
Optimal Power-Down Strategies

John Augustine∗

jea@ics.uci.edu
School of Information and Computer Science

Univ. of California at Irvine, Irvine, CA 92697

Sandy Irani∗

irani@ics.uci.edu
School of Information and Computer Science
Univ. of California at Irvine, Irvine, CA 92697

Chaitanya Swamy†

cswamy@ist.caltech.edu
Center for the Mathematics of Information

Caltech, Pasadena, CA 91125.

Abstract

We consider the problem of selecting threshold times to transition a device to low-power sleep states
during an idle period. The two-state case in which there is a single active and a single sleep state is
a continuous version of the ski-rental problem. We considera generalized version in which there is
more than one sleep state, each with its own power consumption rate and transition costs. We give an
algorithm that, given a system, produces a deterministic strategy whose competitive ratio is arbitrarily
close to optimal. We also give an algorithm to produce the optimal online strategy given a system and a
probability distribution that generates the length of the idle period. We also give a simple algorithm that
achieves a competitive ratio of3 + 2

√
2 ≈ 5.828 for any system.

1 Introduction

Suppose you are about to go skiing for the first time in your life. Naturally, you ask yourself whether to
rent skis or to buy them. Renting skis costs, say, $30, whereas buying skis costs $300. If you knew how
many times you would go skiing in the future (ignoring complicating factors such as inflation, and changing
models of skis), then your choice would be clear. If you knew you would go at least 10 times, you would be
financially better off by buying skis right from the beginning, whereas if you knew you would go less than
10 times, you would be better off renting skis every time. Alas, the future is unclear, and you must make a
decision nonetheless.

Although theSki-Rentalproblem is a very simple abstraction, this basic paradigm arises in many ap-
plications in computer systems. In these situations, thereis a system that can reside in either a low-cost or
a high-cost state. Occasionally, it is forced to be in the high-cost state (usually to perform some task). A
period between any two such points in time is called anidle period.

The system pays a per time unit cost to reside in the high-coststate. Alternatively, it can transition to
the low-cost state at a fixed one-time cost. If the idle periodis long, it is advantageous to transition to the
low cost state immediately; if the idle period is short, it isbetter to stay in the high-cost state. An online
algorithm which does not know the length of the idle period must balance these two possibilities.

This problem has been studied in the context of shared memorymultiprocessors in which a thread is
waiting for a locked piece of data and must decide whether to spin or block [9, 11]. Researchers investigating

∗Research supported partially by NSF grants CCR-0105498 andCCF-0514082 and by ONR Award N00014-00-1-0617.
†Work done while the author was a student at the Department of Computer Science, Cornell University, Ithaca, NY 14853.

Research supported partially by NSF grant CCR-9912422.

the interface between IP networks and connection-orientednetworks have discovered this same underlying
problem in deciding whether to keep a connection open between bursts of packets that must be sent along
the connection [12]. Karlin, Kenyon and Randall study the TCP acknowledgment problem and the related
Bahncard problem both of which are at heart ski-rental problems [10]. The problem also arises in cache
coherency in deciding whether to update or invalidate data that has been changed in a processor’s local
cache [6, 2].

An important application of the ski-rental problem is in minimizing the power consumed by devices that
can transition to a low powersleepstate when idle. The sleep state consumes less power; however, one incurs
a fixed start-up cost in making the transition to the high-power activestate in order to begin work when a
new job arrives. At the architectural level, the technique of eliminating power to a functional component
is called clock/power gating. At a higher level, the powered-down component might be a disk drive or
even the whole system (e.g., a laptop that hibernates). The embedded systems community has invested a
great deal of effort into devising policies governing the selection of power states during idle periods (termed
Dynamic Power Managementin their literature); see, for example, [4] for a survey. These techniques have
been critical to maximizing battery use in mobile systems. While power is already a first-class parameter in
system design, it will become increasingly important in thefuture since battery capacities are increasing at
a much slower rate than power requirements.

Most of the previous work on this problem has been concerned with two-state systems which have an
active state and asinglesleep state. This paper focuses on finding power-down thresholds for systems that
have more than one low-power state. An example of such a system is the Advanced Configuration and Power
Interface (ACPI) included in the BIOS on most newer computers, which has five power states, including a
hibernation state and three levels of standby [1].

2 Previous work and new results

For the two-state problem, an online algorithm consists of asingle thresholdT after which time the algorithm
will transition from the active to the sleep state. The inputto the problem is the length of the idle period and
the cost of an algorithm is the total amount of energy it consumes over a single idle period. Typically, an
online algorithm is evaluated in terms of its competitive ratio — the ratio of the cost of the online algorithm
to the cost of the optimal offline algorithm, maximized over all inputs. When randomized algorithms are
considered where the thresholdT is chosen at random, we look at the ratio of the expected cost of the online
algorithm to the cost of the offline algorithm. Previous workhas also addressed the two-state problem when
the idle period is generated by a known probability distribution. In this case, the online algorithm will
choose a threshold which minimizes its expected cost, wherethe expectation here is taken over the random
choice of the idle period. We call such algorithmsprobability-basedalgorithms.

The best deterministic online algorithm will stay in the high power state until the total energy spent
is equal to the cost to power up from the low power state. It is known that this algorithm achieves the
optimal (deterministic) competitive ratio of 2 [9]. When one considers randomized online algorithms, the
best competitive ratio achievable improves toe/(e − 1) [9]. If the idle period is generated by a known
probability distribution, then the algorithm that choosesT so as to minimize the expected cost is always
within a factor ofe/(e− 1) of optimal. Furthermore, this bound is tight since there is adistribution over the
idle period lengths which will force any online algorithm toincur an expected cost that is a factore/(e− 1)
times larger than that incurred by the optimal offline algorithm [9].

Note that in the context of power-down systems, it may not be the case that the power usage in the sleep
state is zero or even that the start-up cost in the active state is zero. In these cases, both the online and the
offline algorithm will incur an identical additional cost. Thus, the ratio of the online to the offline cost will
decrease and the optimal competitive ratio will be strictlyless than two. However, these additional costs do

2

not change the optimal online or offline strategy in either the deterministic or the probability-based case, and
the optimal competitive ratio that can be achieved for such systems can easily be determined as a function
of all the parameters of the system.

