
Sampling-based Approximation Algorithms for Multi-stage
Stochastic Optimization∗

Chaitanya Swamy† David B. Shmoys‡

Abstract

Stochastic optimization problems provide a means to model uncertainty in the input data where the
uncertainty is modeled by a probability distribution over the possible realizations of the actual data. We
consider a broad class of these problems in which the realized input is revealed through a series of stages,
and hence are called multi-stage stochastic programming problems. Multi-stage stochastic programming
and in particular, multi-stage stochastic linear programs with full recourse, is a domain that has received
a great deal of attention within the Operations Research community, but mostly from the perspective of
computational results in application settings.

Our main result is to give the first fully polynomial approximation scheme for a broad class of multi-
stage stochastic linear programming problems with any constant number of stages. The algorithm ana-
lyzed, known as the Sample Average Approximation (SAA) method, is quite simple, and is the one most
commonly used in practice. The algorithm accesses the input by means of a “black box” that can gener-
ate, given a series of outcomes for the initial stages, a sample of the input according to the conditional
probability distribution (given those outcomes). We use this to obtain the first approximation algorithms
for a variety of k-stage generalizations of basic combinatorial optimization problems including the set
cover, vertex cover, multicut on trees, facility location, and multicommodity flow problems.

1 Introduction

Stochastic optimization problems provide a means to model uncertainty in the input data where the uncer-
tainty is modeled by a probability distribution over the possible realizations of the actual data. We shall
consider a broad class of these problems in which the realized input is revealed through a series of stages,
and hence are called multi-stage stochastic programming problems. Multi-stage stochastic linear program-
ming is an area that has received a great deal of attention within the Operations Research community, both in
terms of the asymptotic convergence results, as well as computational work in a wide variety of application
domains. For example, a classic example of such a model seeks to minimize the expected cost of operating
a water reservoir where one can decide, in each time period, the amount of irrigation water to be sold while
maintaining the level of the reservoir within a specified range (where penalties are incurred for violating this
constraint). The source of uncertainty is, of course, the variability in rainfall, and there is a simulation model
that provides a means to sample from the distribution of inputs (of rainfall amounts per time period within
the planning horizon) [3]. Observe that it is important to model this as a multi-stage process, rather than as a
2-stage one, since it allows us to capture essential conditional information, such as given a drought over the

∗A preliminary version [15] appeared in the Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer
Science, 2005.

†cswamy@math.uwaterloo.ca. Dept. of Combinatorics and Optimization, Univ. Waterloo, Waterloo, ON N2L 3G1.
Research supported partially by NSERC grant 327620-09 and an Ontario Early Researcher Award. Work done while the author
was a postdoctoral scholar at Caltech.

‡shmoys@cs.cornell.edu. Dept. of Computer Science, Cornell University, Ithaca, NY 14853. Research supported
partially by NSF grants CCF-0635121, DMI-0500263.

1

previous period, the next period is more likely to continue these conditions. Furthermore, within multi-stage
stochastic linear programming, most work has focused on applications in which there are a small number
of stages, including forest planning models electricity investment planning, bond investment planning, and
currency options selection, as discussed in the recent survey of Ariyawansa and Felt [1].

Our main result is to give the first fully polynomial randomized approximation scheme (FPRAS) for
a broad class of multi-stage stochastic linear programming problems with any constant number of stages.
Although our results are much more general, we shall focus on a canonical example of the class of problems,
a 3-stage stochastic variant of the fractional set covering problem. We are given a family of sets over a
ground set and a probability distribution over the subsets that specifies a target set of ground elements that
must be covered. We can view the three stages as specified by a scenario tree with 3 levels of nodes: the
root, internal nodes, and leaves; the root corresponds to the initial state, each leaf is labeled with a target
subset of elements that must be covered, and for each node in the tree there is a conditional distribution of
the target sets at leaves within this subtree (where we condition on the fact that we have reached that node).
One can buy (fractionally) sets at any node paying a cost that depends both on the set and the node at which
it is bought. We want to be able to compute, given a node in the tree, the desired action, so as to minimize
the expected total cost of fractionally covering the realized target set. This problem can be modeled as an
exponentially large linear program (LP) in which there is, for each set S and each node in the tree, a variable
that indicates the fraction of S that is bought at that node. It is easy to imagine the constraints: for each leaf,
for each ground element e in its corresponding target set, the total fraction bought of sets S that contain e
along this root-leaf path must be at least 1. If we view the probability of reaching a node as specified, it
is straightforward to express the expected total cost as a linear function of these decision variables. As a
corollary of this result, we also give the first approximation algorithms for the analogous class of multi-stage
stochastic integer programming problems, such as the integer version of this set covering problem.

For a rich class of k-stage stochastic linear programming problems, where k is assumed to be constant
and not part of the input, we show that, for any ε > 0, we can compute, with high probability, a solution
with expected cost guaranteed, for any probability distribution over inputs, to be within a (1 + ε) factor of
the optimal expected cost, in time bounded by a polynomial in the input size, 1

ε , and a parameter λ that is an
upper bound on the ratio between the cost of the same action (e.g., buying the set S) over successive stages.
The algorithm accesses the input by means of a “black-box” (simulation) procedure that can generate, for
any node in the scenario tree, a sample of the input according to the conditional distribution for this node.
This is an extremely general model of the distribution, since it allows all types of correlated effects within
different parts of the input. We improve upon our earlier work [14], which handles the very special case in
which k = 2, not only by being able to handle any fixed number of stages, but whereas the earlier algorithm
is based on the ellipsoid method, we can now show that the algorithm most commonly used in practice, the
sample average approximation method (SAA), also yields the claimed approximation scheme.

The algorithm of Shmoys & Swamy[14] for 2-stage problems is based on computing an approximate
subgradient with respect to a compact convex programming formulation, and this is done by estimating
each component of the subgradient sufficiently accurately, and then applying the ellipsoid method using
these approximate subgradients. In the sample average approximation method, we merely sample scenarios
a given (polynomial) number of times N , and by computing the frequencies of occurrence in these samples,
we derive a new LP that is a polynomial-sized approximation to the original exponential-sized LP, and then
solve this compact LP explicitly. We first argue that using (approximate) subgradients one can establish a
notion of closeness between two functions (e.g., the objective functions of the “true” LP and the SAA LP), so
that if two functions are “close” in terms of their subgradients, then minimizing one function is equivalent
to approximately minimizing the other. Next, we show that with a polynomially bounded sample size,
the objective functions of the “true” problem and the sample-average problem satisfy this “closeness-in-
subgradients” property with high probability, and therefore minimizing the sample-average problem yields
a near-optimal solution to the true problem; thus we prove the polynomial-time convergence of the SAA

2

method. Our proof does not rely on anything specific to discrete probability distributions, and therefore
extends to the case of continuous distributions.

Compare now the 3-stage and 2-stage problems. In the 2-stage fractional set-covering problem, the
compact convex program has variables corresponding only to the decisions made at the root to (fractionally)
buy sets. Each component of the subgradient at the current point can be estimated by sampling a leaf from
the scenario tree and using the optimal dual solution for the linear program that minimizes the cost to cover
each element in this leaf’s target set to the extent it is not already covered by the root variables. In the
3-stage version, a 2-stage stochastic LP plays the analogous role of the linear program and we need to
obtain a near-optimal dual solution for this exponentially large mathematical program to show the closeness
property. Moreover, one difficulty that is not encountered in the 2-stage case, is that now this 2-stage
recourse LP is different in the sample average and the “true” problems, since the conditional distribution
of scenarios given a second-stage outcome is only approximated in the sample average problem. Thus to
show the closeness property one has to argue that solving the dual of the sample average 2-stage recourse
LP yields a near-optimal solution to the “true” 2-stage recourse LP. We introduce a novel compact non-
linear formulation of this dual, for which we can prove such a statement for the duals, and thereby obtain
the “closeness-in-subgradients” property for the 3-stage problem. In fact, this formulation yields a new
means to provide lower bounds on 2-stage stochastic LPs, which might be of interest in its own right. The
analogous idea can be applied inductively to obtain the FPRAS for any fixed number of stages. We believe
that our proof is of independent interest and that our approach of using subgradients will find applications
in proving convergence results in other stochastic models as well.

Due to its simplicity and its use in practice, the SAA method has been studied extensively in the stochas-
tic programming literature. Although it has been shown that the SAA method produces solutions that con-
verge to the optimal solution as the number of samples N gets sufficiently large (see, e.g., [12] and its
references), no results were known that bound the number of samples needed to obtain a (1 + ε)-optimal
solution by a polynomial in the input size, 1

ε and λ. Prior to our work, for 2-stage stochastic optimization,
convergence rate results that bound the sample size required by the SAA method were proved in [10]. But
the bound proved in [10] depends on the variance of a certain quantity that need not depend polynomially on
the input size or λ. Recently, Nemirovskii and Shapiro (personal communication) showed that for 2-stage
set-cover with non-scenario-dependent second-stage costs, the bound of [10] is a polynomial bound, pro-
vided that one applies the SAA method after some preprocessing to eliminate certain first-stage decisions.

For multi-stage problems with arbitrary distributions, to the best of our knowledge, there are no results
known about the rate of convergence of the sample average approximation to the true optimal solution (with
high probability). In fact, we are not aware of any work (even outside of the sample average approach) that
proves any worst-case bounds on the sample size required for solving multi-stage stochastic linear programs
with arbitrary distributions in the black-box model. Very recently, Shapiro [13] proved bounds on the sample
size required in the SAA method for multi-stage problems, under the strong assumption that the distributions
in the different stages are independent. In particular, this implies that the distribution of the outcomes in any
stage i, and hence of the scenarios in stage k, does not depend on the outcomes in the previous stages, which
fails to capture the notion of learning new information about the uncertainty as one proceeds through the
stages. Moreover, as in the 2-stage case, the bounds in [13] are not polynomial in the input size or λ, even
when the number of stages is fixed. It is important to note that we prove that an optimal solution to the SAA
LP is a near-optimal solution to true LP, not that the optimal value of the SAA LP is a good approximation
to the true optimal value. Indeed, one interesting question is to show, for any class of stochastic integer and
linear programming problems, if one could obtain an approximation algorithm to the case in which there are
only a polynomial number of scenarios, then one can also obtain an approximation algorithm for the general
case. Concurrent with the dissemination of an early version of our work [16], Charikar, Chekuri and Pál [4]
have obtained such a result for 2-stage problems.

There has been a series of recent papers on approximation algorithms for 2-stage stochastic integer

3

programming problems. Most of this work has focused on more restricted mechanisms for specifying the
distribution of inputs [5, 11, 9]; Gupta, Pál, Ravi, and Sinha [6] were the first to consider the “black-box”
model, and gave approximation algorithms for various 2-stage problems, but with the restriction that the
second-stage costs be proportional to the first-stage costs. Shmoys and Swamy [14] showed that one could
derive approximation algorithms for most of the stochastic integer programming problems considered in
[5, 11, 9, 6] by adopting a natural LP rounding approach that, in effect, converted an LP-based approxi-
mation guarantee for the deterministic analogue to a guarantee for the stochastic generalization (where the
performance guarantee degraded by a factor of 2 in the process).

An immediate consequence of our approximation scheme for multi-stage stochastic linear programs
is that we obtain approximation algorithms for several natural multi-stage stochastic integer programming
problems, by extending the rounding approach of [14]. The only other work on multi-stage problems in the
black-box model is due to Hayrapetyan, Swamy, and Tardos [8], and Gupta et al. [7] (done concurrently
with this work). Both present O(k)-approximation algorithms for a k-stage version of the Steiner tree
problem under some restrictions on the costs; the latter also gives algorithms for the k-stage versions of the
vertex cover and facility location problems under the same cost restrictions, but their approximation ratio is
exponential in k. In contrast, in the black-box model without any cost restrictions, we obtain performance
guarantees of k log n for k-stage set cover, 2k for k-stage vertex cover and k-stage multicut on trees, and
1.858(k− 1)+1.52 for the k-stage version of the facility location problem. (It is interesting to note that the
textbook [3] gives an example of an application that is formulated as a 3-stage facility location problem.)
Finally, we obtain a FPRAS for a k-stage multicommodity flow problem as a direct consequence of our
stochastic linear programming result.

2 Preliminaries

We first state some basic definitions and facts that we will frequently use. Let ‖u‖ denote the `2 norm of u.
We say that a function g : Rm 7→ R, has Lipschitz constant (at most) K if |g(v) − g(u)| ≤ K‖v − u‖ for
all u, v ∈ Rm.

Definition 2.1 Let g : Rm 7→ R be a function. We say that d is a subgradient of g at the point u if the
inequality g(v)− g(u) ≥ d · (v − u) holds for every v ∈ Rm. We say that d̂ is an (ω, ∆,D)-subgradient of
g at the point u ∈ D if for every v ∈ D, we have g(v)− g(u) ≥ d̂ · (v − u)− ωg(u)− ωg(v)−∆.

The above definition of an (ω, ∆,D)-subgradient is slightly weaker than the notion of an (ω,D)-
subgradient as defined in [14] where one requires g(v) − g(u) ≥ d̂ · (v − u) − ωg(u). This distinction
is however superficial; one could also implement the algorithm in [14] using the notion of an approximate
subgradient given by Definition 2.1.

We will consider convex minimization problems minx∈P g(x) where P ⊆ Rm
≥0 is a polytope and g(.)

is convex. It is well known (see [2]) that a convex function has a subgradient at every point. The following
claim will be useful in bounding the Lipschitz constant of the functions encountered.

Claim 2.2 Let d(x) denote a subgradient of a function g : Rm 7→ R at point x. Suppose ‖d(x)‖ ≤ K for
every x. Then g(.) has Lipschitz constant (at most) K.

Proof : Consider any two points u, v ∈ Rm and let d, d′ denote the subgradients at u, v respectively, with
‖d‖, ‖d′‖ ≤ K, then we have g(v) − g(u) ≥ d · (v − u) ≥ −‖d‖ ‖v − u‖ ≥ −K‖v − u‖, and similarly
g(u)− g(v) ≥ −‖d′‖ ‖u− v‖ ≥ −K‖u− v‖.

