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Abstract other, and the information of different users can be aggre-

We define a new class of network design problems motivatgated. For example, in a sensor network application, dis-
by designing information networks. In our model, the cost efibuted sensors need to send information to central nodes,
transporting flow for a set of users (or servicing them by difgt 5 information sent from sensors can often be aggregated
depends on the amountioformationrequested by the set of users;, ell along the paths. Another setting is content-based

We assume that the aggregation cost follows economies t#,sc . . L
that is, the incremental cost of a new user is less if the sasefs PUblish-subscribe distributed database systems [3], avher

already served is larger. Naturally, information requeidty some USers may “publish” or “subscribe” to information, and info
sets of users might aggregate better than that of othersirsmst is  mation flowing along the network can often be aggregated.
now a function of the actual set of users, not just their tdéshand. We define our information aggregation model as fol-

We provide constant-factor approximation algorithms to t . . .
important problems in this general model. In tBeoup Facility "ows. We are given a grapti = (V; E) with edge lengths

Location problem, each user needs information about a resourée,=> 0, @ Sét of clients (terminals, demand nodBsi V/,

and the cost is a linear function of the number rebources and a cost function : 22 — R=° h(0) = 0. By aggregat-
involved (instead of the number of clients served). Tiependent ing the information sent to a set of usetswe may be able
Maybecast Problerextends the Karger-Minkoff maybecast modgly send much less than the sum of the information needs of

to probabilities with limited correlation and also contaithe 2- : : .
stage stochastic optimization problem as a special case. g users ind, and thus incur savings. Some users may be

also give anO(In n)-approximation algorithm for th&ingle Sink More related than others, and hence some sqbsets may ag-
Information Network Desigproblem. gregate better than others, that is why the cost is specified b

We show that theStochastic Steiner Treproblem can be a set function. The functioh(A) models both the amount

approximated by dependent maybecast, and using this wénobi¥ total information needed by the set, and the cost of

anO(1)-approximation algorithm for the-stage stochastic Steiner, : . : - -
tree problem for anfixedk. Our algorithm allows scenarios to havesend_Ing this information. We wil as_sume that the function
different inflation factors, and works famy distribution provided 7() is monotone and submodular, i.é(A) < h(B) and

that we can sample the distribution. This is the first appration h(A+i) —h(A) > h(B+i) —h(B)forall A C B,i ¢ B.

algorithm for the multi-stage problem in this general seti Submodularity of:(.) models economies of scale in the cost
of aggregation: the added cost of a new user is less if the set
1 Introduction of users already served is larger. For the special case when

We define a new class of network design problems, where €@t depends only on the net demahd) is submodular iff
cost of transporting flow for a set of users, or servicing thelfie cost is a concave function of the demand. We assume that
by a facility, is a function of thesetof users, not just their 2(.) is either given in an implicit way or as an “oracle”, and
total demand. In traditional network design each user hagrg interested in algorithms whose running time and number
demand, and the cost of transporting flow for a set of user®fsoracle queries is polynomial in other parameters of the
a function of a single number: the net demand of those usé®blem, such as the size of the graph.
A set function allows us to express much more complex In thesingle sink information network desigmoblem,
relations between the costs for different subsets of usé¥§ have aroot € V' (representing a central authority), and
We consider two closely related problems in this framewoi¢e need to route information from the terminals-tavhere
single source network design and facility location. routing information for a set of clientd along edge incurs

Our network design model captures settings that ar@@sth(A4)c.. We also consider a variant of this problem with
when a distributed set of users needs to send informatffcility cost component, where we have a set of candidate
to (or receive information from) central nodes and/or eatpotsF (called facilities) instead of a single root We can

