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Abstract vealing the true input, they may declare any false input that

will increase their utilities. The goal is to design algorithms

We give a general technique to obtain approximation that work well with respect to thigue input although this
mechanisms that are truthful in expectation. We show thatinformation is not publicly known. Mechanism design ap-
for packing domains, ang-approximation algorithm that  proaches this goal by specifying along with the algorithm a
also bounds the integrality gap of the LP relaxation of the pricing scheme that can be used to incentivize the players to
problem bya can be used to construct arapproximation reveal their true inputs. Anechanisntonsists of an algo-
mechanism that is truthful in expectation. This immediately rithm along with a pricing scheme, whose output specifies
yields a variety of new and significantly improved results both an algorithmic outcome and prices to be charged to the
for various problem domains and furthermore, yields truth- players; the utility that a player derives is the difference be-
ful (in expectation) mechanisms with guarantees that matchtween his value for the algorithmic outcome and the price
the best known approximation guarantees when truthfulnessthat he is charged. A mechanism is said tottghful if
is not required. In particular, we obtain the first truthful a player always maximizes his utility by declaring his true
mechanisms with approximation guarantees for a variety input, regardless of what the other players declare. Algo-
of multi-parameter domains. We obtain truthful (in expec- rithmic mechanism design [20] deals with the study of ef-
tation) mechanisms achieving approximation guarantees officiently computable truthful mechanisms. The hope is that
O(+/m) for combinatorial auctions (CAs}! +¢) for multi- by obtaining a truthful mechanism, one can focus on the
unit CAs withB = Q(log m) copies of each item, and 2 for  algorithmic question and set aside the strategic issue, how-
multi-parameter knapsack problems (multi-unit auctions). ever unfortunately not all algorithms lead to truthful mech-

Our construction is based on considering an LP relax- anisms. This is best exemplified when the underlying algo-
ation of the problem and using the classic VCG [24, 9, 12] rithmic problem iSNP-hard. Over the past several years, ap-
mechanism to obtain a truthful mechanism in this fractional proximation algorithms have emerged as an effective algo-
domain. We argue that the (fractional) optimal solution rithmic tool to deal with such computational intractability.
scaled down byy, wherea is the integrality gap of the  However these algorithms have found only limited appli-
problem, can be represented as a convex combination of in-cability in the design of truthful mechanisms, especially in
teger solutions, and by viewing this convex combination as“multi-parameter domains”, since many approximation al-
specifying a probability distribution over integer solutions, gorithms and techniques do not guarantee certain properties
we get a randomized, truthful in expectation mechanism. of the algorithm that are required to ensure truthfulness.
Our construction can be seen as a way of exploiting VCG
in a computational tractable way even when the underlying

social-welfare maximization problem&P-hard. Our results. In this paper we give a general technique
to convert approximation algorithms into truthful mecha-

nisms. One of the most widely used and remarkably suc-
cessful techniques in the design of approximation algo-
rithms, is that of expressing a relaxation of the problem as
a linear program (LP), and using this to design the approx-
Mechanism deSign studies algorithmic constructions un- imation a|g0rithm, either via LP rounding or via a prima|_
der the presence of “selfish players” who hold the inputs to dual approach. We show that for a variety of domains, any
the algorithm. The players are selfish in that they are in- agpproximation algorithm for the algorithmic problem, that
terested in maXimiZing their own Ut|||ty, and instead of re- also bounds the integra”ty gap of the under|ying LP relax-
A full version is available at the authors’ websites. ation, can be used to obtain a randomized mechanism for
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1. Introduction




pectation, andhas performance guarantee matching that of player wants a single sét, sow;(T) = ©;(S) forT 2 S
the approximation algorithm Truthfulness in expectation and 0 otherwise. On the positive side variaﬂ)émﬁl)-

means that a player always maximizes épecteditility — approximation algorithms exist [23, 14, 6], and these algo-
by revealing his true input [1]. Our main result can be in- rithms also prove a corresponding integrality gap result. An
formally stated as follows. interesting case is wheli = Q(logm) for which the inte-

