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Abstract. We consider the lower-bounded facility location (LBFL) prob-
lem, which is a generalization of uncapacitated facility location (UFL),
where each open facility is required to serve a certain minimum amount
of demand. The current best approximation ratio for LBFL is 448 [17].
We substantially advance the state-of-the-art for LBFL by improving its
approximation ratio from 448 [17] to 82.6.
Our improvement comes from a variety of ideas in algorithm design and
analysis, which also yield new insights into LBFL. Our chief algorithmic
novelty is to present an improved method for solving a more-structured
LBFL instance obtained from I via a bicriteria approximation algorithm
for LBFL, wherein all clients are aggregated at a subset F ′ of facilities,
each having at least αM co-located clients (for some α ∈ [0, 1]). The algo-
rithm in [17] proceeds by reducing I2(α) to CFL. One of our key insights
is that one can reduce the resulting LBFL instance, denoted I2(α), to a
problem we introduce, called capacity-discounted UFL (CDUFL), which is
a structured special case of capacitated facility location (CFL). We give a
simple local-search algorithm for CDUFL based on add, delete, and swap
moves that achieves a significantly-better approximation ratio than the
current-best approximation ratio for CFL, which is one of the reasons
behind our algorithm’s improved approximation ratio.

1 Introduction

Facility location problems have been widely studied in the Operations Research
community (see, e.g., [13]). In its simplest version, uncapacitated facility location
(UFL), we are given a set of facilities with opening costs, and a set of clients,
and we want to open some facilities and assign each client to an open facility
so as to minimize the sum of the facility-opening and client-assignment costs.
This problem has a wide range of applications. For example, a company might
want to open its warehouses at some locations so that its total cost of opening
warehouses and servicing customers is minimized.

We consider the lower-bounded facility location (LBFL) problem, which is a
generalization of UFL where each open facility is required to serve a certain
minimum amount of demand. More formally, an LBFL instance I is specified
by a set F of facilities, a set D of clients, and an integer M . Opening facility
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i incurs a facility-opening cost fi, and assigning a client j to a facility i incurs
a connection cost cij . A feasible solution specifies a subset F ⊆ F of facilities,
and assigns each client j to an open facility i(j) ∈ F so that each open facility
serves at least M clients. The cost of such a solution is the sum of the facility-
opening and connection costs, that is,

∑
i∈F fi +

∑
j ci(j)j , and the goal is to

find a feasible solution of minimum cost. As is standard in the study of facility
location problems, we assume throughout that cijs form a metric. We use the
terms connection cost and assignment cost interchangeably in the sequel.

LBFL can be motivated from various perspectives. This problem was intro-
duced independently by Karger and Minkoff [8], and Guha et al. [5] (who called
the problem load-balanced facility location, both of whom arrived at LBFL as
a means of solving their respective buy-at-bulk style network design problems.
LBFL arises as a natural subroutine in solving buy-at-bulk problems because
obtaining a near-optimal solution often entails aggregating a certain minimum
demand at certain hub locations, and then connecting the hubs via links of lower
per-unit-demand cost (and higher fixed cost). LBFL also finds direct applications
in supply-chain logistics problems, where the lower-bound constraint can be
used to model the fact that it is not profitable or feasible to use services unless
they satisfy a certain minimum demand. For example (as noted in [17]), Lim et
al. [11], use LBFL to abstract a transportation problem faced by a company that
has to determine the allocation of cargo from customers to carriers, who then
ship their cargo overseas. Here the lower bound arises because each carrier, if
used, is required (by regulation) to deliver a minimum amount of cargo.

Clearly, LBFL with M = 1 is simply UFL, and hence, is NP-hard; conse-
quently, we are interested in designing approximation algorithms for LBFL. The
first constant-factor approximation algorithm for LBFL was devised by Svitk-
ina [17], whose approximation ratio is 448. Prior to this, the only known approx-
imation guarantees were bicriteria guarantees. [8] and [5] independently devised
(ρ, α)-approximation algorithms via a reduction to UFL: these algorithms return
a solution of cost at most ρ times the optimum where each open facility serves
at least αM clients (α < 1, ρ is a function of α).

Our results and techniques. We devise an approximation algorithm for LBFL

that achieves a substantially-improved approximation guarantee of 82.6 (Theo-
rem 1), thus significantly advancing the state-of-the-art for LBFL. Our improve-
ment comes from a combination of ideas in algorithm design and analysis, and
yields new insights about the approximability of LBFL. In order to describe the
ideas underlying our improvement, we first briefly sketch Svitkina’s algorithm.

Svitkina’s algorithm begins by using the reduction in [8, 5] to obtain a bi-
criteria solution for I, which is then used to convert I into an LBFL instance
I2 with facility-set F ′ ⊆ F having the following structure: (i) all clients are
aggregated at F ′ with each facility i ∈ F ′ having ni ≥ αM co-located clients;
(ii) all facilities in F ′ have zero opening costs; and (iii) near-optimal solutions to
I2 translate to near-optimal solutions to I (and vice versa). The goal now is to
identify a subset of F ′ to close, such that transferring the clients aggregated at
these closed facilities to the remaining (open) facilities in F ′ ensures that each



remaining facility serves at least M demand (and the cost incurred is “small”).
[17] shows that one can achieve this by solving a suitable CFL instance. Essen-
tially the idea is that a facility i that remains open corresponds to a demand
point in the CFL instance that requires M − ni units of demand, and a facility
i that is closed maps to a supply point in the CFL instance having ni units that
can be supplied to demand points (i.e., open facilities). Of course, one does not
know beforehand which facilities will be closed and which will remain open; so
to encode this correspondence in the CFL instance, we create at every location
i ∈ F ′, a supply point with (suitable opening cost and) capacity M , and a de-
mand point with demand M − ni if ni ≤ M (so the supply point at i has ni

residual capacity after satisfying this demand). (Assume ni ≤ M for simplicity;
facilities with ni > M are treated differently.) [17] argues that a CFL-solution can
be mapped to an I2-solution without increasing the cost incurred by much; since
CFL admits an O(1)-approximation algorithm, one obtains an O(1)-approximate
solution to I2, and hence to the original LBFL instance I.

