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Abstract

We present the first polynomial-time approximation al-
gorithms for single-minded envy-free profit-maximization
problems [13] with limited supply. Our algorithms return
a pricing scheme and a subset of customers that are des-
ignated the winners, which satisfy the envy-freeness con-
straint, whereas in our analyses, we compare the profit of
our solution against the optimal value of the correspond-
ing social-welfare-maximization (SWM) problem of find-
ing a winner-set with maximum total value. Our algorithms
take any LP-based a-approximation algorithm for the cor-
responding SWM problem as input and return a solution
that achieves profit at least OPT /O(« - log Umax), where
OPT is the optimal value of the SWM problem, and ., is
the maximum supply of an item. This immediately yields ap-
proximation guarantees of O(\/m10g umax ) for the general
single-minded envy-free problem; and O(log umax) for the
tollbooth and highway problems [13], and the graph-vertex
pricing problem [3] (a = O(1) for all the corresponding
SWM problems). Since OPT is an upper bound on the max-
imum profit achievable by any solution (i.e., irrespective of
whether the solution satisfies the envy-freeness constraint),
our results directly carry over to the non-envy-free versions
of these problems too. Our result also thus (constructively)
establishes an upper bound of O(a - 10g umax) on the ra-
tio of (i) the optimum value of the profit-maximization prob-
lem and OPT; and (ii) the optimum profit achievable with
and without the constraint of envy-freeness.

1. Introduction

Profit (or revenue) maximization is a classic and fun-
damental economic goal, and the design of computation-
ally efficient algorithms and mechanisms for various pric-
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ing problems has received much recent attention [1, 12,
13, 3, 2, 5, 4]. We study the algorithmic problem of envy-
free profit-maximization for single-minded customers in the
limited-supply setting, which we refer to as the (general)
single-minded envy-free problem (SMEFP). We are given
m items, each of which is available in limited supply, and n
customers, each of which has a certain (nonnegative) value
for a single subset of items that she desires. We need to de-
termine prices for each item and a subset of customers, des-
ignated the winners, who can afford to buy their subset (the
price of a subset is the total price of the items in it), and
are allocated their sets, that satisfy two feasibility condi-
tions: (i) capacity constraints, which require that the num-
ber of winners that are allocated an item be at most the sup-
ply of that item; and (ii) envy-freeness constraints, which
stipulate that every customer for which the value of her de-
sired set is strictly greater than the price of the set is allo-
cated her set. The objective is to maximize the total profit
obtained by selling the items to the winners. This prob-
lem was introduced by Guruswami et al. [13]. In the non-
envy-free version of the problem, which we refer to sim-
ply as the profit-maximization problem, the goal is to find a
pricing-scheme and a winner-set (of customers who can af-
ford to buy their subsets) that satisfies (only) the capacity
constraints and maximizes the seller-profit.

An envy-free solution satisfies a natural fairness crite-
rion: it ensures that every customer is maximally satisfied
with her allocation given the pricing-scheme. This is espe-
cially relevant in limited-supply settings (as noted in [13]),
where the seller may want to discriminate between cus-
tomers in order to satisfy the capacity constraints and max-
imize profit; envy-freeness ensures that the seller does not
display any such bias, thereby avoiding discontent among
customers. Notice that an envy-free solution may be viewed
as a stable or “equilibrium” outcome for the customers, in
that no customer has an incentive to dispute the allocation
(given the pricing). Not surprisingly, in the economics lit-
erature, the notion of envy-freeness has been used to model
fair equilibrium pricing in various settings; Walras [21] is a
classical reference. The envy-free problem also plays a role
in providing a metric for comparison of profit-maximizing



truthful mechanisms, where the profit is often compared to
the profit of an optimal envy-free solution [12, 2].
Guruswami et al. also introduced two structured cases of
general SMEFP: (a) the rollbooth problem where the items
are edges of a graph and the customer-sets correspond to
paths in this graph, which can be interpreted as the problem
of pricing transportation links or network connections. (b)
a further special case called the highway problem where the
graph is a path, which one can motivate also from a schedul-
ing perspective. The path corresponds to a time-interval dur-
ing which a machine is available, and one needs to price
the time-units (edges) so as to maximize the profit obtained
by scheduling jobs; each job (customer) can only be pro-
cessed in a specific time interval, and if scheduled, it must
pay for this time interval. Even the highway problem is
NP-hard, so we will be interested in designing approxima-
tion algorithms for these problems. Throughout, we use the
term p-approximation algorithm for a maximization prob-
lem, where p > 1, to denote a polynomial time algorithm
that returns a solution of value at least (optimum value) /p.

Our results. We present the first (polynomial time) approx-
imation algorithms for envy-free profit maximization prob-
lems with limited supply and single-minded customers. Our
main result, stated informally below, is that one can exploit
any LP-based approximation algorithm for the correspond-
ing social-welfare-maximization (SWM) problem of finding
a maximum-value subset of winners satisfying the capac-
ity constraints, to obtain an approximation guarantee for the
envy-free problem. Let uy,,x = max item-supply.

Informal Main Theorem Given an a-approximation algo-
rithm for the corresponding SWM problem whose approxi-
mation ratio is with respect to the “natural” LP-relaxation
of the problem, one can obtain an envy-free solution with
profit at least OPT /O (- 10g Uumax ), OPT being the opti-
mum value of the SWM problem.

These yield the first (non-trivial) approximation algo-
rithms, even for various special cases of SMEFP, as we
mention below. We point out that the O(log tax )-factor
above is unavoidable: a well-known example with a sin-
gle item shows a gap of > i™* 1 = ©O(log umax) be-
tween the optimum of the SWM and envy-free problems.
Since the upper bound that we use to compare the qual-
ity of our solution is also an upper bound for the corre-
sponding non-envy-free profit-maximization problem, (that
is, where envy-freeness is not a constraint), an immedi-
ate corollary of our theorem is that we obtain identical
guarantees for the non-envy-free profit-maximization prob-
lem with limited supply and single-minded customers. To
the best of our knowledge, the results that we thus ob-
tain (as corollaries) for the profit-maximization problem
with limited-supply and single-minded customers are new.
(For some of the non-envy-free problems, one can obtain

certain guarantees via a reduction in [2] showing that an
a-approximation for the SWM problem and an algorithm
for the unlimited-supply problem that returns profit at least
(SWM-optimum)/ 3 yield an c3-approximation.) A key no-
table feature of our theorem is its generality. One can simply
“plug in” various known (or easily derivable) results about
the SWM problem to obtain approximation algorithms for
various limited-supply single-minded (envy-free and non-
envy-free) profit-maximization problems.

