
Facility Location with Service Installation Costs

(Extended Abstract)

David B. Shmoys∗ Chaitanya Swamy∗ Retsef Levi†

Abstract
We consider a generalization of the uncapacitated facility
location problem which we call Facility Location with Service
Installation Costs. We are given a set of facilities, F , a
set of demands or clients D, and a set of services S . Each
facility i has a facility opening cost fi, and we have a service
installation cost of f l

i for every facility-service pair (i, l).
Each client j in D requests a specific service g(j) ∈ S and
the cost of assigning a client j to facility i is given by cij .
We want to open a set of facilities, install services at the
open facilities, and assign each client j to an open facility at
which service g(j) is installed, so as to minimize the sum of
the facility opening costs, the service installation costs and
the client assignment costs.

Our main result is a primal-dual 6-approximation al-
gorithm under the assumption that there is an ordering on
the facilities such that if i comes before i′ in this ordering
then for every service type l, f l

i ≤ f l
i′ . This includes (as

special cases) the settings where the service installation cost

f l
i depends only on the service type l, or depends only on

the location i. With arbitrary service installation costs, the
problem becomes as hard as the set-cover problem. Our
algorithm extends the algorithm of Jain & Vazirani [9] in a
novel way. If the service installation cost depends only on the
service type and not on the location, we give an LP rounding
algorithm that attains an improved approximation ratio of
2.391. The algorithm combines both clustered randomized
rounding [6] and the filtering based technique of [10, 14].
We also consider the k-median version of the problem where
there is an additional requirement that at most k facilities
may be opened. We use our primal-dual algorithm to give
a constant-factor approximation for this problem when the
service installation cost depends only on the service type.

1 Introduction

Facility location problems have been widely studied in
the Operations Research community (see for e.g. [12]).
In its simplest version, uncapacitated facility location
(UFL), we are given a set of facilities, F , and a set
of demands or clients D. Each facility i has a facility
opening cost fi and the cost of assigning a client j to
facility i is given by cij . We want to open some facilities

∗{shmoys,swamy}@cs.cornell.edu. Dept. of Computer Sci-
ence, Cornell University, Ithaca, NY 14853. Research supported
partially by NSF grant CCR-9912422.

†rl227@cornell.edu. School of ORIE, Cornell University,
Ithaca, NY 14853. Research supported partially by a grant from
Motorola and NSF grant CCR-9912422.

from the set F and assign each demand to an open
facility. The goal is to minimize the sum of the facility
opening costs and the client assignment costs. This
problem has a wide range of applications. For example,
a company might want to open its warehouses at some
locations so that its total cost of opening warehouses
and servicing customers is minimized.

In various applications, the clients are differentiated
according to the kind of service they require and to
satisfy the service requirement of a client we have to
assign it to a facility that can provide the service
required by the client. For example, in the warehouse
location problem above, the customers may be retail
stores that request different kinds of supplies. A
warehouse may store different kinds of supplies. To
satisfy a customer we have to assign it to a warehouse
that holds inventory of the type requested by the
customer. We model such a setting by saying that
in addition to facilities and clients, we have a set of
services S. Each client j in D requests a specific service
g(j) ∈ S. To satisfy client j we have to assign it to an
open facility on which service g(j) is installed. Further,
if we install service l on an open facility i we incur a
service installation cost of f l

i . We want to open a set
of facilities, install services at the open facilities, and
assign each client j to an open facility i such that service
g(j) is installed at i. The cost of a solution is the sum of
the facility opening costs, the service installation costs
and the client assignment costs, and the goal is to find a
solution with minimum total cost. We call this problem,
Facility Location with Service Installation Costs. In
the warehouse location problem, the service installation
cost corresponds to the initial cost of setting up the
warehouse to store the particular kind of inventory. The
notion of service-dependent fixed costs is also used in
inventory problems where one incurs a joint setup cost
to start a new order and an item-dependent fixed cost
to order a specific item, so one needs to coordinate
the placement of item orders; see [1] for a survey. We
assume throughout that the assignment costs cij form
a metric.

Applications and Related Work. Facility location
with service installation costs can be used to model
a data management/caching problem. Here we are
given a set of locations in a network at which caches
may be built and a set of processes located at the
nodes of the network that request data items. Each
process requests a specific data item. To satisfy the
request we must assign the process to a cache that
stores the requested data item, incurring an access
cost proportional to the distance between the process
site and the cache location. Building a cache at a
location incurs a location dependent cost and storing
a data item in a cache at a particular location incurs a
cost that depends on the data item and the location.
The goal is to build caches, store data items in the
caches and assign each process to a cache containing the
data item requested by the process, so as to minimize
the total cost of building caches, storing data items
and the access cost of requests. This is exactly the
facility location problem with service installation costs
where the caches are facilities, the processes are clients
and the data items correspond to services. Baev &
Rajaraman [3] considered a closely related problem
called the data placement problem and gave a 20.5-
approximation algorithm. Here caches of fixed capacity
are already built at certain locations and the goal is to
find a placement of data items to caches respecting the
cache capacities that minimizes the sum of the access
costs and the cost of storing data items. The ratio has
recently been improved by Swamy [16].

Facility location with service installation costs is a
generalization of UFL — if there is just one service
type then this is simply the uncapacitated facility
location problem. There is a large body of literature
that deals with designing approximation algorithms
for metric UFL and we sample only a few results
below; see [13] for a survey of this and earlier work.
Shmoys, Tardos & Aardal [14] gave the first constant-
factor approximation algorithm for this problem using
the filtering technique of Lin & Vitter [10] to round
the optimal solution of a linear program. Chudak &
Shmoys [5, 6] gave an LP rounding based

(
1 + 2

e

)
-

approximation algorithm. They combined randomized
rounding and the decomposition results of [14] to get
a variant that might be called clustered randomized
rounding. Sviridenko [15] improved the ratio to 1.58.
Jain & Vazirani [9] gave a combinatorial primal-dual
3-approximation algorithm where the LP is used only
in the analysis. The current best ratio for UFL is
1.52 [11] obtained by building upon a dual-fitting based
greedy algorithm of Jain, Mahdian, Markakis, Saberi &
Vazirani [8].