route information to any facility, but incurfacility costfor
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the Steiner tree problem, the cost of an edggea constant, the fact that the information of clients requesting the same
for any non-empty set of users, and in buy-at-bulk networ&source can be aggregated, and the cost of sending this in-
design problems [2], it is well approximated by a conca¥ermation along an edgeis c. - |[r(A4)|. The goal is to con-
function of the net demand. Using demand as a single maaet users to facilities, which have opening costs, and min-
sure for defining costs assumes that to route the flow to aig@ize the total facility opening costs and connection costs
of clients we need to route the total demand of the set.  This problem is a natural combination of the uncapacitated
We examine these network design problems from tfeility location (UFL) problem, the special case when sser
perspective of information aggregation. We are interestegled different resources, and the Steiner tree problem, the
in the totalinformation flowdue to a set of users allowingspecial case with one facility and one resource.
for information aggregation. Information aggregationiis a  We develop a primal-dual 4-approximation algorithm
important issue in sensor networks, as sensors have limitedthis problem that is based on integrating the primal-
battery power and wireless communication is power intedudal algorithms for the UFL and Steiner tree problems. The
sive. Sensor networks are often used to collect data that challenging part is extending the cleanup phase sinceainlik
be naturally aggregated: we may care about the average te}fk, in group facility location, it could be the case that
perature in a region, and not about the individual readifigstevo tentatively open facilities get contribution from thense
the temperature sensors. The problem of designing senssource, and yet are “far apart”. Therefore, a cleanup
networks that can efficiently aggregate information has fgased on ensuring that a component (of a resource) pays
ceived significant attention, see, e.g., [5] and its refeesn for at most one facility fares badly. To see this, consider
Our model contains an extension of the Karger-Minkatiie example in Figure 1 with facilities and i’ separated
maybecast problem [12], where the motivation was to desigy a long path containing clients that all require the same
networks under incomplete or uncertain information. mesource; closing either facility would involve rerouting
this problem, we are given a gragh = (V, E) with edge several clients requiring distinct resources and incgran
costsc. > 0, a set of terminal® C V, and a source. huge cost. The approach we develop in Section 2 involves
Each terminak is turnedon with probability p, and when a different cleanup phase, where a single component can
it is on, it needs to communicate with the source. To keepntribute towards multiple facilities, and we are able to
communication simple, each terminaelects a single pathbound this overpayment and at the same time avoid a high
P, fromt to r that will be used by it to communicate with theerouting cost. We extend our result to variants of the
source when it is on. We only pay for edges that actually ggbblem involving edge capacities, and facility costs vhic
used, so if an an edgelies on the paths of the terminals irare concave functions of the number of resources served.
setA, its costisc. - p(A), wherep(A) is the probability that Ravi & Sinha [14] and Shmoys, Swamy & Levi [16]
some client ind is turned on. Karger & Minkoff [12] define were motivated by similar objectives when they considered
the maybecast problem by assuming that the probabilitiesa setting where each client requests a specific commodity
are independent, and show that one can then yiems the or service. However, they model a different aspect of
“demand” oft. Since the functiomp(.) is submodular foany commodities. They assume that the connection cost is
probability distribution, the general maybecast probletisf directly proportional to the distance to a facility (and ben
into our network design framework. is not shared by clients requesting the same commaodity), but
instead assume that the facility cost depends on the set of
Our Results Our information aggregation model includesommaodities served. While this problemis also contained in
many interesting and useful classes of problems, and owe general framework, we consider here a different setting
believe that it will find applications outside the scope athwhere flow is aggregated on edges, not at facilities.
work. We provide good approximation algorithms to two In Section 3, we consider thdependent maybecast
important special cases of the problems mentioned abgwamblem. Recall that in the Karger-Minkoff model [12], the
and for various other combinatorial optimization problems probabilitiesp, of terminals being turned on, are indepen-
the general framework where costs depend on the identitiesit. In this case, the the edge castp(A) is well approxi-
of the clients. For the general single sink problem, byated bye.-min(1,} .. , p+), whichis a (concave) function
arguing as in [2], we obtain aﬁ)(ln|V|)-approximati0n of the total “demand? ,_ , p; routed through the edge.
algorithm by embedding the graph into a tree metric with In our dependent maybecast problem, we consider the
at mostO(ln |V|) distortion [4]. following more general model for generating the probabili-
Section 2 considers thgroup facility locationproblem, tiesp;. LetT" be adistribution tree(not related to the graph
where we have a s& of resources and each ugerequests ), whose leaves are the terminalsim Each edge € T’
information about a specific resourcgj). If »(A) denotes has an associated probability. To decide which termi-
the set of resources requested by users,ithen the amount nals are on, we “turn on” each edgec I' independently
of information corresponding to set is |r(A)|, capturing with probabilityp.. A terminalt is on if all edges along the



path from the root t@ are on. The Karger-Minkoff modelisD C V. Additionally, we are given a set of commodi-
the special case with a 1-level distribution tree. By allogvi ties or resource®R. Each facility: has afacility opening
more general trees, we allow the terminal probabilitiesdo bost of f;, and each clieny in D requires a specific re-
correlated. Our main result isAk + 1)-approximation al- sourcer(j) € R. We want to open a set of facilitied,
gorithm for dependent maybecast witti-devel distribution and for each resource € R, build a Steiner forest,. that
tree. We obtain this result using the concept of cost-shacesinects the clients requiring resourcéo open facilities,
as considered by Gupta, Kumar, Pal & Roughgarden [7]. that is, 7,. consists of a collection of Steiner trees, each of
Recently there has been considerable work on apprestiich is rooted at an open facility and connects (some of
imation algorithms in a different model of network desigthe) clients requiring resoureeto i. The cost of this solu-
with uncertain inputs, th&tochastic Steiner Tree Problentionis) ., fi+>_ . c(7.), wherec(7,.) denotes the total
[8, 10]. In the 2-stage stochastic (rooted) Steiner treépraost of forest,., i.e.,) .. c.. Our objective s to find a so-
lem we are given a distribution over terminals, a graphtion of minimum cost.GrpFL can be viewed as a network
G = (V,E) with edge costs., and a parametey. Ini- design problem where we want to connect each clientD
tially (stage 1) we may buy some edges based on the abtw@&n open facility via a patl’;, and the cost of using edge
information paying cost. for edgee, and once a&cenario e to connect a seb of clients is given by, - |r(D)|, where
A determining the terminals to be connected is revealed, W) is the set of resources required by clientdin
can buy additional edges (stage Il) to form a Steiner tree on We can formulatesrpFL as a natural integer program
the terminals inA paying an increased cost of.. More and relax the integrality constraints to get a linear progra
generally, in the multi-stage problem, new informationds r(LP). We usei to index the facilities inF, j to index the
vealed in each stage, and edges can be added to the solafients in D, andr to index the resources iR. Let §(.5)
at each stage, but the cost increases in each stage. denote the set of edges with exactly one end poirtt.ilhet
Despite the contrasting aspects of dependent maybe@stC D be the set of clients requiring resourceand let
and the stochastic Steiner tree problem — in one, we haje= {S C V : SN D, # 0}. We consider the following
to choose paths completely in advance and pay only for thie and its dual.
edges actually used, while in the other, we pay for all t )
edges boughtyin stage | and can update the s%lgtion as n??r'g:bp) o Z fiyi+ Y ceter
information is revealed — we will show in Section 4, that ' o

the k-stage stochastic Steiner tree problem with a polyn@-1) s.t. Z Ter + Zyi >1 forallr,SeS,
mial number of scenarios is well approximated by depen- ec€s(S) =
dent maybecast with k-level distribution tree (up to a fac- Yi e, >0 foralli,e,r.

