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Abstract

We consider various multi-vehicle versions of the min-
imum latency problem. There is a fleet of k vehicles
located at one or more depot nodes, and we seek a col-
lection of routes for these vehicles that visit all nodes
so as to minimize the total latency incurred, which is
the sum of the client waiting times. We obtain an 8.497-
approximation for the version where vehicles may be
located at multiple depots and a 7.183-approximation
for the version where all vehicles are located at the same
depot, both of which are the first improvements on this
problem in a decade. Perhaps more significantly, our
algorithms exploit various LP-relaxations for minimum-
latency problems. We show how to effectively leverage
two classes of LPs—configuration LPs and bidirected LP-
relaxations—that are often believed to be quite powerful
but have only sporadically been effectively leveraged
for network-design and vehicle-routing problems. This
gives the first concrete evidence of the effectiveness of
LP-relaxations for this class of problems.

The 8.497-approximation the multiple-depot version
is obtained by rounding a near-optimal solution to an
underlying configuration LP for the problem. The
7.183-approximation can be obtained both via rounding
a bidirected LP for the single-depot problem or via
more combinatorial means. The latter approach uses
a bidirected LP to obtain the following key result that
is of independent interest: for any k, we can efficiently
compute a rooted tree that is at least as good, with
respect to the prize-collecting objective (i.e., edge cost
+ number of uncovered nodes) as the best collection of
k rooted paths. This substantially generalizes a result
of Chaudhuri et al. [11] for k = 1, yet our proof is
significantly simpler. Our algorithms are versatile and
extend easily to handle various extensions involving: (i)
weighted sum of latencies, (ii) constraints specifying
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which depots may serve which nodes, (iii) node service
times.

Finally, we propose a configuration LP that sheds
further light on the power of LP-relaxations for minimum-
latency problems. We prove that the integrality gap
of this LP is at most 3.592, even for the multi-depot
problem, both via an efficient rounding procedure, and
by showing that it is at least as powerful as a stroll-
based lower bound that is oft-used for minimum-latency
problems; the latter result implies an integrality gap of at
most 3.03 when k = 1. Although, we do not know how to
solve this LP in general, it can be solved (near-optimally)
when k = 1, and this yields an LP-relative 3.592-
approximation for the single-vehicle problem, matching
(essentially) the current-best approximation ratio for this
problem.

1 Introduction

Vehicle-routing problems constitute a broad class of
combinatorial-optimization problems that find a wide
range of applications and have been widely studied in the
Operations Research and Computer Science communities
(see, e.g., [27]). A fundamental vehicle-routing problem
is the minimum latency problem (MLP), variously known
as the traveling repairman problem or the delivery man
problem [1, 22, 15, 8], wherein, taking a client-oriented
perspective, we seek a route starting at a given root
node that visits all client nodes and minimizes the total
client waiting time. We consider various multi-vehicle
versions of the minimum latency problem (MLP). In
these problems, there is a fleet of k vehicles located at
one or more depot nodes, and we seek a collection of
routes for these vehicles that together visit all the client
nodes so as to minimize the total latency incurred, which
is the sum of the client waiting times.

Formally, we consider the multi-depot k-vehicle
minimum latency problem (multi-depot k-MLP), which
is defined as follows. We are given a complete undirected
graph G = (V,E) on n nodes, with metric edge costs
{ce}, and k not necessarily distinct root/depot nodes
r1, . . . , rk ∈ V . A feasible solution consists of k paths



P1, . . . , Pk, where each path Pi starts at root ri, such
that the Pis cover all the nodes. The waiting time
or latency of a node v that is visited by path Pi, is
the distance from ri to v along Pi, and is denoted
by cPi(v). The goal is to minimize the total latency∑k
i=1

∑
v∈Pi:v 6=ri cPi(v) incurred.1 (Due to metric costs,

one may assume that any two Pis are node disjoint,
unless they share a common root, which is then the only
shared node.) We refer to the special case where all
depots are identical, i.e., r1 = r2 = . . . = rk, as single-
depot k-MLP, which we abbreviate simply to k-MLP.

In addition to self-evident applications in logistics,
the problem of finding an optimal routing as modeled
by multi-depot k-MLP can also be motivated from
the perspective of searching a graph (e.g., the web
graph) for a hidden treasure [8, 20, 5]; if the treasure is
placed at a random node of the graph then multi-depot
k-MLP captures the problem of minimizing the expected
search time using k search agents (e.g., web crawlers).
Even 1-MLP is known to be MAXSNP-hard for general
metrics [8, 23] and NP-hard for tree metrics [26], so we
focus on approximation algorithms.

Our results and techniques. We obtain approxima-
tion guarantees of 8.497 for multi-depot k-MLP (The-
orem 5.1) and 7.183 for (single-depot) k-MLP (Theo-
rem 6.6), which are the first improvements on the re-
spective problems in over a decade. The previous best
approximation ratios for the multi- and single- depot
problems were 12 (by combining [12, 11]) and 8.497 (by
combining [13, 11]; see also [14]) respectively.

Perhaps more significantly, as we elaborate below,
our algorithms exploit various linear-programming (LP)
relaxations, including various configuration-style LP re-
laxations as well as a bidirected LP-relaxation. This is
noteworthy for two reasons. First, it gives the first con-
crete evidence of the effectiveness of LP-relaxations for
minimum latency problems. Second, we show how to
effectively leverage two classes of LPs—bidirected LPs
and configuration LPs—that are often believed to be
quite powerful but have only sporadically been effec-
tively leveraged for network-design and vehicle-routing
problems. Previously, Chakrabarty and Swamy [10] had
proposed some LP-relaxations (including a configuration
LP) for minimum-latency problems but they could not
improve upon the current-best approximation guarantees
for these problems via these LPs. Our LPs are inspired
by their formulations, and coincide with their LPs in
some cases, but are subtly stronger, and, importantly

1Multi-depot k-MLP is often stated in terms of finding k tours

starting at r1, . . . , rk; since the last edge on a tour does not

contribute to the latency of any node, the two formulations are
equivalent. We find the path-formulation to be more convenient.

(as noted above), our guarantees do indeed improve the
state-of-the-art for these problems and testify to the
effectiveness of LP-based methods.

Our algorithms are versatile and extend easily to
handle various extensions involving weighted sum of
node latencies, node-depot service constraints, and node
service times (Section 7).

Finally, we propose a configuration LP that sheds
further light on the power of LP-relaxations for minimum-
latency problems and why they merit further investiga-
tion. We prove that this LP has integrality gap at most
µ∗ < 3.5912 for (the general setting of) multi-depot
k-MLP (see Theorem 4.2), both by devising an efficient
rounding procedure, and by showing that this LP is at
least as strong as a combinatorial stroll-based bound
that is frequently used for minimum-latency problems,
especially when k = 1 for which this leads to the current-
best approximation ratio. The latter result implies an
integrality gap of at most 3.03 when k = 1 (due to the
analysis of the `-stroll lower bound in [2]). We do not
know how to solve this LP efficiently in general, but
we can efficiently obtain a (1 + ε)-approximate solution
when k = 1, and thereby efficiently obtain an LP-relative
(µ∗ + ε)-approximation, which essentially matches the
current-best approximation ratio for single-vehicle (i.e.,
k = 1) MLP.

We now sketch the main ideas underlying our al-
gorithms and analyses. Our 8.497-approximation for
multi-depot k-MLP (Section 5) leverages a natural con-
figuration LP (LPP), where we define a configuration
for time t and vehicle i to be an ri-rooted path of length
at most t. Using known results on orienteering [11] and
the arguments in [10], one can compute a fractional
“solution” of cost at most OPTP , where (roughly speak-
ing) the solution computed specifies for every t and i,
a distribution over ri-rooted trees (instead of paths) of
length roughly t, such that this ensemble covers nodes
to the appropriate extents (Lemma 4.1). The round-
ing algorithm is then simple: we consider time points
of geometrically increasing value, we sample a tree for
each time point t and vehicle i from the distribution
for t, i, convert this tree to a tour, and finally, for each
vehicle i, we concatenate the various tours obtained for
i to obtain i’s route. Compared to the combinatorial
algorithm in [12], we gain significant savings from the
fact that the LP solution readily yields, for each time
t, a random k-tuple of trees whose expected coverage
can be related to the coverage of the LP solution. In
contrast, [12] devise an algorithm for the cost version
of their variant of max-coverage to obtain a k-tuple of
trees with the desired coverage and lose various factors
in the process.

The 7.183-approximation algorithm for single-depot



k-MLP (Section 6) relies crucially on bidirected LPs.
We obtain this guarantee both by rounding a compact
bidirected LP-relaxation for the problem and via more
combinatorial arguments where we utilize bidirected
LPs to furnish a key ingredient of the algorithm. The
bidirected LP-relaxation (LP3) (which is a relaxation for
multi-depot k-MLP) works with the digraph obtained by
bidirecting the edges of the input (complete) graph. The
LP specifies the extent to which nodes are covered by
each vehicle at each time, and the extent zia,t to which
each arc a has been traversed by vehicle i’s route up
to time t. We impose suitable node-degree and node-
connectivity constraints on the zia,ts, and observe that,
for each time t, one can then use (a polytime version
of) the arborescence-packing results of Bang-Jensen et
al. [6] (Theorem 3.1) to decompose {

∑
i z
i
a,t}a into a

distribution of r-rooted trees with expected length at
most kt and covering at least as many nodes as the LP
does by time t. We convert each tree in the support into a
k-tuple of tours (of length at most 4t) and stitch together
these tours using a concatenation-graph argument similar
to the one in [18] (losing a µ∗

2 -factor), which also shows
that the fact that we have a distribution of trees for each
t instead of a single trees does not cause any problems.
Theorem 3.1 is precisely what leads to our improvement
over [14]: we match the coverage of an optimal LP-
solution at each step (incurring a certain blow-up in
cost), whereas [14] sequentially find k tours, causing
them to lag behind in coverage and incur a corresponding
loss in approximation.

The combinatorial arguments rely on the following
result that is of independent interest. We show that
one can efficiently compute an r-rooted tree that is at
least as good, with respect to a prize-collecting objective
that incorporates both the edge cost and the number of
nodes covered, as the best collection of (any number of,
and perhaps non-simple) r-rooted paths (Theorem 3.2).
We obtain this by formulating a bidirected LP for the
prize-collecting problem of finding the desired collection
of paths, and rounding it using a polytime version (that
we prove) of the arborescence-packing results of [6]
for weighted digraphs. Theorem 3.2 also implies that
for every `, one can efficiently compute an r-rooted
tree, or a distribution over two r-rooted trees, which
we call a bipoint tree, that, in expectation, spans at
least ` nodes and has cost at most the minimum total
cost of a collection of r-rooted paths spanning ` nodes
(Corollary 3.3). Again, this is where we improve over [14]
since we match the coverage of an optimal (integer)
solution at each step. We compute these objects for all
values of `, convert each constituent tree into k tours,
and stitch them together as before.

Theorem 3.2 relating prize-collecting trees and path-

collections substantially generalizes a result of Chaudhuri
et al. [11], who prove an analogous result for the special
case where one compares (the computed tree) against the
best single path. Whereas this suffices for single-vehicle
MLP (and allowed [11] to improve the approximation
for single-vehicle MLP), it does not help in multiple-
vehicle settings. (This is because to lower bound the
`-th smallest latency incurred by the optimal solution,
one needs to consider a collection of k paths that together
cover ` nodes.) Notably, our proof of our more general
result is significantly simpler and cleaner (and different)
than the one in [11]. We remark that the approach
in [11] (for k = 1), where one “guesses” the endpoint of
an optimum path, is computationally infeasible for large
k.

Related work. Although single-vehicle MLP (which we
refer to simply as MLP) has attracted much attention in
the Computer Science and Operations Research commu-
nities, there is little prior work on multi-vehicle versions
of MLP, especially from the perspective of approximation
algorithms. Chekuri and Kumar [12], and Fakcharoen-
phol et al. [13] seem to be the first ones to consider multi-
and single- depot k-MLP respectively; they obtained ap-
proximation ratios of 12β and 8.497β for these problems
respectively, where β is the approximation ratio of the
`-MST problem.2 Subsequently, a result of Chaudhuri et
al. [11] relating prize-collecting trees and paths provided
a general tool that allows one eliminate the β term in
the above approximation ratios. Recently Sitters [25]
obtained a PTAS for MLP on trees, the Euclidean plane,
and planar graphs, and mentions that the underlying
techniques extend to yield a PTAS on these graphs for
(single-depot) k-MLP for any constant k. We are not
aware of any other work on k-MLP.

