
Optimal Power-Down Strategies

John Augustine∗

jea@ics.uci.edu
School of Information and Computer Science,
Univ. of California at Irvine, Irvine, CA 92697

Sandy Irani∗

irani@ics.uci.edu
School of Information and Computer Science,
Univ. of California at Irvine, Irvine, CA 92697

Chaitanya Swamy†

swamy@cs.cornell.edu
Dept. of Computer Science,

Cornell University, Ithaca, NY 14853

Abstract

We consider the problem of selecting threshold times
to transition a device to low-power sleep states during an
idle period. The two-state case in which there is a single
active and a single sleep state is a continuous version of
the ski-rental problem. We consider a generalized version
in which there is more than one sleep state, each with its
own power consumption rate and transition costs. We give
an algorithm that, given a system, produces a determinis-
tic strategy whose competitive ratio is arbitrarily close to
optimal. We also give an algorithm to produce the optimal
online strategy given a system and a probability distribu-
tion that generates the length of the idle period. We also
give a simple algorithm that achieves a competitive ratio of
3 + 2

√
2 ≈ 5.828 for any system.

1. Introduction

Suppose you are about to go skiing for the first time in
your life. Naturally, you ask yourself whether to rent skis
or to buy them. Renting skis costs, say, $30, whereas buy-
ing skis costs $300. If you knew how many times you would
go skiing in the future (ignoring complicating factors such
as inflation, and changing models of skis), then your choice
would be clear. If you knew you would go at least 10 times,
you would be financially better off by buying skis right from
the beginning, whereas if you knew you would go less than
10 times, you would be better off renting skis every time.

∗ Research supported partially by NSF grant CCR-0105498 and by
ONR Award N00014-00-1-0617.

† Research supported partially by NSF grant CCR-9912422.

Alas, the future is unclear, and you must make a decision
nonetheless.

Although theSki-Rentalproblem is very simple abstrac-
tion, this basic paradigm arises in many applications in
computer systems. In these situations, there is a system that
can reside in either a low-cost or a high-cost state. Occa-
sionally, it is forced to be in the high-cost state (usually to
perform some task). A period between any two such points
in time is called anidle period.

The system pays a per time unit cost to reside in the
high-cost state. Alternatively, it can transition to the low-
cost state at a fixed one-time cost. If the idle period is long,
it is more advantageous to transition to the low cost state im-
mediately. If the idle period is short, it is better to stay inthe
high-cost state. An online algorithm which does not know
the length of the idle period must balance these two possi-
bilities.

This problem has been studied in the context of shared
memory multiprocessors in which a thread is waiting for
a locked piece of data and must decide whether to spin or
block [7, 8]. Researchers investigating the interface between
IP networks and connection-oriented networks have discov-
ered this same underlying problem in deciding whether to
keep a connection open between bursts of packets that must
be sent along the connection [9]. The problem also arises
in cache coherency in deciding whether to update or invali-
date data that has been changed in a processor’s local cache
[4, 2].

An important application of the ski-rental problem is in
minimizing the power consumed by devices that can tran-
sition to a low powersleepstate when idle. The sleep state
consumes less power; however, one incurs a fixed start-up
cost in making the transition to the high-poweractivestate
in order to begin work when a new job arrives. At the archi-
tectural level, the technique of eliminating power to a func-

tional component is called clock/power gating. At a higher
level, the powered-down component might be a disk drive
or even the whole system (e.g., a laptop that hibernates).
The embedded systems community has invested a great deal
of effort into devising policies governing the selection of
power states during idle periods (termedDynamic Power
Managementin their literature). See [3] for a survey. These
techniques have been critical to maximizing battery use in
mobile systems. While power is already a first-class param-
eter in system design, it will become increasingly impor-
tant in the future since battery capacities are increasing at a
much slower rate than power requirements.

Most of the previous work on this problem has been con-
cerned with two-state systems which have an active state
and a single sleep state. This paper focuses on finding
power-down thresholds for systems that have more than one
low-power state. An example of such a system is the Ad-
vanced Configuration and Power Interface (ACPI) included
in the BIOS on most newer computers which has five power
states, including hibernation and three levels of standby [1].

2. Previous Work and New Results

For the two-state problem, an online algorithm consists
of a single thresholdT after which time the algorithm will
transition from the active to the sleep state. The input to the
problem is the length of the idle period and the cost of an
algorithm is the total amount of energy it consumes over a
single idle period. Typically, an online algorithm is evalu-
ated in terms of its competitive ratio — the ratio of the cost
of the online algorithm to the cost of the optimal offline al-
gorithm, maximized over all inputs. When randomized al-
gorithms are considered, we look at the ratio of the expected
cost of the online algorithm to the cost of the offline algo-
rithm. Previous work has also addressed this problem when
the idle period is generated by a known probability distribu-
tion. In this case, the online algorithm will choose a thresh-
old which minimizes its expected cost. We call such algo-
rithmsprobability-basedalgorithms.

The best deterministic online algorithm will stay in the
high power state until the total energy spent is equal to the
cost to power up from the low power state. It is known that
this algorithm achieves the optimal competitive ratio of two.
If the idle period is generated by a known probability distri-
bution, then the algorithm that minimizes its expected cost
is always within a factor ofe/(e − 1) of optimal. Further-
more, this bound is tight since there is a distribution over
the idle period lengths which will force any online algo-
rithm to consume an expectede/(e− 1) times more energy
than the optimal offline algorithm [7].

Note that in the context of power-down systems, it may
not be the case that the power usage in the sleep state is
zero or even that the start-up cost in the active state is zero.