We will also encounter concave maximization problems maxx∈P g(x), where g(.) is concave. Anal-
ogous to the definition of a subgradient, we define a max-subgradient and an approximate version of a
max-subgradient.

4

Definition 2.3 We say that d is a max-subgradient of a function g : Rm 7→ R at u ∈ Rm if for every point
v ∈ Rm, we have g(v) − g(u) ≤ d · (v − u). We say that d̂ is an (ω, ∆,D)- max-subgradient of g(.) at
u ∈ D if for every v ∈ D we have g(v)− g(u) ≤ d̂ · (v − u) + ωg(u) + ∆.

WhenD is clear from the context, we abbreviate (ω, ∆,D)-subgradient and (ω, ∆,D)- max-subgradient
to (ω, ∆)-subgradient and (ω, ∆)- max-subgradient respectively. If ∆ = 0, we will use (ω,D)-subgradient
and (ω,D)- max-subgradient, instead of (ω, ∆,D)-subgradient and (ω, ∆,D)- max-subgradient respec-
tively. We will frequently use (ω, ∆,P)-subgradients which we abbreviate and denote as (ω, ∆)-subgradients
from now on. We will need the following sampling lemma which is proved using simple Chernoff bounds.

Lemma 2.4 Let Xi, i = 1, . . . ,N = 4(1+α)2

c2
ln

(
2
δ

)
be iid random variables where each Xi ∈ [−a, b],

a, b > 0, α = max(1, a/b), and c ∈ [0, 1]. Let X =
(∑

i Xi

)
/N and µ = E

[
X

]
= E

[
Xi

]
. Then

Pr
[
X ∈ [µ− cb, µ + cb]

]
≥ 1− δ.

Proof : Let Yi = Xi +a ∈ [0, a+b] and Y =
∑

i Yi. Let µ′ = E
[
Yi

]
= µ+a. We have Pr[X > µ+cb] =

Pr[Y > E
[
Y

]
(1 + cb/µ′)], and Pr[X < µ − cb] = Pr[Y < E

[
Y

]
(1 − cb/µ′)]. Let ν = cb/µ′. Note that

µ′ ≤ a + b. Since the variables Yi are independent we can use Chernoff bounds here. The latter probability,

Pr[Y < E
[
Y

]
(1− ν)], is at most e

− ν2Nµ′
2(a+b) = e

− (cb)2N
2µ′(a+b) ≤ δ

2 . To bound Pr[Y > E
[
Y

]
(1+ ν)] we consider

two cases. If ν > 2e − 1, then this quantity is at most 2−
(1+ν)Nµ′

a+b which is bounded by 2−
νNµ′
a+b ≤ δ

2 .

If ν ≤ 2e − 1, then the probability is at most e
− ν2Nµ′

4(a+b) = e
− (cb)2N

4µ′(a+b) ≤ δ
2 . So using the union bound,

Pr
[
X /∈ [µ− cb, µ + cb]

]
≤ δ.

3 The Sample Average Approximation method

Suppose that we have a black box that can generate, for any sequence of outcomes for the initial stages,
independent samples from the conditional distribution of scenarios given those initial outcomes. A natural
approach to computing near-optimal solutions for these problems given such sampling access is the sample
average approximation (SAA) approach: sample some N times from the distribution on scenarios, estimate
the actual distribution by the distribution induced by the samples, and solve the multi-stage problem specified
by the approximate distribution. For 2-stage programs, we just estimate the probability of scenario A by
its frequency in the sampled set; for k-stage programs we construct an approximate k-level distribution tree
by sampling repeatedly for each level: we sample T2 times to obtain some stage 2 outcomes, for each such
outcome we sample T3 times from the conditional distribution given that outcome to generate some stage
3 outcomes and so on, and for each sampled outcome we estimate its conditional probability of occurrence
given the previous-stage outcome by its frequency in the sampled set. The multi-stage problem specified by
the approximate distribution is called the sample average problem, and its objective function is called the
sample average function.

If the total number of samples N is polynomially bounded, then since the approximate distribution has
support of size at most N , the sample average problem can be solved efficiently by solving a polynomial
size linear program. The issue here is the sample size N required to guarantee that every optimal solution
to the sample-average problem is a near-optimal solution to the original problem with high probability.
We show that for any given k (which is not part of the input), for a large class of k-stage stochastic linear
programs we can bound N by a polynomial in the input size, the inverse of the desired accuracy, and the
maximum ratio λ between the cost of an action in successive stages.

Intuitively, to prove such a theorem, we need to show that the sample-average function is a close ap-
proximation to the true function in some sense. One obvious approach would be to argue that, with high

5

probability, the values of the sample average function and the true function are close to each other, at a suffi-
ciently dense set of points. This however immediately runs into problems since the variance in the scenario
costs could be quite (exponentially) large, so that one cannot hope to estimate the true function value, which
gives the expected scenario cost, to within a reasonable accuracy with a small (polynomial) number of sam-
ples. Essentially, the problem is that there could be extremely low-probability outcomes which contribute
significantly towards the cost in the true problem, but will almost never be sampled with only a polynomial
number of samples, and so they contribute nothing in the sample average function. Hence one cannot hope
to estimate the true expected cost within a reasonable accuracy using polynomially many samples. The key
insight is that such rare outcomes do not much influence the optimal first-stage decisions, since one would
defer decisions for such outcomes till later. The minimizer of a convex function is determined by its “slope”
(i.e., its gradient or subgradient), which suggests that perhaps we should compare the slopes of the sample-
average and the true objective functions and show that they are close to each other, and argue that this is
sufficient to prove the near-equivalence of the corresponding minimization problems.

Our proof builds upon this intuition. For a non-differentiable function, a subgradient provides the ana-
logue of a gradient, and is a measure of the “slope” of the function. We identify a notion of closeness
between any two functions based on their subgradients so that if two functions are close under this criterion,
then minimizing one is approximately equivalent to minimizing the other. Next, we show that the objective
functions of the original multi-stage problem, and the sample average problem with polynomially bounded
sample size, satisfy this “closeness-in-subgradients” property, and thus we obtain the desired result.

Proof details The proof is organized as follows. First, in Section 4 we show that closeness of subgradients
is sufficient to prove the near-equivalence of the corresponding minimization (or maximization) problems.
In Lemma 4.3 we show that given two functions g, ĝ : Rm 7→ R that agree in terms of their (approximate)
subgradients at points in a polytope P (we make this precise later), every optimal solution to minx∈P ĝ(x)
is a near-optimal solution minx∈P g(x). Some intuition about why this closeness-in-subgradient property
is sufficient can be obtained by considering the ellipsoid-based algorithm for convex minimization given
in [14]. This algorithm makes use of only (approximate) subgradient information about the convex function
to be minimized, using at each feasible point, a subgradient or an ω-subgradient of the function to derive
a cut passing through the center of the current ellipsoid and make progress. Suppose at every point x ∈
P , there is a vector d̂x that is both a subgradient of ĝ(.) and an ω-subgradient of g(.). One can then
use d̂x to generate the cut at x, and thus cause the ellipsoid-based algorithm to run identically on both
minx∈P g(x) and minx∈P ĝ(x) and return a point that is simultaneously near-optimal for both objective
functions. Lemma 4.3 makes this intuition precise while weakening the assumption and strengthening the
conclusion: we only require that at every point x in a sufficiently dense finite set G ⊆ P there be a vector
d̂x that is both both a subgradient of ĝ(.) and an ω-subgradient of g(.), and we prove that every optimal
solution to minx∈P ĝ(x) is a near-optimal solution to minx∈P g(x). Lemma 4.5 proves an analogous result
for concave maximization problems using the concept of max-subgradients.

The second part of the proof, where we show that the objective functions of the true multi-stage problem
and the sample average problem (with polynomially many samples) satisfy this closeness-in-subgradient
property, is divided into three parts. For the class of 2-stage linear programs considered in [14], this is easy
to show because in both the sample average problem and the true problem, a subgradient at any point is
computed by taking the expectation, according to the respective scenario distribution, of a quantity derived
from the optimal solutions to the dual of the recourse LP (i.e., the LP that determines the recourse cost for a
scenario), and this recourse LP is the same in both the sample average and the true problems. Thus, since the
components of the subgradient vector have bounded variance [14], and the samples in the sample average
problem are drawn from the original distribution, it is easy to show the closeness-in-subgradients property.

For the k-stage problem however, one needs to develop several substantial new ideas to show this close-
ness property, even when k = 3. We introduce these ideas in Section 6 by focusing on 3-stage problems, and

6

in particular, on the LP relaxation of 3-stage set cover as an illustrative example. We then generalize these
ideas to prove an SAA theorem for a large class of 3-stage linear programs, and in Section 7 inductively ap-
ply the arguments to a broad class of k-stage problems. The main difficulty, and the essential difference from
the 2-stage case, is that now the recourse problem for each second-stage outcome is a 2-stage stochastic LP
whose underlying distribution is only approximated in the sample average problem. So the sample average
problem and the true problem solve different recourse problems for each stage 2 outcome. Given a first-
stage decision x, the recourse problem for a stage 2 outcome A is a 2-stage problem. So one can infer from
our SAA result for 2-stage problems that for “most” feasible points x, any optimal solution to the sample
average recourse problem for outcome A is a near-optimal solution to the true recourse problem for outcome
A. However, this fact alone does not allow us to conclude that an optimal solution to the sample-average
problem is also a near-optimal solution to the true problem. To appreciate the difficulty encountered and
why a straightforward induction approach fails, consider the two functions H(x) = wI ·x+miny a(x, y) and
H ′(x) = wI ·x+miny b(x, y), where x, y ∈ R, which are intended to represent the true and sample-average
objective functions respectively, and suppose that at every x, every y that minimizes a(x, y) also minimizes
b(x, y). For example, we may have a(x, y) = A(x) + (y− y0)2 and b(x, y) = B(x) + (y− y0)2. But since
functions A(.) and B(.) could be arbitrary—e.g., one could be an increasing function, the other could be
a decreasing function—one cannot deduce anything about whether an x that minimizes H ′(.) also approx-
imately minimizes H(.). Of course, our 3-stage problems are more structured, and as the above example
suggests, we need to delve deeper into this structure to prove an SAA result for 3-stage problems.

Like in the 2-stage case, a (approximate) subgradient is obtained form the (approximately) optimal
solutions to the dual of the 2-stage recourse LP for each scenario, therefore to show closeness in subgradients
we need to argue that maximizing the sample average dual yields a near-optimal solution to the true dual,
that is, prove an SAA theorem for the dual of a 2-stage stochastic primal program! Mimicking the approach
for the primal problem, we could try to prove this by showing that the two dual objective functions are
close in terms of their max-subgradients. However, simply considering the (standard) LP dual of the 2-
stage primal recourse LP does not work since the two dual LPs will most likely have different feasible
regions (rendering the analysis in Section 4 inapplicable); the feasible region of the dual LP depends on the
conditional probabilities of the stage 3 scenarios given the outcome in stage 2, which may be quite different
in the true and sample-average problems (as argued earlier, one cannot hope to estimate the true conditional
distribution using only a polynomial number of samples because of rare scenarios that will almost never be
sampled). To circumvent this problem, we introduce a novel compact, non-linear formulation of the dual,
which turns the dual problem into a concave maximization problem with a 2-stage primal LP embedded
inside it. A max-subgradient of this new dual objective function can be computed by solving this 2-stage
primal stochastic LP. We now use the earlier SAA theorem for 2-stage programs to show that, any optimal
solution to the 2-stage LP in the sample-average dual, is a near-optimal solution to the 2-stage LP in the true
dual. This shows that the two dual objective functions (in this new representation) are close in terms of their
max-subgradients, thereby proving that an optimal solution to the sample average dual optimal solution is a
near-optimal solution to the true dual. This in turn establishes the closeness in subgradients of the objective
functions of the 3-stage sample average problem and the true 3-stage problem and yields the SAA theorem.

It is useful to view the entire argument from a broader perspective. The ellipsoid-based algorithm
of Shmoys and Swamy shows that one can minimize convex functions by only using only approximate
subgradient information about the function. For a given class of convex functions, if one can compute these
approximate subgradients by some uniform procedure, then one might be able to interpret these vectors as
exact subgradients of another “nice” function, that is, in some sense, “fit” a nice function to these vectors, and
thereby argue that minimizing this nice function is sufficient to yield a near-optimal solution to the original
problem. For our class of multi-stage problems, we essentially argue that ω-subgradients can be computed
efficiently by sampling and averaging, and therefore it turns out that this “nice” function is precisely the
sample average objective function.

7

4 Sufficiency of closeness in subgradients

Let g : Rm 7→ R and ĝ : Rm 7→ R be two functions with Lipschitz constant (at most) K. Let P ⊆ Rm
≥0 be

the bounded feasible region, R be a radius such that P is contained in the ball B(000, R) = {x : ‖x‖ ≤ R},
and V be a radius such that P contains a ball of radius V (where V ≤ 1 without loss of generality). Let
z be a point in P . Let ε, γ > 0 be two parameters with γ ≤ 1. Set N = log

(
2KR

ε

)
and ω = γ

8N . Let
G′ =

{
x ∈ P : xi− zi = ni ·

(
εV

8KNR
√

m

)
, ni ∈ Z for all i = 1, . . . ,m

}
. Set G = G′ ∪

{
x + t(y−x), y +

t(x − y) : x, y ∈ G′, t = 2−i, i = 1, . . . , N
}

. We call G′ and G respectively, the εV
8KNR

√
m

-grid, and the

extended εV
8KNR

√
m

-grid of the polytope P , with the understanding that this grid or extended grid is always
“around” a point in P . Let volm denote the volume of the unit ball in m dimensions.

Claim 4.1 Let G′ be an ε-grid of P (around some z ∈ P), and G be the corresponding extended grid. Then,
the volume of a grid cell of G′ is at least

(
ε
2

)m
volm. Hence, |G′| ≤

(
2R
ε

)m and |G| ≤ N |G′|2.