Our algorithm also proceeds by (a) obtaining an LBFL instance I2 satisfying
properties (i)–(iii) mentioned above, (b) solving I2, and (c) mapping the I2-
solution to a solution to I, but our implementation of steps (a) and (b) differs
from that in Svitkina’s algorithm. These modified implementations, which are
independent of each other and yield significant improvements in the overall ap-
proximation ratio even when considered in isolation, result in our much-improved
approximation ratio. We detail how we perform step (a) later, and focus first on
describing how we solve I2, which is our chief algorithmic contribution.

Our key insight is that one can solve the LBFL instance I2 by reducing it to a
new problem we introduce that we call capacity-discounted UFL (CDUFL), which
closely resembles UFL and admits an algorithm (that we devise) with a much bet-
ter approximation ratio than CFL. A CDUFL-instance has the property that every
facility is either uncapacitated (i.e., has infinite capacity), or has finite capacity
and zero facility cost. The CDUFL instance we construct consists of the same sup-
ply and demand points as in the reduction of I2 to CFL in [17], except that all
supply points with non-zero opening cost are now uncapacitated. (Interestingly,
if all facilities in I2 have ni ≤ M , the CDUFL instance is in fact a UFL-instance!)

We prove two crucial algorithmic results. The “standard” integrality-gap ex-
ample for the natural LP-relaxation of CFL can be cast as a CDUFL instance,
thus showing that the natural LP-relaxation for CDUFL has a large integrality
gap, and we are not aware of any LP-relaxation with constant integrality gap.
Circumventing this difficulty, we devise a local-search algorithm for CDUFL based
on add, swap, and delete moves that achieves the same performance guarantees
as the corresponding local-search algorithm for UFL [2] (Section 4.2). The local-
search algorithm yields significant dividends in the overall approximation ratio
because not only is its approximation ratio for CDUFL better than the state-of-
the-art for CFL, but also because it yields separate (asymmetric) guarantees on
the facility-opening and assignment costs, which allows one to perform a tighter
analysis. Second, we show that any near-optimal CDUFL-solution can be mapped
to a near-optimal solution to I2 (Section 4.1). As in [17], in the CDUFL-solution,
an open supply point i (which corresponds to closing facility i) may send less



than ni supply to other demand points, so that closing down i entails transfer-
ring its residual clients to open facilities. But since some supply points are now
uncapacitated, it could also be that i sends more than ni supply to other demand
points. We argue that this artifact can also be handled without increasing the
solution cost by much, by opening the facilities in a carefully-chosen subset of
{i} ∪ {demand points satisfied by i} and closing down the remaining facilities.
For every α (recall that the LBFL instance I2 is specified in terms of a parameter
α), the resulting approximation factor for I2 (Theorem 5) is better than the
guarantee obtained for I2 in Svitkina’s algorithm; this in turn translates (by
choosing α suitably) to an improved solution to the original instance.

We now discuss how we implement step (a), that is, how we obtain instance
I2. As in [17], we arrive at I2 by computing a bicriteria solution to LBFL, but we
obtain this bicriteria solution in a different fashion (see Section 3). The reduc-
tion from LBFL to UFL in [8, 5] proceeds by setting the opening cost of facility
i to fi +

2α
1−α ·∑j∈D(i) cij , where D(i) is the set of M clients closest to i, solv-

ing the resulting UFL instance, and postprocessing using (single-facility) delete
moves if such a move improves the solution cost. We modify this reduction sub-
tly by creating a UFL instance, where facility i’s opening cost is instead set to
fi+2αMRi(α), where Ri(α) is the distance between i and the αM -closest client
to it. As in the case of the earlier reduction, we argue that each open facility i
in the resulting solution (obtained by solving UFL and postprocessing) serves at
least αM clients. The overall bound we obtain on the total cost now includes var-
ious Ri(α) terms. Instead of plugging in the (weak) bound MRi(α) ≤

∑
j∈D(i) cij

1−α
(which would yield the same guarantee as that obtained via the earlier reduc-
tion), we are able to perform a tighter analysis by choosing α from a suitable

distribution and leveraging the fact that M
∫ 1

0 Ri(α)dα =
∑

j∈D(i) cij . (This can
easily be derandomized, since there are only M combinatorially distinct choices
for α.) These simple modifications yield a surprising amount of improvement in
the approximation factor, which is reminiscent of the mileage provided by (ran-
dom) α-points for various scheduling problems and UFL [15, 16]. Also, we observe
that one can obtain further improvements by using the local-search algorithm
of [3, 2] to solve the above UFL instance: this is because the resulting solution is
then already postprocessed, which allows us to exploit the asymmetric bounds on
the facility-opening and assignment costs provided by the local-search algorithm
via scaling, and improve the approximation ratio.

