give an algorithm that takes as input an instancBotk) that is described byiC, d), and an error
parametek, and produces a power-down stratedy= (S4,74) whose competitive ratio is within
an additivee of the best competitive ratio that can be achieved for thstiesy. The algorithm runs in
time O(k?(log k) log(1/¢€)), wherek + 1 is the number of states in the system, and also outputs the

competitive ratio ofd. The algorithm works via a decision procedure which deteesifor a system
and a constanp if there is ap-competitive strategy for that system. This decision pdoce also
allows us to obtain lower bounds on the competitive ratideaable by deterministic algorithms for
specific systems, which in turn provides a lower bound on tmepetitive ratio achievable by deter-
ministic algorithms in general. In particular, we obtairoaér bound oR.45 on the competitive ratio
for deterministic algorithms. This is the first lower bourtblwn that is greater thah Independently,
Damaschke has given a lower bounddf18 [5].

e The above approach can be modified to solve the more genes@ivevhere a bound of. is specified
on the number of states allowed in final strategy. We show lwoextend the decision procedure to
answer if there is @a-competitive strategy for the system that uses at mopbwer states.

e Experimental results show that there are significant perémce gains to be made by estimating the
distribution governing the length of an idle period basedrerent history and using this estimate
to drive a probability-based strategy [8]. We give an aliyoni that takes as input a description of
a system and a probability distribution generating the m#dod length and produces the optimal
power-down strategy. Naturally, the running time of theoailipm will depend on the representation
of the distribution. In practice, this is most likely to be stbgram. Our algorithm runs in time
O(k*(log k + B)) whereB is the number of bins in the histogram ahe- 1 is the number of states.
One outcome of the proof is that it also establishes the @btynof the strategy given in [7] for
additive systems. We then generalize this to find the best online itigoisubject to the restriction
that at mosin states are used, at the expense of an extra factariofthe running time.

e We give a simple deterministic strategy that achieves a etitiye ratio of3 + 2v/2 ~ 5.8284 for
all systems. This result gives a bound on the competitivie ethieved by the optimal strategies
generated by our algorithms. Note that- 21/2 also serves as a bound on the ratio of the expected
costs of the online and offline algorithms when the input @bpbilistically generated.

In the remainder of this paper, we use the tesuolseduleor strategyinterchangeably to refer to the
choices of states and threshold times for powering down.t&imaalgorithm will refer to a procedure that
produces a schedule or strategy based on a particular system

Azaret al. in [3] consider a related problem which they refer to as Gdybitvestment. This problem is
a different generalization of the ski rental problem thaagbwer-down problem considered here. However,
a special case of their problem coincides with a special casmr problem. Specifically, they give a
(4 + 2+/2)-competitive deterministic algorithm for the special caéehe power-down problem in which
the cost to transition to each state is the same, regardfede state from which one is transitioning.
Later Damaschke in [5] improves the upper bound on the cdtiyeetatio for this special case (also in
the context of Capital Investment) #iofor deterministic algorithms an2l88 for ranomized algorithms. In
addition, Damaschke gives3a618 lower bound for any deterministic algorithm which subsurtieslower
bound of2.45 given here.

3 Prdiminaries

First we will establish that we can assume without loss okgality that the power-up transition costs are
zero. If this is not the case for some systéfh d), we can define a new system such that for aryj, the
cost to transition frony; to s; is d; j + dj o — d; o and the cost to go from; to s; is 0. Since there is never
any reason to transition to a higher power state unless stersyis transitioning to the active state at the
arrival of a new task, any set of actions in the original systeill incur the same cost in the new system.
Thus, in the sequel we assume thig§ = 0 for all 7.

We also need to establish that we can assume that fer<allj, d; ; < do ;. Recall that we are really
usingd; ; to denoted; ; + d; o — d;p anddy ; to denoted ; + d; . Thus, the assumption thdf; < do;
really amounts to assuming th@t; < d; o + do ;. If this were not the case, we could just transition from
states; to states; by first going tosy and then down ta;.

Let D(i) denotedy,;. Then OPT(t) = min,;(D(i) + k;t). Let S(t) denote the state which attains
the minimum — the optimal state. The optimal strategy is &mgition to stateS(¢) at time 0, and stay
there through time. We assume that for every state, there is some idle perigdhédar which the optimal
strategy will use that state, i.egnge(S(t)) = {so,...,sr}. None of the online strategies we present will
make use of a state that is never used by the optimal offliagegly for any time.

State 0 State 1 gstate 2

Energy State 3

by 62 b3 Time
Figure 1: Energy consumed by the optimal strategy as a famcii idle period length.

