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Abstract. We introduce a problem that is a common generalization of
the uncapacitated facility location and minimum latency (ML) problems,
where facilities need to be opened to serve clients and also need to be
sequentially activated before they can provide service. Formally, we are
given a set F of n facilities with facility-opening costs fi, a set D of m
clients, connection costs c;; specifying the cost of assigning a client j to a
facility ¢, a root node r denoting the depot, and a time metric d on FU{r}.
Our goal is to open a subset F' of facilities, find a path P starting at r
and spanning F' to activate the open facilities, and connect each client j
to a facility ¢(j) € F', so as to minimize >, p fi + 3 icnts; (Co0).5 T15)s
where t; is the time taken to reach ¢(j) along path P. We call this the
minimum latency uncapacitated facility location (MLUFL) problem.
Our main result is an O(log n-max(log n, log m))-approximation for MLUFL.
We also show that any improvement in this approximation guarantee,
implies an improvement in the (current-best) approximation factor for
group Steiner tree. We obtain constant approximations for two natural
special cases of the problem: (a) related MLUFL (metric connection costs
that are a scalar multiple of the time metric); (b) metric uniform MLUFL
(metric connection costs, uniform time-metric). Our LP-based methods
are versatile and easily adapted to yield approximation guarantees for
MLUFL in various more general settings, such as (i) when the latency-
cost of a client is a function of the delay faced by the facility to which it
is connected; and (ii) the k-route version, where k vehicles are routed in
parallel to activate the open facilities. Our LP-based understanding of
MLUFL also offers some LP-based insights into ML, which we believe is
a promising direction for obtaining improvements for ML.

1 Introduction

Facility location and vehicle routing problems are two broad classes of
combinatorial optimization problems that have been widely studied in
the Operations Research community (see, e.g., [15,19]), and have a wide
range of applications. Both problems can be described in terms of an

* A full version [4] is available on the CS arXiv



2 Deeparnab Chakrabarty and Chaitanya Swamy

underlying set of clients that need to be serviced. In facility location
problems, there is a candidate set of facilities that provide service, and the
goal is to open some facilities and connect each client to an open facility
S0 as to minimize some combination of the facility-opening and client-
connection costs. Vehicle routing problems consider the setting where a
vehicle (delivery-man or repairman) provides service, and the goal is to
plan a route that visits (and hence services) the clients as quickly as
possible. Two common objectives considered are: (i) minimize the total
length of the vehicle’s route, giving rise to the traveling salesman problem
(TSP), and (ii) (adopting a client-oriented approach) minimize the sum of
the client delays, giving rise to minimum latency (ML) problems.

These two classes of problems have mostly been considered sepa-
rately. However, various logistics problems involve both facility-location
and vehicle-routing components. For example, consider the following oft-
cited prototypical example of a facility location problem: a company wants
to determine where to open its retail outlets so as to serve its customers
effectively. Now, inventory at the outlets needs to be replenished or or-
dered (e.g., from a depot); naturally, a customer cannot be served by an
outlet unless the outlet has the inventory demanded by it, and delays in-
curred in procuring inventory might adversely impact customers. Hence,
it makes sense for the company to also keep in mind the latencies faced
by the customers while making its decisions about where to open outlets,
which clients to serve at each outlet, and in what order to replenish the
open outlets, thereby adding a vehicle-routing component to the problem.