In these cases, both the online and the offline algorithm will
have an identical additional cost. Thus, the ratio of the on-
line to the offline cost will decrease and the optimal com-
petitive ratio will be strictly less than two. These additional
costs do not change the optimal online or offline strategy in
either the deterministic or the probability-based case. The
optimal competitive ratio that can be achieved for such sys-
tems can easily be determined as a function of all the pa-
rameters of the system.

The problem with multiple sleep states is formalized
as follows: the sequence of states is denoted〈s0, ..., sk〉.
There is also a vector of power-consumption ratesK =
〈κ0, . . . , κk〉, whereκi is the power consumption rate of
the system in statesi. We assume as a convention that the
states are ordered so thatκi > κj for 0 ≤ i < j ≤ k.
Thus, the system must transition tos0 (the activestate) at
the end of the idle period. There is an associated transi-
tion costdi,j to move from statesi to sj . A systemis de-
scribed by a pair(K, d). Note that there can be costs to move
from high-power states to low-power states and vice versa.
However, the only power-up costs that are of interest are
the costs to transition from a particular statesi to the ac-
tive states0 since the only reason to transition to a higher
power state is when a new task arrives. Ascheduleor strat-
egyA = (SA, TA) consists of a sequence ofnA statesSA
that is a subsequence ofS and a sequence of transition times
TA. Where obvious, we will omit the subscriptA. We re-
quire thatS(0) = s0 andT (0) = 0. A(t) will denote the
cost of the schedule produced by strategyA for an idle pe-
riod of lengtht.

The power-down problem for systems with multi-
ple states has been examined for the special case where
the cost to power-down is zero and the algorithm only
pays to move from low power states to higher power states
[5]. Note that this also includes the case where the transi-
tion costs are additive (di,j + dj,k = di,k for i < j < k)
since the costs to power down can then be folded
into the costs to power up. Generalizations of the al-
gorithms for the two-state case are given along with
upper bounds on the competitive ratio of these algo-
rithms for multi-state systems with additive transition costs.
Namely, it is shown that the generalized deterministic algo-
rithm is 2-competitive and the probability-based algorithm
is e/(e− 1)-competitive.

There are two important directions left open in this work.
The first is based on the observation that systems, in general,
do not have additive transition costs. In many scenarios,
additional energy is spent in transitioning to lower power
states. Furthermore, there is overhead in stopping at inter-
mediate states, i.e. the transition costs are not additive.(See
[3] for an example.) The second point is that these upper
bounds are typically not optimal. For multi-state systems,
the optimal competitive ratio that can be achieved will, in

general, be a complicated function of all the parameters of
the system (the power consumption rates as well as transi-
tion costs). While it may not be feasible to express the op-
timal competitive ratio as a function of all these parame-
ters, a system designer would, in general, like to design a
power-down strategy that obtains the best possible compet-
itive ratio given the constraints of his or her particular sys-
tem.

This paper establishes the following results.

• We give an algorithm that takes as input a description
of a system(K, d), and an error parameterε, and pro-
duces a power-down strategyA = (SA, TA) whose
competitive ratio is withinε of the best competitive
ratio that can be achieved for that system. The algo-
rithm runs in timeO(k2 log k log(1/ε)), wherek + 1
is the number of states in the system, and also outputs
the competitive ratio ofA. The algorithm works via
a decision procedure which determines for a system
and a constantρ if there is aρ-competitive strategy for
that system. We use this decision procedure to also ob-
tain lower bounds for specific systems. In particular,
we show a lower bound of2.45 for the best competi-
tive ratio that can be achieved for a particular system.
This is the first lower bound know that is greater than
2.

• Experimental results show that there are significant
performance gains to be made by estimating the dis-
tribution governing the length of an idle period based
on recent history and using this estimate to drive a
probability-based strategy [6]. We give an algorithm
that takes as input a description of a system and a prob-
ability distribution generating the idle period length
and produces the optimal power-down strategy. Nat-
urally, the running time of the algorithm will depend
on the representation of the distribution. In practice,
this is most likely to be a histogram. Our algorithm
runs in timeO(k2(log k + B)) whereB is the num-
ber of bins in the histogram andk + 1 is the number
of states. One outcome of the proof is that it also es-
tablishes the optimality of the strategy given in [5] for
additivesystems.

• We give a deterministic strategy that achieves a com-
petitive ratio of 3 + 2

√
2 ≈ 5.8284 for all sys-

tems. This result gives a bound on the competitive ratio
achieved by the optimal strategies generated by our al-
gorithms. Note that3 + 2

√
2 also serves as a bound

on the ratio of the expected costs of the online and of-
fline when the input is probabilistically generated.

For the remainder of this paper, we use the termssched-
ule or strategyto refer to the choices of states and thresh-
old times for powering down. The termalgorithmwill re-

fer to a procedure that produces a schedule or strategy based
on a particular system.

3. Preliminaries

First we will establish that we can assume without loss
of generality that the power-up transition costs are zero. If
this is not the case for some system(K, d), we can define
a new system such that for anyi < j, the cost to transition
from i to j is di,j + dj,0 − di,0 and the cost to go fromj
to i is 0. Any set of actions in the original system will incur
the same cost in the new system. For the remainder of this
paper, we will assume thatdi,0 = 0 for all i.

Let D(i) denoted0,i. ThenOPT (t) = mini(D(i) +
κit). Let S(t) denote the state which attains the minimum
— the optimal state. The optimal strategy is to transition
to stateS(t) at time 0, and stay there through timet. We
assume that the optimal strategy will actually “use” every
state, i.e.,range(S(t)) = {s0, . . . , sk}. None of the on-
line strategies we present will make use of a state that is not
used by the offline strategy for somet.

b bb

State 3

State 2State 1State 0

321

Energy

Time

Figure 1. Energy consumed by the optimal strat-
egy as a function of idle period length.