tor that depends only oh). Using our results on the de-

pendent maybecast problem, we get# )-approximation
algorithm for thek-stage problem for any fixed.In fact, (GrFL-D)  max Z Ors

our reduction models thé-stage problem even when the TER,5ES

increase factoty is scenario-dependent. We further exten@.2) s.t. Z Ors <c. foralle,r
our algorithm to distributions with exponentially many sce SES e€8(S)

narios, assuming that we have only black-box access to {E%) Z 6.5 <f foralli

scenario distribution. An algorithm for the 2-stage prable
with scenario-dependent increase factors was also indepen
dently developed by [10]. Gupta et al. [9] also provide an 0rs >0 forallr,SeS,.

O(1)-approximation algorithm for thé-stage problem for Herey; indicates if facility: is open, ande, , indicates if

any fixedk even when the increase factoris scenario- edgee is used to ship commodity, Constraint (2.1) states

dependent. Our technique gives the first approximation fhat every sef containing a client irD,. must either contain

gggﬁhg‘vg]nt?fr trﬂgrze_g; r;;eerzlr(s)ﬁfzrr;g with only black-box %%n open facility or have an edge on its boundary that is used

Finally, in Section 5 we give algorithms for some oth to connect the clients if,,NS to an open facility. Intuitively,

roblems involving set-based cost functions %he dual problem is the followingnoat-packingproblem.
P 9 ’ We view the sets ir5,, as moatsaround clients irD,. that

need to be “crossed” so that these clients can be connected
to open facilities, and,. g as the width of moa$. Constraint

We now consider thgroup facility location(GrpFL) prob- (2 2) states that the total width of moats of a resource that a
lem and provide a 4-approximation algorithm for this proksyge crosses should be at most the edge cost; constrajnt (2.3

lem. We are given a graphl = (V;, E)) with costsc. > 00N states that the total width of all moats containing a facilit
the edges, a set of facilitie® C V, and a set of clients snoy|d be at most;.

r,SES, IES

2 The Group Facility Location Problem
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Figure 1: An example on which the natural primal-dual prece®d cleanup phase produces poor solutions.
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2.1 A Primal-Dual Algorithm Our algorithm is based onextract a low cost primal solution by having a cleanup phase
the primal-dual schema. The basic idea is to construct a fedzere we remove redundant edges and select a subset of
sible dual solution, and then use this dual solution to extraentatively open facilities to open. While getting rid of
a feasible (integer) primal solution. The algorithm is aldueedundant edges is not a problem, deciding which subset of
ascent algorithm, so the dual variables are only increadadilities to open is more involved.
throughout the execution of the algorithm. As mentioned As mentioned earlier, a typical JV style cleanup ap-
earlier, group facility location generalizes both the yraa proach that tries to ensure that a component pays for at most
itated facility location (UFL) and the Steiner tree probemone facility fares badly in our problem. In the example in
The primal-dual algorithms for these two problems empldyigure 1, facilitiesi andi’ are separated by a long path made
quite different approaches for raising the dual variatdesl up of clients that all require the same resourcand numer-
we integrate these two qualitatively different approadhesous clients requiringlistinct resources are hanging off the
our primal-dual algorithm. In fact, our algorithm reduces tends of the path. The dual ascent process will create a single
the Jain-Vazirani (JV) algorithm for UFL, and the algorithraomponent for resource containing all the clients on the
of Agrawal, Klein & Ravi [1] (see also [6]) for the Steinempath, which then starts contributing toward both facititie
tree problem in these two special cases. So, although andi’ are far apart, they becomependent
While there are other problems that also generalize tfie the above sense). But if we were to open only oné of
UFL and Steiner tree problemgdonnected, capacitated caandi’, then the clients not i, adjacent to the unopened
ble} facility location), algorithms for these problems [17, 13cility have to be rerouted incurring a huge cost relative t
proceed by essentially “decoupling” the facility locatiamd the optimal solution (that opens both facilities).
Steiner tree aspects. Group facility location does not seem Thus we need a scheme where a component can pay
to lend itself to such decoupling. We develop and analyzéom multiple facilities, if necessary, to keep the conneati
natural primal-dual algorithm that combines features @dhbacosts bounded, and where one can bound the overpayment
facility location and Steiner tree in a single process. (to multiple facilities). The crucial observation in thecate
At a high level, our algorithm has a fairly simple anéxample is that the contribution of the component to the
intuitive description. We run the Steiner forest algorithmultiple facilities is small compared to thength of the path
of [1, 6], referred to as the GW algorithm from now, foconnecting the facilitieghat is, to the cost of the component
each resource independently and build a separate fois&if. The cleanup step of our algorithm generalizes this
for each resource. The algorithm maintains the connectdabervation. We show that one can afford to open multiple
components of the forest built so far for each resource, anfaaeilities to which a component contributes, provided that
set oftentatively opefflacilities. Each resourcecomponent the facilities are sufficiently “far apart”, by amortizinge
S in the forest for commodity: is associated with a dualnet contribution of the component to facilities against the
variable (or cost contributiord), 5. We uniformly increase cost of the component. Conversely if the facilities are not
0.,s for each componertt that does not contain a tentativelyar apart then we will be able to bound the rerouting cost.
open facility and gradually build a primal feasible solatio C :
V\?hen acor);lpone%tofargsource “rF()eaches” a facility, itsta;]ihe dual _ascent process.  This 1S similar to running the .
“paying” towards the opening cost of that facility; whePW algorithm for each resource independently. We maintain

