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Abstract seeks to minimize the expected cost of operating a water

reservoir where one can decide, in each time period, the

Stochastic optimization problems provide a means to amount of irrigation water to be sold while maintaining the
model uncertainty in the input data where the uncertainty level of the reservoir within a specified range (where penal-
is modeled by a probability distribution over the possible ties are incurred for violating this constraint). The source
realizations of the actual data. We consider a broad class of uncertainty is, of course, the variability in rainfall, and
of these problems in which the realized input is revealed there is a simulation model that provides a means to sample
through a series of stages, and hence are called multi-stagefrom the distribution of inputs (of rainfall amounts per time
stochastic programming problems. Our main result is to period within the planning horizon) [2]. Observe that it is
give the first fully polynomial approximation scheme for a important to model this as a multi-stage process, rather than
broad class of multi-stage stochastic linear programming as a 2-stage one, since it allows us to capture essential con-
problems with any constant number of stages. The algo-ditional information, such as given a drought over the previ-
rithm analyzed, known as the sample average approxima-ous period, the next period is more likely to continue these
tion (SAA) method, is quite simple, and is the one most com-conditions. Furthermore, within multi-stage stochastic lin-
monly used in practice. The algorithm accesses the input byear programming, most work has focused on applications
means of a “black box” that can generate, given a series of in which there are a small number of stages, including for-
outcomes for the initial stages, a sample of the input accord- est planning models electricity investment planning, bond
ing to the conditional probability distribution (given those investment planning, and currency options selection, as dis-
outcomes). We use this to obtain the first polynomial-time cussed in the recent survey of Ariyawansa and Felt [1].
approximation algorithms for a variety éfstage general-

r , X . A Our main result is to give the first fully polynomial ran-
izations of basic combinatorial optimization problems.

domized approximation scheme (FPRAS) for a broad class
of multi-stage stochastic linear programming problems with
any constant number of stages. Although our results are
1. Introduction much more general, we shall focus on a canonical example
of the class of problems, a 3-stage stochastic variant of the
Stochastic optimization problems provide a means to fractional set covering problem. We are given a family of
model uncertainty in the input data where the uncertainty is sets over a ground set and a probability distribution over the
modeled by a probability distribution over the possible real- subsets that specifies a target set of ground elements that
izations of the actual data. We shall consider a broad clasgnust be covered. We can view the three stages as specified
of these problems in which the realized input is revealed by a scenario tree with 3 levels of nodes: the root, inter-
through a series of stages, and hence are caligtl-stage nal nodes, and leaves; the root corresponds to the initial
stochastic programming problemsViulti-stage stochastic ~ State, each leaf is labeled with a target subset of elements
linear programming is an area that has received a greathat must be covered, and for each node in the tree there is
deal of attention within the Operations Research commu-a conditional distribution of the target sets at leaves within
nity, both in terms of the asymptotic convergence results, asthis subtree (where we condition on the fact that we have
well as computational work in a wide variety of application reached that node). One can buy (fractionally) sets at any
domains. For example, a classic example of such a modenode paying a cost that depends both on the set and the node
*Afull version is available abt.caltech.edu/ “cswamy/papers/multistage. ps atwhich it is bought. We want to be able to compute, given
tCenter for Mathematics of Ir;format.ion, Caltech, Pasadena, CA §1125. anode in the tree, the des!red action, S_O asto m'n_lmlze the
tDept. of Computer Science, Cornell University, Ithaca, NY 14853, €Xpected total cost of fractionally covering the realized tar-
Research supported partially by NSF grants CCF-0430682, DMI-0500263. get set. This problem can be modeled as an exponentially




large linear program (LP) in which there is, for each Set  tions of the “true” problem and the sample-average problem
and each node in the tree, a variable that indicates the fracsatisfy this “closeness-in-subgradients” property with high
tion of S that is bought at that node. The constraints say thatprobability, and therefore minimizing the sample-average
for each leaf, for each ground elemerin its corresponding  problem yields a near-optimal solution to the true problem;
target set, the total fraction bought of sétshat contaire thus we prove the polynomial-time convergence of the SAA
along this root-leaf path must be at least 1. If we view the method. Our proof does not rely on anything specific to dis-
probability of reaching a node as specified, it is straightfor- crete probability distributions, and therefore extends to the
ward to express the expected total cost as a linear functioncase of continuous distributions.

