
Local-Search based Approximation Algorithms for Mobile Facility

Location Problems

(Extended Abstract)

Sara Ahmadian∗ Zachary Friggstad∗ Chaitanya Swamy∗

Abstract

We consider the mobile facility location (MFL) problem.
We are given a set of facilities and clients located in a
common metric space G = (V, c). The goal is to move
each facility from its initial location to a destination (in
V) and assign each client to the destination of some
facility so as to minimize the sum of the movement-
costs of the facilities and the client-assignment costs.
This abstracts facility-location settings where one has
the flexibility of moving facilities from their current
locations to other destinations so as to serve clients more
efficiently by reducing their assignment costs.

We give the first local-search based approximation
algorithm for this problem and achieve the best-known
approximation guarantee. Our main result is (3 + ε)-
approximation for this problem for any constant ε >
0 using local search. The previous best guarantee
for MFL was an 8-approximation algorithm due to
Friggstad and Salavatipour [12] based on LP-rounding.
Our guarantee matches the best-known approximation
guarantee for the k-median problem. Since there is an
approximation-preserving reduction from the k-median
problem to MFL, any improvement of our result would
imply an analogous improvement for the k-median
problem. Furthermore, our analysis is tight (up to
o(1) factors) since the tight example for the local-search
based 3-approximation algorithm for k-median can be
easily adapted to show that our local-search algorithm
has a tight approximation ratio of 3. Our results extend
to the weighted generalization wherein each facility i has
a non-negative weight wi and the movement cost for i
is wi times the distance traveled by i.

In contrast to the k-median problem, the local
search procedure that moves, at each step, a constant
number of facilities (to chosen destinations) and assigns
each client to the nearest destination, is known to

∗{sahmadian,zfriggstad,cswamy}@math.uwaterloo.ca.
Dept. of Combinatorics and Optimization, Univ. Waterloo,

Waterloo, ON N2L 3G1. Supported in part by NSERC grant
327620-09. The second and third authors are also supported by

the third author’s Ontario Early Researcher Award.

have an unbounded locality gap. Our local-search
algorithm is a natural and simple variant, where we only
select the destinations of the facilities in each step and
optimally rematch the facilities to these destinations
(which might entail moving all facilities). One of
the chief novelties in the analysis is that in order
to generate a suitable collection of local-search moves
whose resulting inequalities yield the desired bound
on the cost of a local-optimum, we define a tree-
like structure that (loosely speaking) functions as a
“recursion tree”, using which we spawn off local-search
moves by exploring this tree to a constant depth.

1 Introduction

Facility location problems have been widely studied in
the Operations Research and Computer Science com-
munities (see, e.g., [23] and the survey [18]), and have a
wide range of applications. In its simplest version, un-
capacitated facility location (UFL), we are given a set of
facilities or service-providers with opening costs, and a
set of clients that require service, and we want to open
some facilities and assign clients to open facilities so as
to minimize the sum of the facility-opening and client-
assignment costs. An oft-cited prototypical example is
that of a company wanting to decide where to locate its
warehouses/distribution centers so as to serve its cus-
tomers in a cost-effective manner.

We consider facility-location problems that abstract
settings where facilities are mobile and may be relocated
to destinations near the clients in order to serve them
more efficiently by reducing the client-assignment costs.
More precisely, we consider the mobile facility location
(MFL) problem introduced by [10, 12], which generalizes
the classical k-median problem (see below). We are
given a complete graph G = (V,EG) with costs {c(u, v)}
on the edges, a set D ⊆ V of clients with each client j
having dj units of demand, and a set F ⊆ V of k initial
facility locations. We use the term facility i to denote
the facility whose initial location is i ∈ F . A solution S
to MFL moves each facility i to a final location si ∈ V
(which could be the same as i), incurring a movement

cost c(i, si), and assigns each client j to a final location
s ∈ S, incurring assignment cost djc(j, s). The total
cost of S is the sum of all the movement costs and
assignment costs. More formally, noting that each client
will be assigned to the location nearest to it in S, we
can express the cost of S as

MFL(S) :=
∑
i∈F

c(i, si) +
∑
j∈D

djc(j, σ(j))

where σ(v) (for any node v) gives the location in S
nearest to v (breaking ties arbitrarily). We assume
throughout that the edge costs form a metric. We use
the terms nodes and locations interchangeably.

Mobile facility location falls into the genre of move-
ment problems introduced by Demaine et al. [10]. In
these problems, we are given an initial configuration in
a weighted graph specified by placing “pebbles” on the
nodes and/or edges; the goal is to move the pebbles so
as to obtain a desired final configuration while mini-
mizing the maximum, or total, pebble movement. MFL

was introduced by Demaine et al. as the movement
problem where facility- and client- pebbles are placed
respectively at the initial locations of the facilities and
the clients; in the final configuration every client-pebble
should be co-located with some facility-pebble.

Our results. We give the first local-search based
approximation algorithm for this problem and achieve
the best-known approximation guarantee. Our main
result is a (3+ε)-approximation for this problem for any
constant ε > 0 using a simple local-search algorithm.
This improves upon the previous best 8-approximation
guarantee for MFL due to [12], which is based on LP-
rounding and is not combinatorial.

The local-search algorithm we consider is quite nat-
ural and simple. Observe that given the final locations
of the facilities, we can find the minimum-cost way of
moving facilities from their initial locations to the final
locations by solving a minimum-cost perfect-matching
problem (and the client assignments are determined by
the function σ defined above). Thus, we concentrate
on determining a good set of final locations. In our
local-search algorithm, at each step, we are allowed to
swap in and swap out a fixed number (say p) of loca-
tions. Clearly, for any fixed p, we can find the best local
move efficiently (since the cost of a set of final locations
can be computed in polytime). Note that we do not
impose any constraints on how the matching between
the initial and final locations may change due to a local
move. It is important to allow this flexibility, as it is
known [12] that the local-search procedure that moves,
at each step, a constant number of facilities to chosen
destinations has an unbounded approximation ratio.

Our main contribution is a tight analysis of this

local-search algorithm (Section 4). Our guarantee
matches (up to o(1) terms) the best-known approxima-
tion guarantee for the k-median problem. Since there
is an approximation-preserving reduction from the k-
median problem to MFL [12]—choose arbitrary initial
facility locations and give each client a huge demand
D—any improvement of our result would imply an anal-
ogous improvement for the k-median problem. (In this
respect, our result is a noteworthy exception to the
prevalent state of affairs for various other generaliza-
tions of UFL and k-median—e.g., the data placement
problem [3], {matroid-, red-blue-} median [20, 15, 8, 5],
k-facility-location [11, 14]—where the best approxima-
tion ratio for the problem is worse by a noticeable factor
(compared to UFL or k-median); [13] is another excep-
tion.) Moreover, our analysis is tight (up to o(1) factors)
because by suitably setting D in the reduction of [12],
we can ensure that our local-search algorithm for MFL

coincides with the local-search algorithm for k-median
in [2] which has a tight approximation ratio of 3.

We also consider a weighted generalization of the
problem (Section 5), wherein each facility i has a weight
wi indicating the cost incurred per-unit distance moved
and the cost for moving i to si is wic(i, si). (This can be
used to model, for example, the setting where different
facilities move at different speeds.) Our analysis is
versatile and extends to this weighted generalization
to yield the same performance guarantee. For the
further generalization of the problem, where the facility-
movement costs may be arbitrary and unrelated to the
client-assignment costs (for which a 9-approximation
can be obtained via LP-rounding; see “Related work”),
we show that local search based on multiple swaps has
a bad approximation ratio (Appendix A).

Our techniques. The analysis of our local-search
procedure requires various novel ideas. As is common
in the analysis of local-search algorithms, we identify a
set of test swaps and use local optimality to generate
suitable inequalities from these test swaps, which when
combined yield the stated performance guarantee. One
of the difficulties involved in adapting standard local-
search ideas to MFL is the following artifact: in MFL,
the cost of “opening” a set S of locations is the cost of
the min-cost perfect matching of F to S, which, unlike
other facility-location problems, is a highly non-additive
function of S (and as mentioned above, we need to allow
for the matching from F to S to change in non-local
ways). In most facility-location problems with opening
costs for which local search is known to work, we may
always swap in a facility used by the global optimum
(by possibly swapping out another facility) and easily
bound the resulting change in facility cost, and the
main consideration is to decide how to reassign clients

following the swap in a cost-effective way; in MFL we
do not have this flexibility and need to carefully choose
how to swap facilities so as to ensure that there is a good
matching of the facilities to their new destinations after
a swap and there is a frugal reassignment of clients.

This leads us to consider long relocation paths to re-
match facilities to their new destinations after a swap,
which are of the form (. . . , si, oi, si′ , . . .), where si and
oi are the locations that facility i is moved to in the
local and global optimum, S and O, respectively, and
si′ is the S-location closest to oi. By considering a
swap move involving the start and end locations of such
a path Z, we can obtain a bound on the movement
cost of all facilities i ∈ Z where si is the start of
the path or oi serves a large number of clients. To
account for the remaining facilities, we break up Z into
suitable intervals, each containing a constant number
of unaccounted locations which then participate in a
multi-location swap. This interval-swap move does not
at first appear to be useful since we can only bound the
cost-change due to this move in terms of a significant
multiple of (a portion of) the cost of the local optimum!
One of the novelties of our analysis is to show how we
can amortize the cost of such expensive terms and make
their contribution negligible by considering multiple
different ways of covering Z with intervals and averaging
the inequalities obtained for these interval swaps. These
ideas lead to the proof of an approximation ratio of 5
for the local-search algorithm (Section 3).

