
Improved Region-Growing and Combinatorial Algorithms for

k-Route Cut Problems

Guru Guruganesh∗ Laura Sanità† Chaitanya Swamy‡

Abstract

We study the k-route generalizations of various cut
problems, the most general of which is k-route multicut
(k-MC) problem, wherein we have r source-sink pairs
and the goal is to delete a minimum-cost set of edges
to reduce the edge-connectivity of every source-sink
pair to below k. The k-route extensions of multiway
cut (k-MWC), and the minimum s-t cut problem (k-
(s, t)-Cut), are similarly defined. We present various
approximation and hardness results for k-MC, k-MWC,
and k-(s, t)-Cut that improve the state-of-the-art for
these problems in several cases. Our contributions are
threefold.

• For k-route multiway cut, we devise simple,
but surprisingly effective, combinatorial algorithms
that yield bicriteria approximation guarantees that
markedly improve upon the previous-best guarantees.

• For k-route multicut, we design algorithms that im-
prove upon the previous-best approximation factors
by roughly an O(

√
log r)-factor, when k = 2, and for

general k and unit costs and any fixed violation of the
connectivity threshold k. The main technical innova-
tion is the definition of a new, powerful region growing
lemma that allows us to perform region-growing in a
recursive fashion even though the LP solution yields
a different metric for each source-sink pair, and with-
out incurring an O(log2 r) blow-up in the cost that
is inherent in some previous applications of region
growing to k-route cuts. We obtain the same bene-
fits as [15] do in their divide-and-conquer algorithms,
and thereby obtain an O(ln r ln ln r)-approximation
to the cost. We also obtain some extensions to k-
route node-multicut problems.

∗ggurugan@cs.cmu.edu. Department of Computer Science,

Carnegie Mellon University, Pittsburgh, USA. Work done while

the author was an undergraduate research assistant at the Uni-
versity of Waterloo under Prof. Sanita.
†sanita@uwaterloo.ca. Dept. of Combinatorics and Opti-

mization, Univ. Waterloo, Waterloo, ON N2L 3G1.
‡cswamy@uwaterloo.ca. Dept. of Combinatorics and Opti-

mization, Univ. Waterloo, Waterloo, ON N2L 3G1. Supported in

part by NSERC grant 327620-09, an NSERC Discovery Accelera-
tor Supplement Award and an Ontario Early Researcher Award.

• We complement these results by showing that the
k-route s-t cut problem is at least as hard to ap-
proximate as the densest-k-subgraph (DkS) problem
on uniform hypergraphs. In particular, this implies
that one cannot avoid a poly(k)-factor if one seeks
a unicriterion approximation, without improving the
state-of-the-art for DkS on graphs, and proving the
existence of a family of one-way functions. Previ-
ously, only NP-hardness of k-(s, t)-Cut was known.

1 Introduction

The problem of finding minimum size cuts for a given
graph has a rich history in the field of combinatorial
optimization, with a wide range of applications in lo-
gistics, transportation and telecommunication systems.
One key problem of interest is that of disconnecting
a given set of node pairs in a network by removing
edges at minimum cost. Formally, in the multicut prob-
lem, we are given an undirected graph G = (V,E)
with nonnegative edge costs {ce}e∈E and pairs of nodes
(s1, t1), . . . , (sr, tr) called source-sink pairs or commodi-
ties, and we seek a minimum-cost set of edges whose re-
moval disconnects every si-ti pair. Two special cases of
this problem have by themselves attracted widespread
attention: (i) the celebrated minimum s-t cut problem,
which is the special case when r = 1; and (ii) the mul-
tiway cut problem [12], where every pair of nodes from
a given set T ⊆ V of terminals forms a commodity.
These cut problems and their variants have been widely
studied in terms of hardness and approximation (see,
e.g., [36, 37]), have numerous direct applications (e.g.,
identifying bottlenecks in a network), and algorithms
for them serve as important primitives in the design
of divide-and-conquer algorithms (see, e.g., [15, 34])
and find application in diverse settings such as image
segmentation, VLSI design and network routing (see,
e.g., [27, 29, 6, 32]).

We study a natural generalization of the above cut
problems motivated by the fact that in various settings,
we are not interested in a complete disconnection of our
terminals but rather in reducing their connectivity be-
low a certain threshold. Specifically, in the k-route mul-
ticut (k-MC) problem, the input is a multicut instance

and an integer k ≥ 1; the goal is to find a minimum-cost
set F ⊆ E of edges so that there are at most (k − 1)
edge-disjoint si-ti paths in (V,E \F) for all i = 1, . . . , r.
We define the k-route multiway cut (k-MWC), and the
k-route (s, t)-cut (k-(s, t)-Cut) problems analogously.

The study of k-route cut problems can be motivated
from various perspectives. One motivation comes from
the fact that k-route cuts are dual objects to k-route
flows [21], which can be seen as a robust or fault-tolerant
version of flows where we seek to send traffic along tu-
ples of k edge-disjoint paths. A k-route cut establishes
an upper bound on the value (suitably defined) of the
maximum k-route flow, and can thus be seen as identi-
fying the bottleneck in a network when we seek a cer-
tain level of robustness. k-route cut problems can also
be directly motivated as abstracting the problem of an
attacker who seeks to reduce connectivity in a given net-
work while incurring minimum cost. Viewed from this
perspective, k-route cut problems are closely related to
network interdiction problems, which typically consider
the complementary objective of minimizing source-sink
connectivity subject to a budget constraint on the edge-
removal cost [30, 38, 39].

The k-route cut problems are at least as hard as
their 1-route counterparts. Multicut and multiway cut
are APX-hard [12], with the former not admitting any
constant-factor approximation assuming the unique-
games conjecture [9], and k-(s, t)-Cut is NP-hard; hence,
we focus on approximation algorithms. Moreover, as
highlighted in [10, 5, 23, 11, 22], k-route cut problems
turn out to be much more challenging than their 1-
route counterparts, especially for non-constant k, so (as
in [11]) we consider bicriteria approximation guarantees.
(This is further justified by our hardness result for k-
(s, t)-Cut in Section 4.) We say that a solution F ⊆ E
is an (α, β)-approximation for the given k-MC instance
if
∑
e∈F ce is at most β times the optimal value, and

(V,E \ F) contains at most α(k − 1) edge-disjoint si-ti
paths for all i = 1, . . . , r.

Our results. We develop various approximation and
hardness results for k-MC, k-MWC and k-(s, t)-Cut
that improve upon the current-best approximation and
hardness results in several cases.

In Section 2, we consider the k-route multiway cut
problem. We devise an

(
O(1), O(1)

)
-approximation

for k-MWC with unit costs (Theorem 2.2), and
an

(
O(1), O(log r)

)
-approximation with general costs

(Theorem 2.4), where r = |T |. The previous-best
guarantees for k-MWC (for general k) are those that
follow from the results of Chuzhoy et al. [11] for k-
MC, namely, an

(
O(1), O(log1.5 r)

)
-approximation for

unit costs and an
(
O(log r), O(log3 r)

)
-approximation

for general costs. Thus, our guarantees constitute a sig-
nificant improvement in the state-of-the-art for k-MWC.
We also show that the special case where T = V , which
we call k-route all-pairs cut, is APX-hard for k ≥ 3 (Ap-
pendix A). (For k = 1, 2, it is easy to see that all-pairs
k-route cut is polytime solvable.)

In Section 3, we design algorithms for the k-route
multicut problem. We achieve approximation ratios of
O(ln r ln ln r) for 2-MC, and

(
γ,O(γ

(
√
γ−1)2 ln r ln ln r)

)
for k-MC with unit costs. In contrast, Chuzhoy et
al. [11] obtain approximation ratios of O(log1.5 r) for

2-MC, and
(
γ,O(log1.5 r

min{1,γ−1})
)

for k-MC with unit costs.

Thus, for any fixed γ (i.e., independent of k and r),
our results improve upon the previous-best guarantees
for these cases in [11] by roughly an O(

√
log r)-factor.

(Setting γ = k
k−1 , our guarantee and the one in [11] be-

come unicriterion approximations that are incompara-
ble.) In contrast to the algorithms in [11], which rely on
approximations to suitable variants of sparsest cut, we
devise rounding algorithms for a natural LP-relaxation
for k-MC, and our guarantees therefore also translate to
integrality-gap results. In Section 5, we consider some
extensions to k-route node-multicut problems.

Complementing the above results, we show in Sec-
tion 4 that k-(s, t)-Cut is at least as hard as the dens-
est k-subgraph (DkS) problem: a ρ-approximation for
k-(s, t)-Cut yields a (2ρλ)-approximation for DkS on λ-
uniform hypergraphs (Theorem 4.2). The latter prob-
lem is hard to approximate within an nε0-factor, for
some constant ε0, for all λ ≥ 3, unless a certain family
of one-way functions exists [3]. This implies that ob-
taining a unicriterion O

(
kε0 polylog(n)

)
-approximation

(even) for k-(s, t)-Cut for some constant ε0 would im-
prove the state-of-the-art for the notoriously hard dens-
est k-subgraph problem on graphs, and imply the exis-
tence of certain one-way functions. Previously, only NP-
hardness of k-(s, t)-Cut was known, as a consequence of
the fact that certain NP-hard unbalanced graph parti-
tioning problems [20, 28] can be cast as special cases of
k-(s, t)-Cut.

Our techniques. Our algorithms for k-MWC are com-
binatorial, and rely on the following simple, but quite
useful observation: if F ⊆ E is feasible, then G =
(V,E \F) has a multiway cut with at most (k−1)(r−1)
edges (Claim 2.1). Using this, we show that we can
identify a terminal ti ∈ T , a ti-isolating cut, and a
set of edges of cost O

(
OPT
|T |
)

whose removal causes the

ti-isolating cut to have O(k − 1) edges. We include
these edges, drop ti from T , and repeat, which natu-
rally yields an O(log r)-approximation in the cost. The
improvement for unit costs stems from the stronger

property that either the minimum multiway-cut in G
has cost O(OPT), or there is some ti-isolating cut of
value O(k − 1); thus, we may now drop terminals in-
curring zero cost, which results in an improved O(1)
cost-approximation.

Interestingly, [5] use a similar approach to obtain
an
(
O(1), O(1)

)
-approximation for single-source k-MC

with unit costs and they remark that such an approach
is unlikely to work for k-MWC because there are exam-
ples where every pair of terminals is 2(k − 1)-edge con-
nected but the optimal multiway cut value is Ω(r)·OPT .
Thus, a useful insight to emerge from our work is that
whereas a 2-factor violation in the pairwise terminal
connectivity does not ensure that the multiway cut value
is O(OPT), a (2 + ε)-factor violation in connectivity
does, for any ε > 0.

Our algorithms for k-MC are based on rounding
an optimal solution to a natural LP-relaxation of the
problem. This is technically the most sophisticated
part of the paper. The main technique that we use is
region growing. The idea is to view the LP solution
as a metric, grow a suitable ball in this metric and
prove a region-growing lemma showing that the cost
of the ball-boundary edges can be charged to the
ball-volume, where volume measures the contribution
to the LP objective from the edges inside the ball.
This was introduced by [27, 19] in the context of the
sparsest cut and multicut problems, and Even et al. [15],
building upon the work of Seymour [33], extended the
technique to obtain improved guarantees for various
divide-and-conquer algorithms that involve recursive
applications of region growing. However, in contrast
with various applications of region growing considered
in [27, 19, 16, 15], the difficulty in the k-route multicut
problem stems from the fact that an LP-solution yields
a different metric for each source-sink pair instead of
a single common metric that can be applied in the
region-growing process. (In particular, k-MC does not
fall into the divide-and-conquer framework of Even et
al. [15].) Although [5, 23, 22] adapted the region-
growing lemma in [27, 19] to the 2-route, 3-route,
and the k-route single-source settings, their approach
seems incapable of obtaining any thing better than an
O(log2 r)-approximation—one loses one log-factor due
to region growing and another due to recursion—which
is worse than the guarantees in [11]. (In fact, [11]
abandoned the region-growing approach and used a
greedy set-cover strategy to obtain their improvements
over [5, 23, 22].)

Our chief technical novelty is to prove a region-
growing lemma (see Lemmas 3.1 and 3.2) applicable to
settings with different metrics, that is inspired by, but
more general, than the analogous lemma in [15], and

much more sophisticated than the one used in [5, 23, 22].
This lemma, coupled with a subtle insight about the
metrics derived from the LP solution, allows us to
obtain the same kind of savings in our recursive region-
growing algorithm that Even et al. [15] obtain (via
their region-growing lemma) in their divide-and-conquer
algorithms; this yields our improved approximation
guarantees. We believe that our region-growing lemma
and its application in the context of different metrics
are tools of independent interest that will find further
application in the study of cut problems.

The hardness proof for k-(s, t)-Cut dovetails the
hardness proof in [11] for the vertex-connectivity version
of k-(s, t)-Cut (where we want to decrease the s-t vertex
connectivity to below k), who reduce from the small-set
vertex expansion (SSVE) problem, which they show is
DkS-hard. We observe that this reduction immediately
implies the same hardness for k-(s, t)-Cut on a directed
graph, and combine this with a useful trick from [8] that
allows us to move from digraphs to undirected graphs.
The idea is to take the digraph used in the hardness
proof, remove edge directions, and add some extra
nodes and expensive edges so that the residual digraph
obtained after sending a partial s-t flow along the
expensive edges essentially coincides with the digraph
used in the hardness proof.