We denote the problem that involves powering down throughk sleep statesPD(k). A formal description
of the problem is as follows: we are given a sequence ofk+ 1 statesS = 〈s0, ..., sk〉. There is also a vector
of power-consumption ratesK = 〈κ0, . . . , κk〉, whereκi is the power consumption rate of the system in
statesi. We assume as a convention that the states are ordered so thatκi > κj for 0 ≤ i < j ≤ k. Sos0 is
theactive state, and the system must transition tos0 (i.e., power up) at the end of the idle period. There is an
associated transition costdi,j to move from statesi to sj. A systemis described by a pair(K, d). Note that
there can be costs to move from high-power states to low-power states and vice versa. However, the only
power-up costs that are of interest are the costs to transition from a particular statesi to the active states0
since the only reason to transition to a higher power state iswhen a new task arrives. Ascheduleor strategy
A = (SA,TA) consists of a sequence ofnA + 1 statesSA that is a subsequence ofS, and a sequence of
transition timesTA. Where obvious, we will omit the subscriptA. We require thatS(0) = s0 andT (0) = 0.
We useA(t) to denote the cost of the schedule produced by strategyA for an idle period of lengtht. We
also consider a generalization ofPD(k) that we callPD(k,m) wherein we require thatnA ≤ m, where
0 < m ≤ k is some limiting integer constant. This generalization would be especially useful for engineers
who have a large number of sleep state options available in the design phase, but are required to implement
at most a fixed number of states in the product that rolls out into the market.

The only previous work that examines the multiple-state problemPD(k) (from the perspective of worst-
case guarantees) is [7] which considers the special case where the cost to power-down is zero and the
algorithm only pays to move from low power states to higher power states. Note that this also includes the
case where the transition costs are additive (di,j + dj,k = di,k for i < j < k) since the costs to power down
can then be folded into the costs to power up. [7] gives natural generalizations of the algorithms for the
two-state case both for the case when the idle period length is unknown and when it is generated by a known
probability distribution. It is shown that when the transition costs are additive, the generalized deterministic
algorithm is2-competitive and the probability-based algorithm ise/(e − 1)-competitive, thus matching the
guarantees in the two-state case.

There are two important directions left open by this work. The first is based on the observation that
systems, in general, do not have additive transition costs.In many scenarios, additional energy is spent in
transitioning to lower power states. Furthermore, there could be overhead in stopping at intermediate states,
resulting in non-additive transition costs (see [4] for an example). The second point is that the known upper
bounds are typically not optimalfor the system under consideration. That is, while it is true that thereexist
systems for which the optimal competitive ratio that can be achieved by any deterministic algorithm is 2
(ande/(e − 1) by any randomized algorithm), it is possible to achieve a better competitive ratio for many
systems. For multi-state systems, the optimal competitiveratio that can be achieved will, in general, be a
complicated function of all the parameters of the system (the power consumption rates as well as transition
costs). For probability-based algorithms, the optimal competitive ratio will also depend on the probability
distribution generating the length of the idle period. While it may not be feasible to express the optimal
competitive ratio as a function of all these parameters, a system designer would, in general, like to design
a power-down strategy that obtains the best possible competitive ratio given the constraints of his or her
particular system.

This paper establishes the following results.

• We give an algorithm that takes as input an instance ofPD(k) that is described by(K, d), and an error
parameterǫ, and produces a power-down strategyA = (SA,TA) whose competitive ratio is within
an additiveǫ of the best competitive ratio that can be achieved for that system. The algorithm runs in
timeO(k2(log k) log(1/ǫ)), wherek + 1 is the number of states in the system, and also outputs the

3

competitive ratio ofA. The algorithm works via a decision procedure which determines for a system
and a constantρ if there is aρ-competitive strategy for that system. This decision procedure also
allows us to obtain lower bounds on the competitive ratio achievable by deterministic algorithms for
specific systems, which in turn provides a lower bound on the competitive ratio achievable by deter-
ministic algorithms in general. In particular, we obtain a lower bound of2.45 on the competitive ratio
for deterministic algorithms. This is the first lower bound known that is greater than2. Independently,
Damaschke has given a lower bound of3.618 [5].

• The above approach can be modified to solve the more general version where a bound ofm is specified
on the number of states allowed in final strategy. We show how to extend the decision procedure to
answer if there is aρ-competitive strategy for the system that uses at mostm power states.

• Experimental results show that there are significant performance gains to be made by estimating the
distribution governing the length of an idle period based onrecent history and using this estimate
to drive a probability-based strategy [8]. We give an algorithm that takes as input a description of
a system and a probability distribution generating the idleperiod length and produces the optimal
power-down strategy. Naturally, the running time of the algorithm will depend on the representation
of the distribution. In practice, this is most likely to be a histogram. Our algorithm runs in time
O(k2(log k +B)) whereB is the number of bins in the histogram andk + 1 is the number of states.
One outcome of the proof is that it also establishes the optimality of the strategy given in [7] for
additivesystems. We then generalize this to find the best online algorithm subject to the restriction
that at mostm states are used, at the expense of an extra factor ofm in the running time.

• We give a simple deterministic strategy that achieves a competitive ratio of3 + 2
√

2 ≈ 5.8284 for
all systems. This result gives a bound on the competitive ratio achieved by the optimal strategies
generated by our algorithms. Note that3 + 2

√
2 also serves as a bound on the ratio of the expected

costs of the online and offline algorithms when the input is probabilistically generated.

In the remainder of this paper, we use the termsscheduleor strategyinterchangeably to refer to the
choices of states and threshold times for powering down. Thetermalgorithmwill refer to a procedure that
produces a schedule or strategy based on a particular system.

Azaret al. in [3] consider a related problem which they refer to as Capital Investment. This problem is
a different generalization of the ski rental problem than the power-down problem considered here. However,
a special case of their problem coincides with a special caseof our problem. Specifically, they give a
(4 + 2

√
2)-competitive deterministic algorithm for the special caseof the power-down problem in which

the cost to transition to each state is the same, regardless of the state from which one is transitioning.
Later Damaschke in [5] improves the upper bound on the competitive ratio for this special case (also in
the context of Capital Investment) to4 for deterministic algorithms and2.88 for ranomized algorithms. In
addition, Damaschke gives a3.618 lower bound for any deterministic algorithm which subsumesthe lower
bound of2.45 given here.

3 Preliminaries

First we will establish that we can assume without loss of generality that the power-up transition costs are
zero. If this is not the case for some system(K, d), we can define a new system such that for anyi < j, the
cost to transition fromsi to sj is di,j + dj,0 − di,0 and the cost to go fromsj to si is 0. Since there is never
any reason to transition to a higher power state unless the system is transitioning to the active state at the
arrival of a new task, any set of actions in the original system will incur the same cost in the new system.
Thus, in the sequel we assume thatdi,0 = 0 for all i.

4

We also need to establish that we can assume that for alli < j, di,j < d0,j . Recall that we are really
usingdi,j to denotedi,j + dj,0 − di,0 andd0,j to denoted0,j + dj,0. Thus, the assumption thatdi,j < d0,j

really amounts to assuming thatdi,j < di,0 + d0,j . If this were not the case, we could just transition from
statesi to statesj by first going tos0 and then down tosj.