Proof : Each grid cell of G′ contains a ball of radius ε
2 centered at the center of the cell, so the volume of

the cell is at least
(

ε
2

)m
volm. It is clear that |G| ≤ |G′|+ 2N

(|G′|
2

)
≤ N |G′|2. The cells of G′ are pairwise

disjoint (volume-wise), and have total volume at most vol
(
B(000, R)

)
≤ Rmvolm since P ⊆ B(000, R). So

|G′| ≤
(

2R
ε

)m.

Lemma 4.2 Let G′ be the εV
8KNR

√
m

-grid of P around z. Then for every x ∈ P , there exists x′ ∈ G′ such
that ‖x− x′‖ ≤ ε

KN .

Proof : Let r = ε
4KNR and s = εV

8KNR
√

m
. Consider the affine transformation T (y) = rIm(y − x) + x =

ry + (1 − r)x where Im is the m ×m identity matrix, and let W = T (P), so W is a shrunken version of
P “centered” around x. Observe that W ⊆ P because P is convex, and any point T (y) ∈ W is a convex
combination of y ∈ P and x ∈ P . Let ŷ ∈ P be the center of the ball of radius V contained in P and let
x̂ = T (ŷ) ∈ W . Note that W contains the ball B(x̂, rV), and that ‖x̂ − x‖ = r‖ŷ − x‖ ≤ ε

2KN since
x, ŷ ∈ B(000, R). We will show that there exists x′ ∈ G′ such that ‖x̂− x′‖ ≤ ε

2KN , which will complete the
proof. Define ni such that x̂i ∈ [zi + nis, zi + (ni + 1)s] for all i = 1, . . . ,m. Consider any point x′ where
x′i ∈ {zi + nis, zi + (ni + 1)s} for all i. Then ‖x̂ − x′‖ ≤ s

√
m < rV < ε

2KN , so x′ ∈ B(x̂, rV) ⊆ P ,
which implies that x′ ∈ G′.

Fix ∆ > 0. We first consider minimization problems. We say that g and ĝ satisfy property (A) if

∀x ∈ G, ∃d̂x ∈ Rm : d̂x is a subgradient of ĝ(.), and, an (ω, ∆)-subgradient of g(.) at x. (A)

We remark that the specific grid G′ that we define above and use in property (A) is not important to the proof
of sufficiency of closeness in subgradients; all we require is that g and ĝ approximately agree in terms of
their subgradients on a sufficiently dense set. In particular, we can take G′ to be any discrete set satisfying
Lemma 4.2 and take G to be the corresponding extended grid; in our applications to multi-stage programs,
we also require that ln |G′| (and hence ln |G|) is polynomially bounded.

Lemma 4.3 Suppose g and ĝ are functions satisfying property (A). Let x∗, x̂ ∈ P be points that respectively
minimize g(.) and ĝ(.) over P , and suppose g(x∗) ≥ 0. Then, g(x̂) ≤ (1 + γ)g(x∗) + 6ε + 2N∆.

Proof : For ease of understanding, consider first the case when x̂ ∈ G′. We will argue that there is a
point x near x̂ such that g(x) is close to g(x∗), and from this it will follow that g(x̂) is close to g(x∗). Let
x̃ be the point in G′ closest to x∗, so ‖x̃ − x∗‖ ≤ ε

KN (by Lemma 4.2) and therefore g(x̃) ≤ g(x∗) + ε.

8

Let y = x̂
(
1 − 1

2N

)
+

(
1

2N

)
x̃ ∈ G and consider the vector d̂y given by property (A). It must be that

d̂y ·(x̂−y) ≤ 0, otherwise we would have ĝ(x̂) > ĝ(y) contradicting the optimality of x̂; so d̂y ·(x̃−y) ≥ 0.
So, by the definition of an (ω, ∆)-subgradient, we have g(y) ≤ (1+ω)g(x̃)+∆

1−ω ≤ (1 + 4ω)(g(x̃) + ∆) ≤
(1 + γ)g(x∗) + 2ε + 2∆ since ω = γ

8N ≤ 1
4 . Also ‖x̂ − y‖ = ‖bx−x̃‖

2N ≤ ε
K since ‖x̂ − x̃‖ ≤ 2R. So,

g(x̂) ≤ g(y) + ε ≤ (1 + γ)g(x∗) + 3ε + 2∆.
Now suppose x̂ /∈ G′. Let x̄ be the point in G′ closest to x̂, so ‖x̄ − x̂‖ ≤ ε

KN and ĝ(x̄) ≤ ĝ(x̂) + ε
N .

For any y ∈ G, if we consider d̂y given by property (A), it need not be that d̂y · (x̄ − y) ≤ 0, so we
have to argue a little differently. Note that however d̂y · (x̄ − y) ≤ ε

N , otherwise we would have ĝ(x̂) ≥
ĝ(x̄) − ε

N > ĝ(y). Let y0 = x̃, and yi = (x̄ + yi−1)/2 for i = 1, . . . , N . Since each yi ∈ G, we
have d̂yi · (yi−1 − yi) = −d̂yi · (x̄ − yi) ≥ − ε

N , and because d̂yi is an (ω, ∆)-subgradient of g(.) at
yi, g(yi) ≤ (1 + 4ω)(g(yi−1) + ε

N + ∆). This implies that g(yN) ≤ (1 + 4ω)N (g(x̃) + ε + N∆) ≤
(1 + γ)g(x∗) + 4ε + 2N∆. So g(x̂) ≤ g(yN) + 2ε ≤ (1 + γ)g(x∗) + 6ε + 2N∆.

Corollary 4.4 Let functions g, ĝ and points x∗, x̂ ∈ P be as in Lemma 4.3. Let x′ ∈ P be such that
ĝ(x′) ≤ ĝ(x̂) + ρ. Then, g(x′) ≤ (1 + γ)g(x∗) + 6ε + 2N∆ + 2Nρ.

Proof : Let x̄ and x̃ be the points in G′ that are closest to x′ and x∗ respectively. So ‖x̄−x′‖ ≤ ε
KN which

implies that ĝ(x̄) ≤ ĝ(x′) + ε
N . Similarly, we have g(x̃) ≤ g(x∗) + ε. For any y ∈ G, if we consider the

vector d̂y given by property (A) then d̂y · (x̄ − y) ≤ ε
N + ρ, otherwise we get a contradiction. The rest of

the proof is as in Lemma 4.3.

We prove an analogous statement for maximization problems. Recall the definition of an exact and
approximate max-subgradient (Definition 2.3). We say that g and ĝ satisfy property (B) if

∀x ∈ G, ∃d̂x ∈ Rm : d̂x is a max-subgradient of ĝ(.), and, an (ω, ∆)- max-subgradient of g(.) at x. (B)

Lemma 4.5 Suppose functions g and ĝ satisfy property (B). Let x∗ and x̂ be points in P that respectively
maximize functions g(.) and ĝ(.), and suppose g(x∗) ≥ 0. Then, g(x̂) ≥ (1− γ)g(x∗)− 4ε−N∆.

Proof : The proof closely follows the proof of Lemma 4.3. Again first suppose that x̂ ∈ G′. Let x̃ be the
point in G′ closest to x∗, so g(x̃) ≥ g(x∗)− ε. Let y = x̂

(
1− 1

2N

)
+

(
1

2N

)
x̃ ∈ G and consider the vector d̂y

given by property (B). It must be that d̂y · (x̂− y), and so d̂y · (x̃− y) ≤ 0, otherwise we would have ĝ(x̂) <

ĝ(y). Since d̂y is an (ω, ∆)- max-subgradient of g(.) at y, we have g(y) ≥ g(x̃)−∆
1+ω ≥ (1− γ)g(x∗)− ε−∆

and since ‖x̂− y‖ ≤ ε
K , we get that g(x̂) ≥ (1− γ)g(x∗)− 2ε−∆.

Suppose x̂ /∈ G′. Let x̄ be the point in G′ closest to x̂, so ĝ(x̄) ≥ ĝ(x̂) − ε
N . At any y ∈ G, the vector

d̂y given by property (B), must satisfy d̂y · (x̄ − y) ≥ − ε
N , otherwise we contradict the optimality of x̂.

Let y0 = x̃, and yi = (x̄ + yi−1)/2 for i = 1, . . . , N . Since each yi ∈ G, we have d̂yi · (yi−1 − yi) =
−d̂yi · (x̄ − yi) ≤ ε

N , and because d̂yi is an (ω, ∆)- max-subgradient of g(.) at yi, g(yi) ≥ g(yi−1)/(1 +
ω)−

(
ε
N +∆

)
/(1+ω). This implies that g(yN) ≥ g(x̃)/(1+ω)N − (ε+N∆) ≥ (1−γ)g(x∗)−2ε−N∆

So g(x̂) ≥ g(yN)− 2ε ≥ (1− γ)g(x∗)− 4ε−N∆.

As in Corollary 4.4, we can show that an approximate maximizer of ĝ is also an approximate maximizer
of g, but we will not need this in the sequel.

9

5 The SAA bound for 2-stage stochastic programs

We now prove a polynomial bound on the number of samples required by the SAA method to solve to
near-optimality the class of 2-stage stochastic programs considered in [14]1.

min h(x) = wI · x +
∑
A∈A

pAfA(x) subject to x ∈ P ⊆ Rm
≥0, (2Gen-P)

where fA(x) = min
{

wA · rA + qA · sA : rA ∈ Rm
≥0, sA ∈ Rn

≥0 DAsA + TArA ≥ jA − TAx
}

.

Here we assume that (a) TA ≥ 000 for every scenario A, and (b) for every x ∈ P ,
∑

A∈A pAfA(x) ≥ 0 and
the primal and dual problems corresponding to fA(x) are feasible for every scenario A. It is assumed that
P ⊆ B(000, R) and P contains a ball of radius V (V ≤ 1) where ln

(
R
V

)
is polynomially bounded. To prevent

an exponential blowup in the input, we consider an oracle model where an oracle supplied with scenario
A reveals the scenario-dependent data (wA, qA, jA, DA, TA). Define λ = max

(
1,maxA∈A,S

wA
S

wI
S

)
; we

assume that λ is known. Let OPT be the optimum value, I denote the input size.
The sample average function is ĥ(x) = wI · x +

∑
A∈A p̂AfA(x) where p̂A = NA/N , with N being

the total number of samples and NA being the number of times scenario A is sampled. The sample average
problem is minx∈P ĥ(x). We show that with a polynomially bounded N , h(.) and ĥ(.) satisfy property (A)
(closeness in subgradients) with high probability.

Lemma 5.1 ([14]) Let d be a subgradient of h(.) at the point x ∈ P , and suppose that d̂ is a vector such
that d̂S ∈ [dS − ωwI

S , dS + ωwI
S] for all S. Then d̂ is an ω-subgradient (i.e., an (ω, 0)-subgradient) of h(.)

at x.

It is shown in [14] that at any point x ∈ P , if (z∗A) is an optimal solution to the dual of fA(x), then
(i) dx = wI −

∑
A pA(TA)Tz∗A is a subgradient of h(.); (ii) for any component S and any scenario A,

component S of the vector wI − (TA)Tz∗A lies in [−λwI
S , wI

S]; and therefore (iii) ‖dx‖ ≤ λ‖wI‖. The
sample average function ĥ(.) is of the same form as h(.), only with a different distribution, so d̂x = wI −∑

A p̂A(TA)Tz∗A is a subgradient of ĥ(.) at x, and ‖d̂x‖ ≤ λ‖wI‖. So (by Claim 2.2) the Lipschitz constant
of h, ĥ is at most K = λ‖wI‖. Observe that d̂x is just wI − (TA)Tz∗A averaged over the random scenarios
sampled to construct ĥ(.), and E

[
d̂x

]
= dx where the expectation is over these random samples.

Theorem 5.2 For any ε, γ > 0 (γ ≤ 1), with probability at least 1−δ, any optimal solution x̂ to the sample
average problem constructed with poly

(
I, λ, 1

γ , ln(1
ε), ln(1

δ)
)

samples satisfies h(x̂) ≤ (1+γ) ·OPT +6ε.

Proof : We only need show that property (A) holds with probability 1 − δ with the stated sample size;
the rest follows from Lemma 4.3. Define N = log

(
2KR

ε

)
, ω = γ

8N and the extended εV
8KNR

√
m

-grid G

of P . Note that log
(

KR
V

)
is polynomially bounded in the input size. Let n = |G|. Using Lemma 2.4, if

we sample N = 4(1+λ)2

3ω2 ln
(

2mn
δ

)
times to construct the sample average function ĥ(.) then at any given

point x, subgradient d̂x of ĥ(.) is component-wise close to its expectation with probability at least 1− δ/n,
so by Lemma 5.1, d̂x is an ω-subgradient of h(.) at x with high probability. So with probability at least
1 − δ, d̂x is an ω-subgradient of h(.) at every point x ∈ G. Using Claim 4.1 to bound n, we get that
N = O

(
mλ2 log2(2KR

ε) ln(2KRm
εV δ)/γ2

)
.

One can convert the above guarantee into a purely multiplicative (1 + κ)-approximation guarantee by
setting γ and ε appropriately, provided that we have a lower bound on OPT (that is at least inverse ex-
ponential in the input size). It was shown in [14] that under some mild assumptions, one can perform an

1This was stated in [14] with extra constraints BAsA ≥ hA, but this is equivalent to
`

BA

DA

´
sA +

`
000

T A

´
rA ≥

`
hA

jA

´
−

`
000

T A

´
x.

10

initial sampling step to obtain such a lower bound (with high probability). We detail this lower-bounding
step, which is common to 2-stage, 3-stage, and k-stage problems (differing only in the number of samples
required), in Section 7.1. Using this we obtain that (under some mild assumptions) the SAA method returns
a (1 + κ)-optimal solution to (2Gen-P) with high probability.

