
1

Improved Approximation Algorithms for Matroid and Knapsack
Median Problems and Applications

CHAITANYA SWAMY, University of Waterloo

We consider the matroid median problem [Krishnaswamy et al. 2011], wherein we are given a set of facilities
with opening costs and a matroid on the facility-set, and clients with demands and connection costs, and we
seek to open an independent set of facilities and assign clients to open facilities so as to minimize the
sum of the facility-opening and client-connection costs. We give a simple 8-approximation algorithm for this
problem based on LP-rounding, which improves upon the 16-approximation in [Krishnaswamy et al. 2011].
We illustrate the power and versatility of our techniques by deriving: (a) an 8-approximation for the two-
matroid median problem, a generalization of matroid median that we introduce involving two matroids;
and (b) a 24-approximation algorithm for matroid median with penalties, which is a vast improvement
over the 360-approximation obtained in [Krishnaswamy et al. 2011]. We show that a variety of seemingly
disparate facility-location problems considered in the literature—data placement problem, mobile facility
location, k-median forest, metric uniform minimum-latency UFL—in fact reduce to the matroid median or
two-matroid median problems, and thus obtain improved approximation guarantees for all these problems.
Our techniques also yield an improvement for the knapsack median problem.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems—computations on discrete structures; G.2 [Discrete Mathematics]:
Miscellaneous; G.1.6 [Numerical Analysis]: Optimization

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Approximation algorithms, Linear programming and LP rounding, Fa-
cility location k-median and matroid median, Submodular and matroid polyhedra, Knapsack constraints

ACM Reference Format:
Chaitanya Swamy. 2016. Improved Approximation Algorithms for Matroid and Knapsack Median Problems
and Applications. ACM Trans. Algor. V, N, Article 1 (January 2016), 23 pages.
DOI: http://dx.doi.org/10.1145/2790133

1. INTRODUCTION
We investigate facility location problems wherein the set of open facilities have to sat-
isfy some matroid independence constraints or knapsack constraints. Specifically, we
consider the matroid median problem, which is defined as follows. As in the uncapaci-
tated facility location problem, we are given a set of facilities F and a set of clients D.
Each facility i has an opening cost of fi. Each client j ∈ D has demand dj and assigning
client j to facility i incurs an assignment cost of djcij proportional to the distance be-
tween i and j. Further, we are given a matroid M = (F , I) on the set of facilities. The
goal is to choose a set F ∈ I of facilities to open that forms an independent set in M ,
and assign each client j to a facility i(j) ∈ F so as to minimize the total facility-opening

A preliminary version [Swamy 2014] appeared in the Proceedings of the 17th APPROX, 2014.
Research supported in part by NSERC grant 327620-09, an NSERC Discovery Accelerator Supplement
Award, and an Ontario Early Researcher Award. Author’s address: Chaitanya Swamy, Dept. of Combina-
torics & Optimization, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada.
Email: cswamy@uwaterloo.ca.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM. 1549-6325/2016/01-

ART1 $15.00
DOI: http://dx.doi.org/10.1145/2790133

ACM Transactions on Algorithms, Vol. V, No. N, Article 1, Publication date: January 2016.

1:2 C. Swamy

and client-assignment costs, that is,
∑
i∈F fi +

∑
j∈D djci(j)j . We assume that the fa-

cilities and clients are located in a common metric space, so the distances cij form a
metric.

The matroid median problem is a generalization of the metric k-median problem,
which is the special case where M is a uniform matroid (and there are no facility-
opening costs), and is thus, NP-hard. The matroid median problem without facility-
opening costs was introduced recently by Krishnaswamy et al. [Krishnaswamy et al.
2011], who gave a 16-approximation algorithm for this problem.

Our contributions are threefold.
• We devise an improved 8-approximation algorithm for the matroid-median problem

(Section 3). Moreover, notably, our algorithm is significantly simpler and cleaner
than the one in [Krishnaswamy et al. 2011], and satisfies the stronger property
that it is a Lagrangian-multiplier-preserving 8-approximation algorithm (see Re-
mark 3.9). The effectiveness and versatility of our simpler approach for matroid
median is further highlighted when we consider some natural extensions of matroid
median in Section 4. We leverage the techniques underlying our simpler and cleaner
algorithm for matroid median to devise: (a) an 8-approximation algorithm for the
two-matroid median problem (Section 4.1), which is an extension that we introduce
involving two matroids that captures some interesting facility-location problems
considered in the literature; and (b) a 24-approximation algorithm (Section 4.2) for
the matroid median problem with penalties, wherein we are allowed to leave client
unassigned and incur a penalty for each unassigned client; this constitutes a vast
improvement over the approximation ratio of 360 obtained by Krishnaswamy et
al. [Krishnaswamy et al. 2011].
• We show that the matroid median and two-matroid median problem turn out to be

rather fundamental problems by showing in Section 5 that a variety of facility loca-
tion problems that have been considered in the literature can be cast as instances
of matroid median or two-matroid median. These include the data placement prob-
lem [Baev and Rajaraman 2001; Baev et al. 2008], mobile facility location [Friggstad
and Salavatipour 2011; Ahmadian et al. 2013], k-median forest [Gørtz and Nagara-
jan 2011], and metric uniform minimum-latency UFL [Chakrabarty and Swamy
2011]. This not only gives a unified framework for viewing these seemingly dis-
parate problems, but also our approximation guarantee of 8 yields improved, and in
some cases, the first, approximation guarantees for all these problems.
• We adapt our techniques to also obtain an improvement for the knapsack median

problem [Krishnaswamy et al. 2011; Kumar 2012] (Section 6).
Our improvement for matroid median comes from an improved, simpler round-

ing procedure for a natural LP relaxation of the problem also considered in [Krish-
naswamy et al. 2011]. We show that a clustering step introduced in [Charikar et al.
2002] for the k-median problem coupled with two applications of the integrality of the
intersection of two submodular (or matroid) polyhedra—one to obtain a half-integral
solution, and another to obtain an integral solution—suffices to obtain the desired ap-
proximation ratio. In contrast, the algorithm in [Krishnaswamy et al. 2011] starts off
with the clustering step in [Charikar et al. 2002], but then further dovetails the round-
ing procedure of [Charikar et al. 2002] creating trees, then stars, and then applies the
integrality of the intersection of two submodular polyhedra.

There is great deal of similarity between the the rounding algorithm of [Krish-
naswamy et al. 2011] for matroid median and the rounding algorithm of Baev and
Rajaraman [Baev and Rajaraman 2001] for the data placement problem, who also per-
form the initial clustering step in [Charikar et al. 2002] and then create trees and then

ACM Transactions on Algorithms, Vol. V, No. N, Article 1, Publication date: January 2016.

Improved Approximation Algorithms for Matroid and Knapsack Median Problems 1:3

stars and use these to obtain an integral solution. In contrast, our simpler, improved
rounding algorithm is similar to the rounding algorithm in [Baev et al. 2008] for data
placement, who use the initial clustering step of [Charikar et al. 2002] coupled with
two min-cost flow computations—one to obtain a half-integral solution and another
to obtain an integral solution—to obtain the final solution. These similarities are not
surprising since, as mentioned above, we show in Section 5 that the data-placement
problem is a special case of the matroid median problem. In fact, our improvements
are analogous to those obtained for the data-placement problem by Baev, Rajaraman,
and Swamy [Baev et al. 2008] over the guarantees in [Baev and Rajaraman 2001], and
stem from similar insights.

A common theme to emerge from our work and [Baev et al. 2008] is that in various
settings, the initial clustering step introduced by [Charikar et al. 2002] imparts suffi-
cient structure to the fractional solution so that one can then round it using two appli-
cations of suitable integrality-results from combinatorial optimization. First, this ini-
tial clustering can be used to derive a half-integral solution. This was observed explic-
itly in [Baev and Rajaraman 2001] and is implicit in [Krishnaswamy et al. 2011], and
making this explicit yields significant dividends. Second, and this is the oft-overlooked
insight (in [Baev and Rajaraman 2001; Krishnaswamy et al. 2011]), a half-integral so-
lution can be easily rounded, and in a better way, without resorting to creating trees
and then stars etc. as in the algorithm of [Charikar et al. 2002]. This is due to the
fact that a half-integral solution is already “filtered”: if client j is assigned to facility
i fractionally, then one can bound cij in terms of the assignment cost paid by the frac-
tional solution for j (see Section 3). This enables one to use a standard facility-location
clustering step to set up a suitable combinatorial-optimization problem possessing an
integrality property, and hence, round the half-integral solution. The resulting algo-
rithm is typically both simpler and has a better approximation ratio than what one
would obtain by mimicking the steps of [Charikar et al. 2002] involving creating trees,
stars etc.

Recently, Charikar and Li [Charikar and Li 2012] obtained a 9-approximation al-
gorithm for the matroid-median problem; our results were obtained independently.1
While there is some similarity between our ideas and those in [Charikar and Li 2012],
we feel that our algorithm and analysis provides a more illuminating explanation of
why matroid median and some of its extensions (e.g., two-matroid median, matroid me-
dian with penalties; see Section 4) are “easy” to approximate, whereas other variants
such as matroid-intersection median (Section 4) are inapproximable. It remains to be
seen if our ideas coupled with the dependent-rounding procedure used in [Charikar
and Li 2012] for the k-median problem leads to further improvements for the matroid
median problem; we leave this as future work.

2. AN LP RELAXATION FOR MATROID MEDIAN
We can express the matroid median problem as an integer program and relax the
integrality constraints to get a linear program (LP). Throughout we use i to index
facilities in F , and j to index clients in D. Let r denote the rank function of the matroid
M = (F , I).

1A manuscript containing the 8-approximation for matroid median was circulated privately in 2012; the
current version was posted on the arXiv in Nov. 2013.

ACM Transactions on Algorithms, Vol. V, No. N, Article 1, Publication date: January 2016.

1:4 C. Swamy

min
∑
i

fiyi +
∑
j

∑
i

djcijxij (P)

s.t.
∑
i

xij ≥ 1 ∀j (1)∑
i∈S

yi ≤ r(S) ∀S ⊆ F (2)

0 ≤ xij ≤ yi ∀i, j. (3)

Variable yi indicates if facility i is open, and xij indicates if client j is assigned to
facility i. The first and third constraints say that each client must be assigned to an
open facility. The second constraint encodes the matroid independence constraint. An
integer solution corresponds exactly to a solution to our problem. We note that (P) can
be solved in polytime since (for example) a polytime algorithm for submodular-function
minimization yields an efficient separation oracle.

3. A SIMPLE 8-APPROXIMATION ALGORITHM VIA LP-ROUNDING
Let (x, y) denote an optimal solution to (P) and OPT be its value. We first describe a
simple algorithm to round (x, y) to an integer solution losing a factor of at most 10.
In Section 3.4, we use some additional insights to improve the approximation ratio
to 8. We use the terms connection cost and assignment cost interchangeably. We may
assume that

∑
i xij = 1 for every client j.