Let D(i) denoted0,i. ThenOPT (t) = mini(D(i) + κit). Let S(t) denote the state which attains
the minimum — the optimal state. The optimal strategy is to transition to stateS(t) at time 0, and stay
there through timet. We assume that for every state, there is some idle period length for which the optimal
strategy will use that state, i.e.,range(S(t)) = {s0, . . . , sk}. None of the online strategies we present will
make use of a state that is never used by the optimal offline strategy for any timet.

b1 b2

Energy

State 0 State 1 State 2

State 3

b3 Time

Figure 1: Energy consumed by the optimal strategy as a function of idle period length.

Note thatOPT (t) is piecewise linear andS(t) is non-decreasing witht — as the idle period length gets
longer, it becomes more worthwhile to pay the extra cost to transition to a lower power state. Letbi denote
the first time instant at which statesi becomes the optimal state, sob(0) = 0 andD(i−1)+κi−1bi = D(i)+

κibi ⇒ bi = D(i)−D(i−1)
κi−1−κi

. We haveb(0) < b(1) < . . . b(k). Figure 1 shows the total energy consumed
by OPT as a function of the length of the idle period. There is a line for each state. They-intercept is the
transition cost to move to that state from the active state and the slope is the power consumption rate. The
energy consumed by the optimal strategy is the lower envelope of these lines since it will pick the single
state which minimizes the cost for a given idle period length. Thus fort ∈ [bi, bi+1],

OPT (t) = D(i) + κit =

i−1
∑

j=0

κj(bj+1 − bj) + κi(t− bi) (1)

We compare our online strategy withOPT (t) and want to get a strategyA which minimizes the com-
petitive ratio,cA = supt

A(t)
OPT(t) whereA(t) denotes the total power consumption ofA by timet.

4 A simple (3 + 2
√

2)-competitive strategy

Let us for the moment assume that for someγ > 1, D(i) ≥ γD(i − 1) for all i = 1, . . . , k. This is a non-
trivial assumption that we will have to handle later. Consider the strategy,A, which always stays in state
S(t), the same state asOPT , at every timet. The optimal strategy which knows the length of the idle period
in advance will just transition to the optimal state. StrategyA however must ”follow” the optimal strategy,
making each transition to a new state as the idle period gets longer. This is the strategy proposed in [7]
and shown to be2-competitive for additive systems. Note that this strategyis the same as the2-competitive
balance strategy for the two-state case.

5

Fort ∈ [bi, bi+1] the online cost is,A(t) =
∑i−1

j=0

(

κj(bj+1−bj)+dj,j+1

)

+κi(t−bi). In comparing this
cost to the optimal cost in equation (1), observe that both terms have an additiveκi(t− bi) which means that
the ratio A(t)

OPT(t) will be maximized att = bi. To bound the cost ofA in terms ofOPT , we use the fact that

OPT (bi) ≥ D(i) andOPT (bi) =
∑i−1

j=0 κj(bj+1 − bj) both of which come from equation (1). This last
equation is used in line three of the equations below as is thefact thatD(i) ≥ γD(i−1) for all i = 1, . . . , k.

A(bi) =

i−1
∑

j=0

(

κj(bj+1 − bj) + dj,j+1

)

≤
i−1
∑

j=0

κj(bj+1 − bj) +

i
∑

j=1

D(j)

≤ OPT (bi) +D(i)

i
∑

j=1

γ−(i−j)

≤
(

1 +
γ

γ − 1

)

OPT (bi) =
2γ − 1

γ − 1
·OPT (bi). (2)

This holds for anyt implying a competitive ratio of2γ−1
γ−1 .

Now suppose the assumptionD(i) ≥ γD(i−1) does not hold. We consider a newofflinestrategyOPT ′

that only uses a subset of statesS′ for which the property does hold, and is aγ-approximation ofOPT , i.e.,
OPT ′(t) ≤ γ · OPT (t). We now view our problem as specified by just the states inS′, and execute
strategyA as specified above, emulatingOPT ′ instead ofOPT . We get thatA′(t) ≤ 2γ−1

γ−1 OPT ′(t) ≤
γ(2γ−1)
γ−1 OPT (t). Settingγ = 1 + 1√

2
, we get a competitive ratio of3 + 2

√
2 ≈ 5.8284.

We determineOPT ′ as follows. LetS′ = {sk} initially. Consider the states inS in reverse order. Let
si be the last state added toS′. We find the largestj, 0 ≤ j < i s.t.D(j) ≤ D(i)/γ. We addsj to S′ and
continue until no suchj exists. Note thats0 ∈ S′ sinceD(0) = 0. OPT ′ will execute the optimal offline
strategy assuming that only the states inS′ are available. Consideri, j s.t. si, sj ∈ S′ and nosℓ is in S′ for
i < ℓ < j. We haveOPT ′(t) = OPT (t) for t ∈ [bi, bi+1) andt ∈ [bj , bj+1). For ℓ s.t. i < ℓ < j and
time t ∈ [bℓ, bℓ+1). OPT ′(t) = min(D(i) + κit,D(j) + κjt) andOPT (t) = D(ℓ) + κℓt. j was chosen to
be the largest value less thani such thatD(j) ≤ D(i)/γ which means thatD(ℓ) > D(i)/γ. Furthermore,
sinceκi ≤ κℓ, we have that

OPT ′(t) ≤ D(i) + κit ≤ γ
(

D(ℓ) + κℓt
)

= γOPT (t),

andOPT ′ is aγ-approximation toOPT .

Theorem 1 There is a(3 + 2
√

2)-competitive strategy for any system.

5 A near-optimal deterministic algorithm

In this section, we turn our attention to obtaining a near optimal schedule for a particular system. More pre-
cisely, given a system(K, d) with state sequenceS for which the optimal online schedule has competitive ra-
tio ρ∗, we give an algorithm that returns a(ρ∗+ǫ)-competitive online schedule in timeO(k2 log k log(1/ǫ)).
The algorithm is based on a decision procedure which determines whether aρ-competitive schedule exists
for a given value ofρ. Theorem 1 establishes an upper bound of3 + 2

√
2 on the optimal competitive ratio,

6

t t′ TimeTime

Energy Energy

Figure 2: Energy consumed by the online and optimal strategyas a function of idle period length. The solid
line isρ ·OPT (t). The dashed line is the online cost.t is the first transition time that is not eager.t′ shows
the transformed strategy which now has an eager transition.

so we perform a bisection search in the range[1, 3 + 2
√

2] to find the smallestρ such that there exists a
ρ-competitive schedule. We also output the resulting schedule.

The following lemma shows that the online strategy must eventually get to a sufficiently low-power
state. Lemma 3 allows us to limit our concern to just the transition points in any online schedule.

Lemma 2 If A = (S,T) is aρ-competitive strategy andsℓ is the last state inS, thenκℓ ≤ ρ · κk.

Proof : For the sake of contradiction, assume thatκℓ > ρ ·κk. ForA to beρ-competitive, the functionA(t)
must lie entirely belowρ ·OPT (t). However the last line ofρ ·OPT (t) has slopeρ · κk and will therefore
intersect the last line ofA(t) which has a larger slopeκℓ, after which timeA(t) will exceedρOPT (t). This
is a contradiction.