Finally, we remark that the study of CDUFL may provide useful and inter-
esting insights about CFL. CDUFL is a special case of CFL that despite its special
structure inherits the intractability of CFL with respect to LP-based approxi-
mation guarantees. If one seeks to develop LP-based techniques and algorithms
for CFL (which has been a long-standing and intriguing open question), then
one needs to understand how one can leverage LP-based techniques for CDUFL,
and it is plausible that LP-based insights developed for CDUFL may yield similar
insights for CFL (and potentially LP-based approximation guarantees for CFL).

Related work. LBFL was independently introduced by [8] and [5], who used it as
a subroutine to solve the maybecast and access network design problems respec-



tively. Their ideas lead to bicriteria guarantees for LBFL and play a preprocessing
role both in Svitkina’s algorithm [17] and (slightly indirectly) in our algorithm.

There is a large body of literature that deals with approximation algorithms
for (metric) UFL, CFL and its variants; see [14] for a survey on UFL. The first con-
stant approximation guarantee for UFL was obtained by Shmoys et al. [15] via an
LP-rounding algorithm, and the current state-of-the-art is a 1.488-approximation
algorithm due to Li [10]. Local-search techniques have also been utilized to ob-
tain O(1)-approximation guarantees for UFL [9, 3, 2]. We apply some of the ideas
of [3, 2] in our algorithm. Starting with the work of Korupolu et al. [9], various
local-search algorithms with constant approximation ratios have been devised for
CFL, with the current-best approximation ratio being 5.83+ ǫ [18]. Local-search
approaches are however not known to work for LBFL; in the full version [1], we
show that local search based on add, delete, and swap moves yields poor ap-
proximation guarantees. A related problem is universal facility location (UniFL),
a generalization of UFL where the facility cost depends on the number of clients
served by the facility. UniFL with non-decreasing functions was introduced by [6,
12], and [12] obtained a constant approximation algorithm. We are not aware
of any work on UniFL with arbitrary non-increasing functions (which generalizes
LBFL). [4] give a constant approximation for the case where the cost-functions
do not decrease too steeply (the constant depends on the steepness); notice that
LBFL does not fall into this class so their results do not apply here.

2 Problem definition and notation
Recall that an LBFL instance I consists of a set F of facilities with facility-
opening costs {fi}, a set D of clients, metric connection (or assignment) costs
{cij} specifying the cost of assigning client j to facility i, and a (integer) param-
eter M . Our objective is to open a subset F of facilities and assign each client j
to an open facility i(j) ∈ F , so that at least M clients are assigned to each open
facility, and the total cost incurred,

∑
i∈F fi +

∑
j ci(j)j , is minimized.

Let F ∗ and C∗ denote respectively the facility-opening and assignment cost
of an optimal solution to I; we will often refer to this solution as “the opti-
mal solution” in the sequel. We sometimes abuse notation and also use F ∗ to
denote the set of open facilities in this optimal solution. Let OPT = F ∗ + C∗

denote the total optimal cost. For a facility i ∈ F , let D(i) be the set of M
clients closest to i, and Ri(α) denote the distance between i and the ⌈αM⌉-
closest client to i; that is, if D(i) = {j1, . . . , jM}, where cij1 ≤ . . . ≤ cijM ,
then Ri(α) = cij⌈αM⌉

(for 0 < α ≤ 1). Let R∗(α) =
∑

i∈F∗ Ri(α). Observe

that each Ri(α) is an increasing function of α, M
∫ 1

0
Ri(α)dα =

∑
j∈D(i) cij ,

and Ri(α) ≤
(∑

j∈D(i) cij)/(M − ⌈αM⌉ + 1) ≤
∑

j∈D(i) cij

M(1−α) . Hence, R∗(α) is an

increasing function of α, M
∫ 1

0 R∗(α)dα ≤ C∗, and R∗(α) ≤ C∗

M(1−α) .

3 Our algorithm and the main theorem

We now give a high-level description of our algorithm using certain building
blocks that are supplied in the subsequent sections.



(1) Obtaining a bicriteria solution. Construct a UFL instance with the same
set of facilities and clients, and the same assignment costs as I, where the
opening cost of facility i is set to fi +2αMRi(α). Use the local-search algo-
rithm for UFL in [3] or [2] with scaling parameter γ > 0 to solve the resulting
UFL instance. (We set α, γ suitably to get the desired approximation; see
Theorem 1.) Let F ′ ⊆ F be the set of facilities opened in the UFL-solution.
Claim 2 and Lemma 3 show that each i ∈ F ′ serves at least αM clients.

(2) Transforming to a structured LBFL instance. We use the bicriteria
solution obtained above to transform I into another structured LBFL instance
I2 as in [17]. In the instance I2, we set the opening cost of each i ∈ F ′ to
zero, and we “move” to i all the ni ≥ αM clients assigned to it, that is, all
these clients are now co-located at i. So I2 consists of only the points in F ′

(which forms both the facility-set and client-set). We sometimes denote this
instance by I2(α) to indicate explicitly that its specification depends on α.

(3) Solve I2 using the method described in Section 4. Obtain a solution to I
by opening the same facilities and making the same client assignments as in
the solution to I2.

Analysis. Our main theorem is as follows.

