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Abstract. We introduce the mazimum graph homomorphism (MGH)
problem: given a graph G, and a target graph H, find a mapping ¢ :
Ve — Vi that maximizes the number of edges of GG that are mapped to
edges of H. This problem encodes various fundamental NP-hard prob-
lems including Maxcut and Max-k-cut. We also consider the multiway
uncut problem. We are given a graph G and a set of terminals T' C V. We
want to partition Vg into |T| parts, each containing exactly one terminal,
so as to maximize the number of edges in Eg having both endpoints in
the same part. Multiway uncut can be viewed as a special case of prela-
beled MGH where one is also given a prelabeling ¢’ : U — Vg, U C Vg,
and the output has to be an extension of ¢’.

Both MGH and multiway uncut have a trivial 0.5-approximation algo-
rithm. We present a 0.8535-approximation algorithm for multiway uncut
based on a natural linear programming relaxation. This relaxation has
an integrality gap of & ~ 0.8571, showing that our guarantee is almost
tight. For maximum graph homomorphism, we show that a (% + 80)—
approximation algorithm, for any constant €p > 0, implies an algorithm
for distinguishing between certain average-case instances of the subgraph
isomorphism problem that appear to be hard. Complementing this, we
give a (5 + Q(m))—approximation algorithm.

1 Introduction

We introduce the mazimum graph homomorphism (MGH) problem: given a
graph G = (Vg, E¢) and a target or “label” graph H = (V, Ey), find a map-
ping ¢ : Vg — Vg that maximizes the number of edges of G that are mapped
to edges of H. This problem is trivially NP-hard; for example, deciding if G
is k-colorable is equivalent to checking if the solution to MGH with graph G
and the target graph H being a k-clique, has value |Eg|. Several fundamental
NP-hard optimization problems can be encoded easily as special cases of MGH.
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For example, Mazcut is equivalent to MGH where the target graph H is a single
edge; similarly Maz-k-cut is the problem where H is a k-clique. This also shows
that MGH is APX-hard even when H is fixed (i.e., not part of the input), that
is, there is some absolute constant €9 > 0 such that it is NP-hard to approxi-
mate MGH better than a factor of 1 — gy. The maximum graph homomorphism
problem is an optimization version of the well-studied H -coloring problem [20],
which is the problem of deciding whether there exists a mapping ¢ of value equal
to |F¢| (such a mapping is called a homomorphism).

We also consider a prelabeled version of the maximum graph homomorphism
problem (prelabeled MGH), where the input also includes a partial mapping ¢’ :
U +— Vg where U C Vg, and the output is restricted to extensions ¢ : Vg — Vi
of ¢’. This problem, too, includes some natural NP-hard problems as special
cases. For example, consider the multiway uncut problem (the complement of
multiway cut): given a graph G and a set of terminals 7' C Vg, partition Vg
into |T'| parts, each containing exactly one element of T, so as to maximize
the number of edges in Eg whose both endpoints lie in the same part. This is
precisely prelabeled MGH where H consists of |T| disconnected self-loops, and
the prelabeling ¢’ : T — Vp is a bijection.

Our Results. We present a 0.8535-approximation algorithm for the multiway
uncut problem in Section 3. To the best of our knowledge, this is the first time
anyone has considered this problem. From an exact optimization point of view,
multiway uncut is equivalent to the complementary problem of multiway cut in-
troduced by Dahlhaus et al. [9], and the APX-hardness reduction for multiway
cut in [9] also shows that our problem is APX-hard. However, approximation
results for multiway cut [9, 5, 23] do not directly yield guarantees for the maxi-
mization objective of multiway uncut. Our algorithm is based on a natural linear
programming (LP) relaxation and rounding procedure that are motivated by the
work of Calinescu, Karloff and Rabani [5] on multiway cut, and Kleinberg and
Tardos [24] on the related uniform labeling problem.