We now discuss some relevant work on MLP (i.e.,
k = 1). MLP (and hence k-MLP) is known to be hard to
approximate to better than some constant factor [8, 23],
and NP-hard even on trees [26]. While much work in the
Operations Research literature has focused on exactly
solving MLP (in exponential time) [21, 24, 15, 7], Blum
et al. [8] devised the first constant-factor approxima-
tion for MLP via the process of finding tours of suitable
lengths and/or node coverages and concatenating them.
They obtained a min{144, 8β}-approximation. Subse-
quently, [18] refined the concatenation procedure in [8]

2The 12β-approximation in [12] is a consequence of the

algorithm they develop for the cost-version of the max-coverage

variant that they consider. Although the cardinality-version of
their problem now admits a better approximation ratio since it can
be cast as a submodular-function maximization problem subject

to a matroid constraint [9], this improvement does not apply to
the cost-version, which gives rise to multiple knapsack constraints.



and proposed the device of a concatenation graph to
analyze this process, which yielded an improved µ∗β-
approximation, where µ∗ < 3.5912 is the solution to
µ lnµ = 1 + µ. The procedure of stitching together
tours and its analysis via the concatenation graph have
since become standard tools in the study of minimum-
latency problems. Archer et al. [3] showed that one can
replace the `-MST-subroutine in the algorithm of [18] by
a so-called Lagrangian-multiplier preserving (LMP) β′-
approximation algorithm for the related prize-collecting
Steiner tree (PCST) problem, and thereby achieve a
2µ∗-approximation using the LMP 2-approximation for
PCST [19]. The current-best approximation for MLP
is due to Chaudhuri et al. [11] who showed that the
factors β and β′ above can be eliminated, leading
to a µ∗-approximation, by noting that: (i) the lower
bound

∑n
`=1(optimal value of `-MST) used in all previ-

ous works starting with [8] can be strengthened to the
`-stroll lower bound by replacing the summand with the
optimal cost of a rooted path covering ` nodes; and (ii)
one can adapt the arguments in [19, 16] to obtain a prize-
collecting tree of cost no more than that of an optimal
prize-collecting tree. As noted earlier, (ii) is a rather
special case of our Theorem 3.2.

Chakrabarty and Swamy [10] proposed some LP
relaxations for minimum-latency problems and suggested
that their LPs may lead to improvements for these
problems. This was the inspiration for our work. Our
LPs are subtly different, but our work lends credence
to the idea that LP-relaxations for minimum-latency
problems can lead to improved guarantees for these
problems.

Improved guarantees are known for MLP in various
special cases. Arora and Karakostas [4] give a quasi-
PTAS for trees, and Euclidean metrics in any finite
dimension. Sitters [25] recently improved these to a
PTAS for trees, the Euclidean plane, and planar graphs.

2 Preliminaries

Recall that in the multi-depot k-vehicle minimum latency
problem (multi-depot k-MLP), we have a complete
undirected graph G = (V,E) on n nodes, metric edge
costs {ce}, and a set R = {r1, . . . , rk} of k root/depot
nodes. The goal is to find k paths P1, . . . , Pk, where
each path Pi starts at ri, so that

⋃k
i=1 V (Pi) = V ,

and the total latency
∑k
i=1

∑
v∈Pi:v 6=ri cPi(v) incurred is

minimized. We call the special case where r1 = . . . = rk
single-depot k-MLP and abbreviate this to k-MLP. We
sometimes refer to non-root nodes as clients. We may
assume that the ces are integers, and criv ≥ 1 for every
non-depot node v and every root ri.

Algorithms for minimum-latency problems fre-
quently use the idea of concatenating tours to build a

solution, and our algorithms also follow this general tem-
plate. A concatenation graph [18] is a convenient means
of representing this concatenation process. The concate-
nation graph corresponding to a sequence C1 = 0, . . . , Cn
of nonnegative numbers (such as the lengths of tours
spanning 1, 2, . . . , n nodes) denoted CG(C1, . . . , Cn), is
a directed graph with n nodes, and an arc (i, j) of length
Cj
(
n− i+j

2

)
for all i < j. We collect below some useful

facts about this graph. We say that C` is an extreme
point of the sequence (C1, . . . , Cn) if (`, C`) is extreme-
point of the convex hull of {(j, Cj) : j = 1, . . . , n}.

Theorem 2.1. ( [18, 3, 2]) The shortest 1  n path

in CG(C1, . . . , Cn) has length at most µ∗

2

∑n
`=1 C`,

where µ∗ < 3.5912 is the solution to µ lnµ = µ + 1.
Moreover, the shortest path only visits nodes correspond-
ing to extreme points of (C1, . . . , Cn).

Given a point-set S ⊆ R2
+, define its lower-envelope

curve f : [min(x,y)∈S x,max(x,y)∈S x] 7→ R+ by f(x) =
min{y : y ∈ conv(S)}, where conv(S) denotes the convex
hull of S. Note that f is well defined since the minimum
is taken over a closed, compact set.

Let f be the lower-envelope curve of {(j, Cj) : j =
1, . . . , n}, where C1 = 0. If C` is an extreme point of
(C1, . . . , Cn), we will often say that (`, C`) is a “corner
point” of f . Notice that the bound in Theorem 2.1
on the shortest-path length can be strengthened to
µ∗

2

∑n
`=1 f(`). This is because the shortest path Pf in

the concatenation graph CG(f(1), . . . , f(n)) has length

at most µ∗

2

∑n
`=1 f(`), and uses only extreme points of(

f(1), . . . , f(n)
)
, which in turn must be extreme points

of (C1, . . . , Cn) since f is the lower-envelope curve of
{(j, Cj) : j = 1, . . . , n}. Hence, Pf is also a valid path
in CG(C1, . . . , Cn), and its length in these two graphs is
exactly the same. Corollary 2.2 shows that this bound
can further be strengthened to µ∗

2

∫ n
1
f(X)dx. This will

be useful in Section 6. The proof is similar to the above
argument and follows by discretizing f using finer and
finer scales; we defer the proof to Appendix A.

Corollary 2.2. The shortest 1  n path in
CG(C1, . . . , Cn) has length at most µ∗

2

∫ n
1
f(x)dx, where

f : [1, . . . , n] 7→ R+ is the lower-envelope curve of
{(j, Cj) : j = 1, . . . , n}, and only visits nodes corre-
sponding to extreme points of (C1, . . . , Cn).

The bottleneck-stroll lower bound. Our algorithms
for single-depot k-MLP utilize a combinatorial stroll-
based lower bound that we call the (k, `)-bottleneck-stroll
lower bound (that applies even to multi-depot k-MLP),
denoted by BNSLB, which is obtained as follows. Given
an instance

(
G = (V,E), {ce}, k, R = {r1, . . . , rk}

)
of multi-depot k-MLP, in the (k, `)-bottleneck-stroll



problem, we seek k paths P1, . . . , Pk, where each Pi
is rooted at ri, that together cover at least ` nodes (that
may include root nodes) so as to minimize maxi c(Pi).
Let BNS(k, `) denote the cost of an optimal solution. It
is easy to see that if t∗` is the `-th smallest node latency
incurred by an optimal solution, then t∗` ≥ BNS(k, `).

We define BNSLB :=
∑|V |
`=1 BNS(k, `), which is clearly a

lower bound on the optimum value of the multi-depot
k-MLP instance.

To put this lower bound in perspective, we remark
that a concatenation-graph argument dovetailing the
one used for MLP in [18] shows that there is multi-
depot-k-MLP solution of cost at most µ∗ · BNSLB (see
Theorem 2.3). For k = 1, BNSLB becomes the `-
stroll lower bound in [11], which yields the current-
best approximation factor for MLP. Also, the analysis
in [2] shows that there is an MLP-solution of cost
at most 3.03 · BNSLB. On the other hand, whereas
such combinatorial stroll-based lower bounds have been
frequently leveraged for minimum-latency problems, we
provide some evidence in Section 8 that LPs may prove
to be even more powerful by describing a configuration
LP whose optimal value is always at least BNSLB. We
defer the proof of the following theorem to Appendix A.

Theorem 2.3. (i) There is a solution to multi-depot
k-MLP of cost at most µ∗ · BNSLB. (ii) There is a
solution to MLP of cost at most 3.03 · BNSLB.

3 Arborescence packing and prize-collecting
trees and paths

A key component of our algorithms for (single-depot)
k-MLP is a polytime version of an arborescence-packing
result of [6] that we prove for weighted digraphs
(Theorem 3.1). We use this to obtain a result relating
trees and paths that we utilize in our “combinatorial”
algorithm for k-MLP, which we believe is of independent
interest. Let r be a given root node. Throughout this
section, when we say rooted tree or rooted path, we
mean a tree or path rooted at r. We show that for
any λ > 0, one can efficiently find a rooted tree T such
that c(T ) + λ|V \ V (T )| is at most

∑
P∈C c(P ) + λ|V \⋃

P∈C V (P )|, where C is any collection of rooted paths
(see Theorem 3.2). As noted earlier, this substantially
generalizes a result in [11], yet our proof is simpler.

For a digraph D (possibly with parallel edges), we
use λD(x, y) to denote the number of x  y edge-
disjoint paths in D. Given a digraph D with nonnegative
integer edge weights {we}, we define the quantities
|δin(u)|, |δout(u)| and λD(x, y) for D to be the respective
quantities for the unweighted (multi-)digraph obtained
by replacing each edge e of D with we parallel edges
(that is, |δin(u)| =

∑
e=(◦,u) we etc.). Bang-Jensen at

al. [6] proved an arborescence-packing result that in
particular implies that if D = (U + r,A) is a digraph
with root r /∈ U such that |δin(u)| ≥ |δout(u)| for all
u ∈ U , then, for any integer k ≥ 0, one can find k
edge-disjoint out-arborescences rooted at r such that
every node u ∈ U belongs to at least min{k, λD(r, u)}
arborescences. For a weighted digraph, applying this
result on the corresponding unweighted digraph yields a
pseudopolynomial-time algorithm for finding the stated
arborescence family. We prove the following polytime
version of their result for weighted digraphs; the proof
appears in Appendix B.

Theorem 3.1. Let D = (U + r,A) be a digraph with
nonnegative integer edge weights {we}, where r /∈ U is
a root node, such that |δin(u)| ≥ |δout(u)| for all u ∈ U .
For any integer K ≥ 0, one can find out-arborescences
F1, . . . , Fq rooted at r and integer weights γ1, . . . , γq in
polynomial time such that

∑q
i=1 γi = K,

∑
i:e∈Fi γi ≤

we for all e ∈ A, and
∑
i:u∈Fi γi = min{K,λD(r, u)} for

all u ∈ U .

We now apply Theorem 3.1 to prove our key
result relating prize-collecting arborescences and prize-
collecting paths. Let G = (V,E) be a complete
undirected graph with root r ∈ V , metric edge costs
{ce}, and nonnegative node penalties {πv}v∈V . We
bidirect the edges to obtain a digraph D = (V,A),
setting the cost of both (u, v) and (v, u) to cuv. Consider
the following bidirected LP-relaxation for the problem
of finding a collection C of rooted paths minimizing∑
P∈C c(P ) + π

(
V \

⋃
P∈C V (P )

)
. We use a to index

edges in A, and v to index nodes in V \ {r}.

min
∑
a

caxa +
∑
v

πvzv (PC-LP)

s.t. x
(
δin(v)

)
≥ x

(
δout(v)

)
∀v ∈ V \ {r}

x
(
δin(S)

)
+ zv ≥ 1 ∀S ⊆ V \ {r}, v ∈ S

x, z ≥ 0.

Theorem 3.2. (i) We can efficiently compute a rooted
tree T such that c(T ) + π(V \ V (T )) ≤ OPTPC-LP.
(ii) Hence, for any λ ≥ 0, we can find a tree Tλ such that
c(Tλ) + λ|V \ V (Tλ)| ≤

∑
P∈C c(P ) + λ|V \

⋃
P∈C V (P )|

for any collection C of rooted paths.

Proof. Let (x, z) be an optimal solution to (PC-LP).
Let K be such that Kxa is an integer for all a; note
that logK is polynomially bounded in the input size.
Consider the digraph D with edge weights {Kxa}.
Let (γ1, F1), . . . , (γq, Fq) be the weighted arborescence
family obtained by applying Theorem 3.1 to D with
the integer K. Then, we have: (a)

∑q
i=1 γi = K;

(b)
∑q
i=1 γic(Fi) =

∑
a ca
(∑

i:a∈Fi γi
)
≤ K

∑
a caxa;



and (c)
∑q
i=1 γiπ

(
V \ V (Fi)

)
=
∑
v πv

(∑
i:v/∈Fi γi

)
≤

K
∑
v πvzv, where the last inequality follows since

λD(r, v) ≥ K(1 − zv) for all v ∈ V \ {r}. Thus, if we
take the arborescence Fi with minimum prize-collecting
objective c(Fi) + π(V \ V (Fi)), which we will treat as a
rooted tree T in G, we have that c(T ) + π(V \ V (T )) ≤∑
a caxa +

∑
v πvzv.

For part (ii), let Tλ be the tree obtained in part (i)
with penalties πv = λ for all v ∈ V . Observe that any
collection C of rooted paths yields a feasible solution to
(PC-LP) of cost

∑
P∈C c(P ) + λ|V \

⋃
P∈C V (P )|.

Notice that the above proof does not use the fact
that the edge costs are symmetric or form a metric; so
the theorem statement holds with arbitrary nonnegative
edge costs {ca}a∈A.

Given Theorem 3.2 for the prize-collecting problem,
one can use binary search on the parameter λ to obtain
the following result for the partial-cover version; the
proof appears in Appendix C. A rooted bipoint tree
T = (a, T1, b, T2), where a, b ≥ 0, a+ b = 1, is a convex
combination aT1 + bT2 of two rooted trees T1 and T2.
We extend a function f defined on trees to bipoint trees
by setting f(T ) = af(T1) + bf(T2).

