
Approximation Algorithms for the Firefighter
Problem: Cuts over Time and Submodularity

Elliot Anshelevich1, Deeparnab Chakrabarty2, Ameya Hate1, and Chaitanya
Swamy2

1 Department of Computer Science, Rensselaer Polytechnic Institute
2 Dept. of Combinatorics & Optimization, University of Waterloo

Abstract. We provide approximation algorithms for several variants of
the Firefighter problem on general graphs. The Firefighter problem
models the case where an infection or another diffusive process (such as
an idea, a computer virus, or a fire) is spreading through a network, and
our goal is to stop this infection by using targeted vaccinations. Specif-
ically, we are allowed to vaccinate at most B nodes per time-step (for
some budget B), with the goal of minimizing the effect of the infection.
The difficulty of this problem comes from its temporal component, since
we must choose nodes to vaccinate at every time-step while the infection
is spreading through the network, leading to notions of “cuts over time”.

We consider two versions of the Firefighter problem: a “non-spreading”
model, where vaccinating a node means only that this node cannot be
infected; and a “spreading” model where the vaccination itself is an in-
fectious process, such as in the case where the infection is a harmful idea,
and the vaccine to it is another infectious idea. We give complexity and
approximation results for problems on both models.

1 Introduction

Faced with an epidemic that is spreading through a population, and a limited
supply of vaccine (or simply a lack of time to administer it), it is necessary to
decide whom to vaccinate. Questions about the spread of disease and epidemics
in a social network have often been modeled using graph theory (e.g. [3, 11]),
and correspond to fundamental graph-theoretic concepts [22]. Moreover, these
graph theoretic principles can be applied to many diffusive network processes,
including epidemics in computer networks, the spread of innovations and ideas,
and viral marketing [23]. In this paper, we focus specifically on inhibiting the
spread of an epidemic or an idea by using vaccination.

Model and the Firefighter problem We model our network of agents as a directed3

graph G = (V,E) and a source node s. All nodes in the graph can have one

3 We use a directed graph since it is more general – an undirected graph is just a
directed graph with two arcs per edge.



of three states: they can be infected, vaccinated, or vulnerable, that is neither
vaccinated nor infected. At time τ = 0, all nodes are vulnerable, except node
s, which is infected. At each τ > 0, any vulnerable vertex v which is connected
to an infected node u, such that (u, v) ∈ E, gets infected at time τ + 1, unless
it is vaccinated at time step τ . Infected and vaccinated nodes stay infected and
vaccinated respectively. We call a node saved if it is either vaccinated or if all
paths from any infected node to it contains at least one vaccinated node.

Definition 1. A vaccination strategy is a set Ψ ⊆ V × J where V is the set of
vertices of graph G and J = {1, 2, . . . |V |}. The vertex v is vaccinated at time
τ ∈ J by the vaccination strategy Ψ if (v, τ) ∈ Ψ . A vaccination strategy Ψ is
valid with respect to budget B, if the following two conditions are satisfied:

i. if (v, τ) ∈ Ψ then v is not infected at time τ ,
ii. let Ψτ = {(v, τ) ∈ Ψ}; then |Ψτ | ≤ B for τ = 1 . . . |V |.

The first condition implies we can only vaccinate vulnerable nodes, and the
second condition requires that no more than B nodes are vaccinated at any
time-step.

We consider two separate objectives in this paper. The first objective, which
we call MaxSave, is to maximize the number of non-infected nodes in the end,
when we are given a fixed budget B. The second objective, which we call Min-
Budget, is to minimize the budget B needed per time instant in order to save
a given set of nodes, T ⊆ V . They can be formally described as follows.

MaxSave(G, B, s, T )
Instance: A rooted graph (G(V,E), s), integer B ≥ 1 and T ⊆ V
Objective: Find a valid vaccination strategy Ψ such that if s is the only infected
node at time 0, then at the end of the above process the number of non-infected
nodes that belong to T is maximized.

This problem is also referred to as the Firefighter problem in the liter-
ature when T = V [16, 20].

MinBudget(G, s, T )
Instance: A rooted graph (G(V,E), s), and T ⊆ V
Objective: Find a valid vaccination strategy Ψ with minimum possible budget
B, such that if s is the only infected node at time 0, then at the end of the above
process all nodes in T are saved.