3.1. Overview of the algorithm
We first give a high level description of the algorithm. Suppose for a moment that the
optimal solution (x, y) satisfies the following property:

for every facility i, there is at most one client j such that xij > 0. (∗)
Let Fj = {i : xij > 0}. Notice that the Fj sets are disjoint. We may assume that for
i ∈ Fj , we have yi = xij , so the objective function is a linear function of only the yi
variables. We can then set up the following matroid intersection problem. The first
matroid is M restricted to

⋃
j Fj . The second matroid M ′ (on the same ground set⋃

j Fj) is the partition matroid defined by the Fj sets; that is, a set is independent
in M ′ if it contains at most one facility from each Fj . Notice the yi-variables yield a
fractional point in the intersection of the matroid polyhedron of M and the matroid-
base polyhedron of M ′. Since the intersection of these two polyhedra is known to be
integral (see, e.g., [Cook et al. 1998]), this means that we can round (x, y) to an integer
solution of no greater cost. Of course, the LP solution need not have property (∗) so our
goal will be to transform (x, y) to a solution that has this property without increasing
the cost by much.

Roughly speaking we want to do the following: cluster the clients inD around certain
‘centers’ (also clients) such that (a) every client k is assigned to a “nearby” cluster cen-
ter j whose LP assignment cost is less than that of k, and (b) the facilities serving the
cluster centers in the fractional solution (x, y) are disjoint. So, the modified instance
where the demand of a client is moved to the center of its cluster has a fractional solu-
tion, namely the solution induced by (x, y), that satisfies (∗) and has cost at most OPT .
Furthermore, given a solution to the modified instance we can obtain a solution to the
original instance losing a small additive factor. One option is to use the decomposition
method of Shmoys et al. [Shmoys et al. 1997] for uncapacitated facility location (UFL)
that produces precisely such a clustering. The problem however is that [Shmoys et al.
1997] uses filtering which involves blowing up the xij and yi values, thus violating the

ACM Transactions on Algorithms, Vol. V, No. N, Article 1, Publication date: January 2016.

Improved Approximation Algorithms for Matroid and Knapsack Median Problems 1:5

matroid-rank packing constraints. Chudak and Shmoys [Chudak and Shmoys 2003]
use the same clustering idea but without filtering, using the dual solution to bound
the cost. The difficulty here with this approach is that there are terms with negative
coefficients in the dual objective function that correspond to the primal matroid-rank
constraints. Although [Swamy and Shmoys 2008] showed that it is possible to over-
come this difficulty in certain cases, the situation here looks more complicated and it
is not clear how to use their techniques.

Instead, we use the clustering technique of Charikar et al. [Charikar et al. 2002]
to cluster clients and first obtain a half-integral solution (x̂, ŷ), that is, every x̂ij , ŷi ∈{

0, 1
2 , 1
}

, to the modified instance with cluster centers, losing a factor of 3. Further, any
solution here will give a solution to the original instance while increasing the cost by
at most 4 ·OPT . Now we use the clustering method of [Shmoys et al. 1997] without any
filtering, since the half-integral solution (x̂, ŷ) is essentially already filtered; if client j
is assigned to i and i′ in x̂, then cij , ci′j ≤ 2(cij x̂ij + ci′j x̂i′j). This final step causes us
to lose an additive factor equal to the cost of (x̂, ŷ), so overall we get an approximation
ratio of 4+3+3 = 10. In Section 3.4, we show that by further exploiting the structure of
the half-integral solution, we can give a better bound on the cost of the integer solution
and thus obtain an 8-approximation.

We now describe each of these steps in detail. Let C̄j =
∑
i cijxij denote the cost

incurred by the LP solution to assign one unit of demand of client j. Given a vector
v ∈ RF and a set S ⊆ F , we use v(S) to denote

∑
i∈S vi.

3.2. OBTAINING A HALF-INTEGRAL SOLUTION (x̂, ŷ)

Step I: Consolidating demands around centers. We first consolidate (or cluster) the
demand of clients at certain clients, that we call cluster centers. We do not modify the
fractional solution (x, y) but only modify the demands so that for some clients k, the
demand dk is “moved” to a “nearby” center j. We assume every client has non-zero
demand (we can simply get rid of zero-demand clients).

Set d′j ← 0 for every j. Consider the clients in increasing order of C̄j . For each client
k encountered, if there exists a client j such that d′j > 0 and cjk ≤ 4 max(C̄j , C̄k) = 4C̄k,
set d′j ← d′j + dk, otherwise set d′k ← dk. Let D = {j ∈ D : d′j > 0}. Each client in D is
a cluster center. Let OPT ′ =

∑
i fiyi +

∑
j∈D,i d

′
jcijxij denote the cost of (x, y) for the

modified instance consisting of the cluster centers.

LEMMA 3.1. (i) If j, k ∈ D, then cjk ≥ 4 max(C̄j , C̄k), (ii) OPT ′ ≤ OPT , and (iii) any
solution (x′, y′) to the modified instance can be converted to a solution to the original
instance incurring an additional cost of at most 4 ·OPT .

PROOF. Suppose k was considered after j. Then d′j > 0 at this time, otherwise d′j
would remain at 0 and j would not be in D. So if cjk < 4 max(C̄j , C̄k) then d′k would
remain at 0, giving a contradiction. It is clear that if we move the demand of client k
to client j, then C̄j ≤ C̄k and cjk ≤ 4C̄k. So the assignment cost for the new instance,∑
j d
′
jC̄j , only decreases and the facility-opening cost

∑
i fiyi does not change, hence

OPT ′ ≤ OPT . Given a solution (x′, y′) to the modified instance, if the demand of k
was moved to j the extra cost incurred in assigning k to the same facility(ies) as in x′

is at most dkcjk ≤ 4dkC̄k by the triangle inequality, so the total extra cost is at most
4 ·OPT .

From now on we focus on the modified instance with client set D and modified de-
mands d′j . At the very end we will use the above lemma to translate an integer solution
to the modified instance to an integer solution to the original instance.

ACM Transactions on Algorithms, Vol. V, No. N, Article 1, Publication date: January 2016.

1:6 C. Swamy

Step II: Transforming to a half-integral solution. We define the cluster of a client
j ∈ D to be the set Fj of all facilities i such that j is the center in D closest to i, that
is, Fj = {i : cij = mink∈D cik}, with ties broken arbitrarily. Let F ′j ⊆ Fj = {i ∈ Fj : cij ≤
2C̄j}. Define γj := mini/∈Fj cij , and let Gj = {i ∈ Fj : cij ≤ γj}; see Fig. 1. By property
(i) of Lemma 3.1, we have that Fj contains all the facilities i such that cij ≤ 2C̄j . So
γj ≥ 2C̄j , F ′j ⊆ Gj , and

∑
i∈F ′

j
xij =

∑
i:cij≤2C̄j

xij ≥ 1
2 by Markov’s inequality. Clearly

the sets Fj for j ∈ D are disjoint.

Fj

F ′j

Gj

γj = cij

i

j

Fks

F ′ks

Fig. 1. Illustrating the sets Fj , F ′
j , Gj , and the quantity γj . Facility i is the facility nearest to j notin Fj .

To obtain the half-integral solution, we define a suitable vector y′ that lies in a poly-
tope with half-integral extreme points and construct a linear function T (.) such that
T (y′) bounds the cost of a fractional solution. We show that T (y′) ≤ 3 ·OPT ′. This im-
plies that one can obtain a “better” half-integral vector ŷ, which we then argue yields
a half-integral solution (x̂, ŷ) to the modified instance of cost at most T (ŷ) ≤ T (y′).

To motivate the definition of T (.) and the polytope, first define y′ ∈ RF+ as follows:
set y′i = xi` ≤ yi if i ∈ G`, and y′i = 0 otherwise. Clearly, y′(F`) = y′(G`) ≤ 1 for
every ` ∈ D. Consider some client j ∈ D. Suppose γj = cij , where i ∈ Fk, k 6= j. It
is not hard to show that ci′j ≤ 3γj for every facility i′ ∈ F ′k (see Lemma 3.2), and so∑
i∈Gj cijy

′
i+3γj

(
1−y′(Gj)

)
≤ 3C̄j . We use the above linear function of y′ as a proxy for

j’s per-unit-demand assignment cost, and define T (v) =
∑
i fivi +

∑
j d
′
j

(∑
i∈Gj cijvi +

3γj(1−
∑
i∈Gj vi)

)
for v ∈ RF+. Note that if v ∈ RF+ satisfies v(F ′`) ≥ 0.5, v(G`) ≤ 1 for all

` ∈ D, then dj
(∑

i∈Gj cijvi + 3γj(1 − v(Gj))
)

is an upper bound on j’s assignment cost
under v (since 1− v(Gj) ≤ 0.5 ≤ v(F ′k)). Hence, we define our polytope to be

P :=
{
v ∈ RF+ : v(S) ≤ r(S) ∀S ⊆ F , v(F ′j) ≥ 1

2 , v(Gj) ≤ 1 ∀j ∈ D
}
. (4)

We claim that P has half-integral extreme points. The easiest way to see this is to
note that any extreme point of P is defined by a linearly independent system of tight
constraints comprising some v(S) = r(S) equalities corresponding to a laminar set sys-
tem, and some v(F ′j) = 1

2 and v(Gj) = 1 equalities. The constraint matrix of this system
thus corresponds to equations coming from two laminar set systems; such a matrix is

ACM Transactions on Algorithms, Vol. V, No. N, Article 1, Publication date: January 2016.

Improved Approximation Algorithms for Matroid and Knapsack Median Problems 1:7

known to be totally unimodular, and hence the vector v satisfying this system must
be a half-integral solution. (Appendix A gives another proof based on the integrality of
the intersection of two submodular polyhedra.)

Clearly y′ ∈ P. Hence, we can obtain a half-integral solution ŷ such that T (ŷ) ≤ T (y′).
For any j ∈ D, observe that there is at least one facility i ∈ F ′j with ŷi > 0; we call the
facility i ∈ F ′j nearest to j the primary facility of j and set x̂ij = ŷi. If ŷi < 1, then let
i′ be the facility nearest to j other than i such that ŷi′ > 0; we call i′ the secondary
facility of j, and set x̂i′j = 1 − x̂ij . Note that every client in D has a distinct primary
facility.

LEMMA 3.2. The cost of (x̂, ŷ), that is,
∑
i fiŷi+

∑
j∈D,i d

′
jcij x̂ij , is at most 3 ·OPT ′ ≤

3 ·OPT .

PROOF. We first show that T (y′) ≤ 3 · OPT ′, and then bound the cost of (x̂, ŷ) by
T (ŷ) =

∑
i fiŷi +

∑
j d
′
j

(∑
i∈Gj cij ŷi + 3γj(1− ŷ(Gj)

)
. Since T (ŷ) ≤ T (y′), this proves the

lemma.
We have OPT ′ =

∑
i fiyi +

∑
j d
′
jC̄j , and for any j ∈ D, we have C̄j =

∑
i∈Gj cijxij +∑

i/∈Gj cijxij ≥
∑
i∈Gj cijxij + γj(1−

∑
i∈Gj xij) by the definition of γj . So

T (y′) ≤
∑
i

fiyi +
∑
j

d′j
(∑
i∈Gj

cijxij + 3γj(1−
∑
i∈Gj

xij)
)
≤
∑
i

fiyi + 3
∑
j

d′jC̄j ≤ 3 ·OPT .

To bound the cost of (x̂, ŷ), it suffices to show that the assignment cost of each client
j ∈ D is at most d′j

(∑
i∈Gj cij ŷi+3γj(1− ŷ(Gj))

)
. If ŷ(Gj) = 1, then the assignment cost

of j is d′j
∑
i∈Gj cij x̂ij = d′j

∑
i∈Gj cij ŷi. Otherwise, the assignment cost of j is at most

d′j
∑
i∈Gj cij x̂ij + d′jci′j(1− ŷ(Gj)), where i′ is the secondary facility of j. We show that

ci′j ≤ 3γj , which implies the desired bound. Let γj = ci′′j where i′′ ∈ Fk, k 6= j. Let ` be
the primary facility of k. Then, ci′j ≤ c`j and 4 max(C̄j , C̄k) ≤ cjk ≤ ci′′j + ci′′k ≤ 2γj .
Also c`k ≤ 2C̄k since ` ∈ F ′k. Combining the inequalities we get that ci′j ≤ 3γj .