Corollary 3.3. (i) Let B ≥ 0, and O∗ be the mini-
mum cost of a collection of rooted paths spanning at least
B nodes. We can efficiently compute a rooted tree or
bipoint tree Q such that c(Q) ≤ O∗ and |V (Q)| = B.
(ii) Let {wv} be nonnegative node penalties with wr = 0.
Let C ≥ 0, and n∗ be the maximum node weight of a
collection of rooted paths of total cost at most C. We
can efficiently compute a rooted tree or bipoint tree Q
such that c(Q) = C and w(V (Q)) ≥ n∗.

4 LP-relaxations for multi-depot k-MLP

Our LP-relaxations are time-indexed formulations in-
spired by the LPs in [10]. Let LB := maxv mini criv. Let
T ≤ 2nLB be an upper bound on the maximum latency of
a node that can be certified by an efficiently-computable
solution. Standard scaling and rounding can be used to
ensure that LB = poly

(
n
ε

)
at the expense of a (1 + ε)-

factor loss (see, e.g., [4]). So we assume in the sequel
that T is polynomially bounded. In Section 7, we sketch
an approach showing how to solve our time-indexed LPs
without this assumption, which turns out to be useful for
some of the extensions that we consider. In either case,
this means that all our LP-based guarantees degrade by
a (1 + ε) multiplicative factor. Throughout, we use v
to index the non-root nodes in V \R, i to index the k
vehicles, and t to index time units in [T] := {1, 2, . . . ,T}.

In Section 4.1, we describe two configuration LPs
with exponentially many variables. The first LP, (LPP),
can be “solved” efficiently and leads to an 8.497-

approximation for multi-depot k-MLP (Section 5). The
second LP, (LP2P), is a stronger LP that we do not know
how to solve efficiently (except when k = 1), but whose
integrality gap is much smaller (see Theorem 4.2). In
Section 4.2, we describe a bidirected LP-relaxation with
exponentially many cut constraints that one can separate
over and hence solve the LP (assuming T is polynomially
bounded). This LP is weaker than (LPP), but we show
in Section 6 that this leads to a 7.813-approximation
algorithm for k-MLP and a µ∗-approximation algorithm
for MLP (i.e., k = 1). Theorem 4.3 summarizes the
relationship between the various LPs and the guarantees
we obtain relative to these via the algorithms described
in the following sections.

4.1 Configuration LPs. The idea behind a configu-
ration LP is to have variables for each time t describing
the snapshot of the vehicles’ routes up to time t. Dif-
ferent LPs arise depending on whether the snapshot is
taken for each individual vehicle, or is a global snapshot
of the k vehicles’ routes.

Let Pit and T it denote respectively the collection of
all (simple) paths and trees rooted at ri of length at most
t. In our first configuration LP, we introduce a variable
ziP,t for every time t and path P ∈ Pit that indicates if
P is the path used to visit the nodes on vehicle i’s route
having latency at most t; that is, ziP,t denotes if P is the
portion of vehicle i’s route up to time t. We also have
variables xiv,t to denote if node v is visited at time t by
the route originating at root ri.

min
∑
v,t,i

txiv,t (LPP)

s.t.
∑
t,i

xiv,t ≥ 1 ∀v (1)

∑
P∈Pit

zP,t ≤ 1 ∀t, i (2)

∑
P∈Pit :v∈P

ziP,t ≥
∑
t′≤t

xiv,t′ ∀v, t, i (3)

x, z ≥ 0.

max
∑
v

αv −
∑
t,i

βit (D)

s.t. αv ≤ t+
∑
t′≥t

θiv,t′ ∀v, t, i (4)

∑
v∈P

θiv,t ≤ βit ∀t, i, P ∈ Pt (5)

α, β, θ ≥ 0. (6)

Constraint (1) encodes that every non-root node must
be visited by some vehicle at some time; (2) and (3)



encode that at most one path corresponds to the portion
of vehicle i’s route up to time t, and that this path must
visit every node v visited at any time t′ ≤ t by vehicle
i. Note that these enforce that xiv,t = 0 if t < criv. We
remark that in the single-depot case, the splitting of
the k paths into one path per vehicle is immaterial, and
so (LPP) becomes equivalent to the configuration LP
in [10] for k-MLP that involves a single set of xv,t and
zP,t variables for each time t.

In order to solve (LPP), we consider the dual
LP (D), which has exponentially many constraints.
Separating over constraints (5) involves solving a (rooted)
path-orienteering problem: for every t, given rewards
{θiu,t}u∈V , where we set θiu,t = 0 for u ∈ R, we want to
determine if there is a path P rooted at ri of length at
most t that gathers reward more than βit . In unweighted
orienteering, all node rewards are 0 or 1. A (ρ, γ)-{path,
tree} approximation algorithm for the path-orienteering
problem is an algorithm that always returns a {path,
tree} rooted at ri of length at most γ(length bound)
that gathers reward at least (optimum reward)/ρ.

As shown in [10], one can use such approximation
algorithms to obtain an approximate solution to (LPP)
(and similar configuration LPs), where the notion
of approximation involves bounded violation of the
constraints and moving to a “tree version” of (LPP).
In the tree version of a configuration LP such as (LPP),
the only change is that configurations are defined in
terms of trees instead of paths. Specifically, define the
tree-version of (LPP), denoted (LPT ), to be the analogue
where we have variables ziQ,t for every Q ∈ T it , and we

replace all occurrences of ziP,t in (LPP) with ziQ,t.

Let
(
LP

(a)
P
)

be (LPP) where we replace each occur-
rence of Pit in constraints (2), (3) by Piat, and the RHS

of (2) is now a. Let
(
LP

(a)
T
)

be defined analogously.

Let OPTP be the optimal value of (LPP) (i.e.,
(
LP

(1)
P
)
).

Chaudhuri et al. [11] give a (1, 1 + ε)-tree approximation
for unweighted orienteering, which yields (via suitably
scaling and rounding the node rewards) a (1+ε, 1+ε)-tree
approximation for weighted orienteering. Utilizing this
and mimicking the arguments in [10] yields Lemma 4.1,
which combined with our rounding procedure in Sec-
tion 5 yields an (8.497 + ε)-approximation algorithm for
multi-depot k-MLP (Theorem 5.1).

Lemma 4.1. For any ε > 0, we can compute a feasible

solution to
(
LP

(1+ε)
T

)
of cost at most OPTP in time

poly
(
input size, 1

ε

)
.

A stronger configuration LP. We now describe a
stronger LP (LP2P) that sheds further light on the power
of LP-relaxations for minimum-latency problems. We
prove that the integrality gap of (LP2P) is at most

µ∗ < 3.5912 by giving an efficient rounding procedure
(Theorem 4.2 (ii)). We do not know how to leverage
this to obtain an efficient µ∗-approximation for multi-
depot k-MLP, since we do not know how to solve (LP2P)
efficiently, even in the approximate sense of Lemma 4.1.
But for k = 1, (LP2P) coincides with (LPP) (and the
configuration LP in [10]), so we can use Lemma 4.1
to approximately solve (LP2P). We also show that
OPT LP2P is at least the value of the (k, `)-bottleneck-
stroll lower bound, BNSLB. Combined with Theorem 2.3,
this provides another proof that the integrality gap of
(LP2P) is at most µ∗; this also shows that the integrality
gap of (LP2P) is at most 3.03 when k = 1.

In the new LP, a configuration for time t is the
global snapshot of the k vehicles’ routes up to time t;
that is, it is the k-tuple formed by the portions of the k
vehicles’ routes up to time t. Formally, a configuration
~P for time t is a tuple (P1, . . . , Pk) where each Pi is
rooted at ri and has length at most t. We say that v
is covered by ~P , and denote this by v ∈ ~P , to mean
that v ∈

⋃
i V (Pi). Let Pt denote the collection of all

configurations for time t. This yields the following LP
whose constraints encode that every non-root node must
be covered, there is at most one configuration for each
time t, and this configuration must cover every node v
whose latency is at most t.

min
∑
v,t

txv,t (LP2P)

s.t.
∑
t

xv,t ≥ 1 ∀v (7)∑
~P∈Pt

z~P ,t ≤ 1 ∀t (8)

∑
~P∈Pt:v∈~P

z~P ,t ≥
∑
t′≤t

xv,t′ ∀v, t (9)

x, z ≥ 0.

As before, we may define a tree version of (LP2P)
similarly to the way in which (LPT ) is obtained from

(LPP). Define a tree configuration ~Q for time t to be a
tuple (Q1, . . . , Qk), where each Qi is an ri-rooted tree
of cost at most t. As before, we say that v is covered
by ~Q if v ∈

⋃
i V (Qi) denote this by v ∈ ~Q. Let Tt

denote the collection of all tree configurations for time
t. In the tree-version of (LP2P), denoted (LP2T ), we

have variables z~Q,t for every ~Q ∈ Tt, and we replace

constraints (8), (9) by∑
~Q∈Tt

z~Q,t ≤ 1 ∀t (10)

∑
~Q∈Tt:v∈~Q

z~Q,t ≥
∑
t′≤t

xv,t′ ∀v, t (11)



We define
(
LP2

(a)
T
)

to be (LP2T ), where we replace Tt in
(10), (11) with Tat, and we replace the RHS of (10) with
a. The following theorem suggests that (LP2P) may be
quite powerful; we defer its proof to Section 8.

Theorem 4.2. We have the following.

(i) OPTLP2P ≥ BNSLB for every instance of multi-
depot k-MLP.

(ii) A solution to (LP2P), can be efficiently rounded to a
feasible integer solution while increasing the cost by
a factor of at most µ∗ < 3.5912. Furthermore, for

any ε ≥ 0, a solution to
(
LP2

(1+ε)
T

)
can be efficiently

rounded to a feasible solution to multi-depot k-MLP
while losing a factor of at most µ∗

1−µ∗ε .

(iii) When k = 1, for any ε > 0, we can compute

a feasible solution to
(
LP2

(1+ε)
T

)
of cost at most

OPTLP2P in time poly
(
input size, 1

ε

)
.

4.2 A bidirected LP relaxation. The bidirected
LP formulation is motivated by Theorem 3.1. As in
Section 3, we bidirect the edges to obtain a digraph
D = (V,A) and set ca = cuv for both a = (u, v) and
a = (v, u). We use a to index the arcs in A. Recall that
v indexes nodes in V \R, i indexes the k vehicles, and
t indexes time units in [T]. As before, we use variables
xiv,t to denote if node v is visited at time t by the route
originating at root ri. Directing the vehicles’ routes
away from their roots in a solution, zia,t indicates if arc
a lies on the portion of vehicle i’s route up to time t.
We obtain the following LP.

min
∑
v,t,i

txiv,t (LP3)

s.t.
∑
t,i

xiv,t ≥ 1 ∀v (12)

∑
a∈δin(S)

zia,t ≥
∑
t′≤t

xiv,t′ ∀S : ri /∈ S, v ∈ S
∀t (13)∑

a

caz
i
a,t ≤ t ∀t, i (14)∑

a∈δin(v)

zia,t ≥
∑

a∈δout(v)

zia,t ∀v, i (15)

x, z ≥ 0, xiv,t = 0 if criv < t ∀v, t, i (16)

Constraints (12) and (16) ensure that every non-root
node is visited at some time. Constraints (13)–(15) play
the role of constraints (2), (3) in (LPP): (13) ensures
that the portion of a vehicle’s route up to time t must
visit every node visited by that vehicle by time t, (14)
ensures that this route indeed has length at most t, and
finally (15) seeks to encode that the route forms a path.

(Note that constraints (15) are clearly valid; also valid
are constraints

∑
a∈δout(ri) z

i
a,t ≤ 1 for all i, t.)

Assuming T is polynomially bounded, it is easy to
design a separation oracle for the exponentially-many cut
constraints (13); hence, one can solve (LP3) efficiently.
We use this LP to obtain LP-relative guarantees for
k-MLP (Section 6) which turn out to be quite versatile
and extend easily to yield the same guarantees for various
generalizations.

Intuitively, the difference between (LPP) and (LP3)
boils down to the following. Consider the tree version of
(LPP), (LPT ). A solution to this LP specifies for each
time t and vehicle i, a distribution over ri-rooted trees
that together cover nodes to the extent dictated by the
x variables. Using Theorem 3.1, given a feasible solution
(x, z) to (LP3), one can view z as also specifying for each
time t and vehicle i a distribution over ri-rooted trees
covering nodes to the extents specified by the x variables.
The difference however is that in the former case, each
tree in the support has length at most t, whereas in the
distribution obtained from (LP3) one only knows that
the expected length of a tree is at most t.

Theorem 4.3. (Relationship between (LPP)–(LP3))
We have the following. Recall that OPTP is the optimal
value of (LPP).

(i) OPTLP3 ≤ OPTP ≤ OPTLP2P for every instance
of multi-depot k-MLP. When k = 1, we have
OPTP = OPTLP2P .

(ii) For multi-depot k-MLP, we can efficiently compute
a solution of cost at most (8.4965 + ε)OPTP for
any ε > 0 (also Theorem 5.1).