Theorem 1.1 We obtain the following approximation guar-

antees for various single-minded envy-free (and non-envy-

free) limited-supply profit-maximization problems (Umax =
max item-supply, m = no. of items):

(i) O(v/m1og umax) for the general single-minded prob-
lem: o = O(\/m) [19, 17];

(ii) O(log umax) for: the highway problem (o« = 1); the
tollbooth problem on trees (o« < 4 [7]); the graph-
vertex pricing problem introduced by [3] (o« < 2: this
follows from Lemma 3.11 in [16]).

Part (i) of Theorem 1.1 answers positively one of the
main open questions in Guruswami et al. [13], of whether
there exists a sublinear factor polynomial time approxima-
tion algorithm for the single-parameter limited-supply case.
For general SMEFP, our approximation guarantee is close
to the best possible since a simple reduction from the set-
packing or independent-set problem shows that approxi-
mating general SMEFP within a factor better than m2 or
n is NP-hard even when u.,,x = 1 [14]. Previously, for
general SMEFP, and even for special cases such as the
highway problem, the only known guarantees were either
poly-time logarithmic guarantees (in m and/or n) for the
unlimited-supply setting [13, 3, 5, 4], quasipolynomial and
pseudopolynomial algorithms, or approximation schemes
for restricted instances [13, 15, 5, 14].

Our main theorem has two interesting consequences.
First, the theorem establishes a concrete, explicit connec-
tion between the approximability of the (limited-supply)
envy-free profit-maximization problem and that of the
SWM problem. (We remark that many approximation al-
gorithms for profit-maximization problems [13, 3, 5, 4, 10]
obtain logarithmic performance guarantees by com-
paring their profit against the optimum of the SWM
problem.) Second, as a corollary of our results, we ob-
tain that the worst-case ratio between the profit achiev-
able by a non-envy-free solution and an envy-free solu-
tion is O(a - logumax), where « is now the integrality
gap of the LP-relaxation of the SWM problem. (An anal-
ogous ratio is often investigated in scheduling, where one
seeks to know the extent by which preemption can im-
prove the value of an optimal schedule.) We call this ra-
tio the price of envy-freeness and it quantifies the loss faced
by the seller to ensure envy-freeness (so as to avoid discon-
tent among customers and provide some kind of fairness



guarantee). In Section 5, we extend our main theorem to al-
low for (a) disjoint k-minded customers, where a customer
may desire k disjoint subsets and may be allotted mul-
tiple such subsets; and (b) customer-multisets, where a
customer may desire multiple copies of an item.

Our techniques. We give a high-level overview of the
ideas behind our algorithms and analyses. We use the terms
supply and capacity interchangeably. First, we note that
the common technique of setting a common price for all
items, which has been frequently used to obtain algorithms
for various non-envy-free and/or unlimited-supply profit-
maximization problems [13, 10, 9, 4] fails quite badly in
the limited-supply envy-free setting. (For example, suppose
there are m items in unit supply, m+2 customers. Each cus-
tomer ¢ = 1,...,m wants item e; and has value A — 1; cus-
tomers m + 1, m + 2 want item e; and have value A. Any
envy-free single-price scheme must charge price p > A
and earn profit at most A, whereas the optimal profit is
m(A — 1) 4+ 1.) Thus, one needs to devise new techniques
to attack the limited-supply envy-free problem. Our algo-
rithms and analyses are based on a novel use of linear-
programming tools, especially duality theory, and do (in-
deed) charge different prices for different items. They may
shed some light about how to exploit price-differentiation
for profit-maximization (an issue mentioned in [13, 4]).

Given a single-minded envy-free problem with supply-
vector (ue), sets {S;}, valuations {v;}, our starting point
is a natural LP-relaxation, (P), for the corresponding SWM
problem: we have a variable x; for each customer 7 denot-
ing if 7 is chosen as a winner, and a capacity constraint (1)
for each item e.

max Zvixi (P)
i
s.t. Z T < U for all e @))]
i:e€S;
0<x; <1 for all <. 2)

It is not clear how (P) might help in determining envy-free
(or even non-envy-free) prices for our problem, especially
given that this LP does not even have any price-variables!
The key insight underlying our algorithms is that the dual
LP (D) can be used to furnish the prices. In the dual pro-
gram, ¥y, and z; are the dual variables corresponding to (1)
and (2) respectively.

min Z UeYe + Z 2 (D)

e (3
s.t. Z Ye + 2i 2> V;
e€sS;

Ye, Zi Z 0

for all ¢

for all e, 7.

The crucial observation is that in an optimal dual solution
(y*, z*), the y*-values yield item prices that satisfy envy-

freeness with respect to the optimal primal (fractional) al-
location x*. By this we mean that, due to the complemen-
tary slackness (CS) conditions, (i) if 7 is a fractional winner,
ie., x; > 0, then Zeesi ya < wv;;and (ii) if 27 < 1 then
> ces; Yo = vi. In particular, this implies that if z* is inte-
gral, then the prices {y}} and the winner-set {i : xf = 1}
constitute a feasible solution to the envy-free problem; the
profit achieved is ) __ u.y} (again using the CS conditions).

