
Network Design for Information Networks
(Extended Abstract)

Ara Hayrapetyan∗† Chaitanya Swamy∗‡ Éva Tardos∗§

Abstract
We define a new class of network design problems motivated
by designing information networks. In our model, the cost of
transporting flow for a set of users (or servicing them by a facility)
depends on the amount ofinformationrequested by the set of users.
We assume that the aggregation cost follows economies of scale,
that is, the incremental cost of a new user is less if the set ofusers
already served is larger. Naturally, information requested by some
sets of users might aggregate better than that of others, so our cost is
now a function of the actual set of users, not just their totaldemand.

We provide constant-factor approximation algorithms to two
important problems in this general model. In theGroup Facility
Locationproblem, each user needs information about a resource,
and the cost is a linear function of the number ofresources
involved (instead of the number of clients served). TheDependent
Maybecast Problemextends the Karger-Minkoff maybecast model
to probabilities with limited correlation and also contains the 2-
stage stochastic optimization problem as a special case. We
also give anO(ln n)-approximation algorithm for theSingle Sink
Information Network Designproblem.

We show that theStochastic Steiner Treeproblem can be
approximated by dependent maybecast, and using this we obtain
anO(1)-approximation algorithm for thek-stage stochastic Steiner
tree problem for anyfixedk. Our algorithm allows scenarios to have
different inflation factors, and works foranydistribution provided
that we can sample the distribution. This is the first approximation
algorithm for the multi-stage problem in this general setting.

1 Introduction

We define a new class of network design problems, where the
cost of transporting flow for a set of users, or servicing them
by a facility, is a function of thesetof users, not just their
total demand. In traditional network design each user has a
demand, and the cost of transporting flow for a set of users is
a function of a single number: the net demand of those users.
A set function allows us to express much more complex
relations between the costs for different subsets of users.
We consider two closely related problems in this framework:
single source network design and facility location.

Our network design model captures settings that arise
when a distributed set of users needs to send information
to (or receive information from) central nodes and/or each

∗Dept. of Computer Science, Upson Hall, Cornell University,Ithaca,
NY 14853. Email:{ara,swamy,eva}@cs.cornell.edu

†Supported in part by NSF grant CCR-011337.
‡Supported in part by NSF grant CCR-9912422.
§Supported in part by NSF grant CCR-032553, ITR grant 0311333, and

ONR grant N00014-98-1-0589.

other, and the information of different users can be aggre-
gated. For example, in a sensor network application, dis-
tributed sensors need to send information to central nodes,
and information sent from sensors can often be aggregated
well along the paths. Another setting is content-based
publish-subscribe distributed database systems [3], where
users may “publish” or “subscribe” to information, and infor-
mation flowing along the network can often be aggregated.

We define our information aggregation model as fol-
lows. We are given a graphG = (V, E) with edge lengths
ce ≥ 0, a set of clients (terminals, demand nodes)D ⊆ V ,
and a cost functionh : 2D 7→ R

≥0, h(∅) = 0. By aggregat-
ing the information sent to a set of usersA, we may be able
to send much less than the sum of the information needs of
the users inA, and thus incur savings. Some users may be
more related than others, and hence some subsets may ag-
gregate better than others, that is why the cost is specified by
a set function. The functionh(A) models both the amount
of total information needed by the setA, and the cost of
sending this information. We will assume that the function
h(.) is monotone and submodular, i.e.,h(A) ≤ h(B) and
h(A + i)− h(A) ≥ h(B + i)− h(B) for all A ⊆ B, i /∈ B.
Submodularity ofh(.) models economies of scale in the cost
of aggregation: the added cost of a new user is less if the set
of users already served is larger. For the special case when
cost depends only on the net demand,h(.) is submodular iff
the cost is a concave function of the demand. We assume that
h(.) is either given in an implicit way or as an “oracle”, and
are interested in algorithms whose running time and number
of oracle queries is polynomial in other parameters of the
problem, such as the size of the graph.

In thesingle sink information network designproblem,
we have a rootr ∈ V (representing a central authority), and
we need to route information from the terminals tor, where
routing information for a set of clientsA along edgee incurs
costh(A)ce. We also consider a variant of this problem with
a facility cost component, where we have a set of candidate
rootsF (called facilities) instead of a single rootr. We can
route information to any facility, but incur afacility costfor
routing information to a facility.

Traditional network design problems consider each
client as having a demand (packets to send/receive), and the
cost of an edge is a function of only on a single parameter —
the total demand routed through the edge. For example, in

the Steiner tree problem, the cost of an edgee is a constantce

for any non-empty set of users, and in buy-at-bulk network
design problems [2], it is well approximated by a concave
function of the net demand. Using demand as a single mea-
sure for defining costs assumes that to route the flow to a set
of clients we need to route the total demand of the set.

We examine these network design problems from the
perspective of information aggregation. We are interested
in the totalinformation flowdue to a set of users allowing
for information aggregation. Information aggregation is an
important issue in sensor networks, as sensors have limited
battery power and wireless communication is power inten-
sive. Sensor networks are often used to collect data that can
be naturally aggregated: we may care about the average tem-
perature in a region, and not about the individual readings of
the temperature sensors. The problem of designing sensor
networks that can efficiently aggregate information has re-
ceived significant attention, see, e.g., [5] and its references.

Our model contains an extension of the Karger-Minkoff
maybecast problem [12], where the motivation was to design
networks under incomplete or uncertain information. In
this problem, we are given a graphG = (V, E) with edge
costsce ≥ 0, a set of terminalsD ⊆ V , and a sourcer.
Each terminalt is turnedon with probability pt and when
it is on, it needs to communicate with the source. To keep
communication simple, each terminalt selects a single path
Pt from t to r that will be used by it to communicate with the
source when it is on. We only pay for edges that actually get
used, so if an an edgee lies on the paths of the terminals in
setA, its cost isce · p(A), wherep(A) is the probability that
some client inA is turned on. Karger & Minkoff [12] define
the maybecast problem by assuming that the probabilitiespt

are independent, and show that one can then viewpt as the
“demand” oft. Since the functionp(.) is submodular forany
probability distribution, the general maybecast problem falls
into our network design framework.