(iii) For single-depot k-MLP, we can efficiently compute
a solution of cost at most (2µ∗+ ε)OPTLP3 for any
ε > 0, where µ∗ < 3.5912 (also Theorem 6.1).

(iv) When k = 1, we can efficiently compute a solution
of cost at most (µ∗+ ε)OPTLP3 for any ε > 0 (also
Corollary 6.4).

Proof. Parts (ii)–(iv) are simply restatements of the
indicated theorems, whose proofs appear in the corre-
sponding sections. We focus on proving part (i).

For a k-tuple ~P = (P1, . . . , Pk), we use ~P (i)
to denote Pi. Let (x, z) be a feasible solution to
(LP2P). We may assume that constraints (7), (9)
hold with equality for all v and t since we can always
shortcut paths past nodes without increasing their
length. We may also assume that if z~P ,t > 0 for

~P = (P1, . . . , Pk), then the any two Pis are node-
disjoint unless they originate from the same root node,
in which case this root is the only node they share.
We map (x, z) to a feasible solution (x′, z′) to (LPP)



by setting z′iPi,t =
∑

~P∈Pt:~P (i)=Pi
z~P ,t for all i, t and

x′iv,t =
∑
P∈Pit :v∈P

z′iP,t −
∑
P∈Pit−1:v∈P z

′i
P,t−1 for all

i, v, t, where we define z′iP,0 = 0 for all P for notational
convenience. It is easy to verify that (x′, z′) is feasible
for (LPP). It’s objective value is

∑
v,t,i

tx′iv,t =
∑
v,i

T∑
t=1

t
( ∑
P∈Pit :v∈P

z′iP,t −
∑

P∈Pit−1:v∈P

z′iP,t−1

)

=
∑
v,i

(
T

∑
P∈PiT:v∈P

z′iP,T −
T−1∑
t=1

∑
P∈Pit :v∈P

z′iP,t

)

=
∑
v

(
T−

T−1∑
t=1

∑
~P∈Pt:v∈~P

z~P ,t

)
(17)

=
∑
v

(
T−

T−1∑
t=1

∑
t′≤t

xv,t′
)

(18)

=
∑
v

(
T−

T∑
t′=1

(T− t′)xv,t′
)

=
∑
v,t′

t′xv,t′ (19)

The equality in (17) holds because∑
i

∑
P∈Pit :v∈P

z′iP,t =
∑
i

∑
~P∈Pt:v∈~P (i)

z~P ,t =
∑

~P∈Pt:v∈~P

z~P ,t

since the paths comprising ~P do not share any non-root
nodes; when t = T , this term is 1 since (9) and (7)
hold at equality. Equality (18) and the last equality in
(19) follow again from the fact that (9) and (7) hold at
equality. It follows that OPTP ≤ OPT LP2P .

Let (x, z) be a feasible solution to (LPP). It is easy
to see that if we direct each path in the support of z
away from its root and set z′ia,t =

∑
P∈Pit :a∈P

ziP,t, then

(x, z′) is feasible for (LP3). Hence, OPT LP3 ≤ OPTP .

5 An LP-rounding 8.497-approximation
algorithm for multi-depot k-MLP

We now prove the following theorem. Our approximation
ratio of 8.497 improves upon the previous-best 12-
approximation [12, 11] and matches the previous-best
approximation for single-depot k-MLP [14].

Theorem 5.1. For any ε > 0, we can compute a multi-
depot-k-MLP solution of cost at most (8.4965+ε)·OPTP
in time poly

(
input size, 1

ε

)
. Thus, the integrality gap of

(LPP) is at most 8.4965.

Our algorithm is quite simple to describe. Let

(x, z) be the feasible solution to
(
LP

(1+ε)
T

)
returned

by Lemma 4.1, where we fix ε later. We then choose

time points that form a geometric sequence and do
the following for each time point t. For every i =
1, . . . , k, we sample a random tree from the distribution
{ziQ,t}Q∈T i(1+ε)t , double and shortcut it to form a cycle

and traverse this cycle in a random direction to obtain
a tour. For every i, we concatenate the tours obtained
for i for each of the time points. We now describe the
rounding procedure in detail and proceed to analyze it.

Algorithm 1. Given: a fractional solution (x, z) of cost at
most OPTP returned by Lemma 4.1.

M1. Let κ = 1 + ε, and 1 < c < e be a constant that we
will fix later. Let h = cΓ be a random offset, where Γ is
chosen uniformly at random from [0, 1). For notational
convenience, define ziQ,t for all t ≥ 1, i, Q ∈ T iκt as
follows: set ziQ,t = ziQ,btc if btc ≤ T and ziQ,t = ziQ,T
otherwise. Define tj = hcj for all j ≥ 0.

M2. Repeatedly do the following for j = 0, 1, 2, . . . until
every non-root node is covered (by some tour). For every
i = 1, . . . , k, choose independently a random tree Q from
the distribution

{
ziQ,tj/κ

}
Q∈T iκtj

. Double and shortcut

Q to get a cycle, and traverse this cycle clockwise or
counterclockwise with probability 1

2
to obtain a tour

Zi,j .

M3. For every i = 1, . . . , k, concatenate the tours
Zi,0, Zi,1, . . . to obtain the route for vehicle i.

Analysis. The analysis hinges on showing that for
every iteration j of step M2, the probability pv,j that
a node v is not covered by the end of iteration j can
be bounded (roughly speaking) in terms of the total
extent to which v is not covered by (x, z) by time tj
(Lemma 5.3). Substituting this into the expression
bounding the expected latency of v in terms of the
pv,js (part (iii) of Claim 5.2), we obtain that by suitably
choosing the constant c, the expected latency of v is
roughly 8.497 · latv, where latv :=

∑
t,i tx

i
v,t (Lemma 5.4).

This proves that the algorithm returns a solution of
cost roughly 8.497 · OPTP . However, it is not clear if
the algorithm as stated above has polynomial running
time. But since Lemma 5.3 implies that pv,j decreases
geometrically with j, one can terminate step M2 after a
polynomial number of iterations and cover the remaining
uncovered nodes incurring latency at most T for each
such node. This increases the expected cost by at
most εOPTP but ensures polynomial running time; see
Remark 5.5.

Let t−1 = 0, and define ∆j := tj − tj−1 for all
j ≥ 0. For q ≥ 1, define σ(q) to be the smallest tj
that is at least q. Consider a non-root node v. We may
assume that

∑
i,t x

i
v,t = 1. Define pv,j = 1 for all j < 0.

Define yiv,t :=
∑
t′≤t x

i
v,t′ and o′v,j := 1−

∑
i y
i
v,tj ; define



o′v,j = 1 for all j < 0. Define lat′v :=
∑
j≥0 o

′
v,j−1∆j . Let

Lv denote the random latency of node v in the solution
constructed. Note that the tjs, and hence, σ(q), the
o′v,js and lat′v are random variables depending only on

the random offset h. For a fixed offset h, we use Eh[.] to
denote the expectation with respect to all other random
choices, while E[.] denotes the expectation with respect
to all random choices.

Claim 5.2. For any node v, we have:
(i) lat′v =

∑
t,i σ(t)xiv,t; (ii) E[lat′v] = c−1

ln c · latv; and

(iii) Eh[Lv] ≤ κ(c+1)
c−1 ·

∑
j≥0 pv,j−1∆j for any fixed h.

Proof. Part (i) follows from the same kind of algebraic
manipulation as used in the proof of part (i) of Theo-
rem 4.2. We have

∑
t,i

σ(t)xiv,t =
∑
j≥0

tj

( tj∑
t=tj−1+1

∑
i

xiv,t

)

=
∑
j≥0

( j∑
d=0

∆d

)( tj∑
t=tj−1+1

∑
i

xiv,t

)

=
∑
d≥0

∆d

(∑
j≥d

tj∑
t=tj−1+1

∑
i

xiv,t

)
=
∑
d≥0

∆do
′
v,d−1.

Part (ii) follows from part (i) since we show that
E[σ(q)] = c−1

ln c · q for all q ≥ 1. Suppose q ∈ [cj , cj+1) for
some integer j ≥ 0. Then

E[σ(q)] =

∫ logc q−j

0

cy+j+1dy +

∫ 1

logc q−j
cy+jdy

=
1

ln c
·
(
clogc q+1 − cj+1 + cj+1 − clogc q

)
=
c− 1

ln c
· q.

For part (iii), say that node v is covered in iteration
j ≥ 0 if j is the smallest index such that v ∈

⋃
i V (Zi,j).

By definition, the probability of this event is pv,j−1−pv,j ,
and in this case the latency of v is at most κ(2t0 +

2t1 + . . . + 2tj−1 + tj) ≤ κ(c+1)
c−1 · tj . So Eh[Lv] ≤

κ(c+1)
c−1

∑
j≥0(pv,j−1 − pv,j)tj = κ(c+1)

c−1

∑
j≥0 pv,j−1(tj −

tj−1).

Lemma 5.3. pv,j ≤
(
1 − e−1/κ

)
o′v,j + e−1/κpv,j−1 for

all j ≥ −1, and all v.

Proof. For j = −1, the inequality holds since o′v,−1 =

1 = pv,−2. Suppose j ≥ 0. We have pv,j ≤ pv,j−1

∏
i

(
1−

yiv,tj
κ

)
since the probability that v is visited by the i-th

tour in iteration j is
∑
Q∈T iκtj :v∈Q z

i
Q,tj

/κ ≥ yiv,tj/κ. We

have that
∏k
i=1

(
1−

yiv,tj
κ

)
is at most(

1−
∑
i y
i
v,tj

κk

)k
=

(
1−

1− o′v,j
κk

)k
≤
(

1− 1
κk

)k
+
(

1−
(
1− 1

κk

)k)
o′v,j

≤ e−1/κ +
(
1− e−1/κ

)
o′v,j .

The first inequality follows since the geometric mean is
at most the arithmetic mean; the second follows since

f(b) =
(
1 − 1−b

κk

)k
is a convex function of b; the final

inequality follows since o′v,j ≤ 1 and
(
1− 1

κk

)k ≤ e−1/κ.
Plugging the above bound into the inequality for pv,j
yields the lemma.

Lemma 5.4. E[Lv] ≤ κ(c+1)(1−e−1/κ)
(ln c)(1−ce−1/κ)

· latv for all v.

Proof. Fix an offset h. We have c−1
κ(c+1) · E

h[Lv] ≤ A :=∑
j≥0 pv,j−1∆j by Claim 5.2 (iii). Using Lemma 5.3,

we obtain that A ≤
∑
j≥0

(
1 − e−1/κ

)
o′v,j−1∆j +

e−1/κ
∑
j≥0 pv,j−2∆j =

(
1−e−1/κ

)
lat′v+ce−1/κA, where

the equality follows since ∆0 + ∆1 = c∆0, and ∆j =
c∆j−1 for all j ≥ 2, and so

∑
j≥0 pv,j−2∆j = cA. So

A ≤ 1−e−1/κ

1−ce−1/κ lat
′
v. Taking expectation with respect to

the random offset h, and plugging in the bound for
E[lat′v] in part (ii) of Claim 5.2 yields the lemma.

Taking c = 1.616, for any ε > 0, we can take ε > 0

suitably small so that κ(c+1)(1−e−1/κ)
(ln c)(1−ce−1/κ)

≤ (c+1)(1−e−1)
(ln c)(1−ce−1) +

ε ≤ 8.4965+ε. This completes the proof of Theorem 5.1.

Remark 5.5. If we truncate step M2 to N = D +
κ ln
(
nT
ε

)
iterations, where tD = σ(T), then by

Lemma 5.3, pv,N ≤ e−(N−D)/κ ≤ ε
nT since o′v,J = 0.

Each remaining uncovered node can be covered incurring
latency at most T (since T is a certifiable upper bound).
This adds at most ε ≤ εOPTP to the expected cost of
the solution, but ensures polynomial running time.

6 A 7.183-approximation algorithm for
(single-depot) k-MLP

We now describe algorithms for k-MLP having approx-
imation ratios essentially 2µ∗ < 7.183. This guarantee
can be obtained both by rounding the bidirected LP
(LP3) and via more combinatorial methods. The LP-
rounding algorithm is slightly easier to describe, and
the analysis extends easily to the generalizations consid-
ered in Section 7. But it is likely less efficient than the
combinatorial algorithm, and its guarantee is slightly
weaker, 2µ∗ + ε, due to the fact that we need to solve
the time-indexed formulation (LP3) either by ensuring



that T is polynomially bounded, or via the alternative
method sketched in Section 7, both of which result in
a (1 + ε)-factor degradation in the approximation. We
describe the LP-rounding algorithm first (Section 6.1)
and then the combinatorial algorithm (Section 6.2).

6.1 The LP-rounding algorithm. We prove the
following theorem. Recall that D = (V,A) is the digraph
obtained by bidirecting G.

Theorem 6.1. Any solution (x, z) to (LP3) can be
rounded to a k-MLP-solution losing a factor of at most
2µ∗ < 7.1824. Thus, for any ε > 0, we can compute
a k-MLP-solution of cost at most (2µ∗ + ε)OPTLP3 in
time poly

(
input size, ln( 1

ε )
)
.