There are two impediments to turning the above observa-
tion into an approximation algorithm. First, an optimal solu-
tion to (P) need not of course be integral. Second, the profit
achieved using prices {y*}, even by a fractional optimal so-
lution, i.e., Ze UueYs, could be quite small (in particular, it
could be 0!) compared to the optimum profit, and hence, the
optimum value OPT of the above LPs. We take care of the
first difficulty via an interesting rounding procedure. Given
an q-approximation algorithm for the SWM problem, we
use the convex-decomposition theorems of [6, 18] to obtain
arandom winner-set W such that {¢ : 2} =1} CW C {i :
af > 0} with probability 1, and where the expected num-
ber of winners whose sets contain an element e is at least
te /. Using the CS conditions, this shows that the prices
{y}} along with W is a feasible solution to the envy-free
problem achieving expected profit at least ), ucy} /o

Handling the second obstacle requires more work. We
use the oft-used idea of lowering capacities to increase the
profit. Our algorithms choose an appropriate supply-vector
(see below) and compute the optimal primal and dual so-
lutions for this vector; the optimal dual y.-values yield the
prices, and the winner-set is obtained by rounding the pri-
mal solution (as above). The bulk of the analysis (which
is also the basis of the algorithm) is devoted to proving
that there exists some vector v/ < u (which one can ef-
ficiently find) and an optimal dual solution (3, z’) for v’
such that >~ _uly, = OPT/O(log umax); thus, the profit
we achieve is Olatogums)” The proof requires establishing
various properties about the optimum-value OPT, viewed
as a multivariable function of the capacities. In particular,
we need to define and analyze the breakpoints of OPT'(.),
which is a piecewise-linear concave function, along differ-
ent directions to prove this statement.

Related work. The envy-free profit-maximization prob-
lem with arbitrary valuations was introduced by Gu-
ruswami et al. [13], who then proceeded to study two im-
portant classes of valuations/customers: single-minded cus-
tomers, and unit-demand customers. They obtained an
O(log n)-approximation algorithm for the unit-demand
problem with limited-supply, and an O(logm + logn)-
approximation algorithm for the unlimited-supply single-
minded problem. The latter result was extended to an
O(logm + logn)-approximation for arbitrary valua-
tions and unlimited-supply, by Balcan et al. [4]. Guruswami
et al. also introduced the tollbooth and highway prob-



lems as special cases of the single-minded envy-free
profit-maximization problem.

To the best of our knowledge, no (polynomial-time)
approximation results are known for the general SMEFP,
or its special cases, the tollbooth and highway problems.
In fact, other than the approximation result of [13] for
the envy-free problem with unit-demand customers, we
are aware of only a few (poly-time) approximation results
for limited-supply profit-maximization problems in gen-
eral, and these few results [10, 9, 4] are for non-envy-
free profit-maximization problems. Dobzinski, Nisan and
Schapira [10], Dobzinski [9] obtain results for combina-
torial auctions (where one has unit supply). Balcan, Blum
and Mansour [4] consider the arbitrary-supply setting, and
obtain an 20(Vlegnloglogn) _apnroximation for subadditive
valuations and an O(logm + logn)-approximation for a
class they call simple submodular valuations.

We now discuss previous work on the general single-
minded problem and the special cases considered in Theo-
rem 1.1. The existing results either pertain to the unlimited-
supply problem or yield non-polynomial-time algorithms
for the non-envy-free version of the limited-supply prob-
lem, and fall into two categories: (a) approximation al-
gorithms with logarithmic guarantees; and (b) quasipoly-
nomial and pseudopolynomial algorithms, and exact algo-
rithms or approximation schemes for restricted instances.

For the general single-minded problem with unlimited
supply, the O(log m + logn)-approximation guarantee of
Guruswami et al. [13] was improved to an O (log B+1log ¢)-
approximation ratio by Briest and Krysta [5], where B
is the maximum number of set containing an item and
¢ is the maximum size of a set. (Note that our result
yields an O(log B)-approximation guarantee, since o = 1
for the unlimited-supply problem.) Balcan and Blum [3]
gave an O(/¢)-approximation algorithm, which leads to a 4-
approximation algorithm for the graph-vertex pricing prob-
lem. They also gave an O(logm)-approximation for the
unlimited-supply highway problem, which improves upon
the guarantee of [13] and is incomparable to the guaran-
tee of [5]. Hartline and Koltun [15] gave an FPTAS for
the unlimited-supply general single-minded problem with a
bounded number of items. For the unlimited-supply high-
way problem, Guruswami et al. [13] designed dynamic-
programming based quasi- and pseudo-polynomial exact al-
gorithms when the maximum interval-length or maximum
valuation is bounded; these algorithms may be extended
to the limited-supply setting. Balcan and Blum [3] and in-
dependently Briest and Krysta [5] gave an FPTAS for the
problem when the customer-paths form a laminar family
(such an instance also captures an instance of the general
problem with a laminar customer-subset family). For the
limited-supply highway problem, Grigoriev et al. [14] ob-
tained an FPTAS under the assumption that the maximum

supply is bounded, and recently Elbassioni et al. [11] de-
vised a quasi-PTAS. It is not clear if the rounding ideas
in such schemes can be applied to the envy-free problem
since envy-freeness imposes both upper-bound (for win-
ners) and lower-bound (for losers) constraints on the price
of a customer-subset, so rounding may not preserve the fea-
sibility and profit of the solution. For the tollbooth problem
on trees, [13] gave a poly-time algorithm for the unlimited-
supply problem for the case where all paths share a com-
mon endpoint; this extends to a quasipolynomial algorithm
with limited supply. On the other extreme, [14] obtained a
poly-time algorithm for the unit-supply problem.

We now survey the known hardness results for these
problems. For the general limited-supply single-minded
problem, it is relatively easy to show via a reduction from
the set-packing problem that achieving an approximation
factor better than m 2 , or n, is NP-hard even when u,, =
1. This was first noted by Grigoriev et al. [14], who proved
that the tollbooth problem cannot be approximated better
than a factor of n even on grid graphs with uy.x = 1. Gu-
ruswami et al. [13] showed that the unlimited-supply toll-
booth problem is NP-hard even on a star where all valua-
tions are 1 and all customer-sets have size at most 2. Briest
and Krysta [5] showed that the unlimited-supply highway
problem is NP-hard even when the customer-subpaths form
a laminar family. For the general unlimited-supply problem,
Demaine et al. [8] proved a log”?) m-inapproximability
result assuming NP ¢ BPTIME(2™), and a log3“ m-
inapproximability for any € > 0, assuming that refuting
random-3SAT formulae is hard on average.