We propose a mathematical model that is a common generalization of
the uncapacitated facility location (UFL) and minimum latency (ML) prob-
lems, and abstracts such settings where facilities need to be “activated’
before they can provide service. Formally, as in UFL, we have a set F of
n facilities, and a set D of m clients. Opening facility ¢ incurs a facility-
opening cost f;, and assigning a client j to a facility ¢ incurs connection
cost ¢;j. (The cj;s need not form a metric.) Taking a lead from mini-
mum latency problems, we model activation delays as follows. We have a
root (depot) node r, and a time metric d on F U {r}. A feasible solution
specifies a subset F' C F of facilities to open, a path P starting at » and
spanning F' along which the open facilities are activated, and assigns each
client j to an open facility ¢(j) € F. The cost of such a solution is

D it D (comiTt) (1)
i€F jeD
where t; = dp(r,¢(j)) is the time taken to reach facility ¢(j) along path
P. One can view ¢;; as the time facility ¢ takes to serve client j after it
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has been activated, in which case (cg(;),; +1;) is the delay faced by client
J- (Alternatively, if ¢;; denotes the time taken by a client j to travel to
facility 4, then the delay faced by j is max(cy(;y ;,t;), which is within a
factor 2 of the sum.) We refer to t; as client j’s latency cost. The goal is
to find a solution with minimum total cost. We call this the minimum-
latency uncapacitated facility location (MLUFL) problem.

Apart from being a natural problem of interest, we find MLUFL appeal-
ing since it generalizes various diverse problems of interest, in addition to
UFL and ML. One such problem, which captures much of the combinatorial
core of MLUFL, is what we call the minimum group latency (MGL) prob-
lem: given an undirected graph with metric edge weights {d.}, groups
{G;} of vertices, and a root r, the goal is to find a path starting at r
that minimizes the sum of the cover times of the groups, where the cover
time of G is the first time at which some 7 € G; is visited on the path.
Observe that MGL can be cast as MLUFL with zero facility costs (where
F = node-set \ {r}), where for each group G;, we create a client j with
cij = 0if i € G and oo otherwise. Note that we may assume that the
groups are disjoint (by creating multiple co-located copies of a node),
in which case these c;;s form a metric. MGL itself captures various other
problems. Clearly, when each G; is a singleton, we obtain the minimum
latency problem. Given a set-cover instance, if we consider a graph whose
nodes are (r and) the sets, we create a group G; for each element j con-
sisting of the sets containing it, and consider the uniform metric, then
this MGL problem is simply the min-sum set cover (MSSC) problem [9].

Our results and techniques. Our main result is an O(log n-max(log m, log n))—
approximation algorithm for MLUFL (Section 2.1), which for the special
case of MGL, implies an O(log?n) approximation. Complementing this,
we show that a p-approximation algorithm for MGL yields an O(plogm)-
approximation algorithm for the group Steiner tree (GST) problem [10] on
n nodes and m groups. So an improved approximation ratio for MLUFL
would yield a corresponding improvement for GST, whose approximation
ratio has remained at O(log® nlogm) for a decade [10]. Combined with
the result of [14] on the inapproximability of GST, this also shows that
MGL, and hence MLUFL with metric connection costs, cannot be approxi-
mated to better than a 2(log m)-factor unless NP C ZTIME (nP°¥los()),
Given the above hardness result, we investigate certain well-motivated
special cases of MLUFL and obtain significantly improved performance
guarantees. In Section 2.2, we consider the case where the connection
costs form a metric, which is a scalar multiple of the d-metric (i.e.,
dyy = cup/M, where M > 1; the problem is trivial if M < 1). For ex-
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ample, in a supply-chain logistics problem, this models a natural setting
where the connection of clients to facilities, and the activation of facilities
both proceed along the same transportation network at different speeds.
We obtain a constant-factor approximation algorithm for this problem. In
Section 2.3, we consider the uniform MLUFL problem, which is the special
case where the time-metric is uniform. Uniform MLUFL already general-
izes MSSC (and also UFL). For uniform MLUFL with metric connection costs
(i.e., metric uniform MLUFL), we devise a 10.78-approximation algorithm.
(Without metricity, the problem becomes set-cover hard, and we obtain
a simple matching O(log m)-approximation.) The chief novelty here lies
in the technique used to obtain this result. We give a simple generic re-
duction (Theorem 4) that shows how to reduce the metric uniform MLUFL
problem with facility costs to one without facility costs, in conjunction
with an algorithm for UFL. This reduction is surprisingly robust and ver-
satile and yields, for example, O(1)-approximations for metric uniform
k-median (i.e., metric uniform MLUFL where at most k facilities may be
opened), and MLUFL with non-uniform latency costs.