of these c_zlecision_ variables._ As a corollary of our FPRAS, Compare now the 3-stage and 2-stage problems. In the 2-
we also give the f|r§t approxmatlon_al.gonthms for the anal- stage fractional set-covering problem, the compact convex
ogous class of multi-stage stochastic integer programs (IPS) program has variables corresponding only to the decisions
such as the integer version of this set covering problem. . ,54e at the root to (fractionally) buy sets. Each component
For arich class of-stage stochastic linear programming of the subgradient at the current point can be estimated by
problems, wheré: is assumed to be constant and not part sampling a leaf from the scenario tree and using the optimal
of the input, we show that, for any > 0, we can com-  dual solution for the linear program that minimizes the cost
pute, with high probability, a solution with expected cost to cover each element in this leaf’s target set to the extent it
guaranteed, for any probability distribution over inputs, to is not already covered by the root variables. In the 3-stage
be within a(1 + ¢) factor of the optimal expected cost, in version, a2-stage stochastic Liplays the analogous role
time bounded by a polynomial in the input sizzje,, and a of the linear program and we need to obtain a near-optimal
parameten that is an upper bound on the ratio between the dual solution for this exponentially large mathematical pro-
cost of the same action (e.g., buying the Spbver succes-  gram to show the closeness property. Moreover, one diffi-
sive stages. The algorithm accesses the input by means ofulty that is not encountered in the 2-stage case, is that now
a “black-box” (simulation) procedure that can generate, for this 2-stage recourse LP is different in the sample average
any node in the scenario tree, a sample of the input accord-and the “true” problems since the conditional distribution
ing to the conditional distribution for this node. This is an of scenarios given a second-stage outcome is apjyrox-
extremely general model of the distribution, since it allows imatedin the sample average problem. Thus to show the
all types of correlated effects within different parts of the closeness property one has to argue that solving the dual
input. We improve upon our earlier work [13], which han- of the sample average 2-stage recourse LP yields a near-
dles the very special case in whikh= 2, not only by being optimal solution to the “true” 2-stage recourse LP. We intro-
able to handleny fixed number of stagelsut whereas the  duce a novetompact non-linear formulation of this dyal
earlier algorithm is based on the ellipsoid method, we can for which we can prove such a statement for the duals, and
now show that the algorithm most commonly used in prac- thereby obtain the “closeness-in-subgradients” property for
tice, thesample average approximatiomethod (SAA), also  the 3-stage problem. In fact, this formulation yields a new
yields the claimed approximation scheme. means to provide lower bounds on 2-stage stochastic LPs,

The algorithm of Shmoys & Swamy[13] for 2-stage yvhich might be ofintgrest ir_1 its own righ_t. The analogous
problems is based on computing an approximate subgra-'dea can be applied inductively to pbtam the FPRAS' for
dient with respect to a compact convex programming for- &1 fixed number of stages. We believe that our proof is of
mulation, and this is done by estimating each componentindependentinterest and that our approach of using subgra-
of the subgradient sufficiently accurately, and then apply- Q|ents will find apphcatlons in proving convergence results
ing the ellipsoid method using these approximate subgra-in Other stochastic models as well.
dients. In the sample average approximation method, we Due to its simplicity and its use in practice, the SAA
merely sample scenarios a given (polynomial) number of method has been studied extensively in the stochastic pro-
times N, and by computing the frequencies of occurrence gramming literature. Although it has been shown that the
in these samples, we derive a new LP that is a polynomial- SAA method produces solutions that converge to the opti-
sized approximation to the original exponential-sized LP, mal solution as the number of sampl¥sgets sufficiently
and the solve this compact LP explicitly. We first argue large (see, e.g., [11] and its references), no results were
that using (approximate) subgradients one can establish &nown that bound the number of samples needed to ob-
notion of closeness between two functions (e.g., the ob-tain a(1 + €)-optimal solution by a polynomial in the input
jective functions of the “true” LP and the SAA LP), so size,% and\. Prior to our work, for 2-stage stochastic op-
that if two functions are “close” in terms of their subgra- timization, bounds on the sample size required by the SAA
dients, then minimizing one function is equivalent to ap- method were proved in [9], but this bound depends on the
proximately minimizing the other. Next, we show that with variance of a certain quantity that need not depend polyno-
a polynomially bounded sample size, the objective func- mially on the input size on. Recently, Nemirovskii and



Shapiro (personal communication) showed that for 2-stageobtain approximation algorithms for several natural multi-
set-cover with non-scenario-dependent second-stage coststage stochastic integer programming problems, by extend-
the bound of [9] is a polynomial bound, provided that one ing the rounding approach of [13]. The only other work
applies the SAA method after some preprocessing to elimi-on multi-stage problems in the black-box model is due
nate certain first-stage decisions. to Hayrapetyan, Swamy, and Tardos [7], and Gupta et