2. Problem definitions and preliminaries

The single-minded envy-free pricing problem. The in-
put to the single-minded envy-free pricing (SMEFP) prob-
lem consists of m items that are for sale, and n customers.
Each customer ¢ desires a single subset .S; of items (hence
the term single-minded) and has a valuation v; that repre-
sents the maximum amount the customer is willing to pay
for S;. (Note that the customer desires the entire set S;, and
not portions of it.) Each item is available in limited supply.
We let u, denote the number of copies available (i.e., the
supply or capacity) of item e, so item e may be given to at
most u, customers. A solution to SMEFP consists of a pric-
ing scheme, that is, nonnegative prices p. > 0 for the items,
and a subset W C {i : Y g pe < v;} of the customers
called “winners” who can afford to buy their sets and are al-
lotted their sets, satisfying

e Capacity constraints. Every edge e is allocated to at
most u, winners: [{i € W : e € S;}| < ue.

e Envy-freeness. For every customer ¢ ¢ W, we must
have Zee s, Pe > v;. So the winner-set W should sat-

isfy {i: ) ocg pe <vi} CW C{i:)] cg Pe < 0if.



In other words, every customer who obtains a positive
utility by paying for her set (utility = valuation — to-
tal price) is a winner.

Notice that a customer 4 with ) s, Pe = v; may or may
not be chosen as a winner (her utility is 0 in either case). The
goal is to compute a solution that maximizes the profit of the
seller, which is given by Y,y (Y.cq, Pe) = Y. pel{i €
W : e € S;}|. We will also be interested in the follow-
ing special cases. (a) the tollbooth problem: the items are
edges of a graph G, and each customer 7’s set .S; is a path
of G; and (b) the highway problem: a special case of the
tollbooth problem, where the graph G is a path. In Sec-
tion 3, we consider the highway problem with uniform ca-
pacities and give an approximation algorithm that show-
cases many of the ideas underlying our algorithm and anal-
ysis for general SMEFP. We also consider the non-envy-
free versions of the above problems, which we refer to
simply as the profit-maximization problem. Here the ob-
jective is to find item prices {p. > 0}, and a winner-set
W C {i: ) g Pe < v} satisfying the capacity condi-
tions that maximizes the seller profit, >,y (3. ¢ s, Pe).

Even the special case of the unlimited-supply highway
problem where the sets .S; form a laminar family, is NP-
hard. So our goal will be to design approximation algo-
rithms for these various envy-free pricing problems. In
all our algorithms, the approximation guarantee is proved
by comparing the profit obtained against an upper bound,
which is the maximum total value achievable by a winner-
set that satisfies the capacity constraints. The problem of
finding a winner-set with maximum total value is often
called the social-welfare maximization (SWM) problem in
the mechanism-design literature. One can formulate this
problem as an integer program and relax the integrality con-
straints to obtain the linear program (P) (given in “Our
techniques”, Section 1). Our algorithms and analyses also
crucially use the dual of (P), which is given by the LP
(D). We use O*(Z) and OPT(Z) to denote respectively,
the value of the optimum profit attainable for instance Z,
and the common optimum value of (P) and (D) for in-
stance Z; we drop Z when the instance is clear from the
context. Clearly O*(Z) < OPT(Z): an optimal solution
({pe}, W) to the highway problem yields an integer solu-
tion (i.e., z; € {0,1}) to (P), where we setz; = 1ifi € W
and O otherwise, of value Zl vix; > O since the profit
Y ces, Pe earned from each winner i is at most v;.

Given an instance Z, suppose we fix m,n and
{(vi,Si)}i=1,....n but let the capacities vary. For a
capacity-vector k = (k.) € R™, we use (Py) and (D)
to denote respectively (P) and (D) with item capaci-
ties { k. }. Note that the feasible region of (Dy) does not de-
pend on k. We prove some useful properties about the
function OPT(k), which denotes the common opti-
mum value of (P;) and (Dy,).

Lemma 2.1 OPT (k) is a piecewise-linear concave func-
tion of k, i.e., for any two capacity-vectors k', k"', A € [0, 1],
we have OPT(NK' + (1 — M)k"”) > NOPT(K'") + (1 —
A)OPT(K"). Further, OPT(.) is linear on the line segment
joining k' and k" iff there is a dual solution that is optimal
for both (D) and (Dy).

Proof : Let &k = At + (1 — ANE"”. Let (y*,z*) b
an optimal solution to (D). Then we have OPT (k')
Y Kye + X, 2 and OPT(R) < ¥, Ky + 3, 2
from which it follows that OPT' (k) = > kel + >, 2}
AOPT (K'Y + (1 — \)OPT (k).

If OPTY(.) is linear on the line segment joining &’ and
k", then taking k = (k' + k”)/2 and (y*, 2*) to be an op-
timal solution to (D), the above argument implies that the
bounds obtained on OPT(k’) and OPT (k") by plugging
in the value of (y*, z*) must be exact. So (y*, z*) is an op-
timal solution to both (Dy/) and (Dg~). Conversely, sup-
pose (y*,z*) is a common optimal solution to (Dy) and
(Dyg). Plugging in the value of (y*, z*) for any capacity-
vector k = pk’ + (1 — pw)k”, where € [0,1], gives
OPT (k) < uOPT(k')+(1—p)OPT(K"). But the concav-
ity of OPT(.) implies the opposite inequality, which means
that the above inequality is in fact an equality. ]

*‘/\f‘b

Y

3. The highway problem with uniform capac-
ities

We first consider the highway problem with uniform ca-
pacities (i.e., all the u,’s are equal) to illustrate many of the
key ideas underlying our algorithms and analyses for the
general single-minded envy-free pricing problem. We prove
a tight approximation guarantee of Hyy = O(log U) by ex-
ploiting the special structure of (P) for this problem. Here U
is the uniform capacity and Hy, = 1+ % +- 1+ % For ease
of exposition, we describe a pseudopolynomial time algo-
rithm (Algorithm 1) that has running time polynomial in U.
By applying a standard scaling idea, we can convert this into
an algorithm with approximation ratio H, (1 + ¢), for any
€ > 0, whose running time is polynomial in the input size
and % In Section 4, we build upon the ideas introduced here
and extend our results to (the general) SMEFP to show that
one can obtain an O (a-log(max. u.))-approximation guar-
antee for SMEFP given an LP-based a-approximation algo-
rithm for the corresponding SWM problem. (For the high-
way problem, as we note below, o = 1).