the total payment to a facility (from all resources) equa?s separate foresﬂ for eaqh_ resource, and we have a
its opening cost, we tentatively open the facility, and peeeSet of tentatively open fac!llt!es. .W?‘ say that a conn_ected
(i.e., stop growing) the dual varialfe ¢ for each componentcomponens of the forg;t]’r IS |sac.t|ve!f it does not contain
S containing the open facility. This process ends when g“tejntatlvelly open facility; othng|se it fso.zen we have a
components are frozen, so each resourclient is in some notion of time,t. We start at time = 0 with all variables

resource- component that contains an open facility. At thi%s set to 0, no facility being tentatively open, and each

point, the primal solution generated may be quite expens \%estﬂ consisting of the isolated clients ... As time

because of redundant edges and because a component d

Egaases, for every resources ‘R and active componetst
be contributing to multiple tentatively open facilities. ew©'! 4r

, we raise the dual variablg. s uniformly at unit rate.



Initially, the active sets are the singletofjs wherej € D,.. also bounded b > 6,.5. We then argue that the cost
The dual variabld, s contributes toward both adding (anyf opening facilities can be charged to the components in
number of) edges t@,, and also toward the facility openind J, . C. that contain open facilities, and the net contribu-
cost of (multiple) facilities in the sef. As we increase thetion of a component towards opening facilities is at most the
dual variables, two types of events may happen: cost of the component (Lemma 2.3). Combining the vari-
ous bounds, we obtain that the total cost of the solution is at

e For some active componefitof 7, and edge: € 4(S5), most4 3 0. < 4. OPT, whereOPT is the cost of
constraint (2.2) holds with equality: we say thahas optimf:l’ISseéiﬁtidn = :

becomer-tight, adde to 7, and update the components,
possibly merging components. If the new comportnt LEMMA 2.1. Letr be any resource an@ be a component
contains a tentatively open facility, th& is no longer in C,. obtained from componefit € 7, in step A3. Then
active, and we do not increa8gs  any further. cost(C) <23 gcrbOrs-

e Facility : gets paid for, i.e., constraint (2.3) is tightfor LEMMA 2.2. Let C' € C, be a component not containing
we declare to betentatively openFor every resource any open facility, obtained from componéfitin 7. The
r, if a componeniS of the forestZ, containsi, then it cost of adding edges @ in step A4 is at moﬁZSgT Or.s.

becomes frozen and is no longer active. . . .
Proof. By construction,C' contains the tentatively open

We continue this process always raising the dual variabfasility ¢ in T with smallestt; value. Sincei is not open,
0,,s for active components df,. until no set in7, remains there must be an open facility such thati and i’ are
active. So at termination, the components?fconnect dependent implying that;; < 2min(¢;,t) < 2t,. We
all the clients inD, to tentatively open facilities via-tight claim that) o, 0, ¢ > t; which will prove the lemma.
edges. Letd) be the final dual solution obtained. This follows since at any time< t;, each clienj € CND,

Opening fagiliti Let 7 be th ¢ of tentativel must be in some active componehtC T of the forestZ,.,
pening facilities. - Let I+ be the set ot tentalively OPenyih o yiser would contain a tentatively open facilif§ such
facilities. Lett; be the time at which facility € F was

' o thatt;» < t; contradicting the choice of. So the dual
declared tentatively open. We say that two fa_cnnnaé_e F S fr.5 Increases at rate at least 1 at all times [0, t;)
are dependenif for some resource, there is anr-tight ST :

. . - ) which implies the claim.

path (i.e., a path of-tight edges) connecting andi’ of
length less thar2 min(¢;,¢;/). We pick an arbitrary maxi- For any facility 4, let 5, , = ZS:ieS 6.5 denote the
mal independent subset C F and open the facilities ifi”.  contribution from resource to the facility costf;. So ifi is
tentatively open thel", 3;, = fi;. Note thatifi € F’ lies
in component” € 7., thend,. ¢ > 0 for a setS containing
ionlyif S C T,and so3;, = > gcpiesOrs < ti SiNCE
at most one active component ®f may contribute toward
facility ¢ at any point of time. For an open facilitye T, let
o (i) be the clientinl’ n D, nearest ta.

Removing redundant edges. For every resource, we
now remove redundant edges in the forést Let 7" be a
component inZ,. and let7” C T be the minimal subgraph
that spans all the nodes @fN D,.. If T’ contains an open
facility, we simply delete the edges i\ 7”. Otherwise, if
T contains an open facility, let be the open facility inl’
with smallestt;, else leti be thetentatively operacility in  CLAIM 2.1. Leti be an open facility ifil” whereT' € 7.
T with smallest;. We add the-tight path connectingand Theng;, = 7 — ¢;s;y Wherer is the time at which the
T’ to T', and delete the edgest\ 7”. LetC, denote the active component containing(i) freezes. Moreovef; ,, >
collection of components for resourcafter this step. 0 = 7<t;.