The tighter analysis leading to the 3-approximation
guarantee (Section 4) features another noteworthy idea,
namely that of using “recursion” (up to bounded depth)
to identify a suitable collection of test swaps. We con-
sider the tree-like structure created by the paths used
in the 5-approximation analysis, and (loosely speaking)
view this as a recursion tree, using which we spawn off
interval-swap moves by exploring this tree to a constant
depth. To our knowledge, we do not know of any anal-
ysis of a local-search algorithm that employs the idea of
recursion to generate the set of test local moves (used
to generate the inequalities that yield the desired per-
formance guarantee). We believe that this technique is
a notable contribution to the analysis of local-search al-
gorithms that is of independent interest and will find
further application.

Related work. As mentioned earlier, MFL was
introduced by Demaine et al. [10] in the context of
movement problems. Friggstad and Salavatipour [12]
designed the first approximation algorithm for MFL.
They gave an 8-approximation algorithm based on LP
rounding by building upon the LP-rounding algorithm
of Charikar et al. [7] for the k-median problem; this
algorithm works only however for the unweighted case.

They also observed that there is an approximation-
preserving reduction from k-median to MFL.

Chakrabarty and Swamy [5] observed that MFL,
even with arbitrary movement costs is a special case
of the matroid median problem [20]. Thus, the 9-
approximation algorithm devised for matroid median
independently by [8] and [5], yields a 9-approximation
algorithm for MFL with arbitrary movement costs.

There is a wealth of literature on approximation
algorithms for (metric) uncapacitated and capacitated
facility location (UFL and CFL), the k-median problem,
and their variants; see [25] for a survey on UFL. Whereas
constant-factor approximation algorithms for UFL and
k-median can be obtained via a variety of techniques
such as LP-rounding [26, 21, 7, 8], primal-dual meth-
ods [16, 17], local search [19, 6, 2], all known O(1)-
approximation algorithms for CFL (in its full generality)
are based on local search [19, 28, 4]. We now briefly
survey the work on local-search algorithms for facility-
location problems.

Starting with the work of [19], local-search tech-
niques have been utilized to devise O(1)-approximation
algorithms for various facility-location problems. Ko-
rupolu, Plaxton, and Rajaraman [19] devised O(1)-
approximation for UFL, and CFL with uniform capaci-
ties, and k-median (with a blow-up in k). Charikar and
Guha [6], and Arya et al. [2] both obtained a (1 +

√
2)-

approximation for UFL. The first constant-factor ap-
proximation for CFL was obtained by Pál, Tardos, and
Wexler [24], and after some improvements, the current-
best approximation ratio now stands at 5+ε [4]. For the
special case of uniform capacities, the analysis in [19]
was refined by [9], and Aggarwal et al. [1] obtain the
current-best 3-approximation. Arya et al. [2] devised
a (3 + ε)-approximation algorithm for k-median, which
was also the first constant-factor approximation algo-
rithm for this problem based on local search. Gupta
and Tangwongsan [14] (among other results) simplified
the analysis in [2]. We build upon some of their ideas
in our analysis.

Local-search algorithms with constant approxima-
tion ratios have also been devised for various variants
of the above three canonical problems. Mahdian and
Pál [22], and Svitkina and Tardos [27] consider settings
where the opening cost of a facility is a function of the
set of clients served by it. In [22], this cost is a non-
decreasing function of the number of clients, and in [27]
this cost arises from a certain tree defined on the client
set. Devanur et al. [11] and [14] consider k-facility loca-
tion, which is similar to k-median except that facilities
also have opening costs. Hajiaghayi et al. [15] consider
a special case of the matroid median problem that they
call the red-blue median problem. Most recently, [13]

considered a problem that they call the k-median for-
est problem, which generalizes k-median, and obtained
a (3 + ε)-approximation algorithm.

2 The local-search algorithm

As mentioned earlier, to compute a solution to MFL,
we only need to determine the set of final locations of
the facilities, since we can then efficiently compute the
best movement of facilities from their initial to final
locations, and the client assignments. This motivates
the following local-search operation. Given a current
set S of k = |F| locations, we can move to any other set
S′ of k locations such that |S \ S′| = |S′ \ S| ≤ p,
where p is some fixed value. We denote this move
by swap(S \ S′, S′ \ S). The local-search algorithm
starts with an arbitrary set of k final locations. At
each iteration, we choose the local-search move that
yields the largest reduction in total cost and update
our final-location set accordingly; if no cost-improving
move exists, then we terminate. (To obtain polynomial
running time, as is standard, we modify the above
procedure so that we choose a local-search move only
if the cost-reduction is at least ε(current cost).)

3 Analysis leading to a 5-approximation

We now analyze the above local-search algorithm and
show that it is a

(
5 + o(1)

)
-approximation algorithm.

For notational simplicity, we assume that the local-
search algorithm terminates at a local optimum; the
modification to ensure polynomial running time de-
grades the approximation by at most a (1 + ε)-factor.

Theorem 3.1. Let F ∗ and C∗ denote respectively the
movement and assignment cost of an optimal solu-
tion. The total cost of any local optimum is at most(
3 + o(1)

)
F ∗ +

(
5 + o(1)

)
C∗.

Although this is not the tightest guarantee that we
obtain, we present this analysis first since it introduces
many of the ideas that we build upon in Section 4 to
prove a tight approximation guarantee of

(
3 + o(1)

)
for

the local-search algorithm. For notational simplicity, we
assume that all dj values are 1. All our analyses carry
over trivially to the case of non-unit (integer) demands
since we can think of a client j having dj demand as dj
co-located unit-demand clients.

Notation and preliminaries We use S =
{s1, . . . , sk} to denote the local optimum, where fa-
cility i is moved to final location si ∈ S. We use
O = {o1, . . . , ok} to denote the (globally) optimal so-
lution, where again facility i is moved to oi. Through-
out, we use s to index locations in S, and o to index
locations in O. Recall that, for a node v, σ(v) is the

location in S nearest to v. Similarly, we define σ∗(v) to
be the location in O nearest to v. For notational simi-
larity with facility location problems, we denote c(i, si)
by fi, and c(i, oi) by f∗i . (Thus, fi and f∗i are the
movement costs of i in S and O respectively.) Also,
we abbreviate c

(
j, σ(j)

)
to cj , and c

(
j, σ∗(j)

)
to c∗j .

Thus, cj and c∗j are the assignment costs of j in the
local and global optimum respectively. (So MFL(S) =∑
i∈F fi +

∑
j∈D cj .) Let D(s) = {j ∈ D : σ(j) = s}

be the set of clients assigned to the location s ∈ S, and
D∗(o) = {j ∈ D : σ∗(j) = o}. For a set A ⊆ S, we
define D(A) =

⋃
s∈AD(s); we define D∗(A) for A ⊆ O

similarly. Define cap(s) = {o ∈ O : σ(o) = s}. We say
that s captures all the locations in cap(s). The following
basic lemma will be used repeatedly.

Lemma 3.1. For any client j, we have c
(
j, σ(σ∗(j))

)
−

c
(
j, σ(j)

)
≤ 2c∗j .

Proof. Let s = σ(j), o = σ∗(j), s′ = σ(o). The lemma
clearly holds if s′ = s. Otherwise, c(j, s′) − c(j, s) ≤
c(j, o) + c(o, s′) − c(j, s) ≤ c∗j + c(o, s) − c(j, s) ≤
c∗j + c(o, j) = 2c∗j where the second inequality follows
since s′ is the closest location to o in S.

To prove the approximation ratio, we will specify a
set of local-search moves for the local optimum, and use
the fact that none of these moves improve the cost to ob-
tain some inequalities, which will together yield a bound
on the cost of the local optimum. We describe these
moves by using the following digraph. Consider the di-
graph Ĝ =

(
F ∪ S ∪ O, {(si, i), (i, oi), (oi, σ(oi))}i∈F

)
.

We decompose Ĝ into a collection of node-disjoint (sim-
ple) paths P and cycles C as follows. Repeatedly, while
there is a cycle C in our current digraph, we add C to
C, remove all the nodes of C and recurse on the remain-
ing digraph. After this step, a node v in the remaining
digraph, which is acyclic, has: exactly one outgoing arc
if v ∈ S; exactly one incoming and one outgoing arc if
v ∈ F ; and exactly one incoming, and at most one out-
going arc if v ∈ O. Now we repeatedly choose a node
v ∈ S with no incoming arcs, include the maximal path
P starting at v in P, remove all nodes of P and recurse
on the remaining digraph. Thus, each triple (si, i, oi) is
on a unique path or cycle in P ∪ C. Define center(s) to
be o ∈ O such that (o, s) is an arc in P ∪ C; if s has no
incoming arc in P ∪ C, then let center(s) = nil.

We will use P and C to define our swaps. For
a path P = (si1 , i1, oi1 , . . . , sir , ir, oir) ∈ P, define
start(P) to be si1 and end(P) to be oir . Notice that
σ(oir) /∈ P . For each s ∈ S, let Pc(s) = {P :
end(P) ∈ cap(s)}, T (s) = {start(P) : P ∈ Pc(s)}, and
H(s) = {end(P) : P ∈ Pc(s)} = cap(s)\center(s). Note
that |Pc(s)| = |T (s)| = |H(s)| = |cap(s)| − 1 for any

s ∈ S with |cap(s)| ≥ 1. For a set A ⊆ S, define T (A) =⋃
s∈A T (s), H(A) =

⋃
s∈AH(s), Pc(A) =

⋃
s∈A Pc(s).