Related work. Standard (i.e., 1-route) cut problems
have been extensively studied; we refer the reader to the
textbooks [2, 36, 37] for more information.

The study of k-route flow and k-route cut prob-
lems was initiated by Kishimoto [21], and has since
received much attention in the theoretical Computer
Science community [7, 10, 5, 23, 22, 11]. Bruhn et
al. [7] gave a 2(k − 1)-approximation for single-source
k-MC with unit costs, whereas [10, 5, 23] obtained
efficient polylogarithmic approximation results for k-
MC with small values of k. Subsequently, Chuzhoy et
al. [11] obtained the first non-trivial results for k-MC
with arbitrary k in the form of bicriteria approximation
guarantees. Independently, Kolman and Scheideler [22]
obtained an O

(
exp(k) polylog(r)

)
-approximation for

single-source k-MC (with general costs). As shown by
our hardness result for k-(s, t)-Cut in Section 4, the
move to bicriteria approximations is necessary unless
one incurs a poly(k)-factor in the approximation.

As noted earlier, k-route cut problems and net-
work interdiction problems (see, e.g., [30, 38, 39, 13]
and the references therein) can be viewed as comple-
mentary problems. For instance, in the maximum-flow
interdiction problem (MFIP) we are given edge capaci-
ties in addition to edge costs, and the goal is to mini-
mize the maximum s-t flow in the graph remaining af-

ter removing edges of total cost at most a given bud-
get. MFIP with unit capacities is thus complementary
to k-(s, t)-Cut, and bicriteria guarantees for one trans-
late to the other. Unit-capacity MFIP is known to be
polytime solvable for planar graphs [30, 39]. Dinitz and
Gupta [13] propose a general framework for attacking
packing interdiction problems. However, their results
do not quite apply to MFIP (since phrasing max-flow in
terms of edge-flows destroys the packing property, and
phrasing it in terms of path-flows yields an interdiction
problem where one removes paths).

2 A simple combinatorial algorithm for k-route
multiway cut

Recall that in the k-route multiway cut (k-MWC) prob-
lem, we are given a set T = {t1, . . . , tr} ⊆ V of ter-
minals and we seek to remove a minimum-cost set of
edges so that the edge-connectivity between any two
terminals is less than k. The case k = 1 is the
multiway cut problem, which is known to be APX-
hard [12] even with unit edge costs. We devise an(
O(1), O(1)

)
-approximation for k-MWC with unit costs,

and an
(
O(1), O(log r)

)
-approximation with general

costs. These improve upon the previous-best guaran-
tees (for general k) of

(
O(1), O(log1.5 r)

)
for unit costs,

and O
(
O(log r), O(log3 r)

)
for general costs due to [11].

Remark 2.5 shows that our guarantees also translate to
integrality-gap bounds for a suitable LP-relaxation.

Let O∗ denote the optimal set of edges, and let
G = (V,E \O∗) be the remainder graph. Let k′ = k−1.
Our algorithms are quite easy to describe and analyze.
We first prove a simple claim about G.

Claim 2.1. There is a set E of edges of G with
∣∣E∣∣ ≤

k′(r − 1) such that O∗ ∪ E is a multiway cut in G.

Proof. Compute a minimum t1-t2 cut F in G, where
F is a set of edges. By the definition of G, |F | ≤ k′.
Removing F from G creates at least two components.
We can now recurse in each connected component, and
after computing at most r − 1 min cuts, each terminal
will be in a different connected component.

The idea behind the algorithm for unit costs is the
following. Claim 2.1 shows that the optimal multiway
cut in G would be a good approximation to k-MWC
if |E| = O

(
|O∗|

)
. Otherwise, there is a multiway cut

in G of cost O(k′r), and so there is some terminal (in
fact Ω(r) terminals) that has an isolating cut in G of
size O(k′); we simply remove this terminal from T and
repeat this process.

Theorem 2.2. There is a
(
γ, 2γ

γ−2

)
-approximation al-

gorithm for k-MWC with unit costs for any γ > 2.

Proof. For all i, compute a minimum ti-isolating cut
Fi. It is well known that, even with non-unit costs,∑r
i=1 c(Fi) is a 2-approximation to the minimum mul-

tiway cut [12]. In particular, C =
∑r
i=1 |Fi| ≤ 2|O∗| +

2|E| (by Claim 2.1). If C ≥ γk′r, then we have
|O∗| ≥ C

2 − k′r ≥ C
(

1
2 −

1
γ

)
, so taking the union of

the Fis yields a 2γ
γ−2 -approximation. Otherwise, there is

some ti such that |Fi| < γk′, so we can simply remove
ti from T and decrease r, and repeat.

We remark that the number of iterations can be
reduced to log2 r at the expense of increasing the con-
nectivity to 2γk′, since must be at least r/2 terminals
such that |Fi| ≤ 2γk′.

Remark 2.3. The condition γ > 2 above is tight.
This follows from an example in [5] where every pair
of terminals is 2k′-edge connected but the minimum
multiway cut yields an Ω(r)-approximation.

To generalize this algorithm to general edge costs,
assume for now that we know OPT = c(O∗). Unlike in
the unit edge-cost case where we could make progress
by dropping terminals while incurring zero cost, here
we will need to incur cost O

(
OPT
r

)
to drop a terminal

(or incur cost O(OPT) to drop r/2 terminals). This
naturally leads to an O(log r)-approximation in the cost.
Let Hr := 1 + 1

2 + . . .+ 1
r = O(log r).

Theorem 2.4. There is a
(
γ, 2γ

γ−2Hr

)
-approximation

algorithm for k-MWC with general edge costs, for any
γ > 2.

Proof. Let T ′ initialized to T denote the current termi-
nal set and r′ ← r. Let F initialized to ∅ denote the set
of edges removed. Let α = 2

γ−2 . While |T ′| > 1, we do

the following. Set c′e = min{ce, αOPT
k′r′ } for every edge

e. Note that the c′-cost of the minimum multiway cut
is at most c′(O∗ ∪ E) ≤ OPT + k′r′ · αOPT

k′r′ . For every
terminal t ∈ T ′, compute a minimum c′-cost t-isolating
cut Ft. Then, we have

∑
t∈T ′ c

′(Ft) ≤ 2(1 + α)OPT .

So there is some t ∈ T ′ such that c′(Ft) ≤ 2(1+α)OPT
r′ .

The number of edges in Ft with ce >
αOPT
k′r′ is less than

2(1+α)
α k′ = γk′. We add edges in Ft with ce ≤ αOPT

k′r′

to F . This incurs cost at most c′(Ft) ≤ 2(1+α)OPT
r′ ,

and ensures that t is less than γk′ connected to every
other terminal in T ′ in the remaining graph. We now
set T ′ ← T ′ \ {t}, r′ ← r′ − 1, and repeat.

Clearly, every pair of terminals is at most γk′ con-

nected in (V,E \ F). Also, c(F) ≤
∑1
r′=r

2(1+α)OPT
r′ =

OPT · 2γ
γ−2 ·Hr.

Finally, we can eliminate the need for knowing OPT
as follows. Given a guess C of OPT , if at some iteration
we have

∑
t∈T ′ c

′(Ft) > 2(1 + α)C then we know that

C < OPT ; otherwise, we obtain a solution of cost at
most C · 2γ

γ−2 · Hr. So we can try powers of (1 + ε) to
find the smallest C such that the latter case happens;
this blows up the approximation in cost by at most a
(1 + ε)-factor.

Remark 2.5. (LP-relative bounds) The factors in
Theorems 2.2 and 2.4 also translate to integrality-gap
bounds for the following LP-relaxation of k-MWC. Let
Pij be the collection of all ti-tj paths.

min
∑
e

cexe (P’)

s.t.
∑
e∈P

(xe + ye) ≥ 1 ∀ti, tj ∈ T, P ∈ Pij∑
e

ye ≤ k′(r − 1), x, y ≥ 0.

Claim 2.1 implies that (P’) is indeed a valid relaxation
of k-MWC. Let (x, y) be an optimal solution to (P’)
and OPT P’ be its value. Then, for any λ ≥ 0, for
the cost function c′e = min{ce, λ}, there is a fractional
multiway-cut of c′-cost at most OPT P’ +λ

∑
e ye. Also,

if Fi is a minimum c′-cost ti-isolating cut then we have∑
i c
′(Fi) ≤ 2

(
OPT P’ +λ

∑
e ye
)
. (This follows since an

optimal solution to the multiway-cut LP is known to be
half-integral (see, e.g., [36]); this implies that 2(cost of
an optimal solution) is at least

∑
i (cost of a minimum

ti-isolating cut).) This implies that we can replace |O∗|
and |E| in the proof of Theorem 2.2 by OPT P’ and∑
e ye, and OPT in the proof of Theorem 2.4 by OPT P’,

and all the arguments go through.

The all-pairs case. This is the special case of k-
MWC where T = V . To our knowledge, this k-
route all-pairs cut problem has not been explicitly
studied before. When k = 1, the all-pairs problem
is trivial as the remainder graph cannot contain any
edge. When k = 2, this problem is still in P as the
remainder graph is a maximum-cost spanning forest.
We prove that the problem is APX-hard for all k ≥ 3
(see Appendix A), thus resolving the complexity (with
respect to polytime solvability) of k-route all-pairs cut.
The all-pairs problem can also be stated in terms
of properties required of the remainder graph. For
example, in 3-route all-pairs cut, we seek a minimum-
cost edge set such that the remainder graph does not
contain a diamond as a minor. Interestingly, this is
equivalent to requiring that the remainder graph be a
maximum-weight cactus, which is a graph where every
edge lies in at most one cycle. As noted above, this
problem is APX-hard. But we observe that this problem
admits an O(1)-approximation as a consequence of the
results of Fiorini et al. [17]; see Appendix A.

3 A region-growing algorithm for k-route
multicut

We now consider general k-route multicut
(k-MC): given source-sink pairs/commodities
(s1, t1), . . . , (sr, tr), we want to find a minimum-
cost set of edges whose removal reduces the si-ti edge
connectivity to less than k for all i = 1, . . . , r. We
consider the following LP-relaxation of the problem,
which was also considered by Barman and Chawla [5].
Throughout e indexes the edges in E, and i indexes
the commodities. Let Pi denote the collection of all
(simple) si-ti paths in G.

min
∑
e

cexe (P)

s.t.
∑
e∈P

(xe + yie) ≥ 1 ∀i,∀P ∈ Pi∑
e

yie ≤ k − 1 ∀i

xe, y
i
e ≥ 0 ∀i, e.

Let
(
x, {yi}

)
denote an optimal solution to (P),

and OPT be its value. We show that
(
x, {yi}

)
can

be rounded to yield an O(ln r ln ln r)-approximation
when k = 2, and a bicriteria

(
γ,O

(
γ

(
√
γ−1)2 ln r ln ln r

))
-

approximation for k-MC with unit edge costs, for any
γ > 1. Notably, our cost-approximation is with respect
to OPT , and so they translate to integrality-gap upper
bounds for (P). Our results improve upon (for any fixed
γ) the previous-best guarantees for these cases in [11]
by roughly a

√
log r-factor.

3.1 Region-growing lemmas. The main tool that
we leverage is region growing [27, 19, 15]. The idea
is to view the LP solution as a metric, grow a suit-
able ball in this metric and prove that the cost of the
ball-boundary edges can be charged to the ball-volume,
where volume measures the contribution to the LP ob-
jective from the edges inside the ball. The main diffi-
culty in applying this idea to (P) is that, unlike most
applications of region growing [27, 19, 16, 15], the LP
solution yields a different metric for each commodity.
The key technical ingredient and novelty is a new region-
growing lemma (see Lemmas 3.1 and 3.2) that is anal-
ogous to, but more general, than the one in [15], and
much more sophisticated than the one used in [5, 23, 22].
Roughly speaking, we prove that given a current set
S of nodes, one can construct a ball around any si in
the (x + yi)-metric such that the cost of the “bound-
ary x-edges” can be charged to the (x-volume of S)
times ln

(
x-volume of S/x-volume of the ball

)
· ln ln r

(Lemma 3.2). A subtle insight that helps deal with the
complication that different applications of region grow-

ing involve different commodities and therefore differ-
ent metrics is the following. Since the x-contribution
is common to all (x+ yi)-metrics, even though we con-
sider different commodity-metrics we can leverage the
above guarantee and obtain the same kind of savings
that [15] obtain in their divide-and-conquer algorithms
(see Lemma 3.3); this leads to our improved approxi-
mation guarantees.

We state our region-growing lemmas in a general
form and then apply them to the optimal solution(
x, {yi}

)
to obtain various useful corollaries. In Sec-

tion 5, we extend our arguments to prove region-growing
lemmas in settings that involve both edge and node
lengths. Let n = |V |, m = |E|. Let ` : V ×V 7→ R≥0 be
a metric on V ×V . Our algorithm will iteratively focus
on certain regions of the graph G. Let S ⊆ V , which
is intended to represent the node-set of the current re-
gion. Let F ⊆ E, which is intended to represent the
edges that contribute to the volume, and whose cost we
care about. Let β ≥ 0. Let z ∈ V , and ρ ≥ 0.