We obtain our approximation bounds by rounding the optimal solu-
tion to a suitable linear-programming (LP) relaxation of the problem. In
Section 3, we leverage this to obtain some interesting insights about the
special case of ML, which we believe cast new light on the problem since
all previous approximation algorithms for ML are based on combinatorial
approaches. In particular, we present an LP-relaxation for ML, and prove
that the integrality gap of these relaxations is upper bounded by a (small)
constant. Our LP is a specialization of our LP-relaxation for MLUFL. Inter-
estingly, the integrality-gap bound for this LP relies only on the fact that
the natural LP relaxation for TSP has constant integrality gap. In contrast,
the various known algorithms for ML [2,6, 1] all utilize algorithms for the
arguably harder k-MST problem or its variants. In the full version [4], we
describe a second LP relaxation with exponentially-many variables, one
for every path (or tree) of a given length bound, where the separation or-
acle for the dual problem is a rooted path (or tree) orienteering problem:
given rewards on the nodes and metric edge costs, find a (simple) path
rooted at r of length at most B that gathers maximum reward. We prove
that even a bicriteria approximation for the orienteering problem yields
an approximation for ML while losing a constant factor. This connection
between orienteering and ML is known [7]. But we feel that our alternate
proof, where the orienteering problem appears as the separation oracle
required to solve the dual LP, offers a more illuminating explanation of
the relation between the approximability of the two problems. Our LP-
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rounding algorithms to prove the constant integrality gaps exploit various
ideas developed for scheduling (e.g., a-points) and polyhedral insights for
TSP. This suggests that the wealth of LP based machinery could be lever-
aged for ML as well; we suspect that our LP-relaxations are in fact much
better than what we have accounted for.

LP-based techniques tend to be fairly versatile and can be adapted to
handle more general variants of the problem. Our algorithms and analyses
extend with little effort to handle various generalizations of MLUFL (and
hence, ML). One such example (see Section 4) is the setting where the
latency-cost of a client is a function (of bounded growth) of the time taken
to reach the facility serving it. This yields an approximation algorithm
for the £,-norm generalization of MLUFL, where we take the £,-norm of
the client latencies (instead of the £;-norm) in the objective function;
these norms tradeoff efficiency with fairness making them an appealing
measure to consider. Another notable extension is the k-route version,
where we may use k paths starting at r to traverse the open facilities.

Related work. There is a vast amount of literature on facility location and
vehicle routing; we refer the reader to [4] for a more-detailed discussion
of related work. The work that is most closely related to ours is due
to Gupta et al. [13], who independently and concurrently also proposed
the minimum group latency (MGL) problem (which they arrive at in the
course of solving a different problem), and obtain results similar to ours
for MGL. They also obtain an O(log? n)-approximation for MGL, and a
hardness of approximation for MGL via the reduction from GST to MGL
with an O(logm)-factor loss (see also [16]). They reduce MGL to a series
of “group orienteering” problems, which they solve using a subroutine due
to Charikar et al. [5]. It is not clear how their combinatorial techniques
can be extended to handle facility-opening costs in MLUFL.

2 LP-rounding approximation algorithms for MLUFL

We obtain a linear program for MLUFL as follows. We may assume that d;;/
is integral for all i,i" € FU{r}. Let E denote the edge-set of the complete
graph on F U {r} and let dyqz := maxeep de. Let T < min{n, m}dpax be
a known upper bound on the maximum activation time of an open facility
in an optimal solution. For every facility 4, client j, and time ¢t < T, we
have a variable y;; indicating if facility 7 is opened at time ¢ or not, and
a variable x;;; indicating whether client j connects to facility 7 at time ¢.
Also, for every edge e € E and time ¢, we introduce a variable z.; which
denotes if edge e has been traversed by time ¢t. Throughout, we use ¢ to
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index the facilities in F, j to index the clients in D, t to index the time
units in [T]:={1,..., T}, and e to index the edges in E.