Lemma 3 If a scheduleA has finite competitive ratio, then the earliest timet̄ > 0 at which A(t)
OPT(t) is

maximized is a transition point in the strategyA.

Proof : Let ρ = maxt>0
A(t)

OPT (t) . Consider the functionsA(t) andρOPT (t). The functionA(t) never
exceedsρOPT (t), andt̄ is the earliest point at which these two functions have the same value, not consid-
ering the origin. For the sake of contradiction, assume thatt̄ is not a transition point inA. So we can find
some smallǫ > 0 such thatA(t) is linear in(t̄ − ǫ, t̄ + ǫ). SinceA(t) is strictly less thanρOPT (t) in the
interval(t̄− ǫ, t̄) andA(t̄) = ρOPT (t̄), it must be the case that the slope ofA(t) is larger than the slope of
ρOPT (t) in this interval. This gives a contradiction, becauseA(t) has constant slope over(t̄− ǫ, t̄+ ǫ), and
ρOPT (t) is a continuous function with decreasing slope, which meansthatA(t) > ρOPT (t) for t > t̄.

We now explore ways to restrict the space of schedules we needto consider in searching for aρ-
competitive schedule. For a strategyA = (S,T), we say that a transition at timet ∈ T is ρ-eager(or
just eager ifρ is clear from the context) ifA(t) = ρOPT (t). We say thatA is a ρ-eager strategy if
A(t) = ρOPT (t) for everyt ∈ T . Note that by Lemmas 2 and 3, aρ-eager strategy that ends at states
such thatκs ≤ ρ · κk is ρ-competitive.

Lemma 4 If A = (S,T) is a ρ-competitive strategy, then there exists an eager strategyA′ = (S,T ′) that
is alsoρ-competitive.

7

Proof : Figure 2 shows a schematic of the proof. The jumps in the online cost (the dashed line) are
transition costs. The solid line isρOPT (t). The figure shows a transition timet at which the online cost
is less thanρOPT (t). The idea is that we can slide such a transition time earlier until it hits the function
ρOPT (t) .

Consider the earliest transition timeT which is not eager. Suppose thatA transitions from statesi to state
sj at timeT . Let T ′ < T be the time of the immediately preceding transition; if there is no such transition
time, then setT ′ = 0. The functionρOPT (t)−A(t) is continuous in the interval(T ′, T) sinceA does not
have any transitions in this open interval, andρOPT (t) − A(t) is 0 at timeT ′ and is strictly greater than
di,j at timeT − ǫ for a small enoughǫ. LetT be the earliest time afterT ′ such thatρOPT (t)−A(t) = di,j,
soT < T .

Consider the strategyA′ that is identical toA except that the transition fromsi to sj is moved earlier
from T to T . we need to argue thatA′ is ρ-competitive. ClearlyA′(t) = A(t) for t ∈ [T, T) andA(T) =
ρOPT (T). AlsoA′(T) < A(T) sinceA′ transitions earlier to the low power statesj and hence uses less
total energy, and since the strategies behave the same aftertimeT ,A′ will continue to have a lower cost at
all timest > T . To see thatA′(t) ≤ ρOPT (t) over the interval(T , T), note thatA′(t) is linear over this
interval sinceA′ remains in statesj . AlsoρOPT (t) is a piecewise-linear concave function since its slope is
non-increasing over time. Thus, since the points(T ,A′(T)) and(T,A′(T)) both lie on or below this curve,
the straight line connecting them lies under the curveρOPT (t).

The procedure above can be repeated until all the transitions are eager.

Lemma 5 Suppose a strategy makes aρ-eager transition to statesi at timeti and next makes a transition
to statesj. Using the functionρOPT (t), one can compute the earliestρ-eager transition timēt to statesj
in timeO(log k).

Proof : Define the linel(t) = κit+ ρOPT (ti)− κiti + di,j . t̄ is the smallestt > ti such thatρOPT (t) =
l(t). If there is no sucht, then aρ-eager transition fromsi to sj does not exist. SinceρOPT (t) is concave
we have that ifl(t) < ρOPT (t), or if l(t) ≥ ρOPT (t) and the slope ofρOPT (t) is less than or equal toκi,
then t̄ ≤ t; otherwiset̄ ≥ t. These inequalities allow one to do a binary search using theline segments of
ρOPT (t) to determinēt if it exists. Letsℓ be the optimal state (i.e., state ofOPT (t)) at timeti. Consider
the line segments ofρOPT (t) corresponding to statessℓ andsk. Recall thatbℓ andbk are respectively the
left end-points of these segments — these are the first time instants at whichsℓ andsk become the optimal
states respectively. Using the above inequalities, if we determine that̄t ≥ bk, thent̄ is simply the point of
intersection (if it exists) ofl(t) with the segment (ofρOPT (t)) corresponding tosk. Otherwise we have
a “low” segment with end-pointbℓ, and a “high” segment with end-pointbk. Now we repeatedly consider
the left end-point of the segment that is in the middle of the low and high segments, and use the above
inequalities to update the low or high segment and the corresponding end-point accordingly, until the end-
points of the low and high segments correspond respectivelyto the left and right end-points of a segment of
ρOPT (t). When this happens we can computet̄ by finding the intersection point (if it exists) ofl(t) and
this segment. The binary search can be implemented in timelog k, wherek is the number of segments (i.e.,
number of states).

Lemma 4 immediately gives an algorithm that is exponential in k, the number of states, and determines
whether aρ-competitive strategy exists for the system. This algorithm enumerates all subsequences of
states, and determines theρ-eager strategy for that subsequence by finding the eager transition to each state
based on the eager transitions to the previous states, as described in the proof of Lemma 5. Aρ-competitive
strategy for the system exists if and only if one of theseρ-eager strategies isρ-competitive (i.e., ends at a
stateswith κs ≤ ρ·κk). The remainder of this section presents a way to remove the exponential dependence
onk.

8

LetS = 〈s0, s1, . . . , sk〉 be a sequence of states that form a system. DefineSsi→sj
, to be the contiguous

subsequence〈si, . . . , sj〉, wheresi andsj are elements ofS such thati < j. Let Ψs be the set of subse-
quences ofSs0→s that includes0 ands such that for eachψ ∈ Ψs, one can find transition times for the state
sequenceψ so that in the resulting schedule, each transition up to and including the transition to states is
a ρ-eager transition. For a stateq ∈ ψ, we will usetψ,q to denote thisρ-eager transition time toq for the
sequenceψ. (Note thatψ uniquely determines the transition timestψ,q.)

