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Abstract

We give a general technique to obtain approximation
mechanisms that are truthful in expectation. We show that
for packing domains, anyα-approximation algorithm that
also bounds the integrality gap of the LP relaxation of the
problem byα can be used to construct anα-approximation
mechanism that is truthful in expectation. This immediately
yields a variety of new and significantly improved results
for various problem domains and furthermore, yields truth-
ful (in expectation) mechanisms with guarantees that match
the best known approximation guarantees when truthfulness
is not required. In particular, we obtain the first truthful
mechanisms with approximation guarantees for a variety
of multi-parameter domains. We obtain truthful (in expec-
tation) mechanisms achieving approximation guarantees of
O(
√

m) for combinatorial auctions (CAs),(1+ε) for multi-
unit CAs withB = Ω(log m) copies of each item, and 2 for
multi-parameter knapsack problems (multi-unit auctions).

Our construction is based on considering an LP relax-
ation of the problem and using the classic VCG [24, 9, 12]
mechanism to obtain a truthful mechanism in this fractional
domain. We argue that the (fractional) optimal solution
scaled down byα, whereα is the integrality gap of the
problem, can be represented as a convex combination of in-
teger solutions, and by viewing this convex combination as
specifying a probability distribution over integer solutions,
we get a randomized, truthful in expectation mechanism.
Our construction can be seen as a way of exploiting VCG
in a computational tractable way even when the underlying
social-welfare maximization problem isNP-hard.

1. Introduction

Mechanism design studies algorithmic constructions un-
der the presence of “selfish players” who hold the inputs to
the algorithm. The players are selfish in that they are in-
terested in maximizing their own utility, and instead of re-
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vealing the true input, they may declare any false input that
will increase their utilities. The goal is to design algorithms
that work well with respect to thetrue input, although this
information is not publicly known. Mechanism design ap-
proaches this goal by specifying along with the algorithm a
pricing scheme that can be used to incentivize the players to
reveal their true inputs. Amechanismconsists of an algo-
rithm along with a pricing scheme, whose output specifies
both an algorithmic outcome and prices to be charged to the
players; the utility that a player derives is the difference be-
tween his value for the algorithmic outcome and the price
that he is charged. A mechanism is said to betruthful if
a player always maximizes his utility by declaring his true
input, regardless of what the other players declare. Algo-
rithmic mechanism design [20] deals with the study of ef-
ficiently computable truthful mechanisms. The hope is that
by obtaining a truthful mechanism, one can focus on the
algorithmic question and set aside the strategic issue, how-
ever unfortunately not all algorithms lead to truthful mech-
anisms. This is best exemplified when the underlying algo-
rithmic problem isNP-hard. Over the past several years, ap-
proximation algorithms have emerged as an effective algo-
rithmic tool to deal with such computational intractability.
However these algorithms have found only limited appli-
cability in the design of truthful mechanisms, especially in
“multi-parameter domains”, since many approximation al-
gorithms and techniques do not guarantee certain properties
of the algorithm that are required to ensure truthfulness.

Our results. In this paper we give a general technique
to convert approximation algorithms into truthful mecha-
nisms. One of the most widely used and remarkably suc-
cessful techniques in the design of approximation algo-
rithms, is that of expressing a relaxation of the problem as
a linear program (LP), and using this to design the approx-
imation algorithm, either via LP rounding or via a primal-
dual approach. We show that for a variety of domains, any
approximation algorithm for the algorithmic problem, that
also bounds the integrality gap of the underlying LP relax-
ation, can be used to obtain a randomized mechanism for
the corresponding mechanism design problem (i.e., where
the inputs are held by selfish agents), that is truthful in ex-



pectation, andhas performance guarantee matching that of
the approximation algorithm. Truthfulness in expectation
means that a player always maximizes hisexpectedutility
by revealing his true input [1]. Our main result can be in-
formally stated as follows.

Informal Main Theorem For packing domains, given any
α-approximation algorithm that proves an integrality gap
of at mostα for the “natural” LP relaxation, one can con-
struct a randomizedα-approximation mechanism that is
truthful in expectation.

A key feature of this result is its generality. As men-
tioned earlier, there are a number of problem domains for
which good approximation algorithms are known for the
algorithmic problem, but in the mechanism design setting
there are no known truthfulandapproximation mechanisms
for the corresponding problem. A common problem en-
countered is the fact that many commonly used approxima-
tion algorithms and techniques violate certain monotonic-
ity properties which are required for truthfulness. In cases
where truthful and approximation mechanisms are known,
the construction often involves clever ways of modifying
or designing the approximation algorithm so as to satisfy
these properties. As a consequence, in various settings, the
approximation guarantees provided by truthful mechanisms
fall short of the known guarantees for the algorithmic prob-
lem when one does not require truthfulness.

Our theorem not only yields new and improved results
for large problem classes such as, (multi-unit) combinato-
rial auctions, graph routing problems, multi-unit auctions,
but in doing so, it bridges the gap between known ap-
proximation results and the guarantees obtained by truthful
mechanisms. Moreover, it shows that one does not need to
specifically tailor the algorithm to ensure truthfulness, and
allows one to focus on the algorithmic part of the problem.

We now consider the implications of our theorem,
by concentrating on themulti-unit combinatorial auction
(MUCA) problem, which has been widely studied [18, 2, 4,
16, 6, 11]. In an MUCA,m items are to be allocated among
n players and each playeri has a true valuevi(S) for every
subsetS of items. The value functions are assumed to be
non-decreasing, that is,vi(S) ≤ vi(T ) whenS ⊆ T , and
normalized, that is,vi(∅) = 0. There areB ≥ 1 copies
of each item. An allocation is valid if every item is allo-
cated to at mostB players. The goal is to find an allocation
S1, . . . , Sn of the items to the players that maximizes the
sum

∑
i vi(Si), called thesocial welfare. WhenB = 1, the

problem is called thecombinatorial auction(CA) problem.
The problem is computationally hard even whenB = 1,

and the valuations are “short”, i.e., succinctly described.
The approximability threshold of this problem is known
to be O(m