Note thatO PT(t) is piecewise linear and(t) is non-decreasing with— as the idle period length gets
longer, it becomes more worthwhile to pay the extra costansition to a lower power state. Ligtdenote
the first time instant at which statebecomes the optimal state,0) = 0 andD(i—1)+x;_1b; = D(i)+
kibi = b = M We haveb(0) < b(1) < ...b(k). Figure 1 shows the total energy consumed
by OPT as a functlon of the length of the idle period. There is a lmedach state. Thg-intercept is the
transition cost to move to that state from the active statkthe slope is the power consumption rate. The
energy consumed by the optimal strategy is the lower eneetdjihese lines since it will pick the single
state which minimizes the cost for a given idle period lendthus fort € [b;, b;11],

OPT(t) = D(i) + kit = Z ki (bjy1 — bj) + wi(t — b;) (1)

We compare our online strategy withPT'(¢) and want to get a strategg which minimizes the com-
petitive ratio,c4 = sup, Op(t)() where.A(t) denotes the total power consumptionoby timet.

4 A simple (3 + 2v/2)-competitive strategy

Let us for the moment assume that for some 1, D(i) > vD(i — 1) forall i = 1,..., k. This is a non-
trivial assumption that we will have to handle later. Coesithe strategyA, which always stays in state
S(t), the same state &3P 7T, at every time. The optimal strategy which knows the length of the idle qebri
in advance will just transition to the optimal state. Stggtel however must "follow” the optimal strategy,
making each transition to a new state as the idle period gatgel. This is the strategy proposed in [7]
and shown to b&-competitive for additive systems. Note that this stratesgye same as thizcompetitive
balance strategy for the two-state case.

Fort € [b;, biy1] the online costisA(t) = Y-~ (ki (bj1—b;) +dj 1)+t —b;). In comparing this
cost to the optimal cost in equation (1), observe that bathgénave an additive; (¢ — b;) which means that

the ratio Oﬁgf)(5 will be maximized at = b,;. To bound the cost ofl in terms of OPT', we use the fact that

OPT(b;) > D(i) and OPT (b;) = 3% k;(bj+1 — bj) both of which come from equation (1). This last
equation is used in line three of the equations below as i&tt¢hatD (i) > vD(i—1) foralli = 1,... k.

.
|
—

A(bi) = (Hj(bjﬂ —bj) + dj,j+1)
§=0
i—1)
< > kb1 =)+ Y D()
Jj=0]
< OPT(b;) —I—D(z’)Zy_(i_j)
< <1+ —> orT(h) = 2L 0Ty @)
- —1 o1 v

This holds for any implying a competitive ratio O?,;YT_ll.

Now suppose the assumptidn(i) > ~vD(i—1) does not hold. We consider a neffline strategyOP T’
that only uses a subset of stat€sor which the property does hold, and is-approximation ofOPT, i.e.,
OPT'(t) < ~ - OPT(t). We now view our problem as specified by just the states’inand execute
strategy.A as specified above, emulatir@PT’ instead of OPT. We get thatd’(t) < %OPT’ (t) <

7(27 D OPT(t). Settingy = 1 + f we get a competitive ratio &f + 21/2 ~ 5.8284.

We determineOP T’ as follows. LetS’ = {s;} initially. Consider the states ifi in reverse order. Let
s; be the last state added $8. We find the largesj, 0 < j < is.t. D(j) < D(i)/~. We adds; to S” and
continue until no such exists. Note that, € S’ since D(0) = 0. OPT’ will execute the optimal offline
strategy assuming that only the statesirare available. Considerj s.t. s;, s; € S” and nos, is in .S’ for
i < { < j. WehaveOPT'(t) = OPT(t) fort € [b;,bi+1) andt € [bj,bj41). Forés.t.i < ¢ < jand
timet € [by,be11). OPT'(t) = min(D(i) + kit, D(j) + k,t) and OPT (t) = D({) + ret. j was chosen to
be the largest value less thasuch thatD(j) < D(i)/v which means thab(¢) > D(i)/~. Furthermore,
sincex; < k¢, we have that

OPT'(t) < D(i) + kit <v(D(€) + ket) =yOPT(t),
and OPT' is ay-approximation toOPT.

Theorem 1 There is a(3 + 2+/2)-competitive strategy for any system.

5 A near-optimal deterministic algorithm

In this section, we turn our attention to obtaining a neainoglt schedule for a particular system. More pre-
cisely, given a systerfiC, d) with state sequenceg for which the optimal online schedule has competitive ra-
tio p*, we give an algorithm that returng a* + ¢)-competitive online schedule in tint@(k log k log(1/e)).
The algorithm is based on a decision procedure which detesnivhether a-competitive schedule exists
for a given value op. Theorem 1 establishes an upper bound @f2+/2 on the optimal competitive ratio,

Energy Energy

t Time t Time

Figure 2: Energy consumed by the online and optimal straasgyfunction of idle period length. The solid
lineisp- OPT(t). The dashed line is the online cosis the first transition time that is not eagérshows
the transformed strategy which now has an eager transition.

so we perform a bisection search in the rafigeg + 2v/2] to find the smallesp such that there exists a
p-competitive schedule. We also output the resulting sdieedu

The following lemma shows that the online strategy must eialy get to a sufficiently low-power
state. Lemma 3 allows us to limit our concern to just the iteomspoints in any online schedule.

Lemma2 If A= (S,7T)is ap-competitive strategy ang is the last state irS, thenx, < p - k.