6 3-stage stochastic programs

Our techniques yield a polynomial-sample bound for a broad class of 3-stage programs, but before consider-
ing a generic 3-stage program, we introduce and explain the main ideas involved by focusing on a stochastic
version of the set cover problem, namely the 3-stage stochastic set cover problem.

6.1 An illustrative example: 3-stage stochastic set cover

In the stochastic set cover problem, we are given a universe U of n elements and a family S of m subsets
of U , and the set of elements to cover is determined by a probability distribution. In the 3-stage problem
this distribution is specified by a 3-level tree. We use A to denote an outcome in stage 2, and (A,B) to
denote a stage 3 scenario where A was the stage 2 outcome. LetA be the set of all stage 2 outcomes, and for
each A ∈ A let BA = {B : (A,B) is a scenario}. Let pA and pA,B be the probabilities of outcome A and
scenario (A,B) respectively, and let qA,B = pA,B/pA. Note that

∑
A∈A pA = 1 =

∑
B∈BA

qA,B for every
A ∈ A. We have to cover the (random) set of elements E(A,B) in scenario (A,B), and we can buy a set S
in stage 1, or in stage 2 outcome A, or in scenario (A,B) incurring a cost of wI

S , wA
S and wA,B

S respectively.
We use x, yA and zA,B respectively to denote the decisions in stage 1, outcome A and scenario (A,B)

respectively and consider the following fractional relaxation:

min h(x) =
∑
S

wI
SxS +

∑
A∈A

pAfA(x) subject to 0 ≤ xS ≤ 1 for all S, (3SSC-P)

where fA(x) = min
{∑

S

wA
S yA,S +

∑
B∈BA

qA,BfA,B(x, yA) : yA,S ≥ 0 for all S
}

, (3SSCR-P)

and fA,B(x, yA) = min
zA,B∈Rm

≥0

{∑
S

wA,B
S zA,B,S :

∑
S:e∈S

zA,B,S ≥ 1−
∑

S:ε∈S

(xS + yA,S) ∀e ∈ E(A,B)
}

.

Let λ = maxS,A∈A,B∈BA
max

(
1,

wA
S

wS
,

wA,B
S

wA
S

)
; we assume that λ is known. Let P = {x ∈ Rm :

0 ≤ xS ≤ 1 for all S} and OPT = minx∈P h(x). Note that P contains a ball of radius V = 1
2 , and

is contained in B(000, R) where R =
√

m. The sample average problem is parametrized by (i) the sample
size T2 used to estimate probability pA by the frequency p̂A = T2;A/T2, and (ii) the number of samples
T3 generated from the conditional distribution of scenarios in BA for each A with p̂A > 0 to estimate
qA,B by q̂A,B = T3;A,B/T3. So the total sample size is T2 · T3. The sample average problem is similar to
(3SSC-P) with p̂A replacing pA, and q̂A,B replacing qA,B in the recourse problem fA(x). We use f̂A(x) =
minyA≥000

(
wA · yA +

∑
B∈BA

q̂A,BfA(x, yA)
)

to denote the sample average recourse problem for outcome
A, and ĥ(x) = wI · x +

∑
A∈A p̂Af̂A(x) to denote the sample average function.

As mentioned earlier, the main difficulty in showing that the sample average and the true functions satisfy
the closeness-in-subgradients property, is that these two problems now solve different recourse problems,
f̂A(x) and fA(x) respectively, for an outcome A. Since the subgradient is obtained from a dual solution,
this entails first proving an SAA theorem for the dual which suggests that solving the dual of f̂A(x) yields a
near-optimal solution to the dual of fA(x). To achieve this, we first formulate the dual as a compact concave
maximization problem, then show that by slightly modifying the two dual programs, the dual objective

11

functions become close in terms of their max-subgradients, and then use Lemma 4.5 to obtain the required
SAA theorem (for the duals). A max-subgradient of the dual objective function is obtained from the optimal
solution of a 2-stage primal problem and we use Theorem 5.2 to prove the closeness in max-subgradients
of the sample average dual and the true dual. In Section 7 we show that this argument can be applied
inductively to prove an SAA bound for a large class of k-stage stochastic LPs.

Let fA(000;W) (respectively f̂A(000;W)) denote the recourse problem fA(x) (respectively f̂A(x)) with
x = 000 and costs wA = W , that is, fA(000;W) = minyA≥000

(
W · yA +

∑
B∈BA

qA,BfA,B(000, yA)
)
. We

formulate the following dual of the true and sample average recourse problems:

LDA(x) = max
000≤αA≤wA

lA(x;αA) and L̂DA(x) = max
000≤αA≤wA

l̂A(x;αA)

where lA(x;αA) = −αA · x + fA(000;αA) and l̂A(x;αA) = −αA · x + f̂A(000;αA). 2

Lemma 6.1 At any point x ∈ P and outcome A ∈ A, fA(x) = LDA(x) and f̂A(x) = L̂DA(x).

Proof : We prove that fA(x) = LDA(x); an identical argument shows that f̂A(x) = L̂DA(x). fA(x) can
be written as the following linear program:

min
∑
S

wA
S yA,S +

∑
B∈BA

qA,BwA,B
S zA,B,S (SR-P)

s.t.
∑

S:e∈S

yA,S +
∑

S:e∈S

zA,B,S ≥ 1−
∑

S:e∈S

xS for all B ∈ BA, e ∈ E(A,B). (1)

yA,S , zA,B,S ≥ 0 ∀B ∈ BA, S.

Let
(
y∗A, {z∗A,B}

)
be an optimal solution to (SR-P) and

(
{β∗A,B}

)
be an optimal solution to the (stan-

dard) LP dual of (SR-P) where β∗A,B,e is the dual multiplier corresponding to the inequality (1) for ele-
ment e ∈ E(A,B) where B ∈ BA. Let α∗A be an optimal solution to LDA(x). Setting yA = x + y∗A
yields a feasible solution to the minimization problem fA(000;α∗A). So LDA(x) is at most (yA − x) · α∗A +∑

B∈BA
qA,BfA,B(000, yA) = α∗A · y∗A +

∑
B∈BA

qA,BfA,B(x, y∗A) which is at most fA(x) since α∗A ≤ wA.
For the other direction, consider the vector αA with αA,S =

∑
B∈BA

∑
e∈S∩E(A,B) β∗A,B,e. αA is a feasible

solution to LDA(x) since the dual of (SR-P) has
∑

B∈BA

∑
e∈S∩E(A,B) βA,B,e ≤ wA

S as a constraint for each
set S. If we consider the LP dual of fA(000;αA), then observe that

(
{β∗A,B}

)
yields a feasible solution to the

dual and has value
∑

B∈BA

∑
e∈E(A,B) β∗A,B,e, which is therefore a lower bound on fA(000;αA). Therefore

we can lower bound LDA(x) by lA(x;αA) = −
∑

S αA,SxS +
∑

B∈BA

∑
e∈E(A,B) β∗A,B,e which is equal

to
∑

B∈BA

∑
e∈E(A,B)(1−

∑
S:e∈S xS)β∗A,B,e = fA(x) by LP duality.

Lemma 6.1 proves strong duality (in this new dual representation). Using this strong duality, we show
that a (approximate) subgradient to h(.) at x can be computed from the (near-) optimal solutions to the dual
problems LDA(x) for each outcome A.

Lemma 6.2 Fix x ∈ P . Let αA be a solution to LDA(x) of value lA(x;αA) ≥ (1−ε)LDA(x)−εwI ·x−ε
for every A ∈ A. Then, (i) d = wI−

∑
A pAαA is an (ε, ε)-subgradient of h(.) at x with ‖d‖ ≤ λ‖wI‖; (ii)

if d̂ is a vector such that d− ωwI ≤ d̂ ≤ d + ωwI, then d̂ is an (ε + ω, ε)-subgradient of h(.) at x.

2This dual representation can be obtained by adding the (redundant) constraints xS +yA,S ≥ rS to fA(x), writing the objective
function of fA(x) as

P
S wA,SyA,S +

P
B∈BA

qA,BfA,B(000, r), and then taking the Lagrangian dual of the resulting program by
dualizing only the xS + yA,S ≥ rA,S constraint using αA,S as the Lagrangian multiplier.

12

Proof : Consider any x′ ∈ P . Since lA(x;αA) ≥ (1− ε)LDA(x)− εwI · x− ε for every A ∈ A, we have

h(x) = wI · x +
∑
A

pALDA(x) ≤ (1 + ε)wI · x +
∑
A

pA

(
−αA · x + fA(000;αA) + εLDA(x)

)
+ ε.

At x′, αA is a feasible solution to LDA(x′) for every outcome A. So h(x′) ≥ wI · x +
∑

A pA(−αA · x′ +
fA(000;αA)). Subtracting we get that h(x′)−h(x) is at least d · (x′−x)− ε(wI ·x+

∑
A pALDA(x))− ε =

d · (x′ − x)− εh(x)− ε. Since αA ≤ wA ≤ λwI, ‖d‖ ≤ λ‖wI‖.
We know that h(x′)−h(x) ≥ d ·(x′−x)−εh(x)−ε = (d− d̂) ·(x′−x)+ d̂ ·(x′−x)−εh(x)−ε. Since

xS , x′S ≥ 0 for all S, we have (d− d̂) · x′ ≥ −ωwI · x′ ≥ −ωh(x′) and (d̂− d) · x ≥ −ωwI · x ≥ ωh(x).
This proves (ii).

Since ĥ(.) is of the same form as h(.), Lemma 6.2 also shows that d̂x = wI−
∑

A p̂Aα̂A is a subgradient
of ĥ(.) at x where α̂A is an optimal solution to L̂DA(x). Thus, to prove the closeness in subgradients of h

and ĥ it suffices to argue that any optimal solution to L̂DA(x) is a near-optimal solution to LDA(x). (Note
that both h and ĥ have Lipschitz constant at most K = λ‖wI‖.) We could try to argue this by showing
that lA(x; .) and l̂A(x; .) are close in terms of their max-subgradients (that is, satisfy property (B)), however
some technical difficulties arise here. A max-subgradient of lA(x; .) at αA is obtained from a solution to
the 2-stage problem given by fA(000;αA) (see Lemma 6.7), and to show closeness in max-subgradients at
αA we need to argue that an optimal solution ŷA to f̂A(000;αA) is a near-optimal solution to fA(000;αA). We
would like to use Theorem 5.2 here, but this statement need not be true (with a polynomial sample size)

since the ratio maxS

(wA,B
S

αA,S

)
of the second- and first-stage costs in the 2-stage problem fA(000;αA), could be

unbounded. To tackle this, we consider instead the modified dual problems

LDA;ρ(x) = max
ρwI≤αA≤wA

lA(x;αA) and L̂DA;ρ(x) = max
ρwI≤αA≤wA

l̂A(x;αA)

for a suitable ρ ∈ (0, 1). (More precisely, we should define the feasible region of LDA;ρ(x) and L̂DA;ρ(x)
as {αA ∈ Rm : ρ min{wI, wA} ≤ αA ≤ wA} to ensure that the feasible region is non-empty; to avoid
cumbersome notation, we assume here for simplicity that wI ≤ wA.) Observe that the cost ratio in the
2-stage problem fA(000;αA) is bounded by λ2

ρ for any A ∈ A. In Section 6.1.1, we prove the following SAA
bound for the duals of the true and sample average recourse problems.

Lemma 6.3 For any parameters ε, ε > 0, ρ ∈ (0, 1), any x ∈ P , and any outcome A ∈ A, if we use
T (ε, ρ, ε, δ) = poly

(
I, λ

ρε , ln(1
ε), ln(1

δ)
)

samples to construct the recourse problem f̂A(x), then any optimal

solution α̂A to L̂DA;ρ(x) satisfies lA(x; α̂A) ≥ (1−ε)LDA;ρ(x)−εwI ·x−ε with probability at least 1−δ.

Define hρ(x) = wI ·x+
∑

A pALDA;ρ(x) and ĥρ(x) = wI ·x+
∑

A p̂AL̂DA;ρ(x). As in Lemma 6.2, one
can show that near-optimal solutions αA to LDA;ρ(x) for every A ∈ A yield an approximate subgradient
of hρ(.) at x. So using Lemma 6.3 we can show the closeness in subgradients of hρ(.) and ĥρ(.), and this
will suffice to show that if x̂ minimizes ĥ(.) then it is a near-optimal solution to h(.). Thus we get an SAA
bound for our class of 3-stage programs.

First, in Lemma 6.4, we bound the number of samples required to ensure that at a single point x ∈ P ′,
a subgradient of ĥρ(.) is an (ω, ε)-subgradient of hρ(.). The proof is somewhat involved because if we
consider the random variable taking the value wI

S − α̂A,S when outcome A is sampled, where α̂A is an
optimal solution to L̂DA;ρ(x), then the random variables corresponding to the different samples from stage
2 are not independent since we always use the same solution α̂A. We defer the proof till after Theorem 6.6.

13

Lemma 6.4 Consider the sample average function generated using N2 = T2(ω, δ) = 16(1+λ)2

ω2 ln
(

4m
δ

)
samples from stage 2, and T

(
ε, ρ, ω

2 , δ
2N2

)
samples from stage 3 for each outcome A with p̂A > 0. At any

point x ∈ P , subgradient d̂x of ĥρ(.) is an (ω, ε)-subgradient of hρ(.) with probability at least 1− δ.

Claim 6.5 For any x ∈ P , hρ(x) ≤ h(x) ≤ hρ(x) + ρwI · x. Similarly ĥρ(x) ≤ ĥ(x) ≤ ĥρ(x) + ρwI · x.

Proof : We prove this for h(.) and hρ(.); the second statement is proved identically. The first inequality
holds since we are maximizing over a larger feasible region in LDA(x). The second inequality follows
because if α∗A is such that LDA(x) = lA(x;α∗A), then taking α′A = min(α∗A + ρwI, wA) gives LDA;ρ(x) ≥
lA(x;α′A) ≥ lA(x;α∗A)− ρwI · x since fA(000;αA) is increasing in αA. So hρ(x) ≥ h(x)− ρwI · x.