1
B+1 ) [4]; it is hard to approximate any bet-

ter even when the players are single minded, that is, each

player wants a single setS, sovi(T ) = vi(S) for T ⊇ S

and 0 otherwise. On the positive side variousO(m
1

B+1 )-
approximation algorithms exist [23, 14, 6], and these algo-
rithms also prove a corresponding integrality gap result. An
interesting case is whenB = Ω(log m) for which the inte-
grality gap becomes(1 + ε) whereε > 0 (more precisely
B ≥ c(ε) · log m wherec(.) is an increasing function of
1
ε ; we denote this simply asB = Ω(log m) in the sequel).
Howevertruthfulnessresults are mostly known in restricted
cases, and are worse. The only result for general valuations
is a truthfulO(B · m

1
B−2 )-approximation mechanism due

to Bartal et al. [4] whenB ≥ 3. More results are known for
special cases: for single-minded players, a truthfulO(

√
m)-

approximation is known whenB = 1 [18], and Briest
et al. [6] recently gave a truthfulO(m

1
B )-approximation

for B ≥ 1 (this does not give a(1 + ε)-guarantee when
B = Ω(log m)). Archer et al. [2] gave a randomized(1+ε)-
approximation mechanism for the “known” single-minded
case whenB = Ω(log m). Babioff et al. [3] consider
the “single-value” case and (among other results) give an
O(log2 vmax ·

√
m)-guarantee; Dobzinski et al. [11] obtain

an O(
√

m)-approximation for subadditive valuations. In
particular, the picture is very partial for non-single-minded
players: no truthful approximation mechanism is known for
general combinatorial auctions (B = 1), and the factors for
largeB are much worse than the approximation results.

Using our construction, and any of the known ap-
proximation algorithms, we obtain randomized, truthful
in expectation mechanisms for all values ofB, where
the guarantees match the approximability threshold. We
summarize our results below for “short” valuations, where
the valuations are succinctly describable and the underlying
packing LP can be solved efficiently. An important such
class isk-minded players: a player desires one ofk sets
and specifies the value of each; both the sets and the values
are private. Section 4.1 gives other examples. We use
“truthful” below to denote “truthful in expectation”.

Combinatorial auctions (B = 1) We give thefirst
truthful mechanismfor non-single-minded valuations, and
get aO(

√
m) guarantee.

Multi-unit combinatorial auctions We get anO(m
1

B+1 )-
approximation, truthful mechanism. This improves upon
the ratio of [4]. WhenB = Ω(log m) we get a(1 + ε)-
guarantee for valuations more general than the “known”
single-minded case, answering an open question in [2].

Multi unit auctions Here the m items are identical,
and the valuation specifies a value for each quantity of
goods received. This generalizesKnapsack, which is the
case when all players have a step function (i.e., are single
minded), for which a truthful FPTAS was recently given
by Briest et al. [6]. We give a truthful2-approximation



mechanism for multi-unit auctions, which is thefirst truth-
ful, approximation mechanismfor the multi-parameter case.

Graph routing problems These include (see Section 4.2),
for example, the edge-disjoint paths problem, where we
have an underlying graph and each player desires a path
between his source and target nodes. This is a special case
of MUCA and the previous guarantees hold.

With arbitrary valuations, the input itself may have ex-
ponential length (inm) which therefore renders direct reve-
lation mechanisms infeasible. The problem remains “hard”
even when one ignores computational issues: Nisan [19]
shows that no algorithm with polynomial communication
(in m,n) can attain an approximation ratio ofm

1
2−ε for

any ε > 0 even whenB = 1. Blumrosen and Nisan [5]
introduce the notion of ademand oracle, and show that
this can be used to solve the associated LP using polyno-
mial queries. With such an oracle, our construction still
works and yieldsiterative randomized, strategic mecha-
nisms. However, the iterative structure of the mechanism
changes the solution concept to an ex-post Nash equilib-
rium, a well-documented phenomenon in the economics lit-
erature (see e.g., [10]). So we now get truthfulness in expec-
tation as an ex-post Nash equilibrium which roughly means
the following: regardless of the other players’ valuations,
if they all answer truthfully, then my best response is to an-
swer truthfully. We get the same guarantees as before, using
ex-post Nash equilibrium as the solution concept.

Our construction. At a high level, our construction is
quite intuitive and easy to describe. Our starting point is
the classic VCG result [24, 9, 12], which provides a truth-
ful mechanism for the underlying algorithmic problem of
maximizing the social welfare, provided that the algorith-
mic problem can be solvedexactly. However, in our case
and in many others, this problem isNP-hard, and approxi-
mation algorithms need not give truthfulness. Our first step
towards handling this problem is to move to a fractional
domain, and to consider afractional mechanismthat is al-
lowed to return a fractional feasible solution to the LP re-
laxation of the problem. In this new domain, since one can
solve the LP in polynomial time, we can use VCG to obtain
a truthful fractional mechanism. Moreover, since we are in
a fractional domain, we can always scale down both the op-
timal LP solution and the VCG prices byα, and this clearly
does not affect truthfulness.

Let x∗ be an optimal LP solution. Suppose that the in-
tegrality gap of the LP relaxation isα ≥ 1 and we have an
algorithm that “verifies” this gap. At the heart of our con-
struction is a procedure that takes such anα-approximation
algorithm and returns in polynomial time aconvex decom-
position of x∗

α into polynomially many integer solutions,
that is, it returnsλl values such thatx

∗

α =
∑

l∈I λlx
l, where

{xl}l∈I is the set of all integer solutions,λl ≥ 0,
∑

λl = 1
(with only polynomially many positiveλl). We show this
by strengthening the decomposition technique of Carr and
Vempala [7]. Now one can view this convex combination
as specifying a probability distribution over the integer so-
lutions, where exactly one solutionxl is selected with prob-
ability equal toλl. A simple but powerful observation, is
that the randomized mechanism which returns an integer so-
lution according to this distribution, and sets prices in such
a way that the expected prices are the VCG prices scaled
down byα, is truthful in expectation. Furthermore, the ex-
pected social welfare of the solution returned is exactly the
value of the LP-optimum scaled byα; thus we get anα-
approximation guarantee. The crucial step here is the de-
composition procedure which allows us to move from the
truthful VCG fractional mechanism to a randomized, truth-
ful in expectation mechanism.

