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Abstract Alas, the future is unclear, and you must make a decision
nonetheless.

We consider the problem of selecting threshold times  Although theSki-Rentaproblem is very simple abstrac-
to transition a device to low-power sleep states during an tion, this basic paradigm arises in many applications in
idle period. The two-state case in which there is a single computer systems. In these situations, there is a systém tha
active and a single sleep state is a continuous version ofcan reside in either a low-cost or a high-cost state. Occa-
the ski-rental problem. We consider a generalized version sionally, it is forced to be in the high-cost state (usuatly t
in which there is more than one sleep state, each with its perform some task). A period between any two such points
own power consumption rate and transition costs. We givein time is called andle period
an algorithm that, given a system, produces a determinis- The system pays a per time unit cost to reside in the
tic strategy whose competitive ratio is arbitrarily close t  high-cost state. Alternatively, it can transition to thevio
optimal. We also give an algorithm to produce the optimal cost state at a fixed one-time cost. If the idle period is long,
online strategy given a system and a probability distribu- it is more advantageous to transition to the low cost state im
tion that generates the length of the idle period. We also mediately. If the idle period is short, it is better to staytie
give a simple algorithm that achieves a competitive ratio of high-cost state. An online algorithm which does not know
3+ 2V/2 ~ 5.828 for any system. the length of the idle period must balance these two possi-
bilities.
This problem has been studied in the context of shared
memory multiprocessors in which a thread is waiting for
1. Introduction a locked piece of data and must decide whether to spin or
block [7, 8]. Researchers investigating the interface betw
Suppose you are about to go skiing for the first time in IP networks and connection-oriented networks have discov-
your life. Naturally, you ask yourself whether to rent skis ered this same underlying problem in deciding whether to
or to buy them. Renting skis costs, say, $30, whereas buy-keep a connection open between bursts of packets that must
ing skis costs $300. If you knew how many times you would be sent along the connection [9]. The problem also arises
go skiing in the future (ignoring complicating factors such in cache coherency in deciding whether to update or invali-
as inflation, and changing models of skis), then your choice date data that has been changed in a processor’s local cache
would be clear. If you knew you would go at least 10 times, [4, 2].
you would be financially better off by buying skis right from An important application of the ski-rental problem is in
the beginning, whereas if you knew you would go less than minimizing the power consumed by devices that can tran-
10 times, you would be better off renting skis every time. sition to a low powesleepstate when idle. The sleep state
consumes less power; however, one incurs a fixed start-up
* Research supported partially by NSF grant CCR-0105498 and b COSt in making the transition to the high-povastivestate
ONR Award N00014-00-1-0617. in order to begin work when a new job arrives. At the archi-
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tional component is called clock/power gating. At a higher In these cases, both the online and the offline algorithm will
level, the powered-down component might be a disk drive have an identical additional cost. Thus, the ratio of the on-
or even the whole system (e.g., a laptop that hibernates)line to the offline cost will decrease and the optimal com-
The embedded systems community has invested a great degdetitive ratio will be strictly less than two. These additéd
of effort into devising policies governing the selection of costs do not change the optimal online or offline strategy in
power states during idle periods (termBginamic Power  either the deterministic or the probability-based case Th
Managemenin their literature). See [3] for a survey. These optimal competitive ratio that can be achieved for such sys-
techniques have been critical to maximizing battery use intems can easily be determined as a function of all the pa-
mobile systems. While power is already a first-class param-rameters of the system.
eter in system design, it will become increasingly impor-  The problem with multiple sleep states is formalized
tant in the future since battery capacities are increadiag a as follows: the sequence of states is dendfted..., s).
much slower rate than power requirements. There is also a vector of power-consumption rates=
Most of the previous work on this problem has been con- (Ko,...,k1), wherer; is the power consumption rate of
cerned with two-state systems which have an active statethe system in state;. We assume as a convention that the
and a single sleep state. This paper focuses on findingstates are ordered so that > kjfor0 < i < j <k
power-down thresholds for systems that have more than onerhus, the system must transition g (the active state) at
low-power state. An example of such a system is the Ad- the end of the idle period. There is an associated transi-
vanced Configuration and Power Interface (ACPI) included tion costd; ; to move from state; to s;. A systemis de-
in the BIOS on most newer computers which has five power scribed by a paifk, d). Note that there can be costs to move
states, including hibernation and three levels of standby [  from high-power states to low-power states and vice versa.
However, the only power-up costs that are of interest are
2. Previous Work and New Results the costs to 'Fransition from a particular stgteto the ac-
tive statesy since the only reason to transition to a higher
For the two-state problem, an online algorithm consists POWer state is when a new task arrivesseheduleor strat-
of a single threshold” after which time the algorithm will ~ €9Y-A = (S, 74) consists of a sequence of, statesS 4
transition from the active to the sleep state. The inputéo th hatis a subsequencesind a sequence of transition times
problem is the length of the idle period and the cost of an Z4- Where obvious, we will omit the subscript. We re-
algorithm is the total amount of energy it consumes over a duire thats(0) = so and7'(0) = 0. A(#) will denote the
single idle period. Typically, an online algorithm is evalu €0t of the schedule produced by strategjor an idle pe-
ated in terms of its competitive ratio — the ratio of the cost f0od of lengtht.
of the online algorithm to the cost of the optimal offline al- ~ The power-down problem for systems with multi-
gorithm, maximized over all inputs. When randomized al- ple states has been examined for the special case where
gorithms are considered, we look at the ratio of the expectedthe cost to power-down is zero and the algorithm only
cost of the online algorithm to the cost of the offline algo- pays to move from low power states to higher power states
rithm. Previous work has also addressed this problem when[5]. Note that this also includes the case where the transi-
the idle period is generated by a known probability distribu  tion costs are additived( ; + d;, = d;x fori < j < k)
tion. In this case, the online algorithm will choose a thresh since the costs to power down can then be folded
old which minimizes its expected cost. We call such algo- into the costs to power up. Generalizations of the al-
rithms probability-basedilgorithms. gorithms for the two-state case are given along with
The best deterministic online algorithm will stay in the upper bounds on the competitive ratio of these algo-
high power state until the total energy spent is equal to thefithms for multi-state systems with additive transitiorsto
cost to power up from the low power state. It is known that Namely, itis shown that the generalized deterministic algo
this algorithm achieves the optimal competitive ratio abtw  fithm is 2-competitive and the probability-based algorithm
If the idle period is generated by a known probability distri 1S e/(e — 1)-competitive.
bution, then the algorithm that minimizes its expected cost  There are two important directions left open in this work.
is always within a factor oé/(e — 1) of optimal. Further-  The firstis based on the observation that systems, in general
more, this bound is tight since there is a distribution over do not have additive transition costs. In many scenarios,
the idle period lengths which will force any online algo- additional energy is spent in transitioning to lower power
rithm to consume an expected(e — 1) times more energy  states. Furthermore, there is overhead in stopping atinter
than the optimal offline algorithm [7]. mediate states, i.e. the transition costs are not add{Be=
Note that in the context of power-down systems, it may [3] for an example.) The second point is that these upper
not be the case that the power usage in the sleep state ibounds are typically not optimal. For multi-state systems,
zero or even that the start-up cost in the active state is zerothe optimal competitive ratio that can be achieved will, in



