
The Effectiveness of Lloyd-type Methods for the k-Means Problem

Rafail Ostrovsky∗ Yuval Rabani† Leonard J. Schulman‡ Chaitanya Swamy§

Abstract

We investigate variants of Lloyd’s heuristic for clustering high dimensional data in an attempt to
explain its popularity (a half century after its introduction) among practitioners, and in order to sug-
gest improvements in its application. We propose and justify a clusterability criterion for data sets. We
present variants of Lloyd’s heuristic that quickly lead to provably near-optimal clustering solutions when
applied to well-clusterable instances. This is the first performance guarantee for a variant of Lloyd’s
heuristic. The provision of a guarantee on output quality does not come at the expense of speed: some
of our algorithms are candidates for being faster in practice than currently used variants of Lloyd’s
method. In addition, our other algorithms are faster on well-clusterable instances than recently proposed
approximation algorithms, while maintaining similar guarantees on clustering quality. Our main algo-
rithmic contribution is a novel probabilistic seeding process for the starting configuration of a Lloyd-type
iteration.

1 Introduction

Overview. There is presently a wide and unsatisfactory gap between the practical and theoretical clustering
literatures. For decades, practitioners have been using heuristics of great speed but uncertain merit; the
latter should not be surprising since the problem is NP-hard in almost any formulation. However, in the
last few years, algorithms researchers have made considerable innovations, and even obtained polynomial-
time approximation schemes (PTAS’s) for some of the most popular clustering formulations. Yet these
contributions have not had a noticeable impact on practice. Practitioners instead continue to use a variety of
heuristics (Lloyd, EM, agglomerative methods, etc.) that have no known performance guarantees.

There are two ways to approach this disjuncture. The most obvious is to continue developing new tech-
niques until they are so good—down to the implementations—that they displace entrenched methods. The
other is to look toward popular heuristics and ask whether there are reasons that justify their extensive use,
but elude the standard theoretical criteria; and in addition, whether theoretical scrutiny suggests improve-
ments in their application. This is the approach we take in this paper.

As in other prominent cases [48, 42], such an analysis typically involves some abandonment of the
worst-case inputs criterion. (In fact, part of the challenge is to identify simple conditions on the input, that
allow one to prove a performance guarantee of wide applicability.) Our starting point is the notion that (as

∗rafail@cs.ucla.edu Computer Science Department, University of California at Los Angeles, 90095, USA. Supported
in part by IBM Faculty Award, Xerox Innovation Group Award, a gift from Teradata, Intel equipment grant, and NSF Cybertrust
grant no. 0430254.

†rabani@cs.technion.ac.il. Computer Science Department, Technion — Israel Institute of Technology, Haifa 32000,
Israel. Part of this work was done while visiting UCLA and Caltech. Supported in part by ISF 52/03, BSF 2002282, and the Fund
for the Promotion of Research at the Technion.

‡schulman@caltech.edu. Caltech, Pasadena, CA 91125. Supported in part by NSF CCF-0515342, NSA H98230-06-1-
0074, and NSF ITR CCR-0326554.

§cswamy@math.uwaterloo.ca. Dept. of Combinatorics and Optimization, Univ. Waterloo, Waterloo, ON N2L 3G1.
Research supported partially by NSERC grant 327620-09 and an Ontario Early Researcher Award. Work done while the author
was a postdoctoral scholar at Caltech.

1

discussed in [46]) one should be concerned with k-clustering data that possesses a meaningful k-clustering.
What does it mean for the data to have a meaningful k-clustering? Here are two examples of settings where
one would intuitively not consider the data to possess a meaningful k-clustering. If nearly optimum cost can
be achieved by two very different k-way partitions of the data then the identity of the optimal partition carries
little meaning (for example, if the data was generated by random sampling from a source, then the optimal
cluster regions might shift drastically upon resampling). Alternatively, if a near-optimal k-clustering can
be achieved by a partition into fewer than k clusters, then that smaller value of k should be used to cluster
the data. If near-optimal k-clusterings are hard to find only when they provide ambiguous classification or
marginal benefit (i.e., in the absence of a meaningful k-clustering), then such hardness should not be viewed
as an acceptable obstacle to algorithm development. Instead, the performance criteria should be revised.

Specifically, we consider the k-means formulation of clustering: given a finite set X ⊆ Rd, find k points
(“centers”) to minimize the sum over all points x ∈ X of the squared distance between x and the center
to which it is assigned. In an optimal solution, each center is assigned the data in its Voronoi region and is
located at the center of mass of this data. Perhaps the most popular heuristic used for this problem is Lloyd’s
method, which consists of the following two phases: (a) “Seed” the process with some initial centers (the
literature contains many competing suggestions of how to do this); (b) Iterate the following Lloyd step until
the clustering is “good enough”: cluster all the data in the Voronoi region of a center together, and then
move the center to the centroid of its cluster.

Although Lloyd-style methods are widely used, to our knowledge, there is no known mathematical
analysis that attempts to explain or predict the performance of these heuristics. In this paper, we take the
first step in this direction. We show that if the data is well-clusterable according to a certain “clusterability”
or “separation” condition (that we introduce and discuss below), then various Lloyd-style methods do indeed
perform well and return a provably near-optimal clustering. Our contributions are threefold:

(a) We introduce a separation condition and justify it as a reasonable abstraction of well-clusterability
for the analysis of k-means clustering algorithms. Our condition is simple, and abstracts a notion of
well-clusterability alluded to earlier: letting ∆2

k(X) denote the cost of an optimal k-means solution of
input X , we say that X is ε-separated for k-means if ∆2

k(X)/∆2
k−1(X) ≤ ε2. (A similar condition

for k = 2 was used for `2
2 edge-cost clustering in [46].)

Our motivation for proposing this condition is that a significant drop in the k-clustering cost is already
used by practitioners as a diagnostic for choosing the value of k ([14] §10.10). Furthermore, we show
that: (i) The data satisfies our separation condition if and only if it satisfies the other intuitive notion
of well clusterability suggested earlier, namely that any two low-cost k-clusterings disagree on only a
small fraction of the data; and (ii) The condition is robust under noisy (even adversarial) perturbation
of the data. In Section 5 we prove rigorous versions of (i) and (ii).

(b) We present a novel and efficient sampling process for seeding Lloyd’s method with initial centers,
which allows us to prove the effectiveness of these methods.

(c) We demonstrate the effectiveness of (our variants of) the Lloyd heuristic under the separation con-
dition. Specifically: (i) Our simplest variant uses only the new seeding procedure, requires a single
Lloyd-type descent step, and achieves a constant-factor approximation in time linear in |X|. This
algorithm has success probability exponentially small in k, but we show that (ii) a slightly more
complicated seeding process based on our sampling procedure yields a constant-factor approximation
guarantee with constant probability, again in linear time. Since only one run of seeding+descent is re-
quired in both algorithms, these are candidates for being faster in practice than currently used Lloyd
variants, which are used with multiple re-seedings and many Lloyd steps per re-seeding. (iii) We
also give a PTAS by combining our seeding process with a sampling procedure of Kumar, Sabharwal
and Sen [30], whose running time is linear in |X| and exponential in k. This PTAS is significantly

2

faster, and also simpler, than the PTAS of Kumar et al. [30] (applying the separation condition to both
algorithms; the latter does not run faster under the condition).

Literature and problem formulation. Let X ⊆ Rd be the given point set and n = |X|. In the k-means
problem, the objective is to partition X into k clusters X̄1, . . . , X̄k and assign each point in every cluster
X̄i to a common center c̄i ∈ Rd, so as to minimize the “k-means cost”

∑k
i=1

∑
x∈X̄i

‖x − c̄i‖2, where
‖.‖ denotes the `2 norm. We let ∆2

k(X) denote the optimum k-means cost. Observe that given the centers
c̄1, . . . , c̄k, it is easy to determine the best clustering corresponding to these centers: cluster X̄i simply
consists of all points x ∈ X for which c̄i is the nearest center (breaking ties arbitrarily). Conversely given a
clustering X̄i, . . . , X̄k, the best centers corresponding to this clustering are obtained by setting c̄i to be the
center of mass (centroid) of cluster Xi, that is, setting c̄i = 1

|X̄i|
·
∑

x∈X̄i
x. It follows that both of these

properties simultaneously hold in an optimal solution, that is, c̄i is the centroid of cluster X̄i, and each point
in X̄i has c̄i as its nearest center.

The problem of minimizing the k-means cost is one of the earliest and most intensively studied formu-
lations of the clustering problem, both because of its mathematical elegance and because it bears closely
on statistical estimation of mixture models of k point sources under spherically symmetric Gaussian noise.
We briefly survey the most relevant literature here. The k-means problem seems to have been first con-
sidered by Steinhaus in 1956 [49]. A simple greedy iteration to minimize cost was suggested in 1957
by Lloyd [32] (and less methodically in the same year by Cox [9]; also apparently by psychologists be-
tween 1959-67 [50]). This and similar iterative descent methods soon became the dominant approaches
to the problem [35, 33, 12, 31] (see also [19, 20, 24] and the references therein); they remain so today,
and are still being improved [1, 43, 45, 28]. Lloyd’s method (in any variant) converges only to local op-
tima however, and is sensitive to the choice of the initial centers [38]. Consequently, a lot of research has
been directed toward seeding methods that try to start off Lloyd’s method with a good initial configura-
tion [18, 29, 17, 23, 47, 5, 36, 44]. Very few theoretical guarantees are known about Lloyd’s method or
its variants. The convergence rate of Lloyd’s method has recently been investigated in [10, 22, 2] and in
particular, [2] shows that Lloyd’s method can require a superpolynomial number of iterations to converge.