The rounding algorithm follows the familiar tem-
plate of finding a collection of tours with different node
coverages and stitching them together using a concate-
nation graph. Let (x, z) be a feasible solution to (LP3).
Let x′v,t =

∑
i x

i
v,t and z′a,t =

∑
i z
i
a,t. We will in fact

only work with (x′, z′). (This also implies that we ob-
tain the same 2µ∗-guarantee with respect to an even
weaker bidirected LP where we aggregate the k vehicles’
routes and use a single set of xv,t and za,t variables for
all v, a, t.) For notational convenience, define x′r,0 = 1,
x′r,t = 0 for all t > 0, and x′v,0 = 0 for all v 6= r. To
give some intuition behind the proof of Theorem 6.1,
the following lemma will be useful. The proof involves
simple algebraic manipulation, and is deferred to the
end of this section.

Lemma 6.2. Suppose for every time t = 0, 1, . . . ,T,
we have a random variable (Nt, Yt) ∈ [1, n] × R such
that (N0, Y0) = (1, 0) with probability 1, and E[Nt] ≥∑

u∈V
∑t
t′=0 x

′
u,t′ , E[Yt] ≤ αt, for all t ∈ [T]. Let f be

the lower-envelope curve of
⋃T
t=0( support of (Nt, Yt)).

Then,
∫ n

1
f(x)dx ≤ α

∑
u∈V,t∈[T] tx

′
u,t.

Lemma 6.2 coupled with Corollary 2.2 imply that if
one could efficiently compute for each time t, a random
collection of k trees rooted at r such that (a) their union
covers in expectation at least

∑
u∈V

∑t
t′=0 x

′
u,t′ = 1 +∑

v 6=r,t′∈[t] x
′
v,t′ nodes, and (b) the expected maximum

length of a tree in the collection is at most t, then we
would achieve a µ∗-approximation by mimicking the
proof of part (i) of Theorem 2.3. We do not quite
know how to achieve this. However, as in the proof
of Theorem 3.2, applying Theorem 3.1 to (a scaled
version of) (z′a,t)a∈A, we can efficiently find one random
r-rooted tree that in expectation has cost at most kt and
covers at least

∑
u∈V

∑t
t′=0 x

′
u,t′ nodes. This is the chief

source of our improvement over the 8.497-approximation
in [14]: we achieve the target coverage of the k vehicles

(which in our case is determined by an LP) whereas [14]
sequentially find separate tours for each vehicle, which
succeeds in covering only a constant-fraction of the target
number of nodes (which in their case is determined by
the integer optimal solution).

The flip side is that we need to do slightly more
work to convert the object computed into a (random)
collection of k low-cost tours containing r. To convert
a rooted tree, we Eulerify it, break the resulting cycle
into k segments, and attach each segment to r. Thus,
for each time t, we obtain a random collection of k
trees rooted at r satisfying property (a) above, and a
relaxed form of (b): the expected maximum length of a
tree in the collection is at most 2t. Thus, we obtain a
solution of cost at most 2µ∗ times the cost of (x, z). We
now describe the rounding algorithm in more detail and
proceed to analyze it.

Algorithm 2. The input is a feasible solution (x, z) to
(LP3). Let x′v,t =

∑
i x

i
v,t, z

′
a,t =

∑
i z
i
a,t′ for all v, a, t.

R1. Initialize C ← {(1, 0)}, Q ← ∅. Let K be such
Kz′a,t is an integer for all a, t. For t ∈ [T], define
S(t) = {u ∈ V :

∑t
t′=0 x

′
u,t′ > 0}. (Note that r ∈ S(t)

for all t > 0.)

R2. For all t = 1, . . . ,T, do the following. Apply Theorem 3.1
on the digraph D with edge weights {Kz′a,t}a∈A and
integer K (and root r) to obtain a weighted arborescence
family (γ1, Q

t
1), . . . , (γq, Q

t
q). For each arboresence Qt`

in the family, which we view as a tree, add the point(
|V (Qt`) ∩ S(t)|, 2c(Qt`)

k
+ 2t

)
to C, and add the tree Qt`

to Q.

R3. For all ` = 1, . . . , n, compute s` = f(`), where f :
[1, n] 7→ R+ is the lower-envelope curve of C. We show
in Lemma 6.3 that for every corner point

(
`, f(`)

)
of

f , there is some tree Q∗` ∈ Q and some time t∗` such

that ` = |V (Q∗` ) ∩ S(t∗` )|, f(`) =
2c(Q∗` )

k
+ 2t∗` , and

maxv∈Q∗
`
∩S(t∗

`
) crv ≤ t∗` .

R4. Find a shortest 1  n path PC in the concatenation
graph CG(s1, . . . , sn).

R5. For every node ` > 1 on PC , do the following. Double
and shortcut Q∗` to obtain a cycle. Remove nodes on
this cycle that are not in S(t∗` ) by shortcutting past such
nodes. Break this cycle into k segments, each of length
at most 2c(Q∗` )/k and add edges connecting the first and
last vertex of each segment to r. This yields a collection
of k cycles; traverse each resulting cycle in a random
direction to obtain a collection of k tours Z1,`, . . . , Zk,`.

R6. For every i = 1, . . . , k, concatenate the tours Zi,` for
nodes ` on PC to obtain vehicle i’s route.



Analysis. We first prove Lemma 6.2. Lemma 6.3
utilizes this to bound

∫ n
1
f(x)dx, and shows that corner

points of f satisfy the properties stated in step R3.
The latter allows us to argue that the solution returned
has cost at most the length of PC in the concatenation
graph. Combining these facts with Corollary 2.2 yields
the 2µ∗ approximation ratio and completes the proof of
Theorem 6.1.

Proof of Lemma 6.2. Note that f is strictly increasing:
for x′, x ∈ [1, n] with x′ < x, since x′ = x′−1

x−1 ·x+ x−x′
x−1 ·1

and f(1) = 0, we have f(x′) ≤ x′−1
x−1 f(x) < f(x). So we

can write∫ n
1
f(x)dx

α
=

∫ n

1

(∫ f(x)/α

0

dy
)
dx

=

∫ f(n)/α

0

dy
(∫ n

f−1(αy)

dx
)

=

∫ f(n)/α

0

(
n− f−1(αy)

)
dy. (20)

Note that f(n) ≤ αT. For any t = 0, 1, . . . ,T, the point
(E[Nt],E[Yt]) = E[(Nt, Yt)] lies in the convex hull of the
support of (Nt, Yt), and so f(E[Nt]) ≤ E[Yt] ≤ αt and
hence, E[Nt] ≤ f−1(αt). So we can bound (20) by

T∑
t=1

∫ t

t−1

(
n− f−1(αy)

)
dy ≤

T∑
t=1

(
n− f−1(α(t− 1))

)
≤

T∑
t=1

(
n−

∑
u∈V

t−1∑
t′=0

x′u,t′
)
≤

T∑
t=1

∑
u∈V,t′≥t

x′u,t′

=
∑
u∈V

T∑
t′=1

t′x′u,t′ .

Lemma 6.3. (i)
∫ n

1
f(x)dx ≤ 4

∑
u∈V,t∈[T] tx

′
u,t. (ii) If(

`, f(`)
)

is a corner point of f , then there is a tree Q∗`
and time t∗` satisfying the properties stated in step S3.

Proof. Consider any t ∈ [T]. The weighted arborescence
family (γ1, Q

t
1), . . . , (γq, Q

t
q) yields a distribution over

arborescences, where we pick arborescence Qt` with
probability γ`/K. Let Nt and Yt be the random variables

denoting |V (Qt`) ∩ S(t)| and
2c(Qt`)
k + 2t respectively.

Define λD(r, r) = K. By Theorem 3.1, we have
E[c(Qt`)] ≤

∑
a caz

′
a,t ≤ kt, so E[Yt] ≤ 4t; also,

E[Nt] ≥
∑
u∈S(t) λD(r, u)/K ≥

∑
u∈S(t)

∑t
t′=0 x

′
u,t′ =∑

u∈V
∑t
t′=0 x

′
u,t′ . So the random variables (Nt, Yt)t∈[T]

and (N0, Y0) = (1, 0) and the curve f satisfy the
conditions of Lemma 6.2 with α = 4, and its conclusion
proves part (i).

For part (ii), corner points of f are points of C. So
if
(
`, f(`)

)
∈ C is a corner point that was added to C

in iteration t of step R2, then set t∗` = t, and Q∗` to
be the tree added in this iteration. By definition, we

have |V (Q∗` ) ∩ S(t∗` )| = `, f(`) =
2c(Q∗` )
k + 2t∗` . Also

maxv∈Q∗`∩S(t∗` ) crv ≤ t∗` , since v can only lie in S(t∗` ) if
crv ≤ t∗` , due to constraint (16).

Proof of Theorem 6.1. We claim that the solution re-
turned by Algorithm 2 has cost at most the length of PC
in the concatenation graph CG(s1, . . . , sn). Combining
this with Corollary 2.1 and part (i) of Lemma 6.5, we

obtain that the total latency is at most µ∗

2

∫ n
1
f(x)dx ≤

2µ∗
∑
v,t tx

′
v,t = 2µ∗

∑
v,i,t tx

i
v,t.

The proof of the claim is similar to the one in [18]
for single-vehicle MLP. Consider an edge (o, `) of PC .
By Theorem 2.1,

(
`, f(`)

)
is a corner point of f , so

there exist Q∗` , t
∗
` satisfying the properties stated in step

R3. It follows that when we transform Q∗` into k cycles
containing only nodes of S(t∗` ), each cycle has length at
most f(`) = s`.

Suppose inductively that we have covered at least
o nodes by the partial solution constructed by stitching
tours corresponding to the nodes on PC up to and
including o. Consider the additional contribution to the
total latency when we concatenate tour Zi,` to vehicle
i’s current route, for i = 1, . . . , k. The resulting partial
solution covers at least ` nodes. A node covered in
this step incurs additional latency at most s`

2 since
we traverse the cycle containing it (which has cost at
most s`) in a random direction. A node that is still
uncovered after this step incurs additional latency at
most s`. There are at most ` − o new nodes covered
in this step, and at most n − ` uncovered nodes after
this step, so the increase in total latency is at most
s`
2 (`− o) + s`(n− `) = s`

(
n− o+`

2

)
, which is exactly the

length of (o, `) edge in CG(s1, . . . , sn). Therefore, by
induction the total latency is at most the length of PC
in CG(s1, . . . , sn).

Corollary 6.4. For single-vehicle MLP, any solution
(x, z) to (LP3) can be rounded losing a factor of at most
µ∗ < 3.5912. Hence, for any ε > 0, we can compute an
MLP-solution of cost at most (µ∗ + ε)OPTLP3 in time
poly

(
input size, 1

ε

)
.

Proof. This follows from essentially Algorithm 2 and
its analysis. The improvement comes because we no
longer need to break up a tree into k tours. So in
step R2, for each tree Qt` in the weighted arborescence
family obtained for time t, we add the point

(
|V (Qt`) ∩

S(t)|, 2c(Qt`)
)

to C, and in part(i) of Lemma 6.3, we

have the stronger bound
∫ n

1
f(x)dx ≤ 2

∑
u∈V,t∈[T] tx

′
u,t,

which yields the µ∗ approximation.



6.2 The combinatorial approximation algo-
rithm. The combinatorial algorithm for k-MLP fol-
lows a similar approach as the LP-rounding algorithm.
The difference is that instead of using an LP to deter-
mine the target coverage of the k vehicles and maximum
length of each vehicle’s route, we now seek to match
the target coverage and length bound of an optimal
(k, `)-bottleneck-stroll. Corollary 3.3 shows that one can
efficiently find a rooted tree or bipoint tree that is at least
as good (in terms of both total cost and node-coverage)
as the optimal (k, `)-bottleneck-stroll solution for all
`, and again this is where we score over the algorithm
in [14]. Again, we need to convert the object computed
into a collection of k tours, and Theorem 2.1 implies that
a bipoint tree can be handled by handling the trees com-
prising it. We convert a tree into k tours as before, but
to bound the cost of each resulting tour, we now need to
“guess” the node furthest from r covered by an optimal
(k, `)-bottleneck stroll solution, and apply Corollary 3.3
with more-distant nodes removed; this ensures that each
resulting tour has cost at most 4 ·BNS(k, `). Hence, mim-
icking the proof of Theorem 2.3 (i) shows that we obtain
a solution of cost at most 2µ∗ · BNSLB < 7.183 · BNSLB.
The algorithm and analysis are very similar to that in
Section 6.1.

Algorithm 3.

S1. Initialize C ← ∅, Q ← ∅. Let v1 = r, v2, . . . , vn be
the nodes of G in order of increasing distance from the
root. Let Gj = (Vj , Ej) the subgraph of G induced by
Vj := {v1, . . . , vj}.

S2. For all j, ` = 1, . . . , n, do the following. Use part
(i) of Corollary 3.3 with input graph Gj and target
` to compute a rooted tree Qj` or rooted bipoint
tree (aj`, Q

1
j`, bj`, Q

2
j`). In the former case, add the

point
(
|V (Qj`)|,

2c(Qj`)

k
+ 2crvj

)
to C, and add the

tree Qj` to Q. In the latter case, add the points(
|V (Q1

j`)|,
2c(Q1

j`)

k
+ 2crvj

)
,
(
|V (Q2

j`)|,
2c(Q2

j`)

k
+ 2crvj

)
to C, and add the trees Q1

j`, Q
2
j` to Q.