general, be a complicated function of all the parameters offer to a procedure that produces a schedule or strategy based
the system (the power consumption rates as well as transi-on a particular system.
tion costs). While it may not be feasible to express the op-
timal competitive ratio as a function of all these parame-
ters, a system designer would, in general, like to design a
power-down strategy that obtains the best possible compet-
itive ratio given the constraints of his or her particulassy
tem.

This paper establishes the following results.

3. Prdiminaries

First we will establish that we can assume without loss
of generality that the power-up transition costs are zdro. |
this is not the case for some systéfd, d), we can define

a new system such that for ahy 75, the cost to transition
fromitojisd;; + d;0 — di,0 and the cost to go fromj

to ¢ is 0. Any set of actions in the original system will incur
the same cost in the new system. For the remainder of this

e We give an algorithm that takes as input a description
of a system(/C, d), and an error parameterand pro-
duces a power-down strategy = (S4,7.4) Whose . .
competitive ratio is withine of the best competitive paper, we will assume thafo = 0 for all :.

ratio that can be achieved for that system. The algo- Let D(i) denotedy,;. Then OPT(t) n _mini(D(i,) +
rithm runs in timeO(k2 log k log(1/¢)), wherek + 1 kit). Let S(t) denote the state which attains the minimum

is the number of states in the system, and also outputs ™ the optimal state. The optimal strategy is to transition

the competitive ratio of4. The algorithm works via  (© StateS(t) at time 0, and stay there through timewe

a decision procedure which determines for a system assume that the optimal strategy will actually “use” every
and a constant if there is ap-competitive strategy for ~ St&te, i-8.range(S(t)) = {so,...,sr}. None of the on-
that system. We use this decision procedure to also ob-line strategies we present will make use of a state that is not
tain lower bounds for specific systems. In particular, USed Py the offline strategy for some

we show a lower bound df.45 for the best competi-

tive ratio that can be achieved for a particular system. State 0 Statel  gtate 2

This is the first lower bound know that is greater than
2.