Our Results Our information aggregation model includes
many interesting and useful classes of problems, and we
believe that it will find applications outside the scope of this
work. We provide good approximation algorithms to two
important special cases of the problems mentioned above,
and for various other combinatorial optimization problemsin
the general framework where costs depend on the identities
of the clients. For the general single sink problem, by
arguing as in [2], we obtain anO

(

ln |V |
)

-approximation
algorithm by embedding the graph into a tree metric with
at mostO

(

ln |V |
)

distortion [4].
Section 2 considers thegroup facility locationproblem,

where we have a setR of resources and each userj requests
information about a specific resourcer(j). If r(A) denotes
the set of resources requested by users inA, then the amount
of information corresponding to setA is |r(A)|, capturing

the fact that the information of clients requesting the same
resource can be aggregated, and the cost of sending this in-
formation along an edgee is ce · |r(A)|. The goal is to con-
nect users to facilities, which have opening costs, and min-
imize the total facility opening costs and connection costs.
This problem is a natural combination of the uncapacitated
facility location (UFL) problem, the special case when users
need different resources, and the Steiner tree problem, the
special case with one facility and one resource.

We develop a primal-dual 4-approximation algorithm
for this problem that is based on integrating the primal-
dual algorithms for the UFL and Steiner tree problems. The
challenging part is extending the cleanup phase since unlike
UFL, in group facility location, it could be the case that
two tentatively open facilities get contribution from the same
resource, and yet are “far apart”. Therefore, a cleanup
based on ensuring that a component (of a resource) pays
for at most one facility fares badly. To see this, consider
the example in Figure 1 with facilitiesi and i′ separated
by a long path containing clients that all require the same
resource; closing either facility would involve rerouting
several clients requiring distinct resources and incurring a
huge cost. The approach we develop in Section 2 involves
a different cleanup phase, where a single component can
contribute towards multiple facilities, and we are able to
bound this overpayment and at the same time avoid a high
rerouting cost. We extend our result to variants of the
problem involving edge capacities, and facility costs which
are concave functions of the number of resources served.

Ravi & Sinha [14] and Shmoys, Swamy & Levi [16]
were motivated by similar objectives when they considered
a setting where each client requests a specific commodity
or service. However, they model a different aspect of
commodities. They assume that the connection cost is
directly proportional to the distance to a facility (and hence
is not shared by clients requesting the same commodity), but
instead assume that the facility cost depends on the set of
commodities served. While this problem is also contained in
our general framework, we consider here a different setting
where flow is aggregated on edges, not at facilities.

In Section 3, we consider thedependent maybecast
problem. Recall that in the Karger-Minkoff model [12], the
probabilitiespt of terminals being turned on, are indepen-
dent. In this case, the the edge costce · p(A) is well approxi-
mated byce ·min(1,

∑

t∈A pt), which is a (concave) function
of the total “demand”

∑

t∈A pt routed through the edge.
In our dependent maybecast problem, we consider the

following more general model for generating the probabili-
tiespt. Let Γ be adistribution tree(not related to the graph
G), whose leaves are the terminals inD. Each edgee ∈ Γ
has an associated probabilitype. To decide which termi-
nals are on, we “turn on” each edgee ∈ Γ independently
with probabilitype. A terminalt is on if all edges along the

path from the root tot are on. The Karger-Minkoff model is
the special case with a 1-level distribution tree. By allowing
more general trees, we allow the terminal probabilities to be
correlated. Our main result is a2(k + 1)-approximation al-
gorithm for dependent maybecast with ak-level distribution
tree. We obtain this result using the concept of cost-shares
as considered by Gupta, Kumar, Pál & Roughgarden [7].

Recently there has been considerable work on approx-
imation algorithms in a different model of network design
with uncertain inputs, theStochastic Steiner Tree Problem
[8, 10]. In the 2-stage stochastic (rooted) Steiner tree prob-
lem we are given a distribution over terminals, a graph
G = (V, E) with edge costsce, and a parameterγ. Ini-
tially (stage I) we may buy some edges based on the above
information paying costce for edgee, and once ascenario
A determining the terminals to be connected is revealed, we
can buy additional edges (stage II) to form a Steiner tree on
the terminals inA paying an increased cost ofγce. More
generally, in the multi-stage problem, new information is re-
vealed in each stage, and edges can be added to the solution
at each stage, but the cost increases in each stage.

Despite the contrasting aspects of dependent maybecast
and the stochastic Steiner tree problem — in one, we have
to choose paths completely in advance and pay only for the
edges actually used, while in the other, we pay for all the
edges bought in stage I and can update the solution as more
information is revealed — we will show in Section 4, that
the k-stage stochastic Steiner tree problem with a polyno-
mial number of scenarios is well approximated by depen-
dent maybecast with ak-level distribution tree (up to a fac-
tor that depends only onk). Using our results on the de-
pendent maybecast problem, we get anO(1)-approximation
algorithm for thek-stage problem for any fixedk.In fact,
our reduction models thek-stage problem even when the
increase factorγ is scenario-dependent. We further extend
our algorithm to distributions with exponentially many sce-
narios, assuming that we have only black-box access to the
scenario distribution. An algorithm for the 2-stage problem
with scenario-dependent increase factors was also indepen-
dently developed by [10]. Gupta et al. [9] also provide an
O(1)-approximation algorithm for thek-stage problem for
any fixedk even when the increase factorγ is scenario-
dependent. Our technique gives the first approximation al-
gorithm in this more general setting with only black-box ac-
cess, even for the 2-stage problem.

Finally, in Section 5 we give algorithms for some other
problems involving set-based cost functions.

2 The Group Facility Location Problem

We now consider thegroup facility location(GrpFL) prob-
lem and provide a 4-approximation algorithm for this prob-
lem. We are given a graphG = (V, E) with costsce ≥ 0 on
the edges, a set of facilitiesF ⊆ V , and a set of clients

D ⊆ V . Additionally, we are given a set of commodi-
ties or resourcesR. Each facility i has afacility opening
cost of fi, and each clientj in D requires a specific re-
sourcer(j) ∈ R. We want to open a set of facilitiesA,
and for each resourcer ∈ R, build a Steiner forestTr that
connects the clients requiring resourcer to open facilities,
that is,Tr consists of a collection of Steiner trees, each of
which is rooted at an open facility and connects (some of
the) clients requiring resourcer to i. The cost of this solu-
tion is

∑

i∈A fi+
∑

r∈R c(Tr), wherec(Tr) denotes the total
cost of forestTr, i.e.,

∑

e∈Tr
ce. Our objective is to find a so-

lution of minimum cost.GrpFL can be viewed as a network
design problem where we want to connect each clientj in D
to an open facility via a pathPj , and the cost of using edge
e to connect a setD of clients is given byce · |r(D)|, where
r(D) is the set of resources required by clients inD.