S3. For all ` = 1, . . . , n, compute s` = f(`), where f :
[1, n] 7→ R+ is the lower-envelope curve of C. We
show in Lemma 6.5 that for every corner point

(
`, f(`)

)
of f , there is some tree Q∗` ∈ Q and some index j∗`
such that ` = |V (Q∗` )|, f(`) =

2c(Q∗` )

k
+ 2crvj∗

`
, and

maxv∈Q∗
`
crv ≤ crvj∗

`
.

S4. Find a shortest 1  n path PC in the concatenation
graph CG(s1, . . . , sn).

S5. For every node ` > 1 on PC , do the following. Double
and shortcut Q∗` to obtain a cycle. Break this cycle
into k segments, each of length at most 2c(Q∗` )/k and
add edges connecting the first and last vertex of each
segment to r. This yields a collection of k cycles; traverse
each resulting cycle in a random direction to obtain a
collection of k tours Z1,`, . . . , Zk,`.

S6. For every i = 1, . . . , k, concatenate the tours Zi,` for
nodes ` on PC to obtain vehicle i’s route.

Lemma 6.5. (i) s` ≤ 4 · BNS(k, `) for all ` = 1, . . . , n.
(ii) If

(
`, f(`)

)
is a corner point of f , then there is a tree

Q∗` and index j∗` satisfying the properties stated in step
S3.

Proof. For part (i), suppose that vj is the node furthest
from r that is covered by some optimal (k, `)-bottleneck-
stroll solution, so crvj ≤ BNS(k, `). Then, given part (i)
of Corollary 3.3, in iteration (j, `) of step S2, we add one
or two points to C such that the point

(
`, 2z

k + 2crvj
)
,

for some z ≤ k · BNS(k, `), lies in the convex hull of the
points added. Therefore, s` = f(`) ≤ 4 · BNS(k, `) since
f is the lower-envelope curve of C.

The proof of part (ii) is essentially identical to the
proof of Lemma 6.3 (ii).

Theorem 6.6. Algorithm 3 returns a solution of cost
at most 2µ∗ · BNSLB. Hence, it is a 2µ∗-approximation
algorithm for k-MLP.

Proof. We claim that the solution returned has cost
at most the length of PC in the concatenation graph
CG(s1, . . . , sn). Combining this with Lemma 6.5 and
Theorem 2.1, we obtain that the total latency is at most
µ∗

2

∑n
`=1 s` ≤ 2µ∗ · BNSLB, where µ∗ < 3.5912.

Consider an edge (o, `) of PC . By Theorem 2.1,(
`, f(`)

)
is a corner point of f , so there exist Q∗` , j

∗
`

satisfying the properties stated in step S3. It follows
that when we transform Q∗` into k cycles, each cycle has
length at most f(`) = s`. Given this, the rest of the
proof proceeds identically as that of Theorem 6.1.

7 Extensions

We now consider some extensions of multi-depot k-MLP
and showcase the versatility of our algorithms by showing
that our guarantees extend mostly with little effort to
these problems.

Theorem 7.1. For any ε > 0, we can compute a (ρ+ε)-
approximation for the following generalizations of multi-
depot k-MLP in time poly

(
input size, 1

ε

)
: (i) weighted

sum of node latencies: ρ = 8.4965; (ii) node-depot service
constraints: ρ = 8.4965; and (iii) node service times:
ρ = 8.9965. The approximation ratios for (i) and (iii)
improve to (7.1824 + ε) for the single-depot version.

In some of the settings below, we will only be able
to ensure that our certifiable upper bound T on the
maximum latency of a node is such that logT (as opposed
to T) is polynomially bounded. This means that the
resulting extension of (LPP) may have exponentially



many variables and constraints. To circumvent this
difficulty, we sketch below an approach for efficiently
computing a (1 + ε)-approximate solution to (LPP) that
only relies on logT being polynomially bounded, with a
(1 + ε)-violation in some constraints in the same sense
as in Lemma 4.1: namely, for each i and any time
point t under consideration, we use ri-rooted trees of
length (1 + ε)t and total fractional weight at most (1 + ε)
(instead of a collection of ri-rooted paths of length t
of total fractional weight at most 1) to cover nodes to
the extent they are covered by time t. We call such
a solution a multicriteria (1 + ε)-approximate solution.
This approach easily extends to solve the various LPs
encountered below.

Solving (LPP) when log T is polynomially
bounded. Borrowing an idea from [10], we move to
a compact version of (LPP) where we only have vari-
ables {xiv,t}, {ziP,t}, and constraints (2), (3) for ts
in a polynomially-bounded set TS. We set TS :=
{T0, . . . ,TD}, where Tj =

⌈
(1 + ε)j

⌉
, and D =

O(logT) = poly(input size) is the smallest integer such
that TD ≥ T. We use (LPTS

P ) to denote this LP. The
“tree-version” of (LPTS

P ) is obtained similarly from (LPT )
and denoted (LPTS

T ).
Define T−1 = 0 Given a solution (x, z) to (LPP),

where t ranges from 1 to T, we can define (x′, z′) as
follows: set z′iP,t = ziP,t for all i, P ∈ Pt and t ∈ TS; set

x′iv,Tj =
∑Tj
t∈Tj−1+1 x

i
v,t for all i, v, and Tj ∈ TS. It is not

hard to see that (x′, z′) is feasible to (LPTS
P ) and that

its cost is at most (1 + ε) times the cost of (x, z). Thus,
the optimal value of (LPTS

P ) is at most (1 + ε)OPTP .
Conversely, given a solution (x′, z′) to (LPTS

P ), setting
xiv,t equal to x′iv,t if t ∈ TS and 0 otherwise, and

ziP,t = z′iP,Tj for all t ∈ [Tj ,Tj+1) and all j, yields a

feasible solution to (LPP) of the same cost.
Since (LPTS

P ) is an LP of the same form as (LPP) but
with polynomially many variables, we can approximately
solve it in the sense of Lemma 4.1: for any ε > 0, we can
obtain in time poly

(
input size, 1

ε

)
a solution to (LPTS

T ) of
cost at most OPT (LPTS

P ) ≤ (1 + ε)OPTP with a (1 + ε)-
violation in some constraints. This in turn yields a
solution to (LPP) of no greater cost and with the same
(1 + ε)-violation in some constraints.

Observe that the above idea of restricting time
points to the polynomially-bounded set {T0, . . . ,TD}
also applies to (LP3) and shows that we can obtain
a feasible solution to (LP3) of cost at most (1 +
ε)OPT LP3 in time poly

(
input size, 1

ε

)
provided that

logT = poly(input size).

7.1 Weighted sum of node latencies. Here, we
have nonnegative node weights {wv} and want to
minimize the weighted sum

∑
v wv(latency of v) of node

latencies. We again have the upper bound T = 2nLB on
the maximum latency of a node. We cannot use scaling
and rounding to ensure that T = poly(input size), but
note that logT = poly(input size).

For multi-depot k-MLP, we consider (LPP) with the
objective modified to take into account the node weights.
We can obtain a multicriteria (1 + ε)-approximate
solution to the resulting LP as described above. We
round this as before; this works since Lemma 5.4 remains
unchanged and bounds the expected latency of each node
in terms of the latency it incurs under the LP solution.
The only minor change is that in the truncated version

(Remark 5.5), we set N = D + κ ln
( (maxv wv)nT

ε

)
since

covering an uncovered node at the end incurs weighted
latency at most (maxv wv)T.

A 7.183-approximation for k-MLP. Both the LP-
rounding and the combinatorial algorithms in Section 6
can be extended to this setting. We describe the LP-
rounding algorithm here and defer the combinatorial
algorithm to the full version. We consider (LP3) with
the weighted-latency objective and obtain a (1 + ε)-
approximate solution (x, z) to this LP. We round
this losing a 2µ∗-factor in a very similar fashion to
Algorithm 2 in Section 6.1. We may assume via
scaling that all weights are integers, and wr = 1. Let
W =

∑
u∈V wu. A naive extension of the algorithm in

Section 6 would be to create wv nodes co-located at
v and include a node in the concatenation graph for
every possible weight value from 0 to

∑
v wv. But this

only yields pseudopolynomial running time. Instead, we
proceed as follows.

Let TS := {T0, . . . ,TD} be the time points that
we consider when solving (LP3) approximately, where
Tj =

⌈
(1 + ε)j

⌉
for all j ≥ 0, and D = O(logT) =

poly(input size) is the smallest integer such that TD ≥ T.
In Algorithm 2, we always only consider time points
in TS. Step R1 is unchanged. In step R2, for each
time t ∈ TS and each arborescence Qt` of the weighted
arborescence family obtained for time t we now add the

point
(
w(V (Qt`)∩S(t)),

2c(Qt`)
k + 2t

)
to C, and as before,

add Qt` to Q.
Let f : [1,W ] 7→ R+ be the lower-envelope curve

of C. We claim that the shortest path PC in the con-
catenation graph CG

(
f(1), . . . , f(W )

)
can be computed

efficiently. This is because by Theorem 2.1, the shortest
path only uses nodes corresponding to corner points of f .
So the shortest path remains unchanged if we only con-
sider edges in the concatenation graph incident to such
nodes. This subgraph of the concatenation graph has



polynomial size (and can be computed) since all corner
points of f must be in C and |C| = O(D). Moreover, as
in part (ii) of Lemma 6.3, every corner point

(
`, f(`)

)
of

f corresponds to some tree Q∗` ∈ Q and some t∗` ∈ TS

such that ` = w
(
V (Q∗` ) ∩ S(t∗` )

)
, f(`) =

2c(Q∗` )
k + 2t∗` ,

and maxv∈Q∗`∩S(t∗` ) crv ≤ t∗` . Given this, steps R5, R6
are unchanged.

The analysis also proceeds as before. Mimicking
the proof of Theorem 6.1, we can again argue that the
solution returned has cost at most the length of PC in
CG
(
f(1), . . . , f(W )

)
. To complete the analysis, utilizing

Corollary 2.2, we need to bound
∫W

1
f(x)dx. Recall that

x′v,t =
∑
i xv,t for all v 6= r, t ∈ TS. As before, define

x′r,0 = 1, x′r,t = 0 for all t > 0. Also, define x′v,t = 0
for all v 6= r and all t < TD, t /∈ TS. Generalizing part

(i) of Lemma 6.3, we show that
∫W

1
f(x)dx is at most

4
∑
u∈V,t∈TS wu · tx′u,t.
Define T−1 := 0. Dovetailing the proof

of Lemma 6.2, we have that
(∫W

1
f(x)dx

)
/4 =∫ f(W )/4

0

(
W − f−1(4y)

)
dy. Note that f(W ) ≤ 4TD. For

any t = Tj ∈ TS, we include all points generated by
arborescences in the weighted arborescence family for
t in C. So we ensure that some point (a, b), where
a ≥

∑
u∈V

∑t
t′=0 wux

′
u,t′ , b ≤ 4t lies in the convex hull

of C. So f−1(4t) ≥
∑
u∈V

∑t
t′=0 wux

′
u,t′ ; this also holds

for t = 0. So as in the proof of Lemma 6.2, we have∫ f(W )/4

0

(
W − f−1(4y)

)
dy

≤
D∑
j=0

(Tj − Tj−1)
(
W − f−1(4Tj−1)

)
=

D∑
j=0

(Tj − Tj−1)
(
W −

∑
u∈V

Tj−1∑
t′=0

wux
′
u,t′
)

=

D∑
j=0

(Tj − Tj−1)
∑
u∈V

wu
∑
t′≥Tj

x′u,t′

=
∑
u∈V

∑
t′∈TS

wu · t′x′u,t′

7.2 Node-depot service constraints. In this set-
ting, we are given a set Sv ⊆ R of depots for each
node v, and v must be served by a vehicle originating
at a depot in Sv. The 8.497-approximation algorithm
extends in a straightforward manner. We now define
LB := maxv mini∈Sv criv, and can again ensure that LB,
and hence T = 2nLB is polynomially bounded. We mod-
ify constraint (1) of (LPP) to

∑
t,i∈Sv x

i
v,t ≥ 1, obtain a

solution to the resulting LP via Lemma 4.1, and round
it as before.

7.3 Node service times, Here, each non-root node
v has a service time dv that is added to the latency of
node v, and every node visited after v on the path of the
vehicle serving v. Set dr = 0 for r ∈ R for notational
convenience. We can set T =

∑
v dv + 2nLB as an upper

bound on the maximum latency of a node.
Let c′′uv = cuv + du+dv

2 for all u, v. Observe that the
c′′e s form a metric. We obtain a multicriteria (1 + ε)-
approximate solution (x, z) to (LPP) with the c′′-metric.
Note that this LP is a valid relaxation since if P is
the portion of a vehicle’s route up to and including
node v then c′′(P ) is at most the latency of v. We
round (x, z) as in Algorithm 1. The additive 0.5 increase
in approximation comes from the fact that when we
convert a tree Q of c′′-cost t into a cycle Z, the expected
contribution to the latency of a node v ∈ Z is now at
most dv + 1

2

(
2c′′(Q)− dv

)
≤ t+ dv

2 . Thus, we obtain an
8.997-approximation.