Proof : For the sake of contradiction, assume that> p- k. For.A to bep-competitive, the functiond(t)
must lie entirely below - OPT(t). However the last line gf - OPT'(t) has slope - ;. and will therefore
intersect the last line ofl(¢) which has a larger slope, after which timeA(t) will exceedpOPT (t). This
is a contradiction. [

Lemma 3 If a scheduleA has finite competitive ratio, then the earliest time- 0 at which Al g

OPT(?)
maximized is a transition point in the strategly

Proof : Letp = max;~o %. Consider the functionsl(t) and pOPT(t). The function.A(t) never
exceedp OPT(t), andt is the earliest point at which these two functions have theesealue, not consid-
ering the origin. For the sake of contradiction, assumeftignhot a transition point in4d. So we can find
some smalk > 0 such thatA(¢) is linear in(¢ — ¢, + €). Since.A(t) is strictly less than OPT'(t) in the
interval (t — €,t) and.A(t) = pOPT(t), it must be the case that the slopeAif) is larger than the slope of
pOPT(t) in this interval. This gives a contradiction, becausg) has constant slope ovér—e, ¢ +¢), and
pOPT(t) is a continuous function with decreasing slope, which mélaaisA(t) > pOPT(t) fort >t. m

We now explore ways to restrict the space of schedules we teeednsider in searching for g
competitive schedule. For a strategy = (S,7), we say that a transition at timee 7 is p-eager(or
just eager ifp is clear from the context) ifA(t) = pOPT(t). We say thatA is a p-eager strategy if
A(t) = pOPT(t) for everyt € 7. Note that by Lemmas 2 and 3,paeager strategy that ends at state
such that«s < p - ki IS p-competitive.

Lemmad4 If A= (S,7) is ap-competitive strategy, then there exists an eager stratégy (S,7") that
is alsop-competitive.

Proof : Figure 2 shows a schematic of the proof. The jumps in the entost (the dashed line) are
transition costs. The solid line sOPT'(t). The figure shows a transition tinteat which the online cost
is less tharpOPT(t). The idea is that we can slide such a transition time earfét it hits the function
pOPT(t) .

Consider the earliest transition tirfiewhich is not eager. Suppose thétransitions from state; to state
s; attimeT'. LetT’ < T be the time of the immediately preceding transition; if éhirno such transition
time, then sef” = 0. The functionpOPT(t) — A(t) is continuous in the intervdll”, T') since.A does not
have any transitions in this open interval, an@PT(t) — A(t) is 0 at time7” and is strictly greater than
d; j attimeT — e for a small enough. LetT be the earliest time aftdf’ such thap OPT(t) — A(t) = d; ;,
soT < T.

Consider the strategyl’ that is identical ta4 except that the transition from} to s; is moved earlier
from T to T. we need to argue that’ is p-competitive. Clearlyd’(t) = A(t) fort € [T, T) and A(T) =
pOPT(T). Also A'(T) < A(T) sinceA’ transitions earlier to the low power stateand hence uses less
total energy, and since the strategies behave the sameimfiést’, A’ will continue to have a lower cost at
all timest > T. To see thatd’(t) < pOPT(t) over the intervalT, T'), note that4’(t) is linear over this
interval sinced’ remains in state;. Also pOPT (t) is a piecewise-linear concave function since its slope is
non-increasing over time. Thus, since the poifitsA’(T))) and(T', A’(T')) both lie on or below this curve,
the straight line connecting them lies under the cyur@ T'(¢).

The procedure above can be repeated until all the transiticm eager. [

Lemma5 Suppose a strategy makeg-&ager transition to state; at timet; and next makes a transition
to states;. Using the functionpOPT(t), one can compute the earligsteager transition time to states;
intimeO(log k).

Proof : Define the lind(t) = x;t + pOPT(t;) — kit; + d; ;. t is the smallest > t; such thap OPT'(t) =
[(t). If there is no suclt, then ap-eager transition from; to s; does not exist. SinceOPT (t) is concave
we have thatif(t) < pOPT(t), orif [(t) > pOPT(t) and the slope g OP T (t) is less than or equal to;,
thent < t; otherwiset > t. These inequalities allow one to do a binary search usindjriteesegments of
pOPT(t) to determing if it exists. Lets, be the optimal state (i.e., state 6P 7'(¢)) at timet;. Consider
the line segments gfOPT'(t) corresponding to states ands,. Recall thath, andb;, are respectively the
left end-points of these segments — these are the first tistarits at whichs, ands; become the optimal
states respectively. Using the above inequalities, if werdgne that > b, thent is simply the point of
intersection (if it exists) of(¢) with the segment (0pOPT'(t)) corresponding ta;. Otherwise we have
a “low” segment with end-point,, and a “high” segment with end-poinf. Now we repeatedly consider
the left end-point of the segment that is in the middle of & And high segments, and use the above
inequalities to update the low or high segment and the qooreting end-point accordingly, until the end-
points of the low and high segments correspond respectigelye left and right end-points of a segment of
pOPT(t). When this happens we can computey finding the intersection point (if it exists) éft) and
this segment. The binary search can be implemented inltigve, wherek is the number of segments (i.e.,
number of states). [

Lemma 4 immediately gives an algorithm that is exponentidl, ithe number of states, and determines
whether ap-competitive strategy exists for the system. This algamnitenumerates all subsequences of
states, and determines theeager strategy for that subsequence by finding the eagesittca to each state
based on the eager transitions to the previous states, @@aesin the proof of Lemma 5. A-competitive
strategy for the system exists if and only if one of theseager strategies jscompetitive (i.e., ends at a
states with k5 < p- k). The remainder of this section presents a way to removexpenential dependence
onk.