3.3. CONVERTING (x̂, ŷ) TO AN INTEGER SOLUTION

Define Ĉj =
∑
i cij x̂ij and Sj = {i : x̂ij > 0} for j ∈ D.

Step III: Clustering. We cluster the clients in D as follows: pick j ∈ D with smallest
Ĉj . Remove every client k ∈ D such that Sj∩Sk 6= ∅; we call j the center of k and denote
it by ctr(k). Recurse on the remaining set of clients until no client in D is left. Let D′
be the set of clients picked — these are the new cluster centers. Note that ctr(j) = j for
every j ∈ D′.

Step IV: The matroid intersection problem. For convenience, we will say that every
client j ∈ D has both a primary facility, denoted i1(j), and a secondary facility, denoted
i2(j), with x̂i1(j)j = x̂i2(j)j = 1

2 , with the understanding that if j does not have a sec-
ondary facility then i2(j) = i1(j), and so x̂i1(j)j = 1. Then we have Ĉj = 1

2 (ci1(j)j+ci2(j)j)

and ci1(j)j ≤ Ĉj ≤ ci2(j)j ≤ 2Ĉj .
For i ∈ F , define ŷ′i = x̂ij ≤ ŷi if i ∈ Sj where j ∈ D′, and ŷ′i = ŷi otherwise. Then ŷ′

lies in the polytope

R :=
{
z ∈ RF+ : z(S) ≤ r(S) ∀S ⊆ F , z(Sj) = 1 ∀j ∈ D′

}
. (5)

Observe thatR is the intersection of the matroid polytope for M with the matroid base
polytope for the partition matroid defined by the Sj sets for j ∈ D′. This polytope is
known to have integral extreme points. Similar to Step II, we define a linear function

ACM Transactions on Algorithms, Vol. V, No. N, Article 1, Publication date: January 2016.

1:8 C. Swamy

H(z) =
∑
i fizi +

∑
k∈D Ak(z), where

Ak(z) =

{∑
i∈Sctr(k)

d′kcikzi if i1(k) ∈ Sctr(k)∑
i∈Sctr(k)

d′kcikzi + d′k
(
ci1(k)k − ci2(k)k

)
zi1(k) otherwise.

Here, Ak(z) is a proxy for k’s assignment cost chosen suitably so that: (a) for an inte-
ger ỹ ∈ R, Ak(ỹ) yields an upper bound on k’s assignment cost (see Lemma 3.3); and
(b) Ak(ŷ′) is at most 2d′kĈk (see Lemma 3.4). Since R is integral, we can find an inte-
ger point ỹ ∈ R such that H(ỹ) ≤ H(ŷ′). This yields an integer solution (x̃, ỹ) to the
instance with client set D, where we assign each client j ∈ D′ to the unique facility
opened from Sj , and each client k ∈ D \D′ either to i1(k) if it is open (i.e., ỹi1(k) = 1), or
to the facility opened from Sctr(k). In Lemma 3.3 we prove that the cost of this integer
solution is at most H(ỹ), and in Lemma 3.4 we show that H(ŷ′) is at most twice the
cost of (x̂, ŷ) and hence, at most 6 · OPT (by Lemma 3.2). Combined with Lemma 3.1,
this yields Theorem 3.5.

LEMMA 3.3. The cost of (x̃, ỹ) is at most H(ỹ) ≤ H(ŷ′).

PROOF. Clearly, the facility opening cost is
∑
i fiỹi, and the assignment cost of a

client j ∈ D′ is
∑
i∈Sj d

′
jcij ỹi, which is exactly Aj(ỹ). Consider a client k ∈ D \D′ with

ctr(k) = j. If ỹi1(k) = 0, then the assignment cost of k is d′k
∑
i∈Sj cikỹi which is equal

to Ak(ỹ). If ỹi1(k) = 1, then the assignment cost of k is d′kci1(k)k. If i1(k) ∈ Sj , then
Ak(ỹ) = d′k

∑
i∈Sj cikỹi ≥ d′kci1(k)k, and otherwise Ak(ỹ) = d′k

(∑
i∈Sj cikỹi + ci1(k)k −

ci2(k)k

)
≥ d′kci1(k)k since i2(k) is the second-nearest facility to k, so every facility in Sj

is at least as far away from k as i2(k).

LEMMA 3.4. H(ŷ′) is at most twice the cost of (x̂, ŷ).

PROOF. Clearly
∑
i fiŷ

′
i ≤

∑
i fiŷi. For j ∈ D′, we have Aj(ŷ

′) =
∑
i∈Sj d

′
jcij x̂ij .

Consider k ∈ D \D′ with ctr(k) = j. Let i′ = i1(j) and i′′ = i2(j), so Ĉj = 1
2 (ci′j + ci′′j) ≤

Ĉk.
If i1(k) ∈ Sj , then the (at most one) facility i ∈ Sj \ {i1(k)} satisfies cik ≤ ci′j + ci′′j +

ci1(k)k ≤ 2Ĉk + ci′′k. So Ak(ŷ′) ≤ d′k
2

(
2ci1(k)k + 2Ĉk

)
≤ 2d′kĈk.

If i1(k) /∈ Sj then i2(k) ∈ Sj , so ci′k + ci′′k ≤ 2ci2(k)k + ci′j + ci′′j ≤ 2ci2(k)k + 2Ĉk. So
Ak(ŷ′) is at most d′k

2

(
2ci2(k)k + 2Ĉk + ci1(k)k − ci2(k)k

)
= 2d′kĈk.

THEOREM 3.5. The integer solution (x̃, ỹ) translates to an integer solution to the
original instance of cost at most 10 ·OPT .

PROOF. By Lemmas 3.3 and 3.4, the cost of (x̃, ỹ) (for the modified instance) is at
most twice the cost of (x̂, ŷ), and hence, at most 6 · OPT by Lemma 3.2. Applying part
(ii) of Lemma 3.1 yields the theorem.

3.4. Improvement to 8-approximation
The procedure described in Section 3.3 shows that any half-integral solution can be
rounded to an integral one losing a factor of 2 in the cost. We obtain an improved ap-
proximation ratio of 8 by exploiting the structure leading to the half-integral solution
obtained in Section 3.2. The key to the improvement comes from the following obser-
vation (in various flavors). Consider a non-cluster-center k ∈ D′ \ D with ctr(k) = j.
Let i be a facility serving both j and k. Suppose i is not the primary facility of k.
Without any further information, we can only say that cjk ≤ cij + cik ≤ 3γj + 3γk.
However, if we define our half-integral solution by setting the secondary facility of

ACM Transactions on Algorithms, Vol. V, No. N, Article 1, Publication date: January 2016.

Improved Approximation Algorithms for Matroid and Knapsack Median Problems 1:9

k to be the primary facility of the client (in D) nearest to k, then we have the better
bound cjk ≤ 2γj+2γk, which yields an improved bound for k’s assignment cost. To push
this observation through, we will “couple” the rounding steps used to obtain the half-
integral and integral solutions: we tailor the function T (.) (defined in Step II above)
so as to allow one to bound the total cost of the final integral solution obtained. Also,
we use a different criterion for selecting a cluster center in the clustering performed in
Step III.

The first step is the same as Step I in Section 3.2. Recall that the new client-set is D
with demands {d′j}j∈D, OPT ′ is the cost of (x, y) for the modified instance, and for each
j ∈ D we define Fj = {i : cij = mink∈D cik}, F ′j = {i ∈ Fj : cij ≤ 2C̄j}, γj = mini/∈Fj cij ,
and Gj = {i ∈ Fj : cij ≤ γj}.

A1. Obtaining a half-integral solution. Set y′i = xij ≤ yi if i ∈ Gj , and y′i = 0
otherwise. We define T (v) =

∑
i fivi +

∑
j d
′
j

(
2
∑
i∈Gj cijvi + 4γj(1−

∑
i∈Gj vi)

)
for

v ∈ RF+ with some hindsight. Since y′ lies in the half-integral polytope P (see (4)),
we can obtain a half-integral ŷ such that T (ŷ) ≤ T (y′).
For each client j ∈ D, define σ(j) = j if ŷ(Gj) = 1, and σ(j) = arg mink∈D:k 6=j cjk
otherwise (breaking ties arbitrarily). Note that cjσ(j) ≤ 2γj . As before, we call the
facility i nearest to j with ŷi > 0 the primary facility of j and denote it by i1(j);
we set x̂i1(j)j = ŷi1(j). Note that i1(j) ∈ F ′j . If ŷi1(j) < 1 and ŷ(Gj) = 1, let i′ be the
fractionally open facility other than i1(j) nearest to j; otherwise, if ŷi1(j) < 1 and
ŷ(Gj) < 1, (so σ(j) 6= j and ŷi1(j) = 1

2), let i′ be the primary facility of σ(j). We
call i′ the secondary facility of j, and denote it by i2(j). Again, for convenience, we
consider j as having both a primary and secondary facility and x̂i1(j)j = x̂i2(j)j = 1

2 ,
with the understanding that if ŷi1(j) = 1, then i2(j) = i1(j) and x̂i1(j)j = 1. Let
Sj = {i : x̂ij > 0} = {i1(j), i2(j)}.

A2. Clustering and rounding to an integral solution. For each j ∈ D, define
C ′j =

(
ci1(j)j + cjσ(j) + ci2(j)σ(j)

)
/2. We cluster clients as in Step III in Section 3.3,

except that we repeatedly pick the client with smallest C ′j among the remaining
clients to be the cluster center. As before, let D′ denote the set of cluster centers,
and let ctr(k) = j ∈ D′ for k ∈ D if k was removed in the clustering process because
j was chosen as a cluster center and Sj ∩ Sk 6= ∅.
Similar to Step IV in Section 3.3, for each i ∈ F , define ŷ′i = x̂ij ≤ ŷi if i ∈ Sj where
j ∈ D′ and ŷ′i = ŷi otherwise. For z ∈ RF+, define H(z) =

∑
i fizi +

∑
k∈D Lk(z),

where

Lk(z) =


∑
i∈Sctr(k)

d′kcikzi if i1(k) ∈ Sctr(k)∑
i∈Sctr(k)

d′k
(
ckσ(k) + ciσ(k)

)
zi + d′k

(
ci1(k)k − ckσ(k) − ci1(σ(k))σ(k)

)
zi1(k)

otherwise.

As in Step IV in Section 3.3, Lk(z) is a suitable proxy for k’s assignment cost. It
coincides with Ak(z) when i1(k) ∈ Sctr(k); in the other case, we we have replaced
each cik term for i ∈ Sctr(k) in the expression for Ak(z) by the bound ckσ(k) + ciσ(k)

(note that i2(k) = i1(σ(k))). The intent is to capture the cost savings due to our
new definition of i2(k) but yet ensure that Lk(ỹ) yields an upper bound on k’s
assignment cost when ỹ ∈ R.
Since ŷ′ lies in the integral polytope R (see (5)), we can obtain an integral vector
ỹ such that H(ỹ) ≤ H(ŷ′), and a corresponding integral solution (x̃, ỹ) (as in Step
IV in Section 3.3).