Theorem 6.6 For any ε, γ > 0 (γ ≤ 1), one can construct ĥ with poly
(
I, λ, 1

γ , ln(1
ε), ln(1

δ)
)

samples, and

with probability at least 1−δ, any optimal solution x̂ to minx∈P ĥ(x) satisfies h(x̂) ≤ (1+3γ)·OPT +16ε.

Proof : Let N = log
(

2KR
ε

)
and ω = γ

8N . Note that log
(

KR
V

)
is polynomially bounded in the input size.

Set ε′ = ε
N and ρ = γ

4N . We show that (i) a near-optimal solution to minx∈P ĥρ(x) yields a near-optimal
solution to minx∈P hρ(x), and (ii) minimizing h(.) and ĥ(.) over P is roughly the same as approximately
minimizing hρ(.) and ĥρ(.) respectively over P .

Let x̃ be an optimal solution to minx∈P ĥρ(x). By Claim 6.5, ĥρ(x̂) ≤ ĥ(x̂) ≤ ĥ(x̃) ≤ ĥρ(x̃)+ ρwI · x̃,
and 0 ≤ OPTρ = minx∈P hρ(x) ≤ minx∈P h(x) = OPT .

Let G be the extended εV
8KNR

√
m

-grid of P and n = |G|. Let N ′ = 16(1+λ)2

ω2 ln
(

4mn
δ

)
which is a

polynomial in I, λ
γ , ln

(
1
ε

)
and ln

(
1
δ

)
, where we use Claim 4.1 to bound n. We construct ĥ(.) using N =

N ′ · T
(
ε′, ρ, ω

2 , δ
2nN ′

)
samples. Since N ′ is polynomially bounded, Lemma 6.3 shows that so is N . Using

Lemma 6.4 and the union bound over all points in G, with probability at least 1 − δ, at every point x ∈ G,
the subgradient d̂x of ĥρ(.) is an (ω, ε′)-subgradient of hρ(.). So by Lemma 4.3, we have that hρ(x̃) ≤
(1 + γ)OPT ρ + 6ε + 2Nε′ with high probability. Since ĥρ(x̂) ≤ ĥρ(x̃) + ρwI · x̃, we also obtain by
Corollary 4.4 that

hρ(x̂) ≤ (1 + γ)OPT ρ + 6ε + 2N(ρwI · x̃ + ε′). (2)

The bound h(x̂) ≤ hρ(x̂) + ρwI · x̂ (Claim 6.5) implies that (1− ρ)h(x̂) ≤ hρ(x̂). Also, we have wI · x̃ ≤
hρ(x̃). Combining these with the bound OPT ρ ≤ OPT and the bound on hρ(x̃), and plugging in ε′ and ρ
in (2), we get that h(x̂) ≤ (1 + 3γ)OPT + 16ε.

Under the very mild assumption that for every scenario (A,B) with E(A,B) 6= ∅ (a “non-null” sce-
nario), for every x ∈ P and yA ≥ 000 the total cost wI · x + wA · yA + fA,B(x, yA) is at least 1, the sampling
procedure in Section 7.1 gives a lower bound on OPT (Lemma 7.6). Thus we obtain a (1 + κ)-optimal
solution to (3SSC-P) with the SAA method (with high probability) using polynomially many samples.

Proof of Lemma 6.4 : Let δ′ = δ
2N2

and ω′ = ω
2 . Observe that the sampling of outcomes from A only

determines whether or not we sample from BA but does not influence the probability of any event determined
by the samples from BA. So, we may view the sampling process as follows: (1) for each outcome A, we
independently sample from the conditional distribution on BA to construct (f̂A(x) and) L̂DA;ρ(x); (2) we
sample stage 2 outcomes from A to determine the probabilities p̂A, which are the weights used to combine
the functions L̂DA;ρ(x) and construct ĥρ(x). Let Ω2 be the probability space of all random choices involved
in sampling the N2 stage 2 outcomes from A, and let ΩA be the space of all random choices involved in
sampling from BA. So the entire probability space is Ω = Ω2 ×

∏
A∈A ΩA.

14

Let ZA,i be 1 if the ith sample results in outcome A and 0 otherwise. Let O∗
A be the set of all solutions

αA to LDA;ρ(x) satisfying lA(x;αA) ≥ (1− ω′)LDA(x)− ω′wI · x− ε. Define the random vector ΨA to
be an optimal solution (breaking ties arbitrarily) to L̂DA;ρ(x). Let GA ⊆ ΩA be the event that ΨA ∈ O∗

A.
By Lemma 6.3, we know that PrΩA

[GA] ≥ 1 − δ′, where for clarity we use the subscript to indicate that
the probability is wrt. the space ΩA. We may assume without loss of generality that this probability is
exactly 1 − δ′ since we can simply choose GA ⊆ ΩA so that this holds. Let Gi ⊆ Ω =

⋃
A∈A({ZA,i =

1}×GA×
∏

A′∈A,A′ 6=A ΩA′). So Gi is the event representing “if A is the stage 2 outcome generated by the
ith sample then event GA occurs”. We have Pr[Gi] = 1 − δ′. We will condition on the event G =

⋂
i Gi.

Note that Pr[G] ≥ 1 − δ/2. For each component S of x, define Xi,S =
∑

A∈A ZA,i(wI
S − ΨA,S) and

XS =
(∑N2

i=1 Xi,S

)
/N2. The subgradient d̂x is the random vector X . We argue that conditioned on G, with

probability at least 1 − δ/2, there exist solutions αA ∈ O∗
A for every A, such that for every component S,

|XS−
∑

A pA(wI
S−αA,S)| ≤ ω′wI

S . Therefore conditioned on G, by Lemma 6.2, X is an (2ω′, ε) = (ω, ε)-
subgradient of hρ(.) at x with probability 1 − δ/2; since Pr[G] ≥ 1 − δ/2, with probability at least 1 − δ,
d̂x = X is an (ω, ε)-subgradient of hρ(.) at x.

Select some solution αA ∈ O∗
A for each outcome A. We have to show that Pr[E | G] ≤ δ/2 where E is

the bad event
{
¬

[
∃α = (αA)A∈A ∈

∏
A∈A O∗

A such that ∀S, |XS−
∑

A pA(wI
S−αA,S)| ≤ ω′wI

S

]}
. Note

that although the variables ZA,i, i = 1, . . . ,N2 are independent, the Xi,S variables for i = 1, . . . ,N2 are
not independent because they are coupled by the ΨA,S variables. But if we condition on the ΨA variables,
the Xi,S variables do become independent. Let Ψ′

A = ΨA if ΨA ∈ O∗
A and αA otherwise. Conditioning on

Ψ = (ΨA)A∈A, we have

Pr
[
E

∣∣ G,Ψ
]
≤ Pr

[
∃S s.t.

∣∣XS −
∑

ApA(wI
S −Ψ′

A,S)
∣∣ > ω′wI

S

∣∣∣ G,Ψ
]

≤
∑
S

Pr
[∣∣XS −

∑
ApA(wI

S −Ψ′
A,S)

∣∣ > ω′wI
S

∣∣∣ G,Ψ
]

(3)

where the first inequality follows since event E implies that given the solutions
{
Ψ′

A

}
A∈A, there exists some

component S such that |XS−
∑

A pAΨ′
A,S | > ω′wI

S . Since we have conditioned on G, if ΨA /∈ O∗
A it follows

that
∑

i ZA,i = 0. Therefore we can write XS =
(∑N2

i=1 Yi,S

)
/N2 where Yi,S =

∑
A∈A ZA,i(wI

S −Ψ′
A,S).

The variables Yi,S are iid, so by Lemma 2.4, Pr
[
|XS −

∑
A pA(wI

S − Ψ′
A,S)| > ω′wI

S

∣∣ G,Ψ
]
≤ δ/2m,

and using (3), we have Pr
[
E

∣∣ G,Ψ
]
≤ δ/2. Since this holds for every Ψ, this also holds if we remove the

conditioning on Ψ. Therefore Pr[E | G] ≤ δ/2 which completes the proof.

6.1.1 An SAA bound for L̂DA;ρ(x)

We now prove Lemma 6.3. Throughout this section ε, ε and ρ are fixed parameters given by the statement
of Lemma 6.3. Let DA = {αA ∈ Rm : ρwI ≤ αA ≤ ωA}.3 So DA contains a ball of radius V ′ =
min

{
1, 1−ρ

2 · minS wI
S

}
, and DA ⊆ B(000, R′), where R′ = ‖wA‖ ≤ λ‖wI‖. Recall that the (true) dual

problem LDA;ρ(x) is to maximize lA(x;αA) over the region DA where lA(x;αA) = −αA · x + fA(000;αA).
In the sample average dual problem L̂DA;ρ(x), we have l̂A(x;αA) = −αA · x + f̂A(000;αA) instead of
lA(x;αA). Clearly we may assume that yA,S ≤ 1 in the problems fA(000;αA) and f̂A(000;αA).

We want to show that if α̂A solves L̂DA;ρ(x), then lA(x; α̂A) ≥ (1−ε)LDA;ρ(x)−εwI ·x−ε with high
probability. By a now familiar approach, we will show that l̂A(x; .) and lA(x; .) are close in terms of their
max-subgradients and then use Lemma 4.5. Let g(αA; yA) = αA · yA +

∑
B∈BA

qA,BfA,B(000, yA). We only

3Recall that DA 6= ∅ due to our assumption (made for notational simplicity) that wI ≤ wA, and that more accurately we should
have DA = {αA ∈ Rm : ρ min{wI, wA} ≤ αA ≤ ωA}.

15

consider (ω, ∆,DA)- max-subgradients, so we drop the DA. A max-subgradient to lA(x; .) (respectively
l̂A(x; .)) at αA is obtained from the solution to the 2-stage problem fA(000;αA) (respectively f̂A(000;αA)).

Lemma 6.7 Fix x ∈ P and αA ∈ DA. Let ω′ = ω
λ . If yA is a solution to fA(000;αA) of value g(αA; yA) ≤

(1 + ω′)fA(000;αA) + ε′, then d = yA − x is an (ω, ωwI · x + ε′)- max-subgradient of lA(x; .) at αA.

Proof : Let C =
∑

B∈BA
qA,BfA,B(000, yA). So αA · yA + C ≤ (1 + ω′)fA(000;αA) + ε′ and lA(x;αA) =

−αA ·x + fA(000;αA) ≥ (yA−x) ·αA + C −ω′ · fA(000;αA)− ε′. At any other point α′A, yA gives a feasible
solution to the 2-stage problem fA(000;α′A). So lA(x;α′A) ≤ (yA − x) · α′A + C. Subtracting we get that

lA(x;α′A)− lA(x;αA) ≤ d ·(α′A−αA)+ω′ ·fA(000;αA)+ε′ ≤ d ·(α′A−αA)+ω′ · lA(x;αA)+ε′+ω′αA ·x.

The last term is at most ωwI · x since αA ≤ wA ≤ λwI and x ≥ 000. Thus d is an (ω, ωwI · x + ε′)- max-
subgradient.

We can bound the Lipschitz constant of lA(x; .) and l̂A(x; .) by K ′ =
√

m, since xS , yA,S ≤ 1. The
feasible region of the 2-stage problem fA(000;αA) is contained in the ball B(000,

√
m), and since αA ∈ DA,

the ratio of costs in the two stages is at most λ2

ρ . Thus, we can use Theorem 5.2 to argue that any optimal

solution ŷA to f̂A(000;αA) is a near-optimal solution to fA(000;αA), and this will prove the closeness in max-
subgradients of l̂A(x; .) and lA(x; .).

Proof of Lemma 6.3 : Set γ = ε and ε′ = ε
8 . Set N ′ = log

(
2K′R′

ε′

)
and ω = γ

8N ′ . Observe that log
(

K′R′

V ′

)
is polynomially bounded. Recall that α̂A is an optimal solution to L̂DA;ρ(x). Let G be the extended

ε′V ′

8K′N ′R′√m
-grid ofDA and n = |G|. By Theorem 5.2, if we use T (ε, ρ, ε, δ) = poly

(
I, λ2

ρ , λ
ω , ln(2N ′

ε), ln(n
δ)

)
samples from BA to construct L̂DA;ρ(x), then with probability at least 1 − δ

n , at a given point αA ∈ DA,
any optimal solution ŷA to f̂(000;αA) satisfies g(αA; ŷA) ≤

(
1 + ω

λ

)
fA(000;αA) + ε

2N ′ . So by applying
Lemma 6.7 and the union bound over all points in G, with probability at least 1− δ, at each point αA ∈ G,
the max-subgradient ŷA − x of l̂A(x; .) at αA is an (ω, ωwI · x + ε

2N ′)- max-subgradient of lA(x; .) at
αA. By Lemma 4.5, we have lA(x; α̂A) ≥ (1 − γ)LDA;ρ(x) − 4ε′ − N ′ωwI · x − ε

2 which is at least
(1− ε)LDA;ρ(x)− εwI · x− ε.

Since lnn and N ′ are poly
(
I, ln(1

ε)
)
, we get that T (ε, ρ, ε, δ) = poly

(
I, λ

ρε , ln(1
ε), ln(1

δ)
)
.