We can formulateGrpFL as a natural integer program
and relax the integrality constraints to get a linear program
(LP). We usei to index the facilities inF , j to index the
clients inD, andr to index the resources inR. Let δ(S)
denote the set of edges with exactly one end point inS. Let
Dr ⊆ D be the set of clients requiring resourcer, and let
Sr = {S ⊆ V : S ∩ Dr 6= ∅}. We consider the following
LP and its dual.

min
∑

i

fiyi +
∑

e,r

cexe,r(GrFL-P)

s.t.
∑

e∈δ(S)

xe,r +
∑

i∈S

yi ≥ 1 for all r, S ∈ Sr(2.1)

yi, xe,r ≥ 0 for all i, e, r.

max
∑

r∈R,S∈Sr

θr,S(GrFL-D)

s.t.
∑

S∈Sr:e∈δ(S)

θr,S ≤ ce for all e, r(2.2)

∑

r,S∈Sr:i∈S

θr,S ≤ fi for all i(2.3)

θr,S ≥ 0 for all r, S ∈ Sr.

Hereyi indicates if facility i is open, andxe,r indicates if
edgee is used to ship commodityr. Constraint (2.1) states
that every setS containing a client inDr must either contain
an open facility or have an edge on its boundary that is used
to connect the clients inDr∩S to an open facility. Intuitively,
the dual problem is the followingmoat-packingproblem.
We view the sets inSr asmoatsaround clients inDr that
need to be “crossed” so that these clients can be connected
to open facilities, andθr,S as the width of moatS. Constraint
(2.2) states that the total width of moats of a resource that an
edge crosses should be at most the edge cost; constraint (2.3)
states that the total width of all moats containing a facility i
should be at mostfi.

i i’

rClients requiring resource

distinct resources
Clients requiring Clients requiring

distinct resources

Figure 1: An example on which the natural primal-dual process and cleanup phase produces poor solutions.

2.1 A Primal-Dual Algorithm Our algorithm is based on
the primal-dual schema. The basic idea is to construct a fea-
sible dual solution, and then use this dual solution to extract
a feasible (integer) primal solution. The algorithm is a dual
ascent algorithm, so the dual variables are only increased
throughout the execution of the algorithm. As mentioned
earlier, group facility location generalizes both the uncapac-
itated facility location (UFL) and the Steiner tree problems.
The primal-dual algorithms for these two problems employ
quite different approaches for raising the dual variables,and
we integrate these two qualitatively different approachesin
our primal-dual algorithm. In fact, our algorithm reduces to
the Jain-Vazirani (JV) algorithm for UFL, and the algorithm
of Agrawal, Klein & Ravi [1] (see also [6]) for the Steiner
tree problem in these two special cases.

While there are other problems that also generalize the
UFL and Steiner tree problems, ({connected, capacitated ca-
ble} facility location), algorithms for these problems [17, 13]
proceed by essentially “decoupling” the facility locationand
Steiner tree aspects. Group facility location does not seem
to lend itself to such decoupling. We develop and analyze a
natural primal-dual algorithm that combines features of both
facility location and Steiner tree in a single process.

At a high level, our algorithm has a fairly simple and
intuitive description. We run the Steiner forest algorithm
of [1, 6], referred to as the GW algorithm from now, for
each resource independently and build a separate forest
for each resource. The algorithm maintains the connected
components of the forest built so far for each resource, and a
set oftentatively openfacilities. Each resourcer component
S in the forest for commodityr is associated with a dual
variable (or cost contribution)θr,S . We uniformly increase
θr,S for each componentS that does not contain a tentatively
open facility and gradually build a primal feasible solution.
When a component of a resource “reaches” a facility, it starts
“paying” towards the opening cost of that facility; when
the total payment to a facility (from all resources) equals
its opening cost, we tentatively open the facility, and freeze
(i.e., stop growing) the dual variableθr,S for each component
S containing the open facility. This process ends when all
components are frozen, so each resourcer client is in some
resourcer component that contains an open facility. At this
point, the primal solution generated may be quite expensive
because of redundant edges and because a component could
be contributing to multiple tentatively open facilities. We

extract a low cost primal solution by having a cleanup phase
where we remove redundant edges and select a subset of
tentatively open facilities to open. While getting rid of
redundant edges is not a problem, deciding which subset of
facilities to open is more involved.

As mentioned earlier, a typical JV style cleanup ap-
proach that tries to ensure that a component pays for at most
one facility fares badly in our problem. In the example in
Figure 1, facilitiesi andi′ are separated by a long path made
up of clients that all require the same resourcer, and numer-
ous clients requiringdistinct resources are hanging off the
ends of the path. The dual ascent process will create a single
component for resourcer containing all the clients on the
path, which then starts contributing toward both facilities.
So, althoughi and i′ are far apart, they becomedependent
(in the above sense). But if we were to open only one ofi
and i′, then the clients not inDr adjacent to the unopened
facility have to be rerouted incurring a huge cost relative to
the optimal solution (that opens both facilities).

Thus we need a scheme where a component can pay
for multiple facilities, if necessary, to keep the connection
costs bounded, and where one can bound the overpayment
(to multiple facilities). The crucial observation in the above
example is that the contribution of the component to the
multiple facilities is small compared to thelength of the path
connecting the facilities, that is, to the cost of the component
itself. The cleanup step of our algorithm generalizes this
observation. We show that one can afford to open multiple
facilities to which a component contributes, provided that
the facilities are sufficiently “far apart”, by amortizing the
net contribution of the component to facilities against the
cost of the component. Conversely if the facilities are not
far apart then we will be able to bound the rerouting cost.

The dual ascent process. This is similar to running the
GW algorithm for each resource independently. We maintain
a separate forestTr for each resourcer, and we have a
set of tentatively open facilities. We say that a connected
componentS of the forestTr is isactiveif it does not contain
a tentatively open facility; otherwise it isfrozen. We have a
notion of time,t. We start at timet = 0 with all variables
θr,S set to 0, no facility being tentatively open, and each
forestTr consisting of the isolated clients inDr. As time
increases, for every resourcer ∈ R and active componentS
of Tr, we raise the dual variableθr,S uniformly at unit rate.

Initially, the active sets are the singletons{j} wherej ∈ Dr.
The dual variableθr,S contributes toward both adding (any
number of) edges toTr, and also toward the facility opening
cost of (multiple) facilities in the setS. As we increase the
dual variables, two types of events may happen:

• For some active componentS of Tr and edgee ∈ δ(S),
constraint (2.2) holds with equality: we say thate has
becomer-tight, adde to Tr and update the components,
possibly merging components. If the new componentS′

contains a tentatively open facility, thenS′ is no longer
active, and we do not increaseθr,S′ any further.

• Facility i gets paid for, i.e., constraint (2.3) is tight fori:
we declarei to betentatively open. For every resource
r, if a componentS of the forestTr containsi, then it
becomes frozen and is no longer active.