A notable feature is the generality and simplicity of the
construction. In essence, we give a way to leverage VCG
in a computationally effective manner using approximation
algorithms, while maintaining truthfulness. Thus we reap
the benefits of both: we get the versatility of the VCG as
a mechanism design tool for devising truthful mechanisms,
and the computational tractability of approximation algo-
rithms. As mentioned earlier, many previous results specif-
ically tailor the algorithm to obtain truthfulness. For exam-
ple, Archer et al. [2] consider an LP-relaxation of MUCA
with Ω(log m) copies and designed a randomized round-
ing procedure to obtain a(1+ε)-approximation mechanism
that is truthful in expectation and also with high probabil-
ity. Briest et al. [6] showed how to convert certain FPTAS’s
into truthful ones, and also gave primal-dual algorithms for
some CAs; both results involve tailoring the algorithm so as
to ensure truthfulness, but yield deterministic mechanisms.
Our construction shows that if one allows randomization,
then such “algorithmic artistry” is not required to ensure
truthfulness, and allows the algorithm design to concentrate
on the approximation component of the problem.

2. Preliminaries

In the basic mechanism design setup, we haven play-
ers, and a setA of possible outcomes. Each player has a
type given by a valuation functionvi : A 7→ R≥0, where
vi ∈ Vi andVi is the set of all valid types of playeri. Let
V = V1 × · · · × Vn denote the space of all players’ valid
types. For example, incombinatorial auctionswe havem
items;A is the set of all allocations(S1, . . . , Sn) of items
to players withSi ∩ Sj = ∅ (assuming a single copy of
each item), andvi : A 7→ R is a function that (a) assigns
the same value to any two outcomes that allocate the same
subset to playeri, so one can viewvi as specifying a value
for each setS of items, (b) satisfiesvi(∅) = 0, and (c) is



monotone, i.e.,vi(S) ≤ vi(T ) wheneverS ⊆ T . We usev
to denote the tuple(v1, . . . , vn), andv−i to denote the tu-
ple (v1, . . . , vi−1, vi+1, . . . , vn) that excludesi’s valuation.
Similarly V−i =

∏
j 6=i Vj .

A (direct revelation) mechanism consists of an alloca-
tion rule (that is, an algorithm)f : V 7→ A, and a pric-
ing schemepi : V 7→ R for each playeri. Each player
i reports a typevi (possibly deviating from his true type),
and the mechanism computes the outcomef(v) and charges
pricepi(v) to playeri. Throughout we usevi to denote the
true typeof playeri. Theutility that the playeri derives by
declaring typevi is vi(f(vi, v−i)) − pi(vi, v−i) , and each
player aims to maximize his own utility. A desirable prop-
erty for a mechanism to satisfy istruthfulness, whereineach
player maximizes his utility by reporting his true type.

Definition 2.1 (Truthfulness) A deterministic mechanism
(f, p) is truthful if for any playeri, any v−i ∈ V−i, and
any vi, v

′
i ∈ Vi we havevi(f(vi, v−i)) − pi(vi, v−i) ≥

vi(f(v′i, v−i))− pi(v′i, v−i).

A mechanism could berandomized, that is, it could flip
coins to determinef(v) andpi(v), in which casef(v) and
pi(v) are random variables, and a player’s utility is also a
random variable. For randomized mechanisms, we can con-
sider the notion oftruthfulness in expectation[1].

Definition 2.2 (Truthfulness in expectation) A random-
ized mechanism(f, p) is truthful in expectation if for
any player i, any v−i ∈ V−i, and any vi, v

′
i ∈ Vi,

E
[
vi(f(vi, v−i)) − pi(vi, v−i)

]
≥ E

[
vi(f(v′i, v−i)) −

pi(v′i, v−i)
]
.

Thus, if a mechanism is truthful in expectation then
the expected utility of a player is maximized when he de-
clares his true typevi (regardless of what others declare).
A randomized algorithm is often viewed as specifying a
probability distribution over deterministic algorithms. It
will be useful to view a randomized mechanism in a sim-
ilar way. For an outcome setA, define the unit simplex
∆A = {λ ∈ R|A| :

∑
a∈A λa = 1 andλa ≥ 0 for all a}.

Given any randomized mechanismMR = (fR, pR) with
outcome setA, we can define a deterministic mechanism
MD with outcome set∆A, which outputs the probability
distribution ofMR, and charges prices that are the expected
prices ofMR. To defineMD precisely, we need to ex-
tend the domainVi to include values for outcomes in∆A.
We do this in the obvious way: for anyvi ∈ Vi, define
vi({λa}a∈A) =

∑
a∈A λavi(a). We abuse notation and use

vi to denote both a valuation inVi and its corresponding
extension. Now we can defineMD as follows:

1. Allocation rule: Define the functionfD by fD(v) =
{λa}a∈A whereλa = Pr[fR(v) = a],

2. Pricing scheme: For each playeri, and valuation vector
v, setpD

i (v) = E
[
pR

i (v)
]
.

We callMD the deterministicsupport mechanism ofMR.
Observe that the criterion for truthfulness ofMD is exactly
the criterion for the truthfulness in expectation ofMR.

Claim 2.3 A randomized mechanismMR is truthful in ex-
pectation iff its support mechanismMD is truthful.

The above claim gives a characterization of randomized
mechanisms that are truthful in expectation which we use
to argue the truthfulness in expectation of the randomized
mechanisms we construct.

Converting a support mechanism to a randomized
mechanism. Our algorithms will actually construct a de-
terministic support mechanism. We show how to con-
struct, from a (deterministic) support mechanismMD, a
corresponding randomized mechanismMR (whose sup-
port mechanism isMD) that preserves various properties
of MD. Let MD have outcome set∆A, so MR will
have outcome setA. The allocation rule is easy to spec-
ify: fR(v) ∈ A is a random variable with distribution
fD(v), i.e., we outputfR(v) = a with probabilityλa where
fD(v) = {λa}a∈A. SoE

[
vi(fR(v))

]
= vi(fD(v)) for any

playeri, any true typevi ∈ Vi and anyv ∈ V . Since the
pricespR

i (v) will be set so thatE
[
pR

i (v)
]

= pD
i (v) (be-

causeMD has to be the support mechanism ofMR), the
expected utility of playeri is also preserved in going from
MD to MR. One obvious way to set the prices is to deter-
ministically setpR

i (v) = pD
i (v) for everyv, but the result-

ing randomized mechanism could violateindividual ratio-
nality. Individual rationality requires that for every player
i, i’s utility be non-negative when he declares histrue type,
regardless of the other players’ declarations. A random-
ized mechanism, satisfies individual rationality if for ev-
ery coin toss, the utility of every playeri is non-negative
when he declares his true type. SettingpR

i (v) = pD
i (v)

may violate individual rationality even ifMD is individu-
ally rational, since there could be coin tosses where a player
receives nothing but pays a positive amount. Perhaps the
easiest way to maintain individual rationality is to set price

pR
i (v) = vi(a) · pD

i (v)
vi(fD(v))

if vi(fD(v)) > 0 and outcomea

results (i.e.,fR(v) = a), and setpR
i (v) = 0 if vi(fD(v)) =

0 (= pD
i (v)). Observe thatpR

i (vi, v−i) ≤ vi(fR(vi, v−i))
for any coin toss sincepD

i (vi, v−i) ≤ vi(fD(vi, v−i)), and
clearlyE

[
pR

i (v)
]

= pD
i (v).