Energy State 3

e Experimental results show that there are significant
performance gains to be made by estimating the dis-
tribution governing the length of an idle period based
on recent history and using this estimate to drive a
probability-based strategy [6]. We give an algorithm
that takes as input a description of a system and a prob-
ability distribution generating the idle period length
and produces the optimal power-down strategy. Nat-
urally, the running time of the algorithm will depend ~ Figure 1. Energy consumed by the optimal strat-
on the representation of the distribution. In practice, €gy as a function of idle period length.
this is most likely to be a histogram. Our algorithm
runs in timeO(k?(log k + B)) where B is the num-
ber of bins in the histogram anid+ 1 is the number ] ] ) )
of states. One outcome of the proof is that it also es-  Note thatS(t) is non-decreasing withi. As the idle

tablishes the optimality of the strategy given in [5] for period length gets longer, |t becomes more worthwhile to
additivesystems. pay the extra cost to transition to a lower power state. Let

b; denote the first time instant at which statdecomes
e We give a deterministic strategy that achieves a com- the optimal state, s6(0) = 0andD(i — 1) + k;_1b; =
petitive ratio of 3 + 2v/2 ~ 5.8284 for all sys- D(i) + kb = b = D@=D(i=1) \\e haveb(0) <
tems. This result gives a bound on the competitive ratio i1

achieved by the optimal strategies generated by our al b(1) <....b(k), S0 we can writeOPT(t) = D(i) + kit for
. t € [bi,biy1]. W line strat ithP T (t
gorithms. Note thaB + 21/2 also serves as a bound € [bi bi+a]. We compare our online strategy w (*)

. : and want to get a strategd which minimizes the compet-
on the ratio of the expected costs of the online and of- i " i A \whereA(1) denotes the total
fline when the input is probabilistically generated. tive ratlo, ca = SUPt OPT(7), w ere. (t) denotes the tota

power consumption afl by timet. Figure 1 shows the total
For the remainder of this paper, we use the teatised- energy consumed b9 PT as a function of the length of the
ule or strategyto refer to the choices of states and thresh- idle period. There is a line for each state. Tjétercept
old times for powering down. The teralgorithmwill re- is the transition cost to move to that state from the active

by b, s Time




state and the slope is the power consumption rate. The enD(j) < D(i)/~. We adds; to S’ and continue until no
ergy consumed by the optimal strategy is the lower enve-suchj exists. Note that, € S’ sinceD(0) = 0. OPT" will

lope of these lines since it will pick the single state which
minimizes the cost for a given idle period length.

4. A (3 +2v/2)-competitive strategy

First we establish that we can assume that foi al 7,

d;; < do ;. Recall that we are really using ; to denote
d; ; + djo — dio anddp ; to denotedy ; + d; 0. Thus, the
assumption that; ; < dy_; really amounts to assuming that
d;; < di,0 + dp,j. If this were not the case, we could just
transition from states; to states; by first going tosy and
then down tos;.

Let us for the moment assume thBti) > ~vD(i —
1)foralli =1,...,%k and for somey > 1. This is a non-
trivial assumption that we will have to handle later. Con-
sider the strategyd, which always stays in stat&(t), the
same state a®PT, at every time. This is the strategy pro-
posed in [5] and shown to kfecompetitive for additive sys-
tems. Note that this strategy is the same ag2thempetitive
balance strategy for the two-state case.

For t € [b;,b;11] the online cost is, A(t)
So(ki(bit1 — bj) + djj11) + kit — b;), and the

AW _ will be maximized at = b;. We have,

ratio ORI

Abi) =Y (55 (b1 — b)) + dj 1)
=0
’7L'71 [
< Z Kj(bjt1 —bj) + ZD(j)
j=0 j=1
<

OPT(b;) + D(i)» 77
j=1

< (1 + L) OPT(b;)
v—1
2y —1

o OPT(b;).

(1)

This holds for any implying a competitive ratio o=

Now suppose the assumptid(i) > vD(i — 1) does
not hold. We consider a newffline strategy OPT’ that
only uses a subset of staté5for which the property does
hold, and is ay-approximation ofOPT, i.e., OPT'(t) <
~v - OPT(t). We now view our problem as specified by just
the states irt’, and execute strategy as specified above,
emulating OPT’ instead of OPT. We get thatA’(t) <
2=LopT'(t) < XU OPT(t). Settingy = 1+ el
we get a competitive ratio ¢f + 21/2 ~ 5.8284.

We determineDPT" as follows. LetS” = {s;} initially.
Consider the states ifi in reverse order. Let; be the last
state added t&’. We find the largesj, 0 < j < i s.t.

execute the optimal offline strategy assuming that only the
states inS’ are available. Considérj s.t.s;,s; € S’ and
nos,isin S’ fori < ¢ < j. We haveOPT'(t) = OPT(t)

fort € [b;,biy1) andt € [b;,bj41). Forés.t.i < £ < jand
timet € [bg,bet1). OPT'(t) = min(D(i) + kt, D(j) +
k;t) and OPT(t) = D({) + ket > OPT'(t)/ since
D(¢0) > D(5)/~, ke > k;. SOOPT' is a~y-approximation

to OPT.

