
Approximation Algorithms for Labeling Hierarchical Taxonomies

Yuval Rabani∗ Leonard J. Schulman† Chaitanya Swamy‡

Abstract

We consider the following taxonomy labeling problem.
Each node of an n-node tree has to be labeled with
the values of k attributes. A partial labeling is given
as part of the input. The goal is to complete this
labeling, minimizing the maximum variation in labeling
along an edge. A special case of this problem (which we
call the label extension problem), where every node is
either completely labeled or not labeled at all, has been
considered previously.

We present an O(log2 k)-approximation algorithm
based on a natural linear programming relaxation. Our
results reduce the taxonomy labeling problem to an-
other problem we introduce, called the multicut pack-
ing problem (on trees): given k multicommodity flow
instances, find a multicut for each instance so as to
minimize the maximum number of multicuts that use
any single edge. Our algorithm yields an O(log2 k)-
approximation algorithm for this more general problem.
We show that the integrality gap of our relaxation is
Ω(log k), even when applied to the taxonomy labeling
problem with 0-1 labels.

For the label extension problem, we considerably
improve the previous O(log n) approximation guarantee
and give the first constant-factor approximation algo-
rithm for this problem. Our work relies on relating the
label extension problem to questions on Lipschitz exten-
sions of functions into Banach spaces. In particular, our
approximation algorithm builds upon Matoušek’s tree
metrics extension theorem. Our algorithm also works
for other metrics on the label-set, such as edit distance
with unit-cost operations, and more generally any short-
est path metric induced by an unweighted graph.

∗rabani@cs.technion.ac.il. Computer Science Department,
Technion — Israel Institute of Technology, Haifa 32000, Israel.
Part of this work was done while visiting UCLA and Caltech.
Supported in part by ISF 52/03, BSF 2002282, and the Fund for
the Promotion of Research at the Technion.

†schulman@caltech.edu. Caltech, Pasadena, CA 91125. Sup-
ported in part by NSF CCF-0515342, NSA H98230-06-1-0074, and
NSF ITR CCR-0326554.

‡cswamy@math.uwaterloo.ca. Dept. of Combinatorics and
Optimization, Univ. Waterloo, Waterloo, ON N2L 3G1. Research
supported partially by NSERC grant 32760-06. Work done while
the author was a postdoctoral scholar at Caltech.

1 Introduction

Problem definition and motivation. We introduce
the taxonomy labeling problem. Informally stated, this
is the problem of extending a partial labeling of n items
arranged as a hierarchical taxonomy (a tree) into the
best complete labeling of those items. For example,
we may have a corpus of documents that have been
classified into a directory tree, each of whose entries
we want to label by a title composed of a list of
keywords or attributes that apply to this entry. We
may envision that a partial labeling of some entries
with some attributes has already been generated, either
automatically or by human scrutiny, and our goal is
to compute a good complete labeling of the directory
that is consistent with this prelabeling. This description
motivates the following rigorous problem definition. We
are given a tree T = (V,E) with partially labeled
nodes. A label consists of the values of k discrete
attributes. In other words, a label is an element in
the Cartesian product of k discrete sets and can be
viewed as a string of length k. A partial labeling of
T assigns to each node a partial label, which is simply
a string of length k where some (possibly all) of the
entries are undetermined. Our goal is to assign values
to the undetermined entries of every node, thus creating
a valid label for every node. The objective is to minimize
the maximum variation in labeling along any edge of T ,
where the variation in labeling along an edge is simply
the number of attributes with different values at the
two endpoints of the edge. An important special case of
this problem, that we call the label extension problem,
is the case where nodes are either completely labeled or
not labeled at all. This special case was introduced by
Ravi and Kececioglu [18], who called it the bottleneck
tree alignment problem. The case where the tree is a
star has been more extensively studied as the 1-center
problem on strings: the problem is NP-hard even in this
restricted case, even when the labels are 0-1 strings [8],
and a PTAS was given by [15].

We also introduce a problem closely related to the
taxonomy labeling problem, the multicut packing prob-
lem, which is an interesting combinatorial optimization
problem in its own right. In the multicut packing prob-
lem, we are given k multicommodity flow instances.

Each multicommodity flow instance is simply a set of
pairs of nodes, called commodities, and a multicut is a
set of edges whose removal disconnects all these pairs.
Our goal is to compute k multicuts, one for each multi-
commodity flow instance, such that the maximum num-
ber of multicuts that use any single edge is minimized.
The connection between taxonomy labeling and multi-
cut packing (on trees) follows from the observation that
each attribute i generates a multicommodity flow in-
stance where we have a commodity for every pair of ver-
tices with different values for this attribute; the union
of all these instances yields a multicut packing problem.

The taxonomy labeling problem can be motivated
by applications involving labeling hierarchical clustering
trees. Consider a setting where one is presented with
a hierarchical clustering tree of some data. In many
cases, such a clustering is obtained by mapping each
data item to a point in some high dimensional space,
and then clustering these points without considering the
semantics of the data (latent semantic indexing meth-
ods [7, 17] are an important exception). Given this clus-
tering, one would now like to assign a meaningful label
to each cluster (at each level) that captures the under-
lying “concept” represented by the cluster. However, it
may not be possible to project the cluster-centers back
into the data-space to assign labels to the clusters (and
this may not be the right thing to do), since these cen-
ters may not correspond to anything meaningful in the
original space. The taxonomy labeling problem suggests
an alternative approach. It is plausible to expect that
some of the clusters, such as the individual data items
represented by the leaves of the clustering tree, and pos-
sibly the root which represents the entire data, have al-
ready been labeled appropriately. So one might seek to
obtain the best complete labeling of the clustering tree
that is consistent with this prelabeling — a problem that
fits nicely into the framework of taxonomy labeling. We
mention that there are two natural objective functions
that one could consider to measure the “goodness” of a
complete labeling. One is the min-max objective, which
we consider, of minimizing the maximum cost (i.e., vari-
ation in labeling) of an edge; the other is the min-sum
objective of minimizing the sum of edge costs. Both ob-
jectives have their pros and cons. The min-sum objec-
tive can be biased by over-represented data, and might
produce a lopsided labeling where some edges incur an
unacceptably high cost so that most edges have a low
cost. The min-max objective produces a more equitable
labeling but is more susceptible to outliers. (These fac-
tors also come into play in other settings, e.g., the k-
center vs. the k-median objective functions in cluster-
ing.) In our setting, the min-sum objective gives rise to
the metric labeling problem [13] (as discussed below),

which can be solved in polynomial time on trees and is
a relatively well-understood problem. However, to our
knowledge, the min-max objective has not been con-
sidered previously. We initiate an investigation of this
objective by considering the taxonomy labeling prob-
lem. Our work exposes connections between this prob-
lem and other interesting problems, such as the multicut
packing problem, and Lipschitz extension problems con-
sidered in the metric embeddings literature (as shown
below), which provides further motivation for studying
the min-max problem.