A basic building block in our analysis, involves a
shift along an s o = oi′ sub-path Z of some path
or cycle in P ∪ C. This means that we swap out s and
swap in o. We bound the cost of the matching between
F and S ∪ {o} \ {s} by moving each initial location
i ∈ Z, i 6= i′ to σ(oi) ∈ Z and moving i′ to oi′ . Thus,
we obtain the following simple bound on the increase in
movement cost due to this operation:

shift(s, o) =
∑
i∈Z

(f∗i − fi) +
∑

i∈Z:oi 6=o

c
(
oi, σ(oi)

)
≤ 2

∑
i∈Z

f∗i − c(o, σ(o)).
(3.1)

The last inequality uses the fact that c
(
oi, σ(oi)

)
≤

c(oi, si) ≤ f∗i + fi for all i. For a path P ∈ P, We
use shift(P) as a shorthand for shift

(
start(P), end(P)

)
.

3.1 The swaps used, and their analysis We now
describe the local moves used in the analysis. We define
a set of swaps such that each o ∈ O is swapped in to an
extent of at least one, and at most two. We classify each
location in S as one of three types. Define t =

⌊
p1/3

⌋
.

We assume that t ≥ 3.

1. S0: locations s ∈ S with |cap(s)| = 0.

2. S1: locations s ∈ S \S0 with |D∗(center(s))| ≤ t or
|cap(s)| > t.

3. S2: locations s ∈ S with |D∗(center(s))| > t and
0 < |cap(s)| ≤ t.

Also define S3 := S0 ∪ {s ∈ S1 : |cap(s)| ≤ t} (so s ∈ S3

iff |cap(s)| ≤ t, |D∗(center(s))| ≤ t}).
To gain some intuition, notice that it is easy to

generate a suitable inequality for a location s ∈ S0: we
can “delete” s (i.e., if s = si, then do swap(s, i)) and
reassign each j ∈ D(s) to σ(σ∗(j)) (i.e., the location in S
closest to the location serving j in O). The cost increase
due to this reassignment is at most

∑
j∈D(s) 2c∗j , and so

this yields the inequality fi ≤
∑
j∈D(s) 2c∗j . (We do not

actually do this since we take care of the S0-locations
along with the S1-locations.) We can also generate a
suitable inequality for a location s ∈ S2 (see Lemma 3.3)
since we can swap in cap(s) and swap out {s} ∪ T (s).
The cost increase by this move can be bounded by∑
P∈Pc(s)

shift(P) and c
(
s, center(s)

)
, and the latter

quantity can be charged to 1
t

∑
j∈D∗(center(s))(cj + c∗j);

our definition of S2 is tailored precisely so as to enable
this latter charging argument. Generating inequalities
for the S1-locations is more involved, and requires
another building block that we call an interval swap
(this will also take care of the S0-locations), which we

define after proving Lemma 3.3. We start out by proving
a simple bound that one can obtain using a cycle in C.

Lemma 3.2. For any cycle Z ∈ C, we have 0 ≤∑
i∈Z(−fi + f∗i + c

(
oi, σ(oi)

)
.

Proof. Consider the following matching of F ∩ Z to
S ∩ Z: we match i to σ(oi). The cost of the resulting
new matching is

∑
i/∈Z fi+

∑
i∈Z c(i, σ(oi)) which should

at least
∑
i fi since the latter is the min-cost way of

matching F to S. So we get that 0 ≤
∑
i∈Z(−fi +

c(i, σ(oi)) ≤
∑
i∈Z(−fi + f∗i + c(oi, σ(oi)).

Lemma 3.3. Let s ∈ S2 and o = center(s), and consider
swap(X := {s} ∪ T (s), Y := cap(s)). We have

0 ≤ MFL
(
(S \X) ∪ Y

)
−MFL(S) ≤

∑
P∈Pc(s)
i∈P

2f∗i

+
∑

j∈D∗(o)

(
t+1
t · c

∗
j − t−1

t · cj
)

+
∑

j∈D({s}∪T (s))
j /∈D∗(o)

2c∗j .

(3.2)

Proof. We can view this multi-location swap as do-
ing swap(start(P), end(P)) for each P ∈ Pc(s) and
swap(s, o) simultaneously. (Notice that no path P ∈
Pc(s) contains s, since s = σ

(
end(P)

)
/∈ P .) For

each swap(start(P), end(P)) the movement-cost increase
is bounded by shift(P) ≤

∑
i∈P 2f∗i . For swap(s, o)

we move the initial location of facility s to o, so
the increase in movement cost is at most c(s, o) =
c(σ(o), o) ≤ c(σ(j), o) ≤ cj + c∗j for every j ∈ D∗(o).

So since |D∗(o)| > t, we have c(s, o) ≤
∑
j∈D∗(o)

cj+c
∗
j

t .
Thus, the increase in total movement cost is at most∑
j∈D∗(o)

cj+c
∗
j

t +
∑
P∈Pc(s),i∈P 2 · f∗i .

We upper bound the change in assignment cost by
reassigning the clients in D∗(o) ∪D(X) as follows. We
reassign each j ∈ D∗(o) to o. Each j ∈ D(X) \D∗(o) is
assigned to σ∗(j), if σ∗(j) ∈ Y , and otherwise to s′ =
σ(σ∗(j)). Note that s′ /∈ X: s′ 6= s since σ∗(j) /∈ cap(s),
and s′ /∈ T (s) since

⋃
s′′∈T (s) cap(s′′) = ∅. The change

in assignment cost for each such client j is at most 2c∗j
by Lemma 3.1. Thus the change in total assignment
cost is at most

∑
j∈D∗(o)(c

∗
j − cj) +

∑
j∈D(X)\D∗(o) 2c∗j .

Combining this with the bound on the movement-cost
change proves the lemma.

We now define a key ingredient of our analysis,
called an interval-swap operation, that is used to bound
the movement cost of the S1- and S0-locations and the
assignment cost of the clients they serve. (We build
upon this in Section 4 to give a tighter analysis proving a

3-approximation.) Let S′ = {s′1, . . . , s′r} ⊆ S0 ∪S1, r ≤
t2 be a subset of at most t2 locations on a path in
P or a cycle in C, where s′q+1 is the next location in
(S0 ∪ S1) ∩ Z after s′q. Let O′ = {o′1, . . . , o′r} ⊆ O
where o′q−1 = center(s′q) for q = 2, . . . , r and o′r is an
arbitrary location that appears after s′r (and before s′1)
on the corresponding path or cycle. Consider each s′q.
If |cap(s′q)| > t, choose a random path P ∈ Pc(s′q)
with probability 1

|Pc(s′q)|
, and set Xq = {start(P)} and

Yq = {o′q}. If |cap(s′q)| ≤ t, set Xq = {s′q} ∪ T (s′q), and
Yq = {o′q}∪H(s′q). Set X =

⋃r
q=1Xq and Y =

⋃r
q=1 Yq.

Note that |X| = |Y | ≤ t3 since for each |Xq| = |Yq| ≤ t
for every q = 1, . . . , r. Notice that X is a random
set, but Y = O′ ∪ H(S′ ∩ S3) is deterministic. To
avoid cumbersome notation, we use swap(X,Y) to refer
to the distribution of swap-moves that results by the
random choices above, and call this the interval swap
corresponding to S′ and O′. We bound the expected
change in cost due to this move below. Let 1(s) be the
indicator function that is 1 if s ∈ S3 and 0 otherwise.

Lemma 3.4. Let S′ = {s′1, · · · , s′r} ⊆ S0 ∪ S1, r ≤ t2

and O′ be as given above. Let o′0 := center(s′1) = oî,
where o′0 = nil and D∗(o′0) = ∅ if s′1 ∈ S0. Consider
the interval swap swap

(
X =

⋃r
q=1Xq, Y =

⋃r
q=1 Yq

)
corresponding to S′ and O′, as defined above. We have

0 ≤ E
[
MFL

(
(S \X) ∪ Y

)
−MFL(S)

]
≤

r∑
q=1

shift(s′q, o
′
q)

+
∑

P∈Pc(S′),i∈P

2f∗i +
∑

j∈D∗(O′)

(c∗j − cj) +
∑

j∈D(T (S′\S3))

2c∗j
t

+
∑

j∈D(T (S′∩S3)∪(S′∩S3))

2c∗j + 1(s′1)
∑

j∈D∗(o′0)

(f∗
î

+ fî + c∗j).

(3.3)

Proof. Let Z be the path in P or cycle in C such that
S′ ∪O′ ⊆ Z.

We first bound the increase in movement cost.
The interval swap can be viewed as a collection of
simultaneous swap(Xq, Yq), q = 1, . . . , r moves. If
Xq = {start(P)} for a random path P ∈ Pc(s′q), the
movement-cost increase can be broken into two parts.
We do a shift along P , but move the last initial location
on P to s′q, and then do shift on Z from s′q to o′q. So
the expected movement-cost change is at most

1

|Pc(s′q)|
∑

P∈Pc(s′q)

(
shift(P) + c(end(P), s′q)

)
+ shift(s′q, o

′
q)

≤ 1

|Pc(s′q)|
∑

P∈Pc(s′q),i∈P

2f∗i + shift(s′q, o
′
q)

which is at most
∑
P∈Pc(s′q),i∈P

2f∗i + shift(s′q, o
′
q). Sim-

ilarly, if |cap(s′q)| ≤ t, we can break the movement-cost

increase into shift(P) ≤
∑
i∈P 2f∗i for all P ∈ Pc(s′q)

and shift(s′q, o
′
q). Thus, the total increase in movement

cost is at most

r∑
q=1

shift(s′q, o
′
q) +

∑
P∈Pc(S′),i∈P

2f∗i . (3.4)

Next, we bound the change in assignment cost by
reassigning clients in D̂ = D∗(O′)∪D(X) as follows. We
assign each client j ∈ D∗(O′) to σ∗(j). If |cap(s′1)| > t,

then s′1 /∈ X. For every client j ∈ D̂ \ (D∗(O′)), observe
that either σ∗(j) ∈ Y or σ(σ∗(j)) /∈ X. To see this, let
o = σ∗(j) and s = σ(o). If o /∈ Y then s /∈ S′ ∩ S3;
also s /∈ T (S′), and so s /∈ X. So we assign j to σ∗(j)
if σ∗(j) ∈ Y and to σ(σ∗(j)) otherwise; the change in
assignment cost of j is at most 2c∗j (Lemma 3.1).