Our Results. Our main result is a primal-dual 6-
approximation algorithm for the facility location prob-
lem with service installation costs under the assumption
that there is an ordering on the facilities such that if i
comes before i′ in this ordering then for every service
type l, f l

i ≤ f l
i′ . This is reasonable in many settings;

for example, one expects the inventory setup cost of a
warehouse in New York city to be less than the inven-
tory setup cost in a remote town like Ithaca regardless of
the kind of inventory. As special cases this includes the
cases where the service installation cost f l

i depends only
on the service type l, or depends only on the location i.
In the former setting where the service installation cost
depends only on the service type we give an algorithm
based on LP rounding that attains a much improved ap-
proximation ratio of 2.391. We show that with arbitrary
service installation costs the problem becomes as hard
as the set-cover problem. Combined with the result of
Feige [7], this shows that no polynomial-time algorithm
with a ratio of (1 − ε) ln |D| exists for this problem in
the general case unless NP ⊆ DTIME[nO(log log n)]. We
also consider the k-median version of the problem where
there is an additional requirement that at most k facil-
ities may be opened. We use our primal-dual algorithm
to give a constant-factor approximation for this prob-
lem when the service installation cost depends only on
the service type.

Our Techniques. Facility location with service instal-
lation costs is a generalization of UFL. It differs however
from traditional multi-level extensions of facility loca-
tion where we assume that a demand can be assigned to
any facility in any level. In our problem demand j may
only be assigned to a level 1 “facility” (i, g(j)) and then
to facility i in level 2. Moreover, existing techniques
for UFL and multi-level facility location do not readily
generalize. If there were no facility opening costs we
could decouple the problem into several UFL instances,
one for each service type, and solve each one separately.
With facility opening costs this approach fares badly
since we may end up opening a lot of facilities and spend
too much on the facility opening costs. All known algo-
rithms for UFL rely on the fact, either in the design or
the analysis, that a client j can be moved from a facil-
ity i to another nearby facility i′ without increasing its
assignment cost by much, and leaving the facility open-
ing cost unchanged. In our problem, reassigning j to
i′ may now require us to install service g(j) on i′ caus-
ing us to pay the installation cost f

g(j)
i′ which could be

large. Technically the hard part is to find a way to re-
assign clients to nearby facilities so that we do not pay
too much to install services at the new locations. With
arbitrary service installation costs such a reassignment

need not be possible since we can encode the constraint
that a client may only be assigned to a specific set of
facilities, making the problem set-cover hard.

We build upon the primal-dual algorithm of [9] in a
novel way and give a 6-approximation algorithm under
the assumption that the facilities are ordered so that
if i comes before i′ then f l

i ≤ f l
i′ for every service

l. At a high level, the idea is to consider an integer
programming formulation of the problem and the dual
of its linear programming relaxation, and construct
simultaneously an integer primal solution and a dual
solution. Each client j has a dual variable αj which
can be interpreted intuitively as the payment that j is
willing to make to get itself assigned to an open facility.

The Jain-Vazirani (JV) algorithm [9] for UFL works
in two phases. In phase I we grow each dual variable αj

uniformly and gradually build a primal feasible solution.
Once αj becomes equal to cij for some facility i, j starts
paying toward the facility opening cost of i. When the
total contribution to i from the various clients equals
fi, we declare i to be tentatively open and assign all the
unassigned clients contributing toward i to i. Phase I
ends when each client is assigned to a tentatively open
facility. At this point a client could be contributing
towards multiple tentatively open facilities. We call
a set of facilities independent if each client contributes
towards at most one facility in the set. In phase II we
select a maximal independent subset of tentatively open
facilities and open these. The analysis shows that if the
facility i to which a client j was assigned in phase I is
not opened, then there is a “nearby” open facility i′ to
which j can be reassigned.

Our algorithm also proceeds in phases. During
phase I we tentatively open some facilities, tentatively
install service l on some facilities for each service type
l, and assign each client j to a tentatively open facility
on which service g(j) is tentatively installed. Phase II
is more involved. We have to select a set of facilities
to open and install services in such a way that we can,
(1) pay for installing the services, and (2) ensure that
if a client j has to be reassigned there is a nearby
open facility on which service g(j) is installed. We
show that we can achieve properties (1) and (2) if we
look at the facilities in a particular order and pick a
maximal independent subset greedily. This gives us a
6-approximation algorithm.

Our primal-dual algorithm exploits the property
that in the JV algorithm any maximal independent set
of tentatively open locations may be picked. Although
this is a well-known fact, to our knowledge this has
been used in only a couple of applications previously.
Bartal, Charikar and Raz [4] consider a clustering
problem and use the JV algorithm to solve a relaxation

of the problem by picking an appropriate maximal
independent set. Archer, Rajagopalan and Shmoys [2]
pick a maximum independent set and use this to prove
a bound on the integrality gap of the k-median LP.

When the service installation cost depends only on
the service type, we give an LP-rounding algorithm
that combines clustered randomized rounding [6] and
the filtering based technique of [10, 14]. A feature
of the algorithm is that we bound distances cij using
both the αj bound due to complementary slackness and
the bound obtained by filtering. This gives a better
performance guarantee than that obtained by using
either of the two bounds separately. Sviridenko [15]
also used the two bounds in conjunction to improve the
approximation ratio for UFL from

(
1 + 2

e

)
to 1.58.

2 A Linear Program
We can formulate the problem as an integer program
and relax the integrality constraints to get a linear
program. We use i to index the facilities in F , j to
index the clients in D and l to index the services in S.

min
∑

i

fiyi +
∑

i

∑
l

f l
iy

l
i +

∑
j

∑
i

cijxij (P)

s.t.
∑

i

xij ≥ 1 ∀j
xij ≤ y

g(j)
i ∀i, j

xij ≤ yi ∀i, j
xij , yi, y

l
i ≥ 0 ∀i, j, l.