We also consider a variant of this model in the paper, where the vaccination
is also a process that spreads through the network. In this Spreading Vaccina-
tion Model, the vaccination spreads to all its neighboring nodes which are still
vulnerable, thereby vaccinating them. That is, at time step τ > 0, if a node v is
vaccinated and there is a vulnerable node u such that (v, u) ∈ E, then at time
τ + 1, the node v also gets vaccinated. Thus, the vaccination also spreads like
the infection. Note that a vulnerable node can be adjacent to both an infected
node and a vaccinated node. We will assume that the vaccine prevails over the
infection, and in the subsequent time step, the vulnerable node is vaccinated,



rather than being infected. This is actually a weak assumption as assuming oth-
erwise doesn’t change the quality of our results. In the spreading model, we will
say that a node is vaccinated directly when it is vaccinated by the vaccination
strategy, and it is vaccinated indirectly when it is vaccinated by the spread of
the vaccine through the network.

Example 1. To gain some intuition about this problem, consider the example
shown in Figure 1 using the non-spreading model of vaccination.
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Fig. 1. This example shows that sometimes vaccinating nodes far away from the infec-
tion is the only way to save all the required nodes.

Consider the MinBudget objective for this example. The infection begins
at node s, and the goal is to find the smallest number B of nodes that need to be
vaccinated at every time step so that we can save the node t, which we assume
cannot itself be vaccinated. If we were only allowed to cut nodes during the
first time-step, this would be equivalent to the minimum s-t node-cut problem.
However, unlike previous works, such as [22], which examine the static problem
of vaccinating a ‘cut’ before the infection has started spreading, we need to find
the “best” cut over time (where best depends on the considered objective). This
temporal nature of the problem, complicates matters: intuitively, the tradeoff
is between vaccinating a small set of nodes close to the infection source early,
or spreading out (over time) the vaccination of a larger set of nodes which are
farther away from the source.

For instance, in the above example, a minimum s-t node-cut is {1, 2}, which
requires B = 2. However, there is a solution to the above problem with B = 1,
but the final set of vaccinated nodes does not form a minimum s-t node-cut.
One such solution is to vaccinate vertices 4, 6, and 5 at time steps 1, 2, and 3
respectively, leading to the final set of vaccinated nodes being {4, 5, 6} which is
not a minimum cut. In fact, it is not hard to come up with examples where the
optimal value of B is much smaller than the size of a minimum node s-t cut and
the final set of vaccinated nodes is much larger than the size of a minimum node
s-t cut (e.g., take a graph where s has k neighbours, each of which is connected to
t via k long internally node-disjoint paths). Thus, this “cuts over time” problem
is quite different from the classical min-cut problem, and in fact is known to be
NP-hard (even when the graph is a tree!) [15]

Our Results In Section 2, we consider the model of spreading vaccinations. In
general, our results show that this model is more tractable than the model with



non-spreading vaccinations. For MaxSave we show that this problem reduces to
maximizing a submodular function with a matroid constraint. Therefore a simple
greedy algorithm provides a 2-approximation, and a recent result of [6] lets us
prove a (1 − 1/e) factor approximation. For MinBudget we give a O(log n)
approximation algorithm, and show that this approximation ratio is tight, by
showing a set-cover hardness.

The non-spreading model, on the other hand, does not yield itself to good
approximation algorithms. In fact, we show in Section 3 that it is NP-hard to
approximate MaxSave in general graphs by a factor of nα, for any α < 1.
For MinBudget, we give a O(

√
n) factor approximation algorithm for general

graphs based on a natural LP relaxation for the problem. We also show that the
integrality gap of the LP is bounded by Ω(log n). For directed layered graphs
with ` layers, we give a O(H`) = O(log `) approximation algorithm. The latter
algorithm is combinatorial and requires just one max-flow computation.

Section 3.1 is devoted to vaccination strategies when the underlying graph
is a tree. This special case has received a lot of attention [21, 26], is compu-
tationally difficult [15], and is in fact a generalization of a complex scheduling
problem (details in the full version [1]). For this special case we show that both
the spreading and the non-spreading models are equivalent, so the stronger re-
sults from Section 2 hold for the non-spreading model as well. In addition, our
algorithm for layered graphs also implies a O(log h) approximation algorithm for
MinBudget on trees with height h. Note that this is stronger than the O(log n)
algorithm we have for general graphs in the spreading model.

