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Abstract

We give a general technique to obtain approximation mechanisms that are truthful in expectation.
We show that for packing domains, any α-approximation algorithm that also bounds the integrality gap
of the LP relaxation of the problem by α can be used to construct an α-approximation mechanism
that is truthful in expectation. This immediately yields a variety of new and significantly improved
results for various problem domains and furthermore, yields truthful (in expectation) mechanisms with
guarantees that match the best known approximation guarantees when truthfulness is not required. In
particular, we obtain the first truthful mechanisms with approximation guarantees for a variety of multi-
parameter domains. We obtain truthful (in expectation) mechanisms achieving approximation guarantees
of O(

√
m) for combinatorial auctions (CAs), (1 + ε) for multi-unit CAs with B = Ω(log m) copies of

each item, and 2 for multi-parameter knapsack problems (multi-unit auctions).
Our construction is based on considering an LP relaxation of the problem and using the classic

VCG [33, 9, 18] mechanism to obtain a truthful mechanism in this fractional domain. We argue that
the (fractional) optimal solution scaled down by α, where α is the integrality gap of the problem, can
be represented as a convex combination of integer solutions, and by viewing this convex combination as
specifying a probability distribution over integer solutions, we get a randomized, truthful in expectation
mechanism. Our construction can be seen as a way of exploiting VCG in a computational tractable way
even when the underlying social-welfare maximization problem is NP-hard.

1 Introduction

Mechanism design studies algorithmic constructions under the presence of “selfish players” who hold the
inputs to the algorithm. The players are selfish in that they are interested in maximizing their own utility,
and instead of revealing the true input, they may declare any false input that will increase their utilities. The
goal is to design algorithms that work well with respect to the true input, although this information is not
publicly known. Mechanism design approaches this goal by specifying along with the algorithm a pricing
scheme that can be used to incentivize the players to reveal their true inputs. A mechanism consists of an
algorithm along with a pricing scheme, whose output specifies both an algorithmic outcome and prices to be
charged to the players; the utility that a player derives is the difference between his value for the algorithmic
outcome and the price that he is charged. A mechanism is said to be truthful if a player always maximizes his
utility by declaring his true input, regardless of what the other players declare. Algorithmic mechanism de-
sign [29] deals with the study of efficiently computable truthful mechanisms. The hope is that by obtaining
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a truthful mechanism, one can focus on the algorithmic question and set aside the strategic issue, however
unfortunately not all algorithms lead to truthful mechanisms. This is best exemplified when the underly-
ing algorithmic problem is NP-hard. Over the past several years, approximation algorithms have emerged
as an effective algorithmic tool to deal with such computational intractability. However these algorithms
have found only limited applicability in the design of truthful mechanisms, especially in “multi-parameter
domains”, since many approximation algorithms and techniques do not guarantee certain properties of the
algorithm that are required to ensure truthfulness.

Our results. In this paper we give a general technique to convert approximation algorithms into truthful
mechanisms. One of the most widely used and remarkably successful techniques in the design of approx-
imation algorithms, is that of expressing a relaxation of the problem as a linear program (LP), and using
this to design the approximation algorithm, either via LP rounding or via a primal-dual approach. We show
that for a variety of domains, any approximation algorithm for the algorithmic problem, that also bounds
the integrality gap of the underlying LP relaxation, can be used to obtain a randomized mechanism for the
corresponding mechanism design problem (i.e., where the inputs are held by selfish agents), that is truthful
in expectation, and has performance guarantee matching that of the approximation algorithm. Truthfulness
in expectation means that a player always maximizes his expected utility by revealing his true input [1]. Our
main result can be informally stated as follows.

Informal Main Theorem For packing domains, given any α-approximation algorithm that proves an inte-
grality gap of at most α for the “natural” LP relaxation, one can construct a randomized α-approximation
mechanism that is truthful in expectation.

A key feature of this result is its generality. As mentioned earlier, there are a number of problem domains
for which good approximation algorithms are known for the algorithmic problem, but in the mechanism de-
sign setting there are no known truthful and approximation mechanisms for the corresponding problem. A
common problem encountered is the fact that many commonly used approximation algorithms and tech-
niques violate certain monotonicity properties which are required for truthfulness. In cases where truthful
and approximation mechanisms are known, the construction often involves clever ways of modifying or de-
signing the approximation algorithm so as to satisfy these properties. As a consequence, in various settings,
the approximation guarantees provided by truthful mechanisms fall short of the known guarantees for the
algorithmic problem when one does not require truthfulness.

Our theorem not only yields new and improved results for large problem classes such as, (multi-unit)
combinatorial auctions, graph routing problems, multi-unit auctions, but in doing so, it bridges the gap
between known approximation results and the guarantees obtained by truthful mechanisms. Moreover, it
shows that one does not need to specifically tailor the algorithm to ensure truthfulness, and allows one to
focus on the algorithmic part of the problem.

We now consider the implications of our theorem, by concentrating on the multi-unit combinatorial
auction (MUCA) problem, which has been widely studied [27, 2, 4, 23, 6, 14]. In an MUCA, m items are
to be allocated among n players and each player i has a true value vi(S) for every subset S of items. The
value functions are assumed to be non-decreasing, that is, vi(S) ≤ vi(T ) when S ⊆ T , and normalized,
that is, vi(∅) = 0. There are B ≥ 1 copies of each item. An allocation is valid if every item is allocated to
at most B players. The goal is to find an allocation S1, . . . , Sn of the items to the players that maximizes
the sum

∑
i vi(Si), called the social welfare. When B = 1, the problem is called the combinatorial auction

(CA) problem.
The problem is computationally hard even when B = 1, and the valuations are “short”, i.e., succinctly

described. The approximability threshold of this problem is known to be O(m
1

B+1 ) [4]; it is hard to ap-
proximate any better even when the players are single minded, that is, each player wants a single set S, so
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vi(T ) = vi(S) for T ⊇ S and 0 otherwise. On the positive side various O(m
1

B+1 )-approximation algo-
rithms exist [32, 21, 6], and these algorithms also prove a corresponding integrality gap result. An interesting
case is when B = Ω(log m) for which the integrality gap becomes (1 + ε) where ε > 0 (more precisely
B ≥ c(ε) · log m where c(.) is an increasing function of 1

ε ; we denote this simply as B = Ω(log m) in the se-
quel). However truthfulness results are mostly known in restricted cases, and are worse. The only result for
general valuations is a truthful O(B ·m

1
B−2 )-approximation mechanism due to Bartal et al. [4] when B ≥ 3.

More results are known for special cases: for single-minded players, a truthful O(
√

m)-approximation is
known when B = 1 [27], and Briest et al. [6] recently gave a truthful O(m

1
B )-approximation for B ≥ 1

(this does not give a (1 + ε)-guarantee when B = Ω(log m)). Archer et al. [2] gave a randomized (1 + ε)-
approximation mechanism for the “known” single-minded case when B = Ω(log m). Babaioff et al. [3]
consider the “single-value” case and (among other results) give an O(log2 vmax ·

√
m)-guarantee; Dobzin-

ski et al. [14] obtain an O(
√

m)-approximation for subadditive valuations. In particular, the picture is very
partial for non-single-minded players: no truthful approximation mechanism is known for general combina-
torial auctions (B = 1), and the factors for large B are much worse than the approximation results.1

Using our construction, and any of the known approximation algorithms, we obtain randomized, truthful
in expectation mechanisms for all values of B, where the guarantees match the approximability threshold.
We summarize our results below for “short” valuations, where the valuations are succinctly describable and
the underlying packing LP can be solved efficiently. An important such class is k-minded players: a player
desires one of k sets and specifies the value of each; both the sets and the values are private. Section 4.1
gives other examples. We use “truthful” below to denote “truthful in expectation”.

Combinatorial auctions (B = 1) We give the first truthful mechanism for non-single-minded valuations,
and get a O(

√
m) guarantee.