Variable yi indicates if facility i is open, yl
i indicates if

service type l is installed at i, and xij indicates if client j
is connected to facility i. The first constraint states that
each client must be assigned to a facility, the second and
the third constraints say that if client j is assigned to
facility i, then service g(j) must be installed on i and i
must be open. An integral solution corresponds exactly
to a solution to our problem. Let Gl be the set of clients
requesting service l. The dual program is,

max
∑

j

αj (D)

s.t. αj ≤ cij + βij + θij ∀i, j (2.1)∑
j∈Gl

θij ≤ f l
i ∀i, l

∑
j

βij ≤ fi ∀i (2.2)

αj , βij , θij ≥ 0 ∀i, j.
Intuitively αj is the budget that j is willing to spend
to get itself assigned to an open facility. Constraint
(2.1) says that a part of this goes towards paying for

the assignment cost cij . The rest gets divided into
a payment for the service installation cost θij , and a
payment for the facility opening cost βij .

3 A Primal-Dual Algorithm

We consider instances of the problem where there is an
ordering on the facilities in F such that if i comes before
i′ in this ordering then for every service type l, f l

i ≤ f l
i′ .

Equivalently this means that for any two locations i, i′,
the vectors

(
f l

i

)T

l=1...|S| and
(
f l

i′
)T

l=1...|S| are comparable.
Let O denote this total ordering on the facilities. We
say that i ≤ i′ if i comes before i′ in the ordering O.

The algorithm is strongly motivated by the primal-
dual algorithm of Jain and Vazirani for the traditional
uncapacitated facility location algorithm. In our algo-
rithm, we first construct a feasible dual solution, and
then use this dual solution to extract a feasible (integer)
primal solution. As has been the norm, our algorithm
is a dual ascent algorithm, so all dual variables are only
increased throughout the execution of the algorithm.

We next describe the algorithm. There is a notion
of time around which the algorithm is specified. We
start at time t = 0, all dual variables are initialized
to 0, each demand j is said to be unfrozen, and all
facilities are closed. At first, the variables that are
increased are the αjs; more precisely, for any unfrozen
demand j, αj is always equal to the time t. We say
that demand j is tight with facility i, or has reached i,
if αj ≥ cij . As time increases, we will freeze demand
points, tentatively open facilities, and tentatively install
services at facilities. We increase the αj of each demand
j until one of the following events happens:

1. Suppose that demand j becomes tight with facility
i. If service g(j) is not tentatively installed at i,
then we start increasing θij at the same rate as αj ;
that is, if αj = t, then θij = t−cij . If service g(j) is
tentatively installed, but i is not tentatively open,
we instead increase βij at the same rate as αj ; that
is, if αj = t, then θij remains 0, but βij = t − cij .
Finally, if service g(j) is tentatively installed, and i
is tentatively open, we freeze demand point j (and
no longer increase αj).

2. Suppose that for a facility i and a service type l, we
get that

∑
j∈Gl

θij = f l
i : in this case, we tentatively

install service l at i. If i is also tentatively open,
then we freeze each demand j ∈ Gl that is tight
with i (and no longer increase αj). If i is not yet
tentatively open, then for each demand j ∈ Gl that
is tight with i, we no longer increase θij , but instead
start increasing βij at the same rate as αj .

3. Suppose that for a facility i,
∑

j βij = fi: in this

case, we tentatively open i. For each demand j, we
do not increase βij from now on. If demand j is
tight with i and service g(j) is tentatively installed
at i, we freeze j (and no longer increase αj).

We only raise the αj , βij , θij of unfrozen demands.
Frozen demands do not participate in any events. We
continue this process until all demands become frozen.
Let (α, β, θ) denote the final dual solution obtained by
the above process. Observe that if i is the facility that
caused j to freeze, then service g(j) must be tentatively
installed at i, and i must be tentatively open.

We now specify which facilities to open, how to
install services on facilities, and how to assign demands
to facilities. Let F be the set of tentatively open
facilities, and let Fl ⊆ F be the set of tentatively open
facilities on which service l is tentatively installed. For
facility i ∈ F , let ti be the time at which i became
tentatively open. If i ∈ Fl, let til be the time at which
service l was tentatively installed at i.

Opening facilities. We open a subset of facilities from
F . We say that i, i′ ∈ F are dependent if there is a
demand j such that both βij and βi′j are positive. We
consider the facilities in F in the order given by O and
pick a maximal independent set of facilities, F ′ ⊆ F .
We open the facilities in F ′.

Installing services. Consider service type l and the
set of facilities Fl. We say that facilities i, i′ ∈ Fl are
service-l-dependent if there exists some demand j in Gl

such that both θij and θi′j are positive. We pick a
maximal independent subset F ′

l by looking at facilities
in Fl in a particular order: first we consider facilities in
Fl ∩ F ′ in increasing order of til, and then facilities in
Fl − F ′ in increasing order of ti.

We first install service l on all facilities in F ′
l ∩ F ′.

Furthermore, for each i ∈ F ′
l − F ′, we pick a facility

i′ ∈ F ′ such that i′ and i are dependent and i′ ≤ i (in
the ordering given by O), and install service l on facility
i′. We say that i′ is the neighbor of i and denote it by
nbr(i). Note that nbr(.) depends only on i and not on
the service type l: if i /∈ F ′, then we can choose a single
facility i′ ∈ F ′ such that i′ ≤ i regardless of the service
type l.

Assigning demands. We assign each client j to the
nearest open facility at which service g(j) is installed.

3.1 Analysis. We now bound the performance of our
algorithm. The following lemma just says what it means
for a demand j to get frozen.

Lemma 3.1. Let i be the facility that causes a demand

j to freeze. Then, i is tentatively open, service g(j) is
tentatively installed at i, and αj = max(cij , ti, tig(j)).