min Z fivie + Z (Cij + t)l'ij,t (P)
it Grist
s.t. in]—,t >1 Vi Tije < Y Vi, J,t
it
D dezes <t vt (2)
e
Z Ze,t 2 Z mij,t’ Vt7S g Fm] (3)
e€é(S) €St/ <t
mij,t’ Yity Re,t 2 0 Vi,j, t, €] y’i,t = 0 Vl,t Wlth d'L'r > t.

The first two constraints encode that each client is connected to some
facility at some time, and that if a client is connected to a facility ¢ at
time ¢, then ¢ must be open at time ¢. Constraint (2) ensures that at most
t “distance” is covered by the tour on facilities by time ¢, and (3) ensures
that if a client is connected to ¢ by time ¢, then the tour must have visited
i by time ¢t. We assume here that T = poly(m); this assumption can be
removed with a loss of an (1 +¢) factor (see [4]). Thus, (P) can be solved
efficiently since one can efficiently separate over the constraints (3). Let
(x,y,z) be an optimal solution to (P), and OPT denote its objective
value. For a client j, define C7 = Zz}t CijTijt, and LT = Zi,t tzi;i. We
devise various approximation algorithms for MLUFL by rounding (z,y, z).

2.1 An O(log n - max{logn, log m})-approximation algorithm

We give an overview of the algorithm. Let Nj = {i € F : ¢;; < 4C} } be the
set of facilities “close” to j, and define 7; as the earliest time ¢ such that
Zz‘eNj,tfgtmij,t’ > % By Markov’s inequality, we have ZieNj Yot Tije > %
and 7; < 12L7. It is easiest to describe the algorithm assuming first that
the time-metric d is a tree metric. Our algorithm runs in phases, with
phase ¢ corresponding to time ¢, = 2¢. In each phase, we compute a
random subtree rooted at r of “low” cost such that for every client j with
7; < tg, with constant probability, this tree contains a facility in /V;. To
compute this tree, we utilize the rounding procedure of Garg-Konjevod-
Ravi (GKR) for the group Steiner tree (GST) problem [10] (see Theorem 1
below), by creating a group for each client j with 7; < ¢, comprising of,
roughly speaking, the facilities in N;. We open all the facilities included
in the subtree, and obtain a tour via the standard trick of doubling all
edges and performing an Eulerian tour with possible shortcutting. The
overall tour is a concatenation of all the tours obtained in the various
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phases. For each client j, we consider the first tree that contains a facility
from N; (which must therefore be open), and connect j to such a facility.

Given the result for tree metrics, an oft-used idea to handle the case
when d is not a tree metric is to approximate it by a distribution of
tree metrics with O(logn) distortion [8]. Our use of this idea is however
slightly subtle Instead of moving to a distribution over tree metrics up
front, in each phase ¢, we use the results of [5, 8] to deterministically ob-
tain a tree 7; with edge weights {d7,(e)}, such that the resulting tree
metric dominates d and »-._; ;y dz,(i,7)zer, = O(logn) 3, deze,. This
deterministic choice allows to extend our algorithm and analysis effort-
lessly to the setting where the latency-cost in the objective function is
measured by a more general function of the client-latencies. Algorithm 1
is a detailed description of the algorithm. Let 7,0 = max; 7;.