Now suppose |cap(s′1)| ≤ t, so s′1 ∈ X. For each

j ∈ D̂ \ (D∗(O′) ∪D∗(o′o)), we again have σ∗(j) ∈ Y or
σ(σ∗(j)) /∈ X, and we assign j to σ∗(j) if σ∗(j) ∈ Y and

to σ(σ∗(j)) otherwise. We assign every j ∈ D̂ ∩D∗(o′0)
to sî (recall that o′0 = oî), and overestimate the resulting
change in assignment cost by

∑
j∈D∗(o′o)

(c∗j + f∗
î

+ fî).

Finally, note that we reassign a client j ∈ D(T (S′\S3))\
D∗(O′) with probability at most 1

t (since σ(j) ∈ X with
probability at most 1

t). So taking into account all cases,
we can bound the change in total assignment cost by∑

j∈D∗(O′)

(c∗j − cj) +
∑

j∈D(T (S′∩S3)∪(S′∩S3))

2c∗j

+
∑

j∈D(T (S′\S3))

2c∗j
t + 1(s′1)

∑
j∈D∗(o′0)

(f∗
î

+ fî + c∗j).

(3.5)

In (3.5), we are double-counting clients in D
(
T (S′) ∪

(S′ ∪ S3)
)
∩ D∗(O′). We are also overestimating the

change in assignment cost of a client j ∈ D(X)∩D∗(o′0)
since we include both the 1(s′1)(c∗j + f∗

î
+ fî) term, and

the 2c∗j or
2c∗j
t terms. Adding (3.4) and (3.5) yields the

lemma.

Notice that Lemma 3.3 immediately translates to
a bound on the assignment cost of the clients in
D∗(center(s)) for s ∈ S2. In contrast, it is quite un-
clear how Lemma 3.4 may be useful, since the expres-
sion

∑
j∈D∗(o′0)

(f∗
î

+ fî) in the RHS of (3.3) may be

as large as t(f∗
î

+ fî) (but no more since |D∗(o′0)| ≤ t
if 1(s′1) = 1) and it is unclear how to cancel the con-
tribution of fî on the RHS. One of the novelties of our
analysis is that we show how to amortize such expensive
terms and make their contribution negligible by consid-
ering multiple interval swaps. We cover each path or
cycle Z in t2 different ways using intervals comprising

consecutive locations from S0 ∪S1. We then argue that
averaging, over these t2 covering ways, the inequalities
obtained from the corresponding interval swaps yields
(among other things) a good bound on the movement-
cost of the (S0 ∪S1)-locations on Z and the assignment
cost of the clients they serve.

Lemma 3.5. Let Z ∈ P∪C, S′ = {s′1, . . . , s′r} = S1∩Z,
where s′q+1 is the next S1-location on Z after s′q, and
O′ = {center(s′1), . . . , center(s′r)}. Let o′r = end(Z) if
Z ∈ P and center(s′1) otherwise. For r ≥ t2,

0 ≤
∑
i∈Z

(
t+1
t · f

∗
i − t−1

t fi

)
+

∑
P∈Pc(S′),i∈P

2f∗i

+
∑

j∈D∗(Z∩O)

(
1
t · cj + t+1

t2 · c
∗
j

)
+

∑
j∈D∗(O′∪{o′r})

(c∗j − cj) +
∑

j∈D(T (Z∩S3)∪(Z∩S3))

2c∗j

+
∑

j∈D(T (S′\S3))

2c∗j
t .

(3.6)

Proof. We first define formally an interval of (at most)
t2 consecutive (S0 ∪ S1) locations along Z. As before,
let o′q−1 = center(s′q) for q = 1, . . . , r. For a path Z,
define s′q = start(Z) for q ≤ 0 and s′q = nil for q > r.
Also define o′q = o′0 for q ≤ 0 and o′q = end(Z) for q ≥ r.
If Z is a cycle, we let our indices wrap around and be
mod r, i.e., s′q = s′q mod r, o

′
q = o′q mod r for all q (so

o′r = o′0 = center(s′1)).
For 1 − t2 ≤ h ≤ r, define S′h =

{s′h, s′h+1, . . . , s
′
h+t2−1} to be an interval of length at

most t2 on Z. Define O′h = {o′h, o′h+1, . . . , o
′
h+t2−1}.

Note that we have 1 ≤ |S′h| = |O′h| ≤ t2 if Z is a path,
and |S′h| = |O′h| = t2 if Z is a cycle. Consider the col-
lection of intervals, {S′−t2+1, S

′
−t2+2, · · · , S′r}. For each

S′h, O
′
h, where −t2 + 1 ≤ h ≤ r, we consider the inter-

val swap (Xh, Yh) corresponding to S′h, O
′
h. We add

the inequalities 1
t2×(3.3) for all such h. Since each

s′ ∈ S′ ∪ {s′0} participates in exactly t2 such inequali-
ties, and each s′h ∈ S′ is the start of only the interval

S′h, we obtain the following.

0 ≤
r∑
q=0

1

t2
· t2 · shift(s′q, o′q) +

∑
P∈Pc(S′),i∈P

1

t2
· t2 · 2f∗i

+
∑

j∈D∗(O′∪{o′r}))

1

t2
· t2 · (c∗j − cj)

+
∑

j∈D(T (S′\S3))

1

t2
· t2 ·

2c∗j
t

+
∑

j∈D(T (Z∩S3)∪(Z∩S3))

1

t2
· t2 · 2c∗j

+
∑

i:σ(oi)∈Z

1(σ(oi)) ·
1

t2
·
∑

j∈D∗(oi)

(f∗i + fi + c∗j).

(3.7)

Notice that the S-locations other than s′q on the
s′q o′q sub-paths of Z lie in S2, and for each i such

that σ(oi) ∈ Z ∩S2, we have c(oi, σ(oi)) ≤
cj+c

∗
j

t . Thus,
using (3.1), we have

r∑
q=0

shift(s′q, o
′
q) =

∑
i∈Z

(f∗i − fi) +
∑

i:σ(oi)∈Z∩S2

c(oi, σ(oi))

≤
∑
i∈Z

(f∗i − fi) +
∑

j∈D∗(Z∩O)

cj + c∗j
t

.

(3.8)

Since 1(σ(o)) = 1 means that σ(o) ∈ S3, and so

|D∗(o)| ≤ t, we have
∑
i:σ(oi)∈Z∩S3

∑
j∈D∗(oi)

f∗i +fi+c
∗
j

t2

is at most

∑
i∈Z

(
f∗i +fi
t +

∑
j∈D∗(oi)

c∗j
t2

)
≤
∑
i∈Z

f∗i +fi
t +

∑
j∈D∗(Z∩O)

c∗j
t2 .

(3.9)
Incorporating (3.8) and (3.9) in (3.7), and simplifying
yields the desired inequality.

For a path or cycle Z where |S1∩Z| < t2, we obtain
an inequality similar to (3.6). Since we can now cover
Z with a single interval, we never have a client j such
that none of σ(j), σ∗(j), σ(σ∗(j)) are in our new set
of final locations. So the resulting inequality does not

have any
f∗i +fi
t +

c∗j
t2 terms.

Lemma 3.6. Let Z ∈ P∪C, S′ = {s′1, . . . , s′r} = S1∩Z,
where s′q+1 is the next S1-location on Z after s′q, and
O′ = {center(s′1), . . . , center(s′r)}. Let o′r = end(Z) if

Z ∈ P and center(s′1) otherwise. For r′ < t2,

0 ≤
∑
i∈Z

(f∗i − fi) +
∑

P∈Pc(S′),i∈P

2f∗i +
∑

j∈D∗(Z∩O)

cj + c∗j
t

+
∑

j∈D∗(O′∪{o′r})

(c∗j − cj) +
∑

j∈D(T (Z∩S3)∪(Z∩S3))

2c∗j

+
∑

j∈D(T (S′\S3))

2c∗j
t .

(3.10)

Proof. The proof is similar to that of Lemma 3.5, except
that since we can cover Z with a single interval, we
only need to consider a single (multi-location) swap. We
consider two cases for clarity.

1. Z is a path, or r > 0. As before, let o′q−1 =
center(s′q) for q = 1, . . . , r. If Z is a path, define
s′0 = start(Z). If Z is a cycle, we again set s′q =
s′q mod r, o

′
q = o′q mod r for all q. Consider the interval

swap (X,Y) corresponding to S′∪{s′0}, O′∪{o′r}. The
inequality generated by this is similar to (3.3) except
that we do not have any (f∗

î
+ fî + c∗j) terms since for

client j ∈ D(X) ∪D∗(Y), we always have that either
σ∗(j) ∈ Y or σ(σ∗(j)) /∈ X. Thus, (3.3) translates to
the following.