• Define B`(z, ρ) := {v ∈ V : `zv ≤ ρ} to be the ball of
radius ρ around z.

• Let BS` (z, ρ) := B`(z, ρ) ∩ S and BS` (z, ρ) := S \
B`(z, ρ).

• For a subset T ⊆ S, let δSF (T) denote {(u, v) ∈ F :
u ∈ T, v ∈ S \ T}.

• Define ∂S,F` (z, ρ) := δSF
(
BS` (z, ρ)

)
= δSF

(
BS` (z, ρ)

)
.

• Define the following volumes:

VS,F` (β; z, ρ) := β +
∑

(u,v)∈F :u,v∈BS` (z,ρ)

cuv`uv

+
∑

(u,v)∈F :u∈BS` (z,ρ)

v∈BS` (z,ρ)

cuv
(
ρ− `zu

)

VS,F` (β; z, ρ) := β +
∑

(u,v)∈F :u,v∈BS` (z,ρ)

cuv`uv

+
∑

(u,v)∈F :u∈BS` (z,ρ)

v∈BS` (z,ρ)

cuv
(
`zv − ρ

)

When F = E, we drop F from the above pieces
of notation (e.g., δSE(T) is shortened to δS(T)). For
H ⊆ E, we use `(H) to denote

∑
e∈H `e.

Lemma 3.1. (Region-growing lemma) Let F ⊆ E,
S ⊆ V , z ∈ V , and 0 ≤ a < b. Let ρ be chosen

uniformly at random from [a, b). Then,

Eρ

[
c
(
∂S,F` (z, ρ)

)/[
VS,F` (β; z, ρ) ln

(
eVS,F` (β;z,b)

VS,F` (β;z,ρ)

)]]
≤ 1

b− a
· ln ln

(
eVS,F` (β; z, b)

VS,F` (β; z, a)

)
(1)

Eρ

[
c
(
∂S,F` (z, ρ)

)/[
VS,F` (β; z, ρ) ln

(
eVS,F` (β;z,a)

VS,F` (β;z,ρ)

)]]
≤ 1

b− a
· ln ln

(
eVS,F` (β; z, a)

VS,F` (β; z, b)

)
(2)

Proof. We abbreviate c
(
∂S,F` (z, ρ)

)
to c(ρ),

VS,F` (β; z, ρ) to V(ρ) and VS,F` (β; z, ρ) to V(ρ).
Let x− be a value infinitesimally smaller than x. Let
I = {`(si, v) : v ∈ V }. Note that V(ρ) and V(ρ) are
differentiable at all ρ ∈ [a, b) \ I and for each such

ρ, we have dV(ρ)
dρ = c(ρ) and dV(ρ)

dρ = −c(ρ). Let

a0 = a, ak = b, and {a1, . . . , ak−1} = (a, b) ∩ I with
a1 < . . . < ak−1. Then,

(b− a) · Eρ

 c(ρ)

V(ρ) ln
(eV(b)
V(ρ)

)
 =

k∑
i=1

∫ a−i

ai−1

dV(ρ)

V(ρ) ln
(eV(b)
V(ρ)

)
=

k∑
i=1

∫ a−i

ai−1

d(lnV(ρ))

ln
(
eV(b)

)
− ln(V(ρ))

=

k∑
i=1

− ln ln
(eV(b)

V(ρ)

)∣∣∣∣a
−
i

ai−1

which is at most ln ln
(eV(b)
V(a)

)
since V(ρ) increases

with ρ, and ln ln
(eV(b)
V(ρ)

)
decreases with ρ. Similarly,

we obtain that (b − a) · Eρ

[
c(ρ)

/[
V(ρ) ln

(eV(a)

V(ρ)

)]]
=∑k

i=1 ln ln
(eV(a)

V(ρ)

)∣∣∣a−i
ai−1

≤ ln ln
(eV(a)

V(b)

)
.

Corollary 3.1. Let F,H ⊆ E, S ⊆ V , z ∈ V , and
0 ≤ a < b. For any α ∈ (0, 1), we can efficiently find a
radius ρ1 ∈ [a, b) such that

c
(
∂S,F` (z, ρ1)

)
VS,F` (β; z, ρ1)

≤ 2

(1− α)(b− a)
· ln
(
eVS,F` (β;z,b)

VS,F` (β;z,ρ1)

)
· ln ln

(
eVS,F` (β;z,b)

VS,F` (β;z,a)

) (3)

c
(
∂S,F` (z, ρ1)

)
VS,F` (β; z, ρ1)

≤ 2

(1− α)(b− a)
· ln
(
eVS,F` (β;z,a)

VS,F` (β;z,ρ1)

)
· ln ln

(
eVS,F` (β;z,a)

VS,F` (β;z,b)

) (4)

∣∣∂S,H` (z, ρ1)
∣∣ < `(H)

α(b− a)
. (5)

Proof. Suppose we pick ρ uniformly at random from
[a, b). Define the following events.

Ω :=

{
ρ ∈ [a, b) :

∣∣∂S,H` (z, ρ)
∣∣ ≥ `(H)

α(b− a)

}
Ω1 :=

{
ρ ∈ [a, b) : ρ1 = ρ violates (3)

}
Ω2 :=

{
ρ ∈ [a, b) : ρ1 = ρ violates (4)

}
For an edge (u, v) ∈ E, Pr

[
(u, v) ∈ ∂S,H` (z, ρ)] ≤

`uv
b−a . Hence, Eρ

[∣∣∂S,H` (z, ρ)
∣∣] ≤ `(H)

b−a , and therefore

Pr[Ω] ≤ α. By Lemma 3.1 and Markov’s inequality, we
have that Pr[Ω1],Pr[Ω2] < (1 − α)/2. Conditioning on
Ωc := [a, b)\Ω increases the probability of an event by at
most a factor 1

1−Pr[Ω] ≤
1

1−α , so Pr[Ω1|Ωc],Pr[Ω2|Ωc] <
1/2. Thus, Pr[Ωc ∩ Ωc1 ∩ Ωc2] > 0.

We argue that Ωc, Ωc1, and Ωc2 are all unions of
at most n subintervals of [a, b), and we can find these
efficiently. Since Pr[Ωc ∩ Ωc1 ∩ Ωc2] > 0, we can then
efficiently find an (non-singleton) interval contained in
Ωc∩Ωc1∩Ωc2, and hence, find ρ1 ∈ [a, b] satisfying (3)–(5)
(in fact, there are infinitely many such ρ).

There are at most n distinct sets BS` (z, ρ) that
one may encounter as ρ varies in [a, b). For each
such set A, there is an interval [lb, ub) such that A =
BS` (z, ρ) for all ρ ∈ [lb, ub). Note that the right-
hand-sides (RHSs) of (3) and (4) are continuous and
differentiable in (lb, ub), and are monotonic (increasing
and decreasing, respectively) functions of ρ. We call
[lb, ub) a smooth subinterval of [a, b). By definition, the
left-hand-sides (LHSs) of (3)–(5) are invariant over a
smooth subinterval. Hence, Ωc is the union of some
smooth subintervals. Consider a smooth subinterval
[lb, ub). By continuity, if some ρ ∈ [lb, ub) satisfies (3) or
(4), then we can efficiently find the maximal subinterval
of [lb, ub) (which may be a singleton interval) such
that all ρ in the subinterval satisfy the given bound.
Hence, both Ωc1 and Ωc2 are the union of at most n
subintervals of [a, b). By trying out the at most 3n
possible subintervals of Ωc1 ∪Ωc1 ∪Ωc2, we can find some
interval contained in Ωc ∩ Ωc! ∩ Ωc2 and hence obtain ρ1

satisfying (3)–(5).

Applications of the region-growing lemmas. To
apply the above results to the metrics obtained from(
x, {yi}

)
, it will be convenient to modify G by subdi-

viding every edge e into r + 1 edges e0, e1, . . . , er, and
setting xf = xe for f = e0 and 0 otherwise, and yif = yie
if f = ei and 0 otherwise. We call e0 an x-edge, and we
call ei, a yi-edge for i = 1, . . . , r. Clearly, any solution
in G yields a solution in the subdivided graph of the
same cost and vice versa, and this holds even for frac-
tional solutions to (P). In the sequel, we work with the

subdivided graph. To keep notation simple, we continue
to use G = (V,E) to denote the subdivided graph, and(
x, {yi}

)
to denote the above solution in the subdivided

graph. Let F be the set of all x-edges, and Hi be the
set of all yi-edges for all i = 1, . . . , r. Consider a com-
modity i. Let `i denote the shortest-path metric of G
(i.e., the subdivided graph) induced by the {xe + yie}
edge lengths. Set β = OPT/r. To avoid cumbersome
notation, we respectively shorten:

BS`i(z, ρ), BS`i(z, ρ) to BSi (z, ρ), BSi (z, ρ)

VS,F`i (β; z, ρ), VS,F`i (β; z, ρ) to VS,xi (z, ρ), VS,xi (z, ρ)

∂S,F`i (z, ρ), ∂S,H
i

`i (z, ρ) to ∂S,xi (z, ρ), ∂S,yi (z, ρ)

Also shorten ∂S,E`i (z, ρ) to ∂Si (z, ρ). Define Vx(S) :=
β+

∑
e∈E(S) cexe, where E(S) is the set of edges having

both endpoints in S. Finally, for an integer q ≥ 1 and a
set A of edges let cq(A) be the cost of all but the q − 1
most expensive edges of A (so cq(A) = 0 if |A| < q).

Lemma 3.2. Let S ⊆ V , z ∈ V , and i be some
commodity. Let α ∈ (0, 1) and q =

⌈
k−1
α

⌉
. We can

efficiently find ρ1 ∈ [0, 1) such that

cq
(
∂Si (z, ρ1)

)
VS,xi (z, ρ1)

≤ 2

1− α
· ln
(

eVx(S)

VS,xi (z,ρ1)

)
ln ln

(
e(r + 1)

)
(6)

cq
(
∂Si (z, ρ1)

)
VS,xi (z, ρ1)

≤ 2

1− α
· ln
(

eVx(S)

VS,xi (z,ρ1)

)
ln ln

(
e(r + 1)

)
. (7)

Proof. We apply Corollary 3.1 taking ` = `i, H =
Hi, and [a, b) = [0, 1) (and S, z, α as given by the
statement of the lemma, and F to be the set of x-

edges). Note that VS,xi (z, 1), VS,xi (z, 0) ≤ Vx(S), and
VS,xi (z,1)

VS,xi (z,0)
,
VS,xi (z,0)

VS,xi (z,1)
≤ r+ 1. Thus, we obtain 0 ≤ ρ1 < 1

such that c
(
∂S,xi (z, ρ1)

)
satisfies the bounds given by

the RHS of (6) and (7) respectively. Moreover, since

`i(Hi) ≤ k − 1, we have that
∣∣∂S,yi (z, ρ1)

∣∣ < k−1
α

due to (5), and so
∣∣∂S,yi (z, ρ1)

∣∣ < q. Finally, since

edges not in F ∪ Hi have zero `i-length, ∂S,xi (z, ρ)

and ∂S,yi (z, ρ) partition ∂Si (z, ρ) for all ρ. Therefore,

c
(
∂S,xi (z, ρ1)

)
≥ cq

(
∂Si (z, ρ1)

)
, and the lemma follows.

Corollary 3.2. Let S ⊆ V . Suppose that si, ti ∈ S
and there are γ(k − 1) edge-disjoint si-ti paths internal
to S, where γ > 1. Suppose that ce = 1 for all edges e.
We can efficiently find ρ1 ∈ [0, 1) such that

c
(
∂Si (si, ρ1)

)
VS,xi (si, ρ1)

≤ 2γ
(
√
γ−1)2 · ln

(
eVx(S)

VS,xi (si,ρ1)

)
ln ln

(
e(r + 1)

)
c
(
∂Si (si, ρ1)

)
VS,xi (si, ρ1)

≤ 2γ
(
√
γ−1)2 · ln

(
eVx(S)

VS,xi (si,ρ1)

)
ln ln

(
e(r + 1)

)

Proof. We apply Lemma 3.2 with α ∈ (0, 1), whose
value we will fix later, to obtain ρ1 ∈ [0, 1). Note that
BSi (si, ρ1) is an si-ti cut. Let q =

⌈
k−1
α

⌉
. For any

si-ti cut A ⊆ S, we know that c
(
δS(A)

)
≥ γ(k − 1).

Therefore, since we have unit edge costs, c
(
δS(A)

)
≤

cq
(
δS(A)

)
+ q − 1 ≤ cq

(
δS(A)

)
· γ
γ−1/α . Plugging in

the bounds for cq(.) from (6), (7), we see that the
constant factor multiplying the volume terms on the
RHS is 2γ

(1−α)(γ−1/α) . This factor is minimized by setting

α = γ−1/2, which yields the constant factor 2γ
(
√
γ−1)2 and

completes the proof.