Theorem 1 ([5,8]). Given any edge weights {3¢}ecr, one can deter-
ministically construct a weighted tree T having leaf-set F U {r}, leading
to a tree metric, dr(-), such that, for any i,i' € F U {r}, we have: (i)

d']‘(’i, i,) > dii’} and (27,) Ze:(i,i’)GE d']’(i, i/)ﬁi,i’ = O(log n) Ze deﬁe-

Theorem 2 ([10]). Consider a tree T rooted at r with n leaves, subsets
G1,...,G)p of leaves, and fractional values 3. on the edges of T satisfying
3(0(S)) > v; for every group G; and node-set S such that G; C S, where
v; € [%,1}. There exists a randomized polytime algorithm, henceforth
called the GKR algorithm, that returns a rooted subtree T" C T such that
(1) Prle € T"] < 3¢ for every edge e € T; and (ii) Pr[T" N G; = 0] <
exp(—my)ﬁ) for every group G.

Analysis. Consider any phase £. For any subset S of nodes of the corre-
sponding tree 7, with 7 ¢ S, and any N; C S where j € Dy, we have
3(077(5)) = Xien; 4<t, Tijt = 2/3. This follows from the constraint (3) in
the LP. Using Theorem 2, we get the following lemma which bounds the
probability of failure in step A1.3.

Lemma 1. In any phase £, with probability 1 — m, we obtain the

desired tree Ty in step A1.3. Also, Pr[T; N N # 0] > 5/9 for all j € Dy.

Since each client j is connected to a facility in N;, the total connection
cost is at most 4 ) 7, C7. Furthermore, from Lemma 1 we get that for every
client j € Dy, the probability that a facility in N; is included in the tree T},
and hence opened in phase /, is at least g. The facility-cost incurred in a
phase is O(logn) 3, ; fiyit, and since Timax < T = poly(m), the number of

phases is O(log m), so this bounds the facility-opening cost incurred. Also,
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Algorithm 1 Given: a fractional solution (z,y, z) to (P).

Al. In each phase £ =0,1,...,N := [log,(27Tmax) + 4log, m], we do the following. Let
t¢ = min{2°, T}.

Al.l. Use Theorem 1 with edge weights {zc,} to obtain a tree T, = (V(72), E(Tr)).
Extend 7; to a tree 7, by adding a dummy leaf edge (i,v;) of cost f; to Ty for
each facility 7. Let E' = {(i,v;) : i € F}.

Al.2. Map the LP-assignment {ze.,}ecr to an assignment 3 on the edges of 7
by setting Je = Ze lies on the unique i-i’ path in 7, Zii/:t[ for all e € E(ﬂ)7 and
3e = Ztgtg yi¢ for all e = (i,v;) € E'.

A1.3. Define D, = {j : 7; < t¢}. For each client j € Dy, we define the group
N; = {v; : i € N;}. We now compute a subtree T; of 7, as follows. We ob-
tain N := log, m subtrees T7',...,Tx. Each tree T, is obtained by executing
the GKR algorithm 192log, n times on the tree 7; with groups {N;} ep,, and
taking the union of all the subtrees returned. Note that we may assume that
i € T} iff (i,v;) € T}. Set T; to be the first tree in {17',...,Tx} satisfying (i)
Z(i,vi)eE(Tl’) fi <40 -192logyn -, g fidiw, and (i) ZeeE(Té)\E’ dr,(e) <
40-192logy n Y. 7,y d7:(€)3e; if no such tree exists, the algorithm fails.

A1.4. Now remove all the dummy edges from T}, open all the facilities in the resulting
tree, and convert the resulting tree into a tour Tour, traversing all the opened
facilities. For every unconnected client j, we connect j to a facility in Nj; if some
such facility is open (and hence part of Toury).

A2. Return the concatenation of the tours Tour, for £ = 0,1,..., A shortcutting when-
ever possible. This induces an ordering of the open facilities. If some client is left
unconnected, we say that the algorithm has failed.

since the probability that j is not connected (to a facility in IV;) in phase
¢ decreases geometrically (at a rate less than 1/2) with ¢ when t, > 75,
one can argue that (a) with very high probability (i.e., 1 — 1/ poly(m)),
each client j is connected to some facility in Nj, and (b) the expected
latency-cost of j is at most O(logn) 3_ ¢ p(7,) d7,(€)se = O(log® n)T;.