Multi-unit combinatorial auctions We get an O(m
1

B+1 )-approximation, truthful mechanism. This im-
proves upon the ratio of [4]. When B = Ω(log m) we get a (1 + ε)-guarantee for valuations more general
than the “known” single-minded case, answering an open question in [2].

Multi unit auctions Here the m items are identical, and the valuation specifies a value for each quantity
of goods received. This generalizes Knapsack, which is the case when all players have a step function
(i.e., are single minded), for which a truthful FPTAS was given by Briest et al. [6]. We give a truthful 2-
approximation mechanism for multi-unit auctions, which is the first truthful, approximation mechanism for
the multi-parameter case.

Graph routing problems These include (see Section 4.3), for example, the edge-disjoint paths problem,
where we have an underlying graph and each player desires a path between his source and target nodes. This
is a special case of MUCA and the previous guarantees hold.

With arbitrary valuations, the input itself may have exponential length (in m) which therefore renders
direct revelation mechanisms infeasible. The problem remains “hard” even when one ignores computational
issues: Nisan [28] shows that no algorithm with polynomial communication (in m,n) can attain an approx-
imation ratio of m

1
2
−ε for any ε > 0 even when B = 1. Blumrosen and Nisan [5] introduce the notion of a

demand oracle, and show that this can be used to solve the associated LP using polynomial queries. With
such an oracle, our construction still works and yields iterative randomized, strategic mechanisms. How-
ever, the iterative structure of the mechanism changes the solution concept to an ex-post Nash equilibrium,
a well-documented phenomenon in the economics literature (see e.g., [10]). So we now get truthfulness

1Section 5 discusses briefly some results obtained subsequent to the publication of the conference version of this paper [24].
Notably, however, our method remains the only known general method that provides a unified framework; it also yields the current-
best truthful approximation mechanisms for some broad problem domains (e.g., MUCAs).
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in expectation as an ex-post Nash equilibrium which roughly means the following: regardless of the other
players’ valuations, if they all answer truthfully, then my best response is to answer truthfully. We get the
same guarantees as before, using ex-post Nash equilibrium as the solution concept.

Our construction. At a high level, our construction is quite intuitive and easy to describe. Our starting
point is the classic VCG result [33, 9, 18], which provides a truthful mechanism for the underlying algorith-
mic problem of maximizing the social welfare, provided that the algorithmic problem can be solved exactly.
However, in our case and in many others, this problem is NP-hard, and approximation algorithms need not
give truthfulness. Our first step towards handling this problem is to move to a fractional domain, and to
consider a fractional mechanism that is allowed to return a fractional feasible solution to the LP relaxation
of the problem. In this new domain, since one can solve the LP in polynomial time, we can use VCG to
obtain a truthful fractional mechanism. Moreover, since we are in a fractional domain, we can always scale
down both the optimal LP solution and the VCG prices by α, and this clearly does not affect truthfulness.

Let x∗ be an optimal LP solution. Suppose that the integrality gap of the LP relaxation is α ≥ 1 and we
have an algorithm that “verifies” this gap. At the heart of our construction is a procedure that takes such an
α-approximation algorithm and returns in polynomial time a convex decomposition of x∗

α into polynomially
many integer solutions, that is, it returns λl values such that x∗

α =
∑

l∈I λlx
l, where {xl}l∈I is the set

of all integer solutions, λl ≥ 0,
∑

λl = 1 (with only polynomially many positive λl). We show this
by strengthening the decomposition technique of Carr and Vempala [7]. Now one can view this convex
combination as specifying a probability distribution over the integer solutions, where exactly one solution
xl is selected with probability equal to λl. A simple but powerful observation, is that the randomized
mechanism which returns an integer solution according to this distribution, and sets prices in such a way
that the expected prices are the VCG prices scaled down by α, is truthful in expectation. Furthermore, the
expected social welfare of the solution returned is exactly the value of the LP-optimum scaled by α; thus we
get an α-approximation guarantee. The crucial step here is the decomposition procedure which allows us to
move from the truthful VCG fractional mechanism to a randomized, truthful in expectation mechanism.

A notable feature is the generality and simplicity of the construction. In essence, we give a way to
leverage VCG in a computationally effective manner using approximation algorithms, while maintaining
truthfulness. Thus we reap the benefits of both: we get the versatility of the VCG as a mechanism design
tool for devising truthful mechanisms, and the computational tractability of approximation algorithms. As
mentioned earlier, many previous results specifically tailor the algorithm to obtain truthfulness. For example,
Archer et al. [2] consider an LP-relaxation of MUCA with Ω(log m) copies and designed a randomized
rounding procedure to obtain a (1 + ε)-approximation mechanism that is truthful in expectation and also
with high probability. Briest et al. [6] showed how to convert certain FPTAS’s into truthful ones, and also
gave primal-dual algorithms for some CAs; both results involve tailoring the algorithm so as to ensure
truthfulness, but yield deterministic mechanisms. Our construction shows that if one allows randomization,
then such “algorithmic artistry” is not required to ensure truthfulness, and allows the algorithm design to
concentrate on the approximation component of the problem.

Organization of the paper. We begin in Section 2 by describing the mechanism-design setup, and col-
lecting some basic definitions and facts. Section 3 describes our general method of designing a truthful
mechanism based on the LP relaxation of the problem, and Section 4 applies our technique to a variety of
problems. We conclude in Section 5 with a brief discussion of some recent results, and a discussion of how
our ideas can be adapted to yield (partial) results also for covering problems.
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2 Preliminaries

In the basic mechanism design setup, we have n players, and a set A of possible outcomes. Each player has
a type given by a valuation function vi : A 7→ R≥0, where vi ∈ Vi and Vi is the set of all valid types of
player i. Let V = V1 × · · · × Vn denote the space of all players’ valid types. For example, in combinatorial
auctions we have m items; A is the set of all allocations (S1, . . . , Sn) of items to players with Si ∩ Sj = ∅
(assuming a single copy of each item), and vi : A 7→ R is a function that (a) assigns the same value to any
two outcomes that allocate the same subset to player i, so one can view vi as specifying a value for each
set S of items, (b) satisfies vi(∅) = 0, and (c) is monotone, i.e., vi(S) ≤ vi(T ) whenever S ⊆ T . We use
v to denote the tuple (v1, . . . , vn), and v−i to denote the tuple (v1, . . . , vi−1, vi+1, . . . , vn) that excludes i’s
valuation. Similarly V−i =

∏
j 6=i Vj .

A (direct revelation) mechanism consists of an allocation rule (that is, an algorithm) f : V 7→ A, and a
pricing scheme pi : V 7→ R for each player i. Each player i reports a type vi (possibly deviating from his
true type), and the mechanism computes the outcome f(v) and charges price pi(v) to player i. Throughout
we use vi to denote the true type of player i. The utility that the player i derives by declaring type vi is
vi(f(vi, v−i)) − pi(vi, v−i) , and each player aims to maximize his own utility. A desirable property for a
mechanism to satisfy is truthfulness, wherein each player maximizes his utility by reporting his true type.

Definition 2.1 (Truthfulness) A deterministic mechanism (f, p) is truthful if for any player i, any v−i ∈
V−i, and any vi, v

′
i ∈ Vi we have vi(f(vi, v−i))− pi(vi, v−i) ≥ vi(f(v′i, v−i))− pi(v′i, v−i).

A mechanism could be randomized, that is, it could flip coins to determine f(v) and pi(v), in which
case f(v) and pi(v) are random variables, and a player’s utility is also a random variable. For randomized
mechanisms, we can consider the notion of truthfulness in expectation [1].

Definition 2.2 (Truthfulness in expectation) A randomized mechanism (f, p) is truthful in expectation if
for any player i, any v−i ∈ V−i, and any vi, v

′
i ∈ Vi, E

[
vi(f(vi, v−i))− pi(vi, v−i)

]
≥ E

[
vi(f(v′i, v−i))−

pi(v′i, v−i)
]
.