The k-means problem is NP-hard even for k = 2 [13]. Recently there has been substantial progress in
developing approximation algorithms for this problem. Matoušek [34] gave the first PTAS for this problem,
with running time polynomial in n, for a fixed k and dimension. Subsequently a succession of algorithms
have appeared [41, 4, 11, 15, 16, 21, 30] with varying runtime dependency on n, k and the dimension. The
most recent of these is the algorithm of Kumar, Sabharwal and Sen [30], which presents a linear time PTAS
for a fixed k. There are also various constant-factor approximation algorithms for the related k-median
problem [26, 7, 6, 25, 37], which also yield approximation algorithms for k-means, and have running time
polynomial in n, k and the dimension; recently Kanungo et al. [27] adapted the k-median algorithm of [3]
to obtain a (9 + ε)-approximation algorithm for k-means.

However, none of these methods match the simplicity and speed of the popular Lloyd’s method. Re-
searchers concerned with the runtime of Lloyd’s method bemoan the need for n nearest-neighbor compu-
tations in each descent step [28] ! Interestingly, the last reference provides a data structure that provably
speeds up the nearest-neighbor calculations of Lloyd descent steps, under the condition that the optimal
clusters are well-separated. (This is unrelated to providing performance guarantees for the outcome.) Their
data structure may be used in any Lloyd-variant, including ours, and is well suited to the conditions under
which we prove performance of our method; however, ironically, it may not be worthwhile to precompute
their data structure since our method requires so few descent steps.

3

2 Preliminaries

We use the following notation throughout. For a point set S, we use ctr(S) to denote the center of mass of
S. Let partition X1 ∪ · · · ∪Xk = X be an optimal k-means clustering of the input X , and let ci = ctr(Xi)
and c = ctr(X). So ∆2

k(X) =
∑k

i=1

∑
x∈Xi

‖x − ci‖2 =
∑k

i=1 ∆2
1(Xi). Let ni = |Xi|, n = |X|, and

r2
i = ∆2

1(Xi)
ni

, that is, r2
i is the “mean squared error” in cluster Xi. Define Di = minj 6=i ‖cj − ci‖. We

assume throughout that X is ε-separated for k-means, that is, ∆2
k(X) ≤ ε2∆2

k−1(X), where 0 < ε ≤ ε0
with ε0 being a suitably small constant. We use the following basic lemmas quite frequently.

Lemma 2.1 For every x,
∑

y∈X ‖x− y‖2 = ∆2
1(X)+n‖x− c‖2. Hence

∑
{x,y}⊆X ‖x− y‖2 = n∆2

1(X).

Lemma 2.2 Consider any set S ⊆ Rd and any partition S1 ∪ S2 of S with S1 6= ∅. Let s, s1, s2 denote
respectively ctr(S), ctr(S1), ctr(S2). Then, (i) ∆2

1(S) = ∆2
1(S1) + ∆2

1(S2) + |S1||S2|
|S| ‖s1 − s2‖2, and (ii)

‖s1 − s‖2 ≤ ∆2
1(S)
|S| ·

|S2|
|S1| .

Proof : Let a = |S1| and b = |S2| = |S| − |S1|. We have

∆2
1(S) =

∑
x∈S1

‖x− s‖2 +
∑
x∈S2

‖x− c‖2

=
(
∆2

1(S1) + a‖s1 − s‖2
)

+
(
∆2

1(S2) + b‖s2 − s‖2
)

(by Lemma 2.1)

= ∆2
1(S1) + ∆2

1(S2) + ab
a+b · ‖s1 − s2‖2.

The second equality follows from Lemma 2.1 by noting that s is also the center of mass of the point set
where a points are located at s1 and b points are located at s2, and so the optimal 1-means cost of this
point set is given by a‖s1 − s‖2 + b‖s2 − s‖2. This proves part (i). Part (ii) follows by substituting
‖s1 − s‖ = ‖s1 − s2‖ · b/(a + b) in part (i) and dropping the ∆2

1(S1) and ∆2
1(S2) terms.

3 The 2-means problem

We first consider the 2-means case. We assume that the input X is ε-separated for 2-means. We present
an algorithm that returns a solution of cost at most

(
1 + f(ε)

)
∆2

2(X) in linear time, for a suitably defined
function f that satisfies limε→0 f(ε) = 0. An appealing feature of our algorithm is its simplicity, both
in description and analysis. In Section 4, where we consider the k-means case, we will build upon this
algorithm to obtain both a linear time constant-factor (of the form 1 + f(ε)) approximation algorithm and a
PTAS with running time exponential in k, but linear in n, d.

The chief algorithmic novelty in our 2-means algorithm is a non-uniform sampling process to pick two
seed centers. Our sampling process is very simple: we pick the pair x, y ∈ X with probability proportional
to ‖x − y‖2. This biases the distribution towards pairs that contribute a large amount to ∆2

1(X) (noting
that n∆2

1(X) =
∑

{x,y}⊆X ‖x − y‖2). We emphasize that, as improving the seeding is the only way to get
Lloyd’s method to find a high-quality clustering, the topic of picking the initial seed centers has received
much attention in the experimental literature (see, e.g., [44] and references therein). However, to the best
of our knowledge, this simple and intuitive seeding method is new to the vast literature on the k-means
problem. By putting more weight on pairs that contribute a lot to ∆2

1(X), the sampling process aims to pick
the initial centers from the cores of the two optimal clusters. We define the core of a cluster precisely later,
but loosely speaking, it consists of points in the cluster that are significantly closer to this cluster-center than
to any other center. Lemmas 3.1 and 3.2 make the benefits of this approach precise. Thus, in essence, we

4

are able to leverage the separation condition to nearly isolate the optimal centers. Once we have the initial
centers within the cores of the two optimal clusters, we show that a simple Lloyd-like step, which is also
simple to analyze, yields a good performance guarantee: we consider a suitable ball around each center and
move the center to the centroid of this ball to obtain the final centers. This “ball-k-means” step is adopted
from Effros and Schulman [16], where it is shown that if the k-means cost of the current solution is small
compared to ∆2

k−1(X) (which holds for us since the initial centers lie in the cluster-cores) then a Lloyd
step followed by a ball-k-means step yields a clustering of cost close to ∆2

k(X). In our case, we are able to
eliminate the Lloyd step, and show that the ball-k-means step alone guarantees a good clustering.

1. Sampling. Randomly select a pair of points from the set X to serve as the initial centers, picking the
pair x, y ∈ X with probability proportional to ‖x− y‖2. Let ĉ1, ĉ2 denote the two picked centers.

2. “Ball-k-means” step. For each ĉi, consider the ball of radius ‖ĉ1 − ĉ2‖/3 around ĉi and compute
the centroid c̄i of the portion of X in this ball. Return c̄1, c̄2 as the final centers.

Running time The entire algorithm runs in time O(nd). Step 2 clearly takes only O(nd) time. We show
that the sampling step can be implemented to run in O(nd) time. Consider the following two-step sampling

procedure: (a) first pick center ĉ1 by choosing a point x ∈ X with probability equal to
P

y∈X ‖x−y‖2P
x,y∈X ‖x−y‖2 =(

∆2
1(X) + n‖x− c‖2

)
/2n∆2

1(X) (using Lemma 2.1); (b) pick the second center by choosing point y ∈ X
with probability equal to ‖y− ĉ1‖2/

(
∆2

1(X)+n‖c− ĉ1‖2
)
. This two-step sampling procedure is equivalent

to the sampling process in step 1, that is, it picks pair x1, x2 ∈ X with probability ‖x1−x2‖2P
{x,y}⊆X ‖x−y‖2 . Each

step takes only O(nd) time since ∆2
1(X) can be precomputed in O(nd) time.

Analysis The analysis hinges on the important fact that under the separation condition, the radius ri of
each optimal cluster is substantially smaller than the inter-cluster separation ‖c1 − c2‖ (Lemma 3.1). This
allows us to show in Lemma 3.2 that with high probability, each initial center ĉi lies in the core (suitably
defined) of a distinct optimal cluster, say Xi, and hence ‖c1− c2‖ is much larger than the distances ‖ĉi− ci‖
for i = 1, 2. Assuming that ĉ1, ĉ2 lie in the cores of the clusters, we prove in Lemma 3.3 that the ball around
ĉi contains only, and most of the mass of cluster Xi, and therefore the centroid c̄i of this ball is very “close”
to ci. This in turn implies that the cost of the clustering around c̄1, c̄2 is small.

Lemma 3.1 max(r2
1, r

2
2) ≤ ε2

1−ε2
‖c1 − c2‖2 = O(ε2)‖c1 − c2‖2.

Proof : By part (i) of Lemma 2.2 we have ∆2
1(X) = ∆2

2(X) + n1n2
n · ‖c1 − c2‖2 which is equivalent to

n
n1n2

·∆2
2(X) = ‖c1 − c2‖2

∆2
2(X)

∆2
1(X)−∆2

2(X)
. This implies that r2

1 · n
n2

+ r2
2 · n

n1
≤ ε2

1−ε2
‖c1 − c2‖2.

Let ρ = 100ε2

1−ε2
. We require that ρ < 1. We define the core of cluster Xi as the set Xcor

i =
{
x ∈ Xi :

‖x− ci‖2 ≤
r2
i
ρ

}
. By Markov’s inequality, |Xcor

i | ≥ (1− ρ)ni for i = 1, 2.

Lemma 3.2 Pr [{ĉ1, ĉ2} ∩Xcor
1 6= ∅ and {ĉ1, ĉ2} ∩Xcor

2 6= ∅] = 1−O(ρ).

Proof : To simplify our expressions, we assume that all the points are scaled by 1
‖c1−c2‖ (so ‖c1−c2‖ = 1).