Lemma 2. The probability that a client j is not connected by the algo-
rithm is at most 1/m*. Let L; be the random variable equal to j’s latency-
cost if the algorithm succeeds and 0 otherwise. Then E [Lj] = O(log2 n)te,,
where {; (= [logy 7j]) is the smallest £ such that ty > 7.

Proof. Let P; be the random phase in which j gets connected; let P; :=

N +1if j remains unconnected. We have Pr[P; > (] < (%)(243‘ ) for ¢ > ;.
The algorithm proceeds for at least 4log, m phases after phase ¢;, so
Pr[j is not connected after A" phases] < 1/m*. Now, L; < Zegpj d(Toury) <

2 ZKSP] ZEEE(Té)\E, d’]’z(e) The RHS iS O(log n) ZESP] ZCEE(’]—Z) dﬂ (6)56 =
O(log?n) ZZSP]- te from step A1.3. So E[L;] = O(log?n) Zé\io Pr[P; >

] -ty < O(log?n) [Zﬁjzo ot D ps, te (%)(f—fj)] = O(log” n)ty,.
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Theorem 3. Algorithm 1 succeeds with probability 1 — 1/ poly(m), and
returns a solution of expected cost O(logn - max{logn, log m}) - OPT.

2.2 MLUFL with related metrics

Here, we consider the MLUFL problem when the facilities, clients, and the
root r are located in a common metric space that defines the connection-
cost metric (on F U D U {r}), and we have dy, = cyp/M for all u,v €
FUDU{r}. We call this problem, related MLUFL, and design an O(1)-
approximation algorithm for it.

The algorithm follows a similar outline as Algorithm 1. As before,
we build the tour on the open facilities by concatenating tours obtained
by “Eulerifying” GST’s rooted at r of geometrically increasing length. At
a high level, the improvement in the approximation arises because one
can now obtain these trees without resorting to Theorem 2 and losing
O(log n)-factors in process. Instead, since the d- and ¢- metrics are related,
we obtain a GST on the relevant groups by using a Steiner tree algorithm.

As before, N; denotes the facilities “close by” (in the c-metric) client
j and 7; = O(L}). In each phase ¢ we want a GST for the groups N; for
which 7; < ¢,. To obtain this, we first do a facility-location-style clustering
of the clients (with 7; < ty) to obtain some cluster centers whose Njs are
disjoint. We contract these disjoint N;s (of cluster centers) to supernodes
and find a minimum Steiner tree connecting these. Since facilities in N
are close by in the c-metric, and since the d-metric and c-metric are
related, they are close by in the d-metric as well. Thus, the supernodes in
the Steiner tree can be “opened up” to give the GST of not too large cost.

Deciding which facilities to open is tricky since we cannot open fa-
cilities in each phase. This is because although Njs are disjoint in an
individual phase, they might overlap with Nys from a different phase. To
overcome this, we consider the collection C of cluster centers created in all
the phases, and pick a maximal subset C’ C C that yields disjoint N;’s by
greedily considering clusters in increasing C7 order. We open the cheap-
est facility 4 in each of these IN;’s, this bounds the facility cost. However,
there could be a client k € C\ C' which got removed from C since Nj
overlapped with Nj; this k£ must be connected to i. The issue is that 7
could be much smaller than 7;, and thus ¢ needs to be connected to the
tree 7, where £ is the phase when N got connected. To argue this doesn’t
affect the latency cost too much we once again use the relation between
the d-metric and c-metric to show that the total increase in latency cost
is at most a constant fraction more.
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2.3 MLUFL with a uniform time-metric

We now consider the special case of MLUFL, referred to as uniform MLUFL,
where the time-metric d is uniform, that is, d;y = 1 for all i,i" € FU{r}.
When the connection costs form a metric, we call it the metric uniform
MLUFL. We consider the following simpler LP-relaxation of the problem,
where the time ¢ now ranges from 1 to n.