grality gap becomesl + ¢) wheree > 0 (more precisely
B > c(e) - logm wherec(.) is an increasing function of
1: we denote this simply aB = 2(log m) in the sequel).
Howevertruthfulnesgesults are mostly known in restricted
cases, and are worse. The only result for general valuations
is a truthfulO(B - me )-approximation mechanism due
A key feature of this result is its generality. As men- to Bartal et al. [4] wher3 > 3. More results are known for
tioned earlier, there are a number of problem domains for special cases: for single-minded players, a truté¥fQ)/m)-
which good approximation algorithms are known for the approximation is known whe3 = 1 [18], and Briest
algorithmic problem, but in the mechanism design setting et al. [6] recently gave a truthfuD(m 5 )-approximation
there are no known truthfandapproximation mechanisms for B > 1 (this does not give &l + ¢)-guarantee when
for the corresponding problem. A common problem en- B = Q(logm)). Archer et al. [2] gave a randomizétH-e¢)-
countered is the fact that many commonly used approxima-approximation mechanism for the “known” single-minded
tion algorithms and techniques violate certain monotonic- case whenB = (logm). Babioff et al. [3] consider
ity properties which are required for truthfulness. In cases the “single-value” case and (among other results) give an
where truthful and approximation mechanisms are known, O(log? Tmay - /m)-guarantee; Dobzinski et al. [11] obtain
the construction often involves clever ways of modifying an O(/m)-approximation for subadditive valuations. In
or designing the approximation algorithm so as to satisfy particular, the picture is very partial for non-single-minded
these properties. As a consequence, in various settings, thelayers: no truthful approximation mechanism is known for
approximation guarantees provided by truthful mechanismsgeneral combinatorial auction® (= 1), and the factors for
fall short of the known guarantees for the algorithmic prob- large B are much worse than the approximation results.
lem when one does not require truthfulness. Using our construction, and any of the known ap-
Our theorem not only yields new and improved results proximation algorithms, we obtain randomized, truthful
for large problem classes such as, (multi-unit) combinato- in expectation mechanisms for all values Bf where
rial auctions, graph routing problems, multi-unit auctions, the guarantees match the approximability threshoMe
but in doing so, it bridges the gap between known ap- summarize our results below for “short” valuations, where
proximation results and the guarantees obtained by truthfulthe valuations are succinctly describable and the underlying
mechanisms. Moreover, it shows that one does not need tgpacking LP can be solved efficiently. An important such
specifically tailor the algorithm to ensure truthfulness, and class isk-minded players: a player desires onekoets
allows one to focus on the algorithmic part of the problem. and specifies the value of each; both the sets and the values
We now consider the implications of our theorem, are private. Section 4.1 gives other examples. We use
by concentrating on thenulti-unit combinatorial auction  “truthful” below to denote “truthful in expectation”.
(MUCA) problem, which has been widely studied [18, 2, 4, ] ] ] ) ]
16, 6, 11]. In an MUCA/n items are to be allocated among COmbinatorial auctions (B = 1) We give thefirst
n players and each playehas a true valug; (S) for every truthful mechanisnfor non-single-minded valuations, and
subsetS of items. The value functions are assumed to be 96ta0(v/m) guarantee.
non-decreasing, that is,(S) < 7;(T) whenS C T, and
normalized, that isp;(#)) = 0. There areB > 1 copies
of each item. An allocation is valid if every item is allo-
cated to at mosB players. The goal is to find an allocation

Informal Main Theorem For packing domains, given any
a-approximation algorithm that proves an integrality gap
of at mostx for the “natural” LP relaxation, one can con-
struct a randomizedv-approximation mechanism that is
truthful in expectation.

Multi-unit combinatorial auctions We get alﬁ(m%ﬂ)-
approximation, truthful mechanism. This improves upon
the ratio of [4]. WhenB = Q(logm) we get a(l + ¢)-
guarantee for valuations more general than the “known”

S1,...,.S, of the items to the players that maximizes the . - : A
o . single-minded case, answering an open question in [2].
sum}, 7,;(5;), called thesocial welfare WhenB = 1, the g g penq (2]
problem is called theombinatorial auctio(CA) problem.  Multi unit auctions Here them items are identical,
The problem is computationally hard even whigr= 1, and the valuation specifies a value for each quantity of

and the valuations are “short”, i.e., succinctly described. goods received. This generalizEsapsack, which is the
The approximability threshold of this problem is known case when all players have a step function (i.e., are single
to be O(ms%l) [4]; it is hard to approximate any bet- minded), for which a truthful FPTAS was recently given
ter even when the players are single minded, that is, eactby Briest et al. [6]. We give a truthfut-approximation



mechanism for multi-unit auctions, which is tfiest truth- {x'},e7 is the set of all integer solutiong; > 0, \; = 1
ful, approximation mechanisfar the multi-parameter case. (with only polynomially many positive\;). We show this
. . _ by strengthening the decomposition technique of Carr and
Graph routing problems The_:se include (see Section 4.2), Vempala [7]. Now one can view this convex combination
Lor examplea t?g edge—d|hSJom(; patr;]s p;robleg], \_/vhere Weﬁs specifying a probability distribution over the integer so-
ave an underlying graph and each piayer desires a pat lutions, where exactly one solutiar is selected with prob-
between his source and target nodes. This is a special Casgbility equal to,. A simple but powerful observation, is

of MUCA and the previous guarantees hold. that the randomized mechanism which returns an integer so-

With arbitrary valuations, the input itself may have ex- lution according to this distribution, and sets prices in such
ponential length (inn) which therefore renders direct reve- @ way that the expected prices are the VCG prices scaled
lation mechanisms infeasible. The problem remains “hard” down bya, is truthful in expectation Furthermore, the ex-
even when one ignores computational issues: Nisan [19]Pected social welfare of the solution returned is exactly the
shows that no algorithm with polynomial communication Vvalue of the LP-optimum scaled hy; thus we get anx-

(in m,n) can attain an approximation ratio ofs—¢ for approximation guarantee. The crucial step here is the de-
anye > 0 even whenB = 1. Blumrosen and Nisan [5] ~composition procedure which allows us to move from the
introduce the notion of @lemand oracle and show that truthful VCG fractional mechanism to a randomized, truth-
this can be used to solve the associated LP using polynoful in expectation mechanism.

mial queries. With such an oracle, our construction still A notable feature is the generality and simplicity of the
works and yieldsiterative randomized, strategic mecha- construction. In essence, we give a way to leverage VCG
nisms. However, the iterative structure of the mechanismin a computationally effective manner using approximation
changes the solution concept to an ex-post Nash equilib-algorithms, while maintaining truthfulness. Thus we reap
rium, a well-documented phenomenon in the economics lit- the benefits of both: we get the versatility of the VCG as
erature (see e.g., [10]). So we now get truthfulness in expec.a mechanism design tool for devising truthful mechanisms,
tation as an ex-post Nash equilibrium which roughly means and the computational tractability of approximation algo-
the following: regardless of the other players’ valuations, fithms. As mentioned earlier, many previous results specif-
if they all answer truthfu"y, then my best response is to an- |CaIIy tailor the algorithm to obtain truthfulness. For exam-
swer truthfully. We get the same guarantees as before, usingle, Archer et al. [2] consider an LP-relaxation of MUCA

ex-post Nash equilibrium as the solution concept. with Q(logm) copies and designed a randomized round-
ing procedure to obtain@ + ¢)-approximation mechanism

that is truthful in expectation and also with high probabil-
ity. Briest et al. [6] showed how to convert certain FPTAS'’s
into truthful ones, and also gave primal-dual algorithms for
some CAs; both results involve tailoring the algorithm so as
to ensure truthfulness, but yield deterministic mechanisms.
Our construction shows that if one allows randomization,
then such “algorithmic artistry” is not required to ensure
truthfulness, and allows the algorithm design to concentrate
on the approximation component of the problem.