We define theearliesttransition timeE(s, ρ) of states for the given system asE(s, ρ) = minψ∈Ψs
tψ,s,

that is,E(s, ρ) is the earliest time at which any online strategy can transition to states while remaining
ρ-eager over all its transitions up to (and including) the transition to states. Observe that if there isρ-
competitive strategy that uses states, then by Lemma 4, there is such aρ-eager strategy, soΨs 6= φ and
E(s, ρ) is well defined. We call a transition to states ρ-early (or simply early) if it happens at timeE(s, ρ).
A strategy that consists entirely of early transitions is called aρ-early strategy.

Lemma 6 If there is aρ-competitive strategyA = (S,T), then there is an eager and earlyρ-competitive
strategy.

Proof : Let s be the last state inS. Consider the sequenceψ ∈ Ψs such thattψ,s = E(s, ρ) and the strategy
π that uses only the states inψ, transitioning to stateq ∈ ψ at timetψ,q, i.e.,π =

(

ψ, {tψ,q}q∈ψ
)

. SinceA
is ρ-competitive, it must be thatκs ≤ ρκk and sinceπ by definition has allρ-eager transitions and ends in
states, it is alsoρ-competitive. We now argue thatπ is an early strategy. Note thatπ was chosen so that the
transition to states is ρ-early. We have to show that the remaining transitions ofπ are alsoρ-early.

Suppose not. Consider the latest transition that is notρ-early. Suppose this happens for stater (6= s),
soT1 = tψ,r > E(r, ρ). Let r′ be the state just afterr in sequenceψ. Let ψ′ ∈ Ψr be the sequence for
which tψ′,r = E(r, ρ) = T2. T2 is the earliest time that aρ-eager schedule can transition to stater and
the sequence of states in this schedule is given byψ′. Consider the hybrid strategyπ′ that uses the states
in ψ′ followed by the states inψ that appear afterr, with the transition times beingtψ′,q for q ∈ ψ′ and
tψ,q for q ∈ ψr′→s. Strategyπ transitions to stater at timeT1 and strategyπ′ transitions to stater at time
T2 < T1. Both of these transitions are eager transitions. Both strategies are in stater at timeT1 and make
the same state transitions thereafter. Thus, for anyt ≥ T1, π(t)−π(T1) = π′(t)−π′(T1). In particular, both
strategies transition tor′ (the state afterr) at timetψ,r′ = E(r′, ρ) = T ′. Using the equation above we have
thatπ′(T ′) = π(T ′) −

(

π(T1) − π′(T1)
)

. We will show thatπ′(T1) < π(T1) which implies, in particular,
thatπ′(T ′) < π(T ′). So inπ′ the transition tor′ is no longerρ-eager. Arguing as in Lemma 4 this means
that we can shift the transition tor′ to get an eager transition at anearlier time. But this contradicts the
assumption that the transition to stater′ at timeT ′ was an early transition.

We now prove thatπ′(T1) < π(T1). The transitions to stater in schedulesπ andπ′ are eager transitions,
so both the points(T2, π

′(T2)) and(T1, π(T1)) lie on theρOPT (t) curve. Sinceπ(t) < ρOPT (t) for all
t, the the slope ofρOPT (t) at timeT1 is at leastκr, the slope ofπ(t) at timeT1, and strictly greater since
the gap betweenρOPT (t) andπ(t) must accommodate the transition cost from stater to r′ at timeT ′.
The concavity ofρOPT (t) implies that its slope is greater thanκr over the interval[T2, T1]. ρOPT (t). So
π(T1) = ρOPT (T1) > ρOPT (T2)+κr(T1−T2) = π′(T1) where the last inequality follows sinceπ′ stays
in stater in the interval[T2, T1].

¿From Lemma 6 we can deduce that we only need to consider a specific early and eager schedule,
the one that is determined by theE(., ρ) values, to determine if aρ-competitive strategy exists. We can
now define a decision procedure EXISTS that takes a system anda constantρ and outputs YES if aρ-
competitive strategy exists for the system, and NO otherwise. The procedure can be modified to also output
aρ-competitive strategy (if it exists). We employ a dynamic programming approach to calculateE(si, ρ), for
0 < i ≤ k. We always start with the high power state and henceE(s0, ρ) = 0. Suppose we have computed
E(sj , ρ) for all j = 0, . . . , i − 1. Let tj be the earliest time at which the systemρ-eagerly transitions from

9

p′

p

T

T ′

Figure 3: The solid line isρ ·OPT . The dashed line is the scheduleπ′ from Lemma 6 and the dashed/dotted
line isπ. The point labeledp is (T, π(T)) andp′ is (T ′, π′(T ′)). The idea is to show that at timeT , π′ has a
lower cost thanπ.

sj to si given that the transition tosj is ρ-eager and occurs at timeE(sj , ρ). If such a transition is not
possible, then we assigntj = ∞. We can computetj in O(log k) time as described in Lemma 5. Then,
E(si, ρ) = minj<i tj. Determining eachE(si, ρ) requires examiningj different possibilities, so finding all
the early transition times for all states takes timeO(k2 log k). By Lemma 2, we know that ifE(si, ρ) is
finite for some statesi whereκi ≤ ρ · κk, we know that aρ-competitive strategy exists. One can quickly
elicit the schedule by starting from statek and retracing the states that minimized the earliest transition time.
We use the procedure EXISTS to do a bisection search in the interval [1, 3 + 2

√
2] and find aρ-competitive

strategy whereρ ≤ ρ∗ + ǫ. The total time taken isO(k2 log k log(1/ǫ)).
We now turn our attention to adapting this dynamic programming technique to solvePD(k,m) where

a bound ofm is specified on the number of states that can be used by the online algorithm. We introduce
a new parameterb modifying our function toE(si, ρ, b), where0 ≤ b ≤ min(i,m). The intuition is that
functionE is now required to return the earliest time when the system can transition to statesi while staying
entirely belowρOPT (t) and using at mostb+ 1 states from〈s0, . . . , si〉. The base case isE(s0, ρ, b) = 0
for all b ≥ 0. Intuitively, E(si, ρ, b) is determined by the “best” statesj prior to si such that at mostb − 1
states were used to reachsj. Notice that for any given statesi and fixedρ, E(sj , ρ, b) is non-increasing as
b increases. Therefore, as above we can writeE(si, ρ, b) = minj<i t

′
j, wheret′j is the earliest time when

the systemρ-eagerly transitions fromsj to si given that the transition tosj wasρ-eager and occurred at
E(sj , ρ, b− 1). The running time increases by a factor ofm now and isO(k2m(log k) log(1/ǫ)).

6 A probability-based algorithm

Karlin et al.study the two-state case when the length of the idle period isgenerated by a known probability
distribution p [9]. (Although they examined the problem in the context of the spin-block problem, their
problem is identical to our two-state case.) They observed that the expected cost of the online strategy that
makes the transition to the sleep state at timeT is

∫ T

0
p(t)(κ0t)dt+

∫ ∞

T

p(t)
(

κ0T + κ1(t− T) + β
)

dt, (3)

whereκ0 is the power consumption rate in the active state,κ1 is the power consumption rate in the sleep
state andβ is the transition cost between the two states. The online strategy then should select the transition
timeT that minimizes this cost.