min > fiyie + (¢ +t)zige  subject to (Unif-P)
it

Jyist

ST @i 21V wige <yie Vigts Yy SUVE @i yie > 0 Vi, gt

it

The main result of this section is Theorem 4, which shows that a pyg.-
approximation algorithm for UFL and a ~y-approximation algorithm for
uniform ZFC MLUFL (uniform MLUFL with zero facility costs) can be com-
bined to yield a (pypL + 27)-approximation algorithm for metric uniform
MLUFL. One can show that v < 9 (ZFC MLUFL can be reduced to MSSC
incurring a constant-factor loss; see [4]), and pmiLyrL < 1.5 [3]; this gives
a 19.5 approximation. In the full version, we show that the analysis can
be refined to yield an improved 10.773 approximation.

Theorem 4. Given a pygL-approzimation algorithm A; for UFL, and a
y-approximation algorithm As for uniform ZFC MLUFL, one can obtain a
(purL + 27)-approzimation algorithm for metric uniform MLUFL.

Proof. Let T denote the metric uniform MLUFL instance, and O* denote
the cost of an optimal integer solution. Let Zyp_ be the UFL instance
obtained form 7 by ignoring the latency costs, and Zzgc be the ZFC MLUFL
instance obtained from Z by setting all facility costs to zero. Let O{jg
and OZgc denote respectively the cost of the optimal (integer) solutions
to these two instances. Clearly, we have O ,O7rc < O*. We use A;
to obtain a near-optimal solution to Zyg.: let F1 be the set of facilities
opened and let o1 (j) denote the facility in F} to which client j is assigned.
So we have 3, p fi + 32 oy (5); < PUFL - Ofp . We use Az to obtain a
near-optimal solution to Zzgc: let Fy be the set of open facilities, o2(j)
be the facility to which client j is assigned, and m(i) be the position of
facility i. So we have } (on(j)j + (02(5))) <7 Ofpc.

We now combine these solutions as follows. For each facility i € Fy,
let u(i) € Fy denote the facility in F; that is nearest to i. We open the
set F'' = {u(i) : i € Fy} of facilities. The position of facility i € F is set to
Ming ¢ . (i7)= 7(7'). Each facility in F is assigned a distinct position this
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way, but some positions may be vacant. Clearly we can always convert
the above into a proper ordering of F' where each facility ¢ € F' occurs at
position (i) < ming¢p,.x(i7)=; 7(i'). Finally, we assign each client j to the
facility ¢(j) = u(o2(j)) € F. Note that (¢(7)) < m(o2(j)) (by definition).
For a client j, we now have ¢4 (j);j < Cop(j)u(02(5)) T Coa(i)j = Cor(i)or(s) +
Coy(j)j < Coi(j)j T 2Cay(j);- Thus, the total cost of the resulting solution is
at most 3 cp fi+ D, (Cor(j)j + 2¢os(j); + T(02(5))) < (purL + 27) - O*.

3 LP-relaxations and algorithms for mL

In this section, we give an LP-relaxation for the ML problem and prove
that it has a constant integrality gap. In the full version, we describe
another LP-relaxation for ML for which also we prove a constant upper
bound on the integrality gap. We believe that our LP-relaxations are
stronger than what we have accounted for, and conjecture that the in-
tegrality gap of the second LP is at most 3.59, the current best known
approximation factor for ML. The second LP also gives an illuminating
explanation of the relation between ML and orienteering.