We start by bounding the cost incurred in opening
facilities, and installing services. Let D′ be the subset
of demands {j : ∃i ∈ F ′ s.t. βij > 0}.
Lemma 3.2. The cost of opening facilities is at most∑

j∈D′ αj. Furthermore, the cost of installing services
is at most

∑
j αj.

Proof. For each facility i that is tentatively opened, we
have that fi =

∑
j∈D βij . By the construction of F ′,

we know that for each demand j, there is at most one
i ∈ F ′ such that βij > 0. Summing over all facilities,
and using this fact, we see that

∑
i∈F ′

fi =
∑
i∈F ′

∑
j∈D

βij =
∑
j∈D′

∑
i∈F ′

βij ≤
∑
j∈D′

αj .

By the definition of nbr(i), we know that for any service
type l, f l

nbr(i) ≤ f l
i . For each i ∈ F ′

l , we install service
l either at i ∈ F ′

l or at nbr(i), and so we can upper
bound the total cost of installing services of type l by∑

i∈F ′
l
f l

i . Since each service l is tentatively installed
only when f l

i =
∑

j∈Gl
θij , we have that

∑
i∈F ′

l
f l

i =∑
j∈Gl

∑
i∈F ′

l
θij . The notion of service-l-dependence

insures that for each demand j ∈ Gl, there is at most
one facility i ∈ F ′

l for which θij is positive. We obtain
that the total cost of installing service l is at most∑

j∈Gl
αj , which immediately implies the lemma.

We next bound the assignment cost incurred by the
solution computed. The following facts, which follow
directly from the construction of the algorithm, will be
useful in this analysis.

Fact 3.1. Suppose that βik is positive. Then it follows
that cik ≤ αk − βik and αk ≤ ti.

Fact 3.2. Suppose that θik is positive. Then cik ≤
αk − θik and cik < tig(k). If βik = 0 then αk ≤ tig(k).

For example, we use these in deriving the following
bounds.

Claim 3.1. If i and i′ are dependent facilities in F ,
then cii′ < 2 min(ti, ti′).

Proof. Let k be a client such that βik and βi′k are
positive. Applying Fact 3.1 for both of these, and
applying the triangle inequality, we get that cii′ <
2αk ≤ 2 min(ti, ti′).

Claim 3.2. Let i, i′ ∈ Fl be service-l-dependent due to
demand k ∈ Gl. Then cii′ < 2 max(til, ti′l) and both cik

and ci′k are less than αk.

Proof. From the dependence of i and i′, it follows that
θik and θi′k are positive. Applying Fact 3.2 for both
of these, and using the triangle inequality, we get that
cii′ < 2 max(til, ti′l), cik < αk and ci′k < αk.

Lemma 3.3. If j ∈ D′, then the assignment cost in-
curred for j is at most 3αj; if j �∈ D′, then the assign-
ment cost incurred for j is at most 5αj.

Proof. We will show that there always exists some open
facility with service g(j) installed that is no further from
j than the claimed bound (and hence the closest one,
to which j is assigned, is no further away).

Consider j ∈ D′ with g(j) = l. Let i be the unique
facility in F ′ for which βij is positive. If i ∈ F ′

l , then
we have installed service l at i, and cij ≤ αj − βij .
Otherwise, i′ and i are service-l-dependent for some i′

in F ′ ∩ F ′
l with ti′l ≤ til. So, by Claim 3.2, cii′ <

2 max(til, ti′l) = 2til. Since βij > 0, it follows that
til ≤ αj − βij . So by the triangle inequality, ci′j ≤ 3αj.

Now consider a demand j /∈ D′, and again let
g(j) = l. Let i be the facility that caused j to freeze,
and so αj = max(cij , ti, til). If i ∈ F ′ ∩ F ′

l , then
service l is installed at i, and cij ≤ αj . Suppose that
i ∈ F ′

l − F ′, and let i′ = nbr(i) (an open facility at
which service l is installed, see Fig. 1a). By Claim 3.1,
cii′ ≤ 2ti =⇒ ci′j ≤ 3αj.

Next suppose that i �∈ F ′
l . Since i ∈ Fl, there must

exist i′ ∈ F ′
l such that i was not picked in F ′

l because
i and i′ are service-l-dependent due to a client k. If i′

is also in F ′ (Fig. 1b), then service l is installed there.
Applying Claim 3.2, we obtain that both ci′k and cik are
less than αk ≤ max(ti, til) ≤ αj , and hence ci′j ≤ 3αj.
However, if i′ �∈ F ′ (so i /∈ F ′), then let i′′ = nbr(i′);
service l is installed at i′′ (Fig. 1c). Since i′ and i service-
l-dependent, we have that ti′ ≤ ti, ci′i′′ ≤ 2 min(ti′ , ti′′)
(Claim 3.1), and ci′j ≤ 3αj as above, which implies that
ci′′j ≤ 5αj. This completes the proof.

Theorem 3.1. The above algorithm returns a solution
of cost at most 6

∑
j αj ≤ 6 ·OPT.

Proof. Follows from Lemma 3.2 and Lemma 3.3.

4 An LP-Rounding Algorithm
We now give an algorithm for the special case where
f l

i = f l, i.e., the installation cost depends only on
the service l and not on the location at which it is
installed. Note that this case is handled by the primal-
dual algorithm above. Here we adapt the rounding
procedure of [6] to give deterministic and randomized
approximation algorithms achieving ratios of 6 and
2.391 respectively.

Let (x, y) and (α, β, θ) be the optimal solutions
to (P) and (D) respectively. We can ensure that for

(a) (b)

j

k

i

i′

i ∈ F ′
l − F ′, i′ = nbr(i)

j

k

i

i′

i /∈ F ′
l ,

i′, i are service-l-dependent

(c)

j

k

k′

i

i′

i′′

≤ αj≤ αk

≤ αk

≤ ti′
≤ ti′

Facility i caused j to freeze,
i and i′ are service-l-dependent,
i′′ = nbr(i′)

Figure 1: Bounding the assignment cost of j. (a), (b) Different 3-hop cases, and (c) the 5-hop case.

every i, j and l, xij = 0 or xij = y
g(j)
i and yl

i = 0 or
yl

i = yi. We will round the fractional solution (x, y)
to an integer solution losing a factor of at most 6. Let
Fj = {i : xij > 0}. We describe the algorithm briefly.