ACM Transactions on Algorithms, Vol. V, No. N, Article 1, Publication date: January 2016.

1:10 C. Swamy

Analysis. By mimicking the proof of Lemma 3.2, we easily obtain that T (y′) ≤ 4 ·
OPT ′. Hence, we have T (ŷ) ≤ T (y′) ≤ 4 · OPT ′ ≤ 4 · OPT . Lemma 3.6 shows that the
cost of (x̃, ỹ) is at most H(ỹ) ≤ H(ŷ′), and Lemma 3.7 proves that H(ŷ′) ≤ T (ŷ). This
shows that the cost of (x̃, ỹ) is at most 4 ·OPT . Combined with Lemma 3.1, this yields
the 8-approximation guarantee (Theorem 3.8).

LEMMA 3.6. The cost of (x̃, ỹ) is at most H(ỹ) ≤ H(ŷ′).

PROOF. The facility opening cost is
∑
i fiỹi. The assignment cost of a client j ∈ D′

is
∑
i∈Sj d

′
jcij ỹi = Lj(ỹ). Consider a client k ∈ D \D′ with ctr(k) = j. Let i′ = i1(j), i′′ =

i2(j). If ỹi1(k) = 0 or i1(k) ∈ Sj , then Lk(ỹ) is at least d′k
∑
i∈Sj cikỹi, which is the

assignment cost of k. So suppose ỹi1(k) = 1 and i1(k) /∈ Sj . Then the assignment cost of k
is d′kci1(k)k, and since ciσ(k) ≥ ci1(σ(k))σ(k) for every i ∈ Sj , we have Lk(ỹ) ≥ d′kci1(k)k.

LEMMA 3.7. We have H(ŷ′) ≤ T (ŷ).

PROOF. Define Bj(ŷ) := d′j
(
2
∑
i∈Gj cij ŷi + 4γj(1 − ŷ(Gj))

)
. So T (ŷ) =

∑
i fiŷi +∑

j∈D Bj(ŷ). Clearly
∑
i fiŷ

′
i ≤

∑
i fiŷi. We show that Lj(ŷ′) ≤ Bj(ŷ) for every j ∈ D,

which will complete the proof.
We first argue that d′jC ′j ≤ Bj(ŷ) for every j ∈ D. If ŷ(Gj) = 1, then d′jC

′
j =∑

i∈Gj d
′
jcij ŷi ≤ Bj(ŷ). Otherwise, ŷ(Gj) = 1

2 , and cjσ(j) + ci1(σ(j))σ(j) ≤ 3γj ; so
d′jC

′
j ≤ d′j

(∑
i∈Gj cij ŷi + 3γj(1− ŷ(Gj))

)
≤ Bj(ŷ).

For a client j ∈ D′, we have Lj(ŷ
′) = d′j

(
ci1(j)j + ci2(j)j

)
/2 ≤ d′jC

′
j ≤ Bj(ŷ). Now

consider a client k ∈ D \D′. Let j = ctr(k), and i′ = i1(j), i′′ = i2(j). Note that C ′j ≤ C ′k.
We consider two cases.
1. i1(k) ∈ Sj . This means that i1(k) = i′′ 6= i′ and k = σ(j). So

Lk(ŷ′) =
d′k
2
·
(
ci′′k + ci′k

)
≤ d′k

2
·
(
ci′j + cjk + ci′′k

)
= d′kC

′
j ≤ d′kC ′k ≤ Bk(ŷ).

2. i1(k) /∈ Sj . This implies that ŷ(Gk) = ŷi1(k) = 1
2 . Let ` = σ(k) (which is the same as j

if i2(k) = i1(j)). We have Lk(ŷ′) =
d′k
2 ·
(
2ck`+ ci′`+ ci′′`+ ci1(k)k− ck`− ci1(`)`

)
. If ` = j,

then Lk(ŷ′) =
d′k
2 ·
(
ci1(k)k + cjk + ci′′j

)
. Notice that ci′′j ≤ 2C ′j− ci′j . So we obtain that

Lk(ŷ′) ≤ d′k
2
·
(
ci1(k)k+cjk+2C ′j−ci′j

)
≤ d′k

2
·
(
ci1(k)k+cjk+2C ′k−ci′j

)
= d′k

(
ci1(k)k+cjk

)
.

If ` 6= j, then i2(j) = i′′ = i2(k) = i1(`), so ` = σ(j), and ci′j + cj`+ ci′′` = 2C ′j ≤ 2C ′k =

ci1(k)k + ck` + ci′′`. So Lk(ŷ′) ≤ d′k
2 ·
(
ci1(k)k + ck` + cj` + ci′j

)
≤ d′k(ci1(k)k + ck`). In both

cases,

Lk(ŷ′) ≤ d′k(ci1(k)k + ckσ(k)

)
≤ d′k

(
2
∑
i∈Gk

cikŷi + 4γk
(
1− ŷ(Gk)

))
= Bk(ŷ).

THEOREM 3.8. The integer solution (x̃, ỹ) translates to an integer solution to the
original instance of cost at most 8 ·OPT .

Remark 3.9. It is easy to modify the above algorithm to obtain a so-called
Lagrangian-multiplier preserving (LMP) 8-approximation algorithm, that is, where
the solution (x̃, ỹ) returned satisfies 8

∑
i fiỹi +

∑
j∈D,i djcij x̃ij ≤ 8 · OPT . To obtain

ACM Transactions on Algorithms, Vol. V, No. N, Article 1, Publication date: January 2016.

Improved Approximation Algorithms for Matroid and Knapsack Median Problems 1:11

this, the only change is that we redefine

T (v) = 8
∑
i

fivi+
∑
j

d′j
(
2
∑
i∈Gj

cijvi+ 4γj(1−
∑
i∈Gj

vi)
)
, H(z) = 8

∑
i

fizi+
∑
k∈D

Lk(z).

We now have T (ŷ) ≤ T (y′) ≤ 8
∑
i fiyi + 4

∑
j∈D d

′
jC̄j , and 8

∑
i fiỹi +

∑
j∈D,i d

′
jcij x̃ij ≤

H(ỹ) ≤ H(ŷ′). Also, as before, we have H(ŷ′) ≤ T (ŷ). Thus, we have

8
∑
i

fiỹi +
∑
j∈D,i

djcij x̃ij ≤ 8
∑
i

fiỹi +
∑
j∈D,i

d′jcij x̃ij +
∑

j∈D\D

4djC̄j

≤ 8
∑
i

fiyi + 4
∑
j∈D

djC̄j + 8
∑

j∈D\D

djC̄j ≤ 8 ·OPT .

4. EXTENSIONS
4.1. Matroid median with two matroids
A natural extension of matroid median is the matroid-intersection median problem,
wherein are given two matroids on the facility-set F , and we require the set of open
facilities to be an independent set in both matroids. This problem turns out to be in-
approximable to within any multiplicative factor in polytime since, as we show in Ap-
pendix B, it is NP-complete to determine if there is a zero-cost solution; this holds even
if one of the matroids is a partition matroid.

We consider two extensions of matroid median that are essentially special cases
of matroid-intersection median and can be used to model some interesting problems
(see Section 5). The techniques developed in Section 3 readily extend and yield an 8-
approximation algorithm (in fact, an LMP 8-approximation) for both problems. These
extensions may be viewed in some sense as the most-general special cases of matroid-
intersection median that one can hope to approximately solve in polytime. Technically,
the key distinction between (general) matroid-intersection median and the extensions
we consider, which enables one to achieve polytime multiplicative approximation guar-
antees for these problems, is the following. In both our extensions, one can define
polytopes analogous to P and R in the earlier rounding procedure (see (4) and (5)
respectively) that encode information from the clustering performed in Steps I and III
respectively and whose extreme points are defined by equations coming from two lam-
inar systems. In contrast, for matroid-intersection median, the extreme points of the
analogous polytopes are defined by equations coming from three laminar systems (one
each from the two matroids, and one that encodes information about the clustering
step), which creates an insurmountable obstacle.

The setup in both extensions is similar. We have a matroidM = (F , I) on the facility-
set (and clients with demands and assignment costs). F is partitioned into F1∪F2 and
clients may only be assigned to facilities in F1; this can be encoded by setting cij = ∞
for all i ∈ F2 and j ∈ D. We also have lower and upper bounds (lb1 , ub1), (lb2 , ub2), and
(lb, ub) on the number of facilities that may be opened from F1, F2, and F respectively.
As before, we need to open a feasible set of facilities and assign every client to an
open facility so as to minimize the total facility-opening and client-assignment cost.
A set F ⊆ F of facilities is said to be feasible if: (i) F ∈ I; (ii) lb1 ≤ |F ∩ F1| ≤ ub1 ,
lb2 ≤ |F∩F2| ≤ ub2 , lb ≤ |F | ≤ ub; and (iii) F∩F2 satisfies problem-specific constraints.
While the role of F2 may seem unclear, notice that a non-trivial lower bound on the
number of F2-facilities imposes restrictions on the facilities that may be opened from
F1 due to the matroid M (see, e.g., k-median forest in Section 5).

Two-matroid median (2MMed). In addition to the above setup, we have another ma-
troid M2 = (F2, I2) on F2 with rank function r2. A set F of facilities is feasible if it

ACM Transactions on Algorithms, Vol. V, No. N, Article 1, Publication date: January 2016.

1:12 C. Swamy

satisfies (i) and (ii) above, and (iii) F ∩F2 ∈ I2. We may modify the matroids M and M2

to incorporate the upper bounds ub and ub2 respectively in their definition; we assume
that this has been done in the sequel. The LP-relaxation for 2MMed is quite similar to
(P). We augment (P) with the constraints:

y(S) ≤ r2(S) ∀S ⊆ F2, lb1 ≤ y(F1) ≤ ub1 , lb2 ≤ y(F2), lb ≤ y(F).

Let (x, y) denote an optimal solution to this LP, and OPT denote its cost. The rounding
procedure dovetails the one in Section 3. The first step is again Step I in Section 3.2.
Let D be the new client-set with demands {d′j}j∈D, OPT ′ be the new cost of (x, y), and
for each j ∈ D, we define Fj , F ′j , γj , and Gj as before. Note that Fj ⊆ F1 for all j ∈ D.

A slight technicality arises in mimicking Step A1 in Section 3.4: setting y′i = xij for
some facility i ∈ Gj need not satisfy the lower-bound constraints. To deal with this,
for every j ∈ D and i ∈ Gj with 0 < xij < yi, we replace facility i with two co-located
“clones” i1 and i2. We set fi1 = fi2 = fi, yi1 = xij = xi1j , yi2 = yi − yi1 , xi2j = 0, and
for every client k ∈ D, k 6= j, we arbitrarily split xik into xi1k ≤ yi1 and xi2k ≤ yi2 so
that xi1k+xi2k = xik. We define a new set G′j consisting of the new facilities i for which
cij = mink∈D cik, cij ≤ γj and xij = yi > 0 (that is, G′j consists of the new i1-clones and
the old facilities i ∈ Gj with xij = yi > 0). We continue to let F ′j denote the facilities i
with cij = mink∈D cik and cij ≤ 2C̄j . Let F ′1 denote the new F1-set after these changes,
and F ′ = F ′1 ∪ F2; the bounds lb1 , ub1 , lb, ub are unchanged. Set h(i) = {i1, i2} if
i is cloned into i1, i2, and h(i) = {i} otherwise. We update the rank function r to r′

(over 2F
′
) in the obvious way: r′(S) = r

(
{i ∈ F : h(i) ∩ S 6= ∅}

)
. Note that r′ defines a

matroid on F ′. Clearly, a solution to the modified translates to a solution to the original
instance and vice versa.