Taxonomy labeling is also motivated by the follow-
ing sequence alignment problem that arises in compu-
tational biology: given an evolutionary tree of a set of
species with leaves labeled with the DNA sequences of
the given species, one has to assign sequences (labels)
to the internal nodes (which represent ancestral species)
so that an alignment of the sequences along the edges
yields a good multiple sequence alignment of the leaf-
sequences. Ravi and Kececioglu [18] introduced the la-
bel extension problem in this context, calling it the bot-
tleneck tree alignment problem. In fact, they propose
the min-max objective as a way of preventing bias in
the computed alignment that could result due to over-
represented sequences (see also [1]).

Taxonomy labeling, especially the special case of
the label extension problem, is also related to classical
Lipschitz extension problems considered in the metric
embeddings literature [10, 11, 16, 14]. In these prob-
lems, we are given a function f from a subspace X
of a given metric space (Y, d) into a Banach space Z,
and the objective is to extend f to all of Y while pre-
serving its Lipschitz constant (up to constant factors).
Matoušek [16] considered this problem when the space
(Y, d) is a tree metric space. Our label extension prob-
lem can be viewed as a discrete analogue of this problem
where the space Z is a discrete metric space.

Our results. We present a polynomial time O(log2 k)-
approximation algorithm for the taxonomy labeling
problem, where k is the number of attributes, that is
based on a careful rounding of the optimal solution to a
natural linear programming relaxation for the problem.
This result is described in Section 4. Our algorithm
exploits the reduction between the taxonomy labeling
and multicut packing problems outlined above, and
actually gives an O(log2 k)-approximation algorithm
for the more general multicut packing problem. In
Section 6, we complement our upper bounds by proving
an integrality gap of Ω(log k) for the relaxations of both
problems.

In Section 5, we consider the label extension prob-
lem and obtain significantly improved results for this

case. We exploit the connection between this problem
and Lipschitz extension problems considered in the met-
ric embeddings literature. In particular, we build upon
a result of Matoušek [16] to give a constant-factor ap-
proximation algorithm for this problem. In applications
involving labeling evolutionary trees (also called phy-
logenies), there are other measures of variation in the
labeling along edges that might be more suitable, such
as edit distance (instead of the Hamming distance in
the definition which measures the number of attributes
whose values differ). Our results extend with the same
performance guarantees to the edit-distance version of
the problem (with unit-cost operations). In fact, our
results extend to a broad class of metrics on the label
set which includes any shortest path metric induced by
an unweighted graph.

We conclude in Section 7 with some generalizations
of multicut packing and taxonomy labeling.

Related work. We are not aware of any previous work
on the general taxonomy labeling and multicut packing
problems, although special cases of the former have been
considered. Caprara, Panconesi and Rizzi [3] studied
a problem somewhat related to multicut packing; they
consider the problem of finding the largest collection
of edge-disjoint cuts in an undirected graph and show
that this is roughly equivalent to finding the largest
independent set.

As mentioned earlier, the label extension problem
was introduced by Ravi and Kececioglu [18] in the
context of labeling phylogenies. (In their version, all
leaves of the tree T are completely labeled and all
internal nodes are completely unlabeled, but we show
in Section 5 that this is without loss of generality.)
Ravi and Kececioglu gave an O(log n)-approximation
algorithm (even for the edit-distance version) in the
special case where every internal node of T has degree
at least 3. In contrast, we obtain a constant-factor
approximation guarantee for any tree, thus significantly
improving and extending previous work.

A special case of the label extension problem is
where we have a leaf-labeled star and the root is
unlabeled (and the metric is the Hamming distance).
This is the 1-center problem on strings, also known
as the closest string problem. Frances and Litman [8]
considered this problem in the context of coding theory
and showed that it is NP-hard, even with only 0-1
strings; a PTAS was obtained recently by Li, Ma and
Wang [15]. The label extension problem is related to the
tree alignment problem that has been widely studied in
the sequence-alignment literature. This is the min-sum
problem version, where we want to compute sequences
(labels) for the internal nodes so as to minimize the

sum of the (edit) distances along the edges. This
problem is also NP-hard [20], but various PTAS’s are
known [22, 19, 21].

The setting of the taxonomy labeling problem is
similar to that of the metric labeling [13] and 0-
extension [12, 4] problems. In all these problems, we
have a set of labels endowed with a metric, and we have
to assign a label to each node of an input graph, sub-
ject to some constraints that restrict the set of allowed
labels for each node.1 In particular, the input to the la-
bel extension problem is exactly the same as that to the
0-extension problem. However, the crucial difference be-
tween the taxonomy labeling problem and the metric la-
beling problem (on trees) lies in the objective function:
the former problem is a min-max problem where we
seek to minimize the maximum cost of an edge, whereas
the latter considers the min-sum objective of minimiz-
ing the sum of costs of all the edges. Consequently re-
sults for the metric labeling and 0-extension problems
do not directly carry over to our problem. For exam-
ple, it is well known that the metric labeling problem
can be solved optimally on trees via dynamic program-
ming; in contrast, as mentioned above, the taxonomy
labeling problem is NP-hard even on a leaf-labeled star
with 0-1 attribute values. (Technically, there is also the
subtle distinction that in the taxonomy labeling prob-
lem the label set and the metric are given implicitly and
may be exponentially large, whereas in metric labeling
and 0-extension the label-sets are explicitly listed. But
the min-sum objective of metric labeling allows one to
decouple the problem into k separate metric labeling
instances, one for each attribute, each of which can be
solved optimally in polynomial time, thus, yielding a
polynomial time algorithm even for such implicitly given
label-sets.)

Finally, as mentioned previously, the taxonomy la-
beling problem, especially the special case of the label
extension problem, is related to questions on the ex-
tensions of Lipschitz functions into Banach spaces [10,
11, 16, 14]. These questions are of the following flavor:
given a metric space (Y, d), a Banach space Z (a com-
plete vector space with a norm ‖ · ‖Z), and a function
f : X 7→ Z where X ⊆ Y , does there always exist an
extension f ′ : Y 7→ Z of f such that the Lipschitz con-
stant of f ′, defined as ‖f ′‖lip = supx6=y∈Y

‖f ′(x)−f ′(y)‖Z

d(x,y) ,
is at most C · ‖f‖lip where C is an absolute constant?
The most closely related such problem is the problem
considered by Matoušek [16], where the space (Y, d) is a
tree metric space (T, dT). Matoušek answered this ques-
tion positively by actually constructing an extension f ′

1The statement in [13] also includes label-assignment costs;
the equivalent formulation in [6] matches the above framework.

with the desired Lipschitz properties. Our label exten-
sion problem can be discussed as a discrete analogue of
Matoušek’s Lipschitz extension problem, where the tar-
get space Z is not a Banach space but a discrete metric
space. Whereas such Lipschitz extensions of functions
into discrete metric spaces need not always exist, we
build upon Matoušek’s construction to prove a positive
result in a similar vein for our discrete label extension
problem. We show that one can always get an extension
whose Lipschitz constant, which is precisely the maxi-
mum cost of any tree edge, is at most a constant times⌈
‖f‖lip

⌉
, thus obtaining a constant-factor approxima-

tion algorithm for the label extension problem.