Theorem 1. For any α ∈ (0.5, 1] and γ > 0, the above algorithm returns a
solution to I of cost at most

F ∗(1 + γh(α)
)
+ C∗

(
2h(α)− 1 + 2

γ

)
+ 2γαMR∗(α)h(α) + 2αMR∗(α)

where h(α) = 1 + 4
α + 4α

2α−1 + 4
√

6
2α−1 . Thus, we can compute efficiently a

solution to I of cost at most: (i) 92.84 ·OPT, by setting α = 0.75, γ = 3/h(α);
(ii) 82.6 ·OPT, by letting γ be a suitable function of α, and choosing α randomly
from the interval [0.67, 1] according to the density function p(x) = 1

ln(1/0.67)x .

The roadmap for proving Theorem 1 is as follows. We first bound the cost of
the bicriteria solution obtained in step (1) in terms of OPT (Lemma 3). This will
allow us to bound the cost of an optimal solution to I2, and argue that mapping
an I2-solution to a solution to I does not increase the cost by much (Lemma 4).
The only missing ingredient is a guarantee on the cost of the solution to I2 found
in step (3), which we supply in Theorem 5, whose proof appears in Section 4.

The following claim follows from essentially the same arguments as in [8, 5].

Claim 2. Let S′ be a delete-optimal solution to the above UFL instance; that is,
the total UFL-cost does not decrease by deleting any open facility of S′. Then,
each facility of S′ serves at least αM clients.

The local-search algorithms for UFL in [3, 2] have the same performance guar-
antees and both include a delete-move as a local-search operation, so upon ter-
mination, we obtain a delete-optimal solution.1 Opening the same facilities and

1 A subtle point is that typically local-search algorithms terminate only with an “ap-
proximate” local optimum. However, one can then execute all delete moves that
improve the solution cost, and thereby obtain a delete-optimal solution.



making the same client assignments as in the optimal solution to I yields a solu-
tion S to the UFL instance constructed in step (1) of the algorithm with facility
cost FS ≤ F ∗ + 2αMR∗(α) and assignment cost CS ≤ C∗. Combined with the
analysis in [3, 2], this yields the following. (For simplicity, we assume that local
search terminates with a local optimum; standard arguments show that dropping
this assumption increases the approximation by at most a (1 + ǫ) factor.)

Lemma 3. For a given parameter γ > 0, executing the local-search algorithm
in [3, 2] on the above UFL instance returns a solution with facility cost Fb and
assignment cost Cb satisfying Fb ≤ F ∗ + 2αMR∗(α) + 2C∗/γ, Cb ≤ γ

(
F ∗ +

2αMR∗(α)
)
+ C∗, where each open facility serves at least αM clients.

Lemma 4 ([17]). (i) The cost C∗
I2

of an optimal solution to I2 is at most
2(Cb + C∗). (ii) Any solution to I2 of cost C yields a solution to I of cost at
most Fb + Cb + C.

Theorem 5. For any α > 0.5, there is a g(α)-approximation algorithm for

I2(α), where g(α) = 2
α + 2α

2α−1 + 2
√

2
α2 + 4

2α−1 .

Remark 6. Our g(α)-approximation ratio for I2(α) improves upon the approxi-
mation obtained in [17] by a factor of roughly 2 for all α. Thus, plugging in our
algorithm for solving I2 in the LBFL-algorithm in [17] (and choosing a suitable
α), already yields an improved approximation factor of 218 for LBFL.

Proof of Theorem 1. Recall that h(α) = 1 + 4
α + 4α

2α−1 + 4
√

6
2α−1 . Note that

2g(α) + 1 ≤ h(α) for all α ∈ [0, 1]; we use this upper bound throughout below.
Combining Theorem 5 and the bounds in Lemmas 3 and 4, we obtain a solution
to I of cost at most Fb+

(
2g(α)+1

)
Cb+2g(α)C∗ ≤ Fb+h(α)Cb+

(
h(α)−1

)
C∗

≤ F ∗(1 + γh(α)
)
+ C∗

(
2h(α)− 1 + 2

γ

)
+ 2γαMR∗(α)h(α) + 2αMR∗(α).

Part (i) follows by plugging in the values of α and γ, and using the bound
R∗(α) ≤ C∗

M(1−α) . Let β = 0.67. For part (ii), we set γ = K√
h(α)

, where K =

(
ln2(1/β) · Eα [h(α)] /

(∫
1
β
h(x)dx

1−β

)) 1
4

. Hence, the cost incurred is at most

F ∗(1+K
√
h(α)

)
+C∗

(
2h(α)−1+ 2

K

√
h(α)

)
+2KαMR∗(α)

√
h(α)+2αMR∗(α).

We now bound the expected cost incurred when one chooses α randomly accord-
ing to the stated density function. This will also yield an explicit expression for
K (as a function of β), thus showing that K (and hence, γ) can be computed

efficiently. We note that E
[√

X
]
≤

√
E [X ] and utilize Chebyshev’s Integral

inequality (see [7]): if f and g are non-increasing and non-decreasing functions

respectively from [a, b] to R+, then
∫ b

a f(x)g(x)dx ≤ (
∫

b

a
f(x)dx)(

∫
b

a
g(x)dx)

b−a . Ob-
serve that h(α) decreases with α. Recall that β = 0.67. We have the following.



Eα [h(α)] = c2(β) :=
4

β ln(1/β) − 4
ln(1/β) +

8
√
6(π/4−tan−1(

√
2β−1))

ln(1/β) + 2 ln(1/(2β−1))
ln(1/β) + 1

Eα [αMR∗(α)] = M
(∫ 1

β

R∗(x)dx
)
/ ln(1/β) ≤ C∗/ ln(1/β).