6.2 A class of solvable 3-stage programs

The above arguments can be adapted to prove an SAA bound for a broad class of 3-stage stochastic pro-
grams, which includes the 3-stage stochastic set cover problem considered above. As before, we use A to
denote an outcome in stage 2, and (A,B) to denote a stage 3 scenario where A was the stage 2 outcome, and
x, yA and zA,B respectively to denote the decisions in stage 1, outcome A and scenario (A,B) respectively.
A denotes the set of all stage 2 outcomes, and for each A ∈ A let BA = {B : (A,B) is a scenario}. Let pA

and pA,B be the probabilities of outcome A and scenario (A,B) respectively, and let qA,B = pA,B/pA. We
consider the following class of 3-stage problems.

min h(x) = wI · x +
∑
A∈A

pAfA(x) subject to x ∈ P ⊆ Rm
≥0, (3Gen-P)

where fA(x) = min
yA∈Rm

≥0

{
wA · yA +

∑
B∈BA

qA,BfA,B(x, yA) : TAyA ≥ jA − TAx
}

, and (3Rec-P)

fA,B(x, yA) = min
zA,B ∈ Rm

≥0

sA,B ∈ Rn
≥0

{
wA,B · zA,B + cA,B · sA,B : DA,BsA,B + TA,BzA,B ≥ jA,B − TA,B(x + yA)

}
,

16

where for every outcome A ∈ A and scenario (A,B), (a) TA, TA,B ≥ 000; (b) for every x ∈ P , and yA ≥ 000,

0 ≤ fA(x), fA,B(x, yA) < +∞. Let λ = maxS,A∈A,B∈BA
max

(
1,

wA
S

wS
,

wA,B
S

wA
S

)
. As before, we assume that

λ is known, that P ⊆ B(000, R) and that P contains a ball of radius V ≤ 1, where ln
(

R
V

)
is polynomially

bounded. Further we assume that for any x ∈ P and any A ∈ A, the feasible region of fA(x) can be
restricted to B(000, R) without affecting the solution quality, that is, there is an optimal solution to fA(x)
lying in B(000, R). These assumptions are fairly mild and unrestrictive; in particular, they hold trivially for
the fractional relaxations of 0-1 integer programs and many combinatorial optimization problems. Let OPT
be the optimum value and I be the input size.

The sample average problem is of the same form as (3Gen-P), where pA and qA,B are replaced by their
estimates p̂A and q̂A,B respectively, the frequencies of occurrence of outcome A and scenario (A,B) in the
appropriate sampled sets. Let ĥ(x) = wI · x +

∑
A∈A p̂Af̂A(x) denote the sample average function where

f̂A(x) = min
yA≥000

{
wA · yA +

∑
B∈BA

q̂A,BfA,B(x, yA) : TAyA ≥ jA − TAx
}

(3SARec-P)

is the sample average recourse problem.
Let fA(000;W) (respectively f̂A(000;W)) denote the recourse problem (3Rec-P) (respectively (3SARec-P))

with x = 000 and costs wA = W . The dual of the recourse problem is formulated as before, LDA(x) =
max000≤αA≤wA lA(x;αA) where lA(x;αA) = −αA · x + fA(000;αA). We use L̂DA(x) and l̂A(x;αA) to
denote the corresponding quantities for the sample average problem.

The only portion of the argument in Section 6.1 that needs to be modified is the proof of Lemma 6.1
which proves strong duality in the new dual representation. The proof is along the same lines.

Lemma 6.8 At any point x ∈ P and outcome A ∈ A, fA(x) = LDA(x) and f̂A(x) = L̂DA(x). Moreover,
we can restrict yA so that ‖yA‖ ≤ 2R in the problems fA(0;αA) and f̂A(000;αA), without affecting the values
of LDA(x) and L̂DA(x).

Proof : We prove that fA(x) = LDA(x); an identical argument shows that f̂A(x) = L̂DA(x). fA(x) can
be written as the following linear program:

min wA · yA +
∑

B∈BA

qA,B(wA,B · zA,B + cA,B · sA,B) (R-P)

s.t. TAyA ≥ jA − TAx

DA,BsA,B + TA,ByA + TA,BzA,B ≥ jA,B − TA,Bx ∀B ∈ BA, (4)

sA,B ∈ Rn, sA,B, yA, zA,B ≥ 000 ∀B ∈ BA.

Let
(
y∗A, {s∗A,B, z∗A,B}

)
be an optimal solution to (R-P) and

(
θ∗A, {β∗A,B}

)
be an optimal solution to the

(standard, LP) dual of (R-P) where βA,B is the dual multiplier corresponding to inequalities (4) for each
B ∈ BA. Let α∗A be an optimal solution to LDA(x). Setting yA = x + y∗A yields a feasible solution to
the minimization problem fA(000;α∗A). So LDA(x) is at most (yA − x) · α∗A +

∑
B∈BA

qA,BfA,B(000, yA) =
α∗A · y∗A +

∑
B∈BA

qA,BfA,B(x, y∗A) which is at most wA · y∗A +
∑

B∈BA
qA,BfA,B(x, y∗A) = fA(x). For the

other direction, consider the solution αA = (TA)Tθ∗A +
∑

B∈BA
(TA,B)Tβ∗A,B . This is a feasible solution to

LDA(x) since the dual of (R-P) has (TA)TθA +
∑

B∈BA
(TA,B)TβA,B ≤ wA as a constraint. If we consider

the LP dual of fA(000;αA), then observe that
(
θ∗A, β∗A,B

)
yields a feasible solution to the dual that has value

jA ·θ∗A +
∑

B∈BA
jA,B ·β∗A,B . Therefore we can lower bound LDA(x) by−αA ·x+jA ·θ∗A +

∑
B∈BA

jA,B ·
β∗A,B which is equal to (jA − TAx) · θ∗A +

∑
B∈BA

(jA,B − TA,Bx) · β∗A,B = fA(x) by LP duality.

17

Notice that the upper-bound argument also holds if we restrict yA to lie in the ball B(000, 2R) in the
problem fA(000;αA) embedded in the dual problem LDA(x), that is, max000≤αA≤wA

(
−αA ·x+f ′A(000;αA)

)
≤

fA(x) where f ′A(000;αA) is the same as fA(000;αA) except that we restrict yA to lie in B(000, 2R). Since
this restriction can only increase the value of the minimization problem, f ′A(000;αA) ≥ f(000;αA), and so
max000≤αA≤wA

(
−αA · x + f ′A(000;αA)

)
≥ LDA(x) = fA(x). This shows that we may assume ‖yA‖ ≤ 2R

in the problem fA(000;αA) (respectively f̂A(000;αA)) without changing the value of LDA(x) (respectively
L̂DA(x)).

It need not be true that for an arbitrary cost vector αA,000 ≤ αA ≤ wA, there exists an optimal solution to
fA(000;αA) which lies in B(000, 2R). However, since fA(000;αA) (respectively f̂A(000;αA)) is only “used” while
embedded in the maximization problem LDA(x) (respectively L̂DA(x)), and by Lemma 6.8 its value is not
affected by imposing the constraint ‖yA‖ ≤ 2R, we will assume that this constraint is implicitly included in
fA(000;αA), and this will not affect the validity of our arguments. That is, when we say fA(000;αA) we actual
mean the minimization problem minyA≥000:‖yA‖≤2R

{
αA · yA +

∑
B∈BA

qA,BfA,B(000, yA) : TAyA ≥ jA
}

;
this saves us from having to introduce extra cumbersome notation.

Lemma 6.3 and its proof in Section 6.1.1 remain almost unchanged. The only place where we used
problem-specific information was in bounding yA,S ≤ 1 in the 2-stage problems fA(000;αA) and f̂A(000;αA)
which allowed us to, a) bound the Lipschitz constant of lA(x; .) and l̂A(x; .), and b) to show that the feasible
region of fA(000;αA) is bounded (so that Theorem 5.2 could be applied). As argued above, yA can be
restricted to the ball B(000, 2R) in the problems fA(000;αA) and f̂A(000;αA). So using Lemma 6.7 (which
remains unchanged), we can bound the Lipschitz constant of lA(x; .) and l̂A(x; .) by K ′ = 3R (note that
lnR = poly(I), so lnK ′ is polynomially bounded), and since fA(000;αA) is a 2-stage program of the form
(2Gen-P) with a bounded feasible region, we can still apply Theorem 5.2 to fA(000;αA) (when αA ≥ ρwA).
So the proof in Section 6.1.1 is essentially unchanged, and thus using essentially the same arguments that
we used for the 3-stage set cover problem, we obtain the following theorem.

Theorem 6.9 For any parameters ε, γ > 0 (γ ≤ 1), one can construct the sample average problem ĥ using
poly

(
I, λ, 1

γ , ln(1
ε), ln(1

δ)
)

samples so that, with probability at least 1− δ, any optimal solution x̂ to ĥ has
value h(x̂) ≤ (1 + 3γ) ·OPT + 16ε.

The sampling step described in Section 7.1 yields a lower bound on OPT for a subclass of (3Gen-P)
where the recourse problem fA(x) does not have any constraints (for instance, as in the relaxation of the
3-stage set cover problem (3SSCR-P)). This allows us to obtain a purely multiplicative (1 + κ)-guarantee
for this subclass of 3-stage programs.

7 The SAA bound for k-stage programs

We now extend our techniques to solve k-stage stochastic linear programs. Here k is a fixed constant that is
not part of the input; the running time of our algorithm will be exponential in k.

In the k-stage problem, the scenario distribution is specified by a k-level tree, called the distribution
tree. We start at the root r of this tree at level 1, which represents the first-stage. Let level(i) denote the
set of nodes at level i, so level(1) = {r}. Each such node u represents an outcome in stage i and its
ancestors correspond to the outcomes in the previous stages; so node u represents a particular evolution of
the uncertainty through stages 1, . . . , i. At a leaf node, the uncertainty has completely resolved itself and we
know the input precisely. As before, for clarity, a scenario will always refer to a stage k outcome, that is, a
leaf of the tree. The goal is to choose the first stage elements so as to minimize the total expected cost, i.e.,∑k

i=1 E
[
stage i cost

]
where the expectation is taken over all scenarios.

18

Let path(u) be the set of all nodes (including u) on u’s path to the root. Let child(u) be the set of all
children of u; this is the set of possible outcomes in the next stage given that u is the current outcome. Let
pu be the probability that outcome u occurs, and qu be the conditional probability that u occurs given the
outcome in the previous stage. We do not assume anything about the distribution, and it can incorporate
various correlation effects from previous stages. Note that pu =

∏
v∈path(u) qv. Clearly we have pr = qr =

1, for any i
∑

v∈level(i) pv = 1, and for any node u,
∑

v∈child(u) qv = 1.
We use yu to refer to the decisions taken in outcome u and wu to denote the costs in outcome u; thus the

costs may depend on the history of outcomes in the previous stages. Note that yu may only depend on the
decisions in the previous outcomes, that is, on the yv’s where v ∈ path(u). For convenience we use x ≡ yr

to denote the first-stage decisions, and wI to denote the first-stage costs. We consider the following generic
k-stage linear program.

fk,r = min h(x) = wI · x +
∑

u∈child(r)

qufk−1,u(x) subject to x ∈ P ⊆ Rm
≥0 (kGen-P)

where fk−1,u(x) gives the expected cost of stages 2, . . . , k given the first-stage decision x and when u is
the stage 2 outcome. Thus fk−1,u(x) is the cost of the (k − 1)-stage problem that is obtained when u is the
second-stage outcome, and x is the first-stage decision. In general, consider an outcome u ∈ level(i) and let
v ∈ level(i − 1) be it’s parent. Let yv =

(
yr, . . . , yv

)
, where {r, . . . , v} = path(v), denote the collective

tuple of decisions taken in the previous stages; for the root r, yr ≡ yr ≡ x. The function fk−i+1,u(yv) is
(the cost of) the (k − i + 1)-stage stochastic program that determines the expected cost of stages i, . . . , k
given the decisions in the previous stages yv, and when u is the outcome in stage i. It is defined recursively
as

fk−i+1,u(yv) = min
{

wu · yu +
∑

u′∈child(u)

qu′fk−i,u′(yv, yu) : yu ∈ Rm
≥0, T uyu ≥ ju −

∑
t∈path(v)

T uyt

}
,

for a non-leaf node u ∈ level(i), 2 ≤ i < k. For a leaf u at level k,

f1,u(yv) = min
{

wu · yu + cu · su : yu ∈ Rm
≥0, su ∈ Rn

≥0, Dusu + T uyu ≥ ju −
∑

t∈path(v)

T uyt

}
.

The variables su appearing in f1,u(.), capture the fact that at a scenario u when we know the input precisely,
one might need to make some additional decisions. We require that (a) T u ≥ 000 for every node u; (b)
0 ≤ fk−i+1,u(yv) < ∞ for every node u ∈ level(i) with parent v, and feasible decisions yv — this
ensures that the primal problem fk−i+1,u(yv) and its dual are feasible for every feasible yv; and (c) there
are R and V ≤ 1 with ln

(
R
V

)
polynomially bounded such that for every internal node u, the feasible region

of fk−i+1,u(yv) contains a ball of radius V , and can be restricted to B(000, R) without affecting the solution
quality (soP ⊆ B(000, R) and contains a ball of radius V); that is, for each fk−i+1,u(yv) there is some optimal
solution y∗u such that ‖y∗u‖ ≤ R. Let I denote the input size, λ be the ratio max

(
1,maxv,u∈child(v),S

wu
S

wv
S

)
,

and K be the Lipschitz constant of h(.). Define OPT = fk,r.
The sample average problem is of the same form as (kGen-P), where the probability qu is replaced by

its estimate q̂u, which is the frequency of occurrence of outcome u in the appropriate sampled set. It is
constructed as follows: we sample T2 times from the entire distribution and estimate the probability qu of
a node u ∈ level(2) by its frequency of occurrence q̂u = T2;u/T2; for each u such that q̂u > 0, we sample
T3 times from the conditional distribution of scenarios in the tree rooted at u and estimate the probability
qu′ for each u′ ∈ child(u) by the frequency q̂u′ = T3;u′/T3. We continue this way, sampling for each node
u such that q̂u > 0, the leaves of the tree rooted at u to estimate the probabilities of the children of u, till
we reach the leaves of the distribution tree. Let p̂u =

∏
v∈path(u) q̂v denote the probability of occurrence

19

of outcome u in the sample average problem. We use f̂k,r to denote the k-stage sample average problem;
correspondingly for node u ∈ level(i) (where p̂u > 0) with parent v, f̂k−i+1,u(yv) is the (k − i + 1)-stage
program in the sample average problem that determines the expected cost of stages i, . . . , k when outcome
u occurs and given the decisions yv in the previous stages. Note that for a leaf u, f1,u(yv) is simply a
(1-stage) deterministic linear program, so f̂1,u(yv) = f1,u(yv). Let ĥ(x) be the objective function of the
k-stage sample average program, so f̂k,r = minx∈P ĥ(x).