2 Problem definition and preliminaries

The Taxonomy Labeling Problem. We are given
n partially labeled items that are classified into a
hierarchical taxonomy represented by a (rooted) tree
T = (V,E). A label consists of the values of k attributes
{1, 2, . . . , k} where attribute i takes a value from a finite
set Σi, that is, a label is an element of Σ1× · · ·×Σk. A
partial labeling assigns values to some of the attributes
of some of the nodes; more formally, it is a function
ϕ : V 7→ (Σ1 ∪ {∗})× · · · × (Σk ∪ {∗}), where ∗ 6∈

⋃
i Σi

denotes an undetermined value. We use ϕi(v) to denote
the value of the i-th attribute of node v, and Σ to
denote the tuple (Σ1, . . . ,Σk). In the taxonomy labeling
problem, we are given a partial labeling ϕ and we have
to extend it to a complete labeling of V by assigning
values to the k attributes for every node. The objective
is to minimize the variation in labeling along the edges
of T . More precisely, a solution consists of a function
ϕ′ : V 7→ Σ1 × · · · × Σk such that for every v ∈ V and
attribute i ∈ {1, 2, . . . , k}, ϕ′

i(v) 6= ϕi(v) iff ϕi(v) = ∗.
The cost of this solution is max(u,v)∈E |{i ∈ {1, . . . , k} :
ϕ′

i(u) 6= ϕ′
i(v)}|, and the objective is compute a solution

ϕ′ with minimum cost.
An interesting special case of this problem is when

every node v is either completely labeled or unlabeled
by the input partial labeling, that is, either ϕi(v) 6= ∗
for every i, or ϕi(v) = ∗ for every i. We call this special
case the label extension problem.

The Multicut Packing Problem. Our algorithm
for taxonomy labeling yields an approximation to a
closely-related problem, namely the multicut packing
problem (on trees). In this problem, we have a tree
T = (V,E) and k multicommodity flow instances on
T . Each multicommodity flow instance consists of a
set of (s, t) pairs where s, t ∈ V , called commodi-
ties: the ith instance consists of the source-sink pairs
Mi = {(si

1, t
i
1), . . . , (s

i
mi

, timi
)}, and we have k such sets

for i = 1, . . . , k. The goal is to pack multicuts for these

multicommodity flow instances so as to minimize the
maximum “load” on an edge. That is, we want to com-
pute sets F1, . . . , Fk ⊆ E such that the removal of the
edges in Fi disconnects all (s, t) pairs in Mi for each i,
and the objective is to minimize maxe∈E |{i : e ∈ Fi}|.
We use M and F to denote respectively (M1, . . . ,Mk)
and (F1, . . . , Fk).

Observe that any instance (T,Σ, ϕ) of the taxon-
omy labeling problem gives rise to a multicut pack-
ing instance (T,M) where each attribute i generates
a multicommodity flow instance Mi consisting of the
pairs {(u, v) ∈ V × V : ϕi(u) 6= ϕi(v), ϕi(u), ϕi(v) 6=
∗}. We show below that this yields an approximation-
preserving reduction; that is, any approximation algo-
rithm for the multicut packing problem yields an ap-
proximation algorithm for the taxonomy labeling prob-
lem with the same approximation ratio.

Lemma 2.1. Any solution to the taxonomy labeling
problem (T,Σ, ϕ) yields a solution to the correspond-
ing multicut packing instance (T,M) of no greater cost,
and vice versa.

Proof. Let ϕ′ be any solution to the taxonomy labeling
instance. It is easy to see that setting Fi = {(u, v) ∈
E : ϕ′

i(u) 6= ϕ′
i(v)} yields a multicut for Mi, and that

the maximum load on an edge under the solution F is
exactly the same as the cost of ϕ′.

Conversely, let F be a solution to the multicut
packing problem. We convert it into a solution to the
labeling problem as follows. For every i ∈ {1, 2, . . . , k},
the removal of Fi partitions V into disjoint sets with the
following property: for any set V` in the partition, there
exists some j` ∈ Σi such that {ϕi(v) : v ∈ V`} ⊆ {j`, ∗}.
We set ϕ′

i(v) = j` for every node v ∈ V`. Notice that
this adds at most 1 to the variation in labeling along
an edge in Fi, and 0 to the variation in labeling along
any other edge. Therefore, the cost of the taxonomy
labeling solution is at most the cost of the solution F .

We use the following notation throughout. Let Puv

denote the unique path between nodes u and v in the
tree, and dT (u, v) denote the number of edges (the
length) on this path. If the tree T is rooted at some
node r, the depth d(v) of a node v is defined to be
dT (v, r). The depth of the tree is the maximum depth
of any node. The distance of an edge (u, v) to a node w
is defined as min

(
dT (u, w), dT (v, w)

)
, and the depth of

an edge is its distance to the root. Let diam(T) be the
diameter of T .

3 LP relaxations

We can formulate the taxonomy labeling problem as a
natural integer program, with variables xi,`

u indicating

if the i-th attribute of node u is assigned value ` ∈ Σi.
Relaxing the integrality constraints yields the following
linear program (LP). We use e to index the edges, u to
index the nodes, and i to index the attributes.

min z (A-P)

s.t.
∑
`∈Σi

xi,`
u = 1 ∀i, u

xi,`
u = 1 if ϕi(u) = ` ∈ Σi

k∑
i=1

∑
`∈Σi

1
2 |x

i,`
u − xi,`

v | ≤ z ∀e = (u, v) ∈ E

xi,`
u ≥ 0 ∀u, i, ` ∈ Σi.

The first constraint states that every node must be
assigned a value for every attribute, and the second
one enforces that the assigned values must extend the
input partial labeling ϕi. The third constraint bounds
the distance along an edge by z. Although this is not
written as a linear constraint, we can express it as a
linear constraint by introducing variables zi,`

uv ≥ 0, and
constraints zi,`

uv ≥ xi,`
u − xi,`

v , zi,`
uv ≥ xi,`

v − xi,`
u . We shall

refer to this LP as the assignment LP.
We also have the following natural LP relaxation

of the multicut packing problem. Here e indexes the
edges, i indexes the multicommodity flow instances, and
j indexes the (s, t) pairs in each Mi.

min
{

z :
∑

e∈P
si

j
ti
j

xi
e ≥ 1 ∀i, (si

j , t
i
j) ∈ Mi;

k∑
i=1

xi
e ≤ z ∀e; xi

e ≥ 0 ∀i, e
}

. (MC-P)

The LP relaxation seeks to optimize over packings
of fractional multicuts. A fractional multicut is an
assignment of [0, 1]-weights, which is specified by the
variables xi

e for the instance Mi, to the edges of T so
that the total weight of the path Pst for any terminal
pair (s, t) is at least 1. Let z∗(T,M) denote the
optimum value of (MC-P).