Thus, if a mechanism is truthful in expectation then the expected utility of a player is maximized when
he declares his true type vi (regardless of what others declare). A randomized algorithm is often viewed as
specifying a probability distribution over deterministic algorithms. It will be useful to view a randomized
mechanism in a similar way. For an outcome set A, define the unit simplex ∆A = {λ ∈ R|A| :

∑
a∈A λa =

1 and λa ≥ 0 for all a}. Given any randomized mechanism MR = (fR, pR) with outcome set A, we can
define a deterministic mechanism MD with outcome set ∆A, which outputs the probability distribution of
MR, and charges prices that are the expected prices of MR. To define MD precisely, we need to extend
the domain Vi to include values for outcomes in ∆A. We do this in the obvious way: for any vi ∈ Vi,
define vi({λa}a∈A) =

∑
a∈A λavi(a). We abuse notation and use vi to denote both a valuation in Vi and its

corresponding extension. Now we can define MD as follows:

1. Allocation rule: Define the function fD by fD(v) = {λa}a∈A where λa = Pr[fR(v) = a],

2. Pricing scheme: For each player i, and valuation vector v, set pD
i (v) = E

[
pR

i (v)
]
.

We call MD the deterministic support mechanism of MR. Observe that the criterion for truthfulness of MD

is exactly the criterion for the truthfulness in expectation of MR.

Claim 2.3 A randomized mechanism MR is truthful in expectation iff its support mechanism MD is truthful.

The above claim gives a characterization of randomized mechanisms that are truthful in expectation
which we use to argue the truthfulness in expectation of the randomized mechanisms we construct.
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Converting a support mechanism to a randomized mechanism. Our algorithms will actually construct
a deterministic support mechanism. We show how to construct, from a (deterministic) support mechanism
MD, a corresponding randomized mechanism MR (whose support mechanism is MD) that preserves var-
ious properties of MD. Let MD have outcome set ∆A, so MR will have outcome set A. The allocation
rule is easy to specify: fR(v) ∈ A is a random variable with distribution fD(v), i.e., we output fR(v) = a
with probability λa where fD(v) = {λa}a∈A. So E

[
vi(fR(v))

]
= vi(fD(v)) for any player i, any true

type vi ∈ Vi and any v ∈ V . Since the prices pR
i (v) will be set so that E

[
pR

i (v)
]

= pD
i (v) (because MD

has to be the support mechanism of MR), the expected utility of player i is also preserved in going from
MD to MR. One obvious way to set the prices is to deterministically set pR

i (v) = pD
i (v) for every v,

but the resulting randomized mechanism could violate individual rationality. Individual rationality requires
that for every player i, i’s utility be non-negative when he declares his true type, regardless of the other
players’ declarations. A randomized mechanism, satisfies individual rationality if for every coin toss, the
utility of every player i is non-negative when he declares his true type. Setting pR

i (v) = pD
i (v) may violate

individual rationality even if MD is individually rational, since there could be coin tosses where a player
receives nothing but pays a positive amount. Perhaps the easiest way to maintain individual rationality is
to set price pR

i (v) = vi(a) · pD
i (v)

vi(fD(v))
if vi(fD(v)) > 0 and outcome a results (i.e., fR(v) = a), and set

pR
i (v) = 0 if vi(fD(v)) = 0 (= pD

i (v)). Observe that pR
i (vi, v−i) ≤ vi(fR(vi, v−i)) for any coin toss

since pD
i (vi, v−i) ≤ vi(fD(vi, v−i)), and clearly E

[
pR

i (v)
]

= pD
i (v).

We will be interested in approximating the (optimum) social welfare with respect to the players’ true
types, which is defined as maxa∈A

∑
i vi(a). The above construction of MR from MD preserves truthful-

ness (in expectation) by Claim 2.3, individual rationality, and the expected value received by a player. Thus
we get the following theorem.

Theorem 2.4 Given an individually rational, truthful, deterministic support mechanism that computes an
α-approximation to the social welfare and has only polynomially many λas that are positive, one can ob-
tain in polynomial time an individually rational randomized mechanism that is truthful in expectation, and
computes an α-approximation to the social welfare in expectation.

Given the above theorem, we now focus on the design of a deterministic support mechanism that outputs
a probability distribution and prices, with the desired properties.

3 A general technique for constructing truthful, approximation mechanisms

In this section we describe a general technique to obtain randomized mechanisms that are truthful in expec-
tation, and achieve approximation guarantees for the social welfare that, in several cases, match the guaran-
tees that are achieved without worrying about truthfulness. To make our results concrete, we describe our
technique for the specific setting of combinatorial auctions (CAs), although our results also hold for other
packing problems when the polytope is public knowledge and the objective function is linear. In Section 4,
we consider a variety of applications and use our methods to obtain truthful (in expectation) mechanisms
that approximate the social welfare.

We can formulate the combinatorial auction problem as an integer program (IP) where we have a variable
xi,S ∈ {0, 1} for each player i and set S 6= ∅ that indicates if i receives set S. Relaxing the integrality
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constraints to xi,S ≥ 0 gives the following LP relaxation.

max
∑

i,S 6=∅

vi(S)xi,S (CA-P)

subject to
∑
S 6=∅

xi,S ≤ 1 for each player i (1)∑
i

∑
S:j∈S

xi,S ≤ 1 for each item j (2)

xi,S ≥ 0 for each i, S.

Here vi is i’s reported valuation which satisfies vi(S) ≤ vi(T ) whenever S ⊆ T (and implicitly vi(∅) = 0).
Constraints (1) state that each player is assigned at most one set, and (2) ensures that each item j is given to
at most one player. Our approximation guarantee will depend on the integrality gap of (CA-P), that is, the
ratio between the values of the optimal fractional and integer solutions. Our main theorem is the following.

Theorem 3.1 Given an α-approximation algorithm, that also proves an integrality gap of at most α for
(CA-P), one can construct a randomized, individually rational, α-approximation mechanism that is truthful
in expectation.

We first give an overview of the construction. A classic result in mechanism design is the VCG family
of mechanisms [33, 9, 18], which shows that if the underlying algorithmic problem of maximizing the social
welfare, given the players’ reported types, called the winner determination problem (WDP) for CAs, can be
solved exactly, then one can construct a truthful mechanism that optimizes the social welfare (with respect to
the true types). However this algorithmic problem is often NP-hard, and it is known that an approximation
algorithm for this problem need not necessarily give a truthful mechanism.

We move to a fractional domain and consider a fractional mechanism that is allowed to return a fractional
feasible solution to (CA-P). With this outcome set, one can solve WDP exactly in polynomial time since
one can solve (CA-P) (see Section 4.1), and therefore use VCG to obtain a truthful fractional mechanism
MF which returns allocation x∗, the optimal solution to (CA-P), and prices pF . Since we are in a fractional
domain, we can scale down both the allocation and prices by some α ≥ 1 without affecting truthfulness. We
give a procedure which takes an α-approximation algorithm that proves an integrality gap of α for (CA-P),
and returns in polynomial time a convex decomposition of x∗

α into polynomially many integer solutions, i.e.,
λl values such that x∗

α =
∑

l∈I λlx
l, where {xl}l∈I is the set of all integer solutions to (CA-P), λl ≥ 0,∑

λl = 1 (with only polynomially many λl > 0). This is obtained by strengthening the decomposition
technique of Carr and Vempala [7]. This is the crucial step, using which we convert the truthful fractional
mechanism MF to a truthful deterministic support mechanism MD that outputs {λl}l∈I as the allocation
and pF

α as the prices, while losing a factor of α in the social welfare (and maintaining individual rationality).
Now we use Theorem 2.4 to obtain a randomized, truthful in expectation mechanism that achieves an α-
approximation to the social welfare. We summarize the construction below.

The truthful α-approximation support mechanism. Given valuations v1, . . . , vn; an α-approximation
algorithm A for WDP that shows an integrality gap of α for (CA-P).

1. Use VCG to get a truthful fractional mechanism MF that outputs allocation fF (v) = x∗(v), the
optimal solution to (CA-P), and prices pF (v).