We will be interested in approximating the (optimum)
social welfarewith respect to the players’ true types, which
is defined asmaxa∈A

∑
i vi(a). The above construction of

MR from MD preserves truthfulness (in expectation) by
Claim 2.3, individual rationality, and the expected value re-
ceived by a player. Thus we get the following theorem.



Theorem 2.4 Given an individually rational, truthful,
deterministic support mechanism that computes anα-
approximation to the social welfare and has only polyno-
mially manyλas that are positive, one can obtain in poly-
nomial time an individually rational randomized mecha-
nism that is truthful in expectation, and computes anα-
approximation to the social welfare in expectation.

Given the above theorem, we now focus on the design of
a deterministic support mechanism that outputs a probabil-
ity distribution and prices, with the desired properties.

3. A general technique for constructing truth-
ful, approximation mechanisms

In this section we describe a general technique to ob-
tain randomized mechanisms that are truthful in expecta-
tion, and achieve approximation guarantees for the social
welfare that, in several cases, match the guarantees that are
achieved without worrying about truthfulness. To make our
results concrete, we describe our technique for the specific
setting of combinatorial auctions (CAs), although our re-
sults also hold for other packing problems when the poly-
tope is public knowledge and the objective function is lin-
ear. In Section 4, we consider a variety of applications and
use our methods to obtain truthful (in expectation) mecha-
nisms that approximate the social welfare.

We can formulate the combinatorial auction problem as
an integer program (IP) where we have a variablexi,S ∈
{0, 1} for each playeri and setS 6= ∅ that indicates ifi
receives setS. Relaxing the integrality constraints toxi,S ≥
0 gives the following LP relaxation.

max
∑

i,S 6=∅

vi(S)xi,S (CA-P)

subject to
∑
S 6=∅

xi,S ≤ 1 for each playeri (1)∑
i

∑
S:j∈S

xi,S ≤ 1 for each itemj (2)

xi,S ≥ 0 for eachi, S.

Here vi is i’s reported valuation which satisfiesvi(S) ≤
vi(T ) wheneverS ⊆ T (and implicitly vi(∅) = 0). Con-
straints (1) state that each player is assigned at most one
set, and (2) ensures that each itemj is given to at most one
player. Our approximation guarantee will depend on the in-
tegrality gap of (CA-P), that is, the ratio between the values
of the optimal fractional and integer solutions. Our main
theorem is the following.

Theorem 3.1 Given anα-approximation algorithm, that
also proves an integrality gap of at mostα for (CA-P),
one can construct a randomized, individually rational,α-
approximation mechanism that is truthful in expectation.

We first give an overview of the construction. A classic
result in mechanism design is the VCG family of mecha-
nisms [24, 9, 12], which shows that if the underlying al-
gorithmic problem of maximizing the social welfare, given
the players’ reported types, called the winner determination
problem (WDP) for CAs, can be solvedexactly, then one
can construct a truthful mechanism that optimizes the so-
cial welfare (with respect to the true types). However this
algorithmic problem is oftenNP-hard, and it is known that
an approximation algorithm for this problem need not nec-
essarily give a truthful mechanism.

We move to a fractional domain and consider afractional
mechanismthat is allowed to return a fractional feasible so-
lution to (CA-P). With this outcome set, one can solve WDP
exactly in polynomial time since one can solve (CA-P) (see
Section 4.1), and therefore use VCG to obtain a truthful
fractional mechanismMF which returns allocationx∗, the
optimal solution to (CA-P), and pricespF . Since we are
in a fractional domain, we can scale down both the alloca-
tion and prices by someα ≥ 1 without affecting truthful-
ness. We give a procedure which takes anα-approximation
algorithm that proves an integrality gap ofα for (CA-P),
and returns in polynomial time a convex decomposition of
x∗

α into polynomially many integer solutions, i.e.,λl values
such thatx

∗

α =
∑

l∈I λlx
l, where{xl}l∈I is the set of all

integer solutions to (CA-P),λl ≥ 0,
∑

λl = 1 (with only
polynomially manyλl > 0). This is obtained by strengthen-
ing the decomposition technique of Carr and Vempala [7].
This is the crucial step, using which we convert the truthful
fractional mechanismMF to a truthful deterministic sup-
port mechanismMD that outputs{λl}l∈I as the allocation

and pF

α as the prices, while losing a factor ofα in the social
welfare (and maintaining individual rationality). Now we
use Theorem 2.4 to obtain a randomized, truthful in expec-
tation mechanism that achieves anα-approximation to the
social welfare. We summarize the construction below.

The truthful α-approximation support mechanism.
Given valuationsv1, . . . , vn; anα-approximation algorithm
A for WDP that shows an integrality gap ofα for (CA-P).

1. Use VCG to get a truthful fractional mechanismMF

that outputs allocationfF (v) = x∗(v), the optimal
solution to (CA-P), and pricespF (v).

2. UseA to obtain the convex decompositionx
∗

α =∑
l∈I λlx

l with only polynomially many positiveλl.

3. Return the support mechanismMD = (fD, pD) with

fD(v) = {λl}l∈I andpD(v) = pF (v)
α (and use Theo-

rem 2.4 to get the desired randomized mechanism).

Thus we show that any approximation algorithm for max-
imizing social welfare, that also shows an integrality gap



guarantee, can be plugged in to get a randomized truthful
mechanism with the same approximation guarantee. Thus,
we are able to combine the versatility of VCG as a mecha-
nism design tool for devising truthful mechanisms,and the
computational tractability of approximation algorithms.