3.2 The rounding algorithms and their analyses

The case k = 2. The algorithm for k = 2 follows
a similar template as the algorithm in [5] for 2-MC.
However, its analysis resulting in our improved guar-
antee relies crucially on Lemma 3.2 which is derived
from our stronger region-growing lemma. The algo-
rithm proceeds as follows. Given a current set U of
nodes and a current set of N source-sink pairs, we
repeatedly use Lemma 3.2 to “carve out” disjoint re-
gions A1, . . . , Ah ⊆ U and build a set Z of edges
until there is no 2-edge-connected source-sink pair in
U \ (A1 ∪ . . . ∪ Ah). Given A1, . . . , Ap−1, we obtain Ap
as follows. We choose an si-ti pair that is at least 2-edge
connected in S = U \

⋃p−1
q=1 Aq, and use Lemma 3.2 with

center si, α = 0.5 and set S. Note that 2(k−1) = 2 = k.

We set Ap to be BSi (si, ρ1) or BSi (si, ρ1), so as to en-
sure there are at most N/2 source-sink pairs inside Ap.
We add the edges corresponding to c2

(
δS(Ap)

)
to Z;

Lemma 3.2 ensures that the cost of these edges can be
bounded in terms of the volume contained in Ap. Hav-
ing obtained A1, . . . , Ah this way, we now recurse on
each set Ap and the source-sink pairs contained in Ap,
to obtain edge-sets Z1, . . . , Zh. The solution we return
is Z∪(Z1∪ . . .∪Zh). A more formal description follows.

Algorithm 2-MCAlg(U, T = {(s1, t1), . . . , (sN , tN)})
Input: A subset U ⊆ V , and a collection T = {(si, ti)}Ni=1

of source-sink pairs, where si, ti ∈ U for all i = 1, . . . , N .
Output: A set Z ⊆ E(U) such that si and ti are at most
1-edge-connected in (U,E(U) \ Z) for all i = 1, . . . , N .

A1. Set S = U , Z = ∅, S = ∅, and T ′ =
{

(si, ti) ∈ T :
si and ti are at least 2-edge-connected in (S,E(S))

}
.

A2. If T ′ = ∅, return Z.

A3. While T ′ 6= ∅, we do the following.

A3.1 Pick some (si, ti) ∈ T ′.
A3.2 Apply Lemma 3.2 with z = si, α = 0.5 and the set

S to find a radius 0 ≤ ρ1 < 1 satisfying (6), (7).

A3.3 If BS
i (si, ρ1) contains at most N/2 pairs from T

then set A = BS
i (si, ρ1), else set A = BS

i (si, ρ1).

A3.4 Set S ← S ∪ {A}. Add the edges contributing

to c2
(
δS(A)

)
(i.e., all edges of δS(A) except the

most-expensive one) to Z.

A3.5 Set S ← S\A. Update T ′ to be the si-ti pairs from
T that are at least 2-edge-connected in (S,E(S)).

A4. For every set A ∈ S, set Z ← Z∪2-MCAlg
(
A, {(si, ti) ∈

T : si, ti ∈ A}
)
.

A5. Return Z.

The initial call to 2-MCAlg, which computes the solution we
return, is 2-MCAlg

(
V, {(s1, t1), . . . , (sr, tr)}

)
.

Let Z := 2-MCAlg
(
V, {(s1, t1), . . . , (sr, tr)}

)
. The

feasibility of Z follows from the same arguments as
in [5]; Lemma 3.5 gives a self-contained proof. We focus
on showing that c(Z) ≤ O(ln r ln ln r) · OPT . Consider
the recursion tree associated with the execution of
2-MCAlg, where each node is labeled with arguments
passed in the current invocation of 2-MCAlg. Define
the depth of a subtree of this recursion tree to be the
maximum number of edges on a root to leaf path of the
subtree. Recall that β = OPT

r .

Lemma 3.3. Let d be the depth of a subtree of the recur-
sion tree rooted at

(
U ⊆ V, T ⊆ {(s1, t1), . . . , (sr, tr)}

)
.

Let ZU = 2-MCAlg(U, T). We have c(ZU) ≤ 4
(
β|T | +

Vx(U)
)

ln
(edrVx(U)

OPT

)
ln ln

(
e(r + 1)

)
.

Proof. The proof is by induction on d. If d = 0, there
is no recursive call; so ZU = ∅, which satisfies the
stated bound. Otherwise, suppose that we make the
recursive calls 2-MCAlg(A1, T1), . . . , 2-MCAlg(Ah, Th) in
step A4 to obtain edge-sets Z1, . . . , Zh respectively. For
p = 1, . . . , h, let Sp be the current set S when set Ap
was added to S in step A3.4 (so Ap ⊆ Sp), and let
Ep be the edge-set added to Z in this step. Then,

ZU =
⋃h
p=1(Ep ∪ Zp). By the induction hypothesis,

c(Zp) ≤ 4
(
β|Tp| + Vx(Ap)

)
ln
(ed−1rVx(Ap)

OPT

)
ln ln

(
e(r +

1)
)
. Let volp = VSp,xi (si, ρ1) if Ap = B

Sp
i (si, ρ1) and

volp = VSp,xi (si, ρ1) if Ap = B
Sp
i (si, ρ1). Note that

Vx(Ap) ≤ volp ≤ Vx(Sp) ≤ Vx(U). By Lemma 3.2
and the above upper bounds, we have

c(Ep)

4volp
≤ ln

(eVx(U)

Vx(Ap)

)
ln ln

(
e(r + 1)

)
, so

c(Ep) + c(Zp)

4
(
β|Tp|+ volp

) ≤ ln
(edrVx(U)

OPT

)
ln ln

(
e(r + 1)

)
. (8)

Note that
∑h
p=1 volp ≤ Vx(U) + β(h − 1) and∑h

p=1 |Tp| ≤ N − h (since each time we create a child
of (U, T) we remove at least one new (si, ti) pair from
T). So adding (8) over all p = 1, . . . , h, we obtain that

c(ZU) ≤ 4
(
β|T |+Vx(U)

)
ln
(edrVx(U)

OPT

)
ln ln

(
e(r+1)

)
.

Theorem 3.4. Algorithm 2-MCAlg returns a feasible
solution of cost at most O(ln r ln ln r) ·OPT .

Proof. Lemma 3.5 shows that Z is feasible. Each time
we make a recursive call to 2-MCAlg, the number of
source-sink pairs involved decreases by at least a factor
of 2, so the depth d of the overall recursion tree is
O(log2 r). Since βr + Vx(V) =

(
2 + 1

r

)
OPT and

rVx(V)
OPT = r + 1, by Lemma 3.3, this implies that
c(Z) ≤ O(OPT) ·

(
ln(r+ 1) +O(log2 r)

)
ln ln

(
e(r+ 1)

)
.

Lemma 3.5. The solution Z returned by 2-MCAlg is
feasible.

Proof. Suppose for a contradiction that there is some
si-ti pair such that there are (at least) 2 edge-disjoint
si-ti paths P1, P2 in (V,E \ Z). Consider the recursion
tree of 2-MCAlg, and let (Y, TY) be the node furthest
from the root such that P1, P2 ⊆ E(Y). (Such a node
must exist since the root satisfies this property.)

Note that there is at least one child (X, .) of (Y, TY)
such that δYP1∪P2

(X) 6= ∅. If not and both P1 and
P2 are contained in some child of (Y, TY) then this
contradicts the definition of (Y, TY). Otherwise, we have
P1, P2 ⊆ E(A), where A = Y \

⋃
children (X, .) of (Y, TY)X.

But then we would have processed A in step A3 and
created at least one child (A′, .) for some A′ ⊆ A.

We claim that if δYP1∪P2
(X) 6= ∅ for a child (X, .)

of (Y, TY), then |δYP1∪P2
(X)| ≥ 2. This is true if

both si and ti are in X or if neither of them are
in X since then a path crossing X must cross it at
least twice. Otherwise, X is an si-ti cut, and since
P1 and P2 are edge-disjoint si-ti paths in E(Y), we
again have |δYP1∪P2

(X)| ≥ 2. Among all the children

(X, .) of (Y, TY) such that δYP1∪P2
(X) 6= ∅, let (W, .)

be the child that was added to S earliest in step A3.4
of 2-MCAlg(Y, TY); let S′ ⊆ Y be the current set S
when W was added. Then, P1 ∪ P2 ⊆ E(S′), and
so |δS′E\Z(W)| ≥ |δS′P1∪P2

(W ′)| ≥ 2. But this is a
contradiction, since we include in Z all but at most one
edge of δS

′
(W).

General k and unit costs. The algorithm, which we
denote by k-MCAlg, leading to our bicriteria guarantee
is quite similar to 2-MCAlg. The only changes are the
following:

• In steps A1 and A3.5, we set T ′ to be the si-ti pairs
from T that are at least γ(k − 1)-edge-connected in
(S,E(S)).

• In step A3.2, we apply Corollary 3.2 with the set S
to find the radius ρ1 ∈ [0, 1).

• In step A3.4, we add all edges of δS(A) to Z. (Unlike
2-MC, if we only include the edges contributing
to cq

(
δS(A)

)
for some suitable q, then we cannot

necessarily argue that the final solution satisfies the
stated connectivity guarantee.)

• Of course, in step A4, we now recursively call
k-MCAlg (with the same arguments).

Theorem 3.6. For any γ > 1, algorithm
k-MCAlg returns a solution Z such that c(Z) ≤
O
(

γ
(
√
γ−1)2 ln r ln ln r

)
·OPT and every si-ti pair is less

than γ(k − 1)-edge-connected in (V,E \ Z).
Thus, taking γ = k

k−1 , we obtain a feasible solution

of cost at most O
(
(k − 1)2 ln r ln ln r

)
·OPT .

Proof. Let Z be the output of
k-MCAlg

(
V, {(s1, t1), . . . , (sr, tr)}

)
. It is clear that

Z is feasible: every si-ti pair that is at least γ(k − 1)-
edge-connected in (U,E(U)), where (U, .) is a node of
the recursion tree is either taken care of (i.e., rendered
less than γ(k − 1)-edge-connected) by the edges added
to Z in step A3, or, by induction, is taken care of by a
recursive call.

Mimicking the proof of Lemma 3.3, and using
Corollary 3.2 in place of Lemma 3.2 in the proof, one
can easily show that if d is the depth of the recursion
tree rooted (U, T) and ZU = k-MCAlg(U, T), then

c(ZU)

ln ln
(
e(r + 1)

) ≤ 2γ
(
√
γ−1)2

(
β|T |+Vx(U)

)
ln
(
edrVx(U)

OPT

)
.

Since the depth of the overall recursion tree is O(log2 r),
as argued in the proof of Theorem 3.4, we obtain that
c(Z) ≤ O

(
γ

(
√
γ−1)2 ln r ln ln r

)
·OPT .

4 Improved hardness result for k-(s, t)-Cut

Theorems 4.1 and 4.2 together prove that k-(s, t)-Cut
is at least as hard as the densest-k-subgraph problem
(DkS) problem. In DkS on hypergraphs, we seek a
set of k nodes containing the maximum the number of
hyperedges. Our hardness result implies that obtain-
ing a unicriterion O

(
kε0 polylog(n)

)
-approximation for

some constant ε0 would improve the current-best guar-
antee for DkS on graphs, and imply the existence of
a certain family of one-way functions. Our reduction
is from small set vertex expansion (SSVE), wherein we
have a bipartite graph G = (U ∪ V,E) and a parameter
0 < α ≤ 1, and we seek a subset S ⊆ U with |S| ≥ α|U |
that minimizes the number of neighbors, Γ(S). Chuzhoy
et al. [11] show that SSVE reduces to the minimization
version of DkS, MinDkS, wherein we seek a minimum
number of nodes that contain at least k hyperedges.
They also show that a ρ-approximation for MinDkS on

λ-uniform hypergraphs yields a (2ρλ)-approximation for
DkS on λ-uniform hypergraphs.

For a graph H = (VH , EH), subset S ⊆ VH , and
v ∈ VH \ S, we use δH(S, v) = δH(v, S) to denote the
edges between v and S in H, and ΓH(S) to denote the
set of neighbors of S inH. As is standard, we abbreviate
δH({v}, VH \ {v}) to δH(v).

Theorem 4.1. ([11]) For any λ ≥ 2, there is a poly-
time approximation-preserving reduction that given a
MinDkS-instance on a λ-uniform hypergraph with n
nodes and m edges, creates an SSVE-instance with
m + n nodes and λm edges. Hence, a ρ(m,n)-
approximation for SSVE yields, for λ-uniform hyper-
graphs, a ρ(λm,m+ n)-approximation for MinDkS and

a
(
2
(
ρ(λm,m+ n)

)λ)
-approximation for DkS.

Theorem 4.2. There is a polytime approximation-
preserving reduction that given an SSVE-instance with
n nodes and m edges, creates a k-(s, t)-Cut-instance
with O(n3) nodes, O(mn2+n5) edges, and k = O(mn2).
Hence, a ρ(k,m, n)-approximation for k-(s, t)-Cut yields
a ρ

(
O(mn2), O(mn2 + n5), O(n3)

)
-approximation for

SSVE.

Proof. Given an instance
(
G = (U ∪ V,E), α

)
of SSVE,

we construct the following instance of k-(s, t)-Cut; see
Fig. 4.1. Let N = 2|U ||V | + 1. Below, an infinite-cost
edge (u, v) of capacity buv is simply a shorthand for
buv parallel infinite-cost edges. Also, unless otherwise
specified, an edge has unit capacity.