0 ≤
r∑
q=0

shift(s′q, o
′
q) +

∑
P∈Pc(S′),i∈P

2f∗i

+
∑

j∈D∗(O′∪{o′r})

(c∗j − cj)

+
∑

j∈D(T (Z∩S3)∪(Z∩S3))

2c∗j +
∑

j∈D(T (S′\S3))

2c∗j
t .

Substituting
∑r
q=0 shift(s

′
q, o
′
q) ≤

∑
i∈Z(f∗i − fi) +∑

j∈D∗(Z∩O)

cj+c
∗
j

t as in (3.8) yields the stated inequal-
ity.

2. Z is a cycle with r = 0. Here, Lemma 3.2 yields

0 ≤
∑
i∈Z(f∗i − fi) +

∑
j∈D∗(Z∩O)

cj+c
∗
j

t (which is the

special case of the earlier inequality with s′0 = nil =
o′r, S

′ = O′ = Z ∩ S3 = ∅).

Proof of Theorem 3.1. We consider the following set of
swaps.

A1 For every s ∈ S2, the move swap
(
{s} ∪

T (s), cap(s)
)
.

A2 For every path or cycle Z with |Z ∩ S1| ≥
t2, the 1

t2 -weighted interval swaps as defined in
Lemma 3.5.

A3 For every path or cycle Z with |Z∩S1| < t2, the
interval swap defined in Lemma 3.6.

Notice that every location o ∈ O is swapped in to
an extent of at least 1 and at most 2. (By “extent” we
mean that the total weight of the inequalities involving
o.) To see this, suppose first o = end(Z) for some path
Z, then o is involved to an extent of 1 in the interval
swaps for Z in A2 or A3. In this case, we say that the
interval swap for Z is responsible for o. Additionally,
if s = σ(o) ∈ S2, then o belongs to the multi-swap for
s in A1, else if s ∈ S3 then o is part of the interval
swap for the path/cycle containing s in A2 or A3. Now
suppose o = center(s). If s ∈ S2, then o is included in
the multi-swap for s in A1. We say that this multi-swap
is responsible for o. If s ∈ S1, then o is included in the
interval swap for the path/cycle containing s in A2 or
A3; we say that this interval swap is responsible for o.

Consider the compound inequality obtained by
summing (3.2), (3.6), and (3.10) corresponding to the
moves considered in A1, A2, and A3 respectively. The
LHS of this inequality is 0. We now need to do some
bookkeeping to bound the coefficients of the f∗i , fi, c

∗
j , cj

terms on the RHS. We ignore o(1) coefficients like 1
t ,

1
t2

in this bookkeeping, since for a given {f∗i , fi, c∗j , cj}
term, such coefficients appear in only a constant num-
ber of inequalities, so they have o(1) effect overall.
Let F and C denote respectively the movement- and
assignment- cost of the local optimum.

Contribution from the c∗j and cj terms. First,
observe that for each o ∈ O, we have labeled exactly one
move involving o as being responsible for it. Consider
a client j ∈ D(s) ∩ D∗(o). Observe that c∗j or cj
terms appear (with a Θ(1)-coefficient) in an inequality
generated by a move if (i) j is reassigned because the
move is responsible for o; or (ii) s is swapped out (to
an extent of 1) by the move (so this excludes the case
where s ∈ T (s′), s′ ∈ S1\S3 and the move is the interval
swap for the path containing s′). If (i) applies, then the
inequality generates the term (c∗j − cj). If (ii) applies
then the term 2c∗j appears in the inequality. Finally,
note that there are at most two inequalities for which
(ii) applies:

– If s = start(Z) ∈ S0, then (ii) applies for the
interval-swap move for Z. If s′ = σ(end(Z)) ∈
S2 ∪ S3, then (ii) again applies, for the multi-swap
move for s′ if s′ ∈ S2, or for the interval swap for the
path containing s′ if s′ ∈ S3.

– If s ∈ S1 ∩S3, then (ii) applies for the interval swap
for the path containing s.

– If s ∈ S2, then (ii) applies for the multi-swap move
for s.

So overall, we get a 5c∗j − cj contribution to the RHS,
the bottleneck being the two inequalities for which (ii)
applies when s ∈ start(Z), σ(end(Z)) ∈ S2 ∪ S3.

Contribution from the f∗i and fi terms. For
every i ∈ F , the expression (f∗i − fi) is counted
once in the RHS of the inequality (3.6) or (3.10) for
the unique path or cycle Z containing i. The total
contribution of all these terms is therefore, F ∗−F . The
remaining contribution comes from expressions of the
form

∑
P∈Pc(s),i∈P 2f∗i on the RHS of (3.2), (3.6), and

(3.10). The paths P involved in these expressions come
from Pc(S2) ∪

(⋃
Z∈P∪C Pc(Z ∩ S3)

)
⊆ P. Therefore,

the total contribution of these terms is at most 2F ∗.
Thus, we obtain the compound inequality

0 ≤
(
5 + o(1)

)
C∗ +

(
3 + o(1)

)
F ∗ −

(
1− o(1)

)
(F + C)

where the o(1) terms are O
(
1
t

)
= O

(
p−1/3

)
. This shows

that F + C ≤
(
3 + o(1)

)
F ∗ +

(
5 + o(1)

)
C∗.

4 Improved analysis leading to a
3-approximation

In this section, we improve the analysis from Section 3.
Specifically, we prove the following theorem.

Theorem 4.1. The cost of a local optimum solution

using p swaps is at most 3 + O
(√

log log p
log p

)
times the

optimum solution cost.

To gain some intuition behind this tighter analysis,
note that the only reason we lost a factor of 5 in the
previous analysis was because there could be locations
s = start(Z) ∈ S0 that are swapped out to an extent
of 2; hence, there could be clients j ∈ D(s) for which
we “pay” 2c∗j each time s is swapped out, and also pay
an additional c∗j − cj term when σ∗(j) is swapped in.
To improve the analysis, we will consider a set of test
swaps that swap out each location in S to an extent of
1 + o(1).

The aforementioned bad case happens only when
s′ = σ(end(Z)) ∈ S2 ∪ S3, because when we close (i.e.,
swap out) s′ as part of an interval swap or a multi-
swap, we open (i.e., swap in) all the locations in H(s′),
and we achieve this via path swaps (i.e., shift moves)
along paths in Pc(s′) that swap out locations in T (s′)
(for a second time). The main idea behind our refined
analysis is to not perform such path swaps, but instead
to “recursively” start an interval swap on each path in
Pc(s′). Of course, we cannot carry out this recursion
to arbitrary depth so we terminate the recursion at a
depth of t2. So, whereas an interval swap included at
most t2 S1-locations on the main path or cycle Z, we
now consider a “subtree” swap obtained by aggregating
interval swaps on the paths in

⋃
Pc(Z ∩ S3). A subtree

swap can be viewed as a bounded-depth recursion tree
where each leaf to root path encounters at most t2

locations in S1. Because we no longer initiate path
swaps for S3-locations, a leaf location s′′ ∈ S3 in this
recursion tree will not have any locations in cap(s′′)
opened. But we will slightly redefine the S1, S2, S3

sets to ensure that |D∗(cap(s′′))| ≤ t, and average over
different sets of subtree swaps (like we did with interval
swaps in Section 3) to ensure that s′′ is a leaf location
with probability at most 1

t2 ; this ensures that we incur,
to an extent of at most 1

t , the cost f∗i + fi + c(oi, s
′′),

where oi = center(s′′), for moving j with σ(σ∗(j)) = s′′

from s′′ to si.
Notation. Let t be an integer such that p ≥

t2tt
2

+ 1. We prove that the local-search algorithm
has approximation ratio 3 + O(t−1). We redefine
S0, S1, S2, S3 as: S0 = {s ∈ S : |cap(s)| = 0},
S1 = {s ∈ S \ S0 : |D∗(cap(s))| ≤ t or |cap(s)| > t},
S2 = {s ∈ S : |D∗(cap(s))| > t, |cap(s)| ≤ t}, and
S3 = S0 ∪ {s ∈ S1 : |cap(s)| ≤ t}. We redefine center(s)
to be the location in cap(s) closest to s.

Claim 4.1. Let s ∈ S2 and o = center(s). Then
c(s, o) ≤ 1

t

∑
j∈D∗(cap(s))(cj + c∗j).

Proof. We have c(s, o) ≤ c(s, o′) for any o′ ∈ cap(s),
and c(s, o′) ≤ cj + c∗j for any j ∈ D∗(o′). Therefore,
c(s, o) ≤ cj + c∗j for any j ∈ D∗(cap(s)), and the claim
follows since |D∗(cap(s))| > t as s ∈ S2.

It will be more convenient to work with the digraph
H = (F , E) obtained from Ĝ by contracting each triple
{si, i, oi} of nodes associated with a facility i into a
single node that we also denote by i. Thus, (i, i′) is
an arc in E if σ(oi) = si′ (it may be that i = i′).
Note that H may have self loops, and each node in
H has outdegree exactly 1 so each component of H
looks like a tree with all edges oriented toward the root,
except the root is in fact a directed cycle (possibly a
self-loop). Figure 1 illustrates this graph and some
of the subgraphs and structures discussed below. For
brevity, we say that an edge (i, i′) in H is a center edge
if oi = center(si′). In the arc set E′ = {(i, i′) ∈ E : oi =
center(si′)}), each node has indegree and outdegree at
most 1, so E′ consists of a collection node-disjoint paths
P and cycles C. For a facility i ∈ P, let P(i) denote the
unique path in P containing i. Let start(i) and end(i)
denote the start and end facilities of P(i) respectively.
Define H∗ =

(
F , E′ ∪ {(i, i′) : si′ ∈ S3, σ(oi) = si′}

)
.