2. UseA to obtain the convex decomposition x∗

α =
∑

l∈I λlx
l with only polynomially many positive λl.

3. Return the support mechanism MD = (fD, pD) with fD(v) = {λl}l∈I and pD(v) = pF (v)
α (and use

Theorem 2.4 to get the desired randomized mechanism).
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Thus we show that any approximation algorithm for maximizing social welfare, that also shows an integral-
ity gap guarantee, can be plugged in to get a randomized truthful mechanism with the same approximation
guarantee. Thus, we are able to combine the versatility of VCG as a mechanism design tool for devising
truthful mechanisms, and the computational tractability of approximation algorithms.

Details of the construction We now describe the construction in detail. Let P denote the feasible region
of (CA-P), and Z(P) ⊆ P be the set of integer solutions of (CA-P). The integrality gap of P is defined as

IGP = sup
v=(v1,...,vn)

maxx∈P
∑

i,S vi(S)xi,S

maxx∈Z(P)

∑
i,S vi(S)xi,S

where the vis are valuations with vi(∅) = 0, vi(S) ≤ vi(T ) for S ⊆ T . Our mechanisms require an
approximation algorithm that “verifies” an integrality gap of (at most) α, by which we mean that for any
valuation vector v the algorithm produces an integer solution of value at least 1

α times the LP-optimum.
We emphasize that the supremum is taken over all valuations v in evaluating the integrality gap, and an
algorithm that verifies this gap must consequently work for all valuations. To clarify this further, whereas
we may sometimes consider (designing mechanisms for) a structured class of valuations V , the integrality
gap IGP is determined only by the polytope P , and to exploit the structure of V we need to be able to
encode this structure into the polytope P . In particular, an approximation algorithm that specifically proves
a guarantee for class V using the optimum of (CA-P) as an upper bound (e.g., the 2-approximation algorithm
for submodular valuations in [26]) does not suffice to bound or verify the integrality gap IGP .

The fractional mechanism defined will have outcome set P . We extend the domain Vi to assign values
to fractional solutions x ∈ P: for any vi ∈ Vi, we define vi(x) =

∑
S vi(S)xi,S . We again abuse notation

and use vi to denote both the original valuation and its extension. We now define precisely the fractional
VCG mechanism which is simply VCG in this fractional domain.

The fractional VCG mechanism MF = (fF , pF ) is defined as follows: the allocation rule is given by
fF (v) = x∗(v) where x∗(v) is an optimal solution to (CA-P) for valuation v = (v1, . . . , vn); the prices are
pF

i (v) =
(
−

∑
i′ 6=i vi′(S)x∗i′,S + hi(v−i)

)
, where hi(v−i) is any function that does not depend on vi.

As usual with VCG mechanisms, one can set hi(v−i) =
∑

i′ 6=i vi′(S)y∗i′,S above, where y∗ is the optimal
fractional solution when we constrain xi,S = 0 for all S, so as to ensure that that players have non-negative
utility (individual rationality), and players always have a non-negative payment (they never receive money).
We will assume these prices from now on. It is a classic result that the VCG mechanism (family) is truthful,
i.e., satisfies the criterion in Definition 2.1. For any α ≥ 1, we can define an α-scaled fractional VCG
mechanism that outputs the outcome fF (v)

α and prices pF (v)
α . For any v ∈ V and vi ∈ Vi, since vi

(fF (v)
α

)
=

vi(f
F (v))
α (because vi(x) is linear in x), the α-scaled fractional VCG mechanism is also clearly truthful.
Suppose that we can express x∗(v)

α as a convex combination
∑

l∈I λl(v)xl of integral solutions where
λl(v) ≥ 0,

∑
l λl(v) = 1. (Observe that α must be at least IGP since such a decomposition of x∗(v)

α implies
that there exists an integer solution xl of value at least 1

α ·
∑

i vi(x∗(v)).) One then obtains a deterministic

support mechanism MD with allocation rule fD(v) = {λl(v)}l∈I and prices pD
i (v) = pF

i (v)
α . Before

detailing the decomposition procedure, we show that MD is a truthful, α-approximation mechanism.

Lemma 3.2 Mechanism MD is truthful and computes an α-approximation to the social welfare.

Proof : Essentially, we show that MD is equivalent to the α-scaled fractional VCG mechanism and re-
tains all its properties. For any declared valuation v = (v1, . . . , vn), the value player i gets in MD is
exactly vi(f

F (v))
α since vi(fD(v)) =

∑
l∈I λl(v)vi(xl) by definition, which is equal to vi(

∑
l∈I λl(v)xl) =

8



vi

(x∗(v)
α

)
= vi(x

∗(v))
α . Since the prices are also scaled by α, truthfulness follows from the truthfulness of

MF . Truthfulness also then implies the approximation guarantee since
∑

i vi(x∗(v)) is an upper bound on
the optimum. Note that MD satisfies individual rationality and no player is paid by the mechanism.

Using Theorem 2.4 we can move from MD to a randomized mechanism, while maintaining truthfulness,
the approximation ratio, and individual rationality. Thus we obtain Theorem 3.1. The crucial property that
we require here is that for any vi ∈ Vi, and any v ∈ V ,

∑
l∈I λl(v)vi(xl) = vi(x

∗(v))
α . A sufficient condition

for this is that vi(x) be a linear function of x and that x∗(v)
α be decomposable as

∑
l∈I λl(v)xl, which is

what we use in our construction.

3.1 Decomposing the fractional solution

We now prove the main decomposition lemma: we show that an α-approximation algorithm A that proves
an integrality gap of α for (CA-P) can be used to express any fractional solution to (CA-P), scaled down by
α, as a convex combination of integer solutions. The proof is based on the method outlined in [7] where it is
shown that for minimization problems, if the integrality gap is β ≥ 1, then for any fractional solution, one
can obtain a convex combination of integer solutions such that β times the fractional solution dominates (i.e.,
is component-wise greater than) the convex combination. We need to modify their argument so as to ensure
that we get an exact decomposition (for our maximization problem), which is crucial for our truthfulness
argument to hold. For general maximization LPs, one cannot necessarily get such an exact decomposition
of the scaled fractional solution, but only one that dominates the scaled solution. We leverage the packing
structure of the problem to get an exact decomposition. Recall that P denotes the feasible region of (CA-P)
and Z(P) = {xl}l∈I is the set of all integer solutions to (CA-P) where I is an index set for the integer
solutions. We exploit the following property, which we call the “packing property”: if x ∈ Z(P) and y ≤ x
is integral then y ∈ Z(P).

Fix any x∗ ∈ P such that E = {(i, S) : x∗i,S > 0} has size polynomial in m,n. Any basic
solution to (CA-P) satisfies this since by standard polyhedral theory such a solution has at most m +
n non-zero entries. We solve the linear program (P) given below to obtain the convex decomposition.

min
∑
l∈I

λl (P)

s.t.
∑

l

λlx
l
i,S =

x∗i,S
α for all (i, S) ∈ E (3)∑

l

λl ≥ 1 (4)

λl ≥ 0 for all l ∈ I.

max 1
α ·

∑
(i,S)∈E

x∗i,Swi,S + z (D)

s.t.
∑

(i,S)∈E

xl
i,Swi,S + z ≤ 1 for all l ∈ I (5)

z ≥ 0
wi,S unconstrained for all (i, S) ∈ E.

The primal (P) has an exponential number of variables, so we consider its dual (D). The dual has an
exponential number of constraints and a variable wi,S for each constraint (3), and one can view w as a
valuation. We show that a separation oracle for the dual can be obtained by using algorithmAwith valuation
w, so the ellipsoid method can be used to solve (D) and hence (P) (we also show that the optimal value is 1).
One potential problem encountered is that the wi,S values could be negative, whereas A is only designed to
handle non-negative valuations. However it is easy to argue that one can instead useAwith the non-negative
valuation w+ given by w+

i,S = max(wi,S , 0), and this yields a separation oracle. (Alternatively, one could
first compute λl values such that

∑
l∈I λlx

l ≥ x∗

α , so the dual variables wi,S are now non-negative, and then
use the packing property to modify these λl values and get an exact decomposition.)