LetS = (so, 51, - -, 5k) be a sequence of states that form a system. Défine;;, to be the contiguous
subsequences;, ..., sj), Wheres; ands; are elements of such that: < j. Let ¥, be the set of subse-
quences ob;,_, s that includes, ands such that for eaclp € ¥, one can find transition times for the state
sequence) so that in the resulting schedule, each transition up to addding the transition to stateis
a p-eager transition. For a statec v, we will uset,, , to denote thig-eager transition time tg for the
sequence). (Note thaty uniquely determines the transition timgs,.)

We define thesarliesttransition timeF (s, p) of states for the given system aB (s, p) = mingecw, ty s,
that is, E(s, p) is the earliest time at which any online strategy can trasito states while remaining
p-eager over all its transitions up to (and including) thengiion to states. Observe that if there ig-
competitive strategy that uses stateghen by Lemma 4, there is suchpeeager strategy, s&, # ¢ and
E(s, p) is well defined. We call a transition to state-early (or simply early) if it happens at timg(s, p).

A strategy that consists entirely of early transitions ikecka p-early strategy.

Lemma6 If there is ap-competitive strategyl = (S, 7), then there is an eager and earfycompetitive
strategy.

Proof : Lets be the last state i§. Consider the sequengec ¥, such that,, ; = E(s, p) and the strategy
7 that uses only the statesih transitioning to state € ¢ at timety, 4, i.e.,m = (¢, {ty 4}qew). SinceA

is p-competitive, it must be that; < pxj and sincer by definition has alp-eager transitions and ends in
states, it is alsop-competitive. We now argue thatis an early strategy. Note thatwas chosen so that the
transition to state is p-early. We have to show that the remaining transitions afe alsgo-early.

Suppose not. Consider the latest transition that isoredirly. Suppose this happens for statgz s),
soTy = ty, > E(r,p). Letr’ be the state just afterin sequence). Lety’ € U, be the sequence for
which ty, . = E(r,p) = T. T is the earliest time that a-eager schedule can transition to statand
the sequence of states in this schedule is givenybyConsider the hybrid strategy that uses the states
in ¢’ followed by the states i that appear after, with the transition times beingy , for ¢ € ¢’ and
ty,q fOr ¢ € ¥/, Strategyr transitions to state at time7 and strategyr’ transitions to state at time
Ty < Ty. Both of these transitions are eager transitions. Bothegjies are in state at time7} and make
the same state transitions thereafter. Thus, fortanyly, 7(t) — 7 (71) = «'(t) —«'(T1). In particular, both
strategies transition td (the state after) at timet,, ,» = E(r’, p) = T". Using the equation above we have
that'(T") = n(T") — (w(Ty) — «'(T1)). We will show thatr’(T}) < «(7}) which implies, in particular,
that7'(T") < =(T"). So in7’ the transition ta” is no longerp-eager. Arguing as in Lemma 4 this means
that we can shift the transition 0 to get an eager transition at aarlier time. But this contradicts the
assumption that the transition to stateat time7” was an early transition.

We now prove that’(7T7) < (T7). The transitions to statein schedulesr andr’ are eager transitions,
so both the point$75, 7' (T%)) and (71, (11)) lie on thepOPT(t) curve. Sincer(t) < pOPT(t) for all
t, the the slope 0pOPT'(t) at timeT is at leasts,, the slope ofr(¢) at timeT}, and strictly greater since
the gap betweepOPT'(t) and(t) must accommodate the transition cost from state r’ at time7”.
The concavity ofp OPT(t) implies that its slope is greater thap over the intervalT5, T31]. pOPT(t). So
7(Ty) = pOPT(T1) > pOPT(T) + k. (Th — To) = (1) where the last inequality follows sinaé stays
in stater in the interval[Ty, T1]. |

¢From Lemma 6 we can deduce that we only need to consider disgecly and eager schedule,
the one that is determined by thg(., p) values, to determine if a-competitive strategy exists. We can
now define a decision procedure EXISTS that takes a systena athstaniy and outputs YES if a-
competitive strategy exists for the system, and NO othewitie procedure can be modified to also output
ap-competitive strategy (if it exists). We employ a dynamiognamming approach to calculat s;, p), for
0 < i < k. We always start with the high power state and heli¢s), p) = 0. Suppose we have computed
E(sj,p)forall j =0,...,i— 1. Lett; be the earliest time at which the systgreagerly transitions from

9

|
I
|
I
I
!
|
T/

Figure 3: The solid line is- OPT. The dashed line is the schedutefrom Lemma 6 and the dashed/dotted
line is7. The point labelegh is (T, 7(T)) andp’ is (T',#'(T")). The idea is to show that at tin¥e, 7’ has a
lower cost thanr.