Call a node i of H∗ a root if i has no outgoing arc or i
lies on a directed cycle in H∗.

We consider an integer 1 ≤ l ≤ t2 and describe a
set of swaps for l. The inequalities for the swaps for
different l will be averaged in the final analysis. We
obtain H∗l by deleting the following (i, i′) edges from
H∗: i is not on a cycle, si′ ∈ S1, and the number

oi

i

si

il′+1

H

i

fi f ∗i

i s.t. si ∈ S1

i s.t. si /∈ S1

l mod t2 ”depth” layer in H∗

How H∗l relates to H∗

il′

il′+t2−1

non-center edge (i, i′), i′ /∈ S3

these edges are deleted when moving from H to H∗

non-center edge (i, i′), i′ ∈ S3

center edge

Figure 1: The digraph H and related structures

of facilities i′′ with si′′ ∈ S1 on the path between i′

and the root of its component in H∗ (both included) is
l mod t2. A subtree of H∗l is an acyclic component of
H∗l , or a component that results by deleting the edges
of the cycle contained in a component of H∗l

For a facility i, define cand(i) = {i′ : oi′ ∈
cap(si) \ {center(si)}, 6 ∃i i′ path in H∗}. Note that
|cand(i)| ≥ |cap(si)| − 2. The reason we define cand(i)
is that we will sometimes perform a shift along some
path Z ∈ Pc(si) to reassign the facilities on Z but we
will not want this to interfere with the operations in the
subtree of H∗l containing i. For a facility i with si 6∈ S2,
let next(i) be the facility obtained as follows. Follow
the unique walk from i in H using only center edges
until the walk reaches a node i′ with either no outgoing
center edge, or the unique (i′, i′′) center edge satisfies
si′′ ∈ S1; we set next(i) = i′.

Claim 4.2. The number of facilities i with si ∈ S0∪S1

in any subtree of H∗l is at most tt
2

.

Proof. The facilities i in such a subtree that are in S2

have indegree and outdegree at most 1. Shortcutting
past these facilities yields a tree with depth at most t2

and branching factor at most t.

The test swaps For a subtree T of H∗l , we
describe a set of nodes XT to be swapped out and a set
of nodes YT to be swapped in with |XT | = |YT | ≤ tt

2

.
We do not actually perform these swaps yet to generate
the inequalities since we will have to combine some of
these swaps for various components.

For each i ∈ T with si ∈ S0 ∪ S1, we add the
following location in S to XT : if si ∈ S3 we add si
to XT ; otherwise (so si ∈ S1 \S3), we choose any single
i′ ∈ cand(i) uniformly at random and add sstart(i′) to
XT . We also add onext(i) to YT .

When we say perform swap(XT , YT), we specifically
mean the following reassignment of facilities. For si ∈
XT with si ∈ S0 ∪ S3, we perform shift(si, onext(i)).
For si ∈ XT with si ∈ S1 \ S3, say i′ is the facility
in cand(i) for which sstart(i′) was added to XT . Then
we perform shift(sstart(i′), oi′), move facility i′ from oi′

to si, and finally perform shift(si, onext(i)). As always,
each client is then assigned to its nearest final location.
Lemma 4.1 implies that these shift operations charge
different portions of the local and global optimum.

Lemma 4.1. For a subtree T , all of the shift operations
described for swap(XT , YT) have their associated paths
being vertex disjoint.

Proof. For any subtree T , the paths between si and
onext(i) for the facilities i ∈ T with si ∈ S0 ∪ S1 are
vertex-disjoint by definition of next(i). Also, for any two
distinct i1, i2 ∈ T , and any i ∈ cand(i1), i′ ∈ cand(i2),
we have start(i) 6= start(i′), and so their associated paths
P(i) and P(i′) are also vertex-disjoint.

Finally, consider any i ∈ T with si ∈ S0 ∪ S1,
and i′′ ∈ T (i′′ could be i) with si′′ ∈ S1 \ S3.
Consider the paths involved in swap(si, onext(i)) and
swap(sstart(i′), oi′), where i′ ∈ cand(i′′). Note that both
of these paths consist of only center edges. Therefore,

since each facility has at most one incoming and one
outgoing center edge, and i′ = end(i′), if these paths
are not vertex-disjoint, then it must be that the path
involved in swap(si, onext(i)) is a subpath of the path
involved in swap(sstart(i′), oi′). This means that i and i′,
and hence, i, i′, i′′, are all in the same component of H∗.
Also, the edge (i′, i′′) is not in H∗ so i′ is the root of its
component in H∗. But then there is a path from i′′ to
i′, which contradicts that i′ ∈ cand(i′′).

We need to coordinate the swaps for various sub-
trees of H∗l . Consider a component Z in H∗. Let C = ∅
if Z is rooted at a node, otherwise let C be its cycle
of root nodes. Let i1, . . . , ik be the facilities on C with
si ∈ S1, indexed by order of appearance on C starting
from an arbitrary facility i1 on C (k = 0 if C = ∅). We
consider four kinds of swaps.

Type 1. If 1 ≤ k ≤ t2, simultaneously do
swap(XT , YT) for all subtrees T rooted at some i ∈ C
with si ∈ S1.

Type 2. Otherwise, if k > t2, define Il′ =
{il′ , il′+1, . . . , il′+t2−1} for all l′ = 1, . . . , k (where
the indices are mod k). Simultaneously perform
swap(XT , YT) for each subtree T rooted at a facility
in Il′ . Reasoning similarly as in Lemma 4.1 and not-
ing that different subtrees involved in a single type-1
or type-2 swap are all disjoint, we can see that all shift
paths involved in a single type-1 or type-2 swap are
vertex-disjoint.

Type 3. For each i with si ∈ S2, simultaneously
perform swap(XT , YT) for all subtrees T rooted at some
i′ with oi′ ∈ cap(si) \ {center(si)}. At the same time,
we also swap out si and swap in oi′′ = center(si) for a

total of at most tt
2+1 + 1 ≤ p swaps. It may be that

some (at most one) shift path in this swap includes si,
but then we just move i′′ to oi′′ instead of si, and then
move si according to the shift operation.

Type 4. Finally, for every other subtree T of H∗l
that was not swapped in the previous cases, perform
swap(XT , YT) on its own.

Analysis. We first bound the net client-
assignment cost increase for any single one of these
test swaps. So, fix one such swap, let {Tr}kr=1, k ≤ t2

be the set of subtrees involved in the swap, and let B
denote the set of facilities i such that oi = center(σ(oi))
and σ(oi) is closed during the swap while oi is not
opened. So B consists of facilities with a center
edge to some leaf of some subtree Tr or, if the swap
is of type 2, to the start of an interval Il′ . For
this swap, let C1 = {j ∈ D : σ∗(j) is opened},
C2 = D∗({oi : i ∈ B}), and C3 = {j : σ(j) = si ∈
S0 and end(i) ∈ cand(i′) for some i′ ∈ Tr}.

Lemma 4.2. The expected change in client-assignment
cost for a test swap is at most

∑
j∈C1

(c∗j − cj) +∑
j∈C2

2c∗j + 1
t−1

∑
j∈C3

2c∗j + 2t
∑
i∈B (f∗i + fi)

Proof. After the swap, we move every j ∈ C1 from σ(j)
to σ∗(j) for a cost change of c∗j − cj . Every client in
j ∈ C2 ∪ C3 for which σ(j) is closed is moved initially
to σ(σ∗(j)) for a cost increase of at most 2c∗j . Suppose
σ∗(j) = oi.

Suppose i is such that σ(oi) = σ(σ∗(j)) and oi =
center(σ(oi)). It may be that σ(oi) is still not open
which means that i ∈ B. Note that either si or oi
is opened after the shift and we move every client that
was moved to σ(oi) to si or oi (whichever is open). This
extra distance moved is at most f∗i + fi + c(oi, σ(oi)) ≤
2f∗i + 2fi. Note that i ∈ B implies that σ(oi) ∈ S3,
otherwise σ(oi) would not have been closed down in the
swap. So |D∗(cap(σ(oi)))| ≤ t, by definition of S3, and
at most t clients will be moved to either si or oi in this
manner.

Finally, we note that while j ∈ C3 may have σ(j)
being closed, this only happens with probability at most
1
t−1 .

Now, we consider the following weightings of the
swaps. First, for a particular 1 ≤ l ≤ t2 we perform
all type 1, 3, and 4 swaps. For a component of H∗l
containing a cycle C, we perform all type 2 swaps
for the various intervals Il′ for C and weight the
client and facility cost change by 1

t2 . Finally, these
weighted bounds on the client and facility cost change
are averaged over all 1 ≤ l ≤ t2.

Lemma 4.3. The expected total client-assignment cost
change, weighted in the described manner, is at most∑
j 3c∗j − cj +O

(
1
t

) (∑
i(f
∗
i + fi) +

∑
j c
∗
j

)
.

Proof. For a fixed l, every client j is in C1 as in Lemma
4.2 to the extent of 1; either once in a type 1, 3, or 4
swap or exactly t2 times among the type 2 swaps, each
of which was counted with weight 1

t2 . Similarly, every
client j is in C2 to the extent of at most 1 and is in C3

to the extent of at most 1 over all swaps for this fixed
l. Finally, we note each facility i on a cycle in H∗ lies
in the set B for at most one offset 1 ≤ l′ ≤ k for that
cycle, so its contribution 2t(f∗i +fi) to the bound is only
counted with weight 1

t2 for this fixed l.
Lastly, every facility i not on a cycle in H∗ lies in B

for at most one index l, 1 ≤ l ≤ t2 and, then, in only one
swap for that particular l. Since we average the bound
over indices l between 1 and t2 then the contribution
2t(f∗i + fi) of such i is counted with weight only 1

t2 .