Details of the construction We now describe the con-
struction in detail. LetP denote the feasible region of
(CA-P), andZ(P) ⊆ P be the set of integer solutions of
(CA-P). The integrality gap ofP is defined as

IGP = sup
v=(v1,...,vn)

maxx∈P
∑

i,S vi(S)xi,S

maxx∈Z(P)

∑
i,S vi(S)xi,S

where thevis are valuations withvi(∅) = 0, vi(S) ≤ vi(T )
for S ⊆ T . Our mechanisms require an approximation
algorithm that “verifies” an integrality gap of (at most)α,
by which we mean that forany valuation vectorv the al-
gorithm produces an integer solution of value at least1

α
times the LP-optimum. We emphasize that the supremum is
taken overall valuationsv in evaluating the integrality gap,
and an algorithm that verifies this gap must consequently
work for all valuations. To clarify this further, whereas
we may sometimes consider (designing mechanisms for) a
structured class of valuationsV , the integrality gapIGP
is determined only by the polytopeP, and to exploit the
structure ofV we need to be able to encode this structure
into the polytopeP. In particular, an approximation algo-
rithm that specifically proves a guaranteefor classV us-
ing the optimum of (CA-P) as an upper bound (e.g., the 2-
approximation algorithm for submodular valuations in [17])
does notsuffice to bound or verify the integrality gapIGP .

The fractional mechanism defined will have outcome
set P. We extend the domainVi to assign values to
fractional solutionsx ∈ P: for any vi ∈ Vi, we define
vi(x) =

∑
S vi(S)xi,S . We again abuse notation and use

vi to denote both the original valuation and its extension.
We now define precisely thefractional VCG mechanism
which is simply VCG in this fractional domain.

The fractional VCG mechanism MF = (fF , pF ) is de-
fined as follows: the allocation rule is given byfF (v) =
x∗(v) wherex∗(v) is an optimal solution to(CA-P) for
valuation v = (v1, . . . , vn); the prices arepF

i (v) =(
−

∑
i′ 6=i vi′(S)x∗i′,S + hi(v−i)

)
, where hi(v−i) is any

function that does not depend onvi.

As usual with VCG mechanisms, one can sethi(v−i) =∑
i′ 6=i vi′(S)y∗i′,S above, wherey∗ is the optimal fractional

solution when we constrainxi,S = 0 for all S, so as to en-
sure that that players have non-negative utility (individual
rationality), and players always have a non-negative pay-
ment (they never receive money). We will assume these
prices from now on. It is a classic result that the VCG

mechanism (family) is truthful, i.e., satisfies the criterion
in Definition 2.1. For anyα ≥ 1, we can define anα-
scaled fractional VCG mechanismthat outputs the outcome
fF (v)

α and pricespF (v)
α . For anyv ∈ V andvi ∈ Vi, since

vi

( fF (v)
α

)
= vi(f

F (v))
α (becausevi(x) is linear inx), theα-

scaled fractional VCG mechanism is also clearly truthful.
Suppose that we can expressx∗(v)

α as a convex combi-
nation

∑
l∈I λl(v)xl of integral solutions whereλl(v) ≥ 0,∑

l λl(v) = 1. (Observe thatα must be at leastIGP since

such a decomposition ofx
∗(v)
α implies that there exists an

integer solutionxl of value at least1α ·
∑

i vi(x∗(v)).) One
then obtains a deterministic support mechanismMD with
allocation rulefD(v) = {λl(v)}l∈I and pricespD

i (v) =
pF

i (v)
α . Before detailing the decomposition procedure, we

show thatMD is a truthful,α-approximation mechanism.

Lemma 3.2 MechanismMD is truthful and computes an
α-approximation to the social welfare.

Proof : Essentially, we show thatMD is equivalent to
theα-scaled fractional VCG mechanism and retains all its
properties. For any declared valuationv = (v1, . . . , vn),
the value playeri gets inMD is exactly vi(f

F (v))
α since

vi(fD(v)) =
∑

l∈I λl(v)vi(xl) by definition, which is

equal tovi(
∑

l∈I λl(v)xl) = vi

(x∗(v)
α

)
= vi(x

∗(v))
α . Since

the prices are also scaled byα, truthfulness follows from
the truthfulness ofMF . Truthfulness also then implies the
approximation guarantee since

∑
i vi(x∗(v)) is an upper

bound on the optimum. Note thatMD satisfies individual
rationality and no player is paid by the mechanism.

Using Theorem 2.4 we can move fromMD to a ran-
domized mechanism, while maintaining truthfulness, the
approximation ratio, and individual rationality. Thus we ob-
tain Theorem 3.1. The crucial property that we require here
is that for anyvi ∈ Vi, and anyv ∈ V ,

∑
l∈I λl(v)vi(xl) =

vi(x
∗(v))
α . A sufficientcondition for this is thatvi(x) be

a linear function ofx and thatx∗(v)
α be decomposable as∑

l∈I λl(v)xl, which is what we use in our construction.

3.1. Decomposing the fractional solution

We now prove the main decomposition lemma: we show
that anα-approximation algorithmA that proves an inte-
grality gap ofα for (CA-P) can be used to express any frac-
tional solution to (CA-P), scaled down byα, as a convex
combination of integer solutions. The proof is based on the
method outlined in [7] where it is shown that for minimiza-
tion problems, if the integrality gap isβ ≥ 1, then for any
fractional solution, one can obtain a convex combination of
integer solutions such thatβ times the fractional solution
dominates(i.e., is component-wise greater than) the convex



combination. We need to modify their argument so as to
ensure that we get anexactdecomposition (for our maxi-
mization problem), which is crucial for our truthfulness ar-
gument to hold. For general maximization LPs, one cannot
necessarily get such an exact decomposition of the scaled
fractional solution, but only one that dominates the scaled
solution. We leverage the packing structure of the prob-
lem to get an exact decomposition. Recall thatP denotes
the feasible region of (CA-P) andZ(P) = {xl}l∈I is the
set of all integer solutions to (CA-P) whereI is an index
set for the integer solutions. We exploit the property that if
x ∈ Z(P) andy ≤ x is integral theny ∈ Z(P).