We use the terms items and edges, and customers and
intervals interchangeably in this section. For the highway
problem, (P) corresponds to an interval-packing LP and it
is well known that the constraint matrix of this LP is totally
unimodular (TU), that is, every square submatrix has deter-
minant 0 or £1. This has the useful consequence that there



is always an integer optimal solution to (P) (assuming inte-
ger capacities); see, e.g., [20] for details on TU matrices.

Theorem 3.1 There is an efficiently-computable inte-
ger optimal solution to (P) (with integer capacities).

We show below that any integer optimal solution to (P)
and any optimal solution to (D) can be used to obtain a fea-
sible solution. We overload notation and use (Pj) and (D)
to denote respectively (P) and (D) with v, = k for all e;
OPT (k) denotes their optimal value as before.

Lemma 3.2 Let k < U. Let x* be an integer optimal so-
lution to (Py,), and (y*, 2*) be an optimal solution to (Dy,).
Then, (y*,W = {i : ] = 1}) is a feasible solution to the

highway problem earning profit ) ucys =Y, ky;.

Proof : We first argue that the solution (y*, W) is feasi-
ble. The capacity constraints are clearly satisfied since x*
satisfies (1). For any winner ¢ we have z = 1. So by com-
plementary slackness (CS), » g y& + 2] = v; and hence,
> ees, Yo < wisince z; > 0. For any customer i that is
not a winner, we must have z; = 0 since z; > 0 im-
plies that 7 = 1 by the CS conditions. So by dual feasi-
bility, we have that Zee s ys > v; for any ¢ ¢ W. Thus,
(y*, W) is a feasible solution. The profit earned by this so-
lutionis ), yi|{i € W : e € S;}|, which is > _ ky} since

by the CS conditions, y; >0 = > . cq T} =u.. W

Lemma 3.2 implies that one can compute an optimal so-
lution to the highway problem with unit capacities. This fol-
lows because with unit capacities, constraints (2) become
redundant, so we can get rid of them from (P), which has
the effect of getting rid of the z; variables from the dual
(D). Equivalently, this means that there is always an opti-
mal solution to (D) where z; = 0 for all . By Lemma 3.2,
the profit obtained by using such an optimal dual solution
(y*,0) to set the pricesis ) ys = OPT(1).

With higher capacities, the main obstacle to proving an
approximation guarantee is that it is no longer true that there
exists an optimal dual solution with 2} = 0 for all ¢; hence,
the profit ) _u.y; earned by applying Lemma 3.2 could
be much smaller than OPT (and even O*) for every opti-
mal dual solution (y*, z*). For example, suppose u, = 2
for all e. There are m + 1 customers with S; = {e;} for
1 =1,...,m, and S,,41 = E; the valuation of every cus-
tomer is 1. The unique optimal primal solution is to set
27 = 1 for all ¢, and thus, in any optimal dual solution we
must have >y} < vy = 1. S0 >, ueys < 2, but the
optimal profit is m achieved by setting a price of 1 for each
edge. This example shows that the simple approach of us-
ing the optimal y. values as the prices, which worked with
unit-capacities, does not work with higher capacities. In or-
der to make this approach work, we need to combine it with

another idea, namely, that one may be able to obtain higher
profit by reducing the edge capacities. Notice that in our ex-
ample, if we reduce the capacity of each edge to 1, the new
instance has an optimal dual solution where y. = 1 for ev-
ery edge e (and z; = 0 for every ¢), and this gives an opti-
mal solution to the highway problem.

Let Z be an instance of the highway problem with uni-
form edge capacities v, = U. Our algorithm proceeds
by considering U different capacitated instances, where in-
stance k = 1,...,U is obtained from 7 by reducing the
edge capacities to k. We solve each of these instances to
obtain a dual optimal solution satisfying certain properties,
and among the U solutions so obtained we choose the dual
solution (y, z) for which the prices {y.} yield the maxi-
mum profit. The allocation is obtained by solving the corre-
sponding primal problem. The algorithm is described pre-
cisely below. In the analysis, we prove (Lemma 3.3) that for
every k, there exists a dual solution (y, z) that is simulta-
neously optimal for both (Dy) and (Dy_1). Let (y®), 2(¥))
denote such an optimal dual solution to (Dy,).

Algorithm 1 Given: an instance of the highway problem

with edge capacities u, = U.

1. For k¥ = 1,...,U, compute an optimal solution
(y*), 2(k)) to (D) that is also optimal for (Dj_1).
(The proof of Lemma 2.1 shows how to compute such a
common optimal solution.)

2. Select the index ¢ € {1,...,U} that maximizes
Do cyéc) breaking ties arbitrarily. Compute an opti-

mal solution () to (P..).
3. Return y(®) as the pricing-scheme, and the winner-set

W= {i:az\? =1}
To make the running time of Algorithm 1 polynomial, in-
stead of considering all U values in steps 1 and 2, given
e > 0, we consider values separated by a multiplicative
factor of (1 + €). Let ky = 1,ka = [k1(1 + ¢)] and so
on, setting kj 11 = [k;(1 + €)] until we reach ¢ such that
[ke—1(1 + €)] > U; we set ky = U. We refer to this
polynomial-time algorithm as the “polynomial-version of
Algorithm 1”.

The key combinatorial lemma that leads to the desired
approximation guarantee is as follows.

Lemma 3.3 For any k, there exists a common dual solution
(y*), 2(K)) that is optimal for both (Dy) and (Dy_1).

Observe that by Lemma 2.1, the above lemma is equiv-
alent to the statement that OPT'(.) varies linearly between
any two consecutive integers, or equivalently, that the break-
points of this piecewise-linear concave function occur only
at integers. This (somewhat intriguing) property might be of
independent interest. The proof of Lemma 3.3 heavily ex-
ploits the total unimodularity of the constraint matrix of (P)



and is omitted from this version. Here we show how this
lemma leads to the desired approximation guarantee.

Theorem 3.4 Algorithm I returns a solution that achieves
profit at least OPT(U)/Hy.

Proof : Let P = ) cyéc) = maxp—1,.U Y, kygk) be
the profit attained by Algorithm 3.4 (by Lemma 3.2). Note
that for each k = 1,...,U, we have P/k > 3, gt =
OPT (k) — OPT(k — 1) (where OPT(0) = 0). Adding all
these inequalities gives P - Hy > OPT(U). [ |

Corollary 3.5 For any positive €, the polynomial-version
of Algorithm 1 returns a solution with profit at least
OPT/((1+ €)Hy) in running time poly (input size, ) for
the highway problem with capacities u. = U.