Strictly speaking the integrality gap of both of
these relaxations can be as bad as 1/m where m is
the number of edges, e.g., consider a path of length m
whose endpoints s and t are labeled 0 and 1 (k = 1,
Σ1 = {0, 1}), which gives rise to the multicut packing
instance M = (M1) with M1 = {(s, t)}. But we
know that in fact, max(1, z∗) is a lower bound on the
integer optimum (for the taxonomy problem, we can
easily detect if z∗ = 0 and if so, trivially obtain a
complete labeling). So we abuse notation and use the
term “integrality gap” in the sequel to refer to the worst
ratio of the integer optimum and max(1, z∗).

4 An O(log2 k)-approximation algorithm

We now describe a deterministic O(log2 k)-
approximation algorithm for the multicut packing
and taxonomy labeling problems based on rounding an
optimal solution to (MC-P). We remark that although
the assignment LP (A-P) is at least as strong as
(MC-P) (because setting xi

(u,v) =
∑

`∈Σi

1
2 · |x

i,`
u − xi,`

v |
yields a feasible solution to (MC-P)), Section 6 proves
an integrality gap of Ω(log k) for both (A-P) and
(MC-P), which complements our LP-based guarantees
for multicut packing and taxonomy labeling.

The Algorithm. Our algorithm proceeds by first solv-
ing (MC-P). Let x be an optimal solution to (MC-P) (of
value z∗(T,M)). Pick an arbitrary node r ∈ V and root
the input tree T at r. Let M≥2k and M<2k denote the
instances derived from M by taking only commodities
{s, t} (in all the Mis) with dT (s, t) ≥ 2k and dT (s, t) <
2k respectively. Clearly, if F≥2k and F<2k are mul-
ticut packings for M≥2k and M<2k respectively, then
F = F≥2k ∪ F<2k = (F≥2k

1 ∪ F<2k
1 , . . . , F≥2k

k ∪ F<2k
k)

is a multicut packing for M , and its cost is at most the
sum of costs of F≥2k and F<2k. There is a trivial pack-
ing F≥2k for M≥2k of cost 1: we simply set F≥2k

i to
be all the edges at depths (i − 1) (mod k), so observe
that each F≥2k

i intersects every path of length at least k,
hence is a feasible solution to M≥2k. So we concentrate
on how to construct a solution F<2k for M<2k.

1. We first modify the instance M<2k so that the new
instance has the property that for every (s, t) pair,
one of s or t is the ancestor of the other. Consider
any commodity (s, t) ∈ M<2k

i , for any i. Let u be the
least common ancestor of s, t. We replace (s, t) by
the commodity (s, u) if

∑
e∈Psu

xi
e ≥ 1

2 , and by (t, u)
otherwise. Notice that 2x is a feasible solution to
the LP relaxation for the modified instance, since we
must have either

∑
e∈Psu

xi
e ≥ 1

2 or
∑

e∈Ptu
xi

e ≥ 1
2 ,

and its cost is 2z∗(T,M). Also, trivially, a multicut
packing for the modified instance is also a multicut
packing for the original instance. To keep notation
simple, we use M<k to also denote the modified
instance. We use the convention that in the modified
instance, a source-sink pair denoted (s, t) has t as the
ancestor of s.

2. We now convert the instance (T,M<2k) into a collec-
tion of instances (T q,Mq) such that (a) each tree T q

is a subtree of T of depth at most 4k; (b) the trees
T q cover T , and any edge e ∈ E(T) is contained in
at most two trees T q; and (c) for every i, the Mq

i -s
form a partition of the instance M<2k

i . Given this
collection we will focus on computing a solution F q

for (T q,Mq) for every q. The coordinate-wise union

of all the F q-s will yield the desired multicut packing
F<2k (i.e., F<2k

i =
⋃

q F q
i) for (T,M<2k). By prop-

erty (b), the cost of F<2k is at most 2 maxq cost(F q).

If the depth of T is at most 4k, then T is the only
tree in the cover. Otherwise, we take the union of
two partitions T0, T2k of the edge-set of T . The
partition Tj , where j ∈ {0, 2k}, contains a tree Tu

for each node u of depth j (mod 4k), where Tu is the
subtree of T rooted at u consisting of all descendants
v such that dT (v, u) ≤ 4k. This satisfies property
(a) by construction, and since there are exactly two
partitions involved it is clear that (b) also holds. We
now assign each (s, t)-pair to an arbitrary subtree
T q that contains both s and t. Note that such a
subtree must exist for any (s, t)-pair. The instance
Mq

i consists of all the (s, t)-pairs in M<2k
i assigned

to tree T q, and hence each M<2k
i is partitioned into

the sets Mq
i .

3. LP rounding. We now consider each in-
stance (T q,Mq) separately and perform the follow-
ing rounding. Recall that h = min{8k, 2 diam(T)}.
First, for every i ∈ {1, 2, . . . , k} and edge e ∈ E(T q),
if xi

e ≥ 1
2 log h then we add e to F q

i .

Define the type of v to be the largest integer j such
that 2j divides d(v), the depth of v (with respect to
the root of T q). For each node v ∈ V (T q) of type
j ≥ 1, we do the following. For every `, 1 ≤ ` ≤ j,
consider the path P `

v of length 2` leading from v
towards the root r(T q) and let I`

v =
{
i :

∑
e∈P `

v
xi

e ≥
1

2 log h

}
; if dT (v, r(T q)) < 2`, then we set I`

v = ∅.

(a) We “load” all the edges connecting v to its
children with all the indices in I1

v ∪I2
v , that is, for

every i ∈ I1
v ∪I2

v , we add all the edges connecting
v to its children to F q

i .

(b) For ` ≥ 3, we consider the 2`−2-depth subtree
rooted at v, and we distribute the indices in I`

v

evenly among all edges of the 2`−3-depth bottom-
half of this subtree. More precisely, we partition
I`
v arbitrarily into 2`−3 equal-sized (up to an

additive 1) subsets indexed by z = 0, . . . , 2`−3−1.
For each z = 0, . . . , 2`−3 − 1, we also define a set
of edges in the subtree of T q rooted at v: the z-th
edge-set contains all the edges at distance 2`−3+z
from v. Note that these edge-sets are disjoint,
and some of the edge-sets could be empty. For
every i in the z-th index set, we add all the edges
in z-th edge set to F q

i .