In Section 4, we consider the mazimum graph homomorphism (MGH) prob-
lem. MGH admits a simple 0.5-approximation algorithm: take any edge (i, j) of
H, run the randomized/greedy algorithm for Maxcut on G to obtain a cut of
value 1|E¢/|, and map the two sides of the cut to i and j. (The problem is triv-
ial if H contains no edges, or self-loops.) This gives a solution of value at least
%|Eg| Our work focuses on the question of improving upon the ratio of 0.5.

We show that in general, any (% +¢0)-approximation algorithm for a constant
gp > 0, would imply an algorithm for deciding certain average-case instances of
the subgraph isomorphism problem that appear to be hard. This suggests an
inherent difficulty in obtaining such an improvement. This result falls into the
line of research, initiated by Feige [14], of using average-case complexity assump-
tions to derive hardness of approximation results. The basis of our reduction is
the following key fact (that we prove): if H is a triangle-free graph, and G is a

random graph drawn from the distribution G,, , where p = 9(%), then with

high probability, no mapping ¢ maps more than @(1 + €) edges of G (the

constant in ©(.) depends on €). So when G and H are drawn from a suitable



distribution on triangle-free graphs, this establishes a factor 2 gap between the
cases when G is a subgraph of H (so there is a mapping of value |E|), and when
it is not. Thus, a (% +50)—approximation algorithm would allow us to distinguish
between these two cases.

Motivated by the known better bounds for some special cases of MGH (e.g.,
Maxcut [18]), we also study special families of label graphs H. We present a
(% + Q(WM))—approximation algorithm for MGH, by using an algorithm
of Charikar and Wirth [6] for Maxcut that is based on rounding the semidefi-
nite program for Maxcut used by Goemans and Williamson [18]. This gives an
improvement over the approximation ratio of 0.5 for any fixed graph H. We
obtain better improvements for some structured classes of graphs H. For the
prelabeled problem, we show that an a-approximation algorithm for unlabeled
MGH with label graph H yields an {{;-approximation algorithm for prelabeled
MGH with graph H. Finally, we consider the problem on dense graphs G and
obtain a PTAS for any fixed H, and a quasi-PTAS when H is part of the input.

Related Work. We are not aware of any previous work on the maximum graph
homomorphism (or the prelabeled version) or the multiway uncut problems.

As mentioned earlier, the maximum graph homomorphism problem is an op-
timization version of the H -coloring problem, which is the problem of deciding
if there exists a mapping ¢ : Vg — Vg (called a homomorphism or H-coloring)
that maps each edge of G to an edge of H. Homomorphisms, and the H-coloring
problem and its variants have been extensively studied from various perspec-
tives; see, e.g., [21] and the references therein. Hell and Nesetfil [20] showed that
H-coloring is in P if H contains a self loop or is bipartite, and NP-complete oth-
erwise. Dyer and Greenhill [12] established a similar dichotomy for the problem
of counting the number of H-colorings, namely, that the problem is either in P or
is #P-complete. Various variants of the H-coloring problem and their counting
versions have also been studied; see, e.g., [13, 11]. Cooper et al. [8] considered
the problem of sampling a random H-coloring.

Minimization versions of the H-coloring problem have been considered in [19,
7, 1]. Here there is a cost for assigning a label to a node of G and/or weights
associated with the edges of H, and one seeks a mapping/homomorphism ¢ that
minimizes the sum of the labeling costs and the weights of the images of the edges
of G. (If the edge weights form a metric, then this is precisely the metric labeling
problem [24].) Cohen et al. [7] consider the setting where the weight of assigning
an edge e € Eg to an edge of H may even depend on e, and identify a class
of cost functions for which the problem is in P. Aggarwal et al. [1] consider the
problem with edge weights where H is a complete graph with self-loops at every
node, and present various approximation and inapproximability results. Gutin
et al. [19] consider the problem with only labeling costs, restricting ¢ to be a
homomorphism, and classify the polynomial-time solvable and NP-hard cases.

A closely related problem is the maximum common subgraph problem: given
two graphs G and H we want to find a subgraph of G with maximum number
of edges that is isomorphic to a subgraph of H. MGH can be reduced to the
maximum common subgraph problem by replacing each node of H by an in-



dependent set of size |Vg|, and each edge of H by the corresponding complete
bipartite graph. Kann [22] presented a B + 1-approximation algorithm, where B
is the maximum degree in G and H. Notice that the reduction outlined above
does not preserve the degrees in the target graph H.