9



Claim 3.3 Let w = {wi,S}(i,S)∈E be any weight vector. Define w+ by w+
i,S = max(wi,S , 0). Given any

integer solution x̂ ∈ Z(P), one can obtain xl ∈ Z(P) such that
∑

(i,S)∈E xl
i,Swi,S =

∑
(i,S)∈E x̂i,Sw+

i,S .

Proof : Set xl
i,S = x̂i,S if wi,S ≥ 0 and 0 otherwise. Clearly,

∑
(i,S)∈E xl

i,Swi,S =
∑

(i,S)∈E x̂i,Sw+
i,S .

Since xl ≤ x̂ is integral, by the packing property xl ∈ Z(P).

Claim 3.4 For any weight vector w = {wi,S}(i,S)∈E , one can compute in polynomial time xl ∈ Z(P) such
that

∑
(i,S)∈E xl

i,Swi,S ≥ 1
α ·maxx∈P

∑
(i,S)∈E xi,Swi,S .

Proof : Let O∗ = maxx∈P
∑

(i,S)∈E xi,Swi,S . Let w+ be as defined in Claim 3.3. Clearly w+ is
component-wise greater than w and

∑
i,S xi,Sw+

i,S =
∑

(i,S)∈E xi,Sw+
i,S for any x. If A only expects a

non-negative valuation as input, then we can simply run A on w+ to get an integer solution x̂ such that∑
(i,S)∈E x̂i,Sw+

i,S ≥
O∗

α . But in our case A requires a valuation that satisfies monotonicity, so we can-
not directly feed it w+. However one can simply “monotonize” w+: for each i define valuation ṽi by
ṽi(S) = maxT⊆S:(i,T )∈E w+

i,T where the maximum is 0 if there is no T ⊆ S such that (i, T ) ∈ E. We use
A on valuation ṽ to compute an α-approximate integer solution x̃, so

∑
i,S x̃i,S ṽi,S ≥ O∗

α since ṽi,S ≥ w+
i,S

for every (i, S). It is easy to transform x̃ to x̂ so that
∑

(i,S)∈E x̂i,Sw+
i,S =

∑
i,S x̃i,S ṽi,S . We set x̂i,S = x̃i,S

if (i, S) ∈ E or x̃i,S = 0, otherwise set x̂i,T ′ = 1 for T ′ = arg maxT⊆S:(i,T )∈E wi,T , and x̂i,S = 0. Finally,
we use Claim 3.3 to convert x̂ to a solution xl ∈ Z(P), which gives the desired integer solution.

Lemma 3.5 One can obtain in polynomial time a decomposition x∗

α =
∑

l∈I λlx
l where λl ≥ 0 for every l

(with only polynomially many positive λl) and
∑

l∈I λl = 1.

Proof : We first show that the optimal value of (D), and hence of (P) by strong duality, is exactly 1. So
an optimal solution to (P) yields the convex decomposition. Setting z = 1, wi,S = 0 for all (i, S) ∈ E
gives a feasible solution with value 1. We claim that any feasible solution (w, z) has value at most 1.
Suppose 1

α ·
∑

(i,S)∈E x∗i,Swi,S + z > 1. Using Claim 3.4 one can find an integer solution xl such that∑
(i,S)∈E xl

i,Swi,S ≥ 1
α ·

∑
(i,S)∈E x∗i,Swi,S > 1− z, contradicting the feasibility of (w, z).

The above argument shows that we can add the inequality 1
α ·

∑
(i,S)∈E x∗i,Swi,S + z ≥ 1 to the dual

program (D) without altering anything. We will run the ellipsoid method on (D) to identify a dual program
with a polynomial-size set of inequalities (5), that is equivalent to (D). These inequalities will be the violated
inequalities returned by the separation oracle during the execution of the ellipsoid method, that are used to
cut the ellipsoid. Taking the dual of this compact program gives a primal program with a polynomial
number of variables and constraints which we can solve to get λl values that sum to 1; this gives the desired
decomposition. The separation oracle that we use is as follows: at a point (w, z), if 1

α ·
∑

(i,S)∈E x∗i,Swi,S +
z > 1, then we can find an xl and a corresponding violated constraint using Claim 3.4; otherwise we use the
half space 1

α

∑
(i,S)∈E x∗i,Swi,S + z ≥ 1 to cut the current ellipsoid.

4 Applications

4.1 General and multi-unit combinatorial auctions

In multi-unit combinatorial auctions (MUCAs) we have m items with B copies of each item, and n players,
and each player desires at most one copy of an item. With B = 1 we get the regular combinatorial auction.
The LP relaxation for MUCA is similar to (CA-P), but the RHS of constraints (2) changes to B. The
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integrality gap of this relaxation is a function of B: (i) the integrality gap is O(m
1

B+1 ) for any B ≥ 1; (ii)
the integrality gap is (1 + ε) when B = Ω(log m) (more precisely B ≥ c(ε) · log m where c(.) increases
with 1

ε ) for any ε > 0. Moreover there are algorithms that “verify” this gap, e.g., the derandomization of
“standard” randomized rounding [32], the rounding approach of [21], or the recent primal-dual algorithm
of [6].

We can use the above approximation algorithms to construct randomized, strategic, approximation
mechanisms for CAs and MUCAs, with arbitrary valuation functions. There are two (linked) issues here:
(1) the representation of the input, and (2) the computational effort needed to solve (CA-P). With general
valuations, representation becomes an issue since the length of the valuation can be exponential in m, which
therefore also renders direct revelation mechanisms intractable. Two ways to address this have been consid-
ered: (a) assuming that we have “short” valuations that can be succinctly described (with a suitable bidding
language), thus allowing for direct revelation mechanisms; (b) assuming that we have some oracle access
to the valuation, so the mechanism now needs to be an iterative mechanism. It is well known in the eco-
nomics literature that the issue of “one-shot” vs. iterative mechanisms also affects truthfulness properties.
To specify our results precisely and address (1) and (2), we consider these two settings separately.

Short valuations. We first consider the case when the valuations are succinctly describable. An important
such valuation class is that of single-minded bidders where each player wants just one set (or any superset)
and specifies that set along with its value. More generally players could specify k ≥ 1 subset-value pairs
(S1, w1), . . . (Sk, wk), which yields two well-studied classes of valuations; (a) an XOR valuation where the
player desires one of these k subsets (the “k-minded case”), so v(T ) = maxi:Si⊆T wi; (b) an OR valuation
where the player is willing to receive any collection of disjoint sets from S1, . . . Sk and the values add up,
so v(T ) = max disjoint sets Si1 , . . . , Si`

⊆ T

(
v(Si1) + · · · + v(Si`)

)
. It is easy to see that for both these classes

of valuations, one can devise a demand oracle for the valuation from the above description with running
time polynomial in k for an XOR valuation, and exponential in k for an OR valuation. Hence, one can solve
the LP (CA-P) in polynomial time [5] (see also “General valuations” below) in the following two cases:
(a) XOR valuations, when k = poly(m,n); and (b) OR valuations, when k = O

(
log(m + n)

)
. We use

“short” valuations below to encode both, succinctness of descriptions, and the requirement that (CA-P) can
be solved in time polynomial in m and n.

Theorem 4.1 For MUCAs with “short” valuations and B copies of each item, we obtain randomized, truth-
ful in expectation mechanisms with the following approximation factors: (i) a factor of O(m

1
B+1 ) for any

B ≥ 1; and (ii) a (1 + ε)-guarantee for any ε > 0 when B = Ω(log m).