Note thatS(t) is non-decreasing witht. As the idle
period length gets longer, it becomes more worthwhile to
pay the extra cost to transition to a lower power state. Let
bi denote the first time instant at which statei becomes
the optimal state, sob(0) = 0 andD(i − 1) + κi−1bi =

D(i) + κibi ⇒ bi = D(i)−D(i−1)
κi−1−κi

. We haveb(0) <

b(1) < . . . b(k), so we can writeOPT (t) = D(i) + κit for
t ∈ [bi, bi+1]. We compare our online strategy withOPT (t)
and want to get a strategyA which minimizes the compet-
itive ratio,cA = supt

A(t)
OPT (t) whereA(t) denotes the total

power consumption ofA by timet. Figure 1 shows the total
energy consumed byOPT as a function of the length of the
idle period. There is a line for each state. They-intercept
is the transition cost to move to that state from the active

state and the slope is the power consumption rate. The en-
ergy consumed by the optimal strategy is the lower enve-
lope of these lines since it will pick the single state which
minimizes the cost for a given idle period length.

4. A (3 + 2
√

2)-competitive strategy

First we establish that we can assume that for alli < j,
di,j < d0,j . Recall that we are really usingdi,j to denote
di,j + dj,0 − di,0 andd0,j to denoted0,j + dj,0. Thus, the
assumption thatdi,j < d0,j really amounts to assuming that
di,j < di,0 + d0,j . If this were not the case, we could just
transition from statesi to statesj by first going tos0 and
then down tosj .

Let us for the moment assume thatD(i) ≥ γD(i −
1) for all i = 1, . . . , k and for someγ > 1. This is a non-
trivial assumption that we will have to handle later. Con-
sider the strategy,A, which always stays in stateS(t), the
same state asOPT , at every timet. This is the strategy pro-
posed in [5] and shown to be2-competitive for additive sys-
tems. Note that this strategy is the same as the2-competitive
balance strategy for the two-state case.

For t ∈ [bi, bi+1] the online cost is,A(t) =
∑i−1
j=0(κj(bj+1 − bj) + dj,j+1) + κi(t − bi), and the

ratio A(t)
OPT (t) will be maximized att = bi. We have,

A(bi) =

i−1
∑

j=0

(κj(bj+1 − bj) + dj,j+1)

≤
i−1
∑

j=0

κj(bj+1 − bj) +

i
∑

j=1

D(j)

≤ OPT (bi) +D(i)

i
∑

j=1

γ−(i−j)

≤
(

1 +
γ

γ − 1

)

OPT (bi)

=
2γ − 1

γ − 1
·OPT (bi). (1)

This holds for anyt implying a competitive ratio of2γ−1
γ−1 .

Now suppose the assumptionD(i) ≥ γD(i − 1) does
not hold. We consider a newoffline strategyOPT ′ that
only uses a subset of statesS′ for which the property does
hold, and is aγ-approximation ofOPT , i.e.,OPT ′(t) ≤
γ ·OPT (t). We now view our problem as specified by just
the states inS′, and execute strategyA as specified above,
emulatingOPT ′ instead ofOPT . We get thatA′(t) ≤
2γ−1
γ−1 OPT ′(t) ≤ γ(2γ−1)

γ−1 OPT (t). Settingγ = 1 + 1√
2
,

we get a competitive ratio of3 + 2
√

2 ≈ 5.8284.
We determineOPT ′ as follows. LetS′ = {sk} initially.

Consider the states inS in reverse order. Letsi be the last
state added toS′. We find the largestj, 0 ≤ j < i s.t.

D(j) ≤ D(i)/γ. We addsj to S′ and continue until no
suchj exists. Note thats0 ∈ S′ sinceD(0) = 0. OPT ′ will
execute the optimal offline strategy assuming that only the
states inS′ are available. Consideri, j s.t.si, sj ∈ S′ and
no s` is in S′ for i < ` < j. We haveOPT ′(t) = OPT (t)
for t ∈ [bi, bi+1) andt ∈ [bj , bj+1). For` s.t.i < ` < j and
time t ∈ [b`, b`+1). OPT ′(t) = min(D(i) + κit,D(j) +
κjt) and OPT (t) = D(`) + κ`t > OPT ′(t)/γ since
D(`) > D(j)/γ, κ` > κj . SoOPT ′ is aγ-approximation
to OPT .

Theorem 1 There is a(3 + 2
√

2)-competitive strategy for
any system.

5. A Near Optimal Deterministic Algorithm

In this section, we turn our attention to obtaining a near
optimal schedule for a particular system. More precisely,
given a system(K, d) with state sequenceS for which the
optimal online schedule has competitive ratioρ∗, we give an
algorithm that returns a(ρ∗ + ε)-competitive online sched-
ule in timeO(k2 log k log(1/ε)). The algorithm is based
on a decision procedure which determines whether aρ-
competitive schedule exists for a given value ofρ. Theo-
rem 1 establishes an upper bound of3 + 2

√
2 on the opti-

mal competitive ratio, so we perform a bisection search in
the range[1, 3 + 2

√
2] to find the smallestρ such that there

exists aρ-competitive schedule. We also output the result-
ing schedule.

The following lemma shows that the online strategy must
eventually get to a sufficiently low-power state. Lemma 3
allows us to limit our concern to just the transition points in
any online schedule. It is straightforward to show the fol-
lowing.