The complement of the multiway uncut problem, namely the multiway cut
problem, was introduced by Dahlhaus et al. [9]. They showed that multiway cut
is APX-hard, and gave a (2 — %)-approximation algorithm. Calinescu, Karloff
and Rabani [5] proposed a new LP relaxation for the problem and used this
to improve the factor to (1.5 — ﬁ) The current best factor is 1.3438 due to
Karger et al. [23]. Our LP-relaxation for multiway uncut is the same as the one
in [5] (but with a maximization objective), and our algorithm uses a rounding
procedure of Kleinberg and Tardos [24] for the uniform labeling problem (which
is a generalization of the multiway cut problem).

Basing hardness of approximation results on average-case complexity is an
evolving field of research which was initiated by the work of Feige [14]. Feige gave
the first inapproximability results for various NP-hard optimization problems as-
suming the complexity of refuting random-3CNF formulas. Subsequently, results
of a similar nature (for other optimization problems, based on other hardness
assumptions) were obtained by Alekhnovich [2] and Demaine et al. [10].

2 Definitions and Preliminaries

Maximum Graph Homomorphism. The input to the mazimum graph ho-
momorphism (MGH) problem consists of two graphs G = (Vig, Eg) and H =
(Vi, Egr). The objective is to find a mapping ¢ : Vg — Vg that maximizes the
number of edges of G that are mapped to edges of H. More formally, we want
to maximize |{(u,v) € Eg : (¢(u),o(v)) € Eg}|. We will often refer to the
mapping ¢ as a labeling, ¢(u) as the label of u, and H as the label graph or
target graph. Let OPT (G, H) denote the value of an optimal solution. Through-
out, n will denote |V| and k will denote |Vi|. We use variables u, v, w to denote
vertices in Vg and i, j, £ to denote vertices in Vj.

We also consider a prelabeled version of maximum graph homomorphism
where some of the nodes of G are already labeled, and we want to label the
remaining vertices so as to maximize the objective function. More precisely, in
the prelabeled mazximum graph homomorphism problem, in addition to the graphs
G and H, we are given a prelabeling ¢’ : U — V where U C Vg, and the goal is
to find an extension ¢ of ¢’ that maximizes |{(u,v) € Eg : (¢(u),p(v)) € Eg}.
In general, the label graph H may also contain self-loops. However, note that
if H has a self-loop, say at node 4, then the unlabeled problem becomes trivial:
we can simply map every vertex of G to label i to obtain OPT(G, H) = |Eg|.
Thus, the problem with self-loops is only interesting in the prelabeled setting.

The Multiway Uncut Problem. In the multiway uncut problem, we are
given a graph G = (V, E) and a set of k terminals T' C V. We want to find a



partition of V into k subsets V7, ..., V} such that each part V; contains a distinct
terminal, so as to maximize the number of uncut edges, that is, the quantity
Zle {(u,v) € E: u,v € V;}|. Notice that the multiway uncut problem is a
special case of the prelabeled MGH problem, where the label graph H consists
of k disconnected self loops and the prelabeling is a bijection ¢’ : T +— V.

3 The Multiway Uncut Problem

In this section, we consider the multiway uncut problem and present a 0.8535-
approximation algorithm based on a natural linear programming (LP) relax-
ation. The integrality gap of this relaxation is at least & ~ 0.8571, which shows
that our guarantee is almost tight. Since multiway uncut is a special case of the
prelabeled maximum graph homomorphism problem, we will use the terminol-
ogy of MGH for consistency: we have k labels i = 1,...,k, and the prelabeling
¢ is given by ¢'(t;) = i for the i-th terminal ¢; € T. Note that we may assume
that there are no edges between two labeled vertices since such edges contribute
0 to the value of any solution. We consider the following LP relaxation. We use
u to index the vertices of G = (V| E), and 7 to index the labels.

max Y Y (MU-LP)

(u,v)EE 1
s.t. Zx; =1 for all u,
i ’
xf ® =1 forall t € T,
¢, = min(z!,z!) for all (u,v) € E (1)
l,chy >0 for all u, v, 1.