Our construction. At a high level, our construction is
quite intuitive and easy to describe. Our starting point is
the classic VCG result [24, 9, 12], which provides a truth-
ful mechanism for the underlying algorithmic problem of
maximizing the social welfare, provided that the algorith-
mic problem can be solveeactly However, in our case
and in many others, this problemN&P-hard, and approxi-
mation algorithms need not give truthfulness. Our first step
towards handling this problem is to move to a fractional
domain, and to considerfeactional mechanisnthat is al-
lowed to return a fractional feasible solution to the LP re- 2. Preliminaries

laxation of the problem. In this new domain, since one can

solve the LP in polynomial time, we can use VCG to obtain In the basic mechanism design setup, we haygay-

a truthful fractional mechanism. Moreover, since we are in ers, and a setl of possible outcomes. Each player has a
a fractional domain, we can always scale down both the op-type given by a valuation function; : A — R, where
timal LP solution and the VCG prices hy and this clearly 4, € V; andVj is the set of all valid types of p_laye'r Let

does not affect truthfulness. . V.=V x---xV, denote the space of all players’ valid
Let 2* be an optimal LP solution. Suppose that the in- types. For example, inombinatorial auctionsve havem
tegrality gap of the LP relaxation is > 1 and we have an  items; A is the set of all allocation§S;, . .., S,,) of items

algorithm that “verifies” this gap. At the heart of our con- to players withS; N S; = 0 (assuming a single copy of
struction is a procedure that takes suchvaapproximation each item), and; : A — R is a function that (a) assigns
algorithm and returns in polynomial timecanvex decom-  the same value to any two outcomes that allocate the same
position of % into polynomially many integer solutions, subset to player, so one can view; as specifying a value
thatis, it returnsy; values such tha‘g =Yz Azl where for each setS of items, (b) satisfies; () = 0, and (c) is



monotone, i.e.y;(S) < v;(T) wheneverS C T. We usev
to denote the tuplévy, ..., v,), andv_; to denote the tu-
ple (v1,...,vi—1,Vit1,-..,v,) that excludeg’s valuation.
Similarly V_; = H#i V.

A (direct revelation) mechanism consists of an alloca-
tion rule (that is, an algorithmf : V' +— A, and a pric-
ing schemep, : V — R for each player. Each player
1 reports a typey; (possibly deviating from his true type),
and the mechanism computes the outcgifie and charges
pricep;(v) to playeri. Throughout we usg; to denote the
true typeof playeri. Theutility that the playei derives by
declaring typev; is v, (f (vi,v—;)) — pi(v;, v—;) , and each
player aims to maximize his own utility. A desirable prop-
erty for a mechanism to satisfytisithfulnesswhereineach
player maximizes his utility by reporting his true type

Definition 2.1 (Truthfulness) A deterministic mechanism
(f,p) is truthful if for any playeri, anyv_; € V_;, and
any v;,v, € V; we havev,(f(v;,v_;)) — pi(Ts,v_;) >

@i(f(vgﬂ U*i)) - pi(vz{v 1),@').

A mechanism could beandomizedthat is, it could flip
coins to determing (v) andp;(v), in which casef(v) and
p;(v) are random variables, and a player’s utility is also a

2. Pricing scheme: For each playeand valuation vector
v, setpP (v) = E [pf(v)].

We call M P the deterministicupport mechanism af/ ¥,
Observe that the criterion for truthfulness/af” is exactly
the criterion for the truthfulness in expectation/df?.

Claim 2.3 A randomized mechanisi % is truthful in ex-
pectation iff its support mechanisid ? is truthful.

The above claim gives a characterization of randomized
mechanisms that are truthful in expectation which we use
to argue the truthfulness in expectation of the randomized
mechanisms we construct.

Converting a support mechanism to a randomized
mechanism. Our algorithms will actually construct a de-
terministic support mechanism. We show how to con-
struct, from a (deterministic) support mechanigf”, a
corresponding randomized mechanisii® (whose sup-
port mechanism is\/”) that preserves various properties
of MP. Let MP have outcome sef\,, so M will
have outcome sefl. The allocation rule is easy to spec-
ify: ff(v) € Ais a random variable with distribution
fP(v),i.e.,weoutputf#(v) = a with probability A, where

random variable. For randomized mechanisms, we can con-r () = {\,},c4. SOE [0:(f5(v))] = w:(f2 (v)) for any

sider the notion ofruthfulness in expectatiga].

Definition 2.2 (Truthfulness in expectation) A random-
ized mechanisn(f,p) is truthful in expectation if for
any playeri, anyv_; € V_;, and anyw;,v, € V,,

E[0,(f(@i,v-)) — pi(@i,v-0)] > B[w(f(v],v-3)) —
pi(vf,v_s)].