Lemma 2 If A = (S, T) is aρ-competitive strategy ands`
is the last state inS, thenκ` ≤ ρ · κk.

Proof : For the sake of contradiction, assume thatκ` >
ρ · κk. ForA to beρ-competitive, it will have to lie entirely
within the convexρ · OPT . However, inρ · OPT , the last
line has a slopeρ ·κk, which will meet the last line inA be-
cause it has larger slope ofκ`, after whichA will start ex-
ceedingρ · κk. This is a contradiction.

Lemma 3 If a scheduleA has finite competitive ratio, then
the timet at which A(t)

OPT(t) is first maximized is a transition
point in the strategyA.

Proof : For the sake of contradiction, assume thatt is in
the interval(t1, t2), wheret1 andt2 are two consecutive el-
ements ofTA. If in caset > T (nA − 1), i.e., it occurs
when the system is in sleep state according toA, then as-
sumet2 =∞. There are two possible cases that we analyze

t’

Energy

TimeTime

Energy

t

Figure 2. Energy consumed by the online and optimal strategy as a function of idle period length. The
solid line is ρ ·OPT (t). The dashed line is the online cost. t is the first transition time that is not eager.
t′ shows the transformed strategy which now has an eager transi tion.

here. In the first case,t is not one of the transition points
of OPT . Let ε be some infinitesimally small positive con-
stant such that[t − ε, t + ε] does not contain any transition
points either inA or OPT . Definer(τ) = A(τ)/OPT (τ)
for any timeτ . We know thatr(t−ε) < r(t). Since both the
cost ofA andOPT are linear in the interval[t − ε, t + ε],
r(t) < r(t+ε), which is a contradiction. Now in the second
case,t is a transition point inOPT . HenceOPT will start
a new line in its cost curve starting att, whose slope will be
lower than the line beforet and hencer(t) < r(t+ ε). This,
again, is a contradiction.

We now explore ways to restrict the space of schedules
we need to consider in searching for aρ-competitive sched-
ule. For a strategyA = (S, T), we say that a transition at
time t ∈ T is ρ-eager(or just eager ifρ is clear from the
context) ifA(t) = ρ · OPT (t). We say thatA is aρ-eager
strategy ifA(t) = ρ · OPT (t) for everyt ∈ T . Note that
by Lemmas 2 and 3, aρ-eager strategy that ends at states
such thatκs ≤ ρ · κk is ρ-competitive.

Lemma 4 If A = (S, T) is a ρ-competitive strategy, then
there exists an eager strategyA′ = (S, T ′) that is alsoρ-
competitive.

Proof Sketch :Figure 2 shows a schematic of the proof.
The jumps in the online cost (the dashed line) are transition
costs. The solid line isρ ·OPT (t). The figure shows a tran-
sition timet at which the online cost is less thanρ ·OPT (t).
The idea is that we can slide such a transition time earlier
until it hits the functionρ ·OPT (t) . Since the slope of the
line before timet is steeper than after timet, that is, since
we transition to state with lower power consumption rate at
time t, transitioning earlier only decreases the cost. We do

this for each transition point from left to right to get an ea-
ger strategy.

Lemma 4 immediately gives an algorithm that is expo-
nential ink, the number of states, and determines whether
a ρ-competitive algorithm exists for the system. This algo-
rithm enumerates all subsequences of states, and determines
theρ-eager strategy for that subsequence. Determining the
ρ-eager strategy is done by finding the eager transition to
each state based on the eager transitions to all the previous
states in the sequence as described in the proof of Lemma
4. A ρ-competitive strategy for the system exists if and only
if one of theseρ-eager strategies isρ-competitive. The re-
mainder of this section presents a way to remove the expo-
nential dependence onk.

Let S = 〈s0, s1, . . . , sk〉 be a sequence of states that
form a system. DefineSsi→sj

, to be the subsequence
〈si, . . . , sj〉, wheresi andsj are elements ofS such that
i < j. Let Ψs be the set of subsequences ofSs0→s that in-
cludes0 ands such that for eachψ ∈ Ψs, one can find tran-
sition times for the state sequenceψ so that in the resulting
schedule, each transition up to and including the transi-
tion to states is aρ-eager transition. For a stateq ∈ ψ, we
will use tψ,q to denote thisρ-eager transition time ofq for
the sequenceψ. (Note thatψ uniquely determines the tran-
sition timestψ,q.)

We define theearliest transition timeE(s, ρ) of states
for the given system asE(s, ρ) = minψ∈Ψs

tψ,s, that is,
E(s, ρ) is the earliest time at which any online strategy can
transition to stateswhile remainingρ-eager over all its tran-
sitions up to (and including) the transition to states. Ob-
serve that if there isρ-competitive strategy that uses state
s, then by Lemma 4, there is such aρ-early strategy, so
Ψs 6= φ andE(s, ρ) is well defined. We call a transition

to states ρ-early if it happens at timeE(s, ρ) (or simply
early). A strategy that consists entirely of early transitions
is called anρ-earlystrategy.

Lemma 5 If there is aρ-competitive strategyA = (S, T),
then there is an eager and earlyρ-competitive strategy.

Proof : Let s be the last state inS. Consider the sequence
ψ ∈ Ψs such thattψ,s = E(s, ρ) and the strategyπ that
uses only the states inψ, transitioning to stateq ∈ ψ at
time tψ,q, i.e., π =

(

ψ, {tψ,q}q∈ψ
)

. We will argue thatπ
is an eager and early strategy, and sinceκs ≤ ρ · κk, π is
ρ-competitive. Note that by definition,all transitions ofπ
areρ-eager, and the transition to states is ρ-early. We have
to show that the remaining transitions ofπ are alsoρ-early.