We continue this process always raising the dual variables
θr,S for active components ofTr until no set inTr remains
active. So at termination, the components ofTr connect
all the clients inDr to tentatively open facilities viar-tight
edges. Let(θ) be the final dual solution obtained.

Opening facilities. Let F be the set of tentatively open
facilities. Let ti be the time at which facilityi ∈ F was
declared tentatively open. We say that two facilitiesi, i′ ∈ F
are dependentif for some resourcer, there is anr-tight
path (i.e., a path ofr-tight edges) connectingi and i′ of
length less than2 min(ti, ti′). We pick an arbitrary maxi-
mal independent subsetF ′ ⊆ F and open the facilities inF ′.

Removing redundant edges. For every resourcer, we
now remove redundant edges in the forestTr. Let T be a
component inTr and letT ′ ⊆ T be the minimal subgraph
that spans all the nodes ofT ∩ Dr. If T ′ contains an open
facility, we simply delete the edges inT \ T ′. Otherwise, if
T contains an open facility, leti be the open facility inT
with smallestti, else leti be thetentatively openfacility in
T with smallestti. We add ther-tight path connectingi and
T ′ to T ′, and delete the edges inT \ T ′. Let Cr denote the
collection of components for resourcer after this step.

Rerouting components. At this point, the primal solution
may be infeasible due to components inCr that do not
contain any open facility. For each such componentC ∈ Cr,
we simply add edges toC along a shortest path connecting
C to the open facility nearest to it.

2.2 Analysis The analysis proceeds as follows. In
Lemma 2.1 we show that for every resourcer, the cost of
a componentC ∈ Cr obtained by removing redundant edges
in step A3 from componentT ∈ Tr is at most2

∑

S⊆T θr,S ;
this can be proved by arguing as done in [6] for the Steiner
tree problem. Lemma 2.2 shows that thererouting costin
step A4 of a componentC ∈ Cr with no open facilities is

also bounded by2
∑

S⊆T θr,S . We then argue that the cost
of opening facilities can be charged to the components in
⋃

r∈R Cr that contain open facilities, and the net contribu-
tion of a component towards opening facilities is at most the
cost of the component (Lemma 2.3). Combining the vari-
ous bounds, we obtain that the total cost of the solution is at
most4

∑

r,S∈Sr
θr,S ≤ 4 · OPT , whereOPT is the cost of

an optimal solution.

LEMMA 2.1. Let r be any resource andC be a component
in Cr obtained from componentT ∈ Tr in step A3. Then
cost(C) ≤ 2

∑

S⊆T θr,S .

LEMMA 2.2. Let C ∈ Cr be a component not containing
any open facility, obtained from componentT in Tr. The
cost of adding edges toC in step A4 is at most2

∑

S⊆T θr,S .

Proof. By construction,C contains the tentatively open
facility i in T with smallestti value. Sincei is not open,
there must be an open facilityi′ such thati and i′ are
dependent implying thatcii′ ≤ 2 min(ti, ti′) ≤ 2ti. We
claim that

∑

S⊆T θr,S ≥ ti which will prove the lemma.
This follows since at any timet < ti, each clientj ∈ C ∩Dr

must be in some active componentS ⊆ T of the forestTr,
otherwiseT would contain a tentatively open facilityi′′ such
that ti′′ < ti contradicting the choice ofi. So the dual
∑

S⊆T θr,S increases at rate at least 1 at all timest ∈ [0, ti)
which implies the claim.

For any facility i, let βi,r =
∑

S:i∈S θr,S denote the
contribution from resourcer to the facility costfi. So if i is
tentatively open then

∑

r βi,r = fi. Note that ifi ∈ F ′ lies
in componentT ∈ Tr, thenθr,S > 0 for a setS containing
i only if S ⊆ T , and soβi,r =

∑

S⊆T :i∈S θr,S ≤ ti since
at most one active component ofTr may contribute toward
facility i at any point of time. For an open facilityi ∈ T , let
σ(i) be the client inT ∩ Dr nearest toi.

CLAIM 2.1. Let i be an open facility inT whereT ∈ Tr.
Thenβi,r = τ − ciσ(i) whereτ is the time at which the
active component containingσ(i) freezes. Moreover,βi,r >
0 =⇒ τ ≤ ti.

Proof. Let j = σ(i) ∈ Dr (see Fig. 2a). LetSt be the
active component ofTr containingj at timet. Note that at
any time instantt, St is theonly component ofTr that can
containi, and hence contribute toward facilityi. The earliest
time t at whichSt may includei is at timet = t1 = cij ,
and since there is anr-tight path betweeni andj, we have
τ ≥ t1. If t1 > ti then i is tentatively open at timet1,
so componentSt1 containingj freezes immediately and we
haveτ = t1; since no resourcer component contributes
toward i, βi,r = 0 = τ − t1. Otherwise, componentSt

will certainly freeze by timet = ti, so τ ≤ ti, and during
the interval[t1, τ] the dual variableθr,St

contributes toward
facility i at rate 1, soβi,r = τ − t1 = τ − ciσ(i).

i

i

i’

β

τ

i,r

edge of T

edge of

resource

deleted in step A3

forestr’sresource

(b)

+βi’,rβ
i,r

(a)

Component T in

>)i’(σj’ =

clientr

⊆ TC

unopen facility

σ()ij =

σ()ij =

Steiner node

open facility

Figure 2: (a) Computingβi,r for facility i. (b) Bounding the net contribution fromT to open facilities.

LEMMA 2.3. Let C ∈ Cr be a component that contains
open facilities, obtained by removing edges fromT ∈ Tr.
Then,

∑

i∈F ′∩T βi,r ≤ cost(C).

Proof. Let A ⊆ F ′ ∩ T be the open facilities for which
βi,r > 0. We show that the length of ther-tight pathπ in C
between clientsj = σ(i) andj′ = σ(i′) for anyi, i′ ∈ A, is
at leastβi,r +βi′,r (see Fig. 2b). In particular, this will show
that if i andi′ are distinct, thenσ(i) andσ(i′) are distinct.
To see this, lett1, t2 be the times respectively at which the
active components containingj andj′ freeze. Sot1 ≤ ti
andt2 ≤ ti′ . If t1 = t2, the length of ther-tight path inT
betweeni and i′ is at least2 min(ti, ti′) ≥ t1 + t2 and at
mostcij + c(π)+ ci′j′ , soc(π) ≥ (t1 − cij)+ (t2 − ci′j′) =
βi,r + βi′,r using Claim 2.1. Otherwise lett1 ≤ t2 without
loss of generality. At timet1, j and j′ are in different
components. Suppose at timet, j and j′ lie in the same
component. Thent1 ≤ t2 ≤ t (the active component
containingj′ will freeze when it touches the component
containingj), andc(π) ≥ t1 + t ≥ βi,r + βi′,r. Consider
doubling the edges ofC and computing an Eulerian tour of
C. The cost of the tour is at most2cost(C). Also, the cost
is at least2

∑

i∈F ′∩T βi,r since the tour can be partitioned
into segments(σ(i), σ(i′)) wherei, i′ ∈ A each of which
has length at leastβi,r + βi′,r, and every clientσ(i), i ∈ A
appears as an end point of at least 2 such segments.