Related Work Questions about epidemic propagation have been studied in sev-
eral fields, (e.g., [4,29]), although most of this research models the epidemics as
dynamic systems and ignores the effect of the network structure. Recently, a few
groups have considered the spread of viruses or ideas on Internet-like topologies,
such as small-world networks [32] and preferential attachment models [5, 25].
Several papers also study targeted vaccinations in this context [10,13], and show
that they can be used to significantly reduce the effect of epidemics. These stud-
ies assume certain properties of the networks (based on where these networks
arise from).

Several recent papers considered modeling vaccination by using graph cuts.
For example, the work of Hayrapetyan et al. [22] and others [3, 12] fully utilizes
the social-network structure to “cut off” and contain various diffusive processes
in a social network. As mentioned earlier, all this work is only concerned with
vaccinating a set of nodes before the infection begins, however, and does not
have the temporal component of the Firefighter problem. A lot more work has
been done on maximizing the spread of an infection (instead of trying to stop it
using vaccinations), by selecting the best nodes to infect initially [11,23].

The Firefighter problem was first introduced by B. Hartnell [20], and there
has been much work on this problem; see, e.g., [16] for a survey. However, much
of the work has focused on special graph structures, such as grids [9,18,31], and
that too usually with the MaxSave objective. The Firefighter problem is NP-
complete even when the underlying graph is a tree [15], although [21] and [26]



give approximation algorithms for this case, and [28] shows how to solve the
problem in in polynomial time for special cases of trees.

Independent of our work, Chuzhoy and Chalermsook recently obtained some
similar results [7] for the non-spreading version of the the MinBudget problem. In
particular, they give an O(log h)-approximation for an h-layered directed graph
(which matches our approximation ratio), and obtain a better approximation for
trees.

2 Spreading Vaccination Model
We first show a few simple hardness results about this model, and then give
approximation algorithms for both our objectives. Due to lack of space, all our
proofs appear in the full version [1] of the paper.

2.1 General Properties

We make certain useful observations about this model. Let N(v, i) be the set of
all the nodes that are a distance of at most i from v.

Lemma 1. At time τ , all nodes in the neighborhood N(s, τ) will either be vac-
cinated or infected.

Now, since all the nodes in the neighborhood N(s, τ) will be either infected or
vaccinated by time τ , any optimal vaccination strategy would not vaccinate any
node in this neighborhood at time > τ . Since any valid strategy can vaccinate
only B nodes at any time-step, it means that an optimal strategy would vaccinate
at most B · τ nodes directly in the neighborhood N(s, τ).

We define a set Γ (v) for every node v ∈ V by

Γ (v) = {(u, τ)|u ∈ V and 0 < τ ≤ (d(s, v)− d(u, v))}

The tuple (v, τ) essentially represents the event of vaccinating node v at time τ .
Using these definitions we state the following theorem.

Theorem 1. A node v ∈ V is vaccinated by the vaccination strategy Ψ iff
Ψ ∩ Γ (v) 6= ∅.

This theorem tells us that vaccinating an element of Γ (v) is exactly what is
needed in order to save a node v, and this gives us insight into the structure of
the problem.

2.2 Approximation for MaxSave

As we show in the full version of the paper, the MaxSave problem can be
modeled as a problem of maximizing a submodular set function on a collection
of sets that form a partition matroid. On the basis of this knowledge, techniques
like the greedy algorithm [17] can be used to obtain a 1

2 approximation for
MaxSave, while the randomized algorithm of [6] can be used to obtain a (1−1/e)
approximation.



Theorem 2. There is a randomized algorithm which gives with high probability
a (1 − 1/e) approximation for the MaxSave problem. Additionally, a simple
greedy algorithm gives a 1

2 approximation.