(i) We replace each vertex v ∈ V with a clique K(v)
of size N . All edges in the clique have infinite cost.
For each edge (u, v) ∈ E, we add an edge between u
and every vertex in K(v).

(ii) We add the source s and connect it to all vertices
in U ; we add the sink t and connect it to all vertices
in K(v) for every v ∈ V .

(iii) Finally, we add a vertex b, an edge (b, t) with
capacity |E| · N , and edges (b, u) with capacity
|δG(u)| · N for all u ∈ U . We also add a vertex
a, an edge (s, a) with capacity |E| · N , and for all
v ∈ V , we add edges (a, x) for all x ∈ K(v) with
capacity |δG(v)|.

All edges have infinite cost except for the edges between⋃
v∈V K(v) and t, which have unit cost. We set k =
|U |(1− α) +N |E|+ 1.

We claim that there exists a solution of value at
most C for the SSVE instance iff there is a solution
of value at most CN for the k-(s, t)-Cut instance. Note
that a solution F consisting of unit-cost edges is feasible
if the maximum s-t flow in the capacitated remainder
graph G′ \ F has value at most k − 1. The intuition

u1

u2

u3

v1
v2

v3

v4

G=(U U V) u1

u2

u3

s t

b

a

K(v1)

K(v2)

K(v3)

K(v4)

…

…

…

…

…

…

…
 …

…
…

…
…

…
…

Figure 4.1: To the left, a graph of a given SSVE
instance. To the right, the graph for the k-(s, t)-Cut
instance created by our reduction. The edges incident
into t have unit cost, while all other edges have infinite
cost. Each K(vi) is a clique with N = 25 vertices.
Dashed edges have unit capacity. The other edges have
the following capacities: edge {s, a} and edge {b, t} have
capacity 150. Each edge {b, ui} (i = 1, 2, 3) has capacity
50. Each edge {a, x} for x ∈ K(v1) and x ∈ K(v3)
has capacity 2. Each edge {a, x} for x ∈ K(v2) and
x ∈ K(v4) has capacity 1.

is that if we send N |E| units of flow along the paths
s− a−x−u− b− t for all (u, v) ∈ E, x ∈ K(v), then in
the residual digraph, all arcs between U and

⋃
v∈V K(v)

leave U . Given this, one can mimic the arguments in [11]
to show the desired claim.

Suppose the SSVE instance has a solution S ⊆ U
of value at most C. Construct a k-(s, t)-Cut-solution by
removing the (v, t) edges for all v ∈ ΓG(S). Clearly
the cost of this set is at most CN . We now argue
feasibility. Consider the s-t cut induced by A = {s, a}∪
S ∪

⋃
v∈ΓG(S)K(v). Then |δG′(A)| is equal to

|U \ S|︸ ︷︷ ︸
edges between
s and U \ S

+
∑
u∈S

N |δG(u)|︸ ︷︷ ︸
edges between

b and S

+
∑

v∈V \ΓG(S)

N |δG(v)|

︸ ︷︷ ︸
edges between a and⋃

v∈V \ΓG(s) K(v)

+ N
(
of edges in G between U \ S and ΓG(S)

)︸ ︷︷ ︸
edges between U \ S and

⋃
v∈ΓG(S) K(v)

.

The sum of the last two terms is
∑
u∈U\S N |δG(u)| and

|U \S| ≤ |U |(1−α), so the size of the s-t cut is at most
|U |(1−α)+

∑
u∈U N |δG(u)| ≤ |U |(1−α)+N |E| ≤ k−1.

For the other direction, suppose G′ has a solution
F of value at most CN . Clearly, F can consist of only
unit-cost edges (incident to t). We first argue that we
may convert F into a structured feasible solution F ′ of

cost at most CN where |F ′ ∩ δG′(K(v))| ∈ {0, N} for
all v ∈ V .

Fix v ∈ V . If |δG′(K(v), t) \ F | ≤ k′ := |U |(1− α),
then we add all edges of δG′(K(v), t) \ F to F . Now
suppose |δG′(K(v), t) \ F | > k′ and let w1, . . . , wk′+1

be vertices in K(v) such that (wi, t) /∈ F for all i =
1, . . . , k′ + 1. We claim that F \ δG′(K(v), t) is also
feasible. Suppose to the contrary that we now have k′+1
edge-disjoint s-t-paths. We may assume that each such
path contains at most one vertex fromK(v) since we can
always shortcut the path to t. Consider a path P that
contains a vertex w ∈ K(v) where w /∈ {w1, . . . , wk′+1}.
Then we can construct another path P ′ by switching w
with a distinct vertex wj for some j ∈ {1 . . . , k′ + 1}.
Note that P ′ is an s-t path that avoids edges in F . If
we repeat this argument for all such paths, we obtain
k′+1 edge-disjoint s-t-paths in G′\F , contradicting the
feasibility of F .

If we perform the above transformation for all v ∈
V , then we obtain a feasible solution F ′ of cost at most
|F |+ |V |k′ < (C + 1)N . But by construction |F ′| must
be an integer multiple of N , so |F ′| ≤ CN .

Consider the residual network G̃ that is obtained
from G′ \ F ′ as follows. We first bidirect the edges of
G′ \ F ′, giving each resulting arc the same capacity as
that of the corresponding edge of G′. G̃ is the residual
network obtained after we send one unit of flow along
the path s-a-x-u-b-t for every edge (u, v) ∈ E and every
x ∈ K(v). Note that these paths are edge disjoint, so
we send N |E| units of flow. By flow theory [2], we know
that the value of the maximum s-t-flow in G′ \ F ′ is at
most k−1 = k′+N |E| iff the value of maximum s-t-flow
in G̃, which equals the capacity of the minimum s-t cut
in G̃, is at most k′. It follows there is an s-t cut in G̃ of
capacity at most k′.

Let A be the vertices that are on the s-side of this
cut. Let S := U∩A. Then |S| ≥ α|U |, otherwise the cut
would have capacity more than |U |(1−α) due to the arcs
(s, u) for u ∈ U \S. Consider v ∈ ΓG(S). We must have
K(v) ⊆ A: if K(v)∩A = ∅, then considering u ∈ S such
that (u, v) ∈ E, the cut has capacity at least N > k′

due to the edges between u and K(v); otherwise, since
K(v) is split between the s- and t- sides, the cut has
capacity at least N −1 > k′. Finally, δG′(K(v), t) ⊆ F ′,
otherwise δG′(K(v), t) ∩ F ′ = ∅, and again the cut has
capacity at least N > k′. Thus, |ΓG(S)| ≤ C, so S is
an SSVE-solution.

5 Extensions to k-route node multicut
problems

We now consider variants of k-MC where we seek
to delete edges or nodes so as to reduce the node
connectivity of each si-ti pair to at most k−1. Formally,

as before, we are given an undirected graph G = (V,E),
r source-sink pairs (s1, t1), . . . , (sr, tr), and an integer
k ≥ 1. In the edge-deletion k-route node-multicut
(ED-k-NMC) problem, we have nonnegative edge-costs
{ce}e∈E and we seek a minimum-cost set F ⊆ E of
edges such that the remainder graph G = (V,E \ F)
contains at most k − 1 node-disjoint si-ti paths for
all i = 1, . . . , r. In the node-deletion k-route node-
multicut (ND-k-NMC) problem, we have nonnegative
node costs {cv}v∈V and we seek a minimum-cost set
A ⊆ V \ {s1, t1, . . . , sr, tr} of nodes such that the
remainder graph G =

(
V \ A,E(V \ A)

)
contains at

most k − 1 node-disjoint si-ti paths for all i = 1, . . . , r.
The LP-relaxations of these k-route node-multicut

problems induce both edge and node lengths, so to
round these we develop region-growing lemmas that
also incorporate node lengths. To keep notation sim-
ple, instead of proving a cumbersome overly-general
region-growing lemma and obtaining the lemmas re-
quired for ED-k-NMC and ND-k-NMC as corollaries, we
specifically focus on ED-k-NMC (Section 5.1) and ND-
k-NMC (Section 5.2) and prove suitable region-growing
lemmas. We use these to obtain an O(ln r ln ln r)-
approximation for ED-k-NMC with k = 2, and a bicri-
teria

(
γ,O

(
γ

(
√
γ−1)2 ln r ln ln r

))
-approximation for ND-

k-NMC with general k and unit node costs.

5.1 Edge-deletion k-route node-multicut. The
LP-relaxation for ED-k-NMC is as follows.

min
∑
e

cexe (P2)

s.t.
∑

e∈E(P)

xe +
∑

v∈V (P)

yiv ≥ 1 ∀i,∀P ∈ Pi

∑
v

yiv ≤ k − 1, yisi = yiti = 0 ∀i

x, y ≥ 0.

Region-growing lemma. Let
(
x, {yi}

)
be an optimal

solution to (P2), and OPT be its value. Let S ⊆ V
represent the node-set of the current region. For T ⊆
S ⊆ V , recall that E(S) is the set of edges with both
endpoints in S and δS(T) is the set of boundary edges
of T in E(S). Set β = OPT/r. As before, define
Vx(S) := β +

∑
e∈E(S) cexe. Let ρ ≥ 0. Let z ∈ V .

Fix a commodity i.

• Define `i(u; v) = minP :P is a u-v path

(∑
e∈E(P) xe +∑

w∈V (P):w 6=u y
i
w

)
, where E(P) and V (P) denote

respectively the set of edges and nodes of P . Note
that `i defines an asymmetric metric on V × V .

• Define Bi(z, ρ) := {v ∈ V : `i(z; v) ≤ ρ} to be the
ball of radius ρ around z. Let BSi (z, ρ) := Bi(z, ρ)∩S.

• Define the edge-boundary of BSi (z, ρ) in S to be

∂S,xi (z, ρ) := {(u, v) ∈ E : u, v ∈ S, `i(z;u) ≤
ρ, `i(z; v) − yiv > ρ}. Define the node-boundary

of BSi (z, ρ) in S to be ΓS,yi (z, ρ) := {v ∈ S : ρ <
`i(z; v) ≤ ρ+ yiv}.
Let BSi (z, ρ) := S \

(
BSi (z, ρ) ∪ ΓS,yi (z, ρ)

)
.

• Define the following volumes:

VS,xi (z, ρ) := β +
∑

(u,v)∈E:u∈BSi (z,ρ)

v∈BSi (z,ρ)∪ΓS,yi (z,ρ)

cuvxuv

+
∑

(u,v)∈∂S,xi (z,ρ):

u∈BSi (z,ρ)

cuv
(
ρ− `i(z;u)

)

VS,xi (z, ρ) := β +
∑

(u,v)∈E:u∈BSi (z,ρ)

v∈BSi (z,ρ)∪ΓS,yi (z,ρ)

cuvxuv

+
∑

(u,v)∈∂S,xi (z,ρ):

u∈BSi (z,ρ)

cuv
(
`i(z; v)− ρ− yiv

)

Lemma 5.1. Let S ⊆ V , z ∈ V , i be some commodity,
and 0 ≤ a < b. Let ρ be chosen uniformly at random
from [a, b). Then,

Eρ

[
c
(
∂S,xi (z, ρ)

)/[
VS,xi (z, ρ) ln

(
eVS,xi (z,b)

VS,xi (z,ρ)

)]]
≤ 1

b− a
· ln ln

(
eVS,xi (z, b)

VS,xi (z, a)

)
(9)

Eρ

[
c
(
∂S,xi (z, ρ)

)/[
VS,xi (z, ρ) ln

(eVS,xi (z, a)

VS,xi (z, ρ)

)]]

≤ 1

b− a
· ln ln

(
eVS,xi (z, a)

VS,xi (z, b)

)
(10)

Proof. We abbreviate c
(
∂S,xi (z, ρ)

)
to c(ρ), VS,xi (z, ρ) to

V(ρ) and VS,xi (z, ρ) to V(ρ). Let I = {`i(z; v), `i(z; v)−
yiv : v ∈ V }. Note that V(ρ) and V(ρ) are differentiable
at all ρ ∈ [a, b) \ I and for each such ρ, we have
dV(ρ)
dρ = c(ρ) and dV(ρ)

dρ = −c(ρ). The proof now follows
from exactly the same arguments as in the proof of
Lemma 3.1.

Corollary 5.1. Let S ⊆ V , z ∈ V , and i be some
commodity. Let α ∈ (0, 1) and q =

⌈
k−1
α

⌉
. We can

efficiently find ρ1 ∈ [0, 1) such that

c
(
∂S,xi (z, ρ1)

)
VS,xi (z, ρ1)

≤ 2

1− α
· ln
(

eVx(S)

VS,xi (z,ρ1)

)
ln ln

(
e(r + 1)

)
c
(
∂S,xi (z, ρ1)

)
VS,xi (z, ρ1)

≤ 2

1− α
· ln
(

eVx(S)

VS,xi (z,ρ1)

)
ln ln

(
e(r + 1)

)
∣∣ΓS,yi (z, ρ1)

∣∣ < q.