Eα

[
αMR∗(α)

√
h(α)

]
≤

[
M

(∫ 1

β

R∗(x)dx
) ∫

1
β
dx
√

h(x)

1−β

]
/ ln(1/β) ≤ C∗√c3(β)

ln(1/β)
, where

c3(β) :=

∫ 1

β h(x)dx

1− β
=

[
4 ln

( 1

β

)
+ 4

√
6
(
1−

√
2β − 1

)
+ 3(1− β) + ln

( 1

2β − 1

)]
/(1− β).

The second inequality follows since
(∫ 1

β
dx

√
h(x)

)
/(1−β) = Eα∼uniform in [β, 1]

[√
h(α)

]
.

These bounds yield K =
(
ln2(1/β)c2(β)/c3(β)

)0.25
, and the total cost is at most

F ∗
(
1+

( ln2(1/β)(c2(β))
3

c3(β)

) 1
4

)
+C∗

(
2c2(β)−1+4

( c2(β)c3(β)
ln2(1/β)

) 1
4+ 2

ln(1/β)

)
< 82.59(F ∗+C∗). ⊓⊔

4 Solving instance I2(α)

We now describe our algorithm for solving instance I2(α) and analyze its per-
formance guarantee, thereby proving Theorem 5. As mentioned earlier, one of
the key differences between our algorithm and the one in [17] is that instead of
reducing I2 to capacitated facility location (CFL), we solve I2 by reducing it to
a new problem that we call capacity-discounted UFL (CDUFL). CDUFL is a special
case of CFL where all facilities with non-zero opening cost are uncapacitated
(i.e., have infinite capacity). Perhaps surprisingly, despite this special structure,
CDUFL inherits the intractability of CFL with respect to LP-based approxima-
tion guarantees: the natural LP-relaxation for CDUFL has bad integrality gap,
and there is no known LP-relaxation with constant integrality gap. However,
we show in Section 4.2 that a simple local-search algorithm for CDUFL yields a
better approximation ratio than the current-best approximation for CFL.

Recall that I2 has only the points in F ′ ⊆ F , and there are ni ≥ αM co-
located clients at each i ∈ F ′. Let l(i) = mini′∈F ′,i′ 6=i cii′ . To avoid confusion,
we refer to the facilities and clients in the CDUFL instance as supply points and
demand points respectively. The CDUFL instance created to solve I2 resembles
the CFL instance created in [17]; the difference is that supply points with non-zero
opening costs are now uncapacitated. At each i ∈ F ′, we create an uncapacitated
supply point with opening cost δmin{ni,M}l(i), where δ will be fixed later. If
ni > M we create a second supply point at i with capacity ni − M and zero
opening cost. If ni < M , we create a demand point at i with demand M − ni.
Let I ′ denote this CDUFL instance (see Fig. 1). Let Fu, Fc denote respectively
the set of uncapacitated and capacitated supply points of I ′. Roughly speaking,
satisfying a demand point i by non-co-located supply points translates to leaving
facility i open in the I2 solution; hence, its demand is set to M − ni, which is
the number of additional clients it needs. Conversely, opening the uncapacitated
supply point at i and supplying demand points from i translates to closing i in
the I2 solution and transferring its co-located clients to other open facilities.
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Fig. 1. (a) An I2 instance. Each box denotes a facility and the number inside it is the
number of co-located clients; i 99K i′ indicates that i′ is the closest facility to i.
(b) The corresponding I′ instance. The boxes and circles represent supply points and
demand points respectively, and points inside a dotted oval are co-located. A solid box
denotes an uncapacitated supply point, and a dashed box denotes a capacitated facility
whose capacity is shown inside the box. The number inside a circle is the demand of
that demand point. The arrows indicate a solution S to I′, where i and i′ are the two
open uncapacitated supply points.

Lemma 7 ([17]). There exists a solution to I ′ with facility cost F ≤ δC∗
I2

and
assignment cost C ≤ C∗

I2
.

Theorem 8. (i) Given any CDUFL instance, one can efficiently compute a so-

lution with facility-opening cost F̂ ≤ F sol + 2Csol and assignment cost Ĉ ≤
F sol + Csol, where F sol and Csol are the facility and assignment costs of an
arbitrary solution to the CDUFL instance.
(ii) Thus, Lemma 7 implies that one can compute a solution to I ′ with facility
cost FI′ and assignment cost CI′ satisfying FI′ ≤ (2+ δ)C∗

I2
, CI′ ≤ (1+ δ)C∗

I2
.

4.1 Mapping an I
′-solution to an I2-solution

An I ′-solution need not directly translate to an I2 solution because an open
supply point i may not supply (and hence, transfer) exactly ni units of demand
(e.g., i and i′ in Fig. 1(b)). Since we have uncapacitated supply points, we have
to consider both the cases where i supplies more than ni demand (which is not
encountered in [17]), and less than ni demand. Suppose that we are given a
solution S to I ′ with facility cost FS and assignment cost CS (see Fig. 1(b)).
Again, we abuse notation and use FS to also denote the set of supply points
that are opened in S. Let Ni initialized to ni keep track of the number of clients
at location i ∈ F ′. Our goal is to reassign clients (using S as a template) so that
at the end we have Ni = 0 or Ni ≥ M for each i ∈ F ′. We may assume that: (i)
Fc ⊆ FS ; (ii) if S opens an uncapacitated supply point located at some i ∈ F ′

with ni > M , then the demand assigned to the capacitated supply point at i
equals its capacity ni−M ; (iii) for each i ∈ F ′ with ni ≤ M , if the supply point
at i is open then it serves the entire demand of the co-located demand point; and



(iv) at most one uncapacitated supply point serves, maybe partially, the demand
of any demand point; we say that this uncapacitated supply point satisfies the
demand point. We reassign clients in three phases.