The detailed proof is presented in the full version; here, we give its gist.
A partition matroid consists of disjoint sets E1, . . . , Ek, and a set S is called
independent if S ∩ Ei ≤ `i, for some given numbers `1, . . . , `k. We argue that
one can actually consider vaccination strategies that satisfy only property (ii) in
Definition 1. This set of strategies forms a partition matroid, since we can only
choose at most B nodes at every time-step to vaccinate (so `i = B for all i).
We next show that the function f(Ψ) defined (suitably) as the number of nodes
saved by using the (possibly invalid) vaccination strategy Ψ is submodular, by
using Theorem 1, and if Ψ satisfies the budget-constraint then there is a valid
vaccination strategy Ψ ′ such that f(Ψ) = f(Ψ ′). We then use the results of [6,17]
to obtain the desired approximations.

It should be noted here that the same (1 − 1/e) approximation can also be
obtained by applying a randomized rounding technique similar to [26] to a mod-
ified version of the MaxSave problem. We believe, however, that modeling the
problem using partition matroids and submodular functions gives an algorithm
that is combinatorial in nature, deterministic and hence more efficient.

2.3 Approximation for MinBudget

Theorem 3. The MinBudget problem is log n inapproximable by reduction
from Set Cover.

Consider an instance of MinBudget. First suppose that we know the size
of the optimal budget B that is needed in order to save all nodes of T . Below we
give an algorithm that saves all nodes in T using a budget of at most B log n.
To form a log n approximation algorithm without knowing B, we simply do a
binary search on B, and run the algorithm below every time.

By slight adjustments to the proof of Theorem 2, we know that by running
the greedy algorithm with budget B, we save at least half of the nodes in T . The
greedy algorithm in this case chooses the nodes to vaccinate in each time-step
one at a time, always picking the node that saves the most nodes of T . For this
purpose the greedy algorithm needs to know exactly which nodes will be saved
if a node u is vaccinated at time τ , which we can compute in poly-time. Once
finished with the first time-step, the algorithm goes on to the second, and so on.
The full algorithm for MinBudget is as follows.

Repeat log(n) times:

– vaccinate nodes in graph G using the greedy algorithm with budget B.
– Construct graph G1 from G by removing all the vertices that were vaccinated

directly and indirectly in the previous step. Let T1 be the nodes of T that
are in G1.

– Set G = G1 and T = T1.



It is clear that the new graph G1 will always contain the original source node
s as it is never vaccinated by the greedy algorithm. By repeating the application
of the greedy algorithm that vaccinates B nodes at every time-step log n times,
we end up with an algorithm that vaccinates B log n nodes at every step. Let
this be the RepGreedy algorithm.

Theorem 4. The algorithm RepGreedy saves all nodes of T by vaccinating at
most B log n per time-step.

For the final log n approximation algorithm to MinBudget, do binary search
on B, and run RepGreedy for every choice of B.

3 Non-Spreading Vaccination Model

The non-spreading model is considerably more difficult than the spreading model.
One of the main reasons is that Lemma 1 (or any simple modification of it) is
no longer true.

The MaxSave problem is NP-complete for bipartite graphs [28] and for
cubic graphs (3-regular) [24]. The MaxSave problem is NP-complete even when
restricted to trees with maximum degree three [15]. We prove the following about
the inapproximability of MaxSave

Theorem 5. The MaxSave(G(V,E),s,B,T) problem cannot be approximated
in poly-time to the factor of nα where n = |V | and α < 1, unless P=NP.

We introduce an auxiliary problem, Save-t, which asks whether a specified
node t can be saved by vaccinating one node (other than t) at a time. The NP-
completeness of this problem follows from known NP-completeness proofs. We
then give a gap introducing reduction from the Save-t problem to the MaxSave
problem such that if there exists any nα approximation for the MaxSave prob-
lem then we can solve the Save-t problem in polynomial time. The proof appears
in full version.

In the remainder of the section, we focus on the MinBudget problem. Note
that we need to save all the nodes in a set T with the minimum number of
vaccinations required per time instant. To simplify notation, we consider the
following equivalent problem: we add a new node t with edges from all nodes in
T to t, and consider the problem of saving t with minimum budget under the
additional constraint that t itself cannot be vaccinated. We call s the source and t
the sink. Let P denote the collection of all s-t paths. We start with the following
LP relaxation of the problem and its dual.