Fix anyx∗ ∈ P such thatE = {(i, S) : x∗i,S > 0} has
size polynomial inm,n. Any basic solution to (CA-P) satis-
fies this since by standard polyhedral theory such a solution
has at mostm+n non-zero entries. We solve the linear pro-
gram (P) given below to obtain the convex decomposition.

min
∑
l∈I

λl (P)

s.t.
∑

l

λlx
l
i,S = x∗i,S

α for all (i, S) ∈ E (3)∑
l

λl ≥ 1 (4)

λl ≥ 0 for all l ∈ I.

max 1
α ·

∑
(i,S)∈E

x∗i,Swi,S + z (D)

s.t.
∑

(i,S)∈E

xl
i,Swi,S + z ≤ 1 for all l ∈ I (5)

z ≥ 0
wi,S unconstrained for all(i, S) ∈ E.

The primal (P) has an exponential number of variables, so
we consider its dual (D). The dual has an exponential num-
ber of constraints and avariable wi,S for each constraint
(3), and one can vieww as a valuation. We show that a sepa-
ration oracle for the dual can be obtained by using algorithm
A with valuationw, so the ellipsoid method can be used
to solve (D) and hence (P) (we also show that the optimal
value is 1). One potential problem encountered is that the
wi,S values could be negative, whereasA is only designed
to handle non-negative valuations. However it is easy to
argue that one can instead useA with the non-negative val-
uationw+ given byw+

i,S = max(wi,S , 0), and this yields a
separation oracle. (Alternatively, one could first computeλl

values such that
∑

l∈I λlx
l ≥ x∗

α , so the dual variableswi,S

are now non-negative, and then use the packing property to
modify theseλl values and get an exact decomposition.)

Claim 3.3 Let w = {wi,S}(i,S)∈E be any weight vector.
Definew+ by w+

i,S = max(wi,S , 0). Given any integer

solution x̂ ∈ Z(P), one can obtainxl ∈ Z(P) such that∑
(i,S)∈E xl

i,Swi,S =
∑

(i,S)∈E x̂i,Sw+
i,S .

Proof : Set xl
i,S = x̂i,S if wi,S ≥ 0 and 0 otherwise.

Clearly,
∑

(i,S)∈E xl
i,Swi,S =

∑
(i,S)∈E x̂i,Sw+

i,S . Since

xl ≤ x̂ is integral, by the packing propertyxl ∈ Z(P).

Claim 3.4 For any weight vectorw = {wi,S}(i,S)∈E , one
can compute in polynomial timexl ∈ Z(P) such that∑

(i,S)∈E xl
i,Swi,S ≥ 1

α ·maxx∈P
∑

(i,S)∈E xi,Swi,S .

Proof : Let O∗ = maxx∈P
∑

(i,S)∈E xi,Swi,S . Let w+

be as defined in Claim 3.3. Clearlyw+ is component-wise
greater thanw and

∑
i,S xi,Sw+

i,S =
∑

(i,S)∈E xi,Sw+
i,S

for any x. If A only expects a non-negative valuation as
input, then we can simply runA on w+ to get an inte-
ger solutionx̂ such that

∑
(i,S)∈E x̂i,Sw+

i,S ≥ O∗

α . But
in our caseA requires a valuation that satisfies monotonic-
ity, so we cannot directly feed itw+. However one can
simply “monotonize”w+: for eachi define valuatioñvi

by ṽi(S) = maxT⊆S:(i,T )∈E w+
i,T where the maximum

is 0 if there is noT ⊆ S such that(i, T ) ∈ E. We
useA on valuationṽ to compute anα-approximate inte-
ger solutionx̃, so

∑
i,S x̃i,S ṽi,S ≥ O∗

α sinceṽi,S ≥ w+
i,S

for every (i, S). It is easy to transform̃x to x̂ so that∑
(i,S)∈E x̂i,Sw+

i,S =
∑

i,S x̃i,S ṽi,S . We setx̂i,S = x̃i,S

if (i, S) ∈ E or x̃i,S = 0, otherwise set̂xi,T ′ = 1 for
T ′ = arg maxT⊆S:(i,T )∈E wi,T , andx̂i,S = 0. Finally, we
use Claim 3.3 to convert̂x to a solutionxl ∈ Z(P), which
gives the desired integer solution.

Lemma 3.5 One can obtain in polynomial time a decom-
position x∗

α =
∑

l∈I λlx
l whereλl ≥ 0 for everyl (with

only polynomially many positiveλl) and
∑

l∈I λl = 1.

Proof : We first show that the optimal value of (D), and
hence of (P) by strong duality, is exactly 1. So an optimal
solution to (P) yields the convex decomposition. Setting
z = 1, wi,S = 0 for all (i, S) ∈ E gives a feasible solution
with value 1. We claim that any feasible solution(w, z) has
value at most 1. Suppose1α ·

∑
(i,S)∈E x∗i,Swi,S + z > 1.

Using Claim 3.4 one can find an integer solutionxl such
that

∑
(i,S)∈E xl

i,Swi,S ≥ 1
α ·

∑
(i,S)∈E x∗i,Swi,S > 1− z,

contradicting the feasibility of(w, z).
The above argument shows that we can add the inequal-

ity 1
α ·

∑
(i,S)∈E x∗i,Swi,S + z ≥ 1 to the dual program (D)

without altering anything. We will run the ellipsoid method
on (D) to identify a dual program with a polynomial-size set
of inequalities (5), that is equivalent to (D). These inequal-
ities will be the violated inequalities returned by the sepa-
ration oracle during the execution of the ellipsoid method,
that are used to cut the ellipsoid. Taking the dual of this
compact program gives a primal program with a polynomial
number of variables and constraints which we can solve



to get λl values that sum to 1; this gives the desired de-
composition. The separation oracle that we use is as fol-
lows: at a point(w, z), if 1

α ·
∑

(i,S)∈E x∗i,Swi,S + z > 1,

then we can find anxl and a corresponding violated con-
straint using Claim 3.4; otherwise we use the half space
1
α

∑
(i,S)∈E x∗i,Swi,S + z ≥ 1 to cut the current ellipsoid.