Theorem 4.1. Given a multicut packing instance
(T,M), the above algorithm computes a multicut pack-

ing of cost O(log h + z∗(T,M) log2 h), where h =
min{8k, 2 diam(T)}.

Proof. We now analyze the above algorithm and show
that it returns a feasible solution and attains the
performance guarantee stated in Theorem 4.1. The
final solution is given by F = F≥2k ∪

(⋃
q F q

)
, and as

mentioned above, cost(F) ≤ cost(F≥2k)+cost(F<2k) ≤
1 + 2 maxq cost(F q), where the last inequality follows
from property (b) in step 2. So we will consider an
arbitrary instance (T q,Mq) and show that F q is a
feasible solution of cost O(log h + z∗(T,M) log2 h). We
use z∗ below to denote z∗(T,M).

Feasibility. Let r′ be the root of T q (r′ is the node
with smallest depth among all nodes in T q). Let (s, t)
be a terminal pair in Mq

i (recall that t is the ancestor
of s). Let d = dT (s, r′) be the depth of s in T q. We
construct a decomposition of Psr′ into O(log d) segments
such that (a) the length of each segment is a power of
2; (b) the length of the segment adjacent to s is 1; and
(c) The lengths of adjacent segments differ by a factor
of at most 4.

Consider the binary expansion of d: d = 2`1 +
2`2 + · · · + 2`g , where `1 > `2 > · · · > `g ≥ 0 are
integers. Let `g+1 = −1. For every j ∈ {1, 2, . . . , g},
if `j > `j+1 + 1 then we replace 2`j in this sum by
2`j−1 +2`j−2 + · · ·+2`j+1+1 +2`j+1+1. The terms in the
resulting expansion of d give the lengths of the segments,
and these segments are arranged in increasing order of
length from s to r′. Property (a) is clearly satisfied, and
it is not hard to see that (b) and (c) are also satisfied
(the factor of 4 arises because adjacent segments may
have lengths 2`j+1+1 and 2`j+1−1). The number of terms
is precisely 1 + `1 (since each `j contributes `j − `j+1

terms) which is at most 1+log d ≤ log h. So the number
of segments in the decomposition of Psr′ is at most log h.

Now consider all the segments in this decomposition
that have a non-empty intersection with Pst. At
least one of these segments, say p, must have weight∑

e∈p xi
e ≥ 1

2 log h since
∑

e∈Pst
xi

e ≥ 1
2 . If p is just

a single edge e, then e ∈ F q
i . Otherwise, let 2j be

the length of p, j ≥ 1. Let u be the endpoint of p
that is farther from r′. Clearly u has type at least j.
Also, Pst must completely contain another segment p′

touching u and below u, because the last segment in the
decomposition of Psr′ (the one touching s) has length
1. If j < 3, then the edge e ∈ p′ that is adjacent to u
is in F q

i . Otherwise, the length of p′ is at least 2j−2, so
one of the edges of p′ is in F q

i . So in every case, we have
that s and t are disconnected by F q

i , and therefore F q

is indeed a multicut packing for the instance (T q,Mq).

Solution cost. Consider any edge e = (u, v) ∈ E(T q),
where v is closer to the root r′. Let Ie = {i : e ∈ F q

i }.

We say that an index i “loads” edge e if i ∈ Ie. We
upper bound the cardinality of the set Ie. There are
three types of indices in Ie. First, we have the indices
in

{
i : xi

e ≥ 1
2 log h

}
, and there are at most 2z∗ log h

such indices. Next, we have I1
v ∪ I2

v ⊆ Ie by step
3a). There are at most 4z∗ · 2 log h = 8z∗ log h such
indices. The remaining indices in Ie were all added to
Ie because there exists some ` ≥ 3 and an ancestor w
of v with type j ≥ ` such that I`

w ∩ Ie 6= ∅, and e
is in one of the edge-sets for I`

w in step 3b). Observe
that

∣∣I`
w

∣∣ ≤ 2` · z∗ · (2 log h) because
∑

i∈I`
w

1
2 log h ≤∑

i∈I`
w

∑
e∈P `

w
xi

e ≤ 2`z∗. Since the indices in Iw
` are

distributed evenly among 2`−3 disjoint edge-sets in step
3b), each edge-set contains at most 1+16z∗ log h indices.
Therefore,

∣∣I`
w ∩ Ie

∣∣ ≤ 1+16z∗ log h. Notice that it must
be the case that 2`−3 ≤ dT (v, w) ≤ 2`−2, and therefore
for every ` there is at most one such node w. (Also for
any w there is at most one such `.) Hence, there are
at most (log h − 2) such sets I`

w, so |Ie| ≤ 10z∗ log h +
(log h− 2)(1 + 16z∗ log h) ≤ log h + 16z∗ log2 h.

Corollary 4.1. There is an O(log2 k)-approximation
algorithm for the multicut packing and taxonomy label-
ing problems.

Proof. Clearly max{1, z∗(T,M)} is a lower bound on
the optimal cost of a multicut packing for instance
(T,M), so the claim for the multicut packing problem
follows from Theorem 4.1. The claim for the taxonomy
labeling problem then follows from Lemma 2.1.

Extensions and refinements. We can obtain an
improved guarantee of O(log k) in the special cases
where after the transformation in steps 1 and 2, (a) the
sources s of all the (s, t)-pairs (in an instance (T q,Mq))
are at a common depth d; or (b) the sources s of all
(s, t) pairs lie at depths that are powers of 2. In the
former case, the rounding proceeds by considering only
nodes v of T q at depths d − d/2j for j = 1, . . . , log d;
for each such v at depth d(v) = d− d/2j , we distribute
the indices in

{
i :

∑
e∈Pvw

xi
e ≥ 1

log d

}
, where w is the

ancestor of v such that dT (v, w) = d − d(v), evenly
among the edges of the subtree of T q of depth 2j−1

rooted at v. In case (b), for each j, we consider the sub-
instance consisting of (s, t)-pairs with d(s) = 2j , apply
the rounding procedure for the common-depth case on
this sub-instance, and take the union of the resulting
multicuts. In Section 6, we prove an integrality gap of
Ω(log k) on an instance of type (a), which shows that
these guarantees are tight.

All the above results generalize to the case where
each edge e has capacity ue and we want to minimize the
congestion maxe

(
1, |{i : e ∈ Fi}|/ue

)
. We may assume

that all capacities are rational, and hence integral
(because we can multiply everything by a common
denominator). We may further assume that ue < k
for every edge e because we can simply include every
edge e with ue ≥ k in all the Fis, delete all such edges
and all the (s, t) pairs whose paths contain such edges,
and proceed with each component of T separately. We
can now replace an edge with capacity ue by a path
of length ue whose edges have unit capacity, and thus
reduce to the unit-capacity case. Note that since each
ue < k this unit-capacity instance has polynomial size.