A1. Removing capacitated supply points. Consider any i ∈ F ′ with ni >
M . Let i1 and i2 denote respectively the capacitated and uncapacitated
supply points located at i. If i1 supplies x units to the demand point at
location i′, we transfer x clients from location i to i′. Now if i1 has y > 0
leftover units of capacity in S, then we “move” y clients to i2 (which is not
open in S). We update the Nis accordingly. This reassignment effectively
gets rid of all capacitated supply points. Thus, there is now exactly one
uncapacitated supply point and at most one demand point at each location
i ∈ F ′; we refer to these simply as supply point i and demand point i below.

Let Xi be the total demand from other locations assigned to supply point i.
Let FG = {i ∈ F ′ : Ni < Xi}, FR = {i ∈ F ′ : Ni ≥ Xi > 0}, and FB =
{i ∈ F ′ : Xi = 0} (FB is the set of supply points not opened in S). Note that
Ni ≥ min{ni,M} ≥ αM for all i ∈ F ′, andNi = min{ni,M} for all i ∈ FR∪FG.

A2. Taking care of FR and demand points satisfied by FR. For each
i ∈ FR, if i supplies x units to demand point i′, we move x clients from i to
i′, and update Ni, Ni′ . We now have Ni = min{ni,M} −Xi residual clients
at each i ∈ FR, which we must reduce to 0, or increase to at least M .
We follow the same procedure as in [17]. For each i ∈ FR, we include an edge
(i, i′) where i′ ∈ F ′ is the facility nearest to i (recall that cii′ = l(i)). We
use an arbitrary but fixed tie-breaking rule here, so each component of the
resulting digraph is a directed tree rooted at either (i) a node r ∈ F ′ \FR, or
(ii) a 2-cycle (r, r′), (r′, r), where r, r′ ∈ FR. We break up each component
Γ into a collection of smaller components. Essentially, we move the residual
clients of supply points in Γ bottom-up from the leaves up to the root, cut
off Γ at the first node u that accumulates at least M clients, and recurse on
the portion of Γ not containing u. More precisely, let Γu denote the subtree
of Γ rooted at node u ∈ Γ (if u belongs to a 2-cycle then we do not include
the other node of this 2-cycle in Γu). If

∑
i∈Γ Ni < M , or if Γ is of type (i)

and all children u of the root satisfy
∑

i∈Γu
Ni < M , we leave Γ unchanged.

Otherwise, let u be a deepest (i.e., furthest from root) node in Γ such that∑
i∈Γu

Ni ≥ M . We delete the arc leaving u. If this disconnects u from Γ \Γu,
then we recurse on Γ \ Γu. Otherwise u must belong to the root 2-cycle of
Γ . Let r′ be the other node of this 2-cycle. If

∑
i∈Γr′

Ni ≥ M , we delete r′’s

outgoing arc (thus splitting Γ into Γu and Γr′).
After applying the above procedure (to all components), if we are left with a
component of type (ii) with

∑
i∈ componentNi ≥ M , we convert it to type (i)

by arbitrarily deleting one of the arcs of the 2-cycle. Let T be a component
at the end of this process. If T rooted at a node r, we move the Ni residual
clients of each non-root node i ∈ T to r. Otherwise, T is of type (ii) with
root {r, r′}, and we have

∑
i∈T Ni < M . Let i′ ∈ FB be the location nearest

to {r, r′}; we move the Ni residual clients of each i ∈ T to i′. Update the
Nis to reflect the above reassignment. Observe that we now have Ni = 0 or



Ni ≥ M for each i ∈ FR, and each i ∈ FB has ni ≥ M , or is a demand
point satisfied by a supply point in FG.
For example, executing step (A1 and) A2 on the solution shown in Fig. 1(b)
results in i′ ∈ FR having one client left after moving its co-located clients
to the bottom two facilities; this residual client is then transferred to i3.

A3. Taking care of FG and demand points satisfied by FG. For i ∈ FG,
let D(i) be the set of demand points j ∈ F ′, j 6= i satisfied by i, and let
D′(i) = {j ∈ D(i) : Nj < M}. Note that D(i) ⊆ FB. Phase A2 may only
increase Nj for all j in FB∪FG, so Nj ≥ αM for all j ∈ FG∪

(⋃
i∈FG D(i)

)
.

Fix i ∈ FG. We reassign clients so that Nj = 0 or Nj ≥ M for all j ∈
{i} ∪ D′(i), without decreasing Nj for j ∈ D(i) \ D′(i). Doing this for all
supply points in FG will complete our task. Define Yj = M − Nj for j ∈
D′(i). (1) If

∑
j∈D′(i) Yj ≤ Ni, for each j ∈ D′(i), if i supplies x units

to j, we transfer x clients from i to j. If i is now left with less than M
residual clients, we move these residual clients to the location in D(i) nearest
to i. (2) If

∑
j∈D′(i) Yj > Ni, set i0 = i, and D′(i) = {i1, . . . , it}, where

ci1i ≤ . . . ≤ citi. Let ℓ = t −
⌊∑t

r=0 Nir

M

⌋
=

⌈∑t
r=1 Yir−Ni0

M

⌉
(so 1 ≤ ℓ < t

since Ni0 + Ni1 ≥ M), which is the unique index such that
∑t

r=ℓ+1 Yir ≤∑ℓ
r=0Nir <

∑t
r=ℓ+1 Yir +M . This enables us to transfer Yiq clients to each

iq, q = ℓ+1, . . . , t from the locations iℓ, . . . , i0—we do this by transferring all
clients of ir (where 1 ≤ r ≤ ℓ) before considering ir−1—and be left with at
most M residual clients in {i0, . . . , iℓ}. We argue that these residual clients
are all concentrated at i0 and i1, with i1 having at most (1 − α)M residual
clients. We transfer these residual clients to iℓ+1.
In the solution shown in Fig. 1(b), we have Yi1 = 3 = Yi2 , Yi1 = 1, Ni = 5,
so case 2 applies; we transfer 1 client to i3 and 9 clients to i2 from {i, i1}.