4. Applications

4.1. General and multi-unit combinatorial auctions

In multi-unit combinatorial auctions (MUCAs) we have
m items withB copies of each item, andn players, and each
player desires at most one copy of an item. WithB = 1 we
get the regular combinatorial auction. The LP relaxation for
MUCA is similar to (CA-P), but the RHS of constraints (2)
changes toB. The integrality gap of this relaxation is a
function of B: (i) the integrality gap isO(m

1
B+1 ) for any

B ≥ 1; (ii) the integrality gap is(1+ε) whenB = Ω(log m)
(more preciselyB ≥ c(ε) · log m wherec(.) increases with
1
ε ) for anyε > 0. Moreover there are algorithms that “ver-
ify” this gap, e.g., the derandomization of “standard” ran-
domized rounding [23], the rounding approach of [14], or
the recent primal-dual algorithm of [6].

We can use the above approximation algorithms to con-
struct randomized, strategic, approximation mechanisms
for CAs and MUCAs, with arbitrary valuation functions.
There are two (linked) issues here: (1) the representation of
the input, and (2) the computational effort needed to solve
(CA-P). With general valuations, representation becomes
an issue since the length of the valuation can be exponential
in m, which therefore also renders direct revelation mecha-
nisms intractable. Two ways to address this have been con-
sidered: (a) assuming that we have “short” valuations that
can be succinctly described (with a suitable bidding lan-
guage), thus allowing for direct revelation mechanisms; (b)
assuming that we have some oracle access to the valuation,
so the mechanism now needs to be an iterative mechanism.
It is well known in the economics literature that the issue
of “one-shot” vs. iterative mechanisms also affects truthful-
ness properties. To specify our results precisely and address
(1) and (2), we consider these two settings separately.

Short valuations. We first consider the case when the val-
uations are succinctly describable. An important such val-
uation class is that of single-minded bidders where each
player wants just one set (or any superset) and specifies
that set along with its value. More generally players could
specify k ≥ 1 subset-value pairs(S1, w1), . . . (Sk, wk),
where k is a polynomial, which yields two well-studied
classes of valuations: (a) anXORvaluation where the player
desiresone of thesek subsets (the “k-minded case”), so

v(T ) = maxi:Si⊆T wi, (b) an OR valuation where the
player is willing to receiveany collection of disjoint sets
from S1, . . . Sk and the values add up (see [22]). One could
also consider combinations, giving rise to generalOR-XOR
valuations. In such cases, the LP (CA-P) can be described
by a compact, polynomial-size program and solved in poly-
nomial time. We use “short” valuations to encode both, suc-
cinctness of descriptions, and the requirement that (CA-P)
can be solved in time polynomial in the description size.

Theorem 4.1 For MUCAs with “short” valuations andB
copies of each item, we obtain randomized, truthful in
expectation mechanisms with the following approximation
factors: (i) a factor ofO(m

1
B+1 ) for anyB ≥ 1; and (ii) a

(1 + ε)-guarantee for anyε > 0 whenB = Ω(log m).

We obtain thefirst truthful mechanismswith non-trivial
approximation guarantees forall values ofB, and with short
valuations, improve upon the deterministicO(B · m

1
B−2 )-

approximation ratio of Bartal et al. [4] for general valua-
tions. In particular, whenB = Ω(log m) we get thefirst
truthful (in expectation)(1 + ε)-approximation mechanism
for short multi-parameter valuations, answering an open
question in [2] about devising mechanisms for valuations
more general than the “known” single-minded case (i.e., the
sets are public). More work has been directed toward the
single-minded case defined in [18] who gave a deterministic
mechanism with anO(

√
m) guarantee whenB = 1. Archer

et al. [2] obtained a(1+ε)-approximation mechanism when
B = Ω(log m), for the “known” single-minded case that
is truthful both in expectation and with high probability.
Recently, Briest et al. [6] gave a deterministicO

(
m

1
B

)
-

approximation mechanism for the unknown single-minded
case. We give a unified way to obtain randomized, truthful
in expectation mechanisms and get approximation guaran-
tees that match the known inapproximability results [4].

General valuations. We now consider the setting with
general valuations with an oracle access to the valuations.
Two kinds of oracle access were considered by [21, 5]:
value queries, where the query asks for the value of a setS,
anddemand queries, where the query specifies item prices
p1, . . . , pm, and asks a playeri to return a subsetS that
maximizesvi(S) −

∑
j∈S pj . Demand queries are very

natural from an economic perspective and are known to be
strictly more powerful than value queries [21, 5]. Blum-
rosen and Nisan [5] show that LP (CA-P) can be solved
with a polynomial number of demand queries using the el-
lipsoid method, since they yield a separation oracle for the
dual of (CA-P). This addresses issue (2).

As mentioned previously, direct revelation mechanisms
become ineffective with general valuations. Using Theo-
rem 3.1 we can construct strategic, iterative mechanisms for



general valuations using demand queries. It is well known
in the economics literature (see e.g., [10]) that moving from
direct-revelation to iterative mechanisms often leads to a
weakening of the solution concept, from dominant strate-
gies toex-post Nash equilibrium. Our mechanisms yield
truthfulness in expectation as an ex-post Nash equilibrium,
which means the following: for any playeri, andany type
profile v−i ∈ V−i of the other players, if the other play-
ers act according to their types in this profile in the itera-
tive mechanism, theni’s best response (for maximizing ex-
pected utility) is to be truthful. In particular, this means
that truthful revelation is a Nash equilibrium with noex-
post regret, that is, even if a player were told beforehand
the types that the other players would use to act in the itera-
tive mechanism, he would have no incentive to deviate from
his truth-telling strategy. As an example, consider the regu-
lar second-price auction with two players with the following
iterative flavor: playerX bids firstand thenplayerY states
his bid; the player with highest bid wins and pays the sec-
ond highest bid value. Truthfulness fails to be a dominant
strategy. SupposeY chooses the strategy “ifX bids above
5, then I will say 20, otherwise I will say 2”, then, ifX ’s
true value is higher than 5, his best response is to declare 5.
However truthfulness is still an ex-post Nash equilibrium:
if Y fixesanyprivate value and bids that, then regardless of
Y ’s private valueX ’s best response is to tell the truth.

Theorem 4.2 For MUCAs with “general” valuations and
demand oracles, andB copies of each item, we obtain ran-
domized mechanisms for which truthfulness in expectation
is an ex-post Nash equilibrium, with the following guaran-
tees: (i) anO(m

1
B+1 )-guarantee for anyB ≥ 1; and (ii) a

(1 + ε)-guarantee for anyε > 0 whenB = Ω(log m).