A1. First, for every service type l, we consider the
clients in Gl and cluster the facilities on which
service l is installed around some cluster centers:
pick j ∈ Gl with smallest αj value and form a
cluster around j consisting of the facilities in Fj .
We remove every client k ∈ Gl (including j) that is
assigned (fractionally) to some facility in the cluster
created, and recurse on the remaining set of clients
until no client in Gl is left. Let Dl be the set of
cluster centers.

A2. Let D =
⋃

l Dl. We cannot open a facility in every
cluster since different clusters could share the same
fractional facility weight (yi) if the cluster centers
request different services. Say that j, k ∈ D are
dependent if Fj ∩ Fk �= φ. Note that this can
only happen if j and k request different services.
We consider clients in D in order of increasing αj

and pick a maximal independent subset D′. For
each client j ∈ D′, we open the facility in Fj with
smallest fi and install service g(j) on it. Further
for every k ∈ D − D′, there is some j ∈ D′ with
αj ≤ αk such that j and k are dependent. We
pick some such j and install service g(k) on the
facility opened from Fj . Call j the neighbor of k
and denote it nbr(k).

A3. We assign demand j to a facility as follows: (i) if
j ∈ D′ it is assigned to the facility opened from Fj ,
(ii) if j ∈ D − D′, then nbr(j) = k ∈ D′ and j is
assigned to the facility opened from Fk, and (iii)
if j /∈ D, there is some k ∈ Dg(j) ⊆ D such that

αk ≤ αj and j was removed from Gl in step A1
because a cluster was created around k; we assign
j to the same facility as k. Note that this is a
feasible assignment of demands to facilities.

Lemma 4.1. The facility opening cost is at most∑
i fiyi.

Proof. The clusters corresponding to clients in D′ are
disjoint and we open the cheapest facility in each cluster
— the lemma follows.

Lemma 4.2. The cost of installing services is at most∑
i,l f l

iy
l
i.

Proof. The cost of installing a service is indepen-
dent of the location at which it is installed, and for
any service type l, we install service on at most one
(new) location per cluster center in Dl. So the total
cost of installing services is at most

∑
l

∑
j∈Dl

f l =∑
l

∑
j∈Dl

f l
∑

i∈Fj
yi ≤

∑
i,l f

l
iy

l
i.

Lemma 4.3. The assignment cost of client j is at most
5αj.

Proof. If j ∈ D′, we assign j to a facility i ∈ Fj , and
cij ≤ αj by complementary slackness. If j ∈ D − D′

and nbr(j) = k ∈ D′, we assign j to the facility i opened
from Fk. Since αk ≤ αj and cjk ≤ 2αj , cij ≤ 3αj . If
j /∈ D, j is assigned to the same facility as k′ where
k′ ∈ Dg(j) ⊆ D and j was removed from Gg(j) in step
A1 because a cluster was created around k′. So αk′ ≤ αj

and cjk′ ≤ 2αj. From above, k′ is assigned to a facility
i with cik′ ≤ 3αk′ , so cij ≤ 5αj .

Thus we have proved the following theorem.

Theorem 4.1. The cost of the solution returned is at
most 6 ·OPT.

4.1 Improvement using randomization. We give
a rounding procedure that combines clustered random-
ized rounding [6] and the filtering based technique
of [10, 14]. We define some notation first. Let 0 < γ < 1
be a parameter that we will set later and r = 1

γ . Sort
the facilities in Fj by increasing cij . Let i′ be the first
facility in this ordering such that

∑
i∈Fj :cij≤ci′j

xij ≥ γ.
Let Nj be the subset of Fj consisting of all facilities (in-
cluding i′) that come before i′ in this ordering. Define
Cj(γ) = ci′j and C̄j =

∑
i cijxij . To simplify things

we assume that each yi ≤ γ and for any j,
∑

i∈Nj
yi

is exactly γ. If some yi > γ, then we can create at
most
1/γ� copies of i and set yi ≤ γ for each of the
copies so that

∑
copies i′ yi′ = yi (setting the variables

xi′j , y
l
i′ accordingly). Similarly if

∑
i∈Nj

yi > γ, we can
take the facility i′ in Nj that comes last in the order-
ing in Fj and split it into two copies i′1 and i′2 setting
yi′2 =

∑
i∈Nj

yi − γ, yi′1 = yi′ − yi′2 (and the other vari-
ables accordingly). We include only i′1 in Nj thus en-
suring that

∑
i∈Nj

yi = γ. The cost of the fractional so-
lution remains unchanged by these transformations and
any solution to the modified instance gives a solution to
the original instance of no greater cost.

R1. This is the same as step A1 except that we choose
j ∈ Gl with smallest 2αj +Cj(γ)+C̄j as the cluster
center. This gives us a set of cluster centers Dl for
each service type l.

R2. We prune the set D =
⋃

l Dl as in step A2 but
modify the notion of dependency to say that j, k ∈
D are dependent if Nj ∩Nk �= φ, and consider the
clients in D in increasing order of Cj(γ) + C̄j . For
k ∈ D−D′ we define nbr(k) as before. We call the
facilities in Nj for clients j ∈ D′ central facilities,
and the rest as non-central facilities.

R3. For every client j ∈ D′ we randomly open exactly
one facility in Nj by choosing facility i with proba-
bility yi/

∑
i∈Nj

yi = r · yi. This facility now serves
as a backup facility for all the clients that would get
assigned to this facility in step A3 of the determin-
istic algorithm.