s;j to s; given that the transition te; is p-eager and occurs at timB(s;, p). If such a transition is not
possible, then we assign = oo. We can compute; in O(log k) time as described in Lemma 5. Then,
E(s;, p) = min;; t;. Determining eacltt(s;, p) requires examining different possibilities, so finding all
the early transition times for all states takes timék? log k). By Lemma 2, we know that iff(s;, p) is
finite for some state; wherex; < p - ki, we know that gp-competitive strategy exists. One can quickly
elicit the schedule by starting from stdt@nd retracing the states that minimized the earliest tiiandime.
We use the procedure EXISTS to do a bisection search in teevai{1, 3 + 21/2] and find go-competitive
strategy where < p* + e. The total time taken i€ (k? log k log(1/e)).

We now turn our attention to adapting this dynamic prograngmechnique to solvé&D (k, m) where
a bound ofm is specified on the number of states that can be used by theeamorithm. We introduce
a new parametelr modifying our function toE(s;, p,b), where0 < b < min(i,m). The intuition is that
function £ is now required to return the earliest time when the systemtreasition to state; while staying
entirely belowp OPT'(t) and using at most+ 1 states from(sy, ..., s;). The base case B(sg, p,b) =0
for all b > 0. Intuitively, E(s;, p, b) is determined by the “best” state prior to s; such that at most — 1
states were used to reagh Notice that for any given statg and fixedp, E(s;, p,b) is non-increasing as
b increases. Therefore, as above we can white;, p,b) = min;; t;, wheret’ is the earliest time when
the systenp-eagerly transitions from; to s; given that the transition te; was p-eager and occurred at
E(sj, p,b—1). The running time increases by a factomefow and isO(k*m(log k) log(1/¢)).

6 A probability-based algorithm

Karlin et al. study the two-state case when the length of the idle perigengrated by a known probability
distributionp [9]. (Although they examined the problem in the context a# #pin-block problem, their
problem is identical to our two-state case.) They obserlkiatithe expected cost of the online strategy that
makes the transition to the sleep state at tifnie

/OTp(t)(fiot)dt + /Oo () (;-;OT YRt —T) + ﬁ) dt, 3)

T

whererx is the power consumption rate in the active stateis the power consumption rate in the sleep
state andb is the transition cost between the two states. The onlilg¢esty then should select the transition
time T' that minimizes this cost.

10

The multi-state case presents two distinct challenges.fildtds to determine the optimal sequence of
states through which an online strategy should transitioouighout the course of the idle period. Then once
this sequence has been determined, the optimal transiti@s ineed to be determined. Our proof proceeds
by establishing that the only transition times that needetadnsidered are the optimal transition times for
two-states systems. Suppose, for example, that we aredesimgj a sequence of state transitions in which
states; is followed by states;. LetT; ; denote the optimal transition time from stateo s; if these were the
only two states in the system (that issifwere the active state ang were the only sleep state). Note that
T;,; can be determined by the expression above. We establisteti@tlless of the rest of the sequence, the
optimal transition point from statg to s; is7; ;. We call theT; ;'s the pairwise-optimalransition times.

Lemmas 7 and 8 establish that the pairwise-optimal tramsiimes happen in the right order. That is
fori <k < j, T;r < 1Ty . If thisis not the case, then any subsequence thathaiowed by s, followed
by s; can not possibly be the best sequence of states. Note tha} fisemay not necessarily be unique. In
general, we will select the earliest transition time thatimizes the cost for the two state system.

Lemma 9 then shows that as long as the pairwise-optimaliti@mgimes are in the right order, they
give the globally optimal set of transition times for thabsaquence. Our algorithm then uses this fact to
find the optimal sequence of states by dynamic programmirade bhat it is not necessary to exhaustively
consider all possible subsequences.

6.1 Optimal transition times

Consider a particular subsequencé-pl statess,, . .. sq,. In order to avoid the double subscripts, through-
out this subsection we will rename our subsequengsey, . . . , ¢;. Since the strategy must start in stage
we can assume thay = so. Fori < j, defines; ; to be the cost to transition from stafgeto stateg;, that is,
Bi,j = da,.q,;- Furthermore, we will refer to the power consumption ratstafeq; as«;, thatis,a; = rq; -

We will consider the strategy that transitions through tia¢es in the subsequengg q1, ..., q. Sup-
pose that we use transition tirfi¢ to transition from state;_; to statey;. It will be convenient for notation
to defineT;; = oo and7y = 0. The cost of the strategy that uses these transition times is

I+1

cost(Th, ..., T, Z/ t)oj—1(t — T 1dt+2/ O‘J 1(Tj = Tj1) + 55— 173)
(4)

The goal is to pick thd7, ..., T; so as to minimize the above cost. This is the optimal costhfersubse-
quencep, . .., q.
. i1y
Foreach € {1,...,l}, lety; = St
Lemma 7 Suppose that there is an< j such thaty; < -;, then there is a a strict subsequence@f. . ., ¢
whose optimal cost is no greater than the optimal cosgfor. . , g;.