Proof. If we choose ρ uniformly at random from [0, 1)

then Eρ

[∣∣ΓS,yi (z, ρ)
∣∣] ≤ ∑

i y
i
v ≤ k − 1. Taking

[a, b) = [0, 1), the arguments in Corollary 3.1 readily
generalize to show that we can efficiently find ρ1 ∈
[0, 1) such that c

(
∂S,xi (z, ρ1)

)
/VS,xi (z, ρ1) ln

(eVS,xi (z,1)

VS,xi (z,ρ1)

)
,

and c
(
∂S,xi (z, ρ1)

)
/VS,xi (z, ρ1) ln

(eVS,xi (z,0)

VS,xi (z,ρ1)

)
are at most

2
(1−α) times the right-hand-sides of (9) and (10) respec-

tively, and
∣∣ΓS,yi (z, ρ)

∣∣ < k−1
α . The lemma now fol-

lows by noting that VS,xi (z, 1), VS,xi (z, 0) ≤ Vx(S), and
VS,xi (z,1)

VS,xi (z,0)
,
VS,xi (z,0)

VS,xi (z,1)
≤ r + 1.

Algorithm and analysis for k = 2. The algorithm
and analysis dovetail the one for 2-MC in Section 3.2.

Algorithm ED-2-NMCAlg(U, T = {(s1, t1), . . . , (sN , tN)})
Input: A subset U ⊆ V , and a collection T = {(si, ti)}Ni=1

of source-sink pairs, where si, ti ∈ U for all i = 1, . . . , N .
Output: A set Z ⊆ E(U) such that si and ti are at most
1-node-connected in (U,E(U) \ Z) for all i = 1, . . . , N .

B1. Set S = U , Z = ∅, S = ∅, and T ′ =
{

(si, ti) ∈ T :
si and ti are at least 2-node-connected in (S,E(S))

}
.

B2. If T ′ = ∅, return Z.

B3. While T ′ 6= ∅, we do the following.

B3.1 Pick some (si, ti) ∈ T ′.
B3.2 Apply Corollary 5.1 with z = si, α = 0.5 and the

set S (and k = 2) to find a radius 0 ≤ ρ1 < 1.

B3.3 If BS
i (si, ρ1) ∪ ΓS,y

i (si, ρ1) contains at most N/2
pairs from T then set A = BS

i (si, ρ1), else set

A = BS
i (si, ρ1).

B3.4 Set S ← S ∪ {A ∪ ΓS,y
i (si, ρ1)}. Add the edges in

∂S,x
i (si, ρ1) to Z.

B3.5 Set S ← S\A. Update T ′ to be the si-ti pairs from
T that are at least 2-node-connected in (S,E(S)).

B4. For every set A ∈ S, set Z ← Z ∪
ED-2-NMCAlg

(
A, {(si, ti) ∈ T : si, ti ∈ A}

)
.

B5. Return Z.

The initial call to ED-2-NMCAlg, which computes the solu-
tion we return, is ED-2-NMCAlg

(
V, {(s1, t1), . . . , (sr, tr)}

)
.

Let Z := ED-2-NMCAlg
(
V, {(s1, t1), . . . , (sr, tr)}

)
.

Define the depth of a subtree of the recursion tree

corresponding to the execution of ED-2-NMCAlg to be
the maximum number of edges on a root to leaf path of
the subtree. The following claim will be useful to prove
feasibility of Z.

Claim 5.2. Let S, T ⊆ V with |S ∩ T | ≤ 1. Let
ES ⊆ E(S) and ET ⊆ E(T). Let u, v ∈ S be such that u
and v are at most 1-node-connected in (S,ES). Then, u
and v are at most 1-node-connected in (S∪T,ES ∪ET).

Proof. If S ∩ T = ∅, this clearly holds. So assume
otherwise. Suppose P1, P2 are two simple node-disjoint
u-v paths in G′ = (S ∪ T,ES ∪ ET). At least one of P1

and P2 does not lie completely in (S,ES); suppose P2 is
this path. But since all edges of δG′(S) are incident to a
single node, and P2 both exits and leaves S, P2 contains
a repeated node, which is a contradiction.

Lemma 5.3. The solution Z returned is feasible.

Proof. Suppose for a contradiction that there is some si-
ti pair that is (at least) 2-node-connected in (V,E \Z).
Consider the recursion tree of ED-2-NMCAlg, and let
(Y, TY) be the node furthest from the root such that
si and ti are at least 2-node-connected in the subgraph
(Y,E(Y)) induced by Y . Suppose that the loop in step
B3 of ED-2-NMCAlg(Y, TY) runs for h iterations. Note
that h ≥ 1 since si and ti are at least 2-node-connected
in (Y,E(Y)). Let Xp be the set added to S in step B3.4
in the p-th iteration of the loop. Let Xh+1 ⊆ Y be the

set S at the termination of the loop. Let Sp =
⋃h+1
q=p Xq

(so S1 = Y). Notice that |Xp ∩ Sp+1| ≤ 1, since

Xp∩Sp+1 ⊆ Γ
Sp,y
p (sp, ρp), where sp-tp is the source-sink

pair and ρp is the radius chosen in the p-th iteration, and

|ΓSp,yp (sp, ρp)| < 2 by Lemma 5.1.
Let p be the highest index such that si and ti are

at least 2-node-connected in (Sp, E(Sp)). Note that
p ≤ h, otherwise the loop in step B3 would not have
terminated with S = Xh+1. If si, ti ∈ Sp+1, they
are at most 1-node-connected in (Sp+1, E(Sp+1)). Since
|Xp ∩ Sp+1| ≤ 1, we have E(Sp) = E(Xp) ∪ E(Sp+1),
and by Claim 5.2 it follows that si and ti are at most 1-
node-connected in (Sp, E(Sp)), which is a contradiction.
If si, ti ∈ Xp, they are at most 1-node-connected in
(Xp, E(Xp)) due to the definition of (Y, TY), and so we
arrive at the same contradiction. So it must be that∣∣{si, ti} ∩ (Xp \ Sp+1)

∣∣ = 1. But then all si-ti paths in
(Sp, E(Sp)) contain the singleton node in Xp∩Sp+1. So
si and ti are at most 1-node-connected in (Sp, E(Sp)),
and we have the same contradiction.

Lemma 5.4. Let d be the depth of a subtree of the recur-
sion tree rooted at

(
U ⊆ V, T ⊆ {(s1, t1), . . . , (sr, tr)}

)
.

Let ZU = ED-2-NMCAlg(U, T). Then c(ZU) ≤ 4
(
β|T |+

Vx(U)
)

ln
(edrVx(U)

OPT

)
ln ln

(
e(r + 1)

)
.

Proof. When d = 0, we have ZU = ∅, so the state-
ment holds. Suppose in step B3 of ED-2-NMCAlg(U, T),
we add sets A1, . . . , Ah to S (where h ≥ 1), in that
order. For p = 1, . . . , h, let Sp be the current set S
when Ap was added to S in step B3.4, and let Ep be
the edge-set added to Z in this step. Let Z1, . . . , Zh
be the edge-sets returned by the recursive calls
to ED-2-NMCAlg(A1, T1), . . . ,ED-2-NMCAlg(Ah, Th) in
step B4.

Let volp = VSp,xi (si, ρ1) if Ap = B
Sp
i (si, ρ1) ∪

Γ
Sp,y
i (si, ρ1) and volp = VSp,xi (si, ρ1) if Ap =

B
Sp
i (si, ρ1)∪Γ

Sp,y
i (si, ρ1). The key thing to note is that

we still have Vx(Ap) ≤ volp ≤ Vx(Sp) ≤ Vx(U) and∑h
p=1 volp ≤ Vx(U) + β(h− 1). The latter follows since

an easy induction argument shows that
∑h
p=q volp ≤

Vx(Sq) + β(h − q) for all q = 1, . . . , h. Given this, the
rest of the proof is identical to that of Lemma 3.3.

Each recursive call to ED-2-NMCAlg, reduces the
number of source-sink pairs involved by a factor of at
least 2, so the depth d of the entire recursion tree is
O(log2 r). So we have shown the following.

Theorem 5.5. Algorithm ED-2-NMCAlg returns a fea-
sible solution of cost at most O(ln r ln ln r) ·OPT .

5.2 Node-deletion k-route node-multicut The
LP-relaxation for ND-k-NMC is as follows.

min
∑
v

cvxv (P3)

s.t.
∑

v∈V (P)

(xv + yiv) ≥ 1 ∀i,∀P ∈ Pi

∑
v

yiv ≤ k − 1, yisi = yiti = 0 ∀i

x, y ≥ 0, xv = 0 ∀v ∈ {s1, t1, . . . , sr, tr}.

Region-growing lemma. Let
(
x, {yi}

)
be an optimal

solution to (P3), and OPT be its value. As before, let
S ⊆ V represent the node-set of the current region. Set
β = OPT/r. Let z ∈ V and ρ ≥ 0. Fix a commodity i.

• Define `i(u; v) = minP :P is a u-v path

∑
w∈V (P):w 6=u(xw+

yiw), where V (P) is the set of nodes of P . As before,
`i defines an asymmetric metric on V × V .

• Define Bi(z, ρ) := {v ∈ V : `i(z; v) ≤ ρ}, and
BSi (z, ρ) := Bi(z, ρ) ∩ S.

• Define the x-boundary and y-boundary of BSi (z, ρ)
in S by:

ΓS,xi (z, ρ) := {v ∈ S : yiv < `i(z; v)− ρ ≤ xv + yiv}
ΓS,yi (z, ρ) := {v ∈ S : ρ < `i(z; v) ≤ ρ+ yiv}.

Note that ΓS,xi (z, ρ) and ΓS,yi (z, ρ) parti-
tion ΓSi (z, ρ) := {v ∈ S \ BSi (z, ρ) : ∃u ∈
Bsi (z, ρ) s.t. (u, v) ∈ E}.
Let BSi (z, ρ) := S \

(
BSi (z, ρ) ∪ ΓSi (z, ρ)

)
.

• Define the following volumes:

VS,xi (z, ρ) := β +
∑

u∈BSi (z,ρ)∪ΓS,yi (z,ρ)

cuxu

+
∑

u∈ΓS,xi (z,ρ)

cu
(
ρ− (`i(z;u)− xu − yiu)

)
VS,xi (z, ρ) := β +

∑
u∈BSi (z,ρ)∪ΓS,yi (z,ρ)

cuxu

+
∑

u∈ΓS,xi (z,ρ)

cu(`i(z;u)− yiu − ρ)

The following lemma is analogous to Lemmas 3.1
and 5.1 and follows from the same reasoning.

Lemma 5.6. Let S ⊆ V , z ∈ V , i be some commodity,
and 0 ≤ a < b. Let ρ be chosen uniformly at random
from [a, b). Then,

Eρ

[
c
(
ΓS,xi (z, ρ)

)/[
VS,xi (z, ρ) ln

(eVS,xi (z, b)

VS,xi (z, ρ)

)]]

≤ 1

b− a
· ln ln

(
eVS,xi (z, b)

VS,xi (z, a)

)

Eρ

[
c
(
ΓS,xi (z, ρ)

)/[
VS,xi (z, ρ) ln

(eVS,xi (z, a)

VS,xi (z, ρ)

)]]

≤ 1

b− a
· ln ln

(
eVS,xi (z, a)

VS,xi (z, b)

)
Corollary 5.2. Let S ⊆ V . Suppose that si, ti ∈ S
and there are γ(k− 1) node-disjoint si-ti paths internal
to S, where γ > 1. Suppose that cv = 1 for all nodes v.
We can efficiently find ρ1 ∈ [0, 1) such that

c
(
ΓSi (si, ρ1)

)
VS,xi (si, ρ1)

≤ 2γ
(
√
γ−1)2 · ln

(
eVx(S)

VS,xi (si,ρ1)

)
ln ln

(
e(r + 1)

)
c
(
ΓSi (si, ρ1)

)
VS,xi (si, ρ1)

≤ 2γ
(
√
γ−1)2 · ln

(
eVx(S)

VS,xi (si,ρ1)

)
ln ln

(
e(r + 1)

)
Proof. Let α ∈ (0, 1), whose value we will fix later. Take

[a, b) = [0, 1). We have that VS,xi (z, 1), VS,xi (z, 0) ≤

Vx(S), and
VS,xi (z,1)

VS,xi (z,0)
,
VS,xi (z,0)

VS,xi (z,1)
≤ r + 1. Given this, the

arguments in Corollary 3.1 readily generalize to show
that we can efficiently find ρ1 ∈ [0, 1) such that

c
(
ΓS,xi (si, ρ1)

)
VS,xi (z, ρ1)

≤ 2
1−α · ln

(
eVx(S)

VS,xi (z,ρ1)

)
ln ln

(
e(r + 1)

)
(11)

c
(
ΓS,xi (si, ρ1)

)
VS,xi (z, ρ1)

≤ 2
1−α · ln

(
eVx(S)

VS,xi (z,ρ1)

)
ln ln

(
e(r + 1)

)
(12)

∣∣ΓS,yi (z, ρ)
∣∣ < k − 1

α
. (13)

Note that ti /∈ ΓSi (si, ρ1) since ρ1 < 1. So
removing ΓSi (si, ρ1) disconnects si and ti, and hence,
|ΓSi (si, ρ1)| ≥ γ(k − 1). Therefore, since we have unit

node costs and ΓS,xi (si, ρ1) and ΓS,yi (si, ρ1) partition

ΓSi (si, ρ1), we have c
(
ΓSi (si, ρ1)

)
≤ c

(
ΓS,xi (si, ρ1)

)
·

γ
γ−1/α . Plugging in the bounds from (11), (12), we see

that the constant factor multiplying the volume terms
on the RHS is minimized by setting α = γ−1/2, which
yields the constant factor 2γ

(
√
γ−1)2 .