Corollary 3.6 There is a (1 + €)Hy-approximation algo-
rithm for the profit-maximization version of the highway
problem with uniform capacities u. = U.

4. The (general) single-minded envy-free pric-
ing problem

We now build upon the ideas introduced in Section 3
and extend our results to the general single-minded envy-
free pricing (SMEFP) problem. The general problem gives
rise to various distinct challenges that we need to overcome
to prove an approximation guarantee. We show that one can
utilize any LP-based a-approximation algorithm for the cor-
responding SWM problem to obtain an O(« - 10g Umax)-
approximation guarantee for SMEFP. (Recall that o« = 1
for the highway problem.)

Our analysis in Section 3 relied heavily on the fact that
the constraint matrix of (P) is TU for the highway prob-
lem. This is no longer true for general SMEFP problems, so
we need to devise alternate algorithm-design and analysis
methods. First, (P) may no longer have an integer optimum
solution. So, we need to (a) devise a rounding procedure;
and (b) come up with some kind of an analog of Lemma 3.2,
which showed that for the highway problem, given an op-
timal dual solution (y*, z*), one can compute a winner-set
that combined with prices {y}} yields profit }°_ u.y}. The
main ingredient of our rounding procedure is a result of Carr
and Vempala [6] (or rather, its refinement by [18]), which
shows that given any primal feasible solution x, one can de-
compose 2/« into a convex combination of integer primal
solutions using an LP-based a-approximation algorithm as
a black-box. Lemma 4.2 analyzes the rounding procedure
and provides a suitable analog of Lemma 3.2. We show that
given an optimal primal solution z* and an optimal dual so-
lution (y*, z*), our rounding procedure returns a (random)

winner-set that combined with the price-vector y* yields a
feasible solution earning profit at least i Do UeYr.

The second place where we crucially use total unimod-
ularity in Section 3 is in the proof of Lemma 3.3, which
shows that with uniform capacities, the optimal-value func-
tion OPT(.) only has integer breakpoints. This allowed us

to argue that the profit earned by using prices {ygk)} is
k(OPT(k) — OPT(k — 1)) (which then leads to the Hy -
approximation guarantee). For general SMEFP problems,
even with uniform capacities, OPT'(.) will not in general
have this integer-breakpoint property; it could be that ev-
ery optimal solution (y*, 2*) to (D) is such that ) " _ ky is
much smaller than k(OPT (k) — OPT(k — 1)).

For uniform capacities u. = U, we work around this dif-
ficulty by obtaining a new bound for the maximum value
of Y _ky! achievable by an optimal solution (y*,z*)
to (Dy). We then use a telescoping-sum argument simi-
lar to the one in the proof of Theorem 3.4 to prove that
there is some & < U and some optimal solution (y*, z*)
to (Dy) such that ) _Fky> > OPT(U)/O(logU). Com-
bined with the above rounding method, this yields an
O(a - logU)-approximation algorithm (Theorem 4.4),
given an LP-based «-approximation algorithm for the
SWM problem. For non-uniform capacities {u.}, we
need to refine the second part of the analysis. Let (Py)
and (Dy) now denote respectively (P) and (D) for a
capacity-vector £k = (k.). Let upmax = max.u.. As
with uniform capacities, we first obtain an exact expres-
sion for the maximum value of ) _k.y} achievable by
any optimal solution (y*,2*) to (Dy) (Lemma 4.5). Com-
bined with a more sophisticated telescoping-sum argument
(Lemma 4.7), this will allow us to efficiently find a vec-
tor k& < u for which there exists an optimal solution (y*, z*)
to (D) such that Y k.y > OPT/O(log umax), Which

e
then leads to an O(« - log tmax) approximation ratio.

Uniform capacities. We first consider the case of uniform
capacities. Let u. = U for all e. As in Section 3, (Py) and
(Dy,) denote (P) and (D) respectively with u, = k for all
e. We need the following result that follows from the work
of Carr and Vempala [6], and was made explicit in [18],
which we have adapted to our setting. We say that an al-
gorithm A is an LP-based a-approximation algorithm for
the SWM problem if on every instance Z, it returns an inte-
ger solution & such that ). v;&; > OPT(I)/«.

Lemma 4.1 ([6, 18]) Let k = (k.) be a capacity-vector.
Let x be a fractional solution to (Py), and A be a poly-
nomial time LP-based a-approximation algorithm for the
SWM problem. Then, in polynomial time, one can express
Z as a convex combination of integer solutions to (Py,).

As in the polynomial version of Algorithm 1, we will
consider capacity-values that are powers of (1 + ¢) rounded



up. Define k1 = 1, ko = [k1(1 + €)],..
actly as in Section 3, where kj 1 = [k;(1 4 ¢€)] for j < ¢
and ¢ is the smallest index such that [k,_1(1 +¢€)] > U.
Let 1 be the vector of all ones.

.,k@ = U ex-

Algorithm 2 Given: an instance of SMEFP with capacities
ue = U, and an LP-based a-approximation algorithm for
the corresponding SWM problem that works for arbitrary
(i.e., not necessarily uniform) capacities. (If « is a function
a(.) of the maximum capacity, take o := maxg<y (k).

1. For each k& = kq,..., ks, compute an optimal solution
(y®), 2(})) to (Dy) that maximizes >, ky; among all
optimal solutions (y*, z*) to (D). Such a solution can
be computed by solving an LP.

2. Selectc € {ki,...,k¢} that maximizes ), cyéc). Com-
pute an optimal solution z(¢) to (P..).

3. Return y(® as the pricing-scheme, and W
Round(cl, 2(9)) as the (random) winner-set.

Round(p = (pe), xz*): Define u, = pe — |{i : 2 =
1, e € S;}|. Let (P,/) denote (P) with capacity-vector u'.
Define z to be the following feasible solution to (P,): set
x; = x if 7 < 1, and 0 otherwise. Use Lemma 4.1 to de-
compose /¢ into a convex combination Zi:l PR LAV
integer solutions that are feasible to (P,). (Here each &*
is an integer solution, each Ay, > 0, and ) & Ak = 1) Re-
turn the following random set WW: with probability A, set
W= {i:azf=1}U{i:3F=1}.