Proof : Consider the firs§ such thaty;_; < v;. Let(¢1,...t;-1,t;,...,%;) be the sequence of thresholds
that minimizes the cost of this sequence of states. Defintollogving quantities:

Fj—Lj = COSt(t},. .tj 2, J Lttt .,tl)
Fi_1j-1 = cost(ty,...tj—o, tj_1,tj—1,tj41...,%)
FjJ’ = COSt(tl, ... tj_g, t; y g tj+1 tl)

We will show thatF;_, ; is greater than or equal to a weighted averagé’af; ;_; and F; ; which means
that it must be greater than or equal to at least one of thégesvarhis means that the strategy that transitions

11

from stateg;_» to stateg;_; and then immediately transitions to stateat either timet;_; or ¢; is at least
as good as the original strategy. Sine, ; < ;2 j—1 + [;—1,j, Skipping statg — 1 altogether can only
improve the strategy.

Below we have an expression f6F ; — F;_; ; which can be derived from the definition for the cost in
equation (4), UndeF; ; the transition from statg;_ to ¢;_; is moved forward from time;_; to timet;.
Any time spent in the intervdk;_1, ;] happens at the higher power ratecgf » instead ofe;_;. This is
accounted for in the first two terms of the sum. However, igitees ending in the intervad;_;, ;] save on
the transition cost which is accounted for in the last teriove

i o0 L
Fjj—Fj_1; = / p(t)(t —tj-1)(aj—2 — aj_1)dt + /t p(t)(t; —tj—1)(ej—2 — aj_1)dt

tj—1 j
t;
- [Bj—2,j—1p(t)dt.
tj,1

Dividing by (a;_2 — 1), This becomes

t; 00 t;

et [T - gder [o0 -fod- [—pod @
Qj-g = ;- £ i f— i1

Below, we use the definition of cost in equation (4) to get aoression forF;_; ; — Fj_1 ;1. Note that

in F;_1 ;—1, the transition from state;_; to stateq is moved back from time; to time¢;_;. Thus,F;_; ;

will spenda;_; — a; more power tharF;_; ;_; for any time spent in the intervéd;_,,¢;]. Furthermore,

F;_4 j—1 will have an additional transition cost 6f_; ; for those intervals that end in the perigid_,¢;].

Bty = Froago = [0 —E)a —ade+ [p)E - e — o)

ti—1 tj
t;
- [Bj—1,5p(t)dt.
tji—1
Dividing by (a;—1 — o), This becomes

| 70— Tt + | v - -a- | D L @

Qaj1—Qj fia 2 tj—1 i

Comparing, equations (5) and (6), the expressions are aidesical except for the in the last term.
Sincey;_1 < 7, andftf?' _p(t)dt > 0, We have that
7
'Fjjvj — 'Fjj_lvj S
52 — Q1 Qi1 — Q5

Fi1j—Fj—1-1

Letw; =1/(oj—2 — aj—1) andws = 1/(a;—1 — ;). Note that bothw; andw, are at leasb. Rearranging,

we get that
w1 w2
.+ Fi 1. 1 <Fi_q.
<W1+W2> 7 <w1+w2> J=hi=1 J=LJ

Now suppose that we consider only the two-state system storgsiof statey;_; and statey;. We will
let ; denote the optimal threshold time if these are the only tatestin the system. We have thais the
time 7' that minimizes

/OT p(t)ai—1tdt + /oo p(t) (ai_lT + ot —T) + @‘—1@) dt.

T

12

Note that the value of" that results in the minimum above may not be unique. In thisecave
take 7 to be the smallest value which achieves the minimum. Als@ ribat by subtracting the term
f0°° p(t)a;tdt (which is independent of) and dividing by3;_; ; in the above definition, it can be seen
thatr, = argminy f(v;, T) where

T 0
f(.T) = /0 p(t)ytdt + /T p(t) (VT + 1),

Note that for a two-state system whose active state and ska¢gs has power consumption rates of
~ and 0 respectively and whose transition cost ig (t;, 7') denotes the expected power consumed by an
online strategy that transitions to the sleep state at fimé/e will show that for a particular subsequence of
states, if we minimize the cost over all choices for the thoéds, the resulting thresholds are those obtained
by the pair-wise optimization above. First, however, we nassablish that the; values have the correct
ordering.

Lemma8 If v; > ~;11, thent; < 741.

Proof : Intuitively, ~; is the ratio of the additional power cost of being in statestead of statg; ; over
the transition costs between the two states. It stands sonehat the larger this cost, the sooner one would
want to transition from statg _; to statey;.

We will formalize this argument using a proof by contradiati Suppose that we have > 7, and
vi > 7vi+1. The proof will make use of the definition g¢f(y, T") given above.r; is the smallest value for
T which attains the minimum of (y;, 7). Sincer; 1 < 7;, we know thatf (v, 7i+1) > f(vi, ;). By the
definition of 7,1, we have thaff (vi+1,7) > f(vi+1, i+1). Thus, it should be the case that

f(vig1,78) = fFYig1, Tiv1) 20> f(vi,) — (Vi Tigr)- (7)
Using the definition off (v, T') above, for anyl < T,
1) =161 = 2| [w0 - moars [“om - - [oo
’ 7 T Ts T

The quantity inside the square braces above is non-negalités implies that the quantity (v, 7%) —
f(~,T1) is non-decreasing in. This, however, contradicts Inequality 7 and the fact that ;1. [

Finally, we prove the main lemma which states that the ttemsiimes are simultaneously optimized at
the pairwise-optimal transition points.