Rerouting components. At this point, the primal solution Proof. Let j = (i) € D, (see Fig. 2a). LefS; be the
may be infeasible due to componentsdn that do not active component of,. containing;j at timet. Note that at
contain any open facility. For each such compor@rt C,., any time instant, S; is theonly component of7,. that can
we simply add edges t6' along a shortest path connectingontaini, and hence contribute toward facilityThe earliest

C to the open facility nearest to it. time ¢ at which.S; may includei is at timet = ¢; = ¢,
and since there is antight path between andj, we have
2.2 Analysis The analysis proceeds as follows. Im > ¢;. If t;7 > ¢; theni is tentatively open at time,,

Lemma 2.1 we show that for every resourcethe cost of so componens;, containing; freezes immediately and we
a component' € C, obtained by removing redundant edgdsaver = t;; Since no resource component contributes
in step A3 from componerit € 7, isatmos) .-, 0, s; towardi, 5;, = 0 = 7 — t;. Otherwise, componert;
this can be proved by arguing as done in [6] for the Steingill certainly freeze by time = ¢;, sor < ¢;, and during
tree problem. Lemma 2.2 shows that tlegouting costin the intervallty, 7] the dual variablé,. s, contributes toward
step A4 of a componer® € C, with no open facilities is facility i atrate 1, sg8; , =7 —t; =7 — ¢j(i)-
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Figure 2: (a) Computing; . for facility . (b) Bounding the net contribution froffi to open facilities.

LEMMA 2.3. Let C € C, be a component that contain€Extensions It is straightforward to extend our results to the
open facilities, obtained by removing edges fréime 7,. case where resoureehas a weightv, and its connection
Then, ", c ping Bir < cost(C). cost isw, times the cost of its forest. We can also extend
, o . the algorithm to handle more general connection costs and

Proof. Let A C F N T be the open facilities for which ¢5qjjity costs such as (1) an edge capacitated version where
g“t > 0. V\ll_e sthp W thatthe d'?,”ﬂth O]: t?et'ght F’?Eh”f C" the cost of an edgefor resource- is given byp, [2en)]e,

etween clientg = o (i) and) = o(i") oranys, v € A IS wheren(e, r) is the number of resourceclients using edge
atleastd; . + By » (see Fig. 2b). In particular, this will show

"y ¥ o ) ) L e — so one copy of edge can transport,. clients of D,
that if apdz are distinct, themr(z) anda(z ) are d'St_'nCt' at a cost ofp,.c., and (2) the problem with concave facility
To see this, lety, t> be the times respectively at which th

active components containinggand ;' freeze. Sat; < ¢, Bosts, when the cost of facilityis £i(n(i)), vyheren(z’) s
andty < ty. If 11 — ty, the length of the-tiéht path_inli the n_umber of resources that ufsgnd_fi(.) is a concave
between ;ﬁdi’ is at IéasQ min(ts, t) > t + t» and at function. We_get a 5.52—appr_OX|mat|on_algorlthm for (1)

L) = 2 by decomposing the problem intoGpFL instance where
mostei; +c(m) + Ci'-lj". soc(m) Zétl - Cij? +(t2 = Ci'.j;]) ~ resourcer has weightp, and a UFL instance where clients
%’STSJFO]?“ usmlgtC a'lg? ,?'LdOt .erw'j'e., & < iy év# OUtt of resourcer havedemandZ=, solving these two problems

generaity. IMe&1, j andj are n diteren separately, and then combining the two solutions without

components. Suppose at timej and j’ lie in the same

) increasing the total cost. We solve (2) by first looking at
component. Then; < t; < t (the active component 9 (2) by 9

taining +/ will f hen it touches th linear cost functiong; + ;1 (¢) and reducing this tGrpFL.
containing;j will freeze when It touches the componerj ,,.ove function is the lower envelop of a set of linear

gont;}!mn?g), agdc(@fz té +t = tﬁ” + %ﬂ' C_:ont3|der t{unctions, so we can reduce the problem with concave costs
oubling the edges db and computing an Eu'erian tour Ok, v, jinear case which in turn reducesdmFL. Thus we

_C’. The cost of the tour is at mo8tost(C). Also, the_<_:ost éget a 4-approximation algorithm.
is at leas ) . . Bi» Since the tour can be partitione

into segmentgo(i),o(i’)) wherei, i’ € A each of which
has length at least; . + 3/, and every client(i),i € A
appears as an end point of at least 2 such segments.

3 The Dependent Maybecast Problem

In this section we consider a class of network design prob-
lems involving monotone, submodular cost functions agisin
THEOREM2.1. The above algorithm returns a solution ofrom a model that we caliependent maybecasthe may-
cost at mostt Zr,s 0.5 <4-OPT. becast problem was introduced by Karger & Minkoff [12] to

. : model the Steiner tree problem with incomplete information
Proof. This follows from the previous th_ree lemmas. B3'f'hey consider a setting where each terminal requests servic
Lemma 2.1, cost(Cr) < 23, ¢ 0rs. SINCEY., fir = from a root node independently with certain probability.
fi for every open fa_cmty, the faC|_I|ty costs can be charged Before formally defining the dependent maybecast
to thg componentsllmr 7. Consider componer € C, problem we define our class of probability distributionsttha
obtained by removing redundant edges fréive 7,. If T' 0 wijl yse to generate the requests. Tebe the set of ter-
contains open facilities, then its net contribution is atsr_nominals that can request service, dnthe a rooted tree with
cost(C) < 23 scpbrs by Lemma 2.3.  Otherwise, its; o1 ; \yhose leaves are the termindg(this tree is distinct
contribution is 0, but we need to rerouté paying a cost_ from the graphG). Each edge of T is marked with a prob-
of at most2 ) gcr fr,s (Lemma 2.2). In either case, thISability pe € [0, 1] (see Fig. 3a). The stochastic process asso-

incurs a cost of at moRA) g 0,5 per component’, and  ¢iateq with this model is as follows. Each edge turned on
so the total cost is at mOSth sb0rs.