Here 2!, indicates if vertex u is assigned label i, and ¢!, indicates if both end-
points of edge (u,v) are assigned label 7. The first constraint states that every
node must be assigned a label, and the second enforces that this labeling is an
extension of ¢’ (i.e., the label of a terminal does not change). The term Y, ¢f,
measures the similarity along edge (u, v). Although (1) is not written as a linear
constraint, it is easy to see that one can encode (1) using linear constraints.
One can show that the LP relaxation (MU-LP) is identical to the relaxation
introduced by Calinescu et al. [5] for the multiway cut problem, i.e., any solution
of value Val to (MU-LP) is a solution of value |E| — Val to the relaxation in [5].
For the multiway cut problem, Calinescu et al. showed that the integrality gap
of the relaxation is at most 1.5 — %, which was improved to 1.3438 [23], whereas
Freund and Karloff [16] showed that the integrality gap is at least m.
Our result shows that the integrality gap of (MU-LP) (which is now less
than 1) is at most 0.8535, that is, there is always an integer solution of value
at least 0.8535 times the optimum of (MU-LP). This also holds in the weighted
setting (non-negative edge weights) where the goal is to maximize the weight of
the uncut edges. The integrality-gap example in [16] also yields an integrality



gap of g,’:j:% — g ~ 0.8571, as k — oo, for (MU-LP) (with weighted edges).
Thus, our guarantee is very close to the best possible using this LP relaxation.

A similar LP relaxation was used by Kleinberg and Tardos [24] for the uni-
form labeling problem. We will use a randomized rounding procedure from [24],
but we will need a more refined analysis of this procedure than that in [24]. The

algorithm is simple: we return the better of the following two labelings.

1. The first labeling picks an arbitrary label i, and sets ¢(u) = i for every
vertex u ¢ T. We call this the “trivial labeling”.

2. The second labeling is obtained via the randomized rounding procedure of

Kleinberg and Tardos, which we describe below for completeness. They also
show how to derandomize the rounding, so we could use this and obtain a
deterministic algorithm with the same performance guarantee. We consider
the randomized version for ease of exposition and analysis.
Let {x,c} be an optimal solution to (MU-LP). The rounding proceeds in
several rounds. Initially all vertices in V' \ T are unassigned. In each round,
we independently pick a label i € {1,...,k} uniformly at random, and a
threshold p uniformly in [0, 1]. For each unassigned vertex u € V, we assign
u the label i (i.e., set p(u) = 1) if 2, > p. We repeat this until all the vertices
in V'\ T are assigned. We call this the “LP labeling”.

Analysis. Let Cy,, = icfw. We analyze the algorithm by considering a “hybrid
labeling”, where we choose the LP-labeling with probability A and the trivial
labeling with probability 1— A, for some A € [0, 1]. We will compare the expected
contribution of an edge (u,v) in the hybrid labeling against the LP-value C,,,.
Let By = {(u,v) € E: w,v ¢ T} and By = {(u,v) € E: worv € T}
Note that £ = Ey U E; since there are no edges with both endpoints in 7. The
trivial labeling obtains a value of 1 for every edge in Ey. We now analyze the
LP-labeling. For an edge (u,v), let X, denote the random variable that is 1 if
u and v are assigned the same label in the LP-labeling, and 0 otherwise. We will
use “u — ¢’ and “u — %7 as a shorthand to denote that “u is assigned label 7,
and “u is assigned some label” respectively. Let X! be a random variable that
is 1 if uw — ¢ in the LP-labeling, and 0 otherwise.

Fact 3.1. Suppose u is unassigned before a round. Then, Prlu — i in the round| =

1 : _1 i _ 1
+ - a1, Therefore Pr[u — * in the round) = £ - Y, =i, = 1.

Claim 3.2. Pr[X}, = 1] = ! Thus, for an edge (u,v) € E1, E[Xu] = Cuo.