In Sections 5 and 6 we proved a polynomial SAA bound for the generic 2-stage problem f2,r and 3-stage
problem f3,r respectively. We now extend this argument inductively to prove an SAA bound for the k-stage
problem fk,r. We will show that assuming inductively a polynomial SAA bound Nk−1 for the (k− 1)-stage
problem fk−1,r, one can construct the sample average problem f̂k,r with a sufficiently large polynomial
sample size, so that, with high probability, any optimal solution to f̂k,r is a near-optimal solution to fk,r.
Combined with the results in Sections 5 and 6 which provide the base case in this argument, this establishes
a polynomial SAA bound for k-stage programs of the form (kGen-P).

We dovetail the approach used for 3-stage programs in Section 6. For a node u ∈ level(2), we use
fk−1,u(000;W) to denote the (k − 1)-stage problem fk−1,u(x) with x = 000 and costs wu = W ; f̂k−1,u(000;W)
denotes the corresponding quantity in the sample average problem. Like in Section 6, we formulate a con-
cave maximization problem LDk−1,u(x) that is dual to fk−1,u(x), which has a (k−1)-stage primal problem
of the type fk−1,r embedded inside it. This dual is defined as LDk−1,u(x) = max000≤αu≤wu lk−1,u(x;αu)
where lk−1,u(x;αu) = −αu · x + fk−1,u(000;αu). We use l̂k−1,u(x;αu) and L̂Dk−1,u(x) to denote the
analogues in the sample average problem.

We want to show that the true function h(.), and the sample average function ĥ(.) are close in terms
of their subgradients. As in Section 6, to avoid some technical difficulties, we consider slightly modified
versions of these functions, hρ and ĥρ respectively, and show that they are close in terms of their subgradients
and this will suffice to prove an SAA bound. Define hρ(x) = wI · x +

∑
u∈child(r) quLDk−1,u;ρ(x) and

ĥρ(x) = wI · x +
∑

u∈child(r) q̂uL̂Dk−1,u;ρ(x). where LDk−1,u;ρ(x) and L̂Dk−1,u;ρ(x) are respectively

the maximum of lk−1,u(x;αu) and l̂k−1,u(x;αu) over the region Du = {αu ∈ Rm : ρwI ≤ αu ≤ wu}.4

A subgradient to hρ(.) and ĥρ(.) at point x is obtained from the solutions to the dual recourse problems
LDk−1,u;ρ(x) and L̂Dk−1;ρ,u(x) respectively; so we first argue that an optimal solution to L̂Dk−1;ρ,u(x)
is a near-optimal solution to LDk−1,u;ρ(x). To do this we show that the dual objective functions are close
in terms of their max-subgradients. A (approximate) max-subgradient of lk−1,u(x; .) at the point αu is
obtained from an (near-) optimal solution to fk−1;ρ,u(000;αu), which is a (k− 1)-stage program belonging to
our class with bounded cost ratio (this is the reason why we consider functions hρ and ĥρ instead of h and ĥ).
We use the inductive hypothesis to argue that an optimal solution to the (k−1)-stage program f̂k−1,u(000;αu)
in the sample average dual yields a near-optimal solution to the (k − 1)-stage program fk−1,u(000;αu) in the
true dual, and therefore the max-subgradients of the objective functions of the sample-average dual and the
true dual are close to each other. Unfolding the chain of arguments, this shows that an optimal solution to
L̂Dk−1,u(x) is a near-optimal solution to LDk−1,u(x), which shows the closeness in subgradients of the
objective functions h and ĥ. This in turn leads to an SAA bound for the k-stage program fk,r.

To reduce clutter we adopt the following terminology: for a minimization problem, we call a solution a
(γ, ε)-optimal solution if it has cost at most (1 + γ) · (minimum) + ε; for a maximization problem, a (γ, ε)-
optimal solution is a solution that has value at least (1 − γ) · (maximum) − ε. We first state the induction
hypothesis precisely.

Induction Hypothesis For a (k − 1)-stage problem of the type fk−1,r with input size I, cost ratio λ,

4Again, we assume for simplicity that wI ≤ wu (and ρ ≤ 1), so Du 6= ∅; more accurately we should have
Du = {αu ∈ Rm : ρ min{wI, wu} ≤ αu ≤ wu}.

20

and satisfying requirements (a), (b), and (c), one can construct the sample average problem f̂k−1,r using
Nk−1(I, λ, γ, ε, δ) = poly

(
I, λ

γ , ln(1
εδ)

)
samples so that with probability at least 1−δ, any optimal solution

to f̂k−1,r is a (γ, ε)-optimal solution to fk−1,r.

Like in Section 6, we show that strong duality holds (with the new dual representation), and state a
structural lemma about the subgradients of the objective function which paves the way for showing the
closeness in subgradients. The proofs of these two lemmas are very similar to those of Lemmas 6.8 and 6.2.
We use Γu to denote the subtree of the distribution tree rooted at node u.

Lemma 7.1 At any x ∈ P and node u ∈ level(2), fk−1,u(x) = LDk−1,u(x) and f̂k−1,u(x) = L̂Dk−1,u(x).
Moreover in the (k−1)-stage problems fk−1,u(000;αu) and f̂k−1,u(000;αu), we can restrict yu to B(000, 2R) and
yt to B(000, R) for any internal node t ∈ Γu, without affecting the values of LDk−1,u(x) and L̂Dk−1,u(x).

Proof : The proof proceeds as in Lemma 6.8 and we only briefly sketch the details. One can expand
fk−1,u(x) into a minimization LP with objective function wu · yu +

∑
t∈Γu

pt

pu
wt · yt +

∑
t∈Γu∩ level(k)

pt

pu
ct ·

st. The constraints are T t(
∑

t′∈path(t)\{r} yt′) ≥ jt − T tx for every non-leaf node t ∈ Γu, and Dtst +
T t(

∑
t′∈path(t)\{r} yt′) ≥ jt − T tx for every leaf t ∈ Γu. Let

(
{y∗t }, {s∗t }

)
be an optimal solution to this

LP, and
(
{θ∗t }

)
be a solution to the dual maximization LP. Let α∗u be an optimal solution to LDk−1,u(x).

Setting yu = x + y∗u in fk−1,u(000;α∗u) shows that LDk−1,u(x) ≤ fk−1,u(x). Note that this upper bound
also holds when we require that, yu ∈ B(000, 2R) and yt ∈ B(000, R) for all other internal nodes t ∈ Γu, in
the problem fk−1,u(000;αu) embedded in the dual maximization problem LDk−1,u(x). We can lower bound
LDk−1,u(x) by fk−1,u(x), by computing the value of the feasible solution where αu =

∑
t∈Γu

(T t)Tθ∗t
and the solution to the LP dual of fk−1,u(000;αu) is given by

(
{θ∗t }

)
. Hence, fk−1,u(x) = LDk−1,u(x), and

constraining ‖yu‖ ≤ 2R and ‖yt‖ ≤ R for every internal node t ∈ Γu \ {u} in the problem fk−1,u(000;αu)
does not affect the value of LDk−1,u(x). The arguments for f̂k−1,u(x) and L̂Dk−1,u(x) are identical.

Lemma 7.2 Let x ∈ P and αu be an (ε, εwI · x + ε)-optimal solution to LDk−1,u(x) for every node
u ∈ level(2). (i) d = wI −

∑
u∈level(2) puαu is an (ε, ε)-subgradient of h(.) at x with ‖d‖ ≤ λ‖wI‖; (ii) if d̂

is a vector such that d− ωwI ≤ d̂ ≤ d + ωwI, then d̂ is an (ε + ω, ε)-subgradient of h(.) at x.

As in Section 6.2, given Lemma 7.1, we abuse notation and use fk−1,u(000;αu) to actually refer to the
problem where we have imposed the constraints that yu lie in B(000, 2R) and yt lie in B(000, R) for every
internal node t ∈ Γu. Observe that for any u ∈ level(2), when αu ≥ ρwI, in the (k − 1)-stage problem

fk−1,u(000;αu), the ratio of costs wt′S
wt

S
for any t lying in the tree rooted at u, any t′ ∈ child(t) and any S, is

bounded by λ2

ρ . Let Pk(I, λ, γ, ε, δ) = poly
(
I, λ, 1

γ , ln(1
ε), ln(1

δ)
)

be a sufficiently large polynomial. To
avoid clutter we suppress the dependence on (I, . . . , δ).

Lemma 7.3 For any ε, ρ, ε > 0, any x ∈ P , and any node u ∈ level(2), if we construct the recourse
problem f̂k−1,u(x) with T (ε, ρ, ε, δ) = Nk−1

(
I, λ2

ρ , ε
8N ′λ , ε

16N ′ ,
δ
n′

)
samples, for a suitable N ′, lnn′ =

poly
(
I, ln(1

ε)
)
, then any optimal solution to L̂Dk−1,u;ρ(x) is an (ε, εwI·x+ε)-optimal solution to LDk−1,u;ρ(x)

with probability at least 1− δ.

Proof : We show that lk−1,u(x; .) and l̂k−1,u(x; .) are close in terms of their max-subgradients and then
use Lemma 4.5. Recall that Du = {αu ∈ Rm : ρwI ≤ αu ≤ wu}. Let R′ = ‖wu‖ ≤ λ‖wI‖ and
V ′ = min

{
1, 1−ρ

2 · minS wI
S

}
. So Du ⊆ B(000, R′) and contains a ball of radius V ′. In the sequel we will

only consider (ω, ∆,Du)- max-subgradients, so we will omit the Du.

21

As in Lemma 6.7, for any ω > 0, one can show that if yu is an (ω′, ε′)-optimal solution to fk−1,u(000;αu),
where ω′ = ω

λ , then yu − x is an (ω, ωwI · x + ε′)- max-subgradient of lk−1,u(x; .) at αu. This follows
because lk−1,u(x;αu) ≥ (yu − x) · αu + C − ω′fk−1,u(000;αu)− ε′ where C =

∑
u′∈child(u) qu′fk−2,u′(yu),

and at any other point α′u, we have lk−1,u(x;α′u) ≤ (yu − x) · α′u + C. This also shows that if ŷu is an
optimal solution to f̂k−1,u(000;αu) then ŷu − x is a max-subgradient of l̂k−1,u(x; .) at αu. We may assume
that ‖yu‖ ≤ 2R by Lemma 7.1, so the Lipschitz constant of lk−1,u(x; .) and l̂k−1,u(x; .) can be bounded by
K ′ = 3R. fk−1,u(000;αu) is a (k− 1)-stage problem of the form fk−1,r such that for every internal node t in
the tree Γu we have ‖yt‖ ≤ R, so we can apply the induction hypothesis to it.

Set ε′ = ε
8 . Let N ′ = log

(
2K′R′

ε′

)
and ω = ε

8N ′ . Observe that log
(

K′R′

V ′

)
= poly(I). Let G be the

extended ε′V ′

8K′N ′R′√m
-grid of Du and n′ = |G|. Suppose that we use Nk−1

(
I, λ2

ρ , ω
λ , ε′

2N ′ ,
δ
n′

)
samples to

construct the recourse problem f̂k−1,u(x), and hence the dual L̂Dk−1,u;ρ(x). At any given αu ∈ G, applying
the induction hypothesis to fk−1,u(000;αu), an optimal solution ŷu to f̂k−1,u(000;αu) is an

(
ω
λ , ε′

2N ′

)
-optimal

solution to fk−1,u(000;αu) with probability at least 1 − δ
n′ . Thus, with probability 1 − δ, at every αu ∈ G,

ŷu−x is both a max-subgradient of l̂k−1,u(x; .) and an (ω, ωwI · x + ε′

2N ′)- max-subgradient of lk−1,u(x; .)
at αu. So by Lemma 4.5 we get that if α̂u ∈ Du maximizes l̂k−1,u(x;αu) then it is an (ε, εwI ·x+ε)-optimal
solution to LDk−1,u;ρ(x). Thus we obtain T (ε, ρ, ε, δ) = Nk−1

(
I, λ2

ρ , ε
8N ′λ , ε

16N ′ ,
δ
n′

)
.

Now we can prove our main theorem. First we state the analogue of Lemma 6.4.

Lemma 7.4 Consider the sample average function ĥ constructed using N2 = T2(ω, δ) = 16(1+λ)2

ω2 ln
(

4m
δ

)
samples from stage 2, and using T

(
ε, ρ, ω

2 , δ
2N2

)
samples from the tree rooted at u (to generate f̂k−1,u(x))

for each u ∈ level(2) with q̂u > 0. At any point x ∈ P , subgradient d̂x of ĥρ(.) is an (ω, ε)-subgradient of
hρ(.) with probability at least 1− δ.

Theorem 7.5 For any ε, γ > 0 (γ < 1), with probability at least 1−δ, any optimal solution x̂ to the k-stage
sample average problem constructed using poly

(
I, λ

γ , ln(1
εδ)

)
samples satisfies h(x̂) ≤ (1 + γ) · fk,r + ε.

Proof : Set γ′ = γ
7 and ε′ = ε

18 . Let N = log
(

2KR
ε′

)
and ω = γ′

8N . Note that log
(

KR
V

)
= poly(I). Set

ε′′ = ε′

N and ρ = γ′

4N . Let G be the extended ε′V
8KNR

√
m

-grid of P and n = |G|. Let N ′ = 16(1+λ)2

ω2 ln
(

4mn
δ

)
.

Using Lemma 7.4 and the union bound over all points in G, by constructing ĥ(.) (and hence ĥρ(.)) using
N = N ′ · T

(
ε′′, ρ, ω

2 , δ
2nN ′

)
samples, with probability at least 1 − δ, at every point x ∈ G, subgradient

d̂x of ĥρ(.) is an (ω, ε′′)-subgradient of hρ(.). Mimicking the proof of Theorem 6.9 we obtain that h(x̂) ≤
(1 + 3γ′)OPT + 16ε′.