R4. Independent of step R3, each non-central facility i
is opened independently with probability r · yi.

R5. For any facility i, be it a central or a non-central
facility, if i is opened (in R3 or R4), we install on it
all services that are installed on it in the fractional
solution, i.e., all l such that yl

i > 0.

R6. For every client j ∈ D−D′, if no facility from Fj is
open, we install service g(j) on the facility opened
in R3 from Nnbr(j).

R7. We assign demand j to the nearest open facility at
which service g(j) is installed.

Lemmas 4.1 and 4.2 are modified to the following.

Lemma 4.4. The expected cost of opening facilities is
r ·∑i fiyi. The expected cost of installing services is at
most

(
r + 1

er

) ∑
i,l f

l
iy

l
i.

Proof. Each facility i is opened with probability r · yi.
The cost of installing services in step R5 is bounded
by

∑
i Pr[i is opened (in R3 or R4)]

∑
l:yl

i>0 f l
i =

∑
i r ·

yi

∑
l:yl

i>0 f l
i = r ·∑i,l f

l
iy

l
i since yl

i > 0 =⇒ yl
i = yi.

Consider client j ∈ D−D′ with g(j) = l. For every
non-central facility i ∈ Fj , let Ei be the event that i is
opened in step R4 and pi = Pr[Ei] = r · yi. For every
cluster center k ∈ D′ such that Sk = Fj ∩ Nk �= φ, let
Ek be the event that a facility from Sk is open after

step R3. Let pk = Pr[Ek] =
�

i∈Sk
yi

�
i∈Nk

yi
= r ·∑i∈Sk

yi.

Let m be the total number of events. All the events
Ei are independent. The probability that service l is
installed in step R6 due to client j, is the probability
that no facility from Fj is open after steps R3 and R4,
which is at most

∏m
n=1(1 − pn) ≤ e−

�
n pn = e−r.

So the cost of installing services in step R6 is at most
1
er

∑
j∈D−D′ fg(j) ≤ 1

er

∑
i,l f l

iy
l
i since

∑
i∈Fj

yl
i = 1 and

any two clients in Dl have disjoint Fj .

To bound the assignment cost, we bound the as-
signment cost incurred under a provably worse way of
assigning demands to facilities. Demand j is assigned to
a facility as follows. If some facility i ∈ Fj is open, we
assign demand j to the nearest such facility. Otherwise
if j ∈ D − D′, j is assigned to its backup facility. If
j /∈ D, there is some client k ∈ Dg(j) ⊆ D such that j
was removed from Gg(j) because a cluster was formed
around k in step R1. We assign j to the same facility as
k; so j may be assigned either to a facility in Fk or to its
backup facility in Nnbr(k), if k /∈ D′ and no facility from
Fk is open. Note that service g(j) is installed on the
facility to which j is assigned. We need the following
lemma from [6] (see also [15]).

Lemma 4.5. Let d1 ≤ d2 ≤ . . . ≤ dm and 0 ≤ pn ≤ 1
for n = 1, . . . , m. Then,

p1d1 +(1−p1)p2d2 + · · ·+(1−p1) · · · (1−pm−1)pmdm

≤
∑

n≤m pndn∑
n≤m pn

(
1−

∏
n≤m

(1 − pn)
)
.

Lemma 4.6. Let j be any demand. Let X be the
distance between j and the facility assigned to it and
Z be the event that no facility i ∈ Fj is open. Then,

(i) If j /∈ D′, E
[
X |Z] ≤ 3αj + Cj(γ) + C̄j, (ii)

E
[
X

] ≤ C̄j + 1
er (3αj + Cj(γ)).

Proof. If j ∈ D′, E
[
X

]
=

∑
i∈Nj

cijxij/
∑

i∈Nj
xij ≤

C̄j since every facility in Fj −Nj is farther from j than
every facility in Nj . For j /∈ D′, we show (i) and use it
to prove (ii).

Suppose j ∈ D−D′, k = nbr(j) and A = Nj∩Nk �=
φ. For any facility i ∈ A we have cij ≤ αj and
cik ≤ Ck(γ). Let B be the distance between j and
its backup facility in Nk. Event Z implies that j is
assigned to the backup facility in Nk so conditioned on
Z, X = B. If there is some i ∈ A such that cik ≤ C̄k we
have a deterministic bound of B ≤ αj + C̄k + Ck(γ).
If there is no such i in A, since the unconditional
distance between k and the backup facility in Nk is at
most C̄k, by conditioning on Z we are only removing
weight from facilities that are farther than the average
distance. So the conditional expected distance between
k and the backup facility is at most C̄k implying that
E

[
B|Z]

= E
[
X |Z] ≤ αj + Ck(γ) + C̄k. In either case

E
[
X |Z] ≤ αj + Cj(γ) + C̄j , where the last inequality

follows since we look at clients in D in increasing order
of Cj(γ) + C̄j and k was picked before j.

If j /∈ D, there must be a client k′ ∈ Dg(j) such that
j was removed from Gg(j) because a cluster was formed
around k′ in step R1. So j, k′ are assigned to the same
facility, 2αk′ + Ck′ (γ) + C̄k′ ≤ 2αj + Cj(γ) + C̄j and
cjk′ ≤ αj + αk′ . If a facility in Fk′ is open then we have
a deterministic bound of X ≤ αj + 2αk′ . Otherwise
j, k′ are assigned to the backup facility for k′ and by
the above bound on E

[
X |Z]

for k′, the conditional
expected distance from j to the backup facility is at
most αj + 2αk′ + Ck′ (γ) + C̄k′ ≤ 3αj + Cj(γ) + C̄j .

We now prove part (ii). For a non-central facility
i ∈ Fj , let pi and Ei be as defined in Lemma 4.4 and let
di = cij . For every k ∈ D′ such that Sk = Fj ∩Nk �= φ,
let pk, Ek be as defined in Lemma 4.4 and define dk =
E

[
distance from j to Sk|Ek

]
=

∑
i∈Sk

cijyi/
∑

i∈Sk
yi.