THEOREM 2.1. The above algorithm returns a solution of
cost at most4

∑

r,S θr,S ≤ 4 · OPT .

Proof. This follows from the previous three lemmas. By
Lemma 2.1,

∑

r cost(Cr) ≤ 2
∑

r,S θr,S . Since
∑

r βi,r =
fi for every open facility, the facility costs can be charged
to the components in

⋃

r Tr. Consider componentC ∈ Cr

obtained by removing redundant edges fromT ∈ Tr. If T
contains open facilities, then its net contribution is at most
cost(C) ≤ 2

∑

S⊆T θr,S by Lemma 2.3. Otherwise, its
contribution is 0, but we need to rerouteC paying a cost
of at most2

∑

S⊆T θr,S (Lemma 2.2). In either case, this
incurs a cost of at most2

∑

S⊆T θr,S per componentT , and
so the total cost is at most4

∑

r,S θr,S .

Extensions It is straightforward to extend our results to the
case where resourcer has a weightwr and its connection
cost iswr times the cost of its forest. We can also extend
the algorithm to handle more general connection costs and
facility costs such as (1) an edge capacitated version where
the cost of an edgee for resourcer is given byρr

⌈

n(e,r)
ur

⌉

ce

wheren(e, r) is the number of resourcer clients using edge
e — so one copy of edgee can transportur clients ofDr

at a cost ofρrce, and (2) the problem with concave facility
costs, when the cost of facilityi is fi(n(i)), wheren(i) is
the number of resources that usei and fi(.) is a concave
function. We get a 5.52-approximation algorithm for (1)
by decomposing the problem into aGrpFL instance where
resourcer has weightρr and a UFL instance where clients
of resourcer havedemandρr

ur
, solving these two problems

separately, and then combining the two solutions without
increasing the total cost. We solve (2) by first looking at
linear cost functionsfi + µin(i) and reducing this toGrpFL.
A concave function is the lower envelop of a set of linear
functions, so we can reduce the problem with concave costs
to the linear case which in turn reduces toGrpFL. Thus we
get a 4-approximation algorithm.

3 The Dependent Maybecast Problem

In this section we consider a class of network design prob-
lems involving monotone, submodular cost functions arising
from a model that we calldependent maybecast. The may-
becast problem was introduced by Karger & Minkoff [12] to
model the Steiner tree problem with incomplete information.
They consider a setting where each terminal requests service
from a root node independently with certain probability.

Before formally defining the dependent maybecast
problem we define our class of probability distributions that
we will use to generate the requests. LetD be the set of ter-
minals that can request service, andΓ be a rooted tree with
rootσ whose leaves are the terminalsD (this tree is distinct
from the graphG). Each edgee of Γ is marked with a prob-
ability pe ∈ [0, 1] (see Fig. 3a). The stochastic process asso-
ciated with this model is as follows. Each edgee is turned on

independently with probabilitype; the terminals that need to
be serviced are those that are reachable via the on edges from
the rootσ of Γ. We call these theactiveterminals, and refer
to probability distributions of active terminals generated by
this process astree-based distributions. We useΓρ to denote
the subtree ofΓ rooted at nodeρ.

Thedependent maybecastproblem is defined as follows.
We have a graphG = (V, E) with edge costsce, a rootr, and
a set of terminalsD ⊆ V . We are also given adistribution
treeΓ on the terminal setD. Without loss of generality we
may assume that the graph is complete and the edge lengths
satisfy the triangle inequality. We want to select a pathPt

for each terminalt connectingt to the rootr. The cost of
this solution (the set of paths

⋃

t∈D Pt) is the expected cost,
evaluated using the distribution generated byΓ, of the edges
used to connect the active terminals to the root (using path
Pt for terminalt), i.e.,

∑

e∈E cep(Ae) whereAe is the set
of terminals whose paths contain edgee, andp(Ae) is the
probability thatat least oneterminal inAe is active. The
goal is to select a set of paths that minimizes this cost.

Let k be the number of levels inΓ (starting at level
0). We give a2(k + 1)-approximation algorithm for this
problem. We use sampling from the given tree distribution
as our main design tool. The analysis uses cost-shares in
a manner similar to that used by Gupta et al. [7] for the
multicommodity rent-or-buy problem.

3.1 The Algorithm The algorithm proceeds in stages. In
stage 0 we sample from the distribution generated byΓ. Let
Dσ be the set of active terminals after this sampling. We
build a minimum cost spanning tree (MST)Tσ spanning the
setDσ∪{r}, and use the unique tree paths to define the paths
Pt for the terminals inDσ.

In general, at a stagei, we consider the set of nodes
of Γ at level i, denoted bylevel(i). For such a nodeρ, let
ρ0 = σ, ρ1, . . . , ρi−1, ρi = ρ be the nodes inΓ on the path
from σ to ρ. Let Γρ denote the subtree ofΓ rooted atρ. We
sample from the distribution generated by theΓρ and obtain
a set of active terminalsDρ. We build an MSTTρ connecting
the terminals inDρ to the root in the graphG′ where the trees
Tρ0

, . . . , Tρi−1
, built in previous stages corresponding to the

ancestors ofρ, are contracted (note thatr ∈ Tρ0
). (The root

of G′, also denoted byr, is the node that contains the root of
G.) Note thatDρ may contain terminals that were sampled
in previous stages, that is, lie inDρk

for somek < i, and are
thus co-located with the root ofG′. The treesTρ0

, . . . , Tρi−1

together withTρ together form a Steiner tree (in graphG) on
Dρ ∪ r, and we use the unique paths in this tree to define the
paths for the terminals inDρ.

3.2 Analysis The analysis is in two parts. LetOPT

denote the cost of an optimal solution. First, we bound the
expected cost of treeTσ built in stage 0 by2 · OPT . Then

we show that, for any stagei + 1, the expected cost incurred
in (building the trees in) stagei + 1 is no more than that
incurred in stagei. Since our algorithm hask + 1 stages this
gives a2(k + 1)-approximation algorithm.

Bounding the cost of the initial stage. For any edge
selected, the probability of it being used is at most 1, so the
cost of stage 0 is at moststage(0) =

∑

e∈Tσ
ce = cost(Tσ).