5 The label extension problem

We now consider the label extension problem, which
is an important special case of the taxonomy labeling
problem. Recall that here, each node v is either
completely labeled or completely unlabeled by the input
partial labeling ϕ. So for every v, either ϕi(v) 6= ∗
for every i, or ϕi(v) = ∗ for every i. Besides being
an interesting special case of the taxonomy labeling
problem, this problem finds applications in sequence
alignment problems in computational biology, and is
related to Lipschitz extension problems considered in
the metric embedding literature. In this section, we
give a 16-approximation algorithm for this problem.

A key ingredient of our algorithm is a construction
of Matoušek [16]. Matoušek proved the following result:
given a tree metric (T, dT), a Banach space Z (a
complete vector space with a norm ‖·‖Z), and a function
f : X 7→ Z where X ⊆ T , there exists an extension
f ′ : T 7→ Z of f such that the Lipschitz constant of f ′,
‖f ′‖lip = supx6=y∈T

‖f ′(x)−f ′(y)‖Z

dT (x,y) is at most C · ‖f‖lip
where C is an absolute constant. Observe that given a
tree T = (V,E), if we take the “source” space to be the
discrete space (V, dT) where dT is the induced shortest
path metric on V , then the Lipschitz constant of an
extension f ′ is precisely the maximum distance along
an edge. Notice that the label extension problem is
a discrete version of this Lipschitz extension problem,
where the “target” label space Z is not a Banach
space but a discrete space. In our problem, the source
space is (V (T), dT), the target space is Z = (L, d),
L = Σ1× · · · ×Σk, d(x, y) =

∑k
i=1 di(xi, yi) where di is

the uniform metric on Σi, X = {v ∈ V (T) : ϕ(v) ∈ L},
and f = ϕ|X .

However, note that the LP relaxation (A-P) of
the problem, where the target space is the space of
all fractional assignments of labels to vertices, falls
into the setting handled by Matoušek’s result. Let
X ⊆ V (T) be the set of all completely labeled nodes.
Note that ‖ϕ|X‖lip = maxu 6=v∈X

d(ϕ(u),ϕ(v))
dT (u,v) is a trivial

lower bound on the optimal value of the LP (A-P).

Surprisingly, Matoušek’s result shows (constructively)
that there is a fractional solution

{
xi,`

u

}
of value at most

a constant times ‖ϕ|X‖lip (thus, yielding a constant-
factor approximation algorithm for the linear program).

We prove a discrete version of Matoušek’s result.
We work with the lower bound LB =

⌈
‖ϕ|X‖lip

⌉
and

show that one can always find an extension ϕ′ of cost
at most 16 · LB , thus obtaining a 16-approximation
algorithm for the label extension problem. We also show
that the algorithm generalizes to handle a broad class of
label spaces (L, d) that satisfy a certain “Banach-like”
property.

Let
(
T = (V,E),Σ, ϕ

)
be an instance of the label

extension problem. We call a node v prelabeled if
ϕ(v) ∈ L and unlabeled otherwise. Let X = {v ∈
V : ϕ(v) ∈ L}. We argue that we may assume that X
consists of exactly all the leaves of T . Suppose that some
internal node is prelabeled. Then we can consider each
component of T \X with edges joining the component
to its neighbors in X, separately; each such component
has only its leaves as the prelabeled nodes, and these
components partition the edges so the cost for the entire
tree is the maximum cost of any component. So we may
assume that X is a subset of the leaves of T . Suppose
that some leaf is unlabeled. Consider the subtree T ′

whose leaf-set is X. Suppose we have a labeling of T ′.
For any component Ti in the edge-set T \ T ′, exactly
one of its node v lies in T ′, and hence is now labeled; we
assign the same label to all the nodes of Ti. Doing this
for every Ti gives a labeling of T , whose cost is the same
as that of the labeling of T ′. So assume that X is the
leaf-set of T . We now review Matoušek’s construction
of a suitable tree cover of T , which plays a crucial role in
our algorithm as well. We root the tree at an arbitrary
unlabeled node r ∈ V \X.

Matoušek’s construction. We will build tree-
collections Γ0,Γ1, . . . such that the trees in Γ =

⋃
j Γj

partition V . Let leaf(v) denote the leaf closest to node
v. Γ0 contains a single tree Tr rooted at r consisting
of all nodes v such that dT (v, r) ≤ dT (r, leaf(r))/2. In
general Γj+1, j ≥ 0 is built from Γj as follows: for each
child u of each leaf of every tree in Γj , we have a tree
Tu in Γj+1 rooted at u consisting of all the descendants
v of u such that dT (v, u) ≤ dT (u, leaf(u))/2. Note that
each leaf forms a singleton tree in Γ.

Now the labeling is constructed as follows. For
the single tree Tr ∈ Γ0, we label all nodes of Tr with
ϕ(leaf(r)). For singleton trees Tu ∈ Γ, we assign u the
label ϕ(leaf(u)). For every other tree Tu in Γj+1, j ≥ 0
rooted at u, where u is the child of a leaf of tree Tw ∈ Γj

(rooted at w), we do the following: we assign all the
leaves of Tu the label y = ϕ(leaf(u)), and assign u

the label x = ϕ(leaf(w)). Let D = d(x, y). Note
that all leaves in Tu are at the same distance h from
u. Now it is easy to assign labels to the intermediate
nodes of Tu, incurring cost at most

⌈
D
h

⌉
along any edge.

Essentially, we have a path-labeling problem where the
endpoints of a path of length h are labeled x and y. Let
`0 = x, `1, . . . , `D = y be a shortest path between x and
y in L, so d(`j , `j+1) = 1. We assign each node v at
distance dT (v, u) = j, the label `⌈ jD

h

⌉. Doing this for

every tree Tu ∈ Γ yields the complete labeling ϕ′.

Theorem 5.1. The above algorithm returns a solution
ϕ′ of cost at most 16 · LB.

Proof. Clearly for a leaf u, since leaf(u) = u and u
appears as a singleton tree in Γ, we have ϕ′(u) = ϕ(u),
so ϕ′ is indeed an extension of ϕ.

We identify two types of edges: edges that are
internal to some tree Tu ∈ Γ, and edges (u, v), between
trees Tw ∈ Γj and Tu ∈ Γj+1 where v is a leaf of
Tw and the parent of u. First consider the internal
edges. The edges in Tr ∈ Γ0 clearly incur 0 cost. So
consider an edge in Tu ∈ Γj+1 where u is the child
of a leaf of some tree Tw ∈ Γj rooted at w. Let
a = leaf(w), b = leaf(u), and x = ϕ(a), y = ϕ(b).
Let D = d(x, y) and h be the depth of Tu. It is clear
from the labeling of Tu that the distance along any edge
in Tu is at most

⌈
D
h

⌉
. We show that dT (a, b) ≤ 16h,

which implies that LB ≥ 1
16 ·

⌈
D
h

⌉
. We have dT (a, b) ≤

dT (a,w)+ dT (w, u)+ dT (u, b) ≤ 3dT (a,w)
2 +1+ dT (u, b).