Theorem 1 There is a(3 + 2+/2)-competitive strategy for
any system.

5. A Near Optimal Deterministic Algorithm

In this section, we turn our attention to obtaining a near
optimal schedule for a particular system. More precisely,
given a systent/C, d) with state sequencg for which the
optimal online schedule has competitive ratfowe give an
algorithm that returns §* + €)-competitive online sched-
ule in time O(k?log klog(1/¢)). The algorithm is based
on a decision procedure which determines whether a
competitive schedule exists for a given valuepofTheo-
rem 1 establishes an upper boundof 2v/2 on the opti-
mal competitive ratio, so we perform a bisection search in
the rangd1, 3 + 2+/2] to find the smallesp such that there
exists ap-competitive schedule. We also output the result-
ing schedule.

The following lemma shows that the online strategy must
eventually get to a sufficiently low-power state. Lemma 3
allows us to limit our concern to just the transition poimts i
any online schedule. It is straightforward to show the fol-
lowing.

Lemma?2 If A = (S,7) is ap-competitive strategy ans
is the last state i, thenk, < p - K.

Proof : For the sake of contradiction, assume that >
p - k. For A to bep-competitive, it will have to lie entirely
within the convexp - OPT. However, inp - OPT, the last
line has a slope - xx, which will meet the last line i be-
cause it has larger slope gf, after which.A will start ex-
ceedingp - k. This is a contradiction. [ |

Lemma 3 If a scheduleA has finite competitive ratio, then
the timet at which%}%t) is first maximized is a transition
pointin the strategyA.

Proof : For the sake of contradiction, assume that in

the interval(t,, t2), wheret; andt, are two consecutive el-
ements of74. If in caset > T(n4 — 1), i.e., it occurs
when the system is in sleep state accordingitdhen as-
sumety, = oo. There are two possible cases that we analyze
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Figure 2. Energy consumed by the online and optimal strategy as a function of idle period length. The
solid lineis p- OPT(t). The dashed line is the online cost. ¢ is the first transition time that is not eager.
t’ shows the transformed strategy which now has an eager transi tion.

here. In the first case,is not one of the transition points this for each transition point from left to right to get an ea-

of OPT. Lete be some infinitesimally small positive con- ger strategy. ]

stant such thdt — €, ¢ + €] does not contain any transition

points either ind or OPT. Definer(r) = A(7)/OPT(1) Lemma 4 immediately gives an algorithm that is expo-
for any timer. We know that-(t —¢) < (t). Since botnthe ~ nential ink, the number of states, and determines whether
cost of A and OPT are linear in the intervdt — e, t + €, a p-competitive algorithm exists for the system. This algo-
r(t) < r(t+¢), which is a contradiction. Now in the second  rithm enumerates all subsequences of states, and determine
case{ is a transition point irOPT. HenceOPT will start the p-eager strategy for that subsequence. Determining the
anew line in its cost curve starting@awhose slope willbe ~ p-eager strategy is done by finding the eager transition to
lower than the line beforeand hence(t) < r(t +¢). This, each state based on the eager transitions to all the previous
again, is a contradiction. u states in the sequence as described in the proof of Lemma

4. A p-competitive strategy for the system exists if and only
We now explore ways to restrict the space of schedulesif one of thesep-eager strategies js-competitive. The re-
we need to consider in searching fop-@ompetitive sched-  mainder of this section presents a way to remove the expo-
ule. For a strategyl = (S, 7), we say that a transition at  npential dependence dn
timet € 7 is p-eager(or just eager ifp is clear from the Let S = (so,51,...,s,) be a sequence of states that
context) if A(t) = p- OPT(t). We say thatd is ap-eager  form a system. DefineS,, .., to be the subsequence
strategy ifA(t) = p- OPT(t) foreveryt € 7. Note that (o <y \wheres, ands; are elements of such that
by Lemmas 2 and 3, p-eager strategy thatends at state  ; ~ ;. | et W, be the set of subsequencessf . that in-
suchthats; < p - iy is p-competitive. cludes, ands such that for eacly € ¥, one can find tran-
sition times for the state sequengeso that in the resulting

Lemma4 If A = (S,7) is a p-competitive strategy, then schedule, each transition up to and including the transi-

there exists an eager strategyf = (S, 7”) that is alsop- tion to states is a p-eager transition. For a stagec v, we
competitive. will use ¢, 4 to denote thigp-eager transition time af for

the sequence. (Note thaty) uniquely determines the tran-

Proof Sketch :Figure 2 shows a schematic of the proof. sition timest,, ,.)