Theorem 9. The above algorithm returns an I2-solution of cost at most FS

δα +
CS

(
1
α + 2α

2α−1

)
. Thus, taking S to be the solution mentioned in part (ii) of The-

orem 8, and δ =
√

2/α
1/α+(2α)/(2α−1) , we obtain a solution to I2(α) satisfying the

approximation bound stated in Theorem 5.

Proof. Let S2 denote the solution computed for I2. For a supply point i opened
in S, let CS

i denote the cost incurred in supplying demand from i to the demand
points satisfied by i. At various steps, we transfer clients between locations ac-
cording to the assignment in the CDUFL solution S, and the cost incurred in
doing so can be charged to the CS

i s of the appropriate supply points. So the cost
of phase A1 is

∑
i∈Fc CS

i , and the cost of the first step of phase A2 is
∑

i∈FR CS
i .

As in [17], we can bound the remaining cost of phase A2, incurred in transferring
clients according to the tree edges, by FS/δα+

(∑
i∈FR CS

i

)
/(2α− 1).

Finally, consider phase A3 and some i ∈ FG. If
∑

j∈D′(i) Yj ≤ Ni, then

the cost incurred is at most CS
i + M · CS

i

Xi
≤ CS

i

(
1 + 1

α

)
(as Xi > Ni ≥ αM).

Now consider the case
∑

j∈D′(i) Yj > Ni. For any iq ∈ {iℓ+1, . . . , it} and any ir ∈
{i0, . . . , iℓ}, we have ciriq ≤ 2ciiq , so the cost of transferring Yiq ≤ M−niq clients



to each iq, q = ℓ+1, . . . , t is at most 2CS
i . Observe that (t−ℓ+1)M >

∑t
r=0 Nir ,

i.e., M +
∑t

q=ℓ+1 Yir >
∑ℓ

r=0 Nir , so after this reassignment, there are less than
M residual clients in i0, . . . , iℓ. By our order of transferring clients, all these
residual clients are at i0, i1 (otherwise we would have at least Ni0 + Ni1 ≥ M
residual clients) with at most M −Ni0 ≤ (1 − α)M of them located at i1. The
cost of reassigning these residual clients is at most (1 − α)Mcii1 + Mciiℓ+1

≤
(1 − α)M · CS

i∑
t
r=1 Yir

+ M · CS
i∑

t
r=ℓ+1 Yir

, since CS
i is the total cost of supplying

at least Yir demand to each ir, r = 1, . . . , t. The latter expression is at most

CS
i

(
1−α
α + 1

2α−1

)
, since

∑t
r=1 Yir > Ni0 ≥ αM ,

∑t
r=ℓ+1 Yir >

∑ℓ
r=0 Nir −M ≥

(2α− 1)M .) Thus, the cost of S2 is at most FS

δα +
∑

i∈Fc CS
i +

∑
i∈FR CS

i ·
(
1+

1
2α−1

)
+

∑
i∈FG CS

i · max
{
1 + 1

α , 2 +
1−α
α + 1

2α−1

}
≤ FS

δα + CS
(
1
α + 2α

2α−1

)
. So

if S is the solution given by part (ii) of Theorem 8, the cost of S2 is at most(
2
δα + 1

α + (1 + δ)( 1
α + 2α

2α−1 )
)
C∗

I2
, and plugging in the value of δ yields the

g(α) = 2
α + 2α

2α−1 + 2
√

2
α2 + 4

2α−1 approximation stated in Theorem 5. ⊓⊔

4.2 A local-search based approximation algorithm for CDUFL

We now describe our local-search algorithm for CDUFL, which leads to the proof
of Theorem 8. Let F̂ = F̂u ∪F̂c be the facility-set of the CDUFL instance, where
F̂u ∩ F̂c = ∅. Here, F̂u are the uncapacitated facilities with opening costs {f̂i},
and facilities in F̂c have (finite) capacities {ui} and zero opening costs. Let D̂ be
the set of clients and ĉij be the cost of assigning client j to facility i. The goal is
to open facilities and assign clients to open facilities (respecting the capacities)
so as to minimize the sum of the facility-opening and client-assignment costs.
We can find the best assignment of clients to open facilities by solving a network
flow problem, so we focus on determining the set of facilities to open.

The local-search algorithm consists of add(i′), delete(i), swap(i, i′) moves,
which respectively, add a facility i′ not currently open, delete a facility i that is
currently open, and swap facility i that is open with facility i′ that is not open.
We note that all previous (local-search) algorithms for CFL with non-uniform
capacities use moves that are more complicated than the moves above. The al-
gorithm repeatedly executes the best cost-improving move until no such move ex-
ists. We may assume without loss of generality that each client has unit demand.