Suppose not. Consider the latest transition that is not
ρ-early. Suppose this happens for stater (6= s), so t1 =
tψ,r > E(r, ρ). Let r′ be the state just afterr in sequence
ψ, let T = tψ,r′ = E(r′, ρ). Let ψ′ ∈ Ψr be the se-
quence for whichtψ′,r = E(r, ρ) = t2. Consider the hy-
brid strategyπ′ that uses the states inψ′ followed by the
states inψ that appear afterr, with the transition times be-
ing tψ′,q for q ∈ ψ′ andtψ,q for q ∈ ψr′→s. For every time
t ≥ t1, we haveπ′(t) = π(t)−

(

π(t1) − π′(t1)
)

. We will
show thatπ′(t1) < π(t1) which implies, in particular, that
π′(T) < π(T). So inπ′ the transition tor′ is no longerρ-
eager. Arguing as in Lemma 5 this means that we can shift
the transition tor′ to get an eager transition at anearlier
timeT ′. But this contradicts the definition ofE(r′, ρ) since
we now have a sequenceψ′′ = 〈ψ, r′〉 ∈ Ψr′ with ρ-eager
transition times such thatT ′ = tψ′′,r′ < T = E(r′, ρ).

We now prove the claim. The points
(

t2, π
′(t2)

)

and
(

t1, π(t1)
)

both lie on theρ · OPT (t) curve. The slope of
this curve at timet = t1 is at least the slopeκr of curveπ
at timet1 sinceπ(t) ≤ ρ ·OPT (t) for t > t1. The slope of
ρ·OPT(t) decreases with increasingt, so its slope is at least
κr for all timest ∈ [t2, t1]. Hence,π(t1) = ρ ·OPT (t1) ≥
ρ ·OPT (t2)+κr(t1− t2) = π′(t2)+κr(t1− t2) = π′(t1).
The idea is illustrated in Figure 3.

From Lemma 5 we can deduce that we only need to
consider a specific early and eager schedule, the one that
is determined by theE(., ρ) values, to determine if aρ-
competitive strategy exists. We now define procedure EX-
ISTS that takes a system and a constantρ ∈ [1, 3 + 2

√
2].

The output is a YES if aρ-competitive strategy exists for
the system. The algorithm can also be modified to give us
the ρ-competitive strategy. If no such strategy exists, then
the output is NO. We employ a dynamic programming ap-
proach to calculateE(si, ρ), for 0 < i ≤ k. We always start
with the high power state and henceE(s0, ρ) = 0. Sup-
pose we have computedE(sj , ρ) for all j = 0, . . . , i − 1.
Let tj be the earliest time at which the systemρ-eagerly
transitions fromsj to si given that the transition tosj is

p

p
1

2

Figure 3. The solid line is ρ · OPT . The dashed
line is the schedule π′ from Lemma 5 and the
dashed/dotted line is π. The point labeled p2

is (t2, π
′(t2)) and p1 is (t1, π(t1)). The idea is to

show that at time t1, π′ has a lower cost than π.

ρ-eager and occurs at timeE(sj , ρ). If such a transition is
not possible, then we assigntj = ∞. We can computetj
inO(log k) time by binary searching through the list of line
segments inρ · OPT . Then,E(si, ρ) = minj<i tj . Deter-
mining eachE(sj , ρ) requires examiningj different possi-
bilities, so finding all the early transition times takes time
O(k2 log k). By Lemma 2, we know that ifE(si, ρ) is fi-
nite for some statesi whereκi ≤ ρ · κk, we know that a
ρ-competitive strategy exists. We use the above procedure
to search forρ ∈ [1, 3 + 2

√
2] within an errorε of ρ∗. The

total time taken isO(k2 log k log(1/ε)). One can quickly
elicit the schedule by starting from statek and retracing the
states that minimized the earliest transition time.

6. A Probability-based Algorithm

Karlin et al.study the two-state case when the length of
the idle period is generated by a known probability distri-
butionp [7]. (Although they examined the problem in the
context of the spin-block problem, their problem is identi-
cal to our two-state case.) They observed that the expected
cost of the online strategy that makes the transition to the
sleep state at timeT is

∫ T

0

p(t)(κ0t)dt+

∫ ∞

T

(κ0T + κ1(t− T) + β)dt,

whereκ0 is the power consumption rate in the active state,
κ1 is the power consumption rate in the sleep state andβ is
the transition cost between the two states. The online strat-
egy then should select the transition timeT that minimizes
this cost.

The multi-state case presents two distinct challenges.
The first is to determine the optimal sequence of states

through which an online strategy should transition through-
out the course of the idle period. Then once this sequence
has been determined, the optimal transition times need to
be determined. Our proof proceeds by establishing that the
only transition times that need to be considered are the op-
timal transition times for two-states systems. Suppose, for
example, that we are considering a sequence of state transi-
tions in which statesi is followed by statesj . Let Ti,j de-
note the optimal transition time from statesi to sj if these
were the only two states in the system (that is, ifsi were
the active state andsj were the only sleep state). Note that
Ti,j can be determined by the expression above. We estab-
lish that regardless of the rest of the sequence, the optimal
transition point from statesi to sj is Ti,j . We call theTi,j ’s
thepairwise-optimaltransition times.