Consider an optimal solution. LetA ⊆ D be a subset of
terminals. LetqA be the probability that exactly this set of
terminals is selected by the stochastic process, and letcA

be the cost incurred by the optimal solution for setA. So,
OPT =

∑

A⊆D qAcA. The probability that our sampling
results in setA is exactlyqA. The paths used by the optimum
solution to connect the terminals inA include a Steiner tree
on A. Since the cost of an MST is within a factor of 2 of
the minimum cost Steiner tree, the cost we incur to build an
MST for sample setA is at most2cA. Hence our expected
cost is at most

∑

A 2qAcqA = 2 · OPT .

Cost-sharing. We now introduce the notion of cost-sharing
that we will use to bound the costs of later stages. Acost-
sharing methodin our framework is a functionξ : G× 2D ×
D 7→ R

≥0. Intuitively ξ(G, A, t), for t ∈ A, is nodet’s share
in the cost of building a tree onA in graphG. Our cost-
shares share the cost of the MSTs that the algorithm builds.
Fix an MST onA ∪ {r}. Defineξ(G, A, t) to be the cost of
the edge connectingt to its parent. Clearly

∑

t∈A ξ(G, A, t)
is the cost of the MST. We setξ(G, A, t) = 0 if t /∈ A for
convenience. In later iterations of the algorithm, we select
an MST in a graph where a subset of nodesH is contracted.
Let G/H denote this contracted graph.

LEMMA 3.1. For any setsH 3 r, A ⊆ D, andH ′ ⊆ H , we
have

∑

t∈A

ξ(G/H, A, t) ≤
∑

t∈A

ξ(G, A ∪ H ′, t).

Proof. The left side is the cost of the MST on the setA∪{r}
in graphG/H . To see the inequality, note that the right hand
side sums up the cost of a set of edges that form a spanning
tree onA ∪ {r} in G/H .

Bounding the cost of subsequent stages. Consider a node
ρ ∈ level(i). Let qρ be the product of thepes for edges
along the path fromρ to σ. In stagei, we sample a setDρ

from the subtreeΓρ and build an MSTTρ (in a contracted
graph) connecting the terminals inDρ to the root. An edge
e ∈ Tρ is used only by (some of) the terminals inΓρ. So
the probability thate will be used is at mostqρ, and the cost
incurred for treeTρ is at mostqρ · cost(Tρ). We define the
cost of stagei asstage(i) =

∑

ρ∈level(i) qρ · cost(Tρ).

The total cost of the solution is at most
∑k

i=0 stage(i).
We will prove that for any stagei, 0 ≤ i < k, we have
E

[

stage(i+1)
]

≤ E
[

stage(i)
]

. Combined with the fact that

0.4

1
1

0.8
0.75

1

0.2 0.01

σ

0.3

1 ρ

p
e

ρ

σ(a) (b)

t
Γ

e

Figure 3: (a) An example of a distribution tree. (b) Boundingthe cost of stage 1.

E
[

stage(0)
]

≤ 2 · OPT , this shows that the total expected
cost is at most2(k + 1) · OPT .

LEMMA 3.2. For any i, 0 ≤ i < k, we haveE
[

stage(i +

1)
]

≤ E
[

stage(i)
]

.

Proof. We show this fori = 0. The argument for subsequent
stages is similar and is omitted from this extended abstract.
Recall thatDσ is the set of terminals sampled in stage 0.
Consider a nodeρ at level 1 connected toσ with edgee, and
a terminalt in the subtreeΓρ (see Fig. 3b).

Let us condition on the terminal setH ′ that is selected in
stage 0 from the other branches of the distribution treeΓ. We
say that a terminalt in Γρ is “attached” toρ if all edges on its
path toρ are turned on. Note that in both stage 0 and stage
1, thesame random processdetermines the set of terminals
that are attached toρ. If setDρ is attached toρ in stage 0,
then its total cost-share is

∑

t∈Dρ
ξ(G, H ′ ∪ Dρ, t) if e is

on, and 0 otherwise. IfDρ is attached toρ in stage 1, that
is, if Dρ is the set of active terminals inΓρ in stage 1, then
its total cost share is

∑

t∈Dρ
ξ(G/H,Dρ, t), whereH ⊇ H ′

is the set of terminals selected in stage 0. By Lemma 3.1
we have,

∑

t∈Dρ
ξ(G/H,Dρ, t) ≤

∑

t∈Dρ
ξ(G, H ′∪Dρ, t).

Note that the left term is the cost of the treeTρ. Multiplying
the inequality bype and taking the expectation over sets
Dρ and H ′, we get thatEH′,Dρ

[

pe · cost(Tρ)
]

≤ pe ·

EH′,Dρ

[
∑

t∈Dρ
ξ(G, H ′∪Dρ, t)

]

. The LHS is simplyE
[

pe ·

cost(Tρ)
]

, the stage 1 cost for subtreeΓρ. Note that if edgee
is turned on (with probabilitype), thenDσ = H ′∪Dρ, so we
can rewrite the RHS asE

[
∑

t∈Dσ ,t∈ subtreeΓρ
ξ(G,Dσ, t)

]

.
So adding the inequality over all level 1 nodesρ shows that
the expected stage 1 cost is at most the expected stage 0 cost.

THEOREM 3.1. The above algorithm is a2(k + 1)-
approximation algorithm.

4 The Stochastic Steiner Tree Problem

Recently, there has been a lot of interest in approximation
algorithms for stochastic network design problems [8, 15,
10]. Both the stochastic Steiner tree problem, and the
maybecast problem deal with network design in the face of
uncertainty in the input. However, on the surface the two

problems are quite different. Stochastic optimization allows
for correction of the design after information is revealed
(at an increased cost), while in the maybecast problem,
the solution is fixed, and we only pay for the edges used.
Despite these differences, in this section we will show that
the dependent maybecast problem with ak-level probability
tree can be used to model thek-stage stochastic (rooted)
Steiner tree problem with a polynomial number of scenarios.

In the 2-stage stochastic Steiner tree problem we have
a root r, and a distribution over the terminal setD that
determines the terminals to connect to the root. We may buy
an edgee in stage I, or in stage II to connect the terminals
activated in the scenario that materializes, paying eitherce in
stage I, or an increased cost ofγAce in scenarioA. We want
to pick edges to buy in stage I so as to minimize the total
cost of stage I and the expected stage II cost. Gupta et al. [8]
gave a 3.55-approximation algorithm whenγA = γ but for
an arbitrary distribution. Independent of our work, [10] also
gave an algorithm for arbitraryγAs.