Proof. Pr[X} =1] =Y (1-Pr[u — * before round r])-Pr[u + i in round 7] =
S (1- %)T_l . %‘ = 2%, For an edge (u,v) € Ey1, where v € T has label i, we

have E [X,w] =Pr[X!] =2l =, = Cu. O

u uv

Lemma 3.3. For an edge (u,v) € Ey, we have E[Xuv] > QEYCW

Proof. We can lower bound E[XM,] by the probability that both u and v are
assigned a label in the same round. Observe that if both u and v are unassigned



before a given round, then (a) the probability that u and v are both assigned in
the round is + Y-, min(z?, ) = +-Cyy, and (b) the probability that u or v is as-
signed in the round is 4 Zle max(z, x%) = 1+(2—Clyy), since Y, (min(z?, zi)+
max(xt, 2! )) = 2. Thus, Pr[u and v are assigned in the same round] is exactly

u’ v
oo

Z(l —Pr[u — * or v+ * before round r]) - Pr[u — % and v — x in round r]

r=1

Fact 3.1 and Claim 3.2 were proved in [24], but for edges in Fy their analysis
proves the weaker bound E [Xuv] > 1—||zy — Xy||1 = 2Cyy — 1 which only yields

a %—approximation guarantee for the overall algorithm.

O

Theorem 3.4. The solution returned has value at least (%—l—%) . (Z(u’v)eE Cm,).
Thus the approzimation ratio of the above algorithm is at least %—&— % ~ (.8535.

Proof. We prove the stated bound for the expected value of the random hybrid
labeling; the theorem then follows. For an edge (u,v) € Ey, we get an expected
value of (at least) 2?&:’“ — in the LP-labeling by Lemma 3.3, and 1 in the trivial
labeling. So the expected contribution of this edge in the hybrid labeling is at
least Cyy - (ﬁ + %) > (% + /A1 - )\))C’uv. The last inequality follows

since mingeo, 1 (ﬁ + %) > % + v/ A(1 — A) by simple calculus. For an edge
(u,v) € Fy, using Claim 3.2, the (expected) contribution in the hybrid labeling
is at least A\C'y,. Therefore the expected total value of the hybrid labeling is
at least min(X, 3 + /A(1 = X)) - (Z(u,v)eE Cuv). Taking A = 1 + % =1+
v/ A(1 — X) ~ 0.8535 maximizes this expression and yields a solution of value at
least 0.8535 - (Z(u,v)eE Cm,). As mentioned earlier, the rounding procedure can
be derandomized to yield a deterministic algorithm with the same guarantee. 0O

FEzxtensions. We can also handle the weighted case where we have non-negative
weights on the edges and we want to maximize the weight of the uncut edges. The
algorithm remains unchanged and the analysis requires only notational changes.
One can also consider the problem where we have non-negative profits {p’} for
assigning label 7 to node u, and we want to maximize the sum of the profits and
the weight of the uncut edges. This problem is the complement of the uniform
labeling problem considered in [24]. We can reduce this to the no-profit setting
by adding an edge (u,i) with weight p!, for every node u € V and label i.

4 The Maximum Graph Homomorphism Problem

We now consider the maximum graph homomorphism (MGH) problem (with an
arbitrary label graph H). Recall that we are given graphs G and H, and the
goal is to find a mapping ¢ : Vg — Vy that maximizes the number of edges of G
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algorithm (where k = |Vy|) for this problem. In Section 4.2, we present some

evidence suggesting that obtaining a (% + Q(l))-approximation algorithm may
be inherently difficult. We argue that such an approximation algorithm would
yield an algorithm for distinguishing between certain average-case instances of
the subgraph isomorphism problem. In Section 4.3, we consider some extensions
and refinements. We show that any approximation guarantee for the unlabeled
problem yields a corresponding guarantee for prelabeled MGH. We also obtain
a quasi-PTAS for the problem on dense graphs G (i.e., |Eg| = 2(|Vs]?)).