Lemmas 6 and 7 establish that the pairwise-optimal tran-
sition times happen in the right order. That is fori < k < j,
Ti,k ≤ Tk,j . If this is not the case, then any subsequence
that hassi followed by sk followed by sj can not possi-
bly be the best sequence of states. Note that theTi,j ’s may
not necessarily be unique. In general, we will select the ear-
liest transition time that minimizes the cost.

Lemma 8 then shows that as long as the pairwise-optimal
transition times are in the right order, they give the globally
optimal set of transition times for that subsequence. Our al-
gorithm then uses this fact to find the optimal sequence of
states by dynamic programming. Note that it is not neces-
sary to exhaustively consider all possible subsequences.

6.1. Optimal Transition Times

Consider a particular subsequence ofl + 1 states
sa0

, . . . sal
. In order to avoid the double subscripts

throughout this subsection, we will re-name our subse-
quence.q0, q1, . . . , ql. Since the strategy must start in
states0, we can assume thatq0 = s0. For i < j, de-
fine βi,j to be the cost to transition from stateqi to state
qj so that isβi,j = dai,aj

. Furthermore, we will re-
fer to the power consumption rate of stateqi asαi, that is,
κai

= αi.
We will consider the strategy that transitions through the

states in the subsequenceq0, q1, . . . , ql. Suppose that we use
transition timeTi to transition from stateqi−1 to stateqi. It
will be convenient for notation to defineTl+1 = ∞ and
T0 = 0. The cost of the strategy that uses these transition
times is:

cost(T1, . . . , Tl) =

l+1
∑

j=1

∫ Tj

Tj−1

p(t)αj−1(t− Tj−1)dt

+
l

∑

j=1

∫ ∞

Tj

p(t)[αj−1(Tj − Tj−1) + βj−1,j]dt. (2)

The goal is to pick theT1, . . . , Tl so as to minimize the
above cost. This is the optimal cost for the subsequence
q0, . . . , ql.

For eachi ∈ {1, . . . , l}, let γi = αi−1−αi

βi−1,i
.

Lemma 6 Suppose that there is ani < j such thatγi < γj ,
then there is a a strict subsequence ofq0, . . . , ql whose op-
timal cost is no greater than the optimal cost forq0, . . . , ql.

Proof : Consider the firstj such thatγj−1 < γj . Let
(t̄1, . . . t̄j−1, t̄j , . . . , t̄l) be the sequence of thresholds that
minimizes the cost of this sequence of states. Define the fol-
lowing quantities:

Fj−1,j = cost(t̄1, . . . t̄j−1, t̄j , . . . , t̄l)

Fj−1,j−1 = cost(t̄1, . . . t̄j−1, t̄j−1, . . . , t̄l)

Fj,j = cost(t̄1, . . . t̄j , t̄j , . . . , t̄l)

We will show thatFj−1,j is greater than or equal to a
weighted average ofFj−1,j−1 andFj,j which means that
it must be greater than or equal to at least one of these val-
ues. This means that the strategy that transitions from state
qj−2 to stateqj−1 and then immediately transitions to state
qj at either timētj−1 or t̄j is at least as good as the orig-
inal strategy. Sinceβj−1,j+1 ≤ βj−1,j + βj,j+1, skipping
statej altogether can only improve the strategy.

Using the definition for the cost, we observe that

Fj,j − Fj−1,j =

∫ t̄j

t̄j−1

p(t)(t− t̄j−1)(αj−2 − αj−1)dt

+

∫ ∞

t̄j

p(t)(t̄j − t̄j−1)(αj−2 − αj−1)dt

−
∫ t̄j

t̄j−1

βj−2,j−1p(t)dt.

This is the expected difference in the power consumed by
strategiesFj,j andFj−1,j . Dividing by (αj−2−αj−1), This
becomes

Fj,j − Fj−1,j

αj−2 − αj−1
=

∫ t̄j

t̄j−1

p(t)(t− t̄j−1)dt

+

∫ ∞

t̄j

p(t)(t̄j − t̄j−1)dt

−
∫ t̄j

t̄j−1

1

γj−1
p(t)dt. (3)

Again, using the definition for cost, we get that

Fj−1,j − Fj−1,j−1 =

∫ t̄j

t̄j−1

p(t)(t− t̄j−1)(αj−1 − αj)dt

+

∫ ∞

t̄j

p(t)(t̄j − t̄j−1)(αj−1 − αj)dt

−
∫ t̄j

t̄j−1

βj−1,jp(t)dt.

Dividing by (αj−1 − αj), this becomes

Fj−1,j − Fj−1,j−1

αj−1 − αj
=

∫ t̄j

t̄j−1

p(t)(t− t̄j−1)dt

+

∫ ∞

t̄j

p(t)(t̄j − t̄j−1)dt

−
∫ t̄j

t̄j−1

1

γj
p(t)dt. (4)

Comparing, equations (3) and (4), the expressions are
almost identical except for theγ in the last term. Since

γj−1 < γj and
∫ t̄j

t̄j−1

p(t)dt ≥ 0, We have that

Fj,j − Fj−1,j

αj−2 − αj−1
≤ Fj−1,j − Fj−1,j−1

αj−1 − αj
.

Letω1 = 1/(αj−2−αj−1) andω2 = 1/(αj−1−αj). Note
that bothω1 andω2 are at least0. Rearranging, we get that

(

ω1

ω1 + ω2

)

Fj,j +

(

ω2

ω1 + ω2

)

Fj−1,j−1 ≤ Fj−1,j .

Now suppose that we consider only the two-state system
consisting of stateqi−1 and stateqi. We will let τi denote
the optimal threshold time if these are the only two states in
the system. We have thatτi is the timeT that minimizes

∫ T

0

p(t)αi−1tdt+

∫ ∞

T

p(t)[αi−1T + αi(t− T) + βi−1,i]dt.