Notice that the algorithm can be derandomized simply
by using the prices y(©) to choose & € {&',..., &} in
Round that maximizes >, Z; (3¢ s, yéc)) (and returning
the corresponding W).

Lemmad4.2 Let k < U. Let x* be an optimal solution
to (Py), y* be an optimal solution to (Dy), and W
Round(k1,z*). Then, (y*, W) is always a feasible solution
to SMEFP, and achieves expected profit at least y_,, ky? /.

Proof : Define v’ = (u) and the fractional solution x that
is feasible to (P,/) as in Round(k1, z*). Consider any inte-
ger solution # that is assigned non-zero weight in the con-
vex decomposition. Let W be the corresponding winner-set
obtained from Z. Since & is feasible to (P,), the capac-
ity constraints are clearly satisfied. For any ¢ € W, we must
have z7 > 0; so by complementary slackness and since
z¥ > 0, we have that Zeesi yr < w;. Ifi ¢ W, it must be
that 7 < 1 and this implies that 2] = 0; so we have that
> ees, Yo = vi- Thus, (y*, W) is a feasible solution.

The probability that a customer ¢ with 7 < 1 liesin W
is exactly z} /a. So for any i, the probability that i € W is
at least x /o Thus, for any edge e with y* > 0, the ex-
pected number of winners whose sets contain e is at least

(Xiecs, ©7)/a = k/a. The equality is due to complemen-
tary slackness: if y7 > Othen ), g @} = u.. Hence, the
expected profit earned is at least ) ky)/a. |

Given the above lemma, it suffices to show that the
capacity-value ¢ computed in step 2 of Algorithm 2 is such

that ), eyl is “large” compared to OPT(U). To this end,

we first obtain an expression for >, kzyék), the maximum
value of ) _ ky? achievable by an optimal solution (y*, z*)
to (D). Define b, to be the smallest value in [0, k] such
that OPT(.) is linear in [by, k]. So by, is the breakpoint of
OPT(.) just preceding k. Note that by, < k and b; = 0.

Lemma 4.3 Forany k, Y, kyl" = k. CPTH—0PT(00),

Proof : By Lemma 2.1 there is a solution (y, z) that is opti-
mal to both (Dy,) and (Dy, ). The RHS in the lemma equals

Dookye <>, ky™  and is also at least Y e eyt n

We may assume without loss of generality that b, >
k — 1 since the RHS in the statement of Lemma 4.3 does
not change if we replace by by any a € [bg, k). So we use
by, to mean max{by, k — 1} from now on.

Theorem 4.4 For any € > 0, Algorithm 2 runs in time
poly (input size, %) and returns a solution (y(c), W) achiev-
ing profit at least OPT(U)/(2a(1 + €)Hy)).

Proof : Let P = Y, cygc) = MaXjk—ky,. kDo kyék).
By Lemma 4.2, the profit returned is at least P/a, so it
suffices to show that P > OPT(U)/(2(1 + €)Hy)). By
Lemma 4.3, for each k = k4, ..., ks, we have P - % >
OPT (k) — OPT(by). Also, since OPT(.) is a piecewise-
linear function with decreasing slope (since it is concave),
for every k = kj, j < £ with b, , > k, we have

P/k > OPT(k)~OPT(bs) -~ OPT(bg;,,)—OPT(k) since
= k—by, = br, o —k

> k = k; (alternatively, note that the last term is

bk;

(F) : brjpa =k
at most >__ ye ). Equivalently, we have P - (—21—)
OPT(kal) — OPT(k) (this is trivially true if by, ,
k). For any j < ¢, adding this inequality for k& = k;
and the earlier inequality for & = k;;1, we obtain that

k; —b.1 b, —k;
P [ =] > OPT(kjr) — OPT(kj).

Since k11 < 2(1 + €)k;, the coefficient of P in the above
inequality is at most 2(1+¢) ng’;i-ﬁ-l 1.So adding this last
inequality for all j < ¢, and the inequality P > OPT(1)
(recall that k; = 1) gives P -2(1 +€)Hy > OPT(U). m

v

Arbitrary (non-uniform) capacities. The algorithm and
analysis for arbitrary capacities follow the same basic out-
line as for uniform capacities. We now use (Pj) and (Dy)
to denote respectively (P) and (D) with edge capacities



{kc}. The algorithm again considers a certain number of
capacity vectors k < wu, computes for each such vector,
an optimal dual solution (y*), 2(*)) to (D) that maxi-
mizes ), keyék), and then chooses among these vectors
the capacity-vector ¢ that maximizes the sum ), ceyéc).
The algorithm then returns y(¢) as the price-vector, and the
winner-set returned by Round(c, 2()) where () is an op-
timal solution to (P.). We assume that u, > 1 for all e; if
not, we can split the instance into independent instances.

Algorithm 3 Given: an instance of SMEFP with capacity-
vector v and an LP-based a-approximation algorithm for
the SWM problem. (Again, if « is a function of the maxi-
mum capacity, then « := maxg<y,,,, a(k).)

1. Define k', k2,. .., k* as the following capacity-vectors.
Let k} = 1 forall e. For j > 1, let kI = min{[(1 +
€)ki~'7, uc }, and let £ be the smallest index such that
[(1 + €)k!™1] > we for all e (so k* = wu). For each
capacity-vector k = k7, j = 1,...,¢, compute an
optimal solution (y*), 2(F)) to (D) that maximizes
e keye among all optimal solutions to (Dy,).