The jumps in the online cost (the dashed line) are transition We define theearliesttransition timeFE (s, p) of states
costs. The solid lineig- OPT'(t). The figure shows atran-  for the given system a&(s,p) = mingecw, ty, s, that is,
sition timet at which the online cost s less thanOPT(t). E(s, p) is the earliest time at which any online strategy can
The idea is that we can slide such a transition time earliertransition to state while remainingo-eager over all its tran-
until it hits the functiorp - OPT'(¢) . Since the slope of the  sitions up to (and including) the transition to stateOb-
line before timet is steeper than after timg that is, since  serve that if there ig-competitive strategy that uses state
we transition to state with lower power consumption rate at s, then by Lemma 4, there is suchpaearly strategy, so
time ¢, transitioning earlier only decreases the cost. We do ¥, # ¢ and E(s, p) is well defined. We call a transition



to states p-early if it happens at timeF (s, p) (or simply
early). A strategy that consists entirely of early transis
is called arp-early strategy.

Lemma5 If there is ap-competitive strategyl = (S,7),
then there is an eager and eagycompetitive strategy.

Proof : Let s be the last state it§. Consider the sequence
1 € U, such thatty, s = E(s, p) and the strategy that
uses only the states in, transitioning to statg € ¢ at
timety g, i.e,m = (¥, {ty,q}qey). We will argue thatr

is an eager and early strategy, and sirge< p - kg, 7 iS
p-competitive. Note that by definitiorall transitions ofr
arep-eager, and the transition to states p-early. We have
to show that the remaining transitionsofre alsqo-early.

Suppose not. Consider the latest transition that is not dashed/dotted line is

p-early. Suppose this happens for stat€&# s), soty
tyr > E(r,p). Letr’ be the state just afterin sequence
o, letT = ty,» = E(r',p). Lety € ¥, be the se-
quence for whichty, ., = E(r, p) = to. Consider the hy-
brid strategyr’ that uses the states iff followed by the

states iny that appear after, with the transition times be-
ing ty 4 forqg € ¢’ andt, , for ¢ € ¢,._,. For every time
t > t1, we haver'(t) = m(t)—(m(t1) — 7 (t1)). We will

show thatr'(¢;) < m(t1) which implies, in particular, that
©'(T) < n(T). So in7’ the transition to”' is no longerp-

Figure 3. The solid line is p - OPT. The dashed
line is the schedule =’ from Lemma 5 and the

w. The point labeled p-
is (t2,7'(t2)) and py is (t1,7(t1)). The idea is to
show that at time ¢;, 7’ has a lower cost than .

p-eager and occurs at tim€(s;, p). If such a transition is
not possible, then we assign = oco. We can compute;

in O(log k) time by binary searching through the list of line
segments ip - OPT. Then,E(s;, p) = min;, t;. Deter-
mining eachE(s;, p) requires examining different possi-
bilities, so finding all the early transition times takes ¢im

eager. Arguing as in Lemma 5 this means that we can shiftO (k2 log k). By Lemma 2, we know that if(s;, p) is fi-

the transition tor’ to get an eager transition at aarlier
time T”. But this contradicts the definition &(r', p) since
we now have a sequeng€ = (v, 7') € ¥, with p-eager
transition times such that’ = ¢, ,» < T = E(r’, p).

We now prove the claim. The point(sg,w’(tg)) and
(t1,7(t1)) both lie on thep - OPT(t) curve. The slope of
this curve at time = ¢, is at least the slope,. of curver
attimet; sincen(t) < p- OPT(t) fort > ¢1. The slope of
p-OPT(t) decreases with increasingso its slope is at least
k. for all timest € [t2, ¢1]. Hencen(t1) = p- OPT(t1) >
P OPT(tQ)'i‘HT(tl —tg) = 7Tl(t2)+lir(t1 —tg) = 7Tl(t1).
The ideais illustrated in Figure 3. [ ]

From Lemma 5 we can deduce that we only need to

consider a specific early and eager schedule, the one tha

is determined by th&’(., p) values, to determine if a-
competitive strategy exists. We now define procedure EX-
ISTS that takes a system and a consfast [1,3 + 2v/2].

The output is a YES if -competitive strategy exists for

the system. The algorithm can also be modified to give us

the p-competitive strategy. If no such strategy exists, then
the output is NO. We employ a dynamic programming ap-
proach to calculat&(s;, p), for0 < i < k. We always start
with the high power state and hené&s,, p) = 0. Sup-
pose we have computd(s;, p) forall j = 0,...,7 — 1.

Let ¢; be the earliest time at which the systgreagerly
transitions froms; to s; given that the transition te; is

nite for some state; wherex; < p - ki, we know that a
p-competitive strategy exists. We use the above procedure
to search fop € [1,3 + 2/2] within an errore of p*. The

total time taken isO(k? log klog(1/¢)). One can quickly
elicit the schedule by starting from stdtend retracing the
states that minimized the earliest transition time.