A 7.183-approximation for k-MLP. Define the
mixed length of a path or tree Q to be c(Q) + d(V (Q)).
Defining the directed metric c′u,v = cuv + dv for all u, v,
note that if we have a rooted tree and we direct its
edges away from r, then its c′-cost is exactly its mixed
length (since dr = 0). Again, both the LP-rounding and
combinatorial algorithms in Section 6 extend with small
changes. Essentially, the change is that we work with the
c′-metric, which works out in the LP-rounding algorithm
since Theorem 3.1 does not depend in any way on the
edge costs, and works out in the combinatorial algorithm
since Theorems 3.2 and Corollary 3.3 also apply with
the c′-metric and yield analogous statements where the
c-cost is replaced by the mixed-length objective. The
only thing to verify is that the procedure for converting
a tree Q of mixed length (i.e., c′-cost) at most kt into
k tours ensures that the expected contribution to the
latency of a node v ∈ Q is at most t. We sketch the
LP-rounding algorithm here and defer the details and
the combinatorial algorithm to the full version.

Let (x, z) be a (1 + ε)-approximate solution (x, z)
to (LP3) with arc-costs {c′a}a∈A (instead of the c-
metric), obtained by considering time points in TS :=
{T0, . . . ,TD}. Here Tj =

⌈
(1 + ε)j

⌉
for all j ≥ 0, and

D = O(logT) = poly(input size) is the smallest integer
such that TD ≥ T. In Algorithm 2, we always work with
the c′-cost and only consider time points in TS. The
only other change is in step R5. We show that we can
obtain k tours Z1,`, . . . , Zk,` from the rooted tree Q∗` ,
that cover V (Q∗` ) ∩ S(t∗` ) and satisfy

c(Zi,`) + 2d(V (Zi,`)) ≤ 2 ·
c(Q∗` ) + d

(
V (Q∗` )

)
k

+ 2t∗`

for all i = 1, . . . , k.



Analogous to Lemma 6.3 (and as in the weighted-
latency setting), we have that the lower-envelope curve
f satisfies: (i)

∫ n
1
f(x)dx ≤ 4

∑
t∈TS

(
1 +

∑
u6=r,i tx

i
u,t

)
,

and and (ii) every corner point
(
`, f(`)

)
satisfies

the properties stated in the modified step R3. Fi-
nally, we argue that the cost of the solution re-
turned is at most the length of the shortest path
PC in CG

(
f(1), . . . , f(n)

)
, which yields an approxima-

tion guarantee of 2µ∗(1 + ε) (where µ∗ < 3.5912).

8 Proof of Theorem 4.2

Part (iii) is simply a restatement of Lemma 4.1, so we
focus on parts (i) and (ii).
Proof of part (i). The proof follows from some simple
algebraic manipulations. We express both the objective
value of (LP2P) and BNSLB equivalently as the sum
over all time units t of the number of uncovered nodes
at time t (i.e., after time t − 1), where for the LP, by
“number” we mean the total extent to which nodes are
not covered. We then observe that this “number” for an
LP solution is at least the corresponding value in the
expression for BNSLB.

Let b∗` = BNS(k, `) for ` = 1, . . . , n. Note that b∗` is
an integer for all ` since all ces are integers, and b∗` = 0
for all ` ≤ |R|. Let (x, z) be an optimal solution to
(LP2P). For convenience, we set xv,t = 0 = z~P ,t for all

t > T and all v, ~P ∈ Pt. Also set xri,t = 0 for all t ≥ 1.
Let u index nodes in V . Define n∗t = max{` : b∗` ≤ t} for
all t ≥ 1, and Nt =

∑
u,t′≤t xu,t′ for all t ≥ 1. Note that

Nt ≤
∑
u

∑
~P∈Pt:u∈~P z~P ,t =

∑
~P∈Pt z~P ,t|{u : u ∈ ~P}| ≤

n∗t for all t.
We now express both the objective value of (LP2P)

and BNSLB equivalently as the sum over all time units
t of the number of uncovered nodes at time t (i.e., after
time t− 1). This coupled with the fact that Nt ≤ n∗t for
all t completes the proof. We have

BNSLB =

n∑
`=1

b∗` =

n∑
`=1

b∗∑̀
t=1

1 =

b∗n∑
t=1

∑
`:b∗`≥t

1

=

b∗n∑
t=1

(n− n∗t−1) =
∑
t≥1

(n− n∗t−1).

We also have that OPT LP2P =
∑
t≥1,u txu,t

=
∑
t

( t∑
t′=1

1
)∑

u

xu,t =
∑
t′≥1

∑
t≥t′,u

xu,t

≥
∑
t′≥1

(n−Nt′−1) ≥
∑
t′≥1

(n− n∗t′−1) ≥ BNSLB.

Proof of part (ii). We prove the second statement,
which immediately implies the first. Let κ = 1 + ε.

Let (x, z) be a solution to
(
LP2

(κ)
T
)
. The rounding

procedure and its analysis are very similar to the one in
Section 5. Let h = cΓ, where Γ ∼ U [0, 1). At each time
tj := hcj , for j = 0, 1, . . ., we sample a tree configuration
~Q = (Q1, . . . , Qk) from the distribution

{
z~Q,tj/κ

}
~Q∈Tκt

;

we convert each Qi into a cycle and traverse this cycle
in a random direction to obtain a tour Zi,j . We then
concatenate the tours Zi,0, Zi,1, . . . for all i = 1 . . . , k.

Define t−1, ∆j , latv, pv,j , Lv for all v, j as in the
analysis in Section 5. Define yv,t :=

∑
t′≤t xv,t′ and

o′v,j := 1 − yv,tj , for all v, t, j; let o′v,j = 1 for all v

and j < 0. Let lat′v :=
∑
j≥0 o

′
v,j−1∆j . Let Eh[.] and

E[.] denote the same quantities as in the analysis in
Section 5. Parts (ii) and (iii) of Claim 5.2 continue to
hold. They key difference is that we obtain an improved
expression for pv,j compared to the one in Lemma 5.3.
We now have that pv,j is almost o′v,j since instead of
sampling k trees independently as in Algorithm 1 (which
incurs a loss since

∏
i(1− ai) is smaller than

∑
i ai), we

now sample a single tree configuration; this improved
bound also results in the improved approximation. More
precisely, mimicking the proof of Lemma 5.3, we obtain

that pv,j ≤
o′v,j
κ +

(
1 − 1

κ

)
pv,j−1 for all v and j ≥ −1.

Plugging this in the proof of Lemma 5.4 gives E[Lv] ≤
c+1

(ln c)(1−c(1−1/κ)) · latv ≤
c+1

(ln c)(1−cε) · latv for all v.

The expression c+1
ln c achieves its minimum value of µ∗

at c = µ∗ (i.e., when c+1 = c ln c), so the approximation

factor is at most µ∗

1−µ∗ε .
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A Proofs from Section 2

Proof of Corollary 2.2. We argue that the length L of
the shortest 1 n path in CG

(
f(1), . . . , f(n)

)
is at most

the claimed bound, which implies the claimed statement.
For x ∈ [1, 1 + k(n− 1)], define fk(x) := f

(
1 + x−1

k

)
.

Note that for any x ∈ [1, 1 + k(n − 1)], (x, fk(x)) is a
corner point of fk iff (x′, f(x′)), where x′ = 1 + x−1

k is a
corner point of f . Also, if (x′, f(x′)) is a corner point of
f , then x′ must be an integer and f(x′) = Cx′ . Hence,
if (x, fk(x)) is a corner point of fk, then 1 + x−1

k must
be an integer.

Now consider the shortest 1 N := 1+k(n−1) path
Pk in CG

(
fk(1), fk(2), . . . , fk(N)

)
. Let Lk be the length

of Pk. Consider an edge (o, `) of Pk. Let o′ = 1 + o−1
k ,

`′ = 1 + `−1
k . By Theorem 2.1 and the above discussion,

o′ and `′ must be integers. The cost of (o, `) is

fk(`)
(
N − o+ `

2

)
= f(`′)

(
k(n− 1)− o− 1 + `− 1

2

)
= k · f(`′)

(
n− 1− (o− 1)/k + (`− 1)/k

2

)
= k · f(`′)

(
n− o′ + `′

2

)
which is the k times the cost of the (o′, `′) edge in
CG
(
f(1), . . . , f(n)

)
. Thus, L ≤ Lk/k for all k ≥ 1.

Moreover, Lk
µ∗/2 ≤

∑N
x=1 fk(x), which is at most

N∑
x=2

(∫ x

x−1

fk(t)dt+ fk(x)− fk(x− 1)
)

=

∫ N

1

fk(t)dt+ fk(N) = k

∫ n

1

f(x)dx+ f(n).

Therefore, L
µ∗/2 ≤

∫ n
1
f(x)dx+ f(n)

k for all k ≥ 1, which

implies that L ≤ µ∗

2

∫ n
1
f(x)dx.

Proof of Theorem 2.3. Part (ii) for MLP follows from
the analysis in [2], so we focus on part (i). We use a
concatenation-graph argument similar to the one used
for single-vehicle MLP in [18]. Let b∗` = BNS(k, `) for
` = 1, . . . , n. Consider any sequence 0 < `1 < `2 <
. . . < `h = n of indices. We can obtain a solution
from this as follows. For each index ` = `p and each



i = 1, . . . , k, we double and shortcut the ri-rooted
path in the optimal solution to the (k, `)-bottleneck
stroll problem and traverse the resulting cycle in a
random direction to obtain a tour Zi,` (which contains
ri). For every i = 1, . . . , k, we then concatenate the tours
Zi,`1 , . . . , Zi,`h . Since `h = n, this covers all nodes, so
we obtain a feasible solution to the multi-depot k-MLP
instance.

We show that the cost of this solution is at most
the length of the 1 → `1 → . . . → `h path in the
concatenation graph CG(2b∗1, . . . , 2b

∗
n), so the statement

follows from Theorem 2.1.
To bound the cost, consider an edge (o, `) of the path.

Suppose inductively that we have covered at least o nodes
by the partial solution constructed by concatenating
tours corresponding to the nodes on the path up to and
including o. Consider the additional contribution to the
total latency when we concatenate tour Zi,` to vehicle
i’s current route, for i = 1, . . . , k. The resulting partial
solution covers at least ` nodes (since

⋃
i V (Zi,`) ≥ `).

Suppose that in this step we cover B additional nodes,
and there are A uncovered nodes remaining after this
step. Then, B ≤ ` − o and A ≤ n − `. The latency of
the uncovered increases by at most maxi c(Zi,`) ≤ 2b∗` .
The latency of each node u that got covered by, say,

Zi,` increases by at most
c(Zi,`)

2 ≤ b∗` since we choose a
random direction for traversing the cycle Zi,`. Therefore,
the total increase in latency is at most

2b∗`

(
A+

B

2

)
≤ 2b∗`

(
n− `+

`− o
2

)
= 2b∗`

(
n− o+ `

2

)
.

This is precisely the length of the (o, `) edge in
CG(2b∗1, . . . , 2b

∗
n), and so by induction, the total la-

tency of the solution is at most the length of the
1→ `1 → . . .→ `h path in CG(2b∗1, . . . , 2b

∗
n).

B Proof of Theorem 3.1

We restate the theorem for easy reference.

Theorem B.1. Let D = (U + r,A) be a digraph with
nonnegative integer edge weights {we}, where r /∈ U is
a root node, such that |δin(u)| ≥ |δout(u)| for all u ∈ U .
For any integer K ≥ 0, one can find out-arborescences
F1, . . . , Fq rooted at r and integer weights γ1, . . . , γq in
polynomial time such that

∑q
i=1 γi = K,

∑
i:e∈Fi γi ≤

we for all e ∈ A, and
∑
i:u∈Fi γi ≥ min{K,λD(r, u)} for

all u ∈ U .

We require some notation and lemmas proved
by [6]. To avoid confusion we use the superscript ∗

when referring to statements in [6]. Theorem 3.1 is a
polytime version of Corollary∗ 2.1 in [6], and our proof
closely follows that of Theorem∗ 2.6 in Bang-Jensen et

al. [6]. Let ΛD(u, v) = min{K,λD(u, v)} be the required
connectivity.

Definition B.2. Let e = (t, u) and f = (u, v) be
edges. Splitting off e and f means removing e and
f and adding a new edge (t, v), or, in a weighted graph,
subtracting some amount x > 0 from the weights we
and wf and increasing w(t,v) by x. We denote the

new digraph by Def . Edges e and f are splittable if
λDef (x, y) ≥ ΛD(x, y) for all x, y 6= u.

Say that u and v are separated by X is
|X ∩ {u, v}| = 1 = |{u, v} \ X|. We call a
set of nodes X tight if min{|δin(X)|, |δout(X)|} =
maxu,v separated by X ΛD(u, v), that is, X is a minimum
cut for some u, v maximum flow, and we say that
X is tight for u, v if u, v are separated by X and
min{|δin(X)|, |δout(X)|} = ΛD(u, v). If t, v ∈ X and
u /∈ X, splitting edges (t, u), (u, v) reduces |δin(X)| and
|δout(X)|, so there is a close relationship between split-
table edges and tight sets. Note that for an Eulerian
digraph D = (V,A) (i.e., |δin(u)| = |δout(u)| for all
u ∈ V ), we have |δin(X)| = |δout(X)| for all X ⊆ V , and
ΛD(u, v) = ΛD(v, u) for all u, v ∈ V .