independently with probability.; the terminals that need towe show that, for any staget 1, the expected cost incurred
be serviced are those that are reachable via the on edges frofbuilding the trees in) stage+ 1 is no more than that
the rooto of I'. We call these thactiveterminals, and refer incurred in stage. Since our algorithm hals+ 1 stages this
to probability distributions of active terminals generhtyy gives a2(k + 1)-approximation algorithm.
this process asee-based distributionsVe usel’, to denote
the subtree ofF rooted at node.

Thedependent maybecgstbblem is defined as follows.
We have a grapty = (V, F) with edge costs., a rootr, and
a set of terminal® C V. We are also given distribution

Bounding the cost of the initial stage. For any edge
selected, the probability of it being used is at most 1, so the
cost of stage 0 is at mostage(0) = > 1. ce = cost(T,).
Consider an optimal solution. Let C D be a subset of

treeT on the terminal seD. Without loss of generality we terminals. Letg4 be the probability that exactly this set of

may assume that the graph is complete and the edge |enéqeﬂ%;1|nals is selected by the stochastic process, andalet

satisfy the triangle inequality. We want to select a pBth OPTe_cost incurred by_l_t::e Optg‘il.I?'Olurflon for skt S?’
for each terminat connectingt to the rootr. The cost of it = 2?49_1’ chAt'I eTEro athl ity t c?tbm:rrl samfp N9
this solution (the set of pathlg,_,, ;) is the expected cost,'eSUIIS 1N SEELIS €Xactlyga. 1he pains used by the optimum

evaluated using the distribution generatedhpf the edges solution to connect the terminals ihinclude a Steiner tree

used to connect the active terminals to the root (using pt A, . Smce the fg?t .Of art1 MS;L IS W'tth'n afath;r %f .ZIdOf
P, for terminalt), i.e., ", » c.p(A.) where A, is the set e minimum cost Steiner tree, the cost we incur to build an

of terminals whose paths contain edgeandp(A. ) is the MST for sample set is at most2c4. Hence our expected

probability thatat least oneterminal in A, is active. The €OSt!Sal mosp_ , 2qacqa = 2 OPT.

goal is to select a set of paths that minimizes this cost. Cost-sharing_ We now introduce the notion of Cost-sharing

Let & be the number of levels il (starting at level that we will use to bound the costs of later stagescoAt-
0). We give a2(k + 1)-approximation algorithm for this sharing methoéh our framework is a functioi : G x 22 x
problem. We use sampling from the given tree distributign ., >0, Intuitively £(G, A, t), fort € A, is nodet’s share
as our main design tool. The analysis uses cost-sharesifhe cost of building a tree or in graphG. Our cost-
a manner similar to that used by Gupta et al. [7] for thghares share the cost of the MSTs that the algorithm builds.
multicommodity rent-or-buy problem. Fix an MST onA U {r}. Define¢(G, A, t) to be the cost of

_ _ _ the edge connectingto its parent. Clearly ,_ , (G, A, t)

3.1 TheAlgorithm The algorithm proceeds in stages. I the cost of the MST. We s&(G, A,t) = 0if t ¢ A for
stage 0 we sample from the distribution generated’blyet convenience. In later iterations of the algorithm, we selec
D, be the set of active terminals after this sampling. V¥g MST in a graph where a subset of nodgss contracted.
build a minimum cost spanning tree (MST) spanning the | et G/ H denote this contracted graph.
setD,U{r}, and use the unique tree paths to define the paths
P, for the terminals irD,, . LEMMA 3.1. Foranysetsd > r, AC D,andH’ C H, we

In general, at a stage we consider the set of nOde?]aveZﬂG/H At) < ZE(G AUH' 1.
of I' at leveli, denoted bylevel(i). For such a node, let = - ’

po = 0,p1,--.,pPi—1,p; = p be the nodes i on the path
fromo to p. Letl, denote the subtree dfrooted afp. We  proof. The left side is the cost of the MST on the st {r}
sample from the distribution generated by fheand obtain in graphG/H. To see the inequality, note that the right hand

a set of active terminal®,,. We build an MSTI, connecting side sums up the cost of a set of edges that form a spanning
the terminals irD,, to the root in the grapf”’ where the trees tree onA U {r}inG/H.

Tpys -+, Tp,_,, builtin previous stages corresponding to the

ancestors op, are contracted (note thate 7),). (The root Bounding the cost of subsequent stages. Consider a node
of G, also denoted by, is the node that contains the root of, ¢ level(i). Let g, be the product of the,.s for edges
G.) Note thatD, may contain terminals that were samplegyong the path fronp to o. In stagei, we sample a seb,,
in previous stages, thatis, lie M, for somek <4, and are from the subtred’, and build an MSTT,, (in a contracted
thus co-located with the root 6#'. The trees/}, ..., T, _, graph) connecting the terminals 10, to the root. An edge
together withT, together form a Steiner tree (in grapon . ¢ T, is used only by (some of) the terminalslip. So
D, Ur, and we use the unique paths in this tree to define @ probability that: will be used is at mosj,, and the cost
paths for the terminals i, incurred for tre€T}, is at mosty, - cost(T,). We define the
cost of stage asstage(i) = >_ cievei(s) @ - C0SH(Tp)-

The total cost of the solution is at mogfzo stage().
will prove that for any stage 0 < ¢ < k, we have
E [stage(i+1)] < E[stage(i)]. Combined with the fact that

3.2 Analysis The analysis is in two parts. LeOPT
denote the cost of an optimal solution. First, we bound to\?e
expected cost of tre€, built in stage 0 by2 - OPT. Then



(b) o
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Figure 3: (a) An example of a distribution tree. (b) Bounding cost of stage 1.