Let G = (DU {r}, E) be the complete graph on N = |D| + 1 nodes
with edge weights {d.} that form a metric. Let r be the root node at
which the path visiting the nodes must originate. We use e to index F
and j to index the nodes. We have variables x;; for t > d;,. to denote if j
is visited at time ¢, and z.; to denote (as before) if e has been traversed
by time ¢ (where ¢ ranges from 1 to T); for convenience, we think of z;;
as being defined for all ¢, with x;; = 0 if d;,, > t. (As before, one can
move to a polynomial-size LP losing a (1 + €)-factor.)

min Ztﬂc]-,t subject to (LP1)
Jt

ij,t >1Vy; Zdeze,t <t Vt; Z Ze,t > ijyt/ Vi, SCD,j5€S8;, z,z>0.
t e

e€s(S) t/<t
Theorem 5. The integrality gap of (LP1) is at most 10.78.

Proof. Let (z,z) be an optimal solution to (LP1), and L} = >, tx;.
For a € [0,1], define the a-point of j, 7j(a), to be the smallest ¢ such
that >, ., zjv > a. Let Di(a) = {j : 7j(a) < t}. We round (z,2) as
follows. We pick a € (0, 1] according to the density function q(z) = 2.
For each time ¢, using the parsimonious property (see [11]), one can see
that (2z/«) is a feasible solution to the sub-tour elimination LP for TSP
on the vertices 7 U Dy(«). Then we utilize the %—integrality-gap of this
LP [20, 18], to round 2 and obtain a tour on {r}U Dy(a) of cost Cy(a) <

% e ldezer < % We now use Lemma 3 to combine these tours.
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Lemma 3 ([12] paraphrased). Let Toury,..., Toury be tours contain-
ing r, with Tour; having cost C; and containing N; nodes, where Noy :=
1 <Ny <...< N, = N. One can find tours Tour; , ..., Tour;,—i, and
concatenate them suitably to obtain latency at most 3'259 > Ci(Ni—Ni_1).

The tours we obtain for the different times are nested (as the D;(a)s
are nested). S0 3~ Cy(@)(|De(a)|=[Di—1(a)]) = 32, 1jenian\Ds_i (o) Crl@) =
> Criay (@) <3325 # Using Lemma 3, and taking expectation over «
(note that E [#] < 2L§), we get total latency cost at most 10.78 Zj L.

Interestingly, note that in the above proof we did not need any proce-
dure to solve k-MST or its variants, which all previously known algorithms
for ML use as a subroutine. Rather, we just needed the integrality gap of
the subtour-elimination LP to be a constant.

4 Extensions

Latency cost functions. Consider the setting where the latency-cost of
client j is given by A(time taken to reach the facility serving j), where
A(.) is a non-decreasing function; the goal, as before, is to minimize the
sum of the facility-opening, client-connection, and client-latency costs.
Say that A has growth at most p if A(cz) < PA(x) for all z > 0, ¢ > 1.
It is not hard to see that for concave A, we obtain the same perfor-
mance guarantees as those obtained in Section 2. For convex A, we obtain
an O (max{ (plog®n)P, plog nlog m})—approximation algorithm for convex
latency functions of growth p. As a corollary, we obtain an approximation
guarantee for L£,-MLUFL, where we seek to minimize the facility-opening
cost + client-connection cost + the £,-norm of client-latencies.

Theorem 6. There is an O (max{(p log? n)?, plog n log m}) -approzrimation
algorithm for MLUFL with convex monotonic latency functions of growth p.
This yields an O (p log n max{log n, log m}) approzimation for L,-MLUFL.

In k-route length-bounded MLUFL, we are given a budget B and we may
use (at most) k paths starting at r of (d-) length at most B to traverse the
open facilities and activate them. (So with B = oo, this generalizes the
k-traveling repairmen problem [7].) Our algorithms easily extend to give:
(a) a bicriteria (polylog, O(log® n))-approximation for the general k-route
MLUFL problem where we violate the budget by a O(log?n) factor; (b) an
(O(1),0(1)) approximation for MLUFL and ML with related metrics; and
(c) a (unicriterion) O(1) approximation for metric uniform MLUFL. These
guarantees extend to latency functions of bounded growth. In particular,
we obtain an O(1) approzimation for the £),-norm k-traveling repairmen
problem; this is the first approximation guarantee for this problem.
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