Thus, if a mechanism is truthful in expectation then
the expected utility of a player is maximized when he de-
clares his true typ&; (regardless of what others declare).
A randomized algorithm is often viewed as specifying a
probability distribution over deterministic algorithms. It
will be useful to view a randomized mechanism in a sim-
ilar way. For an outcome set, define the unit simplex
Ap={AeRA Y A, =1and), > 0foralla}.
Given any randomized mechanishi’® = (f% p®) with
outcome setd, we can define a deterministic mechanism
M?P with outcome setA 4, which outputs the probability

playeri, any true typey; € V; and anyv € V. Since the
pricespf*(v) will be set so thaft [p?(v)] = pP(v) (be-
causeM P has to be the support mechanismMf?), the
expected utility of playet is also preserved in going from
MP to M. One obvious way to set the prices is to deter-
ministically setp’(v) = pP (v) for everywv, but the result-

ing randomized mechanism could violatelividual ratio-
nality. Individual rationality requires that for every player

1, ©’s utility be non-negative when he declares tiige type
regardless of the other players’ declarations. A random-
ized mechanism, satisfies individual rationality if for ev-
ery coin toss, the utility of every playéris non-negative
when he declares his true type. Settipfg(v) = pP(v)

may violate individual rationality even i#/? is individu-

ally rational, since there could be coin tosses where a player
receives nothing but pays a positive amount. Perhaps the
easiest way to maintain individual rationality is to set price

pl(v) = vi(a) - % if v;(fP(v)) > 0 and outcome

distribution of A%, and charges prices that are the expected results (i-e.f"(v) = a), and sepf*(v) = 0if v;(f" (v)) =

prices of M. To defineMP? precisely, we need to ex-
tend the domairV; to include values for outcomes i 4.
We do this in the obvious way: for any, € V;, define
vi({Xataca) = D, Aavi(a). We abuse notation and use
v; to denote both a valuation ii; and its corresponding
extension. Now we can defifg P as follows:

1. Allocation rule: Define the functioii” by f(v) =
{Aa}aca Where), = Pr[fE(v) = al,

0 (= pf(v)). Observe thap/ (v;,v—;) < T;(f*(T;,v-s))
for any coin toss sincg? (v;,v_;) < v;(fP(w;,v_;)), and
clearlyE [pf(v)] = pP(v).

We will be interested in approximating the (optimum)
social welfarewith respect to the players’ true types, which
is defined asnax,c4 ), v;(a). The above construction of
M?* from MP preserves truthfulness (in expectation) by
Claim 2.3, individual rationality, and the expected value re-
ceived by a player. Thus we get the following theorem.



Theorem 2.4 Given an individually rational, truthful, We first give an overview of the construction. A classic
deterministic support mechanism that computes e&an result in mechanism design is the VCG family of mecha-
approximation to the social welfare and has only polyno- nisms [24, 9, 12], which shows that if the underlying al-
mially many),s that are positive, one can obtain in poly- gorithmic problem of maximizing the social welfare, given
nomial time an individually rational randomized mecha- the players’ reported types, called the winner determination
nism that is truthful in expectation, and computes @an problem (WDP) for CAs, can be solvexkactly then one
approximation to the social welfare in expectation. can construct a truthful mechanism that optimizes the so-
cial welfare (with respect to the true types). However this
algorithmic problem is oftetNP-hard, and it is known that
an approximation algorithm for this problem need not nec-
essarily give a truthful mechanism.
. . We move to a fractional domain and considéaational
3. A general technique for constructing truth- mechanisnthat is allowed to return a fractional feasible so-
ful, approximation mechanisms lution to (CA-P). With this outcome set, one can solve WDP
exactly in polynomial time since one can solve (CA-P) (see
In this section we describe a general technique to ob-Section 4.1), and therefore use VCG to obtain a truthful
tain randomized mechanisms that are truthful in expecta-fractional mechanism/* which returns allocation*, the
tion, and achieve approximation guarantees for the socialoptimal solution to (CA-P), and pricgs”. Since we are
welfare that, in several cases, match the guarantees that ar@ a fractional domain, we can scale down both the alloca-
achieved without worrying about truthfulness. To make our tion and prices by some > 1 without affecting truthful-
results concrete, we describe our technique for the specificness. We give a procedure which takesaapproximation
setting of combinatorial auctions (CAs), although our re- algorithm that proves an integrality gap affor (CA-P),
sults also hold for other packing problems when the poly- and returns in polynomial time a convex decomposition of
tope is public knowledge and the objective function is lin- % into polynomially many integer solutions, i.e;, values
ear. In Section 4, we consider a variety of applications and sych that% =Y er Niz!, where{z'},c7 is the set of all
use our methods to obtain truthful (in expectation) mecha- integer solutions to (CA-P)\; > 0, ST A = 1 (with only

Given the above theorem, we now focus on the design of
a deterministic support mechanism that outputs a probabil-
ity distribution and prices, with the desired properties.

nisms that approximate the social welfare. polynomially many); > 0). This is obtained by strengthen-
We can formulate the combinatorial auction problem as ing the decomposition technique of Carr and Vempala [7].
an integer program (IP) where we have a variablg € This is the crucial step, using which we convert the truthful
{0,1} for each player and setS # 0 that indicates ifi  fractional mechanism/* to atruthful deterministic sup-
receives se$. Relaxing the integrality constraintstg s > port mechanism/” that outputs{\; },c7 as the allocation
0 gives the following LP relaxation. andZ- as the prices, while losing a factor ofin the social
max Z vi(8)zis (CA-P) welfare (and maintaining individual r_ationality). i\iow we
i520 use Theorem 2.4 to obtain a randomized,_trutnful in expec-
tation mechanism that achieves arapproximation to the
subject to Y s <1 foreach playei (1)  social welfare. We summarize the construction below.
S£D
Z Z Tis <1 foreach itemyj (2) The truthful a-approximation support mechanism.
i S:jeS Given valuations, . . ., v,,; ana-approximation algorithm

;s 20 foreachi,sS. A for WDP that shows an integrality gap affor (CA-P).