E [stage(o)} < 2- OPT, this shows that the total expectegrroblems are quite different. Stochastic optimizatioowa
costis atmosk(k + 1) - OPT. for correction of the design after information is revealed
(at an increased cost), while in the maybecast problem,
LEMMA 3.2. For anyi,0 < i < k, we haveE [stage(i + the solution is fixed, and we only pay for the edges used.
1)] < E[stage(i)]. Despite these differences, in this section we will show that
the dependent maybecast problem with-i@vel probability
Proof. We show this foé = 0. The argument for subsequenfee can be used to model thestage stochastic (rooted)
stages is similar and is omitted from this extended abstragfeiner tree problem with a polynomial number of scenarios.
Recall thatD, is the set of terminals sampled in stage 0. |n the 2-stage stochastic Steiner tree problem we have
Consider a nodg at level 1 connected to with edgee, and 3 root -, and a distribution over the terminal sét that

aterminal in the subtred’,, (see Fig. 3b). ~ determines the terminals to connect to the root. We may buy

stage 0 from the other branches of the distributionfre®/e  activated in the scenario that materializes, paying either

say that aterminalin I',, is “attached” top if all edges on its stage I, or an increased costpfc. in scenariad. We want
path top are turned on. Note that in both stage 0 and stagepick edges to buy in stage | so as to minimize the total
1, thesame random procesetermines the set of terminalgost of stage | and the expected stage Il cost. Gupta et al. [8]
that are attached to. If setD, is attached tg in stage O, gave a 3.55-approximation algorithm when = ~ but for
then its total cost-share is’,.p, &(G,H' U D,,t) if eis an arbitrary distribution. Independent of our work, [1Gal
on, and O otherwise. ID, is attached tg in stage 1, that gave an algorithm for arbitraryss.
is, if D, is the set of active terminals i, in stage 1, then | the k-stage Steiner tree problem, information about
its total cost share i ., §(G/H,D,,t),whereH 2 H' the scenarios is revealed in stages, edges can be purchased
is the set of terminals selected in stage 0. By Lemma 34leach stage and become more expensive as more infor-
we havey . §(G/H,Dp,t) <3 icp, §(G,H'UD,,t). mation is available. We show that thestage stochastic
Note that the left term is the cost of the tf€g Multiplying  Steiner tree problem can be well approximated by depen-
the inequality byp. and taking the expectation over setgent maybecast with &-level probability tree, yielding an
D, and H', we get thatEx,p, [pe - cost(T,)] < pe - O(1)-approximation algorithm for this problem for any fixed
Enp,[Yiep, £(G, H'UD,,t)]. The LHS is sSimphE [p.- k. We extend our result to settings with scenario-dependent
cost(T,)], the stage 1 cost for subtrEg. Note that if edge  inflation factors, and/or more than a polynomial number of
is turned on (with probability. ), thenD, = H'UD,, sowe scenarios assuming we can sample the scenario distribution
can rewrite the RHS ak [ZteDmte subtreeT", £(G, Do, t)]. We first show that the 2-stage stochastic (rooted) Steiner
So adding the inequality over all level 1 nodeshows that tree problem with a polynomial number of scenarios can
the expected stage 1 cost is at most the expected stage 0 besapproximated using dependent maybecast with a 2-level
probability tree. For each scenariband nodev € A, we
THEOREM3.1. The above algorithm is a2(k + 1)- create a node, co-located withw and make this a terminal

approximation algorithm. in our maybecast instance. This duplication allows a node
v to select a separate path to the root in each scenario. Let
4 The Stochastic Steiner Tree Problem 7 denote this set of terminals. In both problems, we choose

Recently, there has been a lot of interest in approximatigaths to connect each terminal — nade A in the 2-stage
algorithms for stochastic network design problems [8, 1Bfoblem, or node 4 in dependent maybecast — to the root,
10]. Both the stochastic Steiner tree problem, and th@ a solution to one gives a solution to the other.
maybecast problem deal with network design in the face of However, the objective functions of the two problems
uncertainty in the input. However, on the surface the tv€ different, and furthermore in the 2-stage problem we