We continue with steps A1, A2 in Section 3.4, replacing Gj with G′j , and using suit-
able polytopes in place of P and R to obtain the half-integral and integral solutions.
To obtain a half-integral solution, we define

P ′ :=

{
v ∈ RF ′

+ : v(S) ≤ r′(S) ∀S ⊆ F ′, v(S) ≤ r2(S) ∀S ⊆ F2, lb ≤ v(F ′)

lb1 ≤ v(F ′1) ≤ ub1 , lb2 ≤ v(F2), v(F ′j) ≥ 1
2 , v(G′j) ≤ 1 ∀j ∈ D

}
. (6)

Clearly (the new vector) y lies in P ′. The key observation is that an extreme point of P ′
is again defined by a linearly independent system of tight constraints coming from two
laminar systems: one consisting of some tight v(S) ≤ r′(S) and lb ≤ v(F ′) ≤ ub con-
straints; the other consisting of some tight v(S) ≤ r2(S) and lb1 ≤ v(F ′1) ≤ ub1 , lb2 ≤
v(F2) ≤ ub2 constraints, and some tight v(F ′j) ≤ 1

2 and v(G′j) ≥ 1 constraints. Thus,
P ′ has half-integral extreme points, and so we can find a half-integral ŷ such that
T (ŷ) ≤ T (y) (where T (.) is as defined in Section 3.4), and a corresponding solution
(x̂, ŷ) as in step A1.

We round (x̂, ŷ) to an integral solution as in step A2. Recall that Sj = {i : x̂ij > 0}.
We define C ′j and cluster clients in D as in step A2 (again using G′j instead of Gj) to
obtain the set D′ of cluster centers. A useful observation is that if |Sj | = 1 then we
may assume that j ∈ D′. This is because for any k ∈ D with Sk ∩ Sj 6= ∅, we have
σ(k) = j and therefore C ′k ≥

(
cjk + ci1(j)j

)
/2 ≥ ci1(j)j = C ′j . Thus, if j ∈ D′, then x̂ij = ŷi

for all i ∈ Sj : this is clearly true if |Sj | = 1; otherwise, we have that |Sσ(j)| = 2 (since

ACM Transactions on Algorithms, Vol. V, No. N, Article 1, Publication date: January 2016.

Improved Approximation Algorithms for Matroid and Knapsack Median Problems 1:13

σ(j) /∈ D′) and so ŷi1(σ(j)) = 1
2 . The polytope used to round ŷ is

R′ :=

{
z ∈ RF

′

+ : z(S) ≤ r′(S) ∀S ⊆ F ′, z(S) ≤ r2(S) ∀S ⊆ F2,

lb1 ≤ z(F ′1) ≤ ub1 , lb2 ≤ z(F2), lb ≤ z(F ′), z(Sj) = 1 ∀j ∈ D′
} (7)

which has integral extreme points. So we obtain an integral vector ỹ such that H(ỹ) ≤
H(ŷ) (were H(.) is as defined in in Section 3.4), and hence an integer solution (x̃, ỹ).
Mimicking the analysis in Section 3.4, we obtain that T (ŷ) ≤ T (y) ≤ 4 ·OPT ′, and the
cost of (x̃, ỹ) is at most H(ỹ) ≤ H(ŷ) ≤ T (ŷ). Thus, we obtain the following theorem.

THEOREM 4.1. The integer solution (x̃, ỹ) yields an integer solution to 2MMed of cost
at most 8 ·OPT .

Laminarity-constrained matroid median (LCMMed). In LCMMed, in addition to the
common setup, we have a laminar family L on F2 and bounds 0 ≤ `S ≤ uS for every
set S ∈ L; a set F of facilities is feasible if it satisfies (i) and (ii) above, and (iii) `S ≤
|F ∩ S| ≤ uS for all S ∈ L,

The approach used for 2MMed also works for LCMMed. The only (obvious) changes
are that the LP-relaxation, as well as the definition of the polytopes P ′ and R′ (in (6)
and (7)) now include the laminarity constraints in place of the rank constraints for the
second matroid. All other steps and arguments proceed identically, and so we obtain
an 8-approximation algorithm for laminarity-constrained matroid median.

4.2. Matroid median with penalties
This is the generalization of matroid median where are allowed to leave some clients
unassigned at the expense of incurring a penalty djπj for each unassigned client j.
This changes the LP-relaxation (P) as follows. We use a variable zj for each client
j ∈ D to denote if we incur the penalty for client j, and modify the assignment
constraint for client j to

∑
i xij + zj ≥ 1; also the objective is now to minimize∑

i fiyi +
∑
j dj
(∑

i cijxij + πjzj
)
. Let (x, y, z) denote an optimal solution to this LP

and OPT be its value.
Krishnaswamy et al. [Krishnaswamy et al. 2011] showed that (x, y, z) can be

rounded to an integer solution losing a factor of 360. We show that our rounding
approach for matroid median can be adapted to yield a substantially improved 24-
approximation algorithm. The rounding procedure is similar to the one described in
Section 3 for matroid median, except that we now need to deal with the complication
that a client need be assigned fractionally to an extent of 1.

Let Xj =
∑
i xij , C̄j =

∑
i cijxij/Xj , and LPj =

∑
i cijxij + πjzj = C̄jXj + πjzj . We

may assume that Xj + zj = 1 for every client j and that if xij > 0 then cij ≤ πj , so we
have C̄j ≤ LPj ≤ πj .

Step 0. First, we set z̃j = 1 and incur the penalty for each client j for which πj ≤ 2LPj .
In the sequel, we work with the remaining set D′ = {j ∈ D : 2LPj < πj} of clients. Note
that Xj >

1
2 for every j ∈ D′. Let OPT ′′ =

∑
i fiyi +

∑
j∈D′ dj

(∑
i cijxij + πjzj

)
.

Step I: Consolidating demands. We consolidate demands around centers in a man-
ner similar to Step I of the rounding procedure in Section 3. The difference is that if k
is consolidated with client j, then we cannot simply add dk to j’s demand and replicate
j’s assignment for k (since πk could be much larger than πj so that C̄jXj + πk(1 −Xj)
need not be bounded in terms of LPk). Instead, we treat k as being co-located with j
and recompute k’s assignment.

ACM Transactions on Algorithms, Vol. V, No. N, Article 1, Publication date: January 2016.

1:14 C. Swamy

Let L be a list of clients in D′ arranged in increasing order of LPj . Let D = ∅. We
compute a new assignment (x′, z′) for the clients as follows. Set x′ij = z′j = 0 for all i, j.
Remove the first client j ∈ L and add it to D. Set x′ij = xij for all facilities i and z′j = zj ;
also set nbr(j) = j. For every client k in L with cjk ≤ 4LPk, we remove k from L, and
set nbr(k) = j. We consider k to be co-located with j and re-optimize k’s assignment.
So we set x′ik = yi starting from the facility nearest to j and continuing until k is
completely assigned or until the last facility i such that cij ≤ πk, in which case we set
z′k = 1−

∑
i x
′
ik. Note that

∑
i cijx

′
ik + πkz

′
k ≤

∑
i cijxik + πkzk ≤ 4LPk + LPk.

We call each client in D a cluster center. Let {c′ij} denote the assignment costs of the
clients with respect to their new locations. Let OPT ′ =

∑
i fiyi +

∑
j∈D′ dj

(∑
i c
′
ijx
′
ij +

πjz
′
j

)
denote the cost of the modified solution for the modified instance. The following

lemma is immediate.

LEMMA 4.2. The following hold: (i) if j, k ∈ D′ are not co-located, then cjk ≥
4 max(LPj , LPk), (ii) OPT ′ ≤ 5 · OPT ′′, and (iii) any solution to the modified instance
can be converted to a solution to the original instance involving client-set D′ incurring
an additional cost of at most 4 ·OPT ′′.

Step II: Obtaining a half-integral solution. As in Step II of Section 3, we define a suit-
able vector y′ that lies in a polytope with half-integral extreme points and construct a
linear function T (.) with T (y′) = O(OPT ′) bounding the cost of a fractional solution.
We can then obtain a “better” half-integral vector ŷ, which yields a half-integral so-
lution. In Step III, we round ŷ to an integral solution whose cost we argue is at most
T (ŷ) ≤ T (y′).

Consider a client j ∈ D. Let Fj = {i : cij = mink∈D cik}, F ′j = {i ∈ Fj : cij ≤ 2LPj},
γj = mini/∈Fj cij , and Gj = {i ∈ Fj : cij ≤ γj}. Note that

∑
i∈F ′

j
x′ij =

∑
i:cij≤2LPj

x′ij >
1
2

since LPj ≥
∑
i:cij>2LPj

cijx
′
ij+πjz

′
j (and πj > 2LPj) implies that

∑
i:cij>2LPj

x′ij+z′j <
1
2 .

Consider the facilities in Gj in increasing order of their distance from j. For every
facility i ∈ Gj , we set y′i = min{yi, 1 −

∑
i′∈Gj :i′ comes before i y

′
i′}. We set y′i = 0 for all

other i ∈ Fj . Note that y′(F ′j) = min
{

1, y(F ′j)
}
≥ 1

2 . Clearly, y′(Fj) = y′(Gj) ≤ 1 and if
y(Gj) ≤ 1, then y′i = yi for all i ∈ Gj .

Given v ∈ RF+, for a client k ∈ D′ with nbr(k) = j, we define Bk(v) =

dk
(∑

i∈Gj :c′ik≤πk
2c′ikvi + min{2πk, 4γj}(1 −

∑
i∈Gj :c′ik≤πk

vi)
)
. Now set T (v) =

∑
i fivi +∑

j∈D′ Bj(v). Clearly y′ ≤ y, so y′ lies in the polytope P (see (4)), which has half-integral
extreme points. So we can obtain a half-integral point ŷ ∈ P ′ such that T (ŷ) ≤ T (y′).

We now obtain a half-integral assignment for the clients in D′ as follows. Consider a
client k and let j = nbr(k). (Note that we could have k = j.) Set σ(j) to be j if ŷ(Gj) = 1,
and arg min`∈D: 6̀=j cj` otherwise (as in Section 3.4). Call the facility i ∈ F ′j nearest to
j the primary facility of k, and set x̂ik = ŷi. If ŷi < 1, then define i′ to be the facility
nearest to j other than i with ŷi′ > 0 if ŷ(Gj) = 1, and the primary facility of σ(j)
otherwise. If ŷ

(
{i′′ ∈ Gj : ci′′j ≤ πk}

)
= 1

2 and πk ≤ 2γj , we set ẑk = 1
2 = 1 − x̂ik.

Otherwise, we set x̂i′k = 1
2 = 1− x̂ik and call i′ the secondary facility of k.

Step III: Rounding (x̂, ŷ) to an integer solution. This step is quite straightforward.
We incur the penalty for all clients j ∈ D′ with ẑj = 1

2 . Note that all the remaining
clients k with nbr(k) = j are (co-located and) assigned identically and completely in
(x̂, ŷ, ẑ). Viewing this as an instance with demand consolidated at the cluster centers,
we use the rounding procedure in step A2 of Section 3.4 to convert the half-integral so-
lution of these remaining clients into an integral one. Let (x̃, ỹ, z̃) denote the resulting
integer solution.