Here v; is i's reported valuation which satisfies(S) <
v;(T) wheneverS C T (and implicitly v;()) = 0). Con-
straints (1) state that each player is assigned at most one
set, and (2) ensures that each itgis given to at most one
player. Our approximation guarantee will depend onthe in- 2 Use A to obtain the convex decompositioﬁi -

tegrality gap of (CA-P), that is, the ratio between the values ez Mzt with only polynomially many positivey .
of the optimal fractional and integer solutions. Our main

1. Use VCG to get a truthful fractional mechanigi”
that outputs allocatiorf (v) = x*(v), the optimal
solution to (CA-P), and prices’ (v).

theorem is the following. 3. Return the support mechanish®? = (f?,pP) with
a
_ o . P ) = {\i}hier andp? (v) = pT(”) (and use Theo-
Theorem 3.1 Given ana-approximation algorithm, that rem 2.4 to get the desired randomized mechanism).
also proves an integrality gap of at most for (CA-P),
one can construct a randomized, individually rationat, Thus we show that any approximation algorithm for max-

approximation mechanism that is truthful in expectation.  imizing social welfare, that also shows an integrality gap



guarantee, can be plugged in to get a randomized truthfulmechanism (family) is truthful, i.e., satisfies the criterion
mechanism with the same approximation guarantee. Thusjn Definition 2.1. For anyn > 1, we can define am-
we are able to combine the versatility of VCG as a mecha- scaled fractional VCG mechanigimat outputs the outcome

nism design tool for devising truthful mechanisraadthe
computational tractability of approximation algorithms.

Details of the construction We now describe the con-
struction in detail. LetP denote the feasible region of
(CA-P), andZ(P) C P be the set of integer solutions of
(CA-P). The integrality gap doP is defined as

maXgzcp ZLS vi(S)wi,s

=01, 0n) MAXgez(P) Dy ¢ Vi(S)Ti s

IGp =

where they;s are valuations with; (()) = 0, v;(S) < v;(T)

for S C T. Our mechanisms require an approximation
algorithm that “verifies” an integrality gap of (at most)

by which we mean that foany valuation vectow the al-
gorithm produces an integer solution of value at least

@ and prices’@. For anyv € V andw; € V;, since

7, (L)) = ZU) (hecause, (z) is linear in), thea-
scaled fractional VCG mechanism is also clearly truthful.
Suppose that we can expre’é‘,’;@ as a convex combi-
nation}",.; Ai(v)z' of integral solutions wherg; (v) > 0,
> Ni(v) = 1. (Observe thatr must be at leasiGp since
such a decomposition (ﬁ% implies that there exists an
integer solution:’ of value at least - 3", v;(z*(v)).) One
then obtains a deterministic support mechanigf with
allocation rulefP (v) = {\(v)}iez and pricep? (v)
# Before detailing the decomposition procedure, we
show thath/ P is a truthful,a-approximation mechanism.

Lemma 3.2 MechanismM ? is truthful and computes an
a-approximation to the social welfare.

times the LP-optimum. We emphasize that the supremum is

taken ovemll valuationsv in evaluating the integrality gap,

Proof : Essentially, we show that/” is equivalent to

and an algorithm that verifies this gap must consequentlythe a-scaled fractional VCG mechanism and retains all its

work for all valuations. To clarify this further, whereas

properties. For any declared valuation= (vq,...,v,),

we may sometimes consider (designing mechanisms for) ahe value player gets inM? is exacﬂy@'(fTF(v)) since

structured class of valuatiorig, the integrality gap/G»
is determined only by the polytop®, and to exploit the

structure oflV we need to be able to encode this structure

into the polytopeP. In particular, an approximation algo-
rithm that specifically proves a guarantfee classV us-

ing the optimum of (CA-P) as an upper bound (e.g., the 2-

approximation algorithm for submodular valuations in [17])
does nosuffice to bound or verify the integrality gdio- ».

The fractional mechanism defined will have outcome

set P. We extend the domairV; to assign values to
fractional solutionst € P: for anyv; € V;, we define
vi(xz) = Y gvi(S)z; 5. We again abuse notation and use

v; to denote both the original valuation and its extension.

We now define precisely th&actional VCG mechanism
which is simply VCG in this fractional domain.

The fractional VCG mechanism M = (f¥,p!") is de-
fined as follows: the allocation rule is given By (v) =
x*(v) wherez*(v) is an optimal solution to/CA-P) for
valuation v (v1,...,v,); the prices arepl’(v) =
(=i vir(S)zh g + hi(v_y)), whereh;(v_;) is any
function that does not depend on

As usual with VCG mechanisms, one cankgt_;) =
> iz vir(S)yj 5 above, wherg* is the optimal fractional
solution when we constraip; ¢ = 0 for all S, so as to en-

i(fP(v) = Yez M(v)vi(2!) by definition, which is
equal toz; (3, Mi(v)at) = 7, (1) = T @) Since
the prices are also scaled by truthfulness follows from
the truthfulness of/ . Truthfulness also then implies the
approximation guarantee singe, v;(z* (7)) is an upper
bound on the optimum. Note that ” satisfies individual
rationality and no player is paid by the mechanism. =