By part (i) of Lemma 2.2, we have ∆2
1(X) = ∆2

2(X) + n1n2
n · ‖c1 − c2‖2 which implies that ∆2

1(X) ≤
n1n2

n(1−ε2)
. Let c′i denote the center of mass of Xcor

i . Applying part (ii) of Lemma 2.2 (taking S = Xi and
S1 = Xcor

i) we get that ‖c′i − ci‖2 ≤ ρ
1−ρ · r

2
i . The probability of the event in the lemma is A/B where

A =
∑

x∈Xcor
1

∑
y∈Xcor

2
‖x − y‖2 = |Xcor

1 |∆2
1(X

cor
2) + |Xcor

2 |∆2
1(X

cor
1) + |Xcor

1 ||Xcor
2 |‖c′1 − c′2‖2, and

5

B =
∑

{x,y}⊆X ‖x − y‖2 = n∆2
1(X) ≤ n1n2

1−ε2
. By the above bounds on ‖c′i − ci‖ and Lemma 3.1, we get

‖c′1 − c′2‖ ≥ 1− 2ε
√

ρ
(1−ρ)(1−ε2)

. So A =
(
1−O(ρ)

)
n1n2, and A/B =

(
1−O(ρ)

)
.

So we may assume that each initial center ĉi lies in Xcor
i . Let d̂ = ‖ĉ1 − ĉ2‖ and Bi = {x ∈ X :

‖x− ĉi‖ ≤ d̂/3}. Recall that c̄i is the centroid of Bi, and we return c̄1, c̄2 as our final solution.

Lemma 3.3 For each i, we have Xcor
i ⊆ Bi ⊆ Xi. Hence, ‖c̄i − ci‖2 ≤ ρ

1−ρ · r
2
i .

Proof : By Lemma 3.1 and the definition of Xcor
i , we know that ‖ĉi− ci‖ ≤ θ‖c1− c2‖ for i = 1, 2 where

θ = ε√
ρ(1−ε2)

≤ 1
10 . So 4

5 ≤
d̂

‖c1−c2‖ ≤
6
5 . For any x ∈ Bi we have ‖x− ci‖ ≤ d̂

3 + ‖ĉi− ci‖ ≤ ‖c1−c2‖
2 , so

x ∈ Xi. Also for any x ∈ Xcor
i , ‖x− ĉi‖ ≤ 2θ‖c1 − c2‖ ≤ d̂

3 , so x ∈ Bi. Now by part (ii) of Lemma 2.2,
with S = Xi and S1 = Bi, we obtain that ‖c̄i − ci‖2 ≤ ρ

1−ρ · r
2
i since |Bi| ≥ |Xcor

i | for each i.

Theorem 3.4 The above algorithm returns a clustering of cost at most ∆2
2(X)
1−ρ with probability at least

1−O(ρ) in time O(nd), where ρ = Θ(ε2).

Proof : The cost of the solution is at most
∑

i,x∈Xi
‖x− c̄i‖2 =

∑
i

(
∆2

1(Xi) + ni‖c̄i − ci‖2
)
≤ ∆2

2(X)
1−ρ .

4 The k-means problem

We now consider the k-means setting. We assume that ∆2
k(X) ≤ ε2∆2

k−1(X). We describe a linear
time constant-factor approximation algorithm, and a PTAS that returns a (1 + ω)-optimal solution in time
O

(
2O(k/w)nd

)
. The algorithms consist of various ingredients, which we describe separately first for ease of

understanding, before gluing them together to obtain the final algorithm.
Conceptually both algorithms proceed in two stages. The first stage is a seeding stage, which performs

the bulk of the work and guarantees that at the end of this stage there are k seed centers positioned at nearly
the right locations. By this we mean that if we consider distances at the scale of the inter-cluster separation,
then at the end of this stage, each optimal center has a (distinct) initial center located in close proximity
— this is precisely the leverage that we obtain from the k-means separation condition (as in the 2-means
case). We shall employ three simple seeding procedures with varying time vs. quality guarantees that will
exploit this condition and seed the k centers at locations very close to the optimal centers. In Section 4.1.1,
we consider a natural generalization of the sampling procedure used for the 2-means case, and show that
this picks the k initial centers from the cores of the optimal clusters. This sampling procedure runs in
linear time but it succeeds with probability that is exponentially small in k. In Section 4.1.2, we present a
very simple deterministic greedy deletion procedure, where we start off with all points in X as the centers
and then greedily delete points (and move centers) until there are k centers left. The running time here is
O(n3d). Our deletion procedure is similar to the reverse greedy algorithm proposed by Chrobak, Kenyon
and Young [8] for the k-median problem. Chrobak et al. show that their reverse greedy algorithm attains
an approximation ratio of O(log n), which is tight up to a factor of log log n. In contrast, for the k-means
problem, if ∆2

k(X) ≤ ε2∆2
k−1(X), we show that our greedy deletion procedure followed by a clean-up step

(in the second stage) yields a
(
1 + f(ε)

)
-approximation algorithm.Finally, in Section 4.1.3 we combine the

sampling and deletion procedures to obtain an O(nkd+k3d)-time initialization procedure. We sample O(k)
centers, which ensures that every cluster has an initial center in a slightly expanded version of the core, and
then run the deletion procedure on an instance of size O(k) derived from the sampled points to obtain the k
seed centers.

6

Once the initial centers have been positioned sufficiently close to the optimal centers, we can proceed in
two ways in the second-stage (Section 4.2). One option is to use a ball-k-means step, as in 2-means, which
yields a clustering of cost

(
1 + f(ε)

)
∆2

k(X) due to exactly the same reasons as in the 2-means case. Thus,
combined with the initialization procedure of Section 4.1.3, this yields a constant-factor approximation
algorithm with running time O(nkd + k3d). The entire algorithm is summarized in Section 4.3.

The other option, which yields a PTAS, is to use a sampling idea of Kumar et al. [30]. For each initial
center, we compute a list of candidate centers for the corresponding optimal cluster as follows: we sample
a small set of points uniformly at random from a slightly expanded Voronoi region of the initial center, and
consider the centroid of every subset of the sampled set of a certain size as a candidate. We exhaustively
search for the k candidates (picking one candidate per initial center) that yield the least cost solution, and
output these as our final centers. The fact that each optimal center ci has an initial center in close proximity
allows us to argue that the entire optimal cluster Xi is contained in the expanded Voronoi region of this
initial center, and moreover that |Xi| is a significant fraction of the total mass in this region. Given this
property, as argued by Kumar et al. (Lemma 2.3 in [30]), a random sample from the expanded Voronoi
region also (essentially) yields a random sample from Xi, which allows us to compute a good estimate of
the centroid of Xi, and hence of ∆2

1(Xi). We obtain a (1 + ω)-optimal solution in time O
(
2O(k/ω)nd

)
with constant probability. Since we incur an exponential dependence on k anyway, we just use the simple
sampling procedure of Section 4.1.1 in the first-stage to pick the k initial centers. Although the running
time is exponential in k, it is significantly better than the running time of O

(
2(k/ω)O(1)

nd
)

incurred by
the algorithm of Kumar et al.; we also obtain a simpler PTAS. Both of these features can be traced to the
separation condition, which enables us to nearly isolate the positions of the optimal centers in the first stage.
Kumar et al. do not have any such facility, and therefore need to sequentially “guess” (i.e., exhaustively
search) the various centroids, incurring a corresponding increase in the run time. This PTAS is described in
Section 4.4.

The following lemma, which is a simple extension of Lemma 3.1 to the k-means case and is proved via
an almost identical argument, will be used repeatedly.

Lemma 4.1 For every i, we have r2
i ≤ ε2

1−ε2
·minj 6=i ‖ci − cj‖2.

4.1 Seeding procedures used in stage I

4.1.1 Sampling

We pick k initial centers as follows: first pick two centers ĉ1, ĉ2 as in the 2-means case, that is, choose
x, y ∈ X with probability proportional to ‖x − y‖2. Suppose we have already picked i centers ĉ1, . . . , ĉi

where 2 ≤ i < k. Now pick a random point x ∈ X with probability proportional to minj∈{1,...,i} ‖x− ĉj‖2
and set that as center ĉi+1.

Running time The sampling procedure consists of k iterations, each of which takes O(nd) time. This is
because after sampling a new point ĉi+1, we can update the quantity minj∈{1,...,i+1} ‖x− ĉj‖ for each point
x in O(d) time. So the overall running time is O(nkd).

Analysis Let ε2 � ρ < 1 be a parameter that we will set later. As in the 2-means case, we define the core
of cluster Xi as Xcor

i =
{
x ∈ Xi : ‖x − ci‖2 ≤

r2
i
ρ

}
. We show that under our separation assumption, the

above sampling procedure will pick the k initial centers to lie in the cores of the clusters X1, . . . , Xk with
probability

(
1−O(ρ)

)k. We also show in Lemma 4.5 that if more than k, but still O(k), points are sampled,
then with constant probability, every cluster will contain a sampled point that lies in a somewhat larger core,
that we call the outer core of the cluster. This analysis will be useful in Section 4.1.3.

7

Lemma 4.2 With probability 1− O(ρ), the first two centers ĉ1, ĉ2 lie in the cores of different clusters, that
is, Pr[

⋃
i6=j(x ∈ Xcor

i and y ∈ Xcor
j)] = 1−O(ρ).

Proof : The key observation is that for any pair of distinct clusters Xi, Xj , the 2-means separation condition
holds, that is, ∆2

2(Xi ∪Xj) = ∆2
1(Xi) + ∆2

1(Xj) ≤ ε2∆2
1(Xi ∪Xj). This is because

∆2
k−1(X) ≤

∑
` 6=i,j

∆2
1(X`) + ∆2

1(Xi ∪Xj) = ∆2
k(X) +

(
∆2

1(Xi ∪Xj)−∆2
2(Xi ∪Xj)

)
.

So ∆2
1(Xi ∪Xj) −∆2

2(Xi ∪Xj) ≥
(

1
ε2
− 1

)
∆2

k(X) ≥
(

1
ε2
− 1

)
∆2

2(Xi ∪Xj). So using Lemma 3.2 we
obtain that

∑
x∈Xcor

i ,y∈Xcor
j
‖x − y‖2 =

(
1 − O(ρ)

) ∑
{x,y}⊆Xi∪Xj

‖x − y‖2. Summing over all pairs i, j

yields the lemma.

Now inductively suppose that the first i centers picked ĉ1, . . . , ĉi lie in the cores of clusters Xj1 , . . . , Xji .
We show that conditioned on this event, center ĉi+1 lies in the core of some cluster X` where ` /∈ {j1, . . . , ji}
with probability 1−O(ρ). Given a set S of points, we use d(x, S) to denote miny∈S ‖x− y‖.