Algorithm and analysis for unit costs. The algo-
rithm, ND-k-NMCAlg, is quite similar to ED-2-NMCAlg.
The only changes are the following:

• In steps B1 and B3.5, we set T ′ to be the si-ti pairs
from T that are at least γ(k − 1)-node-connected in
(S,E(S)).

• In step B3.2, we apply Corollary 5.2 with the set S
to find the radius ρ1 ∈ [0, 1).

• In step B3.4, we add A to S, and add all nodes of
ΓSi (si, ρ1) to Z.

• Of course, in step B4, we now recursively call
ND-k-NMCAlg (with the same arguments).

Theorem 5.7. For any γ > 1, algorithm
ND-k-NMCAlg returns a solution Z such that
c(Z) ≤ O

(
γ

(
√
γ−1)2 ln r ln ln r

)
· OPT and every

si-ti pair is less than γ(k − 1)-node-connected in
(V \ Z,E(V \ Z)).

Thus, taking γ = k
k−1 , we obtain a feasible solution

of cost at most O
(
(k − 1)2 ln r ln ln r

)
·OPT .

Proof. Let Z be the output of
ND-k-NMCAlg

(
V, {(s1, t1), . . . , (sr, tr)}

)
. It is clear that

Z is feasible. Mimicking the proof of Lemma 3.3, and
using Corollary 5.2 in place of Lemma 3.2 in the proof,
one can easily show that if d is the depth of the recur-
sion tree rooted (U, T) and ZU = ND-k-NMCAlg(U, T),
then

c(ZU)

ln ln
(
e(r + 1)

) ≤ 2γ
(
√
γ−1)2

(
β|T |+Vx(U)

)
ln
(
edrVx(U)

OPT

)
.

Since the depth of the recursion tree is O(log2 r), we
obtain that c(Z) ≤ O

(
γ

(
√
γ−1)2 ln r ln ln r

)
·OPT .

References

[1] S. Arora and C. Lund. Hardness of approximations.
In D. Hochbaum, editor, Approximation Algorithms for
NP-hard Problems, PWS Publishing co., Boston, MA,
USA, 1997.

[2] R. Ahuja, T. Magnanti, J. Orlin. Network Flows:
Theory, Algorithms, and Applications. Prentice-Hall,
Inc. 1993.

[3] B. Applebaum. Pseudorandom generators with long
stretch and low locality from random local one-way
functions. In Electronic Colloquium on Computational
Complexity (ECCC), 18:7, 2011.

[4] S. Arora, L. Babai, J. Stern, and Z. Swedyk. The
hardness of approximate optima in lattices, codes, and
systems of linear equations. Journal of Computer
System Science, 54:317331, 1997

[5] S. Barman and S. Chawla. Region growing for multi-
route cuts. In Proceedings of the 21st SODA, pages
404–418, 2010.

[6] S. Bhatt and F. T. Leighton. A framework for solving
VLSI graph layout problems. Journal of Computer and
System Sciences 28.2 300-343, 1984.

[7] H. Bruhn, J. Cerny, A. Hall, P. Kolman, and J. Sgall.
Single source multiroute flows and cuts on uniform
capacity networks. Theory of Computing, 4(1):1–20,
2008.

[8] D. Chakrabarty, R. Krishnaswamy, S. Li, and
S. Narayanan. Capacitated Network Design on Undi-
rected Graphs. In Proceedings of the 16th APPROX,
pages 71–80, 2013.

[9] S. Chawla, A. Gupta, and H. Räcke. Embeddings of
negative-type metrics and an improved approximation
to generalized sparsest cut. ACM Transactions on
Algorithms, 4(2), 2008.

[10] C. Chekuri and S. Khanna. Algorithms for 2-Route
Cut Problems. Automata, Languages and Program-
ming, 472-484, 2008.

[11] J. Chuzhoy, Y. Makarychev, A. Viajayaraghavan, and
Y. Zhou. Approximation algorithms and hardness of
the k-route cut problem. In Proceedings of the 23rd
SODA, pages 780–799, 2012.

[12] D. Dahlhaus, D. S. Johnson, C. H. Papadimitriou,
P. D. Seymour, and M. Yannakakis. The complexity of
multiway cuts. Proceedings of the 24th STOC, 241-251,
1992

[13] M. Dinitz and A. Gupta. Packing interdiction and
partial covering problems. In Proceedings of the 16th
IPCO, pages 157–168, 2013.

[14] M. Dinitz, G. Kortsarz, and R. Raz. Label cover in-
stances with large girth and the hardness of approx-
imating basic k-spanner, Proceedings of the 39th in-
ternational colloquium conference on Automata, Lan-
guages, and Programming 290-301, 2012.

[15] G. Even, J. Naor, S. Rao, and B. Schieber. Divide-
and-conquer approximation algorithms via spreading
metrics. Journal of the ACM, 47(4):585–616, 2000.

[16] G. Even, J. Naor, B. Schieber, and M. Sudan. Ap-
proximating minimum feedback sets and multicuts in
directed graphs. Algorithmica, 20:151–174, 1998.

[17] S. Fiorini, G. Joret, U. Pietropaoli. Hitting Diamonds
and Growing Cacti. 14th Conference on Integer Pro-
gramming and Combinatorial Optimization, pages 191-
204, 2010.

[18] F. Fomin, D. Lokshtanov, N. Misra, and S. Saurabh.
Planar F -Deletion: Approximation, Kernelization and
Optimal FPT Algorithms. In Proceedings of the 53rd
FOCS, pages 470–479, 2012.

[19] N. Garg, V. Vazirani, and M. Yannakakis. Approxi-
mate max-flow min-(multi)-cut theorems and their ap-
plications. SIAM Journal on Computing, 25:235–251,
1996.

[20] A. Hayrapetyan, D. Kempe, M. Pl, and Z. Svitkina.
Unbalanced graph cuts. In Proceedings of the 13th
ESA, pages 191–202, 2005.

[21] W. Kishimoto. A method for obtaining the maximum
multi-route flow in a network. Networks, 27(4):279-
291, 1996.

[22] P. Kolman, and C. Scheideler. Approximate Duality
of Multicommodity Multiroute Flows and Cuts: Single
Source Case. In Proceedings of the 23rd SODA, pages
800–810, 2012.

[23] P. Kolman, and C. Scheideler. Towards Duality of
Multicommodity Multiroute Cuts and Flows: Multi-
level Ball-Growing. In Proceedings of the 28th STACS,
pages 129–140, 2011.

[24] G. Kortsarz. On the Hardness of Approximating
Spanners. Algorithmica, 30, 1999.

[25] B. Laekhanukit. Personal communication, October
2013.

[26] B. Laekhanukit. Parameters of two-prover-one-round
game and the hardness of connectivity problems. In
Proceedings of the 25th SODA, pages 1626–1643, 2014.

[27] F. Leighton and S. Rao. Multicommodity max-flow
min-cut theorems and their use in designing approxi-
mation algorithms. Journal of the ACM, 46:787-832,
1999.

[28] A. Li and P. Zhang. Unbalanced graph partitioning.
Theory of Computing Systems, 53:454-466, 2013.

[29] J. Shi and J. Malik. Normalized cuts and image
segmentation. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 22:888–905, 2000.

[30] C. A. Phillips. The network inhibition problem. In
Proceedings of the 25th STOC, pages 776–785, 1993.

[31] C. Papadimitriou and M. Yannakakis. Optimization,
approximation, and complexity classes. Journal of
Computer and System Sciences, 43:425–440, 1991.

[32] H. Räcke. Minimizing congestion in general networks.
In Proceedings of the 43rd FOCS, pages 43–52, 2002.

[33] P. Seymour. Packing directed circuits fractionally.
Combinatorica, 15:281–288, 1995.

[34] D. Shmoys. Cut problems and their application to

divide-and-conquer. In D. Hochbaum, editor, Approx-
imation Algorithms for NP-hard Problems, PWS Pub-
lishing co., Boston, MA, USA, 1997.

[35] C. Tovey. A simplified NP-complete satisfiability
problem. Discrete Applied Mathematics 8.1: 85-89,
1984.

[36] V. Vazirani. Approximation Algorithms. Springer Ver-
lag, 2001.

[37] D. Williamson and D. Shmoys. The Design of Approxi-
mation Algorithms, Cambridge University Press, 2010.

[38] R. K. Wood. Deterministic network interdiction.
Mathematical and Computer Modeling, 17(2):1–18,
1993.

[39] R. Zenklusen. Network flow interdiction on planar
graphs. Discrete Applied Mathematics, 158:1441–1455,
2010.

A The k-route all-pairs cut problem

Theorem A.1. The 3-route all-pairs cut problem is
APX-hard.

Proof. We give an L-reduction from vertex cover on
bounded-degree graphs, which is known to be APX-hard
[31]. Given a vertex-cover instance Ĝ = (V̂ , Ê), where
Ĝ has maximum degree α = O(1), we construct an
instance G = (V,E) of the 3-route all-pairs cut problem.
In the following, to avoid confusion, we will refer to
the elements (V̂ , Ê) of the vertex-cover instance Ĝ as
vertices and edges, and to the elements (V,E) of the
constructed 3-route all-pairs-cut instance as nodes and
links.

a1

…

σe

b1

a2

b2

a3

b3

aq

bq

…

σe’

Figure A.2: The instance created by our reduction from
a vertex-cover instance Ĝ on q vertices. Black edges
have infinite cost and grey edges have unit cost. Node
σe represents the edge (1, 3) and node σe′ represents the
edge (3, q). Vertex 1 has degree 4 in Ĝ and vertex 3 has
degree 5 in Ĝ.

Let the vertices in V̂ be numbered 1, 2, . . . , |V̂ |. For
every vertex v ∈ V̂ , we introduce a path Pv in G that
contains as many links as the degree of v. That is, Pv
has one link fev for every edge e ∈ Ê incident to v in

Ĝ. We give infinite cost to such links. Let av be the
first node of the path Pv and bv be the last. We add a
link (av, bv) of unit cost in G. Note that Pv and (av, bv)
yields a cycle in G for every v ∈ V̂ . We also connect av
to av+1 through a cycle formed by 3 links with infinite
cost. That is, we introduce |V̂ | − 1 triangles connecting
all paths. For each edge e = (u, v) ∈ Ê we introduce
a node σe and we connect σe to the endpoints of feu

and to the endpoints of fev , with links of unit cost. We
let G = (V,E) be the resulting graph for our 3-route
all-pairs cut instance (see Fig.A.2).

Let p∗ and c∗ be the cost of an optimal solution for
the vertex-cover instance and the cost of an optimal so-
lution for the 3-route all-pairs cut instance, respectively.
We claim that:
(i) If there exists a vertex cover in Ĝ of size p, then

there is a solution for the 3-route all-pairs cut
instance of cost at most 2|Ê| + p. Note that this
implies that c∗ ≤ 2|Ê|+ p∗ ≤ (2α+ 1)p∗.

(ii) For any feasible solution for the 3-route all-pairs cut
instance of cost at most 2|Ê| + p we can construct
a cover of Ĝ of size at most p.

This implies that we have an L-reduction, and shows
that if we have a β-approximation for 3-route all-pairs
cut, then we can obtain a vertex-cover solution of size
at most βc∗ − 2|Ê| = O(β)p∗, yielding the theorem.

In proving this, a useful observation is that a set F
of edges is feasible for 3-route all-pairs cut problem iff
the remainder graph G = (V,E \ F) has the property
that every two simple cycles meet at most at one vertex.
Such a graph is called a cactus graph.

For (i), suppose there exists a vertex cover of size
p. For every v in the cover, we add (av, bv) in F .
Furthermore, for each edge e = (u,w) ∈ Ê, we select
one vertex between u and w that is in the cover (at least
one of them is in the cover by definition), say u, and we
add to F the links connecting σe to the endpoints of few

for the other vertex w. It is not difficult to check that
F yields a feasible solution for the 3-route all-pairs cut
instance (using the relationship to cactus graphs) of the
claimed cost.

For (ii), suppose we have a feasible solution F
for the 3-route all-pairs cut instance, and consider the
remainder graph obtained by removing F . Clearly, all
links of infinite cost are still present. Note that each
node σe can have at most two links incident to it in the
remainder graph, and both these links must be incident
to two nodes of the same path Pv for some v. If not,
then we would have an infinite-cost link of some triangle
that connects the vertices {av}v∈V̂ that is contained
into another cycle other than the triangle, contradicting
feasibility of our solution.

We first argue that, we may assume, without loss of

generality, that each σe has exactly two links incident
to it in the remainder graph (and hence, also in F).
Let e = (u,w) be the edge in Ê corresponding to
σe. As argued above, F contains at least one pair of
links that connect σe to the nodes of a path, say Pu.
Suppose that F also contains some links connecting
σe to Pw. If we remove such links from F and add
them back to the graph, we create one additional cycle
containing the link few . Thus, the new graph is not
a cactus iff few is already contained in some cycle in
(V,E \ F). But there is only one possible cycle in
(V,E \ F) containing few , namely the cycle formed
by Pw and (aw, bw). This observation implies that
F ∪ {(aw, bw)} \ {the two links connecting σe to Pw} is
a feasible solution to our 3-route all-pairs cut instance.
Furthermore, this solution has no greater cost since
we are adding at most one link of unit cost, and we
removing at least one link of the same cost.