mapped to edges of H. In Section 4.1, we give a (% + 0( ))—approximation

4.1 A (% + Q(ﬁgk))-Approximation Algorithm

We now present the (% + Q(ﬁgk))—approximation algorithm. Recall that k =
|Vir|. We assume that H contains at least one edge and has no self-loops (oth-
erwise the problem is trivial). We start with some simple observations. Observe
that any cut (U,Vg \ U) of G yields a labeling ¢ of value equal to the size of
the cut, since we can consider any edge (i,7) € Fy and map all the nodes in
U to i, and all the nodes in Vi \ U to j. Thus, since one can easily obtain a
cut of value at least @ (e.g., by using the greedy, or randomized, algorithm
where we assign each vertex greedily, or independently and uniformly at random,
to one of the two parts), there is a trivial 0.5-approximation algorithm for the
maximum graph homomorphism problem. Conversely, for bipartite graphs H,
one can show that MazCut(G) = OPT(G, H).

Fact 4.1. Any cut of G yields a mapping @ of value equal to the size of the cut.
Thus, OPT (G, H) > MaxCut(G) > @

Claim 4.2. If H is bipartite, the MGH problem on graphs G and H is equivalent
to the Mazxcut problem on G, that is, MaxCut(G) = OPT(G, H).

We improve upon this factor of 0.5 for any fixed graph H, by using a result of
Charikar and Wirth [6]. They used the semidefinite program for Maxcut in [18],
along with the RPR? rounding technique of [15] to obtain the following theorem.

Theorem 4.3 (Charikar and Wirth). Let G be a graph with non-negative
edge weights, having a cut of weight |Eg| (% +5), where § > 0. One can obtain a
cut of G with weight |E¢| (% + m) in polynomial time, where ¢ is a constant.

Notice that the algorithm mentioned in the above theorem always returns a
cut of value at least @ Our algorithm for MGH simply uses the algorithm
mentioned in Theorem 4.3 to obtain a cut of G; this induces a labeling of the same
value and the algorithm returns this labeling. The idea behind the algorithm is
that if OPT (G, H) is small compared to |E¢|, then % would be strictly larger

than %. Otherwise, we will show that there exists a bipartite subgraph
H' of H that captures more than half the edges of G, which in turn implies that
G has a cut of value strictly larger than @ Thus, using Theorem 4.3 we obtain

a cut of G, and hence a labeling, of value strictly larger than @ > w.



Theorem 4.4. There is a (%—Fm) -approzimation algorithm for MGH, where
¢ > 0 is a constant independent of k.

Proof. Let G and H be the input graphs. If OPT (G, H) < |E¢|(1—55), then our
algorithm returns a solution of value at least @ > (2)(12(1%21)) > OPTéG’H) (1 +
7). So suppose that OPT (G, H) > |Eg|(1— ;). Consider an optimal mapping
©*. For each edge (i, 7) in H, let m;; = [{(u,v) € Eg : {¢*(u),¢*(v)} = {i,j}}].
Thus, OPT(G,H) = Z(i j)eEy Mij- We claim that there is a bipartite subgraph
H' of H such that OPT(G,H') > > ; jyep ™Mij = @(1 + 4). Consider the
cut (Ug,Vy \ Uy) where Uy is a random subset of vertices of H of size k/2.
The probability that an edge is cut by such a partition is kfz/(g) = %(1 + ﬁ)
Therefore, the expected weight of the cut edges is (Z(i,j)eEH mij) : % (1+ ﬁ) =
%(1 + ﬁ) > @(1 + ﬁ) Thus, there exists such a partition of at
least this value, and we can take H' to be the associated bipartite subgraph of
H. Now by Claim 4.2, G must have a cut of value at least @(1 + ﬁ) So
applying Theorem 4.3, our algorithm finds a cut, and hence a labeling, of value
at least |Eg|(5 + 5157 )- The theorem follows since OPT(G, H) < |Eg|. O

4.2 Connection to the Subgraph Isomorphism Problem

Given two graphs G and H, the subgraph isomorphism problem is the problem
of deciding whether G is a subgraph of H. The subgraph isomorphism problem
is a well-known NP-complete problem. We show that a (% + £¢)-approximation
algorithm for MGH, where ¢ > 0 is an absolute constant, implies an algorithm
for distinguishing between certain average-case instances of the subgraph iso-
morphism problem (this is defined precisely below). This hints at an inherent
difficulty in obtaining an approximation ratio better than 0.5 for MGH.