distinguish edges bought in stage | and stage Il. If edge&lenoting this byy,, (yre0t=1). Letp, be the probability that
is used in the 2-stage problem when a scenarid wccurs, p occurs and\, = 1—:‘ wherev is the parent of.. So if we
we incur a cost ofnin (1, ", 4 pav4)ce: We can buy the buy edge: in outcomey, the expected cost incurredis-~,.
edge either in stage | or in every scenatlicc . A. To model Analogous to the 2-stage case, we can modetibmge
this via a maybecast problem, we use a distribution ftegproblem by dependent maybecast by viewing each made
with rooto and a level 1 node 4 for each scenariol, and aleaf-outcomel,, as a distinct terminal4, co-located with
set the probability of edgér, pa) 10 g4 = min(1,paya). v inthe maybecastinstance. The distribution tree nowthas
The children ofp4 are the terminale 4 for v € A, and levels, and is the scenario tree appended with leaves that ar
edgee = (pa,va) hasp. = 1. If Ais the scenario setthev,, nodes, each attached to its corresponding levell
corresponding to the set of terminals using edgee pay a nodes/ with an edge with label 1. An edge entering a non-
cost ofc. - Prledgee will be used, thatis,c. (1 —[],c4(1— leaf nodeu € level(i — 1) from nodev € level(i—2) is given
qA)). As shown in [12], the termd — [],.4(1 — qa) a label that captures the expected increase in cost incloyred
andmin(l, S aca qA) = min(l, ZAGAPAVA) are within buying an edge in outcomein stagei, over buying the edge
a constant factor of each other, so we get a constant-fadftg@utcomer in stagei — 1, or more precisel)min(l, p';f“).
approximation algorithm for the 2-stage problem. One can show that for any edgeised when a leaf-outcome
We now give an algorithm for the 2-stage problem witim A occurs, the costs incurred in tihestage problem, and
an arbitrary scenario distribution, using only a black box in the dependent maybecast instance to route termingls
sample from the distribution, and an oracle that reveals whereA, € A, are within a constant, of each other where
given a scenariol. Lety = max4 v4, Which we assume is ¢, depends only on the number of stagesThus we get a
known. Whereas in the dependent maybecast instance gath- ci)-approximation algorithm for thé-stage problem.
scenariod is sampled independently, one can argue, by cois in the 2-stage problem, one can specify the first-stage
paring directly our cost with the cost of the optimal soludecisions given only the valug = max, A, andblack-box
tion for the 2-stage problem using the cost-sharing schegatgesgo the scenario distribution such that for any outcome
in Section 3.2, that the following sampling procedure suf, we can sample leaf-outcomes conditioned on the event
fices: drawy independent samples and whenever scenalti@t outcome: occurs. We first sample times from the
A is sampled, keep it with probability /. As before, entire distribution, and for each samplestel 1 outcome;,
we build an MST on the terminals contained in the choskeep it with probabilityﬁ. Next for each kept outcome
scenarios and buy the edges of this tree in the first stagie. sampley times from the conditional distribution on the
This gives the first approximation algorithm for the 2-stageaf-outcomes in its subtree and keep each level 2 outcome
Steiner tree problem in the black-box model with scenarig; (child of ;;) with probabilityﬂ. Proceeding this way,

dependent inflation factors. we output a list of leaf-outcomes, and we buy an MST on the

) o ) terminals of these leaf-outcomes in stage I.
THEOREMA4.1. There is a 4-approximation algorithm for

th_e 2—stage.Steiner tree problem in the black-box moalel TheoreM4.2. The above algorithm achieves &ark) ap-
with scenario-dependent costs. proximation ratio for thek-level Steiner tree problem in the

) black-box model with outcome-dependent inflation factors.
The above arguments can be generalized to handle the

multi-stage stochastic Steiner tree problem. Inth&tage 5 otiher Problems
problem, the uncertainty of terminals to be connected to the q ¢ In th ¢ bl
root evolves ovelk stages and the scenario distribution i cover and veriex cover. —in the Set cover probiem,

. . we are given a univers& of elementse;,...,e, and a
specified by gk — 1)-level tree, referred to as ttseenario . v
P y & ) collection of subsets$’,...,S,, € U. We want to choose

tree Each node at level — 1 represents an outcome in lecti fth N that | tis included i
stage: and corresponds to a particular evolution of th cotiection oTthese sets so that every elementis Inclutied

uncertainty through stagek...,q; at each leaf nodé, some chosen SEt: Typically, st h"?‘s_ an associated CQSt
the uncertainty has completely resolved itself and we kngy and thde goal 'ft_to Chﬁosetﬁ mmnpu;rj CO_St cotljlecnon.
the set of terminalsd, to connect to the root. We call''~ C(;n5| er; sed |Ing;/v etr_e _2&05 SIIRLSO g}lbye@n 7y0a
A, aleaf-outcome At each stage, we have the option om.(t)r?(;fnTe su m_? u a{hunc 'Qin f T _-t7 i(0) = i
purchasing edges, but the cost increases through the stag +(T) specifying the cost of using s& to cover se

we get more information. We consider the setting where t eg 5; of elements. The goal is to assign each element to a

inflation factor is identical for all edges in any outcomge Set containing it 0 as to MinimiZe,; h;(T;) where; C §;
is the set of elements assigneddp This problem can be

—TThe factor is actually2 + psy. if we use apgy-approximation used to modella probapilistic sgt cover p_rpblem, Wherg each
algorithm to construct teiner treeon the terminals of the sampled€lément is activated with certain probability, and the gsal
scenarios, and contract only these terminals to the root. to assign each element to a set containing it so as to minimize




the expected cost of the sets assigned to the active eleméts~y)- (Zi fiyi+2j€N,i Cijxij). For each clientirD\ N,
It S; is assigned a sef; C S5; of elements, then its costwe have) ;. 25 > =i7. Sinceh(.) is submodular, one
is h;(T;) = ¢; - Pr[3 active element; € T;], which is a can show thab "¢ h(S)zs > % “h(D\ N). This shows

monotone submodular function. .
. . ; . . that the overall cost is bounded - OPT.
We obtain dn n-approximation algorithm for this prob- by+ 1)
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T C S, and running the greedy set cover algorithmusirgampling approach of Section 3.
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