10

The multi-state case presents two distinct challenges. Thefirst is to determine the optimal sequence of
states through which an online strategy should transition throughout the course of the idle period. Then once
this sequence has been determined, the optimal transition times need to be determined. Our proof proceeds
by establishing that the only transition times that need to be considered are the optimal transition times for
two-states systems. Suppose, for example, that we are considering a sequence of state transitions in which
statesi is followed by statesj. LetTi,j denote the optimal transition time from statesi to sj if these were the
only two states in the system (that is, ifsi were the active state andsj were the only sleep state). Note that
Ti,j can be determined by the expression above. We establish thatregardless of the rest of the sequence, the
optimal transition point from statesi to sj is Ti,j . We call theTi,j ’s thepairwise-optimaltransition times.

Lemmas 7 and 8 establish that the pairwise-optimal transition times happen in the right order. That is
for i < k < j, Ti,k ≤ Tk,j. If this is not the case, then any subsequence that hassi followed bysk followed
by sj can not possibly be the best sequence of states. Note that theTi,j ’s may not necessarily be unique. In
general, we will select the earliest transition time that minimizes the cost for the two state system.

Lemma 9 then shows that as long as the pairwise-optimal transition times are in the right order, they
give the globally optimal set of transition times for that subsequence. Our algorithm then uses this fact to
find the optimal sequence of states by dynamic programming. Note that it is not necessary to exhaustively
consider all possible subsequences.

6.1 Optimal transition times

Consider a particular subsequence ofl+1 statessa0 , . . . sal
. In order to avoid the double subscripts, through-

out this subsection we will rename our subsequence.q0, q1, . . . , ql. Since the strategy must start in states0,
we can assume thatq0 = s0. Fori < j, defineβi,j to be the cost to transition from stateqi to stateqj, that is,
βi,j = dai,aj

. Furthermore, we will refer to the power consumption rate ofstateqi asαi, that is,αi = κai
.

We will consider the strategy that transitions through the states in the subsequenceq0, q1, . . . , ql. Sup-
pose that we use transition timeTi to transition from stateqi−1 to stateqi. It will be convenient for notation
to defineTl+1 =∞ andT0 = 0. The cost of the strategy that uses these transition times is:

cost(T1, . . . , Tl) =

l+1
∑

j=1

∫ Tj

Tj−1

p(t)αj−1(t− Tj−1)dt +

l
∑

j=1

∫ ∞

Tj

p(t)
(

αj−1(Tj − Tj−1) + βj−1,j

)

dt.

(4)

The goal is to pick theT1, . . . , Tl so as to minimize the above cost. This is the optimal cost for the subse-
quenceq0, . . . , ql.

For eachi ∈ {1, . . . , l}, let γi =
αi−1−αi

βi−1,i
.

Lemma 7 Suppose that there is ani < j such thatγi < γj , then there is a a strict subsequence ofq0, . . . , ql
whose optimal cost is no greater than the optimal cost forq0, . . . , ql.

Proof : Consider the firstj such thatγj−1 < γj . Let (t̄1, . . . t̄j−1, t̄j, . . . , t̄l) be the sequence of thresholds
that minimizes the cost of this sequence of states. Define thefollowing quantities:

Fj−1,j = cost(t̄1, . . . t̄j−2, t̄j−1, t̄j , t̄j+1 . . . , t̄l)

Fj−1,j−1 = cost(t̄1, . . . t̄j−2, t̄j−1, t̄j−1, t̄j+1 . . . , t̄l)

Fj,j = cost(t̄1, . . . t̄j−2, t̄j , t̄j , t̄j+1 . . . , t̄l)

We will show thatFj−1,j is greater than or equal to a weighted average ofFj−1,j−1 andFj,j which means
that it must be greater than or equal to at least one of these values. This means that the strategy that transitions

11

from stateqj−2 to stateqj−1 and then immediately transitions to stateqj at either timētj−1 or t̄j is at least
as good as the original strategy. Sinceβj−2,j ≤ βj−2,j−1 + βj−1,j, skipping statej − 1 altogether can only
improve the strategy.

Below we have an expression forFj,j − Fj−1,j which can be derived from the definition for the cost in
equation (4), UnderFj,j the transition from stateqj−2 to qj−1 is moved forward from timētj−1 to time t̄j.
Any time spent in the interval[t̄j−1, t̄j] happens at the higher power rate ofαj−2 instead ofαj−1. This is
accounted for in the first two terms of the sum. However, idle times ending in the interval[t̄j−1, t̄j] save on
the transition cost which is accounted for in the last term below.

Fj,j − Fj−1,j =

∫ t̄j

t̄j−1

p(t)(t− t̄j−1)(αj−2 − αj−1)dt+

∫ ∞

t̄j

p(t)(t̄j − t̄j−1)(αj−2 − αj−1)dt

−
∫ t̄j

t̄j−1

βj−2,j−1p(t)dt.

Dividing by (αj−2 − αj−1), This becomes

Fj,j − Fj−1,j

αj−2 − αj−1
=

∫ t̄j

t̄j−1

p(t)(t− t̄j−1)dt +

∫ ∞

t̄j

p(t)(t̄j − t̄j−1)dt −
∫ t̄j

t̄j−1

1

γj−1
p(t)dt. (5)

Below, we use the definition of cost in equation (4) to get an expression forFj−1,j − Fj−1,j−1. Note that
in Fj−1,j−1, the transition from stateqj−1 to stateq is moved back from timētj to time t̄j−1. Thus,Fj−1,j

will spendαj−1 − αj more power thanFj−1,j−1 for any time spent in the interval[t̄j−1, t̄j]. Furthermore,
Fj−1,j−1 will have an additional transition cost ofβj−1,j for those intervals that end in the period[t̄j−1, t̄j].

Fj−1,j − Fj−1,j−1 =

∫ t̄j

t̄j−1

p(t)(t− t̄j−1)(αj−1 − αj)dt +

∫ ∞

t̄j

p(t)(t̄j − t̄j−1)(αj−1 − αj)dt

−
∫ t̄j

t̄j−1

βj−1,jp(t)dt.

Dividing by (αj−1 − αj), This becomes

Fj−1,j − Fj−1,j−1

αj−1 − αj
=

∫ t̄j

t̄j−1

p(t)(t− t̄j−1)dt+

∫ ∞

t̄j

p(t)(t̄j − t̄j−1)dt−
∫ t̄j

t̄j−1

1

γj
p(t)dt. (6)

Comparing, equations (5) and (6), the expressions are almost identical except for theγ in the last term.

Sinceγj−1 < γj and
∫ t̄j
t̄j−1

p(t)dt ≥ 0, We have that

Fj,j − Fj−1,j

αj−2 − αj−1
≤ Fj−1,j − Fj−1,j−1

αj−1 − αj
.