Since the cost of our solution is at most 2|Ê|+ p, it
follows that there are at most p links in F of the form
(av, bv). We claim that these vertices v form a cover
in Ĝ. Suppose not. Then there is at least one edge
e ∈ Ê that is not covered by these vertices. We know
that the node σe is connected in G to the endpoints
of the link feu for one of the endpoints, say u, of e.
The link feu is therefore contained in the cycle formed
by Pu and (au, bu), since (au, bu) is not in F , and is
also contained in the triangle with the node σe, which
contradicts feasibility of F .

Corollary A.2. The k-route all-pairs cut problem is
APX-hard for all k ≥ 3.

Proof. The reduction is very similar to the one in the
proof of Theorem A.1. The only change is that in the
graph G created from the given vertex-cover instance,
we now have: (a) k−2 parallel links between every pair
of consecutive nodes of every path Pv; and (b) k − 2
parallel links between aj , aj+1 for all j = 1, . . . , |V̂ | − 1.

Suppose there exists a vertex cover of size p. As
before, for each node σe we remove exactly one pair of
links incident to σe, and in particular we choose the pair
of links that connect σe to the endpoints of the edge feu

if e = (u, v) and v is in the cover, and the other pair
otherwise. We also remove all edges of the form (av, bv)
for v in the cover. We remove 2|Ê|+ p edges in total.

We claim that for every pair of nodes z, w of the
remainder graph, we have at most k − 1 edge-disjoint
paths. Every node that is not a node of a path Pv
has maximum degree two, and therefore this is clear.
If z and w belongs to two different paths Pv and Pu
with u > v, then every path connecting them must use
either the link (av, av+1) (and there are at most k − 2
such links) or the two upper links of the triangle formed

with av and av+1. Therefore, we can have at most k−1
edge-disjoint such paths. Finally, if z and w belong
to the same path Pu, we have k − 2 paths given by
the infinite cost links, plus at most one additional path
that uses either the edge (au, bu) or a sequence of pairs
of links incident into the nodes {σe} for the edges e that
have u as an endpoint in Ĝ. Note that, by construction,
if (au, bu) is still in the graph, then all the pairs of links
incident into the nodes {σe} for the edges e that have u
as an endpoint have been removed, and therefore, once
again we get at most k − 1 edge-disjoint paths.

For the other direction, suppose we have a feasible
solution F for the k-route all-pairs cut instance, and
consider the remainder graph obtained by removing
such set of links. Clearly, all links of infinite cost are
still present. Once again, each node σe corresponding
to an edge e = (u, v) can have at most two links
incident to it in the remainder graph, and both these
links must be incident to two nodes of the same path.
If not, then we would have a pair of nodes (av and
au) that are connected by k edge-disjoint paths: k − 1
given by the infinite-cost links not in the paths Pu
and Pv, and one which uses the links in the paths Pu
and Pv and two links incident to σe. Also, as before,
we may assume that each σe has exactly two links
incident into it in the remainder graph (and hence, in
F), because otherwise for one endpoint u of e we get that
F ∪{(au, bu)}\{the two links connecting σe to Pu} is a
feasible solution to our k-route all-pairs cut instance of
no larger cost. So if the cost of F is at most 2|Ê| + p,
it follows that we have at most p links in F of the form
(av, bv). We claim that these vertices v form a cover in
Ĝ.

Suppose not. Then there is at least one edge e ∈ Ê
that is not covered by such vertices. We know that
the node σe is connected in G to the endpoints of the
link feu for one of the endpoints, say u, of e. The
endpoints of feu are therefore connected by k−2 parallel
paths using one single link, one path formed by the edge
(au, bu) and edges of Pu \{feu}, and one path contained
in the triangle with the node σe. This contradicts
feasibility of F .

On the positive side, the 3-route all-pairs cut prob-
lem admits an O(1)-approximation. This follows from:
(1) the equivalence of 3-route all-pairs cut and the prob-
lem of removing a min-cost set of edges so that the re-
mainder graph is a cactus; (2) the results of Fiorini et
al. [17], who gave an O(1)-approximation for the prob-
lem of removing a minimum-weight node set so that the
remaining graph is a cactus; and (3) the edge-removal
version easily reduces to the node-removal version by
subdividing the edges, and setting the cost of the orig-
inal vertices to ∞ and the cost of each vertex corre-

sponding to an edge to be the cost of the edge.
Recently, Fomin et al. [18] developed an O(1)-

approximation algorithm for the problem of removing
the fewest number of nodes so that the remaining graph
excludes a minor from a given list of graphs, at least
one of which should be planar. While k-route all-
pairs cut can be stated as excluding the planar graph
with k parallel edges as a minor of the remainder
graph, the result of [18] does not directly apply here.
This is because our transformation of an edge-weighted
instance to a node weighted one introduces non-uniform
node weights, whereas the algorithm in [18] is for
uniform node weights.

B Hardness of the edge-deletion k-route
node-multicut problem

Recall that in the edge-deletion k-route node-multicut
(ED-k-NMC) problem, we have an undirected graph
G = (V,E) with nonnegative edge costs {ce}e∈E , and
r source-sink pairs (s1, t1), . . . , (sr, tr) and an integer
k ≥ 1. We seek a minimum-cost set F ⊆ E of edges
such that the remainder graph G = (V,E \ F) contains
at most k−1 node-disjoint si-ti paths for all i = 1, . . . , r.

Chuzhoy et al. [11] show that ED-k-NMC is hard
to approximate within a factor Ω(kε). They present a
reduction from 3-SAT(5), which is the variant of 3-SAT
where each variable occurs in at most 5 clauses, coupled
with the parallel-repetition theorem, which is essentially
a reduction from (the minimization version) of label
cover. However, Laekhanukit [26] pointed out some
subtle (but fixable) errors in their proof and proposed
a correction, but his reduction also suffers from some
subtle (again fixable) errors [25]. We give a correct proof
below via a somewhat simpler reduction than the ones
in [11, 26].

Label cover was first introduced by Arora et al. [4]
and has been subsequently used as a basis for many
hardness reductions (see, e.g., [1]). Kortsarz [24] pre-
sented a minimization version of label cover (sometimes
known as MinRep) with the same hardness guarantee,
that has since found use in various network-design ap-
plications (see, e.g., [14]).

In the MinRep problem, we are given a bipartite
graph H = (U∪W,F), two sets of labels L1 (for vertices
in U) and L2 (for vertices in W), and a constraint
function for each edge e defined as πe : L1 → L2. A
labeling is given by specifying a set of labels f(u) ⊆ L1

for every vertex u ∈ U and a set of labels f(w) ⊆ L2 for
every vertex w ∈ W . We say that a labeling covers
an edge e = uw ∈ F if there exists a ∈ f(u) and
b ∈ f(w) such that πe(a) = b. Min-Rep asks for
a labeling that covers all the edges while minimizing∑
u∈U |f(u)|+

∑
w∈W |f(w)|.

Theorem B.1. (see, e.g., [37]) There are constants
ε0, δ0 > 0 such that there is no polytime algorithm for
MinRep with approximation factor:

– O
(
qε0
)

unless P=NP, where q is the size of the label
set (i.e., |L1|+ |L2|);

– O
(
∆δ0

)
unless P=NP, where ∆ is the maximum

degree of the underlying graph;

– 2log1−εm for any constant ε, unless NP is contained
in deterministic quasipolynomial time, where m is
the number of edges.

We prove the following theorem.

Theorem B.2. There is a polytime approximation-
preserving reduction that given a MinRep-instance
(H,π, L1, L2) with label-size q = |L1| + |L2| and
maximum-degree ∆, constructs an ED-k-NMC-instance(
G, {ce}, {s1, t1, . . . , sr, tr}, k

)
with k = O(∆.q), r =

|EH |, and |EG| = O(|EH |.q).
Hence, there is no O

(
kε0
)
-approximation for ED-k-

NMC, for some constant ε0 > 0, unless P=NP, and
no 2log1−ε |EG|-approximation for any ε > 0 unless NP
is contained in deterministic quasipolynomial time.

The construction. For each vertex u ∈ U and for
each label in a ∈ L1 we introduce two vertices au, āu

in G connected by an edge of unit cost. Intuitively, if
we select this edge in an ED-k-NMC solution for the
instance we construct, this implies that we are selecting
label a for u. Similarly, for each w ∈ W and for each
label b ∈ L2 we introduce two vertices bw, b̄w connected
by an edge of unit cost. The above edges will be the
only ones having unit cost. All subsequent edges added
to this construction will have infinite cost.

Consider an edge e = (u,w) of H. For each such
edge, we construct the following gadget. We introduce
two nodes se, te that will form a terminal pair in our
new instance. se and te are connected as follows. For
each b ∈ L2, let Leb ⊆ L1 be the labels of L1 such that
a ∈ Leb implies πe(a) = b. Clearly, the sets Leb, for all
b ∈ L2, form a partition of the labels L1. For each non
empty set Leb we add a path P eb of length 2 with the
middle vertex connected to te. We then add edges to
form a cycle Ceb starting and ending at se, containing all
the edges in Leb, the edges in the path P eb and the edge
bw b̄w. Finally we split each of these added edges into 2
by introducing a middle vertex. We let V (Ceb) we the
the set of new vertices introduced by this operation, and
let Ne be all the vertices participating in this gadget; see
Fig. B.3.

Let G′ =
(⋃

e′∈EH Ne′ ,
⋃
e′∈EH E(Ne′)

)
be the

graph formed by the vertices and edges of all the edge
gadgets. For all e, we are going to add other edges form-
ing paths (of length 2) between se and te. We add edges

se

te

au

bu

cu

du

fw

gw

Pe
f

Pe
g

a-u

b-u

c-u

d-u

f-w

g-w

Figure B.3: The gadget (Ne, E(Ne)) introduced for an edge e = (u,w). Here L1 = {a, b, c, d}, L2 = {f, g}, Lef =
{a, b, c}, Leg = {d}. Each black edge has unit cost, while all other edges have ∞ cost. Blue (grey) rectangles
indicate the nodes in V (Cef) ∪ V (Ceg).

(se, v), (v, te) for all vertices v ∈ ΓG′(Ne), that is, for all
v /∈ Ne that are adjacent in some edge-gadget to some
node in Ne. Note that Ne ∩ Ne′ = ∅ unless e and e′

share an endpoint in H, say u, in which case, the two
gadgets share the vertices {au, āu} for all labels a of u.
Thus, |ΓG′(Ne)| = O(∆.q).

Define ke := |{b ∈ L2 : Leb 6= ∅}| + |ΓG′(Ne)|.
Finally, set k := maxe ke. For all edges e with ke < k,
we add k− ke new vertices and connect these to se and
te (via ∞-cost edges). Let G be the resulting graph.
This concludes our construction.

Approximation preservation. We now argue that
any feasible solution to the ED-k-NMC-instance of finite
cost yields a feasible solution to the MinRep-instance of
no greater cost, and vice versa. This will complete the
proof of Theorem B.2.

(⇒) Let Z be a solution of finite cost for our ED-
k-NMC instance. Consider a node u ∈ VH and let
Lu ∈ {L1, L2} be the label-set of u. Set f(u) := {a ∈
Lu : (au, āu) ∈ Z}. Clearly, the cost of the two solutions
are the same. We now claim that the resulting labeling
is feasible for the label-cover instance. Suppose not,
then there is an edge e ∈ EH that is not covered.
By our construction, this means that for each b ∈ L2

with Leb 6= ∅, the subgraph of the remainder subgraph
G = (VG, EG \Z) induced by the nodes of the cycle Ceb
and te is connected. Each such cycle Ceb , yields therefore
one vertex-disjoint path in G between se and te. Also,
all edges incident to se and te are present in G (since

they have∞ cost), so all length-2 paths in G between se
and te are still present in G. It follows that the vertex
connectivity of se and te is at least k, a contradiction.

(⇐) For the other direction, given a labeling for the
label-cover instance, we construct Z := {(au, āu) : u ∈
VH , a ∈ f(u)}. Clearly, the cost of the two solutions
is the same. We claim that Z is a feasible solution
to our ED-k-NMC instance. Suppose not. Then, for
some e = (u,w) ∈ EH , the se-te vertex connectivity in
the remainder graph G = (VG, EG \ Z) is at least k.
Therefore we can find a set of vertex-disjoint paths P
between these vertices of size |P| ≥ k. Without loss
of generality, we may assume that all the k − |{b ∈
L2 : Leb 6= ∅}| length-2 paths between se, te are in
P. If we remove the internal nodes on these length-
2 paths from G, the connected component containing
se in the remaining portion of G is a subgraph of the
gadget (Ne, E(Ne)) for edge e (shown in Fig. B.3). This
means that this subgraph contains at least |{b ∈ L2 :
Leb 6= ∅}| se-te vertex-disjoint paths. Clearly, this is only
possible if, for every label b such that Leb 6= ∅, either
(bw, b̄w) /∈ Z or (au, āu) /∈ Z for every a ∈ Leb. But that
means that the edge e is not covered by our labeling, a
contradiction.