In the k-stage Steiner tree problem, information about
the scenarios is revealed in stages, edges can be purchased
in each stage and become more expensive as more infor-
mation is available. We show that thek-stage stochastic
Steiner tree problem can be well approximated by depen-
dent maybecast with ak-level probability tree, yielding an
O(1)-approximation algorithm for this problem for any fixed
k. We extend our result to settings with scenario-dependent
inflation factors, and/or more than a polynomial number of
scenarios assuming we can sample the scenario distribution.

We first show that the 2-stage stochastic (rooted) Steiner
tree problem with a polynomial number of scenarios can
be approximated using dependent maybecast with a 2-level
probability tree. For each scenarioA and nodev ∈ A, we
create a nodevA co-located withv and make this a terminal
in our maybecast instance. This duplication allows a node
v to select a separate path to the root in each scenario. Let
T denote this set of terminals. In both problems, we choose
paths to connect each terminal — nodev ∈ A in the 2-stage
problem, or nodevA in dependent maybecast — to the root,
so a solution to one gives a solution to the other.

However, the objective functions of the two problems
are different, and furthermore in the 2-stage problem we

distinguish edges bought in stage I and stage II. If edgee
is used in the 2-stage problem when a scenario inA occurs,
we incur a cost ofmin

(

1,
∑

A∈A pAγA

)

ce: we can buy the
edge either in stage I or in every scenarioA ∈ A. To model
this via a maybecast problem, we use a distribution treeΓ
with root σ and a level 1 nodeρA for each scenarioA, and
set the probability of edge(σ, ρA) to qA = min(1, pAγA).
The children ofρA are the terminalsvA for v ∈ A, and
edgee = (ρA, vA) haspe = 1. If A is the scenario set
corresponding to the set of terminals using edgee, we pay a
cost ofce ·Pr[edgee will be used], that is,ce

(

1−
∏

A∈A(1−

qA)
)

. As shown in [12], the terms1 −
∏

A∈A(1 − qA)

andmin
(

1,
∑

A∈A qA

)

= min
(

1,
∑

A∈A pAγA

)

are within
a constant factor of each other, so we get a constant-factor
approximation algorithm for the 2-stage problem.

We now give an algorithm for the 2-stage problem with
an arbitrary scenario distribution, using only a black box to
sample from the distribution, and an oracle that revealsγA

given a scenarioA. Let γ = maxA γA, which we assume is
known. Whereas in the dependent maybecast instance each
scenarioA is sampled independently, one can argue, by com-
paring directly our cost with the cost of the optimal solu-
tion for the 2-stage problem using the cost-sharing scheme
in Section 3.2, that the following sampling procedure suf-
fices: drawγ independent samples and whenever scenario
A is sampled, keep it with probabilityγA/γ. As before,
we build an MST on the terminals contained in the chosen
scenarios and buy the edges of this tree in the first stage.
This gives the first approximation algorithm for the 2-stage
Steiner tree problem in the black-box model with scenario-
dependent inflation factors.

THEOREM 4.1. There is a 4-approximation algorithm for
the 2-stage Steiner tree problem in the black-box model1 and
with scenario-dependent costs.

The above arguments can be generalized to handle the
multi-stage stochastic Steiner tree problem. In thek-stage
problem, the uncertainty of terminals to be connected to the
root evolves overk stages and the scenario distribution is
specified by a(k − 1)-level tree, referred to as thescenario
tree. Each node at leveli − 1 represents an outcome in
stage i and corresponds to a particular evolution of the
uncertainty through stages1, . . . , i; at each leaf nodè,
the uncertainty has completely resolved itself and we know
the set of terminalsA` to connect to the root. We call
A` a leaf-outcome. At each stage, we have the option of
purchasing edges, but the cost increases through the stagesas
we get more information. We consider the setting where the
inflation factor is identical for all edges in any outcomeµ,

1The factor is actually2 + ρST , if we use aρST -approximation
algorithm to construct aSteiner treeon the terminals of the sampled
scenarios, and contract only these terminals to the root.

denoting this byγµ (γroot=1). Let pµ be the probability that
µ occurs andλµ =

γµ

γν
whereν is the parent ofµ. So if we

buy edgee in outcomeµ, the expected cost incurred ispµ·γµ.
Analogous to the 2-stage case, we can model thek-stage

problem by dependent maybecast by viewing each nodev in
a leaf-outcomeA`, as a distinct terminalvA`

co-located with
v in the maybecast instance. The distribution tree now hask
levels, and is the scenario tree appended with leaves that are
thevA`

nodes, each attached to its corresponding levelk− 1
nodes̀ with an edge with label 1. An edge entering a non-
leaf nodeµ ∈ level(i−1) from nodeν ∈ level(i−2) is given
a label that captures the expected increase in cost incurredby
buying an edge in outcomeµ in stagei, over buying the edge
in outcomeν in stagei−1, or more precisely,min

(

1,
pµλµ

pν

)

.
One can show that for any edgee used when a leaf-outcome
in A occurs, the costs incurred in thek-stage problem, and
in the dependent maybecast instance to route terminalsvA`

whereA` ∈ A, are within a constantck of each other where
ck depends only on the number of stagesk. Thus we get a
O(k · ck)-approximation algorithm for thek-stage problem.
As in the 2-stage problem, one can specify the first-stage
decisions given only the valueγ = maxµ λµ andblack-box
accessto the scenario distribution such that for any outcome
µ, we can sample leaf-outcomes conditioned on the event
that outcomeµ occurs. We first sampleγ times from the
entire distribution, and for each sampledlevel 1 outcomeµ1,
keep it with probabilityλµ1

γ
. Next for each kept outcomeµ1

we sampleγ times from the conditional distribution on the
leaf-outcomes in its subtree and keep each level 2 outcome
µ2 (child of µ1) with probability

λµ2

γ
. Proceeding this way,

we output a list of leaf-outcomes, and we buy an MST on the
terminals of these leaf-outcomes in stage I.

THEOREM 4.2. The above algorithm achieves anO(k) ap-
proximation ratio for thek-level Steiner tree problem in the
black-box model with outcome-dependent inflation factors.

5 Other Problems

Set cover and vertex cover. In the set cover problem,
we are given a universeU of elementse1, . . . , en and a
collection of subsetsS1, . . . , Sm ⊆ U . We want to choose
a collection of these sets so that every element is included in
some chosen set. Typically, setSi has an associated cost
ci, and the goal is to choose a minimum cost collection.
We consider a setting where the cost ofSi is given by a
monotone submodular functionhi : 2Si 7→ R

≥0, hi(∅) = 0
with hi(T) specifying the cost of using setSi to cover set
T ⊆ Si of elements. The goal is to assign each element to a
set containing it so as to minimize

∑

i hi(Ti) whereTi ⊆ Si

is the set of elements assigned toSi. This problem can be
used to model a probabilistic set cover problem, where each
element is activated with certain probability, and the goalis
to assign each element to a set containing it so as to minimize

the expected cost of the sets assigned to the active elements.
If Si is assigned a setTi ⊆ Si of elements, then its cost
is hi(Ti) = ci · Pr[∃ active elementej ∈ Ti], which is a
monotone submodular function.