Using Theorem 2.4 we can move froM” to a ran-
domized mechanism, while maintaining truthfulness, the
approximation ratio, and individual rationality. Thus we ob-
tain Theorem 3.1. The crucial property that we require here
is that for anys; € Vi, andanyw € V, >, .7 Mi(v)vs(2) =
nile (v)) - A sufficientcondition for this is thaw;(z) be
a linear function ofz and that@ be decomposable as

> ez Mi(v)z!, which is what we use in our construction.
3.1. Decomposing the fractional solution

We now prove the main decomposition lemma: we show
that ana-approximation algorithm4 that proves an inte-
grality gap ofa for (CA-P) can be used to express any frac-
tional solution to (CA-P), scaled down hy, as a convex
combination of integer solutions. The proof is based on the
method outlined in [7] where it is shown that for minimiza-

sure that that players have non-negative utility (individual tion problems, if the integrality gap i > 1, then for any
rationality), and players always have a non-negative pay-fractional solution, one can obtain a convex combination of
ment (they never receive money). We will assume theseinteger solutions such thdt times the fractional solution

prices from now on. It is a classic result that the VCG

dominategi.e., is component-wise greater than) the convex



combination. We need to modify their argument so as to Proof : Setxﬁys = &; ¢ if w; ¢ > 0 and O otherwise.
ensure that we get agxactdecomposition (for our maxi-  Clearly, Z(i $)eE ! Wi = z(i S)eE iz-,swfs- Since
mization problem), which is crucial for our truthfulness ar- .1 4 ig intégral, b)’, the packing br0periy c Z(P). -
gument to hold. For general maximization LPs, one cannot

necessarily get such an exact decomposition of the scaled

fractional solution, but only one that dominates the scaled Claim 3.4 For any weight vectow = {w; s} s)ce, ONe
solution. We leverage the packing structure of the prob- can compute in polynomial time! € Z(P) such that
lem to get an exact decomposition. Recall tRatlenotes > (; s)cr ! gwis > + - maxgep 2 (i,8)eE Ti,SWi,s-

the feasible region of (CA-P) arl(P) = {z'},cz is the

set of all integer solutions to (CA-P) whefeis an index Proof : Let O* = max,cp Z(i e TiSWi s Let wt
set for the integer s_olqtions. We exploit the property that if be as defined in Claim 3.3. Cleénhy“L is éom;)onent-wise
x € Z(P) andy < z is integral thery € Z(P). greater thany and 3", 7 suy = Ssres 75w

. Fix anyz < P such thate - {@ S.) $ais > 0} ha? for any z. If A only expects a non-negative valuation as
size polynomial inn, n. Any basic solution to (CA-P) satis- input, then we can simply rusl on w* to get an inte-

fies this since by standard poly_hedral theory such a solutionger solutions such thatz(i sen Giswis > %*. But
has at mosm+n non-zero e“F”eS- We solve the Imear_pro- in our caseA requires a valuation that satisfies monotonic-
gram (P) given below to obtain the convex decomposition. ity, so we cannot directly feed i+. However one can
min Z/\l (P) simply “monotonize”w™: for eachi define valuationo;
1 by 0:(S) = maxpcs.i,r)ep wip Where the maximum
is 0 if there is noT" C S such that(;,T) € E. We
use A on valuations to compute arp—approximate inte-

*
i

st Y Nalg=22 forall(i,5) e E (3)

! ZA - 4 ger solutionz, s0", ¢ & 505 > 9= sinced; s > w;'g

z L= for every (4,5). It is easy to transfornk to & so that

N >0 foralll € 7. Y igyer Biswis = Y, ¢ Tislis. We setd; s = Tis

if (¢,5) € Eorz;, ¢ = 0, otherwise set;; 7+ = 1 for

max é . Z T} swis + 2 (D) T' = argmaxrcg.(i,r)yep wi,r, andz; s = 0. Finally, we

(i,5)€E use Claim 3.3 to converi to a solutionz! € Z(P), which

st Z xéswi,s L.<1 forallleT ®) gives the desired integer solution. [ ]

(i,9)€E '

z>0

Lemma 3.5 One can obtain in polynomial time a decom-
w; s unconstrained for alli, S) € E. positionZ- = >, - \;z! where); > 0 for everyl (with

The primal (P) has an exponential number of variables, Soonly polynomially many positivk) and} ez A = 1.

we consider its dual (D). The dual has an exponential num-

ber of constraints and wariable w; s for each constraint  Proof :  We first show that the optimal value of (D), and
(3), and one can view as a valuation. We show that a sepa- Nnence of (P) by strong duality, is exactly 1. So an optimal
ration oracle for the dual can be obtained by using algorithm Solution to (P) yields the convex decomposition. Setting
A with valuationw, so the ellipsoid method can be used 2 = 1,wis = 0forall (i, 5) € E gives a feasible solution
to solve (D) and hence (P) (we also show that the optimal with value 1. We claim that any feasible soluti@n, z) has
value is 1). One potential problem encountered is that theVvalue at most 1. Suppose- 3 ; syep ThsWis + 2 > L.
w; s values could be negative, wheredss only designed ~ Using Claim 3.4 one can find an integer solutighsuch

to handle non-negative valuations. However it is easy tothat}"; ¢cp 7} swis > = - 3 g)cp T sWis > 1 — 2,
argue that one can instead udavith the non-negative val-  contradicting the feasibility ofw, z).