ACM Transactions on Algorithms, Vol. V, No. N, Article 1, Publication date: January 2016.

Improved Approximation Algorithms for Matroid and Knapsack Median Problems 1:15

LEMMA 4.3. We have T (ŷ) ≤ T (y′) ≤ 4 ·OPT ′.

PROOF. It suffices to show that for every client k, we have Bk(y′) ≤ 4dk
(∑

i c
′
ikx
′
ik +

πkz
′
k

)
. Let j = nbr(k). Consider the facilities in Gj in increasing order of their distance

from j. If πk < γj , then (we may assume that) k uses the facilities in Gj with c′ik =
cij ≤ πk fully (i.e., x′ik = yi) until either it is completely assigned (and the last facility
used by k may be partially used) or we exhaust the facilities in Gj with cij ≤ πk. In
both cases, we have x′ik = y′i for all i ∈ Gj with c′ik ≤ πk and z′k = 1 −

∑
i∈Gj :c′ik≤πk

y′i,
and so

∑
i c
′
ikx
′
ik + πkz

′
k =

∑
i∈Gj :c′ik≤πk

c′iky
′
i + πk

(
1 −

∑
i∈Gj :c′ik≤πk

y′i
)
. If πk ≥ γj , then∑

i c
′
ikx
′
ik + πkz

′
k ≥

∑
i∈Gj c

′
ikx
′
ik + γj

(
1 −

∑
i∈Gj x

′
ik

)
; also, x′ik = y′i for all i ∈ Gj since

πk ≥ c′ik. So in every case, we have Bk(y′) ≤ 4dk
(∑

i c
′
ikx
′
ik + πkz

′
k

)
.

LEMMA 4.4. The cost of (x̃, ỹ, z̃) for the modified instance is at most T (ŷ).

PROOF. Consider a client k and let j = nbr(k). If z̃k = 1 then Bk(ŷ) ≥ πk, since ẑk = 1
2

implies that ŷ(Nk) = 1
2 , where Nk = {i ∈ Gj : cij ≤ πk}, and πk < 2γj . If z̃k = 0 then we

claim that Bk(ŷ) = dk
(
2
∑
i∈Gj cij ŷi + 4γj(1 − ŷ(Gj))

)
. If ŷ(Nk) = 1

2 , then this follows
since we must have πk > 2γj for ẑk to be 0; otherwise, ŷ(Nk) = 1 = ŷ(Gj) and again the
equality holds.

The proof of Lemma 3.6 now shows that
∑
i fiỹi +

∑
k:ẑk=0 c

′
ikx̃ik ≤ H(ŷ) ≤

∑
i fiŷi +∑

k:ẑk=0Bk(ŷ), where H(.) is the function defined in step A2 of Section 3.4 for the
instance where each cluster center j has demand d′j :=

∑
k:nbr(k)=j
ẑk=0

dk. Hence, the total

cost of (x̃, ỹ, z̃) for the modified instance is at most T (ŷ).

Combined with parts (ii) and (iii) of Lemma 4.2, we obtain a solution to the original
instance involving client-set D′ of cost at most 24 · OPT ′′. Adding in the penalties of
the clients in D \D′ (recall that πj ≤ 2LPj for each j ∈ D \D′), we obtain that the total
cost is at most 24 ·OPT .

THEOREM 4.5. One can round (x, y, z) to an integer solution of cost at most 24·OPT .

5. APPLICATIONS
We now show that the various facility location problems listed below can be cast as
special cases of matroid median or the extensions considered in Section 4.1. Thus,
our 8-approximation algorithms for matroid median and these extensions immediately
yield improved approximation guarantees for all these problems.

ACM Transactions on Algorithms, Vol. V, No. N, Article 1, Publication date: January 2016.

1:16 C. Swamy

Problem Previous best approximation factor
Data placement problem [Baev
and Rajaraman 2001; Baev et al.
2008]

10 [Baev et al. 2008]

Mobile facility location [Friggstad
and Salavatipour 2011; Ahmadian
et al. 2013] (with general move-
ment costs)

—; our reduction and results of [Krishnaswamy
et al. 2011; Charikar and Li 2012] yield factors of
16 and 9 ((3 + ε) [Ahmadian et al. 2013] for pro-
portional movement costs)

k-median forest [Gørtz and Na-
garajan 2011] (with non-uniform
metrics)

16 [Gørtz and Nagarajan 2011]
((3 + ε) [Gørtz and Nagarajan 2011] for related
metrics)

Metric-uniform minimum-latency
UFL (MLUFL) [Chakrabarty and
Swamy 2011]

10.773 [Chakrabarty and Swamy 2011]

The data placement problem. We have a set of caches F , a set of data objects O, and
a set of clients D. Each cache i ∈ F has a capacity ui. Each client j ∈ D has demand
dj for a specific data object o(j) ∈ O and has to be assigned to a cache that stores o(j).
Storing an object o in cache i incurs a storage cost of foi , and assigning client j to cache
i incurs an access cost of djcij , where the cijs form a metric. We want to determine a
set of objects O(i) ⊆ O to place in each cache i ∈ F satisfying |O(i)| ≤ ui, and assign
each client j to a cache i(j) that stores object o(j), (i.e., o(j) ∈ O(i(j))) so as to minimize∑
i∈F

∑
o∈O(i) f

o
i +

∑
j∈D djci(j)j .

Reduction to matroid median. The facility-set in the matroid-median instance is F×O.
Facility (i, o) denotes that we store object o in cache i, and has cost foi . The client set is
D. We set the distance c(i,o)j to be cij if o(j) = o and ∞ otherwise, thus enforcing that
each client j is only assigned to a facility containing object o(j). The new distances form
a metric if the cijs form a metric. The cache-capacity constraints are incorporated via
the matroid where a set S ⊆ F ×O is independent if |{(i′, o) ∈ S : i′ = i}| ≤ ui for every
i ∈ F .

Mobile facility location. In the version with general movement costs, the input is
a metric space

(
V, {cij}

)
. We have a set D ⊆ V of clients, with each client j having

demand dj , and a set F ⊆ V of initial facility locations. A solution moves each facility
i ∈ F to a final location si ∈ V incurring a movement cost of wisi ≥ 0, and assigns each
client j to the final location s of some facility incurring an assignment cost of djcsj . The
goal is to minimize the sum of all the movement and assignment costs.

Reduction to matroid median. We define the facility-set in the matroid-median in-
stance to be F × V . Facility (i, si) denotes that i ∈ F is moved to location s ∈ V , and
has cost wis (note that s could be i).The client-set is unchanged, and we set c(i,s)j to be
csj for every facility (i, s) ∈ F ×V and client j ∈ D. These new distances form a metric:
we have c(i,s)j ≤ c(i,s)k + c(i′,s′)k + c(i′,s′)j since csj ≤ csk + cs′k + cs′j . The constraint
that a facility in F can only be moved to one final location can be encoded by defining
a matroid where a set S ⊆ F × V is said to be independent if |{(i′, s) ∈ S : i′ = i}| ≤ 1
for all i ∈ F .2

2We are assuming here that wii = 0 for every i ∈ F , so that not opening any facility in {i} × V correctly
encodes that i is not moved and no clients are assigned to it in the mobile-facility-location instance. This
condition is without loss of generality. If wii 6= 0 then if r ∈ V is such that wir = mins∈V wis, we can “move”
i to r (i.e., set F ← F \ {i} ∪ {r} making a copy of r if r was previously in F), and define the movement cost

ACM Transactions on Algorithms, Vol. V, No. N, Article 1, Publication date: January 2016.

Improved Approximation Algorithms for Matroid and Knapsack Median Problems 1:17

k-median forest. In the non-uniform version, we have two metric spaces
(
V, {cuv}

)
and

(
V, {duv}

)
. The goal is to find S ⊆ V with |S| ≤ k and assign every node j ∈ V to

i(j) ∈ S so as to minimize
∑
j ci(j)j + d

(
MST(V/S)

)
, where MST(V/S) is a minimum

spanning forest where each component contains a node of S.

Reduction to 2MMed (or LCMMed). We actually reduce a generalization, where there is
an “opening cost” fi ≥ 0 incurred for including i in S; the resulting instance is also
an LCMMed instance. We add a root r to V . The facility-set F is the edge-set of the
complete graph on V ∪ {r}. The client-set is D := V . Selecting a facility (r, i) denotes
that i ∈ S, and selecting a facility (u, v), where u, v 6= r, denotes that (u, v) is part of
MST(V/S). We let F1 be the edges incident to r, and F2 be the remaining edges. The
cost of a facility (r, i) ∈ F1 is fi; the cost of a facility (u, v) ∈ F2 is duv. The client-facility
distances are given by c(r,i)j = cij and cej = ∞ for every e ∈ F2. Note that these {cej}
distances form a metric. We let M be the graphic matroid of the complete graph on
V ∪{r}. We impose a lower bound of |V | on the number of facilities opened from F , and
an upper bound of k on the number of facilities opened from F1. The matroid M2 on F2

is the vacuous one where every set is independent.
A feasible solution to the 2MMed instance corresponds to a spanning tree on V ∪ {r}

where r has degree at most k. This yields a solution to k-median forest of no-greater
cost, where the set S is the set of nodes adjacent to r in this edge-set. Conversely, it is
easy to see that a solution S to the k-median forest instance yields a 2MMed solution of
no-greater cost.

Metric uniform MLUFL. We have a set F of facilities with opening costs {fi}i∈F , and
a set D of clients with assignment costs {cij}j∈D,i∈F , where the cijs form a metric.
Also, we have a monotone latency-cost function λ : Z+ 7→ R+. The goal is to choose a
set F ⊆ F of facilities to open, assign each open facility i ∈ F a distinct time-index
ti ∈ {1, . . . , |F|}, and assign each client j to an open facility i(j) ∈ F so as to minimize∑
i∈F fi +

∑
j∈D

(
ci(j)j + λ(ti(j))

)
.

Reduction to matroid median. We define the facility-set to be F × {1, . . . , |F|} and the
matroid on this set to encode that a set S is independent if |{(i, t′) ∈ S : t′ = t}| ≤ 1 for
all t ∈ {1, . . . , |F|}. We set f(i,t) = fi and c(i,t),j = cij + λ(t); note that these distances
form a metric. It is easy to see that we can convert any matroid-median solution to one
where we open at most one (i, t) facility for any given i without increasing the cost, and
hence, the matroid-median instance correctly encodes metric uniform MLUFL.

6. KNAPSACK MEDIAN
We now consider the knapsack median problem [Krishnaswamy et al. 2011; Kumar
2012], wherein instead of a matroid on the facility-set, we have a knapsack constraint
on the facility-set. Kumar [Kumar 2012] obtained the first constant-factor approxi-
mation algorithm for this problem, and [Charikar and Li 2012] obtained an improved
34-approximation algorithm. We consider a somewhat more-general version of knap-
sack median, wherein each facility i has a facility-opening cost fi and a weight wi,
and we have a knapsack constraint

∑
i∈F wi ≤ B constraining the total weight of open

facilities. We leverage the ideas from our simpler improved rounding procedure for ma-
troid median to obtain an improved 32-approximation algorithm for this (generalized)
knapsack-median problem. We show that one can obtain a nearly half-integral solu-
tion whose cost is within a constant-factor of the optimum. It then turns out to be easy

of r to be w′
rs = wis − wir for all s ∈ V . It is easy to see that a ρ-approximate solution to the new instance

translates to a ρ-approximate solution to the original instance.