2. Select the vector ¢ € {k!,... k’} that maximizes
Y cyg °) . Compute an optimal solution z(¢) to (P,).

3. Return 7(® as the pricing-scheme, and W
Round(c, z(¢)) as the (random) winner-set.

Let upmax = max. u.. Lemma 4.2 easily generalizes
to non-uniform capacities and shows that if z* is an op-
timal solution to (Pj), y* is an optimal solution to (Dy)
with k& < w, and W <« Round(k,z*), then (y*, W)
is always a feasible solution to SMEFP and achieves ex-
pected profit at least ) kc.y’/a. So the profit earned is

at least ) ceygc) /. The (rest of the) analysis is devoted
to showing that the vector ¢ computed in step 2 of the al-
gorithm is such that 3, cet® > OPT(u)/0(l0g tmax).
which thus implies an O(« - 10g umax )-approximation ra-
tio. Due to the fact that we now have to deal with capacity-
vectors, it is harder to make the telescopic-sum argument
in Theorem 4.4 work. The function OPT(.) is now a mul-
tivariable function, and we need to define and analyze
the breakpoints of this function along specific directions.
Lemma 4.5 does this, and gives an expression for the max-
imum value of ) _k.y; achievable by an optimal solu-
tion (y*, z*) to (Dg). Combining this with a more sophisti-
cated telescoping-sum argument, we prove in Lemma 4.7
that 3, copt® > OPT(u)/O(log tmay). For a vector
d € RY, and capacity-vector k, define by 4, the breakpoint
of OPT(.) before k along direction d, to be the smallest
r >0, r € [max.(1 — S—:), 1] such that OPT(.) is lin-
ear on the line-segment joining k and k — d(1 — r). For
j > 1,defined = k/ — k=1, Note that 0 < dJ < kJ for
all e. Let ¢* be an item with Uex = Umax-

Lemma 4.5 For any capacity-vector k and any vector d €

RZ, with d < k, we have that (3, keyé )) - max, % >
OPT(k)— OPT (k—d(1—b,.q)) ‘
lfbkyd

, with equality when d = k.

Proof : Consider some vector d € RY, with d < k.
Let ¥ = k — d(1 — by 4). By the definition of by 4 and
Lemma 2.1, there exists a common optimal solution (y, z)

o (D) and (D). So %}?CIPT}C) Z deye <

maxe keye < | max, keye . We also
(o ) - S ke < (maxe ) - 5,

have that % >3 deyék). So when d = k,
this inequality coupled with the opposite inequality derived

above gives the desired equality. ]

Claim 4.6 We have dé/ki = max.(d!/k}) and
dl. /K17t = max (i /kI7Y) for any j > 1.

Lemma 4.7 The vector c computed in step 2 of Algorithm 3
satisfies ), ceyt? > OPT(u)/(2(1+ €)Huy,..).

Proof : Let P =), ceye = MaXp_g1 kLD . keye
Fixing j < £, let k' = k71 — d7TH(1 — byjer gi+r). We

J+1

have P - ]+1 > Om;(k;)“) QPT(k) by Lemma 4.5 and
kJ+1,d.7+1

Claim 46 Also, P - > w Multi-
kI+1 ait+1

plying the second mequallty by a = byi+1 gi+1 € [0,1]
and the first by (1 — a), and adding gives P [(1—-a)-
IR 4o dTKL] > OPT(K9+Y) — OPT(K).
Since k21 < 2(1 + €)k.., we can upper bound the coeffi-

J+1
cient of P in this inequality by 2(1+€)- Zf *kJ " +. Thus,
adding the above inequality for all j < £ to the inequality

P> OPT(k') gives P-2(1 + €)H,. > OPT(u). ®

Theorem 4.8 Algorithm 3 runs in polytime and returns a
solution with profit at least OPT (u)/(2a(1 + €)H,,,,. )-
Corollary 4.9 There is a 2a(1 + €)H,,_,, -approximation
algorithm for the profit-maximization version of SMEFP,
where Upmax = MaXe Ue.

5. Extensions

Disjoint k-minded customers. This is a generalization
of single-minded customers where a customer may de-
sire multiple disjoint subsets. A disjoint-k-minded customer
¢ may desire k disjoint subsets of the items (k may be
different for different customers), and specifies &k tuples
(Si1,vi1), -5 (Sik, i k), where the sets .S; ; are pairwise
disjoint. The customer may be allotted any number of these



subsets, and she receives the value v; ; for each set .S; ;
allotted to her (note that ¢ receives value v; ; only if she
is allotted the entire set S; ;). An envy-free solution con-
sists of prices {p.} and a winner-set W that now speci-
fies a set of tuples (4, ) indicating which subsets are al-
located to each customer. Each (i,5) € W must be such
that ) s, Pe < vi ;. Moreover, W must satisty the ca-
pacity constraints, and the envy-freeness constraint that if
(1,7) ¢ W then Zeesm > v; ;. (In other words, each cus-
tomer 1 is allotted only sets that she can afford, and every set
S ; for which Zee s, De < v;,5.) Notice that an additive
valuation, that is, v;(S) = > jes Viyjs can be represented
as a disjoint-n-minded customer, with a tuple ({j}, v; ;) for
every item j.

The algorithmic problem with disjoint-k-minded cus-
tomers reduces to the single-minded problem: for every
customer ¢ and every tuple (.S; ;,v; ;), we create a single-
minded customer (4, j) that desires the set S; ; and has val-
uation v; ;. The envy-freeness condition for the resulting
single-minded instance is exactly the same as the envy-
freeness condition mentioned above. Thus, all of our re-
sults, in particular, those mentioned in Theorem 1.1, extend
to this more general setting.

Customers desiring multiple copies of items. Another
generalization of single-minded customers is one where
customers may desire multiple copies of items. Thus, a cus-
tomer i’s set is now a multiset represented by a vector (i),
specifying that she desires ¢; > 0 copies of each item e (and
is satisfied only if she is allocated ¢! copies of each item e).
Given item prices {p. }, the price that a customer ¢ pays for
her multiset (%), is >, cip., and this must be at most v;
for a winning customer, and envy-freeness requires that this
price be at least v; for a non-winner. In the SWM problem,
constraint (1) of the primal (P) changes to ZZ céxi < Ue
for every e, and accordingly the constraint in the dual (D)
changes to Ze céye + z; > v; for all i. Note that we may
assume that ¢ < u, for all 4, e (this ensures that the inte-
grality gap of (P) is bounded). Given these changes, it is not
hard to see that the analysis in Sections 3 and 4 extends to
this setting, and thus we obtain the same guarantees (Theo-
rems 1.1, 3.4, 4.4, 4.8) as for the single-minded case.

Theorem 5.1 For the profit-maximization problem where
each customer desires (up to) k disjoint multisets, one can
use any LP-based o-approximation algorithm for the corre-
sponding SWM problem to obtain an envy-free solution that
attains profit at least OPT swm/O(« - 10g Umax )
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