Let N ′, n′ be as given by Lemma 7.3. We can choose Pk(I, λ, γ, ε, δ) to be a large enough polynomial
so that the following hold: N ′ ≤ Pk, 1

ρ ≤ Pk, ω
16N ′λ = γ

O(1)NN ′λ ≤ γ
Pk

, ε′′

16N ′ = ε
O(1)NN ′ ≤ ε

Pk
,

δ
2nN ′n′ ≤

δ
2Pk

. So using Lemma 7.3 we can bound T
(
ε′′, ρ, ω

2 , δ
2nN ′

)
by Nk−1

(
I, Pkλ

2, γ
Pk

, ε
Pk

, δ
2Pk

)
.

Unfolding the recurrence (note that k is a constant), and using Theorem 5.2 for the base case, we get that
Nk(I, λ, γ, ε, δ) is a polynomial in I, λ

γ , ln
(

1
εδ

)
.

7.1 Obtaining a lower bound on OPT

The bounds obtained thus far on the quality of an optimal solution to the sample average problem in The-
orem 5.2, Theorem 6.9, and Theorem 7.5 are all of the form h(x̂) ≤

(
1 + O(γ)

)
· OPT + O(ε) (where

γ, ε > 0 are parameters) containing both multiplicative and additive approximation factors. This can be
converted into a purely multiplicative (1 + κ)-guarantee by setting γ and ε appropriately provided that we

22

have a lower bound on OPT (that is at least inverse exponential in the input size). We now show that, under
some mild assumptions, one can obtain such a lower bound for a subclass of (kGen-P), where for every
node u in level(i), 2 ≤ i < k, the recourse problem fk−i+1,u(x,yv) does not have any constraints. That is,
we consider the following subclass of (kGen-P):

gk,r = min h(x) = wI · x +
∑

u∈child(r)

qugk−1,u(x) subject to x ∈ P ⊆ Rm
≥0, where

gk−i+1,u(yv) = min
{

wu · yu +
∑

u′∈child(u)

qu′gk−i,u′(yv, yu) : yu ∈ Rm
≥0

}
, for u ∈ level(i), 2 ≤ i < k,

g1,u(yv) = min
{

wu · yu + cu · su : yu ∈ Rm
≥0, su ∈ Rn

≥0, Dusu + T uyu ≥ ju −
∑

t∈path(v)

T uyt

}
.

Note that for 2-stage programs, the above class is the same as (2Gen-P).
We make the mild assumption that (a) x = 000 lies in P , and (b) for every scenario u with parent v, either

g1,u(yv) is minimized by setting yt = 000 for all t ∈ path(v), or the total cost
∑

t∈path(u) wtyt + cusu ≥ 1 for
any feasible decisions (yu, su). For example, for the 3-stage set cover problem considered in Section 6.1,
(a) just requires that we are allowed to not pick any set in the first-stage, (b) is satisfied if the total cost
incurred in every scenario (A,B) with E(A,B) 6= ∅ is at least 1. Under these assumptions, we show that
we can sample initially to detect if OPT is large.

Let Null = {u ∈ level(k) : g1,u(yv) is minimized at yv = 000}; we call a scenario u ∈ Null a “null-
scenario”. The basic idea is that if the non-null scenarios account for a probability mass of at least 1

λk , then
OPT ≥ 1

λk since the cost incurred in each such scenario is at least 1. Otherwise we show that x = 000 is
an optimal solution, by arguing that for any solution x 6= 000 we can substitute the x-decisions with recourse
actions yu in each scenario u, and the overall cost decreases since the low probability of occurrence of a
non-null scenario outweighs the increase in the cost of such a scenario (at most a factor of λk).

Lemma 7.6 By sampling M = λk ln
(

1
δ

)
times, one can detect with probability at least 1− δ (δ < 1

2), that
either x = 000 is an optimal solution to (3SSC-P), or that OPT ≥ δ

M .

Proof : Let X be the number of times we sample a non-null scenario, i.e., a scenario not in Null. Note
that given a scenario u, one can decide in polynomial time if u with parent v is a null-scenario by solving
the polynomial-size LP minyv≥000 g1,u(yv). If X = 0, we return x = 000 as an optimal solution, otherwise we
assert that OPT ≥ δ

M . In every non-null scenario we incur a cost of at least 1, so OPT ≥ q where q =∑
u∈level(k)\Null pu is the probability of occurrence of a non-null scenario. Let r = Pr[X = 0] = (1− q)M .

So r ≤ e−qM and r ≥ 1 − qM . If q ≥ 1
λk , then Pr[X = 0] ≤ δ. So with probability at least 1 − δ we

will say that OPT ≥ δ
M which is true since OPT ≥ q. We show that if q < 1

λk , then x = 000 is an optimal
solution. So if q ≤ δ/M , then Pr[X = 0] ≥ 1 − δ, and we return the correct answer with probability at
least 1− δ. If δ/M < q < ln

(
1
δ

)
/M , then we always return a correct answer since it is both true that x = 000

is an optimal solution, and that OPT ≥ q ≥ δ
M .

We now show that if q < 1
λk , then x = 000 is an optimal solution. Consider any solution

(
x′, {y′u}). The

cost of this solution is

h(x′) ≥ wI · x′ +
∑

u∈level(i),1<i<k

puwu · y′u +
∑

u∈Null with parent v

pug1,u(y′v) +
∑

u/∈Null

pu(wu · y′u + cu · su).

For any scenario u with parent v, since T u ≥ 000, g1,u(yv) is a decreasing function of yt for every t ∈ path(v).
So for a null scenario u, since g1,u(yv) is minimized at yv = 000, we have that g1,u(y′v) ≥ g1,u(000) for any
feasible decisions yv. Set x = 000 and yu = y′u for every non-leaf node u, and for a scenario u set yu as

23

follows: let yu = y′u + x′ if u is a non-null scenario, otherwise, let yu be equal to an optimal solution to
g1,u(000). This give a feasible solution (since T u ≥ 000 for every u), and has cost∑

u∈level(i),1<i<k

puwu · y′u +
∑

u∈Null with parent v

pug1,u(000) +
∑

u/∈Null

pu

(
wu · (y′u + x) + cu · su

)
.

This is at most h(x′)− wI · x′ + qλkwI · x′ < h(x′) since wu ≤ λkwI for any scenario u and q < 1
λk .

We can use the above lemma to convert a guarantee of the form h(x̂) ≤ (1 + c1γ) · OPT + c2ε into
a purely multiplicative (1 + κ)-guarantee. We perform the above sampling step, and after this if we detect
that OPT ≥ %/λk where % = δ

ln(1/δ) , then we can set γ = κ/(2c1) and ε = κ%/(2c2λ
k) to obtain a

(1 + κ)-guarantee.

8 Applications

We consider a number of k-stage stochastic optimization problems, where k is a constant, for which we
prove the first known performance guarantees. Our algorithms do not assume anything about the distribution
or the cost structure of the input. Previously, algorithms for these problems were known only in the 2-stage
setting initially with restrictions on the distribution or input [11, 9, 6], and later without any restrictions [14].
For a k-stage integer optimization problem, we obtain a near-optimal solution to its linear relaxation by
solving the sample average problem as argued in Section 7, and round this solution using an extension of
the rounding scheme in [14].

Multicommodity flow We consider a stochastic version of the concurrent multicommodity flow problem
where we have to buy capacity to install on the edges so that one can concurrently ship demand of each
commodity i from its source si to its sink ti. The demand is uncertain and is revealed in k-stages. We can
buy capacity on edge e in any stage i outcome u at a cost of cu

e ; and the total amount of capacity that we can
install on an edge is limited by its capacity Γe. The goal is to minimize the expected capacity installation
cost. This problem can be formulated as a k-stage stochastic LP: fk−i+1,u(yv) = min000≤yu≤Γ

(
cu · yu +∑

u′∈child(u) qu′fk−i,u′(yv, yu)
)

for a non-leaf node u at level i; for a leaf u, f1,u(yv) = min000≤yu≤Γ cu · yu

subject to the constraints that the total flow routed for (si, ti) is at least du
i , and the flow on edge e is at most

min(Γe,
∑

u′∈path(u) yu′,e). We can apply our algorithm to get (1 + ε)-optimal solution to this program.

Covering problems We consider the k-stage versions of set cover, vertex cover and the multicut problem
on tree. In each of these problems, there are elements in some universe that need to covered by sets. In the
k-stage stochastic problem, the target set of elements to cover is determined by a probability distribution,
and becomes known after a sequence of k stages. In each outcome u, we can purchase a set S at a price of
cu
S . We have to determine which sets to buy in stage I so as to minimize the (expected) total cost of buying

sets. The LP relaxation for the k-stage problem has a variable yu,S indicating if set S is bought in outcome
u, and constraints stating that for every leaf, and every element e in its corresponding target set, we must
buy some set S that contains e along this root-leaf path.

We can generalize the rounding theorem of Shmoys and Swamy [14] to show that one can use a ρ-
approximation algorithm for the deterministic analogue, where the guarantee is with respect to its natural
LP relaxation, to round any fractional solution to the k-stage problem to an integer solution losing a factor
of kρ; combined with the algorithm in Section 7, this yields a (kρ + ε)-approximation algorithm for the
k-stage problem. In general, to compute the decisions in a stage i outcome, we solve a (k − i + 1)-stage
problem, and round the solution. We get a performance guarantee of (k log n + ε) for the k-stage set cover
problem, and (2k + ε) for the k-stage vertex cover problem and the k-stage multicut problem on trees.

24

Facility location problems In the k-stage uncapacitated facility location (UFL) problem, we are given a
set of candidate facility locations F , a set of clients, and a probability distribution on the client demands that
evolves over k-stages. In each stage, one can buy facilities paying a certain facility opening cost; in stage k,
we know the exact demands and we have to assign each client’s demand to an open facility incurring a client
assignment cost. The goal is to minimize the expected total cost. This is captured by the k-stage program
where gk−i+1,u(yv) = minyu≥000

(∑
i f

u
i yu,i + gk−i,u′(yv, yu)

)
for a stage i outcome u, and for a stage k

scenario u, g1,u(yv) is the minimum of
∑

i f
u
i yu,i +

∑
j du

j cijxu,ij subject to the constraint that for every
client j,

∑
i xu,ij is at least 1 if dj

u > 0 and 0 otherwise, and for every i, j, xu,ij ≤
∑

u′∈path(u) yu′,i. We
can obtain a (1 + ε)-optimal solution to this program. Adapting the rounding procedure in [14], we obtain
a 1.858(k − 1) + 1.52 + ε = O(k)-approximation algorithm for k-stage UFL. This rounding procedure
extends to give O(k)-approximation algorithms for k-stage UFL with penalties, or with soft capacities.

References

[1] K. A. Ariyawansa and A. J. Felt On a new collection of stochastic linear programming test problems.
INFORMS Journal on Computing, 16(3):291–299, 2004.

[2] J. Borwein and A. S.Lewis. Convex Analysis and Nonlinear Optimization Springer-Verlag, NY, 2000.

[3] J. R. Birge and F. V. Louveaux. Introduction to Stochastic Programming. Springer-Verlag, NY, 1997.

[4] M. Charikar, C. Chekuri, and M. Pál. Sampling bounds for stochastic optimization. In Proceedings of
9th International Workshop on Randomization and Computation, pages 257–269, 2005.

[5] S. Dye, L. Stougie, and A. Tomasgard. The stochastic single resource service-provision problem. Naval
Research Logistics, 50(8):869–887, 2003. Also appeared as COSOR-Memorandum 99-13, Dept. of
Mathematics and Computer Sc., Eindhoven, Tech. Univ., Eindhoven, 1999.

[6] A. Gupta, M. Pál, R. Ravi, and A. Sinha. Boosted sampling: approximation algorithms for stochastic
optimization. In Proceedings of the 36th Annual ACM Symposium on Theory of Computing, pages
417–426, 2004.

[7] A. Gupta, M. Pál, R. Ravi, & A. Sinha. What about Wednesday? Approximation algorithms for mul-
tistage stochastic optimization. In Proceedings of the 8th International Workshop on Approximation
Algorithms for Combinatorial Optimization, pages 86–98, 2005.

[8] A. Hayrapetyan, C. Swamy, and É. Tardos. Network design for information networks. In Proceedings
of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms, 933–942, 2005.

[9] N. Immorlica, D. Karger, M. Minkoff, and V. Mirrokni. On the costs and benefits of procrastination:
approximation algorithms for stochastic combinatorial optimization problems. In Proceedings of the
15th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 684–693, 2004.

[10] A. J. Kleywegt, A. Shapiro, and T. Homem-De-Mello. The sample average approximation method for
stochastic discrete optimization. SIAM Journal on Optimization, 12:479–502, 2001.

[11] R. Ravi and A. Sinha. Hedging uncertainty: approximation algorithms for stochastic optimization
problems. In Proceedings of the 10th International Conference on Integer Programming and Combi-
natorial Optimization, pages 101–115, 2004.

[12] A. Shapiro. Monte Carlo sampling methods. In A. Ruszczynski and A. Shapiro, editors, Stochastic Pro-
gramming, volume 10 of Handbooks in Oper. Res. and Mgmt. Sc., North-Holland, Amsterdam, 2003.

25

[13] A. Shapiro. On complexity of multistage stochastic programs. Optimization Online, 2005.
http://www.optimization-online.org/DB FILE/2005/01/1041.pdf.

[14] D. B. Shmoys and C. Swamy. Stochastic optimization is (almost) as easy as deterministic optimization.
In Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science, pages 228–
237, 2004.

[15] C. Swamy and D. B. Shmoys. Sampling-based approximation algorithms for multi-stage stochastic op-
timization. In Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer Science,
pages 357–366, 2005.

[16] C. Swamy and D. B. Shmoys. The sample average approximation method for 2-stage stochastic opti-
mization. November 2004. http://ist.caltech.edu/ c̃swamy/papers/SAAproof.pdf.

26