ACM Transactions on Algorithms, Vol. V, No. N, Article 1, Publication date: January 2016.

1:18 C. Swamy

to round this to an integral solution. The resulting algorithm and analysis is simpler
than that in [Kumar 2012; Charikar and Li 2012]. We defer the details to Appendix C.

APPENDIX
A. ALTERNATE PROOF OF HALF-INTEGRALITY OF THE POLYTOPE P DEFINED BY (4)
We give an alternate proof of half-integrality of P based on the integrality of the inter-
section of two submodular polyhedra. Observe that by setting zi = 2vi for i ∈ F , and
introducing slack variables sj for every j ∈ D, the system defining P is equivalent to

0 ≤ z(S) ≤ 2r(S) ∀S ⊆ F , z(Gj) + sj = 2, z(Gj \ F ′j) + sj ≤ 1, sj ≥ 0 ∀j ∈ D. (8)

This in turn is equivalent to

z(S) + s(A) ≤ h1(S]A) ∀S ⊆ F , A ⊆ D (9)
z(S) + s(A) ≤ h2(S]A) ∀S ⊆ F , A ⊆ D (10)

z, s ≥ 0 (11)
z(Gj) + sj = 2 ∀j ∈ D (12)

where h1 and h2 are submodular functions defined over F] D given by h1(S] A) :=
2r(S)+|A| and h2(S]A) := 2|{j : F ′j∩S 6= ∅}|+|{j : F ′j∩S = ∅ and (j ∈ A or Gj∩S 6= ∅)}|.
(To see the equivalence, it is clear that constraints (9)–(12) include (8). Conversely, (9)
follows by adding the constraints z(S) ≤ 2r(S) and sj ≤ 1 for all j ∈ A; (10) is implied
by the sum of constraints z(Gj)+sj = 2 for all j such that F ′j∩S 6= ∅, and z(Gj)+sj ≤ 1
for all other j such that j ∈ A or Gj ∩ S 6= ∅.) Let Q be the polytope defined by (9)–
(11). Since h1 and h2 are integer submodular functions, Q is the intersection of the
submodular polyhedra for h1 and h2, which is known to be integral. Also, constraints
(9)–(12) define a face of Q. Now it is easy to see that an extreme point v of P, maps to
an extreme point (2v, s), for a suitably defined s, of this face (which must be integral).
Hence, P has half-integral extreme points.

B. INAPPROXIMABILITY OF MATROID-INTERSECTION MEDIAN
We show that the problem of deciding if an instance of matroid-intersection median
has a zero-cost solution is NP-complete. This implies that no multiplicative approxi-
mation factor is achievable in polytime for this problem unless P=NP. The reduction
is from the NP-complete directed Hamiltonian path problem, wherein we are given a
directed graph D = (N,A), and two nodes s, t, and we need to determine if there is
a simple (directed) s ; t path spanning all the nodes. The facility-set in the matroid-
intersection median problem is the arc-set A, and every node except t is a client. One
of the matroids M is the graphic matroid on the undirected version of D, that is, an
arc-set is independent if it is acyclic when we ignore the edge directions. The second
matroid M2 is a partition matroid that enforces that every node other than s has at
most one incoming arc. All facility-costs are 0. We set cij = 0 if i is an outgoing arc of j,
and∞ otherwise. Notice that this forms a metric since the sets {i : cij = 0} are disjoint
for different clients.

It is easy to see that an s ; t Hamiltonian path translates to a zero-cost solution to
the matroid-intersection median problem. Conversely, if we have a zero-cost solution
to matroid-intersection median, then it must open |N |−1 facilities, one for each client.
Hence, the resulting edges must form a (spanning) arborescence rooted at s, and more-
over, every node other than t must have an outgoing arc. Thus, the resulting edges
yield an s; t Hamiltonian path.

ACM Transactions on Algorithms, Vol. V, No. N, Article 1, Publication date: January 2016.

Improved Approximation Algorithms for Matroid and Knapsack Median Problems 1:19

C. KNAPSACK MEDIAN: ALGORITHM DETAILS AND ANALYSIS
Recall that we consider a more general version of knapsack median than that consid-
ered in [Krishnaswamy et al. 2011; Kumar 2012; Charikar and Li 2012]. Each facility
i has a facility-opening cost fi and a weight wi, and we have a knapsack constraint∑
i∈F wi ≤ B constraining the total weight of open facilities. The goal is to minimize

the sum of the facility-opening and client-connection costs while satisfying the knap-
sack constraint on the set of open facilities. We may assume that we know the max-
imum facility-opening cost fopt of a facility opened by an optimal solution, so in the
sequel we assume that fi ≤ fopt , wi ≤ B for all facilities i ∈ F .

Krishnaswamy et al. [Krishnaswamy et al. 2011] showed that the natural LP-
relaxation for knapsack median has a bad integrality gap; this holds even after aug-
menting the natural LP with knapsack-cover inequalities. To circumvent this diffi-
culty, Kumar [Kumar 2012] proposed the following lower bound, which we also use.
Suppose that we have an estimate Copt within a (1 + ε)-factor of the connection cost of
an optimal solution (which we can obtain by enumerating all powers of (1 + ε)). Then,
defining Uj := arg max{z :

∑
k dk max{0, z − cjk} ≤ Copt}, Kumar argued that the con-

straint xij = 0 if cij > Uj is valid for the knapsack median instance. We augment the
natural LP-relaxation with these constraints to obtain the following LP (K-P).

min
∑
i

fiyi +
∑
j

∑
i

djcijxij (K-P)

s.t.
∑
i

xij ≥ 1 ∀j

xij ≤ yi ∀i, j∑
i

wiyi ≤ B

xij , yi ≥ 0 ∀i, j; xij = 0 if cij > Uj .

Let (x, y) be an optimal solution to (K-P) and OPT be its value. Let C̄j =
∑
i cijxij .

Note that if our estimate Copt is correct, then OPT is at most the optimal value opt
for the knapsack median instance. We show that (x, y) can be rounded to an integer
solution of cost fopt + 4Copt + 28 · OPT . Thus, if consider all possible choices for Copt

in powers of (1 + ε) and pick the solution returned with least cost, we obtain a solution
of cost at most (32 + ε) times the optimum. The rounding procedure is as follows.

K1. Consolidating demands. We start by consolidating demands as in Step I in
Section 3.2. We now work with the client set D and the demands {d′j}j∈D. For
j ∈ D, we use Mj ⊆ D to denote the set of clients (including j) whose demands
were moved to j. Note that the Mjs partition D. Let OPT ′ denote the cost of (x, y)
for this modified instance. As before, for each j ∈ D we define Fj = {i : cij =
mink∈D cik}, F ′j = {i ∈ Fj : cij ≤ 2C̄j}, γj = mini/∈Fj cij , and Gj = {i ∈ Fj : cij ≤ γj}.

K2. Obtaining a nearly half-integral solution. Set y′i = xij ≤ yi if i ∈ Gj , and
y′i = 0 otherwise. Let F ′ =

⋃
j∈D Gj . In the sequel, we will only consider facilities

in F ′. Consider the following polytope:

K :=
{
v ∈ RF

′

+ : v(F ′j) ≥ 1
2 , v(Gj) ≤ 1 ∀j ∈ D,

∑
i

wivi ≤ B
}
. (13)

Define K(v) =
∑
i 2fivi +

∑
j d
′
j

(
2
∑
i∈Gj cijvi + 8γj(1 − v(Gj))

)
for v ∈ RF ′

+ . Since
y′ ∈ K, we can efficiently obtain an extreme point ŷ of K such that K(ŷ) ≤ K(y′),
the support of ŷ is a subset of the support of y′, and all constraints that are tight

ACM Transactions on Algorithms, Vol. V, No. N, Article 1, Publication date: January 2016.

1:20 C. Swamy

under y′ remain tight under ŷ.3 Thus, if i ∈ Gj and ŷi > 0, then y′i > 0 and so
cij ≤ Uj . Also, if ŷ(Gj) < 1 then y′(Gj) < 1, and so γj ≤ Uj . We show in Lemma C.1
that there is at most one client, which we call the special client and denote by s,
such that Gs contains a facility i with ŷi /∈

{
0, 1

2 , 1
}

.
As in Section 3.4, for each client j ∈ D, define σ(j) = j if ŷ(Gj) = 1, and σ(j) =
arg mink∈D:k 6=j cjk otherwise (breaking ties arbitrarily). Note that cjσ(j) ≤ 2γj . We
now define the primary and secondary facilities of each client j ∈ D, which we
denote by i1(j) and i2(j) respectively. If j is not the special client s, then i1(j)
is the facility i nearest to j with ŷi > 0; otherwise, i1(j) = arg mini∈F ′

j :ŷi>0 wi
(breaking ties arbitrarily). If ŷi1(j) = 1, then we set i2(j) = i1(j). If ŷ(Gj) < 1, we
set i2(j) = i1(σ(j)). If ŷi1(j) < ŷ(Gj) = 1, we set i2(j) to: the half-integral facility
in Gj other than i1(j) that is nearest to j if j 6= s; and the facility with smallest
weight among the facilities i ∈ Gj with ŷi > 0 (which could be the same as i1(j)) if
j = s. Define Sj = {i1(j), i2(j)}.
To gain some intuition, observe that the facilities i1(j) and i2(j) naturally yield
a half-integral solution, where these facilities are open to an extent of 1

2 and j is
assigned to them to an extent of 1

2 ; as before, if i1(j) = i2(j), then this means that
i1(j) is open to an extent of 1 and j is assigned completely to i1(j). The choice of
the primary and secondary facilities ensures that this solution is feasible. (We do
not however modify ŷ as indicated above.)

K3. Clustering and rounding to an integral solution. This step is quite straight-
forward. We define C ′j for j ∈ D, and cluster clients in D exactly as in step A2
in Section 3.4, and we open the facility with smallest weight within each cluster.
Finally, we assign each client to the nearest open facility. Let (x̃, ỹ) denote the re-
sulting solution. Recall that D′ is the set of cluster centers, and for k ∈ D, ctr(k)
denotes the client in D due to which k was removed in the clustering process (so
ctr(j) = j for j ∈ D′).

Analysis. We call a facility i half-integral (with respect to the vector ŷ obtained in
step K2) if ŷi ∈ {0, 1

2 , 1} and fractional otherwise.

LEMMA C.1. The extreme point ŷ of K obtained in step K2 is such that there is
at most one client, called the special client and denoted by s, such that Gs contains
fractional facilities. Moreover, if 1

2 < ŷ(Gs) < 1, then there is one exactly one facility
i ∈ F ′s such that ŷi > 0.

PROOF. Since ŷ is an extreme point, it is well known that the submatrix A′ of the
constraint matrix whose columns correspond to the non-zero ŷis and rows correspond
to the tight constraints under ŷ has full column-rank. The rows and columns of A′ may
be accounted for as follows. Each client j ∈ D contributes: (i) a non-empty disjoint set
of columns corresponding to the positive ŷis in Gj ; and (ii) a possibly-empty disjoint
set of at most two rows corresponding to the tight constraints ŷ(F ′j) = 1

2 and ŷ(Gj) = 1.
This accounts for all columns of A′. There is at most one remaining row of A′, which
corresponds to the tight constraint

∑
i wiŷi = B.