Lemma9 For a given subsequence of statgs. . ., q;, if ;1 < 7; forall i € {1,...,1}, then the minimum
total cost is achieved fafost(ry, ..., 7).

Proof : The basic idea is that we can interprett(T1,...,T;) — [° p(t)aytdt as the sum of the power
consumed irl two-state systems, where tfé system, (fori = 1, ...,1), has states whose power consump-

tion rates aréc;_; — «;) and 0 and the cost to transition between the tw@ is ;. Note that fO‘X’ p(t)oytdt
is a constant, independent of the choicelgé. After rescaling, one can write this expression as a finea
combination of thef (v;, T;) terms. Sincer; minimizesf(~;, T'), and ther; values have the right ordering,
this implies thatcost (71, . .., T;) is minimized by setting; = 7, fori =1,... 1.

We will establish below that we can rewrite (4) as follows:

cost(Tl,...,Tl):/ p(t)aytdt
0

T Zzl; [/0 () — ot + | po (i - e+ @_l,i)dt] ®

T;

13

So by rescaling, we get that

o0
cost(Tl,...,Tl)—/ (t)oytdt = Zﬂz vif (i, Ti)
0

We want to choosd’ < --- < T; to minimize this expression. Sineg < --- < 7; and eachr; =
arg ming f(v;, T) it follows that the minimum is attained by settifig = 7; for each.

To complete the proof we show the equivalence of (4) and (8suffices to show that (4) and (8)
integrate the same expression over each intéival , 7;), fori = 1,...,1 + 1. The integrand in (4) over
the interval[T;_1,T;) is

p(t) [ai—l(t —Ti1)+ S(ij—l(Tj —Tj1)+ ﬁj—l,j)} ;

and the integrand in (8) is

i—1

!
p(t) [Z((%’—l — ;)T + ﬁj—Lj) + (Z(O‘j—l — o) + al)t] : 9)

j=1 j=i
The summations over theindices in (9) telescope to show that the two expressionglargical. [

6.2 The optimal state sequence

We now present a simple polynomial time algorithm to obthadptimal state sequence for a given system.
First, for each paifi, j),0 < i < j < k, letT; ; denote the optimal transition pointsf ands; were the only
two states in the system. The time complexity of determiirsingleT; ; depends on the representation of
the probability distribution. In practice, this is mostdil to be estimated by a finite histogram withbins
starting at time) and sampled at a uniform discrete intervabofit follows that bini corresponds to time
07. Itis not difficult to generalize this for variable sized birWe will also assume that all transition times
occur at soméi. The height of bin is H (i) and this implies that the probability that the idIe timequals

5z is given byZ §1)(5+ In Algorithm 1, we calculated CC[i] and ACCTY:] values, which arq t)dt and

N tp()dt and we then use them to evaludig; values. We can re-write the expression for the cost of a
two state system in equation (3) as

Ki /OTp(t)tdt + Kj /TOO p(t)tdt + ((I{Z — k)T + ﬁi,j) /TOO p(t)dt.

We also denotg(t)dt and f t)dt asTOTALand TOTALT respectively. Using the pre-calculated
values above, the cost of transmonlng from stgteo states; at timedl is

ki - ACCTIl) + (kilS — k16 + B; ;) (TOTAL — ACCIl)) + k;(TOTALT — ACCTII)).

Once thel; ;'s are found, we sweep through them in non-decreasing dkdeping a running tab of the
best sub-schedules that we can achieve ending in eachsstteach point in time. When we encounter a
T;.;, we check to see if transitioning from to s; can improve the current best sub-schedule ending,in
and if it does, update our data structure to reflect it.

A given strategy divides time into intervals where eachrivdkis the period of time spent in a particular
state. The expected cost for a strategy given in equatiois @)tained by summing over the expected cost

14

Algorithm 1 EvaluatingT; ; values
ACC|0] «— HI0]
ACCTI0] <0
for k=1to Bdo
ACC[k] <« ACC[k — 1] + H[K]
ACCT[k] — ACClk — 1]+ H[k] x k-6
end for
TOTAL «— ACC|B]
TOTALT «— ACCT|B]
for all (4, j) pairs such thah <i < j < k do
min «— oo, argmin «— —1
fori=0to B —1do
val = k; - ACCT(l] + (kild — K16 + B3; ;) (TOTAL — ACCTl))
+r;(TOTALT — ACCTIl])
if val < min then
min <« val
argmin «— |
end if
end for
T;; < argmin - o
end for

incurred in each interval. The cost for each interval isdid into two parts which results in two separate
summations in equation (4). We define the functigifor the first term which is

ty
Q(t87j7 tf) = /t p(t)lii(t — ts)dt.