6. A Probability-based Algorithm

Karlin et al. study the two-state case when the length of
the idle period is generated by a known probability distri-
butionp [7]. (Although they examined the problem in the
context of the spin-block problem, their problem is identi-
?al to our two-state case.) They observed that the expected
cost of the online strategy that makes the transition to the
sleep state at timé& is

A

wherex is the power consumption rate in the active state,
k1 is the power consumption rate in the sleep state/aisd
the transition cost between the two states. The online-strat
egy then should select the transition tiffiehat minimizes
this cost.

The multi-state case presents two distinct challenges.
The first is to determine the optimal sequence of states

T
/0 PO (kol)dt + | (koT + ka(t — T) + B)dt,



through which an online strategy should transition threugh The goal is to pick thel,...,T; so as to minimize the
out the course of the idle period. Then once this sequenceabove cost. This is the optimal cost for the subsequence
has been determined, the optimal transition times need toqo, - . ., .

be determined. Our proof proceeds by establishing that the For eachi € {1,...,1},let~; =
only transition times that need to be considered are the op-

timal transition times for two-states systems. Suppose, fo Lemma 6 Suppose that there is @n< j such thaty; < ~;,
example, that we are considering a sequence of state transithen there is a a strict subsequenceygf. . . , ¢, whose op-
tions in which states; is followed by states;. Let T; ; de- timal cost is no greater than the optimal costfgr . . ., g;.

note the optimal transition time from statgto s; if these . .

were the only two states in the system (that iss;ifvere ~ F700f : Consider the firstj such thaty;_1 < ;. Let

the active state ang} were the only sleep state). Note that ({1:---j-1,%j,-.., 1) be the sequence of thresholds that
T;.; can be determined by the expression above. We estabMnNimizes th(_e_cost of this sequence of states. Define the fol-
lish that regardless of the rest of the sequence, the optimal°Wing quantities:

transit_ion_ point f_rom statgl-_ to 5 isT; ;. We call theT; ;s Fi_1; = cost(tr,...tj—1,t5,...,t)
thepa|rW|se-opt|matranS|t|_on times. o . Fiovj1 = costlfr,...tj1,bj1,....%)
Lemmas 6 and 7 establish that the pairwise-optimal tran- Fii = cost(h,...t;,t... 1)

sition times happen in the right order. That is for k < j, 7 A

T;, < Ty,;. If this is not the case, then any subsequence We will show thatF;_,; ; is greater than or equal to a
that hass; followed by s, followed by s; can not possi-  weighted average of;_; ;_; and F; ; which means that

Qi1
Bi—1,i

bly be the best sequence of states. Note thafthés may it must be greater than or equal to at least one of these val-
not necessarily be unique. In general, we will select the ear ues. This means that the strategy that transitions frora stat
liest transition time that minimizes the cost. gj—2 to stateg;_; and then immediately transitions to state

Lemma 8 then shows that as long as the pairwise-optimalg; at either timet;_, or ¢; is at least as good as the orig-
transition times are in the right order, they give the glgbal inal strategy. Sincg; i ;11 < 5-1,; + 3 ;+1, skipping
optimal set of transition times for that subsequence. Gur al State;j altogether can only improve the strategy.
gorithm then uses this fact to find the optimal sequence of ~ Using the definition for the cost, we observe that
states by dynamic programming. Note that it is not neces-

1
sary to exhaustively consider all possible subsequences. F;; —F;_;; = / ’ p(t)(t —tj—1)(aj—2 — aj_1)dt
tjoz)] ) )
6.1. Optimal Transition Times + /t p)(t; —tj-1)(aj—2 —aj1)dt
J
i
Consider a particular subsequence loft- 1 states — ' Bj—2,j—1p(t)dt.
Sags---Sa;- IN order to avoid the double subscripts tj—1
throughout this subsection, we will re-name our subse- 1y s the expected difference in the power consumed by
guence.qo, q1,---,q- Since the strategy must start in strategies; ; andF;_; ;. Dividing by (o —avj_1), This
state s, we can assume that = so. For: < j, de- becomes ' ' '
fine §; ; to be the cost to transition from stage to state :
q; so that isf3;; = dqa,q,. Furthermore, we will re- Fjj— i1 _ /’ p()(t — F_1)dt
fer to the power consumption rate of stagteasc;, that is, 09 — Q1 £ It
Kq; = Q4. o0 _ _ d
We will consider the strategy that transitions through the + /t p(O)(t; = tj-1)dt
states in the subsequengeq, . . ., ¢;. Suppose that we use ]fj 1
transition timeT; to transition from state;_; to statey;. It — / —p(t)dt. 3)
will be convenient for notation to defin€,; = oo and £5-1 Vi-1

Ty = 0. The cost of the strategy that uses these transition ogain, using the definition for cost, we get that
times is:

£ )
411 Fjo1j—Fj1j-1 = / p(t)(t — tj—1)(aj—1 — o)t

cost(Ty,...,T;) = Z/ p(t)oj—1(t — Tj_1)dt tjo,ol -
. =17 + [ p(t)(t; —tj—1)(aj—1 — ay)dt

j-1(Tj = Tj- j-1,40dt. (2 s
+;/Tj p(t)[aj—1 (T 1)+ Bj—1,5]dt. (2) a /IE B, 1p(t)dt.