Also dT (a,w) ≤ dT (b, w) ≤ dT (b, u) + dT (u, w) ≤
dT (b, u) + dT (a,w)

2 + 1, so dT (a,w)
2 ≤ 1 + dT (b, u). So

we get that dT (a, b) ≤ 4dT (u, b) + 4. Finally, note that
h ≥ dT (u,b)−1

2 . So we have dT (a, b) ≤ 8h + 8 ≤ 16h.
Thus, the cost for the edges of Tu is at most 16 · LB .

Now consider an edge (u, v) between trees Tw ∈ Γj

and Tu ∈ Γj+1 as above. Let a = leaf(w), b = leaf(u).
If Tu is not a singleton, then u and v are both labeled
with x = ϕ(a). Otherwise u is assigned label y = ϕ(b),
and the distance along edge (u, v) is d(x, y). Note that
since Tu is a singleton, we must have dT (u, b) ≤ 1. So
arguing as above, we can show that dT (a, b) ≤ 8 which
implies that d(x, y) ≤ 8 · LB .

Arbitrary label spaces. The connection with the
metric labeling and 0-extension problems mentioned in
the Introduction suggests a natural generalization where
the label space is an arbitrary metric space (L, d). On
trees, this generalization (and the taxonomy labeling
problem) can be solved exactly in time polynomial in the
size of the tree and the size of the label space via dynamic
programming. However in many cases, such as the case
above, the label space is described succinctly in the

input, and its size is exponentially large in the size of this
description. We argue that the above algorithm yields
the same approximation guarantee for a large class
of such succinctly-describable label spaces. The only
property about the space (L, d) that we needed in the
algorithm above is that for any x, y ∈ L, if D = d(x, y)
then there exists a path `0 = x, `1, . . . , `D = y in the
label space with d(`j , `j+1) = 1 for all j = 1, . . . , D− 1,
and d(x, y) and such a path `0 can be computed in
polynomial time. For example, any shortest-path metric
of an (given) unweighted graph satisfies this property.
So instead of the uniform metric on Σi, we can take di

to be any shortest-path metric of an unweighted graph.
One very useful example of a shortest-path metric
is the edit-distance metric with unit-cost operations,
which is widely used in sequence-alignment problems
in computational biology. Notice that here the space
(L, d), a set of strings with arbitrary lengths with the
edit-distance metric, is not a “separable” space; yet for
any x, y ∈ L, one can compute a shortest x-y path in
time polynomial in the description length and therefore
apply our algorithm.

6 An Ω(log k) integrality gap

We now show that the integrality gap of (A-P) and
(MC-P) is at least O(log k), even on trees. Here k is
the number of attributes in the taxonomy problem, and
the number of multicommodity flow instances in the
multicut packing problem. We generate an instance of
the multicut packing problem, which will also yield an
instance of the taxonomy problem.

Let 1 ≤ c ≤ k be a parameter that we will fix later.
Let A = {1, . . . , k}. The tree T in the instance is rooted
at r and has depth d = k/c − 1 (assume that c divides
k). Each node in the tree at depth j will correspond to
a subset of A of size k − jc. For every subset B ⊆ A of
size k−c, we have a node uB at depth 1 (i.e., attached to
r). In general suppose we have constructed the tree up
to depth j. For each node uB at depth j corresponding
to a subset B ⊆ A with |B| = k− jc, we add a child vB′

for every subset B′ ⊆ B of size |B| − c = k − (j + 1)c.
Doing this for all j = 1, . . . , d gives the tree T of depth
d. Note that there could be distinct nodes uB and vB

that correspond to the same subset B of A. For each
leaf node uB , for every i ∈ B we add the source-sink
pair (uB , r) to Mi. Note that |B| = c. Thus, all sinks
are at the root and all sources are at the leaves.

We claim that any integer solution F must use some
edge in at least c multicuts, that is, for some e we must
have |{i : e ∈ Fi}| ≥ c. We prove the following by
induction: if for some node uB at depth j, all edges in
the subtree rooted at uB have “load” less than c, then
there is a subset B′ ⊆ B with |B′| ≥ c such that for

every i ∈ B′, Fi contains an edge on the uB − r path.
The desired claim now follows, because if we take a node
uB at depth 1, then this implies that either some edge in
the subtree rooted at uB , or the edge (r, uB) has load at
least c. The base case, j = d, is trivially true. Suppose
the statement holds for j + 1. Consider a node uB at
depth j and suppose all edges in its subtree have load
less than c. Let B′ = {i : Fi ∩ PuBr 6= ∅}. If |B′| < c,
then take some C ⊆ B \ B′ such that |C| = |B| − c
and consider the child vC of uB . By the induction
hypothesis, there exists some C ′ ⊆ C, |C ′| ≥ c such that
for each i ∈ C ′, Fi ∩ PvCr 6= ∅. Since |{i : (uB , vC) ∈
Fi}| < c by assumption, there must be some i ∈ C ′ such
that Fi ∩ PuBr 6= ∅. But then i ∈ B′ contradicting the
choice of C. This proves the induction step, and hence
the statement.

Consider the following fractional solution. For each
node uB at depth j = 1, . . . , d, we set xi

e = c/Hd

|B| = c/Hd

k−jc

for every i ∈ B on the edge e joining uB to its parent.
Here Hd denotes the d-th harmonic number. All other
xi

e’s are 0. This is a feasible solution since for any leaf uB

and any i ∈ B we have
∑

e∈PuBr
xi

e = c
Hd

·
∑d

j=1
1

k−jc =
1. For any edge e, we have

∑
i xi

e = c/Hd. This
shows an integrality gap of min(c,Hd) (recall that we
are comparing against the bound max(1, z∗)). Setting
c =

√
k gives an integrality gap of Ω(log k).

We can translate the above instance to a taxonomy
labeling instance. We have k attributes, with Σi =
{0, 1} for all i. Set ϕ(r) = 1k. For each leaf uB , we
set ϕi(uB) = 0 for i ∈ B, and ∗ otherwise. Any integer
solution must have cost at least c (by Lemma 2.1). Also
the above fractional solution yields a solution to (A-P)
of the same cost: we set xi,0

u = 1−xi,1
u =

∑
e∈Pur xi

e for
every node u and every attribute i.