This is the expected cost of staying in stafen the intervalt,, t ;) for those idle periods whose length is
also in the intervalt,, t). Define

R(i,ty,joty) = /t p() (ailty — 1) + B) di.
f

This is the expected cost for those intervals longer theof staying in states; over the time periodk,, ¢ ¢)

and then transitioning to statg. Note thatQ(dl;, j,dl;) and R(i,dl;,j,0l;) can both be evaluated in

constant time givetl CC[l;], ACC|[l;], ACCT[l;) and ACCTYl;] defined above.

At each transitior¥; ;, we check to see if the current best schedule that ends &sstaain be improved
by transitioning toj from the current best schedule that ends in stat&or this purpose, we maintain two
arrays of sizeé + 1: t[i] is the time at which the current best schedule that endstatsstaansitions tos;
andhli] is the cost at[i] of that schedule. Initiallyx[0] «<— 0 and all otherh[i] <« occ. t[i], for all i can be
initialized to0. In Procedure 2, we provide the pseudocode for processiegchttransition poiri; ;.

It is easy to see that each transition point takes a consmaatiist of processing. The sorting takes an
overhead oD (k?log k). The initial preprocessing to calculate the transitiompmtakesO (k2 B). Hence,
the total running time i€ (k?(log k + B)).

The algorithm can be easily extended to find the algorithn tfiaimizes the expected cost subject
to the constraint that only: states are ever reached. We maintdinb] and i[s, b] for all statess; and
b < min{m,i}. These are the best time and energy required to reach stalbgect to at modi states being
reached. The algorithm is given below in Procedure 3.

15

Procedure 2 Processing’; ; in the line sweep algorithm

Current Status: 7; ; is the transition point that is being processed
{The cost up to timé; ; if transitioning from: to j atT; ; }

hl «— hli] + Q(t[i], 4, Tr,5) + R(3, t[i], 5, T ;)

{The cost up to timd; ; if transitioning to; at the current best time ofj]}
h2 — hljl + Q(t[j], 4, T;) + R(j, t[4], 5, T 5)

if h1 < h2then

hlj] < hl
tlj] < Ti;

end if

Procedure 3 Processing’; ; in the line sweep algorithm with the number of states comstth

Current Status: 7; ; is the transition point that is being processed
forb=1...7j—1do

h1 < Ri,b— 1] + Q(¢[i,b — 1), 5, Tp;) + R(i,t[i,b — 1,5, Ts.})
if h1 < h2then

hlj,b] < h1

tj,b] — T
end if

end for

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

http://ww. nm crosoft.com wi ndows2000/t echent husi ast/f eatures/
st andby1127. asp.

C. Anderson and A. Karlin. Two adaptive hybrid cache aehey protocols. IrProceedings of the
Second International Symposium on High-Performance Ctenpuchitecture pages 303-313, 1996.

Y. Azar, Y. Bartal, E. Feuerstein, A. Fiat, S. LeonardigdaA. Rosen. On capital investmemlgorith-
mica, 25:22-36, 1999.

L. Benini, A. Bogliolo, and G. De Micheli. A survey of degi techniques for system-level dynamic
power managemeniEEE Transactions on Very Large Scale Integration (TVL$B5t&Ms8(3):299—-
316, 2000.

Peter Damaschke. Nearly optimal strategies for speeisgs of on-line capital investmeiitieoretical
Computer Scien¢e302:35-44, 2003.

S. J. Eggers and R. H. Katz. Evaluating the performandewfsnooping cache coherency protocols.
In Proceedings of the 16th annual international symposium omguter architecturepages 2—15.
ACM Press, 1989.

S. Irani, R. Gupta, and S. Shukla. Competitive analy§idymamic power management strategies for
systems with multiple power savings states.|IlEE Conference on Design, Automation and Test in
Europe 2002.

16

[8] Sandy Irani, Sandeep Shukla, and Rajesh Gupta. Onliategtes for dynamic power management in
systems with multiple power saving statdsans. on Embedded Computing $S2803. Special Issue
on Power Aware Embedded Computing.

[9] A. Karlin, M. Manasse, L. McGeoch, and S. Owicki. Randaed competitive algorithms for non-
uniform problems. IMACM-SIAM Symposium on Discrete Algorithmpages 301-309, 1990.

[10] Anna R. Karlin, Claire Kenyon, and Dana Randall. Dynataip acknowledgement and other stories
about e/(e-1). IProceedings of the thirty-third annual ACM symposium onofjef computing
pages 502-509, 2001.

[11] AnnaR. Karlin, Kai Li, Mark S. Manasse, and Susan Owi&kinpirical studies of competitve spinning
for a shared-memory multiprocessor. Rroceedings of the thirteenth ACM symposium on Operating
systems principlepages 41-55. ACM Press, 1991.

[12] S. Keshay, C. Lund, S. Phillips, N. Reingold, and H. &ar&n empirical evaluation of virtual circuit
holding time policies in ip-over-atm network$EEE Journal on Selected Areas in Communicatjons
13(8):1371-1382, 1995.

17