The main technical result of this section (Lemma 4.5) is as follows. For any
e > 0, if H is a triangle-free graph, and G is a random graph drawn from the
distribution G, ,, for a suitable p = p(e) € [0,1] and large enough n, then
OPT(G,H) < @(1 + ¢) with high probability. If however G is a subgraph of
H, then OPT(G,H) = |Eg|. The gap between these two cases motivates the
definition of a refutation problem for certain average-case instances of the sub-
graph isomorphism problem, which allows us to encode the difficulty of obtaining
a better than 0.5-approximation algorithm for MGH. Let A, be the set of all
triangle-free graphs on n vertices. For p € [0,1], let A,, ,, be the distribution over
G € A, obtained by choosing a random graph G € G, ,, and then considering
the edges of G in a random order and deleting any edge that is part of a triangle.

Refutation problem (with parameter ¢ > 0). Find a polynomial time algo-
rithm 4 such that given a pair of random graphs G € A,, ,,, H € A, ,,,, where

PG = 612 o > pa, (a) Areturns “yes” if H contains G as a subgraph, and (b)
A returns “no” on most instances, more precisely Prg y[A(G, H) = “no”] > %

Intuitively, the refutation algorithm A refutes most tuples (G, H) as being
“no” instances of the subgraph isomorphism problem, but always announces



“yes” when G is a subgraph of H. As mentioned earlier, with very high proba-
bility G' will not be a subgraph of H, thus conditions (a) and (b) do not conflict.
We will show that a (% + 50)—approximation algorithm for MGH yields such a
refutation algorithm; thus the non-existence of such an algorithm implies that
MGH cannot be approximated to a factor better than 0.5.

‘We mention a few remarks. First, one could also define the refutation problem
in terms of an approximation version of subgraph isomorphism by requiring
(a’): A always return “yes” if G contains a subgraph of size |[Eg|(1 — €) that is
isomorphic to a subgraph of H. Such a modification was also considered by Feige
(see Hypothesis 2 in [14]). An algorithm satisfying (a’), (b) refutes average-case
instances of the mazimum common subgraph problem [22], and is also a refutation
algorithm for the exact-version of the problem. Thus, the non-existence of an
algorithm satisfying (a’), (b) is a weaker hardness assumption (implying a (1 +&)
inapproximability for MGH). Moreover, this version of the refutation problem
might be more robust than the exact-version. Second, we take py > pg to avoid
the case where py >~ pg. In this setting, the problem is closely related to the
graph isomorphism problem on random graphs, which is known to be solvable on
average in polynomial time; see [4], and §6 of the survey [17] and its references.

Lemma 4.5. For any € € (0,1), there exist constants ngy(e€), co(€), such that if
G = (Vg, Eq) is a random graph in G, ,, where n > ng(e), p = %, c >
co(e), and H = (Vi, Eg) is a simple triangle-free graph with k vertices, then
(i) OPT(G,H) < <2k(1 4 ¢/2) with probability at least 1 — "™k and
(ii)) OPT(G,H) < @(1 + €) with probability at least 1 — 2e~ "0k,

Proof. Set no(e) = 2, co(e) = 222, Let m = p(}) be the expected number of

edges in G. Fix a mapping ¢ : Vg — V. We will show that with very high prob-
ability, mapping ¢ has value at most % (1+¢€/2). Applying the union bound over
all mappings then yields that OPT(G, H) < (1 + €/2) with high probability,
proving part (i). Since |E¢| is strongly concentrated around its expectation, this
will also prove part (ii).