We obtain the first truthful mechanisms with non-trivial approximation guarantees for all values of B,
and with short valuations, improve upon the deterministic O(B · m

1
B−2 )-approximation ratio of Bartal et

al. [4] for general valuations. In particular, when B = Ω(log m) we get the first truthful (in expectation)
(1 + ε)-approximation mechanism for short multi-parameter valuations, answering an open question in [2]
about devising mechanisms for valuations more general than the “known” single-minded case (i.e., the
sets are public). More work has been directed toward the single-minded case defined in [27] who gave a
deterministic mechanism with an O(

√
m) guarantee when B = 1. Archer et al. [2] obtained a (1 + ε)-

approximation mechanism when B = Ω(log m), for the “known” single-minded case that is truthful both in
expectation and with high probability. Recently, Briest et al. [6] gave a deterministic O

(
m

1
B

)
-approximation

mechanism for the unknown single-minded case. We give a unified way to obtain randomized, truthful in ex-
pectation mechanisms and get approximation guarantees that match the known inapproximability results [4].

General valuations. We now consider the setting with general valuations with an oracle access to the
valuations. Two kinds of oracle access were considered by [30, 5]: value queries, where the query asks
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for the value of a set S, and demand queries, where the query specifies item prices p1, . . . , pm, and asks a
player i to return a subset S that maximizes vi(S) −

∑
j∈S pj . Demand queries are very natural from an

economic perspective and are known to be strictly more powerful than value queries [30, 5]. Blumrosen
and Nisan [5] show that LP (CA-P) can be solved with a polynomial number of demand queries using the
ellipsoid method, since they yield a separation oracle for the dual of (CA-P). This addresses issue (2).

As mentioned previously, direct revelation mechanisms become ineffective with general valuations. Us-
ing Theorem 3.1 we can construct strategic, iterative mechanisms for general valuations using demand
queries. It is well known in the economics literature (see e.g., [10]) that moving from direct-revelation to
iterative mechanisms often leads to a weakening of the solution concept, from dominant strategies to ex-post
Nash equilibrium. Our mechanisms yield truthfulness in expectation as an ex-post Nash equilibrium, which
means the following: for any player i, and any type profile v−i ∈ V−i of the other players, if the other players
act according to their types in this profile in the iterative mechanism, then i’s best response (for maximizing
expected utility) is to be truthful. In particular, this means that truthful revelation is a Nash equilibrium with
no ex-post regret, that is, even if a player were told beforehand the types that the other players would use
to act in the iterative mechanism, he would have no incentive to deviate from his truth-telling strategy. As
an example, consider the regular second-price auction with two players with the following iterative flavor:
player X bids first and then player Y states his bid; the player with highest bid wins and pays the second
highest bid value. Truthfulness fails to be a dominant strategy. Suppose Y chooses the strategy “if X bids
above 5, then I will say 20, otherwise I will say 2”, then, if X’s true value is higher than 5, his best response
is to declare 5. However truthfulness is still an ex-post Nash equilibrium: if Y fixes any private value and
bids that, then regardless of Y ’s private value X’s best response is to tell the truth.

Theorem 4.2 For MUCAs with “general” valuations and demand oracles, and B copies of each item, we
obtain randomized mechanisms for which truthfulness in expectation is an ex-post Nash equilibrium, with
the following guarantees: (i) an O(m

1
B+1 )-guarantee for any B ≥ 1; and (ii) a (1 + ε)-guarantee for any

ε > 0 when B = Ω(log m).

Very little is known about truthful and approximation mechanisms with general valuations. For B ≤ 2
and general valuations, no strategic mechanisms were known previously. Bartal et al. [4] gave a determin-
istic, truthful O(B ·m

1
B−2 )-approximation for general valuations using demand oracles, and Dobzinski et

al. [14] gave a deterministic, truthful O(
√

m)-approximation for B = 1 and subadditive valuations using
value oracles. We improve upon the performance guarantee of [4] for all B, and get the same guarantee
as [14] for general valuations but using demand oracles, randomization, and a different solution concept.

4.2 General multi-unit auctions and multi-parameter knapsack

In a multi-unit auction, there are m identical items. and each player i has a value vi(j) for getting j items,
1 ≤ j ≤ m, where the vi(.)s are non-decreasing functions. The goal is to distribute the m items, allocating
xi items to player i, so as to maximize

∑
i vi(xi). This problem is solvable in time polynomial in m, so if

each vi(j) is explicitly specified then one can implement VCG. We will consider valuations that are specified
more succinctly, e.g., step functions, piecewise linear functions with a “small” number of pieces, XOR, OR
valuations or their combinations etc., or valuations given via an oracle access. We want mechanisms that
run in time polynomial in n and the size of the specification.

If all value functions are step functions (single-minded players), then this is exactly the knapsack prob-
lem, for which Briest et al. [6] gave a truthful FPTAS. Kothari et al. [22] gave an “approximately truthful”
FPTAS for the special case of “marginal decreasing valuations”. We obtain the first truthful, approximation
mechanisms for general multi-unit auctions (i.e., multi-parameter knapsack problems). We consider the
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following natural LP relaxation for this problem:

max
{∑

i,j

vi(j)xij subject to
∑

j

xij ≤ 1 for all i;
∑
i,j

j · xij ≤ m; xij ≥ 0 ∀i, j
}

. (KN-P)

Here variable xij indicates if player i gets j items. When the vi(.)s are step functions this LP reduces to
the standard LP relaxation for Knapsack, for which a simple greedy algorithm proves an integrality gap
of at most 2 (see, e.g., [20]). We give a greedy algorithm that generalizes this algorithm and bounds the
integrality gap of (KN-P) by 2. Using this, we obtain the first truthful, approximation mechanisms for
non-single-minded players and get a guarantee of 2. Lavi et al. [23] showed that with two players, if all
items must always be allocated, then with OR valuations, no deterministic truthful mechanism can obtain
an approximation ratio better than 2. As in Section 4.1, “short” valuations will mean that the valuation is
given succinctly and we can solve the LP in polynomial time. Since items are identical, a demand oracle
here fixes a price p ≥ 0 and asks player i to return a quantity j that maximizes vi(j)− p · j.

Theorem 4.3 There is a randomized, 2-approximation mechanism for multi-unit auctions, which (i) is truth-
ful in expectation for “short” valuations; and (ii) has truthfulness in expectation as an ex-post Nash equi-
librium for general valuations with demand oracles.

We now give the greedy algorithm which proves an integrality gap of 2 for (KN-P). Let OPT be the
value of the LP-optimum. Define the marginal value function of i given quantity j, vi(·|j), as follows: for
any x ≥ 0, vi(x|j) = vi(x + j)− vi(j).

1. Initialize M ← m. Each player i starts off with qi = 0 items. While M > 0 we repeatedly do the
following: (a) find i∗, j∗ that maximizes vi(j|qi)/j; (b) if j∗ ≤ M , set qi∗ ← qi∗ + j∗ (i.e., allocate
j∗ more items to i∗); (c) decrement M by j∗.

2. Let Greedy =
∑

i vi(qi) be the value of this allocation, and let Max = maxi vi(m). If Max > Greedy,
allocate all items to the player with the maximum vi(m), otherwise return (q1, . . . qn) as the allocation.

Lemma 4.4 The above algorithm finds an allocation with value at least OPT/2.

Proof : We will exhibit a feasible dual solution with value at most twice the value obtained by the algorithm,
hence the claim will follow. The dual program is

min
{∑

i

αi + m · β subject to αi ≥ vi(j)− j · β ∀i, j; β, αi ≥ 0 ∀i
}

.

Suppose the algorithm stops at the end of iteration s + 1, that is, after M it is decremented in iteration
s + 1, we have M ≤ 0. Let (il, jl) be the (i∗, j∗) pair in iteration l for l = 1, . . . , s + 1. Recall that qi is
the number of items allocated to player i. Let qi,k denote the quantity

∑k
l=1:i=il

jl, and let pi = qi,s. So∑s+1
l=1 jl =

∑
i pi + js+1 ≥ m. Note that pi ≤ qi, and it could be that pi < qi — this can happen only if∑s+1

l=1 jl = m and i = is+1, so qi = pi + js+1. We will exhibit a feasible dual solution of value at most
2 max

{∑
i vi(pi),Max

}
. Define β = vis+1(js+1|qis+1)/js+1, and αi = vi(pi) − pi · β for every i. Before

verifying feasibility, we show that this proves the lemma:∑
i

αi + m · β ≤
∑

i

(αi + pi · β) + js+1 · β =
∑

i

vi(pi) + vis+1(js+1|qis+1) ≤ 2 max
{∑

i

vi(pi),Max
}

.