Lemma 4.3 Pr
[
ĉi+1 ∈

⋃
`/∈{j1,...,ji} Xcor

` | ĉ1, . . . , ĉi lie in the cores of Xj1 , . . . , Xji

]
= 1−O(ρ).

Proof : For notational convenience, re-index the clusters so that {j1, . . . , ji} = {1, . . . ,m}. Let Ĉ =
{ĉ1, . . . , ĉi}. For any cluster Xj , let pj ∈ {1, . . . , i} be the index such that d(cj , Ĉ) = ‖cj − ĉpj‖. Let
A =

∑k
j=m+1

∑
x∈Xcor

j
d(x, Ĉ)2, and B =

∑k
j=1

∑
x∈Xj

d(x, Ĉ)2. Observe that the probability of the
event stated in the lemma is exactly A/B. Let α denote the maximum over all j ≥ m + 1 of the quantity
maxx∈Xcor

j
‖x − cj‖/d(cj , Ĉ). For any point x ∈ Xcor

j , j ≥ m + 1, we have d(x, Ĉ) ≥ (1 − α)d(cj , Ĉ).

Note that by Lemma 4.1, α ≤ ε/
√

ρ(1−ε2)

1−ε/
√

ρ(1−ε2)
≤ 2ε√

ρ(1−ε2)
< 1 for a small enough ρ. Therefore,

A =
k∑

j=m+1

∑
x∈Xcor

j

d(x, Ĉ)2 ≥
k∑

j=m+1

(1− ρ)(1− α)2njd(cj , Ĉ)2 ≥ (1− ρ− 2α)
k∑

j=m+1

njd(cj , Ĉ)2.

On the other hand, for any point x ∈ Xj , j = 1, . . . , k, we have d(x, Ĉ) ≤ ‖x− ĉpj‖. Also note that for
j = 1, . . . ,m, ĉpj lies in Xcor

j , so ‖cj − ĉpj‖ ≤
rj√
ρ . Therefore,

B ≤
k∑

j=1

∑
x∈Xj

‖x− ĉpj‖2 ≤
k∑

j=1

(
∆2

1(Xj) + nj‖cj − ĉpj‖2
)
≤

(
1 +

1
ρ

)
∆2

k(X) +
k∑

j=m+1

njd(cj , Ĉ)2.

Finally, for any j = m+1, . . . k, if we assign all the points in cluster Xj to the point ĉpj , then the increase
in cost is exactly nj‖cj − ĉpj‖2 and at least ∆2

k−1(X)−∆2
k(X). Therefore

(
1
ε2
− 1

)
∆2

k(X) ≤ njd(cj , Ĉ)2

for any j = m + 1, . . . , k, and B ≤ 1+ε2/ρ
1−ε2

∑k
j=m+1 njd(cj , Ĉ)2. Comparing with A and plugging in the

value of α, we get that A =
(
1−O(ρ + ε√

ρ)
)
B. If we set ρ = Ω(ε2/3), we obtain A/B = 1−O(ρ).

Next, we analyze the case when more than k points are sampled. Let ρ1 = ρ3. Define the outer core
of Xi to be Xout

i = {x ∈ Xi : ‖x − ci‖2 ≤
r2
i

ρ1
}. Note that Xcor

i ⊆ Xout
i . Let N = 2k

1−5ρ + 2 ln(2/δ)
(1−5ρ)2

where 0 < δ < 1 is a desired error tolerance. We prove in Lemma 4.4 that at every sampling step, there is a
constant probability that the sampled point lies in the core of some cluster whose outer core does not contain
a previously sampled point. The crucial difference between this lemma and Lemma 4.3, is that Lemma 4.3
only shows that the “good” event happens conditioned on the fact that previous samples were also “good”,

8

whereas here we give an unconditional bound. Using this, Lemma 4.5 shows that if we sample N points
from X , then with some constant probability, each outer core Xout

i will contain a sampled point. The proof
is based on a straightforward martingale analysis.

Lemma 4.4 Suppose that we have sampled i points {x̂1, . . . , x̂i} from X . Let X1, . . . , Xm be all the
clusters whose outer cores contain some sampled point x̂j . Then Pr[x̂i+1 ∈

⋃k
j=m+1 Xcor

j] ≥ 1− 5ρ.

Proof : For i = 0, 1 this follows from Lemma 4.2. We mimic the proof of Lemma 4.3. Let Ĉ =
{x̂1, . . . , x̂i}. We have Xout

j ∩ Ĉ 6= ∅ for j = 1, . . . ,m and Xout
j ∩ Ĉ = ∅ for j = m + 1, . . . , k. Let α

denote the maximum over all j ≥ m + 1 of the quantity (maxx∈Xcor
j
‖x − cj‖)/d(cj , Ĉ). Here we have

α ≤
√

ρ1/ρ < 1. Then for any point x ∈ Xcor
j , j ≥ m + 1, we have d(x, Ĉ) ≥ (1− α)d(cj , Ĉ) and as in

Lemma 4.3, A =
∑k

j=m+1

∑
x∈Xcor

j
d(x, Ĉ)2 ≥ (1 − ρ − 2α)

∑k
j=m+1 njd(cj , Ĉ)2. On the other hand,

again arguing as in Lemma 4.3, we have B =
∑k

j=1

∑
x∈Xj

d(x, Ĉ)2 ≤ 1+ε2/ρ1

1−ε2
∑k

j=m+1 njd(cj , Ĉ)2.

Therefore A/B ≥ 1−
(
ρ + 2

√
ρ1

ρ + ε2

ρ1
+ ε2

)
. Since ρ1 = ρ3, taking ρ =

√
ε gives A/B ≥ 1− 5ρ.

Lemma 4.5 Suppose we sample N points x̂1, . . . , x̂N from X using the above sampling procedure. Then,
Pr[∀j = 1, . . . , k, there exists some x̂i ∈ Xout

j] ≥ 1− δ.

Proof : Let Yt be a random variable that denotes the number of clusters that do not contain a sampled
point in their outer cores, after t points have been sampled. We want to bound Pr[YN > 0]. Consider the
following random walk on the line with Wt denoting the (random) position after t time steps: W0 = k, and
Wt+1 = Wt with probability 5ρ and Wt−1 with probability 1−5ρ. Notice that Pr[YN > 0] ≤ Pr[WN > 0],
because as long as Wt > 0, any outcome that leads to a left move in the random walk can be mapped to
an outcome (in the probability space corresponding to the sampling process) where the outer core of a new
cluster is hit by the currently sampled point. So we bound Pr[WN > 0]. Define Zt = Wt + t(1 − 5ρ).
Then E

[
Zt+1|Z1, . . . , Zt

]
≤ Zt, so Z0, Z1, . . . forms a supermartingale. Clearly |Zt+1 − Zt| ≤ 1 for

all t. So by Azuma’s inequality (see, e.g., [39]), Pr[ZN − Z0 >
√

2N ln(2/δ)] ≤ δ which implies that
WN ≤ k +

√
2N ln(2/δ)−N(1− 5ρ) with probability at least 1− δ. Plugging the value of N shows that

N(1− 5ρ)−
√

2N ln(2/δ) ≥ k.

Corollary 4.6 (i) If we sample k points ĉ1, . . . , ĉk, then with probability
(
1−O(ρ)

)k, where ρ = Ω(ε2/3),
for each i there is a distinct center ĉi ∈ Xcor

i , that is, ‖ĉi − ci‖ ≤ ri/
√

ρ.
(ii) If we sample N points x̂1, . . . , x̂N , where N = 2k

1−5ρ + 2 ln(2/ρ)
(1−5ρ)2

and ρ =
√

ε, then with probability

1−O(ρ), for each i there is a distinct point x̂i ∈ Xout
i , that is, ‖x̂i − ci‖ ≤ ri/

√
ρ3.

4.1.2 Greedy deletion procedure

We maintain a set of centers Ĉ that are currently used to cluster X . For any point x ∈ Rd, let R(x) ⊆ X
denote the points of X in the Voronoi region of x (given the set of centers Ĉ). We refer to R(x) as the
Voronoi set of x. Initialize Ĉ ← X . Repeat the following steps until |Ĉ| = k.

B1. Compute T = cost of clustering X around the centers in Ĉ =
∑

x∈Ĉ

∑
y∈R(x) ‖y − x‖2. Also for

every x ∈ Ĉ, compute Tx = cost of clustering X around Ĉ \ {x} =
∑

z∈Ĉ\{x}
∑

y∈R−x(z) ‖y− z‖2,

where R−x(z) denotes the Voronoi set of z given the center set Ĉ \ {x}.

B2. Pick the center y ∈ Ĉ for which Tx − T is minimum and set Ĉ ← Ĉ \ {y}.

9

B3. Recompute the Voronoi sets R(x) = R−y(x) ⊆ X for each (remaining) center x ∈ Ĉ. Now we
“move” the centers to the centroids of their respective (new) Voronoi sets, that is, for every set R(x),
we update Ĉ ← Ĉ \ {x} ∪ {ctr(R(x))}.

Running time There are n− k iterations of the B1-B3 loop. Each iteration takes O(n2d) time: computing
T and the sets R(x) for each x takes O(n2d) time and we can then compute each Tx in O(|R(x)|d) time
(since while computing T , we can also compute for each point its second-nearest center in Ĉ). Therefore
the overall running time is O(n3d).