Note that the value ofT that results in the minimum
above may not be unique. In this case, we takeτ to be the
smallest value which achieves the minimum. Also note that
by subtracting the term

∫ ∞
0 p(t)αitdt (which is indepen-

dent ofT) and dividing byβi−1,i in the above definition, it
can be seen thatτi = argminT f(γi, T) where

f(γ, T) =

∫ T

0

p(t)γtdt+

∫ ∞

T

p(t)[γT + 1]dt.

Note that for a two-state system whose active state and
sleep states has power consumption rates ofγ and 0 respec-
tively and whose transition cost is 1,f(γ, T) denotes the
expected power consumed by an online strategy that transi-
tions to the sleep state at timeT . We will show that for a par-
ticular subsequence of states, if we minimize the cost over
all choices for the thresholds, the resulting thresholds are
those obtained by the pair-wise optimization above. First,
however, we must establish that theτi values have the cor-
rect ordering.

Lemma 7 If γi > γi+1, thenτi ≤ τi+1.

Proof : Intuitively, γi is the ratio of the additional power
cost of being in stateqi instead of stateqi−1 over the tran-
sition costs between the two states. It stands to reason that
the larger this cost, the sooner one would want to transi-
tion from stateqi−1 to stateqi.

We will formalize this argument using a proof by con-
tradiction. Suppose that we haveτi > τi+1 andγi > γi+1.
The proof will make use of the definition off(γ, T) given
above.τi is the smallest value forT which attains the
minimum of f(γi, T). Since τi+1 < τi, we know that
f(γi, τi+1) > f(γi, τi). By the definition ofτi, we have that
f(γi+1, τi) ≥ f(γi+1, τi+1). Thus, it should be the case that

f(γi+1, τi)− f(γi+1, τi+1) ≥ 0 > f(γi, τi)− f(γi, τi+1).
(5)

Using the definition off(γ, T) above, for anyT1 < T2,

f(γ, T2)− f(γ, T1) = γ

[

∫ T2

T1

p(t)(t− T1)dt

+

∫ ∞

T2

p(t)(T2 − T1)dt

]

−
∫ T2

T1

p(t)dt.

The quantity inside the square braces above is non-negative.
This implies that the quantityf(γ, T2) − f(γ, T1) is non-
decreasing inγ. This, however, contradicts Inequality 5 and
the fact thatγi > γi+1.

Finally, we prove the main lemma which states that
the transition times are simultaneously optimized at the
pairwise-optimal transition points.

Lemma 8 For a given subsequence of statesq0, . . . , ql, if
τi−1 < τi for all i ∈ {1, . . . , l}, then the minimum total
cost is achieved forcost(τ1, . . . , τl).

Proof : The basic idea is that we can interpret
cost(T1, . . . , Tl) −

∫ ∞
0
p(t)αltdt as the sum of the

power consumed inl two-state systems, where theith sys-
tem, i = 1, . . . , l, has power consumption rates of
(αi−1 − αi) and 0 respectively in the active and sleep
states, and transition costβi−1,i. Note that

∫ ∞
0 p(t)αltdt

is a constant, independent of the choice ofTi’s. Af-
ter rescaling, one can write this expression as a lin-
ear combination of thef(γi, Ti) terms. Sinceτi minimizes
f(γi, T), and theτi values have the right ordering, this im-
plies thatcost(T1, . . . , Tl) is minimized by settingTi = τi
for i = 1, . . . , l.

We will establish below that we can rewrite (2) as fol-

lows:

cost(T1, . . . , Tl) =

∫ ∞

0

p(t)αltdt

+

l
∑

i=1

[
∫ Ti

0

p(t)(αi−1 − αi)tdt

+

∫ ∞

Ti

p(t)
(

(αi−1 − αi)Ti + βi−1,i

)

dt

]

. (6)

So by rescaling, we get that

cost(T1, . . . , Tl)−
∫ ∞

0

p(t)αltdt =

l
∑

i=1

βi−1,if(γi, Ti).

We want to chooseT1 ≤ · · · ≤ Tl to minimize this expres-
sion. Sinceτ1 ≤ · · · ≤ τl and eachτi = arg minT f(γi, T)
it follows that the minimum is attained by settingTi = τi
for eachi.

To complete the proof we show the equivalence of (2)
and (6). It suffices to show that (2) and (6) integrate the same
expression over each interval[Ti−1, Ti), i = 1, . . . , l + 1.
The integrand in (2) (in this interval) is

p(t)

[

αi−1(t−Ti−1) +

i−1
∑

j=1

(

αj−1(Tj −Tj−1) + βj−1,j

)

]

,

and the integrand in (6) is

p(t)

[i−1
∑

j=1

(

p(t)(αj−1 − αj)Tj + βj−1,j

)

+

(

l
∑

j=i

(αj−1 − αj) + αl

)

t

]

. (7)

The summations over thej indices in (7) telescope to show
that the two expressions are identical.