Lemma B.3. (Claim∗ 2.1 in [6]) Edges e = (t, u) and
f = (u, v) are splittable if and only if there is no set
X such that t, v ∈ X, u /∈ X, and X is tight for some
x, y 6= u.

Lemma B.3 can be used to prove that splittable
edges always exist.

Lemma B.4. (Theorem∗ 2.2 in [6]) Let D = (V,A)
be an Eulerian digraph and v ∈ V with |δout(v)| 6= 0.
Then for every edge f = (u, v) there is an edge e = (t, u)
such that e and f are splittable.

Bang-Jensen et al.’s exponential version of Theorem
3.1 repeatedly splits off unweighted pairs of edges and
recurses on the new graph. We follow the same procedure
but always split the same pair as many times/as much
weight as possible at once. The following simple
observation allows us to prove this runs in polynomial
time.

Lemma B.5. Let D = (V,A) be an Eulerian digraph,
e = (t, u) and f = (u, v) be splittable edges, f ′ = (u, v′)
be an edge leaving u (possibly f = f ′), and Xf ′ be a tight
set for some x, y 6= u with u /∈ Xf ′ , v

′ ∈ Xf ′ . Then Xf ′

is still tight for x, y in Def after splitting off e and f .

Proof. We have that λDef (x, y) ≥ ΛD(x, y), since e and
f are splittable and x, y 6= u. Splitting off cannot
increase λ(x, y), so ΛDef (x, y) = ΛD(x, y). Splitting off



does not affect |δin(Xf ′)| or |δout(Xf ′)| unless t, v ∈ Xf ′ ,
and by Lemma B.3 this cannot be the case since Xf ′

is tight and e, f are splittable. Therefore ΛDef (x, y) =
min{|δin(Xf ′)|, |δout(Xf ′)|}.

As a consequence, O(n2) splittings suffice to remove
a node.

Lemma B.6. Let u be a node in an Eulerian digraph
D = (V,A), and suppose we repeatedly choose t, v such
that (t, u), (u, v) are splittable and split them off to
the maximum extent possible (i.e., maximum splittable
weight). Then after O(n2) such splittings |δin(u)| and
|δout(u)| will be reduced to 0.

Proof. If |δout(u)| > 0, then by Lemma B.4 there is
a splittable pair e = (t, u), f = (u, v). Splitting e, f
as much as possible creates a tight set Xf , and this
set remains tight after additional splittings centered
at node u by Lemmas B.3 and B.5, so e, f will not
become splittable again. After O(n) splittings e′, f for
all possible e′, wf must be 0, and since there are O(n)
choices for f and |δin(u)| = |δout(u)|, O(n2) splittings
suffice to remove all edges incident to u.

Proof of Theorem 3.1. Note that r /∈ U . If |U | ≤ 1 the
theorem is trivial, so assume |U | ≥ 2. For every u ∈ U ,
add an edge (u, r) of weight |δin(u)|−|δout(u)|, and let D′

the resulting Eulerian graph (with λD′(u, v) ≥ λD(u, v)).
Let u = argminv∈U Λ(r, v), and f = (u, v) be an

edge leaving u with wf > 0. By Lemma B.4 there exists
an edge e = (t, u) such that e and f are splittable. Let
x be the maximum amount e and f are splittable, which
can be found by binary search. Split off e and f to an
extent x (subtract x from we, wf , add x to w(t,v)) and

recurse on D′ef .
Note that only ΛD′ef (r, u) can decrease in the split,

so in the recursive call we will choose the same u if
ΛD′ef (r, u) > 0. By Lemma B.6 O(n2) iterations suffice
to remove all edges incident to u. Future splittings after
this centered on other nodes may create new edges but
will never add an edge incident to a node of degree 0, so
O(n3) splittings suffice.

We now undo the splitting to construct the ar-
borescence packing on the original D. By induction
we can find arborescences F1, . . . , Fq in Def and weights
γ1, . . . , γq such that

∑q
i=1 γi = K,

∑
i:h∈Fi γi ≤ wh,Def

for all h ∈ A(Def ),
∑
i:u′∈Fi γi ≥ ΛD(r, u′) for all u′ 6= u,

and
∑
i:u∈Fi γi ≥ ΛDef (r, u) ≥ ΛD(r, u) − x. First, we

need to ensure that the Fi do not use the added arc
g = (t, v) above its weight in D, and second we need to
update the arborescences to cover u to an additional x
extent.

If wg,Def ≥
∑
i:g∈Fi γi > wg,D = wg,Def − x we

need to decrease the use of g by
∑
i:g∈Fi γi − wg,D,

which is at most x. We can replace g with the pair
e, f since wh,D − x = wh,Def ≥

∑
i:h∈Fi γi for h = e or

f . Repeatedly choose Fi containing g until we have a
set S with total weight at least x. Break the last Fi
added to S into two identical arborescences with weights
summing to γi, so that the set S has weight exactly x.
This increases q by 1 (or O(n3), summing over all graphs
in the induction).

For each Fi ∈ S, if u /∈ V (Fi), define F ′i =
Fi − g + e + f . If u ∈ V (Fi), let h be the last edge
on the path P from r to u in Fi. If g /∈ P , define
F ′i = Fi−g+f , and if a ∈ P , define F ′i = Fi−g−h+e+f
(note F ′i is connected). Replace each Fi with F ′i in the
arborescence packing. Over all Fi ∈ S, we remove g
from trees with weight x and add e and f to trees with
weight at most x. The updated F ′1, . . . , F

′
q+1 now satisfy∑

i:h∈Fi γi ≤ wh,D.
If ΛD(r, u) >

∑
i:u∈F ′i

γi we need to increase the

weight of some F ′i containing u. By assumption∑
i:u∈Fi γi ≥ ΛDef (r, u) ≥ ΛD(r, u) − x. We chose u

such that ΛD(r, u) ≤ λD(r, v) for all v, so ΛDef (r, u) ≤
λDef (r, v) − x. Therefore for every v 6= u there are Fi
containing v but not u with total weight at least x (or
x − (

∑
i:u∈F ′i

γi − ΛDef (r, u)) if u is in more Fi than

required).
Let S2 be a set of F ′i with weight at least x containing

t but not u. Add the edge e to F ′i ∈ S2. In the process
we may exhaust the budget we −

∑
i:u∈F ′i

γi for e due

to adding e to some Fi ∈ S in the previous step. This
can happen for two reasons. In the first case, there
was some Fi ∈ S with u /∈ V (Fi), and we defined
F ′i = Fi − g + e+ f . But that change also increased the
weight of F ′i containing u beyond ΛDef (r, u) and is not
a problem.

The second case is that u ∈ Fi, and we set F ′i =
Fi − g − h+ e+ f , which uses budget for e even though
u is already in F ′i . However, at the same time we lost y
budget for e, we freed up y budget for some h = (s, u),
and we can find a set of Fi with weight y containing s
but not u and add the edge h. This step may require
breaking some Fi into two trees with total weight γi
that are identical except that one contains u and the
other does not, which may increase q by O(n), but it
remains polynomially bounded (O(n4) added over the
entire induction).

C Proof of Corollary 3.3

Proof of part (i). We utilize part (ii) of Theorem 3.2.
We may assume that when λ = L = 0, the tree
Tλ returned is the trivial tree consisting only of {r},
and when λ is very large, say H = ncmax, then Tλ
spans all nodes. So if B = 0 or n, then we are



done, so assume otherwise. Let C∗B be an optimal
collection of rooted paths, so O∗ =

∑
P∈C∗B

c(P ). Let

n∗ = |
⋃
P∈C∗B

V (P )| ≥ B. We preform binary search

in [L,H] to find a value λ such that |V (Tλ)| = B. We
maintain the invariant that we have trees T1, T2 for the
endpoints λ1 < λ2 of our search interval respectively such
that |V (T1)| < B < |V (T2)| and c(Ti) + λi|V \ V (Ti)| ≤
O∗ + λi(n− n∗) for i = 1, 2. Let λ = (λ1 + λ2)/2, and
let T = Tλ be the tree returned by Theorem 3.2 (ii). If
|V (T )| = B, then we are done and we return the rooted
tree T . Otherwise, we update λ2 ← λ if |V (T )| > B,
and update λ1 ← λ otherwise.

We terminate the binary search when λ2 − λ1 is
suitably small. To specify this precisely, consider the
parametric LP (PC-LP) where πv = λ for all v ∈ V
and λ is a parameter. We say that λ is a breakpoint
if there are two optimal solutions (x1, z1), (x2, z2) to
(PC-LP) with

∑
v z

1
v 6=

∑
v z

2
v . (This is equivalent to

saying that the slope of the optimal-value function is
discontinuous at λ.) We may assume that (x1, z1),
(x2, z2) are vertex solutions and so their non-zero values
are multiplies of 1

M for some M (that can be estimated)
with logM = poly(input size). But then

∑
e cexe and∑

v zv are also multiples of 1
M for both solutions (since

the ces are integers), and hence the breakpoint λ is a
multiple of 1

M ′ , for some M ′ ≤ nM . We terminate the
binary search when λ2 − λ1 <

1
2n2M . Observe that the

binary search takes polynomial time.
So if we do not find λ such that |V (Tλ)| = B, at

termination, we have that c(Ti) + λi(n − |V (Ti)|) ≤
O∗ + λi(n − n∗) for i = 1, 2. There must be exactly
one breakpoint λ ∈ [λ1, λ2]. There must be at least one
breakpoint since T1 6= T2, which can only happen if the
optimal solutions to (PC-LP) differ for λ1 and λ2, and
there cannot be more than one breakpoint since any
two breakpoints must be separated by at least 1

nM as
reasoned above.

We claim that we have c(Ti) + λ(n − |V (T1)|) ≤
O∗ + λ(n− n∗) for i = 1, 2. If we show this, then taking
a, b so that a|V (T1)|+b|V (T2)| = B, a+b = 1, and taking
the (a, b)-weighted combination of the two inequalities,
we obtain that ac(T1)+bc(T2)+λ(n−B) ≤ O∗+λ(n−n∗),
and so we are done. (Note that we do not actually need
to find the breakpoint λ.)

To prove the claim observe that

c(T1) + λ(n− |V (T1)|) ≤ c(T1) + λ1(n− |V (T1)|) +
1

2nM

≤ O∗ + λ1(n− n∗) +
1

2nM
≤ O∗ + λ(n− n∗) +

1

2nM
.

So
[
c(T1) + λ(n − |V (T1)|)

]
−
[
O∗ + λ(n − n∗)

]
≤

1
2nM , but the LHS is a multiple of 1

M ′ , so the LHS
must be nonpositive. A similar argument shows that

c(T2) + λ(n− |V (T2)|) ≤ O∗ + λ(n− n∗).

Proof of part (ii). We mimic the proof of part (i), and
only discuss the changes. Assume that 0 < C <(cost
of MST of {v : wv > 0}) to avoid trivialities. Let
W∗C be an optimal collection of rooted paths, so n∗ =
w(
⋃
P∈W∗C

V (P )). Let O∗ =
∑
P∈W∗C

c(P ) ≤ C. Let

K be such that all wvs are multiples of 1
K ; note that

logK = poly(input size). Let W =
∑
v wv. For a

given parameter λ, we now consider (PC-LP) with
penalties λwv for all v. We perform binary search in
[L = 0, H = KWcmax]; we may again assume that TL
is the trivial tree, and TH spans all nodes with positive
weight. Given the interval [λ1, λ2], we maintain that
the trees T1, T2 for λ1, λ2 satisfy c(T1) < C < c(T2) and
c(Ti)+λiw(V \V (Ti)) ≤ O∗+λi(W−n∗) for i = 1, 2. As
before, we find tree Tλ for λ = (λ1 +λ2)/2. If c(Tλ) = C
then w(V (Tλ)) ≥ n∗ and we are done and return Tλ.
Otherwise, we update λ2 ← λ if c(T ) > C, and λ1 ← λ.
We terminate when λ2 − λ1 ≤ 1

2W 2K2M .
Similar to before, one can argue that every break-

point of the parametric LP with penalties {λwv} must
be a multiple of 1

M ′ for some M ′ ≤MKW . So at termi-
nation (without returning a tree), there is a breakpoint
λ ∈ [λ1, λ2]. We have that for i = 1, 2,[
c(Ti)+λ

(
W−w(V (Ti))

)]
−
[
O∗+λ(W−n∗)

]
≤ 1

2WK2M

but is also a multiple of 1
KM ′ , so the above quantity

must be nonpositive for i = 1, 2. Let a, b be such that
a+ b = 1 and ac(T1) + bc(T2) = C. Then, we have

a
[
c(T1) + λ

(
W − w

(
V (T1)

))]
+

b
[
c(T2) + λ

(
W − w

(
V (T2)

))]
≤ O∗ + λ(W − n∗).

So aT1 + bT2 yields the desired bipoint tree.
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