Letω1 = 1/(αj−2 − αj−1) andω2 = 1/(αj−1 − αj). Note that bothω1 andω2 are at least0. Rearranging,
we get that

(

ω1

ω1 + ω2

)

Fj,j +

(

ω2

ω1 + ω2

)

Fj−1,j−1 ≤ Fj−1,j.

Now suppose that we consider only the two-state system consisting of stateqi−1 and stateqi. We will
let τi denote the optimal threshold time if these are the only two states in the system. We have thatτi is the
timeT that minimizes

∫ T

0
p(t)αi−1tdt+

∫ ∞

T

p(t)
(

αi−1T + αi(t− T) + βi−1,i

)

dt.

12

Note that the value ofT that results in the minimum above may not be unique. In this case, we
take τ to be the smallest value which achieves the minimum. Also note that by subtracting the term
∫ ∞
0 p(t)αitdt (which is independent ofT) and dividing byβi−1,i in the above definition, it can be seen

thatτi = arg minT f(γi, T) where

f(γ, T) =

∫ T

0
p(t)γtdt+

∫ ∞

T

p(t)(γT + 1)dt.

Note that for a two-state system whose active state and sleepstates has power consumption rates of
γ and 0 respectively and whose transition cost is 1,f(γ, T) denotes the expected power consumed by an
online strategy that transitions to the sleep state at timeT . We will show that for a particular subsequence of
states, if we minimize the cost over all choices for the thresholds, the resulting thresholds are those obtained
by the pair-wise optimization above. First, however, we must establish that theτi values have the correct
ordering.

Lemma 8 If γi > γi+1, thenτi ≤ τi+1.

Proof : Intuitively, γi is the ratio of the additional power cost of being in stateqi instead of stateqi−1 over
the transition costs between the two states. It stands to reason that the larger this cost, the sooner one would
want to transition from stateqi−1 to stateqi.

We will formalize this argument using a proof by contradiction. Suppose that we haveτi > τi+1 and
γi > γi+1. The proof will make use of the definition off(γ, T) given above.τi is the smallest value for
T which attains the minimum off(γi, T). Sinceτi+1 < τi, we know thatf(γi, τi+1) > f(γi, τi). By the
definition ofτi+1, we have thatf(γi+1, τi) ≥ f(γi+1, τi+1). Thus, it should be the case that

f(γi+1, τi)− f(γi+1, τi+1) ≥ 0 > f(γi, τi)− f(γi, τi+1). (7)

Using the definition off(γ, T) above, for anyT1 < T2,

f(γ, T2)− f(γ, T1) = γ

[
∫ T2

T1

p(t)(t− T1)dt +

∫ ∞

T2

p(t)(T2 − T1)dt

]

−
∫ T2

T1

p(t)dt.

The quantity inside the square braces above is non-negative. This implies that the quantityf(γ, T2) −
f(γ, T1) is non-decreasing inγ. This, however, contradicts Inequality 7 and the fact thatγi > γi+1.

Finally, we prove the main lemma which states that the transition times are simultaneously optimized at
the pairwise-optimal transition points.

Lemma 9 For a given subsequence of statesq0, . . . , ql, if τi−1 < τi for all i ∈ {1, . . . , l}, then the minimum
total cost is achieved forcost(τ1, . . . , τl).

Proof : The basic idea is that we can interpretcost(T1, . . . , Tl) −
∫ ∞
0 p(t)αltdt as the sum of the power

consumed inl two-state systems, where theith system, (fori = 1, . . . , l), has states whose power consump-
tion rates are(αi−1 −αi) and 0 and the cost to transition between the two isβi−1,i. Note that

∫ ∞
0 p(t)αltdt

is a constant, independent of the choice ofTi’s. After rescaling, one can write this expression as a linear
combination of thef(γi, Ti) terms. Sinceτi minimizesf(γi, T), and theτi values have the right ordering,
this implies thatcost(T1, . . . , Tl) is minimized by settingTi = τi for i = 1, . . . , l.

We will establish below that we can rewrite (4) as follows:

cost(T1, . . . , Tl) =

∫ ∞

0
p(t)αltdt

+

l
∑

i=1

[
∫ Ti

0
p(t)(αi−1 − αi)tdt +

∫ ∞

Ti

p(t)
(

(αi−1 − αi)Ti + βi−1,i

)

dt

]

. (8)

13

So by rescaling, we get that

cost(T1, . . . , Tl)−
∫ ∞

0
p(t)αltdt =

l
∑

i=1

βi−1,if(γi, Ti).

We want to chooseT1 ≤ · · · ≤ Tl to minimize this expression. Sinceτ1 ≤ · · · ≤ τl and eachτi =
arg minT f(γi, T) it follows that the minimum is attained by settingTi = τi for eachi.

To complete the proof we show the equivalence of (4) and (8). It suffices to show that (4) and (8)
integrate the same expression over each interval[Ti−1, Ti), for i = 1, . . . , l + 1. The integrand in (4) over
the interval[Ti−1, Ti) is

p(t)

[

αi−1(t− Ti−1) +

i−1
∑

j=1

(

αj−1(Tj − Tj−1) + βj−1,j

)

]

,

and the integrand in (8) is

p(t)

[i−1
∑

j=1

(

(αj−1 − αj)Tj + βj−1,j

)

+
(

l
∑

j=i

(αj−1 − αj) + αl

)

t

]

. (9)

The summations over thej indices in (9) telescope to show that the two expressions areidentical.

6.2 The optimal state sequence

We now present a simple polynomial time algorithm to obtain the optimal state sequence for a given system.
First, for each pair(i, j), 0 ≤ i < j ≤ k, letTi,j denote the optimal transition point ifsi andsj were the only
two states in the system. The time complexity of determininga singleTi,j depends on the representation of
the probability distribution. In practice, this is most likely to be estimated by a finite histogram withB bins
starting at time0 and sampled at a uniform discrete interval ofδ. It follows that bini corresponds to time
δi. It is not difficult to generalize this for variable sized bins. We will also assume that all transition times
occur at someδi. The height of bini isH(i) and this implies that the probability that the idle timet equals
δi is given by H(i)

P

i H(i) . In Algorithm 1, we calculateACC [i] andACCT [i] values, which are
∫ iδ

0 p(t)dt and
∫ iδ

0 tp(t)dt and we then use them to evaluateTi,j values. We can re-write the expression for the cost of a
two state system in equation (3) as

κi

∫ T

0
p(t)tdt + κj

∫ ∞

T

p(t)tdt +
(

(κi − κj)T + βi,j

)

∫ ∞

T

p(t)dt.