The primal LP has a variable xτ
v which indicates whether vertex v is vacci-

nated at time τ or not. ` ≤ n is the length of the longest path from s to t; it is
easy to see that we will not vaccinate any vertex after time `. The first constraint
bounds the number of vaccinations at every time instance. The second constraint
says that for every path (s, v1, · · · , vk, t) to the sink t, one of the nodes, say vi,
must be vaccinated by time i. This is a necessary and sufficient condition for this



Minimize B (Primal)X
v∈V

xτ
v ≤ B ∀τ = 1, . . . , ` (1)

kX
i=1

iX
τ=1

xτ
vi
≥ 1 ∀(s, v1, · · · , vk, t) ∈ P (2)

xτ
v ≥ 0, ∀v ∈ V, ∀τ = 1, . . . , ` (3)

Maximize
X
P∈P

fP (Dual)

X̀
τ=1

zτ ≤ 1 (4)X
P∈P:v∈P (τ)

fP ≤ zτ ∀v ∈ V, τ = 1, . . . , `

(5)

z, f ≥ 0 (6)

path not to transmit the infection to t. In the dual, we have a flow for every s-t
path P . We also have a variable zτ which add up to 1. The second constraint in
the dual is a bit subtle: it says, for every τ , the total flow through a vertex v via
paths such that v lies at a distance τ or more from s on the path, is at most zτ .
In the LP, P (τ) denotes the portion of the path from the τth vertex to t. That
is if P = (s, v1, . . . , vk, t), then P (τ) = (vτ , vτ+1, . . . , t).

Although the primal LP above has exponentially many constraints, it can
be solved in polynomial time since one can obtain the separation oracle in poly-
nomial time. Strictly speaking the LP (Primal) may have an integrality gap of
n = |V |. However note that if OPT denotes the optimal value of (Primal), then
in fact dOPTe is a lower bound on the minimum budget, and by comparing the
budget of our solution against this lower bound, we prove the following theorems.
We only give proof sketches deferring the full proofs to the full version.

Theorem 6. In the non-spreading model, there is a 2
√

n approximation to the
MinBudget problem in general graphs.

(Proof Sketch) At a high level, the algorithm recognizes the set of vertices to
be vaccinated by time i by looking at the fraction vaccinated by time i. If this
fraction is larger than 1/

√
n, then the node is vaccinated by day i. We can

then show that in the remaining graph, infection can reach t only using paths
of length longer than

√
n, and thus there is a cut of size

√
n which separates s

and t. Thus vaccinating this cut as well completes the algorithm. The analysis
is slightly subtle and is deferred to the full version.

An s-t directed layered graph with ` layers is one where (i) s has only outgoing
edges, t has only incoming edges; (ii) all nodes except t can be partitioned into
sets L0 := {s}, L1, L2, . . . , L` such that for every node v ∈ Li+1 (so v 6= t) and
every incoming edge (u, v) of v, we have u ∈ Li.

Theorem 7. If the network is a layered directed graph with ` layers, then there
is a H` approximation to the MinBudget problem. Furthermore, there is an
example which shows that the integrality gap of an ` layered network is at least
H` = Ω(log n), where Hr = 1 + 1/2 + · · ·+ 1/r.

(Proof Sketch) The algorithm sets capacity 1/iH` on each vertex of layer i, for
all i, and simply computes a minimum s-t vertex cut. It then divides the cut



into ` pieces, corresponding to the vertices vaccinated on day i. Using the dual
of the LP, we can show that our solution is within H` of the LP optimum. The
integrality gap example is a similar layered graph. We defer the details to the
full version.

3.1 Vaccination on Trees

When G is a tree rooted at s, the following observation establishes the equiva-
lence between the spreading model and non-spreading model. For the spreading
model on general graphs we defined a function Γ (v) as a set of all tuples (u, τ)
such that if u is vaccinated directly at time τ then the node v will be saved. For
a tree, it is easy to observe that a node v will be saved if any of its ancestors is
vaccinated directly before the infection reaches v. Therefore, the optimal strat-
egy will be the same on a given tree irrespective of the vaccination model being
spreading or non-spreading. This implies that all the positive results from Sec-
tion 2 also hold for trees. Since the MinBudget problem on trees with height
h yields an instance of MinBudget on an s-t directed graph with h layers, we
immediately obtain the following Corollary of Theorem 7.

Corollary 1. There is a O(log h) approximation for MinBudget on trees,
where the set T is the set of leaves.
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