Given the mapping ¢, consider the following graph H': H' also has n = |V|
vertices, and we include an edge (u,v) in H' iff (¢(u), p(v)) is an edge in H. It
is easy to see that H’ is also triangle-free: a triangle (vy,vq,v3) in H' implies
that H has edges (¢(v1),p(v2)), (©(v2), (v3)), and (p(vs),¢(v1)), and there-
fore contains a triangle. Since H’ is triangle-free, by Turdn’s Theorem [25] it

has at most %2 edges. Let X (p) denote the (random) value of the mapping ¢
for G. Observe that X () is simply the number of edges of H’ that are also
edges of G. For every pair u,v, (u,v) is in Eg with probability p, so we have
E[X(¢)] =p-|Ew| < p- ”72 = ok Since X(yp) is the sum of indepen-
dent indicator random variables, using Chernoff bounds, we get Pr [X (¢) >

#(1 + 6/2)} < e~ (FenInk)/48 < o=2nlnk The pumber of mappings ¢ is k".

So by the union bound, Pr[OPT(G,H) > <2E(1 + €/2)] = Pr[3p, X(p) >
anllnk(l-*-e/?)} < efnlnk.
The expected number of edges in G is p(}) = <pk(1 — 1) > enlnk(y

n -

2
£). Again using Chernoff bounds, we get that Pr[|Eg| < <:tk(1 —¢/4)] <




e—(7ezcn1nk)/2048 <e —nlnk

—nlnk So using part (i), with probability at least 1—2e
it is the case that OPT (G, H) < <22k (1 +¢/2) < @(1—%—6). O

Theorem 4.6. For anyey >0, a (%4—80) -approximation algorithm A for MGH

yields an algorithm for the refutation problem with parameter ¢ > co(g9) = 2706428.
0

Proof Sketch. Let G and H be the two input graphs. Let n be sufficiently large. If
we are in case (a), then OPT (G, H) = |E¢|, so running A on (G, H) will produce
a solution of value at least |Eg| (% + 60). Otherwise, we can use Lemma 4.5 to
show that that OPT(G,H) < |Ec|(3 + o) with high probability; thus, one
can use A to distinguish between the two cases. Let G by obtained by deleting
edges from G’ € G, ,. Lemma 4.5 shows that OPT(G,H) < OPT(G',H) <
@iin (] 4 gy/2) and |Ej| > €HR2(1 — £y/4), with high probability. Although
we delete edges from G’, with high probability, the number of triangles in G’
is a negligible fraction of |Eg/|. So we obtain that |Eg| > <22(1 — g,/2) and
therefore we have OPT(G, H) < |E¢|(% + €0). O

4.3 Extensions and Refinements

Prelabeled MGH. Recall that in prelabeled MGH, we are given a prelabeling
¢ U~ Vg, U C Vg and the output has to be an extension of ¢’. We can
show that for any label graph H, an a-approximation algorithm for MGH on
instances (G, H) (« could depend on H) gives an 7o -approximation algorithm
for prelabeled MGH on instances (G, H).

Dense Graphs G. We obtain much better results when G is dense, i.e., when
|Eq] = 2(n?) (n = |Vg|). One can adapt the techniques of Arora, Karger
and Karpinski [3] to obtain a solution ¢ of value OPT(G, H) — en? in time
O((nk)'e*/ 62) (although MGH does not directly fall into the problem-class de-
tailed in [3]). Since OPT(G, H) > @ = 2(n?), we can obtain a quasi-PTAS
by setting e suitably. This also yields a PTAS for any fixed graph H.

Special graphs H. When H if bipartite, by Claim 4.2 it follows that one can
obtain a 0.878-approximation algorithm for MGH using the Maxcut algorithm
of Goemans and Williamson [18]. One can also obtain an approximation ratio
better than 0.5 if H has a dense subgraph. Let pg = maxy p(U), where p(U) =
(2l{(u,v) € Eg : u,v € U})/|U|*. Let U* C Vg be such that p(U*) = pp.
The randomized algorithm that maps each node of G to a node of U* chosen
uniformly at random, returns a solution of expected value p(U*)|E¢| and is thus
a pg-approximation algorithm. This immediately implies an approximation ratio
of at least 2/3 if H contains a triangle.
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