Very little is known about truthful and approximation
mechanisms with general valuations. ForB ≤ 2 and
general valuations, no strategic mechanisms were known
previously. Bartal et al. [4] gave a deterministic, truthful
O(B · m

1
B−2 )-approximation for general valuations using

demand oracles, and Dobzinski et al. [11] gave a determin-
istic, truthful O(

√
m)-approximation forB = 1 and sub-

additive valuations using value oracles. We improve upon
the performance guarantee of [4] for allB, and get the same
guarantee as [11] for general valuations but using demand
oracles, randomization, and a different solution concept.

4.2. Graph routing problems

We now consider two closely related problems,edge-
disjoint-paths (EDP) and all-or-nothing multicommodity
flow (ANF). In both EDP and ANF we have a graphG =
(V,E) with capacitiesue ≥ 1 on the edges. The players
are(si, ti) source-sink pairs wheresi, ti ∈ V . Each player

has a valuewi. Both (si, ti) and the valuewi are private
information; a special case is the “known” case where the
(si, ti) pairs are public and onlywi is private. The social-
welfare maximization problem is to select a maximum-
weight routable set. In EDP a set is routable if each(si, ti)
pair in the set can be assigned ansi-ti path and at mostue

paths use edgee; in ANF, for each(si, ti) pair in the set we
need to route one unit of flow fromsi to ti respecting edge
capacities, possibly splitting the flow across several paths.
We define the outcome set carefully to ensure that only the
value of an outcome, not the set itself, depends on private
information. In EDP, an outcome is an allocation of edges
(as paths) to players such that an edgee is used at most
ue times; in ANF, an outcome is a flow-vector-allocation to
each player, such that the total flow throughe is at mostue.

Both EDP and ANF have the same flow-path based LP
relaxation, and a solution to EDP is also clearly a solu-
tion to ANF. Since EDP is a structured MUCA (with short
valuations), we get a randomized, truthfulO(m

1
bB+1c )-

approximation for both problems, whereB = mine ue.
There are some issues that arise in the decomposition proce-
dure here. To decompose the fractional flow paths into inte-
ger solutions, the separation oracle (for (D)) needs to solve
adifferentEDP (or ANF) problem: for eachsi-ti pair there
is a (small) setPi of paths having (different) non-negative
weights (a path not inPi has weight 0), and one has to se-
lect a maximum-weight set of routablesi-ti paths picking
at most onesi-ti path for eachi. Alternatively, instead of
decomposing the flow paths, one can obtain a decomposi-
tion such that for any(si, ti) pair, the totalamountof flow
routed by the convex combination is equal to the flow routed
by the fractional solution. The separation oracle now in-
volves solving an instance of EDP (or ANF), so one can use
any approximation algorithm that also bounds the integral-
ity gap. But this does not give truthfulness because a player
might have incentive to lie about his(si, ti) pair. (Techni-
cally, it may not be that

∑
l∈I λl(v)vi(xl) = vi(x∗(v))/α.)

However in the“known” case, such a decompositiondoes
yield truthfulness, because now playeri’s (true) value is just
a linear function of the amount of flow routed fromsi to ti.
Chekuri et al. [8] showed an integrality gap ofO(log m) for
EDP on planar graphs whenB ≥ 2, and for ANF an inte-
grality gap ofO(log2 m) for general graphs andO(log m)
for planar graphs. (The guarantees are stated forwi = 1,
but it is implicit that the algorithms generalize to arbitrary
wi, thus bounding the integrality gap.) We obtain the same
guarantees for our mechanisms in the “known” case. Sim-
ilar results are known with demandsdi whenmax di ≤ B
and they transfer to the mechanisms.

Previous truthful mechanisms for EDP were: for
the “known” case, a deterministicO(

√
m)-approximation

when di = 1 using the greedy algorithm in [18], and
a deterministicO(m

1
B−1 )-approximation mechanism [6]



whenB > 1; in the “unknown” case [4] gave anO
(
B ·

( m
min di

)
1

B−2
)
-approximation whenB > 2. Recently [3]

gave a deterministicO(log2 wmax ·
√

m)-approximation
mechanism forB = 1 using undominated strategies.

4.3. General multi-unit auctions and multi-
parameter knapsack

In a multi-unit auction, there arem identical items. and
each playeri has a valuevi(j) for gettingj items,1 ≤ j ≤
m, where thevi(.)s are non-decreasing functions. The goal
is to distribute them items, allocatingxi items to playeri,
so as to maximize

∑
i vi(xi). This problem is solvable in

time polynomial inm, so if eachvi(j) is explicitly speci-
fied then one can implement VCG. We will consider valua-
tions that are specified more succinctly, e.g., step functions,
piecewise linear functions with a “small” number of pieces,
XOR, OR valuations or their combinations etc., or valua-
tions given via an oracle access. We want mechanisms that
run in time polynomial inn and the size of the specification.

If all value functions are step functions (single-minded
players), then this is exactly the knapsack problem for
which Briest et al. [6] gave a truthful FPTAS. No truthful,
approximation mechanisms for multi-parameter knapsack
problems (general multi-unit auctions) are known. Kothari
et al. [15] gave an “approximately truthful” FPTAS for the
special case of “marginal decreasing valuations”.

The natural LP relaxation for this problem has a vari-
ablexij to indicate if playeri getsj items. ForKnapsack,
a simple greedy algorithm proves an integrality gap of at
most 2 (see, e.g., [13]). We give a greedy algorithm that
generalizes this algorithm and shows an integrality gap of
2 for the LP relaxation with general valuations. Using this,
we obtain thefirst truthful, approximation mechanisms for
non-single-minded playersand get a guarantee of 2. Lavi
et al. [16] showed that with two players, if all items must
always be allocated, then withORvaluations, nodetermin-
istic truthful mechanism can obtain an approximation ra-
tio better than2. As in Section 4.1, “short” valuations will
mean that the valuation is given succinctly and we can solve
the LP in polynomial time. Since items are identical, a de-
mand oracle here fixes a pricep ≥ 0 and asks playeri to
return a quantityj that maximizesvi(j)− p · j.

Theorem 4.3 There is a randomized,2-approximation
mechanism for multi-unit auctions, which (i) is truthful in
expectation for “short” valuations; and (ii) has truthful-
ness in expectation as an ex-post Nash equilibrium for gen-
eral valuations with demand oracles.
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