Analysis Let ρ be a parameter such that ρ ≤ 1
10 , ε/

√
ρ(1− ε2) ≤ 1

14 . Recall that Di = minj 6=i ‖cj− ci‖.
Define d2

i = ∆2
k(X)/ni. We will use a different notion of a cluster-core here, but the notion will still capture

the fact that the core consists of points that are quite close to the cluster-center compared to the inter-cluster
distance, and contains most of the mass of the cluster. Let B(x, r) = {y ∈ Rd : ‖x − y‖ ≤ r} denote
the ball of radius r centered at x. Define the kernel of Xi to be the ball Zi = B(ci, di/

√
ρ) and the core of

Xi as Xcor
i = Xi ∩ Zi. Observe that ri ≤ di, so by Markov’s inequality |Xcor

i | ≥ (1 − ρ)ni. Also, since
∆2

k−1(X)−∆2
k(X) ≤ niD

2
i we have that d2

i ≤ D2
i · ε2

1−ε2
. Therefore, Xcor

i = X ∩ Zi. We prove that,

at the start of every iteration, for every i, there is a (distinct) center x ∈ Ĉ that lies in Zi. (*)

Clearly (*) holds at the beginning, since Ĉ = X and Xcor
i 6= ∅ for every cluster Xi. First we show

(Lemma 4.7) that if x ∈ Ĉ is the only center that lies in a slightly enlarged version of the ball Zi for some i,
then x is not deleted . Lemma 4.8 then makes the crucial observation that even after a center y is deleted, if
the new Voronoi region R−y(x) of a center x ∈ Ĉ captures points from Xcor

i , then R−y(x) cannot “extend”
too far into some other cluster Xi, that is, for x′ ∈ R−y(x) ∩Xj where j 6= i, ‖y − ci‖ is not much larger
than ‖y − cj‖. It will then follow that invariant (*) is maintained.

Lemma 4.7 Suppose (*) holds at the start of an iteration, and x ∈ Ĉ is the only center in B
(
ci,

4di√
ρ

)
for

some cluster Xi, then x ∈ Ĉ after step B2.

Proof : Since property (*) holds, we also know that x ∈ Zi and so Xcor
i ⊆ R(x) ∩Xi. If x is deleted in

step B2 then all points in Xcor
i will be reassigned to a center at least 4di√

ρ away from ci. So the cost-increase

Tx − T is at least A = 5(1−ρ)
ρ · nid

2
i = 5(1−ρ)

ρ · ∆2
k(X). Now since |Ĉ| > k, there is some j (j could be

i) such that the Voronoi region of cj (with respect to the optimal center-set) contains at least two centers
from Ĉ. We will show that deleting one of these centers will be less expensive than deleting x. Let z` ∈ Ĉ
be the center closest to c` for ` = 1, . . . , k. Note that z` ∈ Z`. Let y ∈ Ĉ, y 6= zj be another center
in the Voronoi region of cj . Suppose we delete y. We can upper bound the cost-increase Ty − T by the
cost-increase due to the reassignment where we assign all points in Ry ∩X` to z` for ` = 1, . . . , k. For any
x′ ∈ R(y) ∩X` we have ‖x′ − z`‖ ≤ ‖x′ − c`‖ + ‖c` − z`‖ ≤ ‖x′ − c`‖ + d`√

ρ . For ` 6= j, we also have
D` ≤ ‖cj − y‖+ ‖y − c`‖ ≤ 2‖y − c`‖ since cj is closer to y than c`, and

‖y − c`‖ ≤ ‖x′ − c`‖+ ‖x′ − y‖ ≤ ‖x′ − c`‖+ ‖x′ − z`‖ ≤ 2‖x′ − c`‖+ ‖c` − z`‖ ≤ 2‖x′ − c`‖+
d`√
ρ
.

Therefore, D` ≤ 4‖x′ − c`‖+ 2d`√
ρ which implies that

(√
1−ε2

ε − 2√
ρ

)
d` ≤ 4‖x′ − c`‖. Combining this with

the bound on ‖x′− z`‖, we get that for ` 6= j, ‖x′− z`‖ ≤ β‖x′− c`‖ where β = 1 + 4ε√
ρ(1−ε2)−2ε

. Hence,

10

the cost-increase of the reassignment is at most

B =
k∑

`=1

∑
x′∈R(y)∩X`

‖x′ − z`‖2

≤
∑

x′∈R(y)∩Xj

2
(
‖x′ − cj‖2 +

d2
j

ρ

)
+

∑
` 6=j

∑
x′∈R(y)∩X`

β2‖x′ − c`‖2

≤ max(2, β2)∆2
k(X) + 2

ρ · njd
2
j =

(
max(2, β2) + 2

ρ

)
∆2

k(X).

Any ρ satisfying the bounds stated in Section 4.1.2 ensures that A > B (since β < 4
3 and ρ < 3

7). Thus, x
is not the cheapest center to delete, which completes the proof.

Lemma 4.8 Suppose center y ∈ Ĉ is deleted in step B2. Let x ∈ Ĉ \ {y} be such that R−y(x) ∩Xcor
j 6= ∅

for some j. Then for any x′ ∈ R−y(x) ∩X`, ` 6= j we have ‖x′ − cj‖ ≤ ‖x′ − c`‖+ max(d`+6dj ,4d`+3dj)√
ρ .

Proof : Suppose that y lies in the Voronoi region of center ci (wrt. optimal centers). Let Ĉ ′ = Ĉ \ {y}.
There must be a center zi ∈ Ĉ ′ such that ‖zi−ci‖ ≤ 4di√

ρ . If y /∈ Zi, this follows from property (*) otherwise

this follows from Lemma 4.7. For any ` 6= i, we know by property (*) that there is some center z` ∈ Ĉ ′ that
lies in Z`. Let x′′ be a point in R−y(x) ∩Xcor

j . Then,

‖x− cj‖ ≤ ‖x−x′′‖+ ‖x′′− cj‖ ≤ ‖x′′− zj‖+ ‖x′′− cj‖ ≤ ‖zj − cj‖+2‖x′′− cj‖ ≤ ‖zj − cj‖+
2dj√

ρ
.

Now considering the point x′, we have

‖x′ − cj‖ ≤ ‖x′ − x‖+ ‖x− cj‖ ≤ ‖x′ − z`‖+ ‖x− cj‖ ≤ ‖x′ − c`‖+ ‖z` − c`‖+ ‖x− cj‖

≤ ‖x′ − c`‖+ ‖z` − c`‖+ ‖zj − cj‖+
2dj√

ρ
.

If j = i, then we get that, ‖x′ − ci‖ ≤ ‖x′ − c`‖ + d`+6di√
ρ . For any other j, we have that ‖x′ − cj‖ ≤

‖x′ − c`‖+ 4d`+3dj√
ρ (since it could be that ` = i).

Lemma 4.9 Suppose that property (*) holds at the beginning of some iteration in the deletion phase. Then
(*) also holds at the end of the iteration, i.e., after step B3.

Proof : Suppose that we delete center y ∈ Ĉ that lies in the Voronoi region of center ci (wrt. optimal
centers) in step B2. Let Ĉ ′ = Ĉ \ {y} and R′(x) = R−y(x) for any x ∈ Ĉ ′. Fix a cluster Xj . Let
S = {x ∈ Ĉ ′ : R′(x) ∩Xcor

j 6= ∅} and Y =
⋃

x∈S R′(x). We show that there is some set R′(x), x ∈ Ĉ ′

whose centroid ctr(R′(x)) lies in the ball Zj , which will prove the lemma. By Lemma 4.8 and noting
that d2

` ≤
ε2

1−ε2
· D2

` for every `, for any x′ ∈ Y ∩ X` where ` 6= j, we have ‖x′ − cj‖ ≤ ‖x′ − c`‖ +
ε√

ρ(1−ε2)
·max(D` + 6Dj , 4D` + 3Dj). Also Dj , D` ≤ ‖cj − c`‖ ≤ ‖x′ − cj‖+ ‖x′ − c`‖. Substituting

for Dj , D` we get that ‖y − cj‖ ≤ β‖y − c`‖ where β = 1+7ε/
√

ρ(1−ε2)

1−7ε/
√

ρ(1−ε2)
. Using this we obtain that

A =
∑

x′∈Y ‖x′ − cj‖2 ≤ β2
∑k

`=1

∑
x′∈Y ∩X`

‖x′ − c`‖2 ≤ β2∆2
k(X). We also have

A =
∑
x∈S

∑
x′∈R′(x)

‖y−cj‖2 =
∑
x∈S

(
∆2

1(R
′(x))+|R′(x)|‖ctr(R′(x))−cj‖2

)
≥ |Y |min

x∈S
‖ctr(R′(x))−cj‖2.

11

Since Xcor
j ⊆ Y we have |Y | ≥ (1− ρ)nj , so we obtain that minx∈S ‖ctr(R′(x))− cj‖ ≤ β√

1−ρ
· di. The

bounds on ρ ensure that ρβ2

1−ρ ≤ 1, so that minx∈S ‖ctr(R′(x))− cj‖ ≤ dj√
ρ .

Corollary 4.10 After the deletion phase, for every i, there is a center ĉi ∈ Ĉ with ‖ĉi−ci‖ ≤ ε√
ρ(1−ε2)

·Di.

4.1.3 A linear time seeding procedure

We now combine the sampling idea with the deletion procedure to obtain an initialization procedure that
runs in time O(nkd + k3d) and succeeds with high probability. We first sample O(k) points from X using
the sampling procedure. Then we run the deletion procedure on an O(k)-size instance consisting of the
centroids of the Voronoi regions of the sampled, points, with each centroid having a weight equal to the
mass of X in its corresponding Voronoi region. The sampling process will ensure that with high probability,
every cluster Xi contains a point ĉi that is close to its center ci. This will allow us to argue that the ∆2

k(.) cost
of the sampled instance is much smaller than its ∆2

k−1(.) cost, and that the optimal centers for the sampled
instance lie near the optimal centers for X . We can then use the analysis of the previous section to argue that
after the deletion procedure the k centers are still quite close to the optimal centers for the sampled instance,
and hence also close to the optimal centers for X . Fix ρ1 =

√
ε.

C1. Sampling. Sample N = 2k
1−5ρ1

+ 2 ln(2/ρ1)
(1−5ρ1)2

points from X using the sampling procedure of Sec-
tion 4.1.1. Let S denote the set of sampled points.