Let the distances be ordered so that d1 ≤ d2 ≤ . . . ≤ dm

where there are m events in all. Since the events Ei are
independent and yi = xij , p = Pr[Z] =

∏m
n=1(1− pn) ≤

e−
�

n pn = e−r. So,

E
[
X

] ≤ p1d1 + (1− p1)p2d2 + · · ·
+ (1− p1) · · · (1− pm−1)pmdm + p · E[

X |Z]

≤
∑

n≤m pndn∑
n≤m pn

(1 − p) + p(3αj + Cj(γ) + C̄j)

≤ C̄j +
1
er

(3αj + Cj(γ)).

Theorem 4.2. The randomized algorithm produces a

solution of expected cost at most,

max
(
r +

4
er

, 1 +
1

(1− γ)er
+

3
er

)
·OPT

where r = 1/γ. Taking γ = 0.67674 we get a solution of
cost at most 2.391 ·OPT.

Proof. From the definition of Cj(γ) and the Markov
property we have, Cj(γ) ≤ C̄j

1−γ . The proof now follows
from Lemmas 4.4 and 4.6.

5 The k-Median Variant

We consider a variant of this problem where we have
the additional constraint that at most k facilities may
be opened. This adds the constraint

∑
i yi ≤ k to the

linear program (P). The objective function of the dual
(D) gets modified to max

∑
j αj − kz and constraint

(2.2) changes to
∑

j βij ≤ fi + z. Let (KP) and (KD)
be the modified primal and dual programs and OPTK

be the value of an optimal k-median solution.

5.1 A modified primal-dual algorithm. We first
modify the primal-dual algorithm of Section 3 to obtain
the stronger guarantee that we return a solution to (P)
of cost (O, I, C), and a solution (α, β, θ) to (D) such
that 6O + I + C ≤ 6

∑
j αj ≤ 6 · OPT , where O, I, C

denote respectively the facility opening cost, the service
installation cost and the client assignment cost. We
describe the algorithm briefly and sketch the analysis.
The dual ascent process is the same as in Section 3 but
we modify the way in which we open facilities and install
services to ensure that a demand j does not pay for both
opening a facility and for installing a service at some
other facility. To do this we consider a more detailed
notion of dependence between facilities. We classify 4
types of dependence between facilities. Say that the
ordered pair (i, i′) is,

(1) ff-dependent (f for facility) if there is a demand j
such that βij , βi′j > 0.

(2) sf-l dependent (s for service) if there exists j ∈ Gl

such that θij , βi′j > 0.

(3) ss-l dependent if for some j ∈ Gl, both θij , θi′j > 0.

(4) fs-l dependent if for some j ∈ Gl, both βij , θi′j > 0.

Recall that F is the set of tentatively open facilities,
Fl ⊆ F the set of tentatively open facilities on which
service l is tentatively installed, ti is the time at which
facility i ∈ F became tentatively open, and for i ∈ Fl,
til is the time at which service l was tentatively installed
at i. Initially for each facility i ∈ F , let Si be the set of
services that are tentatively installed at i.

M1. We first pick a set F ′ ⊆ F of facilities to open,
and for each i ∈ F ′ a set Ti ⊆ Si of services to
install at facility i. Initially F ′ = φ and Ti = φ for
all i. We consider facilities in F in the order given
by O. While F �= φ,

1. Let i ∈ F be the currently considered facility.
Remove i from F , set F ′ ← F ′ ∪{i}, Ti = Si.

2. For each i′ ∈ F we do the following.

a) If (i, i′) is ff-dependent or ∃l ∈ Ti s.t.
(i, i′) is sf-l dependent or ∃l ∈ Si′ s.t.
(i, i′) is fs-l dependent and ti′l < ti′ , set
F ← F − {i′}. Call i the neighbor of i′

and denote it by nbr(i′). Otherwise,
b) For every l ∈ Si′ , if (i, i′) is fs-l dependent

(so ti′l ≥ ti′) or l ∈ Ti and (i, i′) is ss-l
dependent, set Si′ ← Si′ − {l}.

We open the facilities in F ′ and for each i ∈ F ′

install all of the services in Ti at i.

M2. We now install services at some more facilities.
Consider service type l. Let Al be the facilities in
F ′ at which service l is installed (i.e., l ∈ Ti). Note
that Al ⊆ F ′ ∩ Fl. Let Bl = Fl − F ′. We remove
from Bl every facility i′ for which there is some
facility i ∈ F ′ such that (1) (i, i′) is fs-l dependent,
or (2) i ∈ Al and (i, i′) is ss-l dependent. We say
that a set of facilities is ss-l independent if no pair
(i, i′) of facilities from the set is ss-l dependent. We
pick a maximal ss-l independent subset F ′

l ⊆ Bl.
Initially F ′

l = φ. We consider facilities in Bl in
increasing order of ti and add facility i to F ′

l if
F ′

l ∪{i} remains ss-l independent. For every i ∈ F ′
l

we install service l on facility nbr(i) ∈ F ′.

M3. Each client j is assigned to the nearest open facility
at which service g(j) is installed.

Analysis Sketch. Consider the set of demands D′ =
{j : ∃i ∈ F ′ s.t. βij > 0}. By the construction of F ′, we
know that for each demand j there is at most one i ∈ F ′

such that βij > 0; for j ∈ D′ let o(j) denote this unique
facility in F ′. By design we ensure that any demand
j ∈ Gl contributes θij > 0 for at most one facility
i ∈ Al ∪ F ′

l and further that if j ∈ D′ then i = o(j)
is the only such facility. This gives the following.

Lemma 5.1. The cost of opening facilities is∑
j∈D′ βo(j)j. The cost of installing services is at

most
∑

j∈D′ θo(j)j +
∑

j /∈D′ αj.

The bound on the assignment cost incurred is
similar to the bound in Lemma 4.3 and is proved
similarly.