7 Extensions to arbitrary graphs

Multicut packing on graphs. We now consider the
multicut packing problem on general graphs and obtain
an O

(
log |maxi Mi| · log n

log log n

)
-approximation algorithm

by rounding an optimal solution to (MC-P) (which con-
tinues to be a valid relaxation). Let (G, M) be a mul-
ticut packing instance. We first solve (MC-P). Sup-
pose we have an LP-based α(g)-approximation algo-
rithm for the multicut problem, where g is the num-
ber of commodities. Note that α(g) = O(log g) [9].
The variables {xi

e} yield a fractional multicut for the
instance Mi. Using a theorem of Carr and Vempala [5],
one can use such an LP-based α-approximation algo-
rithm to decompose this fractional solution xi in poly-
nomial time into a convex combination of integer solu-
tions,

∑
j λi,j x̂i,j (where λi,j ≥ 0,

∑
j λi,j = 1; each

x̂i,j is a multicut for Mi), such that, for every edge e

we have
∑

j λi,j x̂i,j
e ≤ α · xi

e. We obtain such a convex
combination for each i, and then choose the solution
x̂i,j with probability λi,j . We do this independently for
each i. Notice that the expected “load” of every edge
is at most α(maxi |Mi|)z∗. Thus, by Chernoff bounds
one obtains that with high probability, the load of ev-
ery edge is O

(
α(maxi |Mi|) · log n

log log n

)
·max(1, z∗). Also

observe that if z∗ = Ω(log n), then the approximation
guarantee improves to O

(
α(maxi |Mi|)

)
.

When each Mi is a multiway-cut instance, that
is, (G, M) is a multiway-cut packing problem, we have
α(g) ≤ 1.5 [2] so one obtains an approximation ratio of
O

(
log n

log log n

)
(and O(1) if z∗ = Ω(log n)). Notice that the

integrality gap instance in Section 6 can be converted to
an s-t cut packing problem on general graphs by adding
a supersource for every i and connecting it to all the
sources in Mi with 0-capacity edges.

Theorem 7.1. The multicut packing problem on gen-
eral graphs admits an O

(
log(maxi |Mi|) · log n

log log n

)
-

approximation algorithm. The ratio improves to
O

(
log n

log log n

)
for the multiway-cut packing problem. These

guarantees improve to O
(
log(maxi |Mi|)

)
and O(1) re-

spectively when OPT (MC-P) = Ω(log n).

The graph labeling problem. This is the general-
ization of the taxonomy labeling problem where the un-
derlying graph is an arbitrary graph instead of a tree.
Let

(
G = (V,E),Σ, ϕ

)
be an instance of the graph la-

beling problem. We can reduce this to multiway-cut
packing as follows. For every attribute i and every
` ∈ Σi, we merge all nodes v with ϕi(v) = ` into a
terminal ti`. Each attribute i gives rise to a multiway-
cut instance Mi consisting of the terminals {ti`}`. Any
feasible multiway-cut-packing solution yields a feasible
solution to the graph labeling problem of no greater
cost, and vice-versa. Thus, we obtain the same guar-
antees as those stated in Theorem 7.1 for multiway-cut
packing.

References

[1] A. Ben-Dor, G. Lancia, J. Perone, and R. Ravi. Banishing
bias from consensus sequences. In Proceedings of the 8th
CPM, pages 247–261, 1997.

[2] G. Calinescu, H. Karloff, and Y. Rabani. An improved
approximation algorithm for multiway cut. Journal of
Computer and System Sciences, 60(3):564–574, 2000.

[3] A. Caprara, A. Panconesi, and R. Rizzi. Packing cuts in
undirected graphs. Networks, 44(1):1–11, 2004.

[4] G. Calinescu, H. Karloff, and Y. Rabani. Approximation
algorithms for the 0-extension problem. SIAM Journal on
Computing, 34(2):358–372, 2004.

[5] R. Carr and S. Vempala. Randomized metarounding. Rand.
Struc. and Algorithms, 20(3):343–352, 2002.

[6] C. Chekuri, S. Khanna, J. Naor, and L. Zosin. A linear
programming formulation and approximation Algorithms
for the metric labeling problem. SIAM J. on Discrete
Mathematics, 18(3):608–625, 2004.

[7] S. Deerwester, S. Dumais, T. Landauer, G. Furnas, and
R. Harshman. Indexing by latent semantic analysis. Jour-
nal of the American Society for Information Science,
41(6):391–407, 1990.

[8] M. Frances and A. Litman. On covering problems of codes.
Theory of Comput. Syst., 30:113–119, 1997.

[9] N. Garg, V. Vazirani, and M. Yannakakis. Approximate
max-flow min-(multi)cut theorems and their applications.
SIAM Journal on Computing, 25(2):235–251, 1996.

[10] W. Johnson and J. Lindenstrauss. Extensions of Lipschitz
maps into a Hilbert space. Contemporary Mathematics,
26:189–206, 1984.

[11] W. Johnson, J. Lindenstrauss, and G. Schechtman. Exten-
sions of Lipschitz maps into Banach spaces. Israel Journal
of Mathematics, 54:129–138, 1986.

[12] A. Karzanov. Minimum 0-extensions of graph metrics.
European J. of Combinatorics, 19(1):71–101, 1998.

[13] J. Kleinberg and É. Tardos. Approximation algorithms for
classification problems with pairwise relationships: metric
labeling and Markov random fields. Journal of the ACM,
49(5):616–639, 2002.

[14] J. Lee and A. Naor. Extending Lipschitz functions via
random metric partitions. Inventiones Mathematicae,
160(1):59–95, 2005.

[15] M. Li, B. Ma, and L. Wang. On the closest string and
substring problems. Journal of the ACM, 49(2):157–171,
2002.

[16] J. Matoušek. Extension of Lipschitz mappings on metric
trees. Commentationes Mathematicae Universitatis Car-
olinae, 31(1):99–104, 1990.

[17] C. Papadimitriou, P. Raghavan, H. Tamaki, and S. Vem-
pala. Latent semantic indexing: a probabilistic analysis.
Journal of Computer and System Sciences, 61(2):217–235,
2000.

[18] R. Ravi and J. Kececioglu. Approximation algorithms for
multiple sequence alignment under a fixed evolutionary tree.
Disc. App. Mathematics, 88:355–366, 1998.

[19] L. Wang and D. Gusfield. Improved approximation al-
gorithms for tree alignment. Journal of Algorithms,
25(2):255–273, 1997.

[20] L. Wang and T. Jiang. On the complexity of multiple
sequence alignment. Journal of Computational Biology,
1(4):337–348, 1994.

[21] L. Wang, T. Jiang, and D. Gusfield. A more efficient
approximation scheme for tree alignment. SIAM Journal
on Computing, 30(1):283–299, 2000.

[22] L. Wang, T. Jiang, and E. Lawler. Approximation algo-
rithms for tree alignment with a given phylogeny. Algorith-
mica, 16(3):302–315, 1996.