C2. Deletion phase. For each x ∈ S, let R(x) = {y ∈ X : ‖y − x‖ = minz∈Ŝ ‖y − z‖} be its Voronoi
set (wrt. the sampled points). We now ignore X , and consider a weighted instance Ŝ obtained as
follows: set Ŝ ← {x̂ = ctr(R(x)) : x ∈ S}, and assign each x̂ a weight w(x̂) = |R(x)|. Run the
deletion procedure of Section 4.1.2, on this new instance to obtain k centers ĉ1, . . . , ĉk.

Running time Step C1 takes O(nNd) = O(nkd) time. The run-time analysis of the deletion phase in
Section 4.1.2, shows that step C2 takes O(N3d) = O(k3d) time. So the overall running time is O(nkd +
k3d).

Analysis Recall that ρ1 =
√

ε. Let ρ2 = ρ3
1. Let Xcor

i = {x ∈ Xi : ‖x − ci‖2 ≤
r2
i

ρ1
}. Let Xout

i =

{x ∈ Xi : ‖x − ci‖2 ≤
r2
i

ρ2
} denote the outer core of cluster Xi. By part (ii) of Corollary 4.6 we know

that with probability 1 − O(ρ1), every cluster Xi contains a sampled point in its outer core after step C1.
So assume that this event happens. Let ŝ1, . . . , ŝk denote the optimal k centers for Ŝ and ĉ1, . . . , ĉk be the
centers returned by the deletion phase. Lemma 4.11 shows that the k-means separation condition also holds
for Ŝ, and the optimal centers for Ŝ are close to the optimal centers for X . This will imply that the centers
returned by the deletion phase are close to the optimal centers for X .

Lemma 4.11 (i) ∆2
k(Ŝ) = O(ε2)∆2

k−1(Ŝ). (ii) For every optimal center ci of X , there is a center ŝi such
that ‖ŝi − ci‖ ≤ Di

25 + ri√
ρ1

.

Proof : For each sampled point x ∈ S recall that R(x) ⊆ X denotes its Voronoi set (wrt. S). For
j = 1, . . . , k, let zj ∈ S be a sampled point in Xout

j , so ‖zj − cj‖ ≤ rj√
ρ2

. Consider an optimal (k − 1)-

clustering of Ŝ. We can obtain a (k − 1)-clustering of X from this by assigning all the points in R(x),
where x ∈ S, to the center to which ctr(R(x)) ∈ Ŝ is assigned. The cost-increase in doing so is exactly

12

A =
∑

x∈S ∆2
1(R(x)), so ∆2

k−1(X) ≤ ∆2
k−1(Ŝ)+A. Since ‖y−x‖2 ≤ ‖y−zj‖2 ≤ 2

(
‖y−cj‖2 +

r2
j

ρ2

)
for

any y ∈ R(x) ∩Xj , we obtain that A ≤ 2
(
1 + 1

ρ2

)
∆2

k(X). To upper bound ∆2
k(Ŝ), consider the following

k-clustering of Ŝ: for each x̂ = ctr(R(x)) ∈ Ŝ where x ∈ S ∩Xi, assign x̂ to center ci. To bound the cost
of this assignment, first note that for a point y ∈ R(x) ∩Xj where x ∈ Xi and j 6= i, we have

‖y− ci‖ ≤ ‖y− x‖+ ‖x− ci‖ ≤ ‖y− x‖+ ‖x− cj‖ ≤ 2‖y− x‖+ ‖y− cj‖ ≤ 3‖y− cj‖+ 2‖zj − cj‖.

We also have ‖zj − cj‖ ≤ rj√
ρ2
≤ εDj√

ρ2(1−ε2)
and Dj ≤ ‖y− ci‖+ ‖y− cj‖, which implies that ‖y− ci‖ ≤

β‖y − cj‖ where β = 3+2ε/
√

ρ2(1−ε2)

1−2ε/
√

ρ2(1−ε2)
. Thus,

∆2
k(Ŝ) ≤

k∑
i=1

∑
x∈S∩Xi

|R(x)|‖ctr(R(x))− ci‖2 ≤
k∑

i=1

∑
x∈S∩Xi

∑
y∈R(x)

‖y − ci‖2

≤
k∑

i=1

∑
x∈S∩Xi

(∑
y∈R(x)∩Xi

‖y − ci‖2 +
∑

j 6=i,y∈R(x)∩Xj

β2‖y − cj‖2
)

≤ β2∆2
k(X).

Combining the two bounds we get,

∆2
k−1(S) ≥ ∆2

k−1(X)−A ≥
(1

ε2
− 2− 2

ρ2

)
∆2

k(X) ≥ 1/ε2 − 2− 2/ρ2

β2
·∆2

k(Ŝ).

Since ρ1 =
√

ε and ρ2 = ρ3
1, we get that ∆2

k(Ŝ) = O(ε2)∆2
k−1(Ŝ). This proves part (i).

Consider any center ci. Suppose ‖ŝj−ci‖ > Di/25+ ri√
ρ1

for every point ŝj . Then the cost of clustering

X around the centers ŝ1, . . . , ŝk is at least 1−ρ1

625 · niD
2
i = Ω(ε−2)∆2

k(X). On the other hand, we also have
that the cost of this clustering for X is at most ∆2

k(Ŝ) + A = O(ε−3/2)∆2
k(X), which contradicts with the

earlier bound.

Lemma 4.12 For each center ci, there is a center ĉi such that ‖ĉi − ci‖ ≤ Di
10 .

Proof : Let D̂i = minj 6=i ‖ŝj − ŝi‖. Then (1 − 2θ) ≤ D̂i
Di
≤

(
1 + 2θ) where θ ≤

(
1
25 + ε√

ρ1(1−ε2)

)
.

Since ρ1 =
√

ε, for ε small enough, we have that θ < 1
22 . Choosing ρ for the deletion phase suitably, by

Corollary 4.10, we can ensure that the deletion phase returns a point ĉi such that ‖ĉi − ŝi‖ ≤ D̂i
20 . Thus,

using Lemma 4.11

‖ĉi − ci‖ ≤
Di

20
· 12
11

+
Di

25
+

ri√
ρ1
≤ 3Di

55
+ Di · θ ≤

Di

10
.

4.2 Procedures used in stage II

Given k seed centers ĉ1, . . . , ĉk located sufficiently close to the optimal centers after stage I, we use two
procedures in stage II to obtain a near-optimal clustering: the ball-k-means step, which yields a

(
1 + f(ε)

)
-

approximation algorithm, or the centroid estimation step, based on a sampling idea of Kumar et al. [30],

13

which yields a PTAS with running time exponential in k. Define d̂i = minj 6=i ‖ĉj − ĉi‖. Recall that
Di = minj 6=i ‖cj − ci‖.

(A) Ball-k-means step. Let Bi be the points of X in a ball of radius d̂i/3 around ĉi, and c̄i be the centroid
of Bi. Return c̄1, . . . , c̄k as the final centers.

Lemma 4.13 (Ball-k-means) Suppose that for each i, there is a center ĉi such that ‖ĉi− ci‖ ≤ Di/10. Let

ρ = 36ε2

1−ε2
and Yi =

{
x ∈ Xi : ‖x− ci‖2 ≤

r2
i
ρ

}
. Then Yi ⊆ Bi ⊆ Xi, and ‖c̄i − ci‖2 ≤ ρ

1−ρ · r
2
i .

The proof of the above lemma is essentially identical to that of Lemma 3.3, and hence is omitted.

(B) Centroid estimation. For each i, we will obtain a set of candidate centers for cluster Xi as follows. Fix
β = 1

1+144ε2
. Define the expanded Voronoi region of ĉi as follows: for any x ∈ X , let ĉ(x) denote the center

such that ‖x− ĉ(x)‖ = minj ‖x− ĉj‖. Let R′
i ⊆ X = {x ∈ X : ‖x− ĉi‖ ≤ ‖x− ĉ(x)‖+ ‖ĉi− ĉ(x)‖/4}.

Sample 4
βω points independently and uniformly at random from R′

i, where ω is a given input parameter,
to obtain a random subset Si ⊆ R′

i. Compute the centroid of every subset of Si of size 2
ω ; let Ti be the

set consisting of all these centroids. Select the candidates c̄1 ∈ T1, . . . , c̄k ∈ Tk that yield the least-cost
solution, and return these as the final centers.

Lemma 4.14 (Centroid-estimation) Suppose that for each i, there is a center ĉi such that ‖ĉi − ci‖ ≤
Di/10. Then Xi ⊆ R′

i, where R′
i is as defined in the centroid-estimation procedure, and |Xi| ≥ β|R′

i|.

Proof : For any j 6= i, we have 4
5 · ‖ci − cj‖ ≤ ‖ĉi − ĉj‖ ≤ 6

5 · ‖ci − cj‖. Hence, 4Di
5 ≤ d̂i ≤ 6Di

5 .
Consider any x ∈ Xi that lies in the Voronoi region of ĉj (so ĉ(x) = ĉj). We have ‖x − ci‖ ≤ ‖x − cj‖,
therefore ‖x − ĉi‖ ≤ ‖x − ĉj‖ + Di+Dj

10 ≤ ‖x − ĉi‖ + ‖ci − cj‖/5 ≤ ‖x − ĉj‖ + ‖ĉi − ĉj‖/4; so

x ∈ R′
i. Suppose |Xi| ≤ β|R′

i|. Let aj = |R′
i∩Xj |
|R′

i|
. So ai

1−ai
≤ β

1−β . Consider the clustering where

we arbitrarily assign some aj

1−ai
points of Xi to center cj for each j 6= i. For any x ∈ Xi and j 6= i,

we have ‖x − cj‖2 ≤ 2(‖x − ci‖2 + ‖ci − cj‖2). So the cost of reassigning points in Xi is at most
2∆2

1(Xi) + 2ni
1−ai

·
∑

j 6=i aj‖ci − cj‖2 ≤ 2∆2
1(Xi) + 2β

1−β ·
∑

j 6=i aj |R′
i|‖ci − cj‖2. We also know that for

any y ∈ R′
i ∩Xj ,

‖y − ci‖ ≤ ‖y − ĉ(y)‖+
‖ĉi − ĉ(y)‖

4
+

Di

10
≤ ‖y − ĉj‖+

‖y − ĉi‖
2

+
Di

10

=⇒ ‖y − ci‖
2

≤ ‖y − cj‖+
1.5Di + Dj

10
.