uationw™ given byw;fs = max(w; g, 0), and this yields a The above argument shows that we can add the inequal-
separation oracle. (Alternatively, one could first compyte ity é Do S)eE x} qw; s + z > 1to the dual program (D)
values such thaf’,.; \;z! > L, so the dual variables; s without aitering anything. We will run the ellipsoid method

are now non-negative, and then use the packing property toon (D) to identify a dual program with a polynomial-size set
modify these\; values and get an exact decomposition.)  of inequalities (5), that is equivalent to (D). These inequal-
ities will be the violated inequalities returned by the sepa-
Claim 3.3 Letw = {wis},5ecp be any weight vector.  ration oracle during the execution of the ellipsoid method,
Definew™® by w;y = max(w;s,0). Given any integer  that are used to cut the ellipsoid. Taking the dual of this
solution# € Z(P), one can obtain:! € Z(P) such that compact program gives a primal program with a polynomial
> (.8)eE ! qwi s = > (i.5)eE T swig. number of variables and constraints which we can solve



to get)\; values that sum to 1; this gives the desired de- v(T) = max;.s,cr w;, (b) an OR valuation where the
composition. The separation oracle that we use is as fol-player is willing to receiveany collection of disjoint sets
lows: at a poinf{w, z), if é . Z(i)s)eE Tigwis +2 > 1, from Sy, ... .S, and the values add up (see [22]). One could
then we can find an’ and a corresponding violated con- also consider combinations, giving rise to gen@&RXOR
straint using Claim 3.4; otherwise we use the half spaceValuations. In such cases, the LP (CA-P) can be described
L Y (.5 Thswis +2 > 1to cutthe current ellipsoida by a compact, polynomial-size program and solved in poly-

' ’ nomial time. We use “short” valuations to encode both, suc-

cinctness of descriptions, and the requirement that (CA-P)

4. Applications can be solved in time polynomial in the description size.

4.1. General and multi-unit combinatorial auctions Theorem 4.1 For MUCAs with “short” valuations andB
copies of each item, we obtain randomized, truthful in
In multi-unit combinatorial auctions (MUCAs) we have expectation mechanisms with the following approximation
m items with B copies of each item, andplayers, and each  factors: (i) a factor ofO(m B+1) foranyB > 1;and (ii) a
player desires at most one copy of an item. Whth= 1 we (1 + €)-guarantee for any > 0 whenB = Q(logm).
get the regular combinatorial auction. The LP relaxation for
MUCA is similar to (CA-P), but the RHS of constraints (2) We obtain thefirst truthful mechanismwith non-trivial
changes taB. The integrality gap of this relaxation is a @pproximation guarantees fait values of53, and with short
function of B: (i) the integrality gap isD(m 1) for any ~ Valuations, improve upon the determinisi¢ 3 - m - 73)-
B > 1; (ii) the integrality gap ig1+¢) whenB = Q(log m) approximation ratio of Bartal et al. [4] for general valua-
(more preciselyB > c(¢) - log m wherec(.) increases with  tions. In particular, wher3 = Q(logm) we get thefirst
1) for anye > 0. Moreover there are algorithms that “ver- truthful (in expectation)1 + ¢)-approximation mechanism
|fy” this gap, e.g., the derandomization of “standard” ran- for short multi-parameter valuations, answering an open
domized rounding [23], the rounding approach of [14], or duestion in [2] about devising mechanisms for valuations
the recent primal-dual algorithm of [6]. more general than the “known” single-minded case (i.e., the
We can use the above approximation a|g0rithms to con- sets are pUbllC) More work has been directed toward the
struct randomized, strategic, approximation mechanismssingle-minded case defined in [18] who gave a deterministic
for CAs and MUCAs, with arbitrary valuation functions. mechanism with an)(,/m) guarantee wheB = 1. Archer
There are two (linked) issues here: (1) the representation ofet al. [2] obtained &1 +¢)-approximation mechanism when
the input, and (2) the computational effort needed to solve B = €(logm), for the “known” single-minded case that
(CA-P). With general valuations, representation becomesiS truthful both in expectation and with high probability.
an issue since the length of the valuation can be exponentiaRecently, Briest et al. [6] gave a deterministi{m# )-
in m, which therefore also renders direct revelation mecha- @pproximation mechanism for the unknown single-minded
nisms intractable. Two ways to address this have been concase. We give a unified way to obtain randomized, truthful
sidered: (a) assuming that we have “short” valuations thatin expectation mechanisms and get approximation guaran-
can be succinctly described (with a suitable bidding lan- tees that match the known inapproximability results [4].
guage), thus allowing for direct revelation mechanisms; (b)
assuming that we have some oracle access to the valuationgeneral valuations. We now consider the setting with
so the mechanism now needs to be an iterative mechanismgeneral valuations with an oracle access to the valuations.
It is well known in the economics literature that the issue Two kinds of oracle access were considered by [21, 5]
of “one-shot” vs. iterative mechanisms also affects truthful- value querieswhere the query asks for the value of aSet
ness properties. To specify our results precisely and addresgnddemand queriesvhere the query specifies item prices
(1) and (2), we consider these two settings separately. Pi.-..,pm, and asks a playerto return a subse$ that
maximizesv;(S) — 3. sp;. Demand queries are very
Short valuations. We first consider the case when the val- natural from an economic perspective and are known to be
uations are succinctly describable. An important such val- strictly more powerful than value queries [21, 5]. Blum-
uation class is that of single-minded bidders where eachrosen and Nisan [5] show that LP (CA-P) can be solved
player wants just one set (or any superset) and specifiesvith a polynomial number of demand queries using the el-
that set along with its value. More generally players could lipsoid method, since they yield a separation oracle for the
specify k > 1 subset-value pair$S;,w1),. .. (Sk, wg), dual of (CA-P). This addresses issue (2).
where & is a polynomial, which yields two well-studied As mentioned previously, direct revelation mechanisms
classes of valuations: (a) Z©Rvaluation where the player become ineffective with general valuations. Using Theo-
desiresone of thesek subsets (the ¥-minded case”), so  rem 3.1 we can construct strategic, iterative mechanisms for