3We can obtain ŷ as follows. Let Av ≤ b, v ≥ 0 denote the constraints of K. Recall that z is an extreme point
of K iff the submatrix A′ of A corresponding to the non-zero variables and the tight constraints has full
column rank. So if y′ is not an extreme point, then letting F ′′ = {i : y′i > 0}, we can find some d′ ∈ RF′′

such that A′d = 0. So letting di = d′i if i ∈ F ′′ and 0 otherwise, we can find some ε > 0 such that both y′+εd
and y′− εd are feasible and all constraints that were tight under y′ remain tight. So moving in the direction
that does not increase the K(.)-value until some non-zero y′i drops down to 0 or some new constraint goes
tight, and repeating, we obtain the desired extreme point ŷ.

ACM Transactions on Algorithms, Vol. V, No. N, Article 1, Publication date: January 2016.

Improved Approximation Algorithms for Matroid and Knapsack Median Problems 1:21

Let pj and qj denote respectively the number of columns and rows contributed by
j ∈ D. First, note that pj ≥ qj for all j ∈ D. This is clearly true if qj ≤ 1; if qj = 2, then
ŷ(F ′j) = 1

2 , ŷ(Gj) = 1, so both F ′j and Gj must have at least one positive ŷi. Also, note
that if pj = qj , then Gj contains only half-integral facilities. Since

∑
j pj ≤

∑
j qj + 1,

there can be at most one client such that pj > qj ; we let this be our special client s.
Note that we must have ps = qs + 1.

If 1
2 < ŷ(Gs) < 1 then: (i) qs = 0, so ps = 1; or (ii) qs = 1, so ps = 2, and since

ŷ(F ′s) = 1
2 < ŷ(Gs), both F ′s and Gs contain exactly one positive ŷi.

It is easy to adapt the proof of Lemma 3.2, and obtain thatK(ŷ) ≤ K(y′) ≤ 8·OPT ′ ≤
8 ·OPT . Next, we prove our main result: the integer solution (x̃, ỹ) computed is feasible
and its cost for the modified instance is at most K(ŷ) + fopt + 4Copt + 16 ·OPT . Thus,
“moving” the consolidated demands back to their original locations yields a solution of
cost at most (32 + ε) · opt for the correct guess of fopt and Copt . The following claims
will be useful.

CLAIM C.2. If ŷ(Gj) = 1 for some j ∈ D, then (we may assume that) j is a cluster
center.

PROOF. Let i′ = i1(j), i′′ = i2(j). Let k ∈ D be such that Sk ∩ Sj 6= ∅. Then σ(k) = j.
So 2(C ′k − C ′j) = ci1(k)k + cjk − ci2(j)j ≥ ci1(k)j − ci2(j)j ≥ 0 since i2(k) /∈ Gj .

CLAIM C.3. For any client j ∈ D, we have d′jUj ≤ Copt + 4 ·OPT .

PROOF. By definition,
∑
k dk max{0, Uj − cjk} ≤ Copt . So d′jUj =

∑
k∈Mj

dkUj , which
equals ∑

k∈Mj

dk(Uj − cjk) +
∑
k∈Mj

dkcjk ≤ Copt +
∑
k∈Mj

4dkC̄k ≤ Copt + 4 ·OPT .

THEOREM C.4. The solution (x̃, ỹ) computed in step K3 for the modified instance is
feasible and has cost at most K(ŷ) + fopt + 4Copt + 16 ·OPT .

PROOF. Let Bj(v) = d′j
(
2
∑
i∈Gj cijvi + 8γj(1 − v(Gj)) for v ∈ RF ′

+ . So K(ŷ) =

2
∑
i fiŷi +

∑
j Bj(ŷ). Recall that Sj = {i1(j), i2(j)} for every j ∈ D.

We first prove feasibility and bound the total facility-opening cost. Consider a cluster
centered at j. Let i′ = i1(j), i′′ = i2(j). Let î be the facility opened from Sj . If ŷ(Sj) = 1,
then wî ≤

∑
i∈Sj wiŷi. Otherwise, either j = s or σ(j) = s. If j = σ(j) = s, then î is

the least-weight facility in Gj . Otherwise, if j = s then î is the least-weight facility
in F ′j ∪ {i2(j)} and ŷ(F ′j) + ŷi2(j) ≥ 1; finally, if j 6= σ(j) = s then î is the least-weight
facility in {i1(j)} ∪ F ′σ(j) and ŷi1(j) + ŷ(F ′σ(j)) ≥ 1. Since Sj ⊆ Gj ∪ Gσ(j), in every case,
we have wî ≤

∑
i∈Gj∪Gσ(j) wiŷi.

If all facilities in Sj are half-integral, then fî ≤ 2
∑
i∈Sj fiŷi ≤ 2

∑
i∈Gj∪Gσ(j) fiŷi.

Otherwise, we have j = s or σ(j) = s, and we bound fî by fopt .
Note that if k ∈ D′ is some other cluster center, then Gj ∪ Gσ(j) is disjoint from

Gk ∪Gσ(k). If not, then we must have σ(j) = k or σ(k) = j or σ(j) = σ(k), which yields
the contradiction that Sj ∩ Sk 6= ∅. So summing over all clusters, we obtain that the
total weight of open facilities is at most

∑
j∈D′

∑
i∈Gj∪Gσ(j) wiŷi ≤

∑
i wiŷi ≤ B, and

the facility opening cost is at most 2
∑
i fiŷi + fopt .

ACM Transactions on Algorithms, Vol. V, No. N, Article 1, Publication date: January 2016.

1:22 C. Swamy

We now bound the total client-assignment cost. Fix a client j ∈ D′. The assignment
cost of j is at most d′jci2(j)j . Note that ci2(j)j ≤ 3Uj . If j 6= s, then Bj(ŷ) ≥ d′jci2(j)j : this
holds if ŷ(Gj) = 1 since ŷi2(j) ≥ 1

2 ; otherwise, Bj(ŷ) ≥ 4d′jγj ≥ d′jci2(j)j . If j = s, then its
assignment cost is at most 3d′jUj ≤ 3Copt + 12 ·OPT (Claim C.3).

Now consider k ∈ D \ D′. Let j = ctr(k), and i′ = i1(j), i′′ = i2(j). We consider two
cases.
1. i1(k) ∈ Sj . Then k = σ(j) and k’s assignment cost is at most d′kci2(k)k. As above, this

is bounded by Bk(ŷ) if k 6= s, and by 3Copt + 12 ·OPT otherwise.
2. i1(k) /∈ Sj . Let ` = σ(k). We claim that the assignment cost of k is at most d′k

(
ci1(k)k+

4γk
)
. To see this, first suppose ` 6= j, and so ` = σ(j). Then, k’s assignment cost is

at most d′k
(
ck` + c`j + ci′j

)
≤ d′k

(
2ck` + ci1(k)k

)
≤ d′k

(
ci1(k)k + 4γk

)
, where the first

inequality follows since C ′j ≤ C ′k. If ` = j, then i2(k) = i1(j) = i′ and k’s assignment
cost is at most d′k

(
cjk + cjσ(j) + ci2(j)σ(j)

)
≤ d′k

(
ci1(k) + 2cjk

)
≤ d′k

(
ci1(k)k + 4γk

)
, where

the first inequality again follows from C ′j ≤ C ′k.
Since k /∈ D′, we have ŷ(Gk) < 1 (by Claim C.2). So y′(Gk) < 1 and γk ≤ Uk.
If k 6= s, then Bk(ŷ) ≥ d′k

(
ci1(k)k + 4γk

)
. If k = s and ŷ(Gk) = 1

2 , then Bk(ŷ) ≥
4d′kγk and d′kci1(k)k ≤ d′kUk. Otherwise, by Lemma C.1, we have ŷi1(k) >

1
2 , and so

Bk(ŷ) ≥ d′kci1(k)k and 4d′kγk ≤ 4d′kUk. Taking all cases into account, we can bound k’s
assignment cost by Bk(ŷ) if k 6= s, and by Bk(ŷ) + 4d′kUk ≤ Bk(ŷ) + 4Copt + 16 ·OPT
if k = s.

Putting everything together, the total cost of (x̃, ỹ) is at most 2
∑
i fiŷi +

∑
j Bj(ŷ) +

fopt + 4Copt + 16 ·OPT = K(ŷ) + fopt + 4Copt + 16 ·OPT .

COROLLARY C.5. There is a (32 + ε)-approximation algorithm for the knapsack
median problem.

ACKNOWLEDGMENTS

I thank Deeparnab Chakrabarty for various stimulating discussions that eventually led to this work. I thank
Chandra Chekuri for some useful discussions regarding the matroid-intersection median problem.

REFERENCES
S. Ahmadian, Z. Friggstad, and C. Swamy. 2013. Local-search based approximation algorithms for mobile

facility location problems. In Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA). 1607–1621.

I. Baev and R. Rajaraman. 2001. Approximation algorithms for data placement in arbitrary networks.
(2001), 661–670.

I. Baev, R. Rajaraman, and C. Swamy. 2008. Approximation algorithms for data placement problems. SIAM
J. Comput. 38, 4 (2008), 1411–1429.

D. Chakrabarty and C. Swamy. 2011. Facility location with client latencies: linear-programming based tech-
niques for minimum latency problems. In Proceedings of the 15th International Conference on Integer
Programming and Combinatorial Optimization (IPCO). 92–103.

M. Charikar, S. Guha, É. Tardos, and D. B. Shmoys. 2002. A constant-factor approximation algorithm for
the k-median problem. J. Comput. System Sci. 65, 1 (2002), 129–149.

M. Charikar and S. Li. 2012. A dependent LP-rounding approach for the k-median problem. In Proceedings
of the 39th International colloquium on Automata, Languages and Programming ICALP. 194–205.

F. Chudak and D. Shmoys. 2003. Improved approximation algorithms for the uncapacitated facility location
problem. SIAM J. Comput. 33 (2003), 1–25.

W. Cook, W. Cunningham, W. Pulleyblank, and A. Schrijver. 1998. Combinatorial Optimization. John Wiley
and Sons, Inc., New York.

ACM Transactions on Algorithms, Vol. V, No. N, Article 1, Publication date: January 2016.

Improved Approximation Algorithms for Matroid and Knapsack Median Problems 1:23

Z. Friggstad and M. Salavatipour. 2011. Minimizing movement in mobile facility location problems. ACM
Transactions on Algorithms 7, 3, Article 28 (2011), 22 pages.

I. Gørtz and V. Nagarajan. 2011. Locating depots for capacitated vehicle routing. In Proceedings of the 14th
International Workshop on Approximation Algorithms for Combinatorial Optimization APPROX. 230–
241.

R. Krishnaswamy, A. Kumar, V. Nagarajan, Y. Sabharwal, and B. Saha. 2011. The matroid median problem.
In Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 1117–1130.

A. Kumar. 2012. Constant-factor approximation algorithm for the knapsack median problem. In Proceedings
of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 824–832.

D. B. Shmoys, É. Tardos, and K. I. Aardal. 1997. Approximation algorithms for facility location problems. In
Proceedings of the 29th Annual ACM Symposium on Theory of Computing (STOC). 265–274.

C. Swamy. 2014. Improved approximation algorithms for matroid and knapsack median problems and ap-
plications. In Proceedings of the 17th International Workshop on Approximation Algorithms for Combi-
natorial Optimization (APPROX). 403–418.

C. Swamy and D. B. Shmoys. 2008. Fault-tolerant facility location. ACM Transactions on Algorithms 4, 4,
Article 51 (2008), 27 pages.

ACM Transactions on Algorithms, Vol. V, No. N, Article 1, Publication date: January 2016.