J



Dividing by (oj_1 — «;), this becomes Proof : Intuitively, +; is the ratio of the additional power
cost of being in state; instead of state; _; over the tran-

Fi_1;—Fj_1-1 b - sition costs between the two states. It stands to reason that
: : = p(t)(t —t;-1)dt : :
aj_1 — a - the larger this cost, the sooner one would want to transi-
o o tion from statey;_; to statey;.
+ /f p)(t; — tj-1)dt We will formalize this argument using a proof by con-
Jt’j 1 tradiction. Suppose that we have> 7,11 and~; > ;1.
— [ —_p(t)dt. 4) The proof will make use of the definition ¢gf(y, T") given
tj—1 i above.r; is the smallest value fof’ which attains the

Comparing, equations (3) and (4), the expressions areTnmMum of £(7:, T). Essmt(;\e Tc;““]} t< Ti’frwe krrllow tt?watt
almost identical except for the in the last term. Since f (i, Tig1) > f(vi, 7i). By the definition ofr;, we have tha

. i1, Ti) > i1, Tit1). Thus, it should be the case that
Vi-1 <y andf;jt1 p(t)dt > 0, We have that FQir1,m) 2 F i, i)

frir, ) = f(Yivr, Tigr) 2 0> f(vis ) — f(Yis Tig1)-
()
Using the definition off (y, T') above, for anyl; < 75,

g =iy o Fiig — Fim1,-1
Qj—2 = -1 aj-1 = Q;

Letw; = 1/(Oéj,2 — Oéjfl) ande = 1/(Oéj,1 —Oéj). Note

that bothw; andw,, are at least. Rearranging, we get that T2
FO ) = ST = | [ et T
w w T

( - ) Fjj+ (72) Fj1j-1 < Fj-1. o
w1 + wo w1 + wo + / p(t) (T2 — Tl)dt}

n &)

) — / p(t)dt.
Now suppose that we consider only the two-state system o

consisting of state; ; and statey;. We will let —; denote
the optimal threshold time if these are the only two states in The quantity inside the square braces above is non-negative

the system. We have thatis the timeT' that minimizes This implies that the quantity (v, T>) — f(v,71) is non-
. decreasing iny. This, however, contradicts Inequality 5 and
/ p(t)i_1tdt + / P[0T + as(t = T) + By Jdt. e TRCLhA: > Vg, "
0 T

Finally, we prove the main lemma which states that
the transition times are simultaneously optimized at the
pairwise-optimal transition points.

Note that the value of” that results in the minimum
above may not be unique. In this case, we take be the
smallest value which achieves the minimum. Also note that
by subtracting the ternfooO p(t)a;tdt (which is indepen-
dent ofT") and dividing byg;_ ; in the above definition, it

can be seen that — arg ming f(y;, T) where Lemma 8 For a given subsequence of statgs. . ., g, if

Ti—1 < 7 forall i € {1,...,1}, then the minimum total
T oo cost is achieved fotost (7, ..., 7).
£ = [ ptenede+ [ pObT + e
0 T
Proof : The basic idea is that we can interpret
Note that for a two-state system whose active state andcost(177,...,7;) — Jop(t)eytdt as the sum of the
sleep states has power consumption ratesaifd O respec-  power consumed ihtwo-state systems, where thé sys-
tively and whose transition cost is ¥(vy,T") denotes the tem,i = 1,...,1, has power consumption rates of

expected power consumed by an online strategy that transiy,, , — «,) and 0 respectively in the active and sleep

tions to the sleep state at tirife We will show thatforapar-  gstates, and transition cost_; ;. Note that [ p(t)aytdt
ticular subsequence of states, if we minimize the cost overis 5 constant, independent7 of the Choige Bfs. Af-

all choices for the thresholds, the resulting thresholes ar ter rescaling, one can write this expression as a lin-

those obtained by the pair-wise optimization above. First, g5y combination of the (v;, ;) terms. Since; minimizes

however, we must establish that thevalues have the cor-  ¢(,. T and ther; values have the right ordering, this im-

rect ordering. plies thatcost (T4, . .., T;) is minimized by setting’; = ;
fori=1,...,1.