Consider any iteration l = 1, . . . , s. Let i = il, q = qi,l−1 and i′ = il+1, q
′ = qi′,l. We claim that

vi(jl|q)/jl ≥ vi′(jl+1|q′)/jl+1. This is clear from the definition of (i∗, j∗) if i 6= i′, otherwise this follows
since q′ = q + jl, and vi(jl|q)/jl ≥ vi(jl + jl+1|q)/(jl + jl+1) =

(
vi(jl|q) + v(jl+1|q′)

)
/(jl + jl+1).
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Now fix any i. For j ≥ pi, by the definition of β we have β ≥ vi(j − pi|pi)/(j − pi) or equivalently,
αi ≥ vi(j)− j · β. Consider the piecewise-linear function fi passing through the points

(
qi,l, vi(qi,l)

)
, l =

0, . . . , s (where qi,0 = 0). By our earlier claim, fi(.) is a concave (increasing) function, and each segment
of fi(.) has slope at least β. These two facts imply that the line passing through

(
pi, fi(pi)

)
with slope β

lies above the fi(.) curve in [0, pi]. Also note that for any j ≤ pi, fi(j) ≥ vi(j) since if j ∈ [qi,l, qi,l+1] for
some l, then fi(j) = vi(qi,l)+(j−qi,l) ·

vi(jl+1|qi,l)
jl+1

≥ vi(qi,l)+(j−qi,l) ·
vi(j−qi,l|qi,l)

j−qi,l
= vi(j). Combining

these facts, we get that for any j ≤ pi, fi(pi)− (pi − j) · β ≥ fi(j) ≥ vi(j) which when rearranged gives
αi ≥ vi(j)− j · β.

4.3 Graph routing problems

We now consider two closely related problems, edge-disjoint-paths (EDP) and all-or-nothing multi-commodity
flow (ANF). In both EDP and ANF we have a graph G = (V,E) with capacities ue ≥ 1 on the edges. The
players are (si, ti) source-sink pairs where si, ti ∈ V . Each player has a value wi. Both (si, ti) and the
value wi are private information; a special case is the “known” case where the (si, ti) pairs are public and
only wi is private. The social-welfare maximization problem is to select a maximum-weight routable set. In
EDP, a set is routable if each (si, ti) pair in the set can be assigned an si-ti path and at most ue paths use
edge e; in ANF, for each (si, ti) pair in the set we need to route one unit of flow from si to ti respecting edge
capacities, possibly splitting the flow across several paths. For the mechanism-design problem, we define
the outcome set carefully to ensure that only players’ values for an outcome, and not the set itself, depends
on his private information. For EDP, an outcome is an allocation of edges (as paths) to players such that
each edge e is used at most ue times (and player i receives value wi if he is allocated an si-ti path); for ANF,
an outcome is a flow-vector allocation to each player, such that the total flow through each edge e is at most
ue (and player i receives value wi if his flow-vector sends one unit of flow from si to ti).

We apply our techniques to obtain two types of results for EDP and ANF. Let B = mine ue. First, we
observe that Theorem 4.1 yields a truthful (in expectation) O(m

1
B+1 )-approximation mechanism for both

problems. Next, we show that for the known case, we can translate the improved guarantees of [8] for
EDP and ANF on certain graph classes to the mechanism-design setting to obtain truthful mechanisms with
matching approximation guarantees for EDP and ANF (on the appropriate graph classes).

Both EDP and ANF admit the following flow-path based LP relaxation. We use P below to index the
collection Path of all (simple) paths in G.

max
∑
i,P

vi(P )fi,P (Route-P)

subject to
∑
P

fi,P ≤ 1 for each player i∑
i

∑
P :e∈P

fi,P ≤ ue for each edge e ∈ E

fi,P ≥ 0 for each i, P.

Let Pathi denote the collection of si-ti paths. Here fi,P denotes the amount of flow on path P , and vi(P ) =
wi if P ∈ Pathi, and is 0 otherwise. It is easy to see that an integral solution corresponds to an EDP solution,
and a solution where

∑
P fi,P is integral for each player i corresponds to an ANF solution. Observe that

EDP is a structured MUCA with short valuations (since one can construct a demand oracle for player i,
given (si, ti;wi)), and (Route-P) is simply a specialization of (CA-P) (where items are edges, and a set S
that does not contain an si-ti path has vi(S) = 0). Also, a solution to EDP is also clearly a solution to ANF.
Thus, Theorem 4.1 yields a randomized, truthful O(m

1
B+1 )-approximation for both problems.
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Chekuri et al. [8] use the above LP to obtain approximation guarantees of (i) O(log m) for EDP on
planar graphs when B ≥ 2; and (ii) O(log2 m) for ANF on general graphs, and O(log m) for planar graphs.
(The guarantees are stated for wi = 1, but it is implicit that the algorithms generalize to arbitrary wi.)
Notice however that this does not imply analogous bounds on the integrality gap of (Route-P) for these
graph classes since the valuation functions arising in EDP and ANF are structured valuations. (In fact, it
is not hard to cast MUCA as EDP, so the integrality gap of (Route-P) with ue = B for all e is Θ(m

1
B+1 ).)

However, we show that in the known case, our techniques can be used to obtain matching approximation
guarantees in the mechanism-design setting.

The key observation is that since each player i’s (true) value depends (linearly) only on the amount
of flow routed from si to ti (which are publicly known) and not on the actual flow-paths that are chosen,
it suffices to obtain a “partial” decomposition such that the (total flow routed for an (si, ti) pair by the
convex combination) = (total flow routed for (si, ti) by the LP)/α. To see this formally, recall that (see
Lemma 3.2) to translate the fractional VCG mechanism to (a support mechanism, and hence) a truthful-in-
expectation mechanism, we require a convex combination

∑
l∈I λl(v)xl that satisfies

∑
l∈I λl(v)vi(xl) =

vi(f∗(v))/α for each player i, where vi(f) is the true value of player i for a feasible solution f to (Route-P),
and f∗(v) is an optimal solution to (Route-P) for the valuation-profile v. In the known case, vi(f) =
wi

(∑
P∈Pathi

fi,P

)
, and so a “partial” decomposition of f∗(v) suffices to yield this property; but if (si, ti)

is private information, then this is no longer true, and one needs to resort to a “complete” decomposition
(which requires an integrality-gap-verifying algorithm for (Route-P)).

We now argue briefly that an α-approximation algorithm for EDP or ANF based on the LP (Route-P) can
be used to obtain a partial decomposition (with the same α), enabling us to translate the approximation guar-
antees of [8] to the mechanism-design setting. Similar results are known with demands di when max di ≤ B
and these also transfer to the mechanisms. For notational convenience, given a solution f to (Route-P), we
introduce auxilliary variables xi :=

∑
P∈Pathi

fi,P to denote the total flow routed for player i. The set of
“integer” solutions {(f l, xl)}l∈I that the decomposition uses is (i) the set of integer solutions to (Route-P)
for EDP; and (ii) the set of solutions to (Route-P) with integral xis for ANF. (Note that for EDP, the corre-
sponding set satisfies the packing property, and for ANF, the projection of the set to the x-space satisfies the
packing property.) To partially decompose a solution (f∗, x∗), we solve the following primal and dual LPs.

min
∑
l∈I

λl (P’)

s.t.
∑

l

λlx
l
i = x∗i

α for all i∑
l

λl ≥ 1

λl ≥ 0 for all l ∈ I.

max 1
α ·

∑
i

x∗i πi + z (D’)

s.t.
∑

i

xl
iπi + z ≤ 1 for all l ∈ I (6)

z ≥ 0
πi unconstrained for all i ∈ E.