Since Di, Dj ≤ ‖ci − cj‖, this in turn implies that ‖y− ci‖ ≤ 2‖y− cj‖+ ‖ci − cj‖/2, which implies that
‖ci−cj‖ ≤ 6 · ‖y−cj‖. Therefore, we can bound aj |R′

i|‖ci−cj‖2 by 36 ·
∑

y∈R′
i∩Xj

‖y−cj‖2. Hence, the

cost of this clustering is at most max
(
2, 1 + 72β

1−β

)
∆2

k(X) ≤
(
1 + 1

2ε2

)
∆2

k(X). The cost of this clustering is
also at least ∆2

k−1(X). This is a contradiction to the assumption that ∆2
k(X) ≤ ε2∆2

k−1(X).

4.3 A linear time constant-factor approximation algorithm

This algorithm uses the initialization procedure of Section 4.1.3 followed by a ball-k-means step, and hence
runs in time O(nkd + k3d).

D1. Execute the seeding procedure of Section 4.1.3 to obtain k initial centers ĉ1, . . . , ĉk.

D2. Run the ball-k-means step of Section 4.2 to obtain the final centers.

14

By Lemma 4.12, we know that with probability 1−O(
√

ε), for each ci, there is a distinct center ĉi such
that ‖ĉi − ci‖ ≤ Di/10. Therefore, by Lemma 4.13, for each ci, we have ‖c̄i − ci‖2 ≤ ρ

1−ρ · r
2
i . Hence, by

mimicking the proof of Theorem 3.4, we obtain the following theorem.

Theorem 4.15 Assuming that ∆2
k(X) ≤ ε2∆2

k−1(X) for a small enough ε, the above algorithm returns a
solution of cost at most 1−ε2

1−37ε2
·∆2

k(X) with probability 1−O(
√

ε) in time O(nkd + k3d).

4.4 A PTAS for any fixed k

The PTAS combines the sampling procedure of Section 4.1.1 (we could also use the seeding procedure of
Section 4.1.3) with the centroid estimation step described in Section 4.2.

E1. Use the procedure in Section 4.1.1 to pick k initial centers ĉ1, . . . , ĉk.

E2. Run the centroid estimation procedure of Section 4.2 to obtain the final centers.

The running time is dominated by the exhaustive search in the centroid estimation procedure, which
takes time O

(
2(4k/βω)nd

)
. We show that the cost of the final solution is at most (1 + ω)∆2

k(X), with
probability γk for some constant γ. By repeating the procedure O(γ−k) times, we can boost this to a
constant.

Theorem 4.16 Assuming that ∆2
k(X) ≤ ε2∆2

k−1(X) for a small enough ε, there is a PTAS for the k-means
problem that returns a (1 + ω)-optimal solution with constant probability in time O(2O(k(1+ε2)/ω)nd).

Proof : By appropriately setting ρ in the sampling procedure, we can ensure that with probability Θ(1)k,
it returns centers ĉ1, . . . , ĉk such that for each i, ‖ĉi − ci‖ ≤ Di/10 (part (i) of Corollary 4.6). So by
Lemma 4.14 we know that |Xi| ≥ β|R′

i| for every i, where recall that β = 1
1+144ε2

. Now Lemma 2.3
in [30] shows that for every i, with constant probability, there is some candidate point c′i ∈ Ti such that∑

x∈Xi
‖x − c′i‖2 ≤ (1 + ω)∆2

1(Xi). The cost of the best-candidate solution is at most the cost of the
solution due to the points c′1 ∈ T1, . . . , c

′
k ∈ Tk, which is at most (1 + ω)∆2

k(X). The overall success
probability for one call of the procedure is γk for some constant γ < 1, so by repeating the procedure
O(γ−k) times we can obtain constant success probability.

5 The separation condition

We now show that our separation condition implies, and is implied by, the condition that any two near-
optimal k-clusterings disagree on only a small fraction of the data. Let cost(x1, . . . , xk) denote the cost of
clustering X around the centers x1, . . . , xk ∈ Rd. We use R(x) to denote the Voronoi region of point x (the
centers will be clear from the context). Let S1	S2 = (S1 \S2)∪ (S2 \S1) denote the symmetric difference
of S1 and S2.

Theorem 5.1 Suppose that X ⊆ Rd is ε-separated for k-means for a small enough ε. The following hold:

(i) If there are centers ĉ1, . . . , ĉk such that cost(ĉ1, . . . , ĉk) ≤ α∆2
k−1(X), where 0 < α ≤ 1−401ε2

400 , then
for each ĉi there is a distinct optimal center cσ(i) such that |R(ĉi)	Xσ(i)| ≤ 161ε2|Xσ(i)|;

(ii) If X̂ is a point set obtained by perturbing each x ∈ Xi by a distance of (at most) ε∆k−1(X)√
n

(in any

direction) then ∆2
k(X̂) = O(ε2)∆2

k−1(X̂).

15

Proof : Let ρ =
(

α
ε2

+ 1
)−1. Note that ρ ≥ 400ε2

1−ε2
. Define Xcor

i =
{
x ∈ Xi : ‖x − ci‖ ≤ ri√

ρ

}
, and

let d′2i = ε2∆2
k−1(X)/ni. Note that r2

i ≤ d′2i ≤ ε2

1−ε2
· D2

i . We claim that for every ĉi, there must be a

distinct optimal center, call it ci, such that ‖ĉi − ci‖ ≤
2d′i√

ρ ≤
Di
10 . Suppose not. Then, in the clustering

around ĉ1, . . . , ĉk, all the points in Xcor
i are assigned to a center that is at least 2d′i√

ρ away from ci. Therefore,

cost(ĉ1, . . . , ĉk) >
(

1
ρ − 1

)
nid

′2
i = α∆2

k−1(X) giving a contradiction. Re-indexing the clusters this way,
we show that σ(i) = i yields the desired mapping. This is because R(ĉi) contains each point x ∈ Xi such
that ‖x−ci‖ ≤ 2Di/5, and therefore |R(ĉi)∩Xi| ≥ (1−ρ1)|Xi|where ρ1 = 25ε2

4(1−ε2)
. Also by Lemma 4.14,

we have |Xi| ≥ β|R(ĉi)| where β = 1
1+144ε2

. Therefore, we get that |R(ĉi)	Xi| ≤
(
2ρ1 + 1

β − 1
)
|Xi| ≤

161ε2|Xi| for ε ≤ 1
2 .

For a point x ∈ X , we use x̂ to denote its perturbed image in X̂ . Note that for any y ∈ Rd we have

‖x̂ − y‖2 ≤ 2
(
‖x − y‖2 +

ε2∆2
k−1(X)

n

)
. Consider the k-clustering of X̂ where we assign all the perturbed

points of Xi to ci. The cost of this clustering for X̂ is at most 2∆2
k(X)+2ε2∆2

k−1(X). Conversely, one can
obtain a (k − 1)-clustering of X from an optimal (k − 1)-clustering of X̂ by assigning each x ∈ X to the
center to which x̂ is assigned. Thus we get that ∆2

k−1(X) ≤ 2∆2
k−1(X̂) + 2ε2∆2

k−1(X). Combining the
two bounds, we get that ∆2

k(X̂) ≤ γ∆2
k−1(X̂) where γ = 8ε2

1−2ε2
= O(ε2).

Theorem 5.2 Let ε ≤ 1
3 . Suppose that for every k-clustering X̂1, . . . , X̂k of X of cost at most α2∆2

k(X),

(i) there exists a bijection σ such that ∀i, |X̂i 	Xσ(i)| ≤ ε|Xσ(i)|; AND/OR

(ii) there is a bijection σ such that
∑k

i=1 |X̂i 	Xσ(i)| ≤ ε
k−1 |X|.

Then, X is α-separated for k-means.

Proof : Let R1, . . . , Rk−1 be an optimal (k − 1)-means solution. We will construct a refinement of
R1, . . . , Rk−1 and argue that this has large Hamming distance to X1, . . . , Xk, and hence has cost at least
α2∆2

k(X). Since the cost of R1, . . . , Rk−1 is at least the cost of any refinement of it, this will imply
that ∆2

k−1(X) ≥ α2∆2
k(X). Let Rk−1 be the largest cluster. We start with an arbitrary refinement

R1, . . . , Rk−2, X̂k−1, X̂k where X̂k−1 ∪ X̂k = Rk−1, X̂k−1, X̂k 6= ∅. If the cost of this k-clustering is
at least α2∆2

k(X) then we are done. So assume that this is not the case, and let σ be the claimed bijection.
For part (i), we introduce a large disagreement by splitting X̂k−1 ∩ Xσ(k−1) and X̂k ∩ Xσ(k) into two

equal-sized halves, Ak−1 ∪ Bk−1 and Ak ∪ Bk respectively, and “mismatching” them. More precisely,
we claim that the clustering R1, . . . , Rk−2, X

′
k−1 = (X̂k−1 \ Ak−1) ∪ Ak, X

′
k = (X̂k \ Ak) ∪ Ak−1 has

large Hamming distance. For any bijection σ′, if σ′(i) 6= σ(i) for i ≤ k − 2, then |Ri 	 Xσ′(i)| ≥
|Ri ∩ Xσ(i)| ≥ (1 − ε)|Ri|; otherwise, σ′(k) ∈ {σ(k − 1), σ(k)}, so |X ′

k 	 Xσ′(k)| ≥ 1−ε
2 |X

′
k| ≥ ε|X ′

k|
since X ′

k \Xσ(k−1) ⊇ Bk, X ′
k \Xσ(k) ⊇ Ak−1.