general valuations using demand queries. It is well known has a valuav,. Both (s;,t;) and the valuew; are private
in the economics literature (see e.g., [10]) that moving from information; a special case is the “known” case where the
direct-revelation to iterative mechanisms often leads to a(s;,t;) pairs are public and only; is private. The social-
weakening of the solution concept, from dominant strate- welfare maximization problem is to select a maximum-
gies toex-post Nash equilibrium Our mechanisms yield  weight routable set. In EDP a set is routable if eaght;)
truthfulness in expectation as an ex-post Nash equilibrium, pair in the set can be assignedgrt; path and at most,
which means the following: for any playérandany type paths use edge in ANF, for each(s;, t;) pair in the set we
profile v_; € V_; of the other players, if the other play- need to route one unit of flow frosy to ¢; respecting edge
ers act according to their types in this profile in the itera- capacities, possibly splitting the flow across several paths.
tive mechanism, thefis best response (for maximizing ex- We define the outcome set carefully to ensure that only the
pected utility) is to be truthful. In particular, this means value of an outcome, not the set itself, depends on private
that truthful revelation is a Nash equilibrium with rex- information. In EDP, an outcome is an allocation of edges
post regret that is, even if a player were told beforehand (as paths) to players such that an edgs used at most
the types that the other players would use to act in the itera-u. times; in ANF, an outcome is a flow-vector-allocation to
tive mechanism, he would have no incentive to deviate from each player, such that the total flow througis at mostu,.
his truth-telling strategy. As an example, consider the regu-  Both EDP and ANF have the same flow-path based LP
lar second-price auction with two players with the following  relaxation, and a solution to EDP is also clearly a solu-
iterative flavor: playetX bids firstand thenplayerY” states  tjon to ANF. Since EDP is a structured MUCA (with short
his bic_i; the plgyer with highest bid Win_s and pays the_sec- valuations), we get a randomized, truthf@l(mﬁ)-
ond highest bid value. Truthfulness fails to b_e a dominant approximation for both problems, whe# = min, u,.
strategy. SUpposE chooses the strategy K bids above  There are some issues that arise in the decomposition proce-
5, then | will say 20, otherwise | will say 2", then, X's dure here. To decompose the fractional flow paths into inte-
true value is higher than S, his best response is to declare Sqe( so|utions, the separation oracle (for (D)) needs to solve
However truthfulness is still an ex-post Nash equilibrium: 3 yifferentEDP (or ANF) problem: for each;-t; pair there
if Y fi)fesanyprivate value and bids _that, then regardless of 5 4 (small) set?; of paths having (different) non-negative
Y'’s private valueX's best response is to tell the truth. weights (a path not it?; has weight 0), and one has to se-
lect a maximum-weight set of routabde-t; paths picking
Theorem 4.2 For MUCAs with “general” valuations and  at most ones;-t; path for each. Alternatively, instead of
demand oracles, ang copies of each item, we obtain ran- decomposing the flow paths, one can obtain a decomposi-
domized mechanisms for which truthfulness in expectationtion such that for anys;, ¢;) pair, the totalamountof flow
is an ex-post Nash equilibrium, with the following guaran- routed by the convex combination is equal to the flow routed
tees: (i) anO(mﬁ)—guarantee foranyB > 1; and (ii)a by the fractional solution. The separation oracle now in-
(1 + €)-guarantee for any > 0 whenB = Q(logm). volves solving an instance of EDP (or ANF), so one can use
any approximation algorithm that also bounds the integral-
Very little is known about truthful and approximation ity gap. But this does not give truthfulness because a player
mechanisms with general valuations. FBr < 2 and  might have incentive to lie about his;, t;) pair. (Techni-
general valuations, no strategic mechanisms were knownca|ly, it may not be thal, ez N ()7 (2!) = T;(2* (v)) /ev.)
pl"eViOUSlyi Bartal et al. [4] gave a deterministic, truthful However in the'known” case, such a decompositidnes
O(B - m=-2)-approximation for general valuations using yield truthfulness, because now playsr(true) value is just
demand oracles, and Dobzinski et al. [11] gave a determin-a linear function of the amount of flow routed fraamto ¢;.
istic, truthful O(/m)-approximation forB = 1 and sub-  Chekuri et al. [8] showed an integrality gap@flog m) for
additive valuations using value oracles. We improve upon EDP on planar graphs whe® > 2, and for ANF an inte-
the performance guarantee of [4] for & and get the same  grality gap ofO(log? m) for general graphs an@(log m)
guarantee as [11] for general valuations but using demandfor planar graphs. (The guarantees are statedvfor= 1,
oracles, randomization, and a different solution concept.  but it is implicit that the algorithms generalize to arbitrary
w;, thus bounding the integrality gap.) We obtain the same
4.2. Graph routing problems guarantees for our mechanisms in the “known” case. Sim-
ilar results are known with demands whenmaxd; < B

We now consider two closely related problenesige- ~ @nd they transfer to the mechanisms.
disjoint-paths (EDP) and all-or-nothing multicommodity Previous truthful mechanisms for EDP were: for
flow (ANF). In both EDP and ANF we have a gragh= the “known” case, a deterministi©(,/m)-approximation
(V, E) with capacitiesu. > 1 on the edges. The players whend; = 1 using the greedy algorithm in [18], and
are(s;, t;) source-sink pairs where, ¢; € V. Each player a deterministicO(mﬁ)—approximation mechanism [6]
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