Arguments that are almost identical to those in Section 3.1 apply to this pair of LPs. Their optimal value is
1, and it is not hard to see that an LP-based α-approximation algorithm for EDP or ANF can be used to find
a violated inequality (6) when 1

α ·
∑

i x
∗
i πi + z > 1. So we obtain a separation oracle for (D’) as before, and

this can be used to obtain a compact dual LP, and hence, a compact primal LP (with optimal value 1) whose
solution yields the partial decomposition.

Previous truthful mechanisms for EDP were: for the “known” case, a deterministic O(
√

m)-approximation
when di = 1 using the greedy algorithm in [27], and a deterministic O(m

1
B−1 )-approximation mech-

anism [6] when B > 1; in the “unknown” case [4] gave an O
(
B · ( m

min di
)

1
B−2

)
-approximation when

B > 2. [3] give a deterministic O(log2 wmax ·
√

m)-approximation mechanism for B = 1 under the concept
of undominated strategies.
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5 Conclusions and discussion

We have presented a general method for devising randomized, truthful-in-expectation mechanisms for pack-
ing problems that allows one to exploit approximation algorithms and obtain matching approximation guar-
antees for the mechanism-design problem. Given an α-approximation algorithm that also bounds the inte-
grality gap of the LP-relaxation of a packing problem by α, we show how to design a truthful mechanism
with the same approximation ratio. Our method proceeds by decomposing the optimal LP-solution scaled
down by α into a convex combination of integer solutions, which can then be viewed as a probability dis-
tribution over integer solutions. We show that the payments of the fractional VCG mechanism (whose
outcome is the LP-optimum) can be modified and combined with the above randomized algorithm to yield
a randomized mechanism that is truthful in expectation. We demonstrate the usefulness of our technique
on a variety of problem domains: combinatorial auctions, multi-unit auctions, multi-unit combinatorial auc-
tions, and graph-routing problems (edge-disjoint-paths (EDP), all-or-nothing multicommodity flow (ANF)).
In many cases, the approximation guarantees we obtain are the best possible if one requires polynomial-time
computation (unless P=NP).

It is instructive to note that our method can also be viewed as constructing a maximal-in-distributional-
range (MIDR) mechanism (see [12]). That is, instead of presenting our method as one where we first
obtain the fractional VCG mechanism and then translate this to a randomized mechanism, we can view our
construction as one that uses an α-integrality-gap-verifying approximation algorithm to exactly optimize
the social welfare over a subset of the convex hull of integer solutions, and hence, implement VCG over a
suitable (fixed) outcome set. To see this, let PI denote the convex hull of integer points in P (i.e., Z(P)),
where P is the polytope of feasible solutions to the LP-relaxation of the packing problem. Observe that the
outcome of any randomized or support mechanism corresponds to a point in PI . Our decomposition lemma
(Lemma 3.5) shows that P/α ⊆ PI ; also, we can efficiently optimize over P/α since this is equivalent to
optimizing over P . Thus, our randomized (or deterministic support) mechanism (which returns the optimum
over P/α as its outcome) is essentially VCG over the outcome-set P/α. (And the α-approximation ratio
follows since the optimum value over P/α is within an α-factor of the optimum over P .)

Subsequent to the publication of the conference version of this paper [24], various other solutions have
been obtained for combinatorial auctions and multi-unit auctions. For combinatorial auctions, [15, 11] ob-
tain the same approximation guarantees that we obtain but under the stronger solution concept of universal
truthfulness. For multi-unit auctions, [13] give a deterministic truthful 2-approximation, and [12] obtain
an FPTAS that is truthful in expectation (also via an MIDR mechanism). These mechanisms are however
tailored to the specific problem considered; in contrast, our method is the only (currently known) general
method to convert approximation algorithms to truthful mechanisms (with matching approximation guaran-
tees) for multidimensional problem domains. It is also worth noting that our mechanisms have remained
the state-of-art for other problem domains, most notably, multi-unit combinatorial auctions, where no other
truthful mechanism achieves similar approximation guarantees.

One of the insights to emerge from our work is that fractional truthful mechanisms combined with a
suitable rounding scheme can be an effective tool in truthful mechanism design even for multidimensional
domains, The versatility and usefulness of this approach has been reinforced in various subsequent works,
such as [25, 17, 16, 19]. The latter three papers [17, 16, 19] all devise truthful-in-expectation mechanisms
for their respective problems (stochastic market planning, generalized assignment problem, secondary spec-
trum auctions) by first devising a fractional truthful mechanism and then adapting our rounding ideas to
convert this into the desired randomized mechanism. Lavi and Swamy [25] consider a special case of the
minimum-makespan scheduling problem on unrelated machines. In their case, constructing a fractional
truthful mechanism is non-trivial since makespan minimization is not a social-welfare-maximization prob-
lem, and the rounding scheme is tailored to the problem at hand and different from the one proposed here.
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5.1 Covering problems

While we focus on packing problems, another broad class of optimization problems that has natural game-
theoretic aspects is covering problems. Our techniques can be adapted to yield some partial results for this
class of problems. As an illustrative example, consider the set cover problem, which can be used to abstract
the following setting. A buyer needs to compose a team of workers that together cover a set of capabilities.
Each worker offers some of these capabilities, and incurs a certain cost if hired as part of the team. The
optimization problem is to select a minimum-cost set of workers that cover the required capabilities. In
the mechanism-design setting (sometimes referred to as a procurement auction), the workers’ costs and/or
capabilities are private information, and one therefore seeks to construct a truthful mechanism that achieves
a “good” approximation ratio. (As in the case of graph routing problems, we need to define the outcome set
carefully so that only players’ values for an outcome and not the set itself depends on private information.) If
the integrality gap of the LP relaxation of the covering problem is α > 1 (as verified by an α-approximation
algorithm), then it is not hard to see that (by dovetailing the arguments in Section 3.1), given an LP-solution
x, one can decompose α ·x into a convex combination of integer solutions where multiple copies of a worker
may be purchased. That is, these integer solutions (and hence, the random integer solution specified by the
convex combination) are only feasible for the original problem provided a worker may be hired multiple
times; in such cases our method yields an α-approximation, truthful (in expectation) mechanism.

An example of such a setting is the multiset multicover problem with multiplicities, where each capability
must be covered a certain number of times, each worker’s private information is a vector specifying the
amounts of the different capabilities he offers, and there is no limit on how many copies of a worker may
be chosen. Another example is the class of network design problems, where each worker owns edges of an
underlying known graph: the identity of the edges owned and their costs are private, and the goal is to select
a minimum-cost edge-set satisfying certain connectivity requirements, possibly with other side constraints
such as degree bounds. Such network design problems often come in two flavors, one where there is a bound
on the number of times an edge may be selected, and one where there is no such bound. Our technique yields
truthful, approximation mechanisms for the latter class of problems with guarantees matching that of the best
known LP-based (integrality-gap-verifying) approximation algorithm for the problem.

We also remark that for single-dimensional covering problems—e.g., network design problems where
each edge is a separate player and its cost is private information—we can adapt our proofs to show that one
can decompose min{α ·x,1} into a convex combination of feasible integer solutions to the problem (that is,
we no longer need to buy multiple copies). (Here 1 denotes the all ones vector and min denotes component-
wise minimum.) The resulting randomized mechanism then satisfies value monotonicity, a necessary and
sufficient condition for truthfulness, and we again get a general result: given an LP-based α-approximation
for a covering problem, one can get an α-approximation truthful mechanism for the analogous single-
dimensional mechanism-design problem. As an application, we mention that this immediately yields the first
truthful, approximation mechanisms for the single-dimensional mechanism-design version of survivable
network design (possibly with degree constraints) with approximation guarantees matching those of the
algorithmic problem.

A very interesting open problem is to design a truthful approximation mechanisms for multidimensional
covering problems when such multiplicities are not allowed.
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[1] A. Archer and É. Tardos. Truthful mechanisms for one-parameter agents. In Proceedings of the 42nd
Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 482–491, 2001.
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