For part (ii), since |Rk−1| ≥ |X|
k−1 , we have |X̂k−1 ∩ Xσ(k−1)| + |X̂k ∩ Xσ(k)| ≥ 1−ε

k−1 |X|. After the
above mismatch operation, for any bijection σ′, the total disagreement is at least |X ′

k−1	Xσ′(k−1)|+ |X ′
k	

Xσ′(k)| ≥ 1
2

(
|X̂k−1 ∩Xσ(k−1)|+ |X̂k ∩Xσ(k)|

)
≥ 1−ε

2(k−1) |X| ≥
ε

k−1 |X|.

6 Conclusions and discussion

We initiate a mathematical analysis of Lloyd-style methods that attempts to explain the performance of these
heuristics. We show that if the data satisfies a natural “clusterability” or “separation” condition, then various

16

Lloyd-style methods perform well and return a near-optimal clustering. Our chief algorithmic contribution
is a novel and efficient sampling procedure for seeding Lloyd’s method with initial centers, such that if
the data satisfies our separation condition then (even) a single Lloyd-type descent step suffices to yield a
constant-factor approximation.

It may have struck the reader that there is something too good about our performance guarantees. Since
we need to use only one round of Lloyd’s method, we cannot possibly be taking full advantage of the
algorithm, in particular, its capacity to start out with a seeding that is unbalanced across clusters and correct
it by shifting centers from one cluster to another. The extent to which Lloyd’s method is successful at doing
so is, in fact, unclear, and for this reason there is much literature exploring the merits of different seeding
procedures. Nevertheless we feel that Lloyd’s method is better than we have accounted for, and that our
results fall short of explaining (or predicting) the performance of Lloyd-style methods; instead, they suggest
that our separation condition is perhaps too stringent (and too restrictive as a measure of data-clusterability).
If so, then the main open question that emerges from our work is to demonstrate a condition weaker than
ours, for which the initial seeding is not necessarily close to an optimal solution, but yet Lloyd’s algorithm
can be shown to converge in a small number of rounds to a near-optimal solution.

An orthogonal research direction is to explore further implications of our separation condition (or similar
ones) for the k-means and possibly other clustering problems. For instance, it might be possible to obtain
stronger, or more general, algorithmic results. Nissim et al. [40] have obtained a result in this vein: they
exploit the robustness of our separation condition to design secure, privacy-preserving ways of computing a
near-optimal k-means solution when the data satisfies our separation condition.

References

[1] K. Alsabti, S. Ranka, and V. Singh. An efficient k-means clustering algorithm. In Proc. 1st Workshop
on High Performance Data Mining, 1998.

[2] D. Arthur and S. Vassilvitskii. How slow is the k-means method? In Proc. 22nd SoCG, pages 144–153,
2006.

[3] V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala, and V. Pandit. Local search heuristics
for k-median and facility location problems. SICOMP, 33:544–562, 2004.

[4] M. Badoiu, S. Har-Peled, and P. Indyk. Approximate clustering via core-sets. In Proc. 34th STOC,
pages 250–257, 2002.

[5] P. S. Bradley and U. Fayyad. Refining initial points for K-means clustering. In Proc. 15th ICML,
pages 91–99, 1998.

[6] M. Charikar and S. Guha. Improved combinatorial algorithms for the facility location and k-median
problems. In Proc. 40th FOCS, pages 378–388, 1999.

[7] M. Charikar, S. Guha, É. Tardos, and D. B. Shmoys. A constant-factor approximation algorithm for
the k-median problem. J. Comput. and Syst. Sci., 65:129–149, 2002.

[8] M. Chrobak, C. Kenyon, and N. Young. The reverse greedy algorithm for the metric k-median problem.
Information Processing Letters, 97:68–72, 2006.

[9] D. R. Cox. Note on grouping. J. American Stat. Assoc., 52:543–547, 1957.

[10] S. Dasgupta. How fast is k-means? In Proc. 16th COLT, page 735, 2003.

17

[11] W. Fernandez de la Vega, M. Karpinski, C. Kenyon, and Y. Rabani. Approximation schemes for
clustering problems. In Proc. 35th ACM STOC, pages 50–58, 2003.

[12] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM
algorithm (with discussion). J. R. Statist. Soc. B, 39:1–38, 1977.

[13] P. Drineas, A. Frieze, R. Kannan, S. Vempala, and V. Vinay. Clustering large graphs via the Singular
Value Decomposition. Machine Learning, 56:9–33, 2004.

[14] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. Wiley-Interscience, 2000.

[15] M. Effros and L. J. Schulman. Deterministic clustering with data nets. Electronic Tech Report ECCC
TR04-050, 2004.

[16] M. Effros and L. J. Schulman. Deterministic clustering with data nets. In Proc. ISIT, 2004.

[17] D. Fisher. Iterative optimization and simplification of hierarchical clusterings. J. Artif. Intell. Res.,
4:147–178, 1996.

[18] E. Forgey. Cluster analysis of multivariate data: efficiency vs. interpretability of classification. Bio-
metrics, 21:768, 1965.

[19] A. Gersho and R. M. Gray. Vector quantization and signal compression. Kluwer, 1992.

[20] R. M. Gray and D. L. Neuhoff. Quantization. IEEE Trans. Inform. Theory, 44(6):2325–2384, October
1998.

[21] S. Har-Peled and S. Mazumdar. On coresets for k-means and k-median clustering. In Proc. 36th
STOC, pages 291–300, 2004.

[22] S. Har-Peled and B. Sadri. How fast is the k-means method? Algorithmica, 41:185–202, 2005.

[23] R. E. Higgs, K. G. Bemis, I. A. Watson, and J. H. Wikel. Experimental designs for selecting molecules
from large chemical databases. J. Chem. Inf. Comp. Sci., 37:861–870, 1997.

[24] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. ACM Computing Surveys, 31(3),
September 1999.

[25] K. Jain, M. Mahdian, E. Markakis, A. Saberi, and V. Vazirani. Greedy facility location algorithms
analyzed using dual-fitting with factor-revealing LP. JACM, 50:795–824, 2003.

[26] K. Jain and V. Vazirani. Approximation algorithms for metric facility location and k-median problems
using the primal-dual schema and Lagrangian relaxation. JACM, 48:274–296, 2001.

[27] T. Kanungo, D. Mount, N. Netanyahu, C. Piatko, R. Silverman, and A. Wu. A local search approxi-
mation algorithm for k-means clustering. Comput. Geom., 28:89–112, 2004.

[28] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, and A. Y. Wu. An efficient
k-means clustering algorithm: Analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell.,
24:881–892, 2002.

[29] L. Kaufman and P. J. Rousseeuw. Finding groups in data. An introduction to cluster analysis. Wiley,
1990.

18

[30] A. Kumar, Y. Sabharwal, and S. Sen. A simple linear time (1+ε)-approximation algorithm for k-means
clustering in any dimensions. In Proc. 45th FOCS, pages 454–462, 2004.

[31] Y. Linde, A. Buzo, and R. M. Gray. An algorithm for vector quantization design. IEEE Trans. Com-
mun., COM-28:84–95, January 1980.

[32] S. P. Lloyd. Least squares quantization in PCM. Special issue on quantization, IEEE Trans. Inform.
Theory, 28:129–137, 1982.

[33] J. MacQueen. Some methods for classification and analysis of multivariate observations. In Proc. 5th
Berkeley Symp. on Math. Statistics and Probability, pages 281–297, 1967.

[34] J. Matousek. On approximate geometric k-clustering. Discrete & Computational Geometry, 24:61–84,
2000.

[35] J. Max. Quantizing for minimum distortion. IEEE Trans. Inform. Theory, IT-6(1):7–12, March 1960.

[36] M. Meila and D. Heckerman. An experimental comparison of several clustering and initialization
methods. In Proc. 14th UAI, pages 386–395, 1998.

[37] R. R. Mettu and C. G. Plaxton. Optimal time bounds for approximate clustering. Machine Learning,
56:35–60, 2004.

[38] G. Milligan. An examination of the effect of six types of error perturbation on fifteen clustering
algorithms. Psychometrika, 45:325–342, 1980.

[39] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge U. Press, 1995.

[40] K. Nissim, S. Rashkhodnikova, and A. Smith. Smooth sensitivity and sampling in private data analysis.
In Proc. 39th STOC, pages 75–84, 2007.

[41] R. Ostrovsky and Y. Rabani. Polynomial time approximation schemes for geometric clustering prob-
lems. JACM, 49(2):139–156, 2002.

[42] C. Papadimitriou, P. Raghavan, H. Tamaki, and S. Vempala. Latent semantic indexing: a probabilistic
analysis. J. Comput. Syst. Sci., 61:217–235, 2000.

[43] D. Pelleg and A. Moore. Accelerating exact k-means algorithms with geometric reasoning. In Proc.
5th ACM KDD, pages 277–281, 1999.

[44] J. M. Pena, J. A. Lozano, and P. Larranaga. An empirical comparison of four initialization methods
for the k-means algorithm. Pattern Recognition Lett., 20:1027–1040, 1999.

[45] S. J. Phillips. Acceleration of k-means and related clustering problems. In Proc. 4th ALENEX, 2002.

[46] L. J. Schulman. Clustering for edge-cost minimization. In Proc. 32nd ACM STOC, pages 547–555,
2000.

[47] M. Snarey, N. K. Terrett, P. Willet, and D. J. Wilton. Comparison of algorithms for dissimilarity-based
compound selection. J. Mol. Graphics and Modelling, 15:372–385, 1997.

[48] D. Spielman and S. Teng. Smoothed analysis of algorithms: Why the simplex algorithm usually takes
polynomial time. In Proc. 33rd ACM STOC, pages 296–305, 2001.

19

[49] H. Steinhaus. Sur la division des corp materiels en parties. Bull. Acad. Polon. Sci., C1. III vol IV:801–
804, 1956.

[50] R. C. Tryon and D. E. Bailey. Cluster Analysis. McGraw-Hill, 1970. Pages 147-150.

20