Lemma 5.2. If j ∈ D′, the assignment cost of j is at
most 3(αj − βo(j)j). If j /∈ D′ the assignment cost
incurred for j is at most 5αj.

Combining the above two lemmas and the fact that
for j ∈ D′, αj = co(j)j + βo(j)j + θo(j)j , we get the
following theorem.

Theorem 5.1. The solution returned has cost (O, I, C)
such that 6O + I + C ≤ 6

∑
j αj ≤ 6 ·OPT.

5.2 An 18-approximation algorithm. Suppose we
fix z and run the above primal-dual algorithm with the
facility costs modified to fi + z. Suppose the algorithm
returns a primal solution of cost (O, I, C) that opens
k facilities and a dual solution (α, β, θ). Here O is the
facility opening cost with the original costs fi. Then,
we can show that we have a solution of cost at most
6 ·OPTK . since (α, β, θ, z) is a feasible solution to (KD)
and by Theorem 5.1, 6(O+kz)+I+C+ ≤ 6

∑
j αj =⇒

6O+I+C ≤ 6(
∑

j αj−kz) ≤ 6·OPTK . So our goal is to
find such a z in polynomial time. We do not quite know
how to do this, instead we find two values z1 > z2, close
together such that the algorithm opens k1 < k facilities
for z1 and k2 > k facilities for z2. When z is very
large, e.g., |D|(maxij cij + maxil f l

i), the algorithm will
open just one facility and at z = 0 the algorithm opens
> k (we assume this — otherwise the solution at z = 0
costs at most 6 ·OPTK since (α, β, θ, 0) is a feasible dual
solution). We perform a bisection search in this range to
find z1 and z2. We combine these two solutions to first
get a fractional solution of cost 6(1− ε)−1 · OPTK , for
some small ε, that (fractionally) opens k facilities and in
which each demand is assigned to at most two facilities.
If the service cost depends only on the service type, we
can round this solution losing a factor of 3(1 − ε) to
get an integer solution that opens exactly k facilities,
thus getting an overall approximation ratio of 18. This
idea was used in [9] for the k-median variant of UFL.
However our final rounding procedure differs from the
one in [9] since we also have to pay for installing services
and need to ensure that demand j is connected to an
open facility at which service g(j) is installed.

Theorem 5.2. If the service installation cost depends
only on the service and not on the location, we can get
an 18-approximation algorithm for the k-median variant
of facility location with service installation costs.

6 Extensions
Arbitrary Demands. Our results carry over to the
case where instead of unit demands, client j may have a
demand dj ≥ 0. We can reduce this to the unit demand
case by making dj copies of client j, but this makes

the algorithm run in pseudo-polynomial time. We can
simulate this reduction however. In the primal-dual
algorithm we raise αj at rate dj and say that j has
reached i if αj ≥ djcij . In the LP rounding algorithms
of Section 4 the only change is that αj gets replaced
with αj/dj in steps A1, A2 and R1. The analysis in
Sections 3, 4 and 5 extends in a straightforward way
and we get the same approximation guarantees.

Acknowledgments. We thank Robin Roundy for
stimulating discussions and helpful suggestions.

References

[1] N. Aksoy and S. Erenguc. Multi-item inventory mod-
els with coordinated replenishments: a survey. Inter-
national Journal of Operations & Production Manage-
ment, 8:63–73, 1988.

[2] A. Archer, R. Rajagopalan and D. Shmoys. Lagrangian
relaxation for the k-median problem: new insights and
continuity properties. In Proceedings of 11th ESA,
pages 31–42, 2003

[3] I. Baev and R. Rajaraman. Approximation algorithms
for data placement in arbitrary networks. In Proceed-
ings of the 12th Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 661–670, 2001.

[4] Y. Bartal, M. Charikar and D. Raz. Approximating
min-sum k-clustering in metric spaces. In Proceedings
of the 33rd Annual ACM Symposium on Theory of
Computing, pages 11–20, 2001.

[5] F. A. Chudak. Improved approximation algorithms for
uncapacitated facility location. In Proceedings of 5th
IPCO, pages 180–194, 1998.

[6] F. Chudak and D. Shmoys. Improved approximation
algorithms for the uncapacitated facility location prob-
lem. SIAM Journal on Computing. To appear.

[7] U. Feige. A threshold of ln n for approximating set
cover. Journal of the ACM, 45:634–652, 1998.

[8] K. Jain, M. Mahdian, E. Markakis, A. Saberi, and
V. Vazirani. Greedy facility location algorithms ana-
lyzed using dual-fitting with factor-revealing LP. Jour-
nal of the ACM. To appear.

[9] K. Jain and V.V. Vazirani. Approximation algorithms
for metric facility location and k-median problems us-
ing the primal-dual schema and Lagrangian relaxation.
Journal of the ACM, 48:274–296, 2001.

[10] J. H. Lin and J. S. Vitter. ε-approximations with
minimum packing constraint violation. In Proceedings
of the 24th Annual ACM Symposium on Theory of
Computing, pages 771–782, 1992.

[11] M. Mahdian, Y. Ye, and J. Zhang. Improved approxi-
mation algorithms for metric facility location. In Pro-
ceedings of 5th APPROX, pages 229–242, 2002.

[12] P. Mirchandani and R. Francis, eds. Discrete Location
Theory. John Wiley and Sons, Inc., New York, 1990.

[13] D. B. Shmoys. Approximation algorithms for facility
location problems. In Proceedings of 3rd APPROX,
pages 27–33, 2000.

[14] D. B. Shmoys, É. Tardos, and K. I. Aardal. Approx-
imation algorithms for facility location problems. In
Proceedings of the 29th Annual ACM Symposium on
Theory of Computing, pages 265–274, 1997.

[15] M. Sviridenko. An improved approximation algorithm
for the metric uncapacitated facility location problem.
In Proceedings of 9th IPCO, pages 240–257, 2002.

[16] C. Swamy. A note on the data placement problem.
Unpublished manuscript, 2003.