We also denote
∫ Bδ

0 p(t)dt and
∫ Bδ

0 tp(t)dt asTOTAL andTOTALT respectively. Using the pre-calculated
values above, the cost of transitioning from statesi to statesj at timeδl is

κi · ACCT [l] + (κilδ − κj lδ + βi,j)(TOTAL− ACC [l]) + κj(TOTALT − ACCT [l]).

Once theTi,j ’s are found, we sweep through them in non-decreasing order,keeping a running tab of the
best sub-schedules that we can achieve ending in each statesi at each point in time. When we encounter a
Ti,j, we check to see if transitioning fromsi to sj can improve the current best sub-schedule ending insj,
and if it does, update our data structure to reflect it.

A given strategy divides time into intervals where each interval is the period of time spent in a particular
state. The expected cost for a strategy given in equation (4)is obtained by summing over the expected cost

14

Algorithm 1 EvaluatingTi,j values

ACC [0]← H[0]
ACCT [0]← 0
for k = 1 toB do

ACC [k]← ACC [k − 1] +H[k]
ACCT [k]← ACC [k − 1] +H[k]× k · δ

end for
TOTAL← ACC [B]
TOTALT ← ACCT [B]
for all (i, j) pairs such that0 ≤ i < j ≤ k do
min←∞, argmin← −1
for l = 0 toB − 1 do
val = κi ·ACCT [l] + (κilδ − κj lδ + βi,j)(TOTAL− ACC [l])

+κj(TOTALT − ACCT [l])
if val < min then
min← val
argmin← l

end if
end for
Ti,j ← argmin · δ

end for

incurred in each interval. The cost for each interval is divided into two parts which results in two separate
summations in equation (4). We define the functionQ for the first term which is

Q(ts, j, tf) =

∫ tf

ts

p(t)κi(t− ts)dt.

This is the expected cost of staying in statesi in the interval[ts, tf) for those idle periods whose length is
also in the interval[ts, tf). Define

R(i, ts, j, tf) =

∫ ∞

tf

p(t)
(

αi(tf − ts) + βi,j

)

dt.

This is the expected cost for those intervals longer thantf of staying in statesi over the time period[ts, tf)
and then transitioning to statesj. Note thatQ(δli, j, δlj) andR(i, δli, j, δlj) can both be evaluated in
constant time givenACC [li], ACC [lj], ACCT [li] andACCT [lj] defined above.

At each transitionTi,j, we check to see if the current best schedule that ends in statesj can be improved
by transitioning toj from the current best schedule that ends in statesi. For this purpose, we maintain two
arrays of sizek + 1: t[i] is the time at which the current best schedule that ends at state si transitions tosi
andh[i] is the cost att[i] of that schedule. Initially,h[0] ← 0 and all otherh[i] ← ∞. t[i], for all i can be
initialized to0. In Procedure 2, we provide the pseudocode for processing ateach transition pointTi,j.

It is easy to see that each transition point takes a constant amount of processing. The sorting takes an
overhead ofO(k2 log k). The initial preprocessing to calculate the transition points takesO(k2B). Hence,
the total running time isO(k2(log k +B)).

The algorithm can be easily extended to find the algorithm that minimizes the expected cost subject
to the constraint that onlym states are ever reached. We maintaint[i, b] andh[i, b] for all statessi and
b < min{m, i}. These are the best time and energy required to reach statei subject to at mostb states being
reached. The algorithm is given below in Procedure 3.

15

Procedure 2 ProcessingTi,j in the line sweep algorithm
Current Status: Ti,j is the transition point that is being processed
{The cost up to timeTi,j if transitioning fromi to j atTi,j}
h1← h[i] +Q(t[i], j, Ti,j) +R(i, t[i], j, Ti,j)
{The cost up to timeTi,j if transitioning toj at the current best time oft[j]}
h2← h[j] +Q(t[j], j, Ti,j) +R(j, t[j], j, Ti,j)
if h1 < h2 then
h[j]← h1
t[j]← Ti,j

end if

Procedure 3 ProcessingTi,j in the line sweep algorithm with the number of states constrained
Current Status: Ti,j is the transition point that is being processed
for b = 1 . . . j − 1 do
h1← h[i, b − 1] +Q(t[i, b − 1], j, Ti,j) +R(i, t[i, b − 1], j, Ti,j)
h2← h[j, b] +Q(t[j, b], j, Ti,j) +R(j, t[j, b], j, Ti,j)
if h1 < h2 then
h[j, b]← h1
t[j, b]← Ti,j

end if
end for

References

[1] http://www.microsoft.com/windows2000/techenthusiast/features/
standby1127.asp.

[2] C. Anderson and A. Karlin. Two adaptive hybrid cache coherency protocols. InProceedings of the
Second International Symposium on High-Performance Computer Architecture, pages 303–313, 1996.

[3] Y. Azar, Y. Bartal, E. Feuerstein, A. Fiat, S. Leonardi, and A. Rosen. On capital investment.Algorith-
mica, 25:22–36, 1999.

[4] L. Benini, A. Bogliolo, and G. De Micheli. A survey of design techniques for system-level dynamic
power management.IEEE Transactions on Very Large Scale Integration (TVLSI) Systems, 8(3):299–
316, 2000.

[5] Peter Damaschke. Nearly optimal strategies for specialcases of on-line capital investment.Theoretical
Computer Science, 302:35–44, 2003.

[6] S. J. Eggers and R. H. Katz. Evaluating the performance offour snooping cache coherency protocols.
In Proceedings of the 16th annual international symposium on Computer architecture, pages 2–15.
ACM Press, 1989.

[7] S. Irani, R. Gupta, and S. Shukla. Competitive analysis of dynamic power management strategies for
systems with multiple power savings states. InIEEE Conference on Design, Automation and Test in
Europe, 2002.

16

[8] Sandy Irani, Sandeep Shukla, and Rajesh Gupta. Online strategies for dynamic power management in
systems with multiple power saving states.Trans. on Embedded Computing Sys., 2003. Special Issue
on Power Aware Embedded Computing.

[9] A. Karlin, M. Manasse, L. McGeoch, and S. Owicki. Randomized competitive algorithms for non-
uniform problems. InACM-SIAM Symposium on Discrete Algorithms, pages 301–309, 1990.

[10] Anna R. Karlin, Claire Kenyon, and Dana Randall. Dynamic tcp acknowledgement and other stories
about e/(e-1). InProceedings of the thirty-third annual ACM symposium on Theory of computing,
pages 502–509, 2001.

[11] Anna R. Karlin, Kai Li, Mark S. Manasse, and Susan Owicki. Empirical studies of competitve spinning
for a shared-memory multiprocessor. InProceedings of the thirteenth ACM symposium on Operating
systems principles, pages 41–55. ACM Press, 1991.

[12] S. Keshav, C. Lund, S. Phillips, N. Reingold, and H. Saran. An empirical evaluation of virtual circuit
holding time policies in ip-over-atm networks.IEEE Journal on Selected Areas in Communications,
13(8):1371–1382, 1995.

17