Analysis. Let Ŝ denote a local-optimum returned by the algorithm, with facility-
opening cost F̂ and assignment cost Ĉ. Let sol be an arbitrary CDUFL solution,
with facility-cost F sol and assignment cost Csol. We also use F̂ and F sol to
denote the set of open facilities in Ŝ and sol respectively. We may assume that
F̂c ⊆ F̂ ∩ F sol. For a facility i, we use D̂Ŝ(i) and D̂sol(i) to denote respectively

the (possibly empty) set of clients served by i in Ŝ and sol. For a client j, let Ĉj

and Csol
j be the assignment cost of j in Ŝ and sol respectively.

We borrow ideas from the analysis of the corresponding local-search algo-
rithm for UFL in [2], but to handle capacities we need to reassign clients more
carefully to analyze the change in assignment cost due to a local-search move. In



particular, unlike the analysis in [2], where upon deletion of a facility s ∈ F̂ we
reassign only the clients currently assigned to s, in our case (as in the analysis
of local-search algorithms for CFL), we need to perform a more “global” reas-
signment (i.e., even clients not assigned to s may get reassigned) along certain
paths in a suitable graph. This also means that we need to construct a suitable
mapping between paths instead of the client-mapping considered in [2].

Consider a directed graph G with node-set D̂ ∪ F̂ , and arcs from i to all
clients in D̂Ŝ(i) and arcs from all clients in D̂sol(i) to i, for every facility i. Via
standard flow-decomposition, we can decompose G into a collection of (simple)
paths P , and cycles R, so that (i) each facility i appears as the starting point

of max{0, |D̂Ŝ(i)| − |D̂sol(i)|} paths, and the ending point of max{0, |D̂sol(i)| −
|D̂Ŝ(i)|} paths, and (ii) each client j appears on a unique path Pj or on a cycle.
Let P st(s) ⊆ P and Pend(o) ⊆ P denote respectively the collection of paths
starting at s and ending at o, and P(s, o) = P st(s) ∩ Pend(o). For a path P =

{i0, j0, i1, j1, . . . , ik, jk, ik+1 := o} ∈ P , define D̂(P ) = {j0, . . . , jk}, head(P ) =
j0, and tail (P ) = jk. A shift along P means that we reassign client jr to ir+1

for each r = 0, . . . , k (opening o if necessary). Note that this is feasible, since

if o ∈ F̂c, we know that |D̂Ŝ(o)| ≤ |D̂sol(o)| − 1 ≤ uo − 1. Let shift(P ) :=∑
j∈D̂(P )

(
Csol

j − Ĉj

)
be the increase in assignment cost due to this reassignment,

which is an upper bound on the actual increase in assignment cost if o is added
to F̂ . Let cost(P ) :=

∑
j∈D̂(P )

(
Csol

j + Ĉj

)
. We define a shift along a cycle R ∈

R similarly, letting shift(R) :=
∑

j∈D̂∩R

(
Csol

j − Ĉj

)
. By considering a shift

operation for every path and cycle in P ∪ R (i.e., suitable add moves) and
adding the resulting inequalities, we get the following result.

Lemma 10. Ĉ ≤ F sol + Csol.

To bound F̂ , we only need paths starting at facilities in F̂ \ F sol. Note that

facilities in (F̂ \F sol)∪ (F sol \ F̂ ) are uncapacitated. To avoid excessive notation,

for a facility o ∈ F sol \ F̂ , we now use Pend(o) to refer to the collection of paths

ending in o that start in F̂ \ F sol. (As before, P(s, o) is the set of paths that

start at s and end at o.) Let capts ⊆ F sol \ F̂ be the facilities captured by s.

For any o ∈ F sol \ F̂ , we can obtain a 1-1 mapping π : Pend(o) 7→ Pend(o) such
that if P ∈ P(s, o), π(P ) = P ′ ∈ P(s′, o) then (i) if o /∈ capts, we have s 6= s′;

(ii) if s = s′, then P = P ′; and (iii) π(P ′) = P . Say that o ∈ F sol \ F̂ is captured

by s if |P(s, o)| > |Pend(o)|
2 . Call a facility in F̂ \ F sol good if capts = ∅, and bad

otherwise. For a bad facility s, let os ∈ capts be the facility nearest to s.

Lemma 11. Let s be a facility in F̂ \ F sol.

If s is good, f̂s ≤
∑

P∈Pst(s)

shift(P ) +
∑

o/∈F̂ ,P∈P(s,o)

cost
(
π(P )

)
. (1)

If s is bad, f̂s ≤
∑

o∈capts

f̂o +
∑

P∈Pst(s)

shift(P ) +
∑

o/∈F̂ ,P∈P(s,o):
π(P ) 6=P

cost
(
π(P )

)
+

∑

o∈capts\{os}
P∈P(s,o):π(P )=P

cost(P ).

(2)



Proof Sketch of Theorem 8. We focus on part (i); part (ii) follows directly from

part (i) and Lemma 7. Lemma 10 bounds Ĉ. Consider adding (1) for all good

facilities and (2) for all bad facilities, and the vacuous equality f̂i = f̂i for all i ∈
F̂ ∩F sol. The LHS of the resulting inequality is precisely F̂ . The f̂is on the RHS
add up to give at most F sol. One can argue that each path P ∈ ⋃

s∈F̂\F sol P st(s)

contributes at most shift(P ) + cost(P ) = 2
∑

j∈D̂(P ) C
sol
j to the RHS. Thus the

RHS is at most F sol + 2Csol, and we obtain that F̂ ≤ F sol + 2Csol. ⊓⊔
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