Next we bound the expected facility movement cost
change. Let F ′ be the set of facilities i for which i does

not lie on a cycle in H∗ consisting of only facilities i′

with si′ ∈ S2.

Lemma 4.4. The expected change in movement cost is
at most

∑
i∈F ′ (f

∗
i − fi) +O

(
1
t

) (∑
i f
∗
i +

∑
j(c
∗
j + cj)

)
.

Proof. We consider two cases for a facility i. First,
suppose si ∈ S0 ∪ S1. Then when si is swapped out
in a subtree during the shift from si to onext(i), i is
moved to either oi or to σ(oi). The latter can only
occur if σ(oi) ∈ S2. The total movement change is
at most f∗i − fi if i is moved to oi and is at most
f∗i − fi + c(oi, σ(oi)) if i is moved to σ(oi). Since
σ(oi) ∈ S2 and oi = center(σ(oi)), by Claim 4.1 we
have that c(oi, σ(oi)) ≤ 1

t

∑
j∈D∗(cap(σ(oi)))(c

∗
j + cj).

The only other time i is moved is when si ∈ S0

and end(i) is randomly chosen from cand(i′) for some
facility i′. But this happens with probability at most
1
t−1 . In this case, i is shifted from si to either oi or
σ(oi). We do not necessarily have σ(oi) ∈ S2 in this
case, but we can use the bound c(oi, σ(oi)) ≤ f∗i + fi
to bound the expected movement-cost change for i in

this case to be at most
2f∗i
t−1 . Overall, the expected

movement cost increase for i is at most (1 + 2
t−1)f∗i −

fi + 1
t−1

∑
j∈D∗(cap(σ(oi)))(c

∗
j + cj).

Next, we consider the case si ∈ S2. Let center(si) =
oi′ . When the swap consisting of i and all components
C rooted at cap(si) \ {oi′} is performed, i is moved
from si to oi′ unless i lies on a shift path during that
swap, in which case it is moved like in the shift. Since
si ∈ S2, we have c(si, oi′) ≤ 1

t

∑
j∈D∗(cap(si))(c

∗
j + cj).

Unless i lies on a cycle with no S1-locations, that is,
i /∈ F ′, i lies between i′′ and next(i′′) for exactly one
i′′, and shift(si′′ , onext(i′′)) is performed to the extent of
1; this holds even if si lies on a shift path during the
corresponding type 3 swap involving i. All other times
when i is moved, it is due to the same reasons as in
the previous case, so the bound on the total change in
movement cost for facility i is(

1 +
2

t− 1

)
f∗i − fi +

1

t

∑
j∈D∗(cap(si))

(c∗j + cj)

+
1

t

∑
j∈D∗(cap(σ(oi)))

(c∗j + cj).

Adding up the appropriate expression for each facil-
ity accounts for the expected change in total movement
cost.

Proof of Theorem 4.1. By local optimality, the change
in total cost for every test swap (counting every random
choice) is nonnegative. By averaging over the various
swaps, the expected change in total cost is nonnegative,

so the sum of the expressions in Lemmas 4.3 and 4.4
is nonnegative. To generate an inequality involving
a −fi term for facilities i /∈ F ′, we sum the bound
given by Lemma 3.2 here over all cycles of H∗ involving
only facilities i with si ∈ S2. This yields 0 ≤∑
i6∈F ′

(
−fi + f∗i + c(oi, σ(oi))

)
, and we can bound

c(oi, σ(oi)) by 1
t

∑
j∈D∗(cap(σ(oi)))(c

∗
j + cj). Adding

this to the inequality that the expected change in
total cost is nonnegative gives

(
1−O

(
1
t

))
(C + F) ≤(

3 +O
(
1
t

))
C∗ +

(
1 +O

(
1
t

))
F ∗.

5 Extension to the weighted case

The analysis in Section 4 (as also the proof of the 5
approximation) extends easily to the weighted general-
ization, wherein each facility i has a weight wi ≥ 0 and
the cost of moving facility i to a location v is now given
by wic(i, s), to yield the same

(
3 + o(1)

)
-approximation

guarantee. More specifically, we show that Theorem 4.1
also holds in this weighted setting. With the excep-
tion of one small difference in the analysis, this requires
only minor changes in the arguments. We discuss these
briefly in this section.

Unless otherwise stated, the same notation from
Section 4 is used in this section. We emphasize that f∗i
and fi now refer to the weighted movement of facility
i in the global or local optimum, respectively. So,
f∗i = wi · c(i, oi) and fi = wi · c(i, si).

One difference in notation is that the definition of
S1 is slightly revised to this weighted setting: si ∈ S1

if |cap(si)| > t or 0 < |cap(si)| ≤ t and |D∗(cap(si))| ≤
max{wi, wi′} · t where i′ is such that oi′ = center(si)
(equivalently, (i′, i) is a center edge in H). If all facility
weights are 1, then this definition of S1 agrees with
the definition in Section 4. Similarly, we say si ∈ S2

if |cap(si)| ≤ t and |D∗(cap(si))| > max{wi, wi′} · t.
Under these definitions, similar to Claim 4.1, we now
have that wi ·c(si, oi′) ≤ 1

t

∑
j∈D∗(cap(si))(cj +c∗j) (since

c(oi, σ(oi)) ≤ c∗j + cj for any j ∈ D∗(cap(si)) as before,
and |D∗(cap(si))| > wit).

We consider the same set of test swaps and the
same averaging of the inequalities generated by these
swaps. When a test swap is performed, we consider the
same shifting and reassigning of facilities to generate
the inequalities. In most cases, we also move the clients
in the same way as before with the exception that if a
client j has all of σ(j), σ∗(j) and σ(σ∗(j)) being closed,
then we do not necessarily send it to oi or si where i
is such that oi = σ∗(j). This will be discussed in the
following lemma.

As in the discussion before Lemma 4.2, we consider
a swap involving subtrees {Tr}kr=1. Let B be as before,
and let B′ be the set of facilities i such that i is a leaf

in some Tr or, if the swap is a type-2 swap, that i is the
first facility in Il′ . Note that i ∈ B if and only if the
unique (i, i′) arc in H∗ is a center arc with i′ ∈ B′. We
let C1, C2, and C3 also be defined as in Section 4.

Lemma 5.1. The expected net change in the client as-
signment cost for a test swap is at most

∑
j∈C1

(c∗j−cj)+∑
j∈C2

2c∗j + 1
t−1

∑
j∈C3

2c∗j + 4t
∑
i∈B∪B′ (f

∗
i + fi) .

Proof. Consider one particular swap. As in the proof of
Lemma 4.2, we move j ∈ C1 to σ∗(j) and j ∈ C2∪C3 to
σ(σ∗(j)) and bound their assignment cost change in the
same way. As before, it may be that for some of these
clients j ∈ C2 ∪C3 we have that σ(σ∗(j)) was closed in
the swap. For such clients, we do the following slight
variant of the reassignment that was done in the proof
of Lemma 4.2.

Say (i, i′) is the center edge such that σ(σ∗(j)) = si′

for a client j ∈ C2 ∪ C3 with σ(σ∗(j)) not being open.
If wi ≥ wi′ , then we send j to either si or oi. As in
the proof of Lemma 4.2, one of these must be open and
the total cost of moving j from si′ to either si or oi is
at most 2c(i, si) + 2c(i, oi). Otherwise, if wi′ > wi then
we send j to either oi′ or σ(oi′) (one of them must be
open). The distance from si′ to either oi′ or σ(oi′) is
bounded by 2c(i′, si′) + 2c(i′, oi′).

We conclude by noting that each facility î ∈ B has
at most wî · t clients sent to either sî or oî from σ(oî) in
the manner just described, since σ(oî) ∈ S3. Similarly,

each î ∈ B′ has at most wî · t clients sent to either oî or
σ(oî) from sî in the manner described above, since sî ∈
S3. So, the total client movement charged to i ∈ B∪B′
this way is at most 4twi(c(i, si) + c(i, oi)) = 4tf∗i + 4tfi.

Using the same weighting of the swaps as in Section
4 we get the following bound on the contribution of the
client movement cost changes over these swaps. The
proof is nearly identical, except we notice that a facility
i′ lies in the B′-set for various swaps to an extent of
at most 1

t2 (under this weighting), since the facility i
such that (i, i′) is a center edge lies in some B-set to an
extent of at most 1

t2 .

Lemma 5.2. The expected total client assignment cost
change, weighted in the described manner, is at most∑
j 3c∗j − cj +O

(
1
t

) (∑
i(f
∗
i + fi) +

∑
j c
∗
j

)
.

The contribution of the facility movement costs is
bounded in essentially the same way as in Lemma 4.4.
We just provide the details on how to account for the
weights of the facilities. As before, let F ′ be the set of
facilities i that do not lie on a cycle in H∗ consisting
solely of facilities i′ with si′ ∈ S2.

Lemma 5.3. The expected change in movement cost is
at most

∑
i∈F ′ (f

∗
i − fi) +O

(
1
t

) (∑
i f
∗
i +

∑
j(c
∗
j + cj)

)
.

Proof. When shift(s, o) is performed, we move facilities
i from si to center(oi). If this shift was performed
during a path swap, then the assignment cost change
for a facility i moved in this shift is at most wic(i, oi) +
wic(oi, σ(oi))−wic(i, si) ≤ 2wic(i, oi) = 2f∗i so the same
bound used before applies.