Lemma? If y; > viy1, thenr; < 744, We will establish below that we can rewrite (2) as fol-



lows: Oi‘s p(t)dt andACCT[i] = foi‘; tp(t)dt. TheT; ; values can

o0 be evaluated ii© (k2 B) time as follows:
cost(Th,..., Ti) = [ p(t)autdt ACC[0] — H[0]
L ACCTI0] — 0
+ p(t) (i1 — a;)tdt for k =1to B do
2 Uo (B){oe-1 = ) ACC[K| — ACC[k — 1] + H[K|

i—1
o0 ACCTIk] — ACClk -1+ Hk] x k-6
+/ p(t)((ai—l — )T + 51‘1,1‘)64- (6) end for g | P A

o TOTAL — ACC|B]
So by rescaling, we get that TOTALT «— ACCT|B]
. . for all (i, j) pairs such that <i < j < kdo
cost(Ty, ..., T;) — /0 p(t)aytdt = Z;ﬁi,uf(%, T;). ?(;L;le :(;)fc;(g”g_mllz(;— 1
' val = w; - ACCTI]] + (kils — KI5 +
We want to choos&} < --- < T; to minimize this expres- Bii))(TOTAL — ACCIl)) + k;(TOTALT —
sion. Sincer; < --- < 7y and each; = argming f(v;,T) ACCTII)
it follows that the minimum is attained by settifig = 7; if val < min then
for each. min — val
To complete the proof we show the equivalence of (2) argmin — |
and (6). It suffices to show that (2) and (6) integrate the same end if
expression over each intend;_1,7;),s = 1,...,1 + 1. end for
The integrand in (2) (in this interval) is T;.; < argmin - §
i1 end for
0 [ail(t_nl) +Z(QJ*1(TJ — T ) +5j17j)} Once theT; ;'s are found, we sweep through them in
=1 non-decreasing order, keeping a running tab of the best sub-
) ) ) schedules that we can achieve ending in each statiseach
and the integrand in (6) is point in time. When we encounter7a ;, we check to see if
i1 transitioning froms; to s; can improve the current best sub-
() {Z (p(t)(aj_l — )T + ﬁj_l,j)Jr schedule ending is;, and if it does, update our data struc-
' ' ture to reflect it.

=1
’ ! A given strategy divides time into intervals where each
(Z(aj,l —aj)+ az)t] . interval is the period of time spent in a particular statee Th

j=i expected cost for a strategy given in Equation 2 is obtained

by summing over the expected cost incurred in each in-

The summations over theindices in (7) telescope to show

; ) _ terval. The cost for each interval is divided into two parts
that the two expressions are identical. ]

We define the functio for the first term which is

6.2. TheOptimal State Sequence t;

Q(i,ti,j,tj) = / p(t)ﬂl(t—tl)dt

We now present a simple polynomial time algorithm to ti

obtain the optimal state sequence for a given system. First,This is the expected cost in the intery@al ¢;) for those idle
for each pair(s, j), 0 < i < j < k, letT; ; denote the op-  periods whose length is also in the interfzal¢;). The sec-
timal transition point ifs; ands; were the only two states  ond part is the expected cost in the interj¢alt; ) for those
in the system. The time complexity of determining a single idle periods that are longer than Define

T; ; depends on the representation of the probability distri- o0

bution. In practice, this is most likely to be estimated by R(i,ti,7,t;) = / p(t)[cui(t; —t;) + Bij]dt.

a finite histogram withB bins starting at tim& and sam- tj

pled at a uniform discrete interval 6f It follows that bini Note that Q(i,4l;, ,6l;) and R(i,dl;,j,6l;) can both
corresponds to timé. It is not difficult to generalize this  be evaluated in constant time givetC'C[l;], ACC,,
for variable sized bins. We will also assume that all transi- ACCT[l;) and ACCT1;] defined above.

tion times occur at som&. The height of bin' is H (i) and At each transitiorT; ;, we check to see if the current best
this implies that the probability that the idle timeequals  schedule that ends in statecan be improved by transition-

di is given by ZHI(L})@) In what follows below,ACCYi] is ing to j from the current best schedule that ends in state

which results in two separate summations in Equation 2.



For this purpose, we maintain two arrays of sizel: ¢[i] is

the time at which the current best schedule that ends at state
s; transitions tos; andh[i] is the cost at; of that sched- [9]
ule. Initially, 2[0] < 0 and all othet:[i] < oo. ¢[i], for all ¢

can be initialized td). We provide the pseudocode for pro-
cessing at each transition poifit ;.

Current Status: T; ; is the transition point that is being
processed
{The cost up to timd; ; if transitioning froms to j at
Tij}
h — hli) + Q(i,tli], 5, T, ;) + R, t[i], 4, Ti.;)
{The cost up to tim&; ; if not transitioning toj atT; ; }
h2 — h[j] + Q(]vt[]]vja Ti,j) + R(]a t[j]aja Ti,j)
if h1 < h2then
hlj] < hl
tlj] — Ti,
end if
It is easy to see that each transition point takes a con-
stant amount of processing. The sorting takes an overhead
of O(k?logk). The initial preprocessing to calculate the
transition points take®)(k%B). Hence, the total running
time isO(k%*(logk + B)).
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