6.2. The Optimal State Sequence

We now present a simple polynomial time algorithm to
obtain the optimal state sequence for a given system. First,
for each pair(i, j), 0 ≤ i < j ≤ k, let Ti,j denote the op-
timal transition point ifsi andsj were the only two states
in the system. The time complexity of determining a single
Ti,j depends on the representation of the probability distri-
bution. In practice, this is most likely to be estimated by
a finite histogram withB bins starting at time0 and sam-
pled at a uniform discrete interval ofδ. It follows that bini
corresponds to timeδi. It is not difficult to generalize this
for variable sized bins. We will also assume that all transi-
tion times occur at someδi. The height of bini isH(i) and
this implies that the probability that the idle timet equals
δi is given by H(i)

P

i
H(i) . In what follows below,ACC[i] is

∫ iδ

0 p(t)dt andACCT [i] =
∫ iδ

0 tp(t)dt. TheTi,j values can
be evaluated inO(k2B) time as follows:

ACC[0]← H [0]
ACCT [0]← 0
for k = 1 toB do
ACC[k]← ACC[k − 1] +H [k]
ACCT [k]← ACC[k − 1] +H [k]× k · δ

end for
TOTAL← ACC[B]
TOTALT ← ACCT [B]
for all (i, j) pairs such that0 ≤ i < j ≤ k do
min←∞, argmin← −1
for l = 0 toB − 1 do
val = κi · ACCT [l] + (κilδ − κj lδ +
βi,j)(TOTAL − ACC[l]) + κj(TOTALT −
ACCT [l])
if val < min then
min← val
argmin← l

end if
end for
Ti,j ← argmin · δ

end for
Once theTi,j ’s are found, we sweep through them in

non-decreasing order, keeping a running tab of the best sub-
schedules that we can achieve ending in each statesi at each
point in time. When we encounter aTi,j, we check to see if
transitioning fromsi to sj can improve the current best sub-
schedule ending insj , and if it does, update our data struc-
ture to reflect it.

A given strategy divides time into intervals where each
interval is the period of time spent in a particular state. The
expected cost for a strategy given in Equation 2 is obtained
by summing over the expected cost incurred in each in-
terval. The cost for each interval is divided into two parts
which results in two separate summations in Equation 2.
We define the functionQ for the first term which is

Q(i, ti, j, tj) =

∫ tj

ti

p(t)κi(t− ti)dt.

This is the expected cost in the interval[ti, tj) for those idle
periods whose length is also in the interval[ti, tj). The sec-
ond part is the expected cost in the interval[ti, tj) for those
idle periods that are longer thantj . Define

R(i, ti, j, tj) =

∫ ∞

tj

p(t)[αi(tj − ti) + βi,j]dt.

Note that Q(i, δli, j, δlj) and R(i, δli, j, δlj) can both
be evaluated in constant time givenACC[li], ACC[lj],
ACCT [li] andACCT [lj] defined above.

At each transitionTi,j , we check to see if the current best
schedule that ends in statesj can be improved by transition-
ing to j from the current best schedule that ends in statesi.

For this purpose, we maintain two arrays of sizek+1: t[i] is
the time at which the current best schedule that ends at state
si transitions tosi andh[i] is the cost atti of that sched-
ule. Initially,h[0]← 0 and all otherh[i]←∞. t[i], for all i
can be initialized to0. We provide the pseudocode for pro-
cessing at each transition pointTi,j .

Current Status: Ti,j is the transition point that is being
processed
{The cost up to timeTi,j if transitioning fromi to j at
Ti,j}
h1← h[i] +Q(i, t[i], j, Ti,j) +R(i, t[i], j, Ti,j)
{The cost up to timeTi,j if not transitioning toj atTi,j}
h2← h[j] +Q(j, t[j], j, Ti,j) +R(j, t[j], j, Ti,j)
if h1 < h2 then
h[j]← h1
t[j]← Ti,j

end if

It is easy to see that each transition point takes a con-
stant amount of processing. The sorting takes an overhead
of O(k2 log k). The initial preprocessing to calculate the
transition points takesO(k2B). Hence, the total running
time isO(k2(log k +B)).

References

[1] http://www.microsoft.com/windows2000/
techenthusiast/features/standby1127.asp.

[2] C. Anderson and A. Karlin. Two adaptive hybrid cache co-
herency protocols. InProceedings of the Second Interna-
tional Symposium on High-Performance Computer Architec-
ture, pages 303–313, 1996.

[3] L. Benini, A. Bogliolo, and G. D. Micheli. A survey of de-
sign techniques for system-level dynamic power management.
IEEE Transactions on Very Large Scale Integration (TVLSI)
Systems, 8(3):299–316, 2000.

[4] S. J. Eggers and R. H. Katz. Evaluating the performance of
four snooping cache coherency protocols. InProceedings of
the 16th annual international symposium on Computer archi-
tecture, pages 2–15. ACM Press, 1989.

[5] S. Irani, R. Gupta, and S. Shukla. Competitive analysis of dy-
namic power management strategies for systems with multi-
ple power savings states. InIEEE Conference on Design, Au-
tomation and Test in Europe, 2002.

[6] S. Irani, S. Shukla, and R. Gupta. Online strategies for dy-
namic power management in systems with multiple power
saving states.Trans. on Embedded Computing Sys., 2003.
Special Issue on Power Aware Embedded Computing.

[7] A. Karlin, M. Manasse, L. McGeoch, and S. Owicki. Ran-
domized competitive algorithms for non-uniform problems.In
ACM-SIAM Symposium on Discrete Algorithms, pages 301–
309, 1990.

[8] A. R. Karlin, K. Li, M. S. Manasse, and S. Owicki. Empiri-
cal studies of competitve spinning for a shared-memory mul-
tiprocessor. InProceedings of the thirteenth ACM symposium

on Operating systems principles, pages 41–55. ACM Press,
1991.

[9] S. Keshav, C. Lund, S. Phillips, N. Reingold, and H. Saran.
An empirical evaluation of virtual circuit holding time poli-
cies in ip-over-atm networks.IEEE Journal on Selected Areas
in Communications, 13(8):1371–1382, 1995.