If such a shift was performed along a path in a
subtree, then we did not want to bound c(oi, σ(oi)) by
c(i, si) + c(i, oi) because we do not want to cancel the
contribution of −c(i, si) to the bound. However, this
only happened when σ(oi) ∈ S2 so we can the fact
that |D∗(cap(σ(oi)))| is large and that c(oi, σ(oi)) ≤
c∗j + cj for any j ∈ D∗(cap(σ(oi))). In our setting, as
noted earlier, the movement cost wi · c(oi, σ(oi)) can be
bounded by 1

t

∑
j∈D∗(cap(σ(oi)))(c

∗
j + cj), which is the

same upper bound we used in the unweighted case.
Finally, the only other time we moved a facility was

from some si ∈ S2 to center(si). The cost of this move
is now wi · c(si, center(si)) which can also be bounded
by 1

t

∑
j∈D∗(cap(si))(c

∗
j + cj) using the same argument

as in the previous paragraph. So, all bounds for the
unweighted facility movement cost increase averaged
over the swaps also hold in the weighted case.

Finally, we remark that the same bound for the
facility movement cost for facilities on a cycle with only
S2 facilities holds for the weighted case, again using
arguments like in the proof of Lemma 5.3 to bound
wi · c(oi, σ(oi)). Thus, the proof of Theorem 4.1 is
adapted to prove the following result for the weighted
case.

Theorem 5.1. The cost of a local optimum solution

using p swaps is at most 3 + O
(√

log log p
log p

)
times the

optimum solution cost in weighted instances of mobile
facility location.

References

[1] A. Aggarwal, L. Anand, M. Bansal, N. Garg, N. Gupta,
S. Gupta, and S. Jain. A 3-approximation for facility
location with uniform capacities. In Proceedings of the
14th IPCO, pages 149–162, 2010.

[2] V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Mu-
nagala, and V. Pandit. Local search heuristics for k-
median and facility location problems. SIAM Journal
on Computing, 33(3):544–562, 2004.

[3] I. Baev, R. Rajaraman, C. Swamy. Approximation al-
gorithms for data placement problems. SIAM Journal
on Computing, 37(5): 1499–1516, 2008.

[4] M. Bansal, N. Garg, N. Gupta. A 5-approximation for
capacitated facility location. In Proceedings of the 20th
ESA, pages 133–144, 2012.

[5] D. Chakrabarty and C. Swamy. Improved approxima-
tion algorithms for matroid median problems and ap-
plications. Manuscript, 2012.

[6] M. Charikar and S. Guha. Improved combinatorial al-
gorithms for facility location problems. SIAM Journal
on Computing, 34(4):803–824, 2005.

[7] M. Charikar, S. Guha, É. Tardos, and D. B. Shmoys.
A constant-factor approximation algorithm for the k-
median problem. Journal of Computer and System
Sciences, 65(1):129–149, 2002.

[8] M. Charikar and S. Li. A dependent LP-rounding
approach for the k-median problem. In Proceedings
of the 39th ICALP, pages 194–205, 2012.

[9] F. Chudak and D. Williamson. Improved approxima-
tion algorithms for capacitated facility location prob-
lems. Mathematical Programming, 102(2):207–222,
2005.

[10] E. Demaine, M. Hajiaghayi, H. Mahini, A. Sayedi-
Roshkhar, S. Oveis Gharan, and M. Zadimoghaddam.
Minimizing movement. ACM Transactions on Algo-
rithms, 5(3):2009.

[11] N. Devanur, N. Garg, R. Khandekar, V. Pandit,
A. Saberi, and V. Vazirani. Price of anarchy, locality
gap, and a network service provider game. In Proceed-
ings of 1st WINE, pages 1046-1055, 2005.

[12] Z. Friggstad and M. Salavatipour. Minimizing move-
ment in mobile facility location problems. ACM Trans-
actions on Algorithms, 7(3), 2011.

[13] I. Gφrtz and V. Nagarajan. Locating depots for
capacitated vehicle routing. In Proceedings of the 14th
APPROX, pages 230–241, 2011.

[14] A. Gupta and K. Tangwongsan. Simpler analyses of
local search algorithms for facility location. CS arXiv,
2008.

[15] M. Hajiaghayi, R. Khandekar, and G. Kortsarz. Local
search algorithms for the red-blue median problem.
Algorithmica, 63(4):795–814, 2012.

[16] K. Jain and V. V. Vazirani. Approximation algorithms
for metric facility location and k-median problems us-
ing the primal-dual schema and Lagrangian relaxation.
Journal of the ACM, 48(2):274–296, 2001.

[17] K. Jain, M. Mahdian, E. Markakis, A. Saberi, and
V. Vazirani. Greedy facility location algorithms ana-
lyzed using dual-fitting with factor-revealing LP. Jour-
nal of the ACM 50(6):795–824, 2003.

[18] B. Korte and J. Vygen. Facility Location. In Combi-
natorial Optimization: Theory and Algorithms, chapter
22, pages 563–598, Springer-Verlag, 2008.

[19] M. R. Korupolu, C. G. Plaxton, and R. Rajaraman.
Analysis of a local search heuristic for facility location
problems. Journal of Algorithms, 37(1):146–188, 2000.

[20] R. Krishnaswamy, A. Kumar, V. Nagarajan, Y. Sab-
harwal, and B. Saha. The matroid median problem.
In Proceedings of the 22nd Annual ACM-SIAM Sym-
posium on Discrete Algorithms, 2011.

[21] S. Li. A 1.488 approximation algorithm for the unca-
pacitated facility location problem. In Proceedings of
the 38th International Colloquium on Automata Lan-
guages and Programming, pages 77–88, 2011.

[22] M. Mahdian and M. Pál. Universal facility location.
In Proceedings of 11th ESA, pages 409–421, 2003.

[23] P. Mirchandani and R. Francis, editors. Discrete
Location Theory. John Wiley and Sons, Inc., New
York, 1990.

[24] M. Pál, É. Tardos, and T. Wexler. Facility location
with nonuniform hard capacities. In Proceedings of the
42nd FOCS, pages 329–338, 2001.

[25] D. B. Shmoys. The design and analysis of approxima-
tion algorithms: facility location as a case study. In
S. Hosten, J. Lee, and R. Thomas, editors. Trends in
Optimization, AMS Proceedings of Symposia in Applied
Mathematics 61, pages 85–97, 2004.

[26] D. B. Shmoys, É. Tardos, and K. I. Aardal. Approx-
imation algorithms for facility location problems. In
Proceedings of the 29th Annual ACM Symposium on
Theory of Computing, pages 265–274, 1997.

[27] Z. Svitkina and É. Tardos. Facility location with hi-
erarchical facility costs. ACM Transactions on Algo-
rithms, 6(2), 2010.

[28] J. Zhang, B. Chen, and Y. Ye. A multi-exchange local
search algorithm for the capacitated facility location
problem. Mathematics of Operations Research, 30:389–
403, 2005.

A Bad locality gap with arbitrary
facility-movement costs

In this section, we present an example that shows that
if the facility-movement costs and the client-assignment
costs come from different (unrelated) metrics then the p-
swap local-search algorithm has an unbounded locality
gap; that is, the cost of a local optimum may be
arbitrarily large compared to optimal cost.

We first show a simple example for a single swap
case, which we will later generalize for p swaps. Sup-
pose we have two clients j0, j1 and two facilities i0, i1.
Some distances between these clients and facilities are
shown in the Fig. 2(a); all other distances are obtained
by taking the metric completion. Note that in this ex-
ample, in order to have a bounded movement cost for
facilities, the only option is to have one of i0, j1 as a
final location of facility i0 and one of i1, j0 as a final
location of facility i1.

As can be seen from the figure, the solution O =
{i0, i1} has total cost 2 (the movement cost is 0 and the
client-assignment cost is 2). Now consider the solution
S = {j0, j1} which has a total cost of 2D (the movement
cost is 2D and the client-assignment cost is 0). This is a
local optimum since by symmetry if we swap out j0, then
we have to swap in i1 to have a bounded movement cost,
which leads j0 having assignment cost of∞. So there is

j0

(a) (b)

i1

j1 i0

j0

(∞, D)

(1,∞) (1,∞)

(∞, D)

i1

(∞, D)

(1,∞)

(∞, D)
(1,∞)

(1,∞)

jp

j1ip

i0

Figure 2: Examples showing large locality gap for the cases where local search allows (a) single swaps (b) at most
p simultaneous swaps. The label (a, b) of an edge gives client-assignment cost a and the movement cost b of a
facility along that edge.

no improving move for solution S, and the locality gap
is D.

Now consider the following example (Fig. 2(b))
for local-search with p simultaneous swaps. Sup-
pose we have facility set {i0, i1, . . . , ip} and client
set {j0, j1, . . . , jp}. The global optimum O =
{i0, i1, · · · , ip} has total cost p + 1 (facility movement
cost is 0 and client-assignment cost is (p+ 1) · 1) while
S = {j0, j1, . . . , jp} is a local optimum whose total cost
is (p + 1) · D (facility movement cost is (p + 1) · D
and client-assignment cost is 0). Consider any move
swap(X,Y). Note that jk ∈ X iff ik−1 ∈ Y (where
indices are mod(p + 1)) to ensure bounded movement
cost. Let k be such that jk ∈ X and jk+1 /∈ X. Then, jk
has an assignment cost of∞ in the solution (S \X)∪Y .
Hence, S is a local optimum.