We obtain alnn-approximation algorithm for this prob-
lem by creating a set(Si, T) of costhi(T) for every subset
T ⊆ Si and running the greedy set cover algorithmusing
submodular function minimization to find the next best set.
If the algorithm picks sets(Si, T1), . . . (Si, Tk), then picking
(Si,

⋃

i Ti) instead is no worse, sincehi(.) is submodular.
In vertex cover we want to cover edges of a graph by

its vertices, and the cost for covering a set of edges is given
by a monotone submodular function. One can extend the
existing primal-dual algorithm for vertex cover to obtain a
2-approximation algorithm for this problem.

The prize collecting Steiner tree problem. In the (rooted)
prize collecting Steiner tree (PCST) problem, given a
graphG = (V, E) with edge costsce, a penalty function
h : 2V 7→ R

≥0 and a rootr, we want to connect a sub-
set of nodesS to the root by a treeT so as to minimize
∑

e∈T ce+h(V \S). We consider the case where the penalty
function is a monotone submodular function. For example,
the reward of connecting a setS to the root could be
proportional to its “sphere of influence” giving rise to super-
modular reward functions, e.g.,reward(S) =

∑

u,v∈S ruv.
Equating penalty with the reward foregone, we get a sub-
modular penalty function. We can show that the primal-dual
algorithm of Goemans & Williamson [6] for PCST gives a
2-approximation algorithm for this problem.

Facility location with penalties. Here we consider the
facility location problem with penalties, where we are given
a set of facilitiesF and a set of clientsD that need to be
assigned to open facilities, and we incur a penalty, specified
by a monotone submodular functionh : 2D 7→ R

≥0, for
not assigning clients. We can write the following LP for this
problem: minimize

∑

i fiyi +
∑

j,i cijxij +
∑

S⊆D h(S)zS

subject to
{
∑

i xij +
∑

S⊆D:j∈S zS ≥ 1 ∀j; xij ≤

yi ∀i, j; xij , yi, zS ≥ 0 ∀i, j, S
}

. VariablezS indicates
if we incur the penalty for setS. We can solve this LP in
polynomial time since one can give a separation oracle for
the dual program. Let(x, y, z) be an optimal solution. We
show that one can round this solution to an integer solution
losing a factor of at most(1 + γ) using an LP-basedγ-
approximation algorithm for UFL.

Let N =
{

j ∈ D :
∑

i xij ≥ γ
γ+1

}

. We incur the
penalty for clients inD \ N , and assign the clients inN to
open facilities by solving a UFL instance with facility setF
and client setN using theγ-approximation algorithm. Note
that γ+1

γ
·
(

{xij}j∈N , y
)

is a feasible fractional solution to
this instance. So using theγ-approximation algorithm, we
obtain aninteger solutionto this instance of cost at most

(1+γ)·
(
∑

i fiyi+
∑

j∈N,i cijxij

)

. For each client inD\N ,
we have

∑

S:j∈S zS ≥ 1
γ+1 . Sinceh(.) is submodular, one

can show that
∑

S h(S)zS ≥ 1
γ+1 · h(D \ N). This shows

that the overall cost is bounded by(1 + γ) · OPT .

Acknowledgment We thank Martin Pál for suggesting the
sampling approach of Section 3.

References
[1] A. Agrawal, P. Klein, and R. Ravi. When trees collide: an

approximation algorithm for the generalized Steiner problem
on networks.SIAM J. Computing, 24(3):440–456, 1995.

[2] B. Awerbuch and Y. Azar. Buy-at-bulk network design. In
Proceedings of 38th FOCS, pages 542–547, 1997.

[3] A. Campailla, S. Chaki, E. Clarke, S. Jha, and H. Veith.
Efficient filtering in publish-subscribe systems using binary
decision diagrams. InProc. 23rd ICSE, pages 443–452, 2001.

[4] J. Fakcharoenphol, S. Rao, and K. Talwar. A tight bound on
approximating arbitrary metrics by tree metrics. InProceed-
ings of 35th STOC, pages 448–455, 2003.

[5] A. Goel and D. Estrin. Simultaneous optimization for con-
cave costs: single sink aggregation or single source buy-at-
bulk. In Proceedings of 14th SODA, pages 499–505, 2003.

[6] M. X. Goemans and D. P. Williamson. A general approxi-
mation technique for constrained forest problems.SIAM J.
Computing, 24:296–317, 1995.

[7] A. Gupta, A. Kumar, M. Pál, and T. Roughgarden. Approx-
imation via cost sharing: a simple approximation algorithm
for the multicommodity rent-or-buy problem. InProceedings
of 44th FOCS, pages 605–615, 2003.

[8] A. Gupta, M. Pál, R. Ravi, & A. Sinha. Boosted sampling:
approximation algorithms for stochastic optimization. In
Proceedings of 36th STOC, pages 417–426, 2004.

[9] A. Gupta, M. Pál, R. Ravi, & A. Sinha. Personal communi-
cation. March, 2004.

[10] A. Gupta, R. Ravi, & A. Sinha. An edge in time saves nine:
LP rounding approximation algorithms.FOCS, 2004.

[11] K. Jain and V. V. Vazirani. Approximation algorithms for
metric facility location andk-median problems using the
primal-dual schema and Lagrangian relaxation.Journal of
the ACM, 48(2):274–296, 2001.

[12] D. R. Karger and M. Minkoff. Building Steiner trees with
incomplete global knowledge. InProceedings of 41st FOCS,
pages 613–623, 2000.

[13] R. Ravi and A. Sinha. Integrated logistics : approximation
algorithms combining facility location and network design.
In Proceedings of 9th IPCO, pages 212–229, 2002.

[14] R. Ravi and A. Sinha. Multicommodity facility location. In
Proceedings of 15th SODA, pages 335–342, 2004.

[15] D. B. Shmoys and C. Swamy. Stochastic optimization is
(almost) as easy as deterministic optimization.FOCS, 2004.

[16] D. B. Shmoys, C. Swamy, and R. Levi. Facility location
with service installation costs. InProceedings of 15th SODA,
pages 1081–1090, 2004.

[17] C. Swamy and A. Kumar. Primal-dual algorithms for con-
nected facility location problems.Algorithmica, 40(4):245–
269, 2004.