For multi-stage problems with arbitrary distributions, to @l [6] (done concurrently with this work). Both present
the best of our knowledge, there are no results known aboutO (k)-approximation algorithms for &-stage version of the
the rate of convergence of the Samp|e average approximasteiner tree prObIem under some restrictions on the COSts;
tion to the true optimal solution (with high probability). In the latter also gives algorithms for tiiestage versions of
fact, we are not aware of any work (even outside of the Sam_the vertex cover and faCIllty location prOblemS under the
ple average approach) that proves worst-case bounds on the@me cost restrictions, but their approximation ratiexs
sample size required for solving multi-stage stochastic lin- Ponentialin k. In contrast, in the black-box model without
ear programs with arbitrary distributions in the black-box @ny cost restrictions, we obtain performance guarantees of
model. Very recently, Shapiro [12] proved bounds on the % logn for k-stage set cove®k for k-stage vertex cover and
sample size required in the SAA method for multi-stage k-stage multicut on trees, andr1(k — 1) + 1.52 for the k-
problems, under the strong assumption thetdistributions ~ Stage facility location problem. Finally, we obtain a FPRAS
in the different stages are independertit particular, this ~ for ak-stage multicommodity flow problem as a direct con-
implies that the distribution of the outcomes in any stage Seduence of our stochastic linear programming result.

i, and hence of the scenarios in stagedoes not depend
on the outcomes in the previous stages, which fails to cap-2. Preliminaries
ture the notion of learning new information about the un-

certainty as one proceeds through the stages. Moreover, as We state some definitions and basic facts that we will
in the 2-stage case, the bounds in [12] are not polynomialfrequently use. Lefju|| denote the, norm of u. We say

in the input size or\, even when the number of stages is that functiong : R™ — R, hasLipschitz constanfx if
fixed. Itis important to note that we prove that an optimal lg(v) — g(u)| < K||v — ul| for all u,v € R™.

solution to the SAA LP is a near-optimal solution to true LP,

not that the optimal value of the SAA LP is a good approx- Definition 2.1 We say thatl is a subgradient of a function
imation to the true optimal value. Indeed, one interesting g : R™ — R at the pointu if the inequalityg(v) — g(u) >

o~

guestion is to show, for any class of stochastic IPs and LPs,j . (v — u) holds for everyy € R™. We say thatl is an

if one could obtain an approximation algorithm to the case (w, A, D)-subgradient of; at u € D if for everyv € D, we

in which there are only a polynomial number of scenarios, nayeg(v) — g(u) > d- (v — u) — wg(u) — wg(v) — A.

then one can also obtain an approximation algorithm for the

general case. Subsequent to the dissemination of early ver- The above definition is slightly weaker than the notion

sions of our work [14], Charikar, Chekuri an@IH3] have of an(w, D)-subgradient as defined in [13], but it is easy to

obtained such a result for 2-stage problems. see that one can also implement the algorithm in [13] using
There has been a series of recent papers on approxith€ notion of an approximate subgradient given by Defini-

mation algorithms for 2-stage stochastic integer program-“?“ 21 The following claim w_|II be useful in bounding the

ming problems. Most of this work has focused on more Lipschitz constant of the functions encountered.

restricted mechanisms for specifying the distribution of in-

puts [4, 10, 8]; Gupta, &, Ravi, and Sinha [5] were the

first to consider the “black-box” model, and gave approx-

imation algorithms for various 2-stage problems, but with

the restriction that the Second-stage costs be proportional We will consider both convex minimization prob|ems

to the first-stage costs. Shmoys and Swamy [13] showedand concave maximization problems where we optimize

that one could derive approximation algorithms for most of gver a polytopeP C R?,. Analogous to Definition 2.1,

the stochastic integer programming problems considered inye define anax-subgradientand an approximate version

[4, 10, 8, 5] by adopting a natural LP rounding approach of it, that we use for concave maximization problems.
that, in effect, converted an LP-based approximation guar-

antee for the deterministic analogue to a guarantee for theDefinition 2.3 We say thatd is a max-subgradient of a
stochastic generalization (where the performance guarante¢unctiong : R™ — R atu € R™ if for every pointv € R™,

degraded by a factor of 2 in the process). we haveg(v) — g(u) < d- (v — u). We say thatl is an
An immediate consequence of our approximation (w,A,D)-max-subgradient ofy(.) atu € D if for every
scheme for multi-stage stochastic linear programs is that wev € D we havey(v) — g(u) < d - (v — u) + wg(u) + A.

Claim 2.2 ([13]) Letd(z) denote a subgradient of a func-
tion g : R™ +— R at pointz. Supposd|d(z)|| < K for
everyz. Theng(.) has Lipschitz constant (at mogk).



WhenD is clear from the context, we drop tli2 from the sample average function and the true function are close
(w, A, D)-subgradient and(w, A, D)- max-subgradient,  to each other, at a sufficiently dense set of points. This
and if A = 0 we drop it from the notation. We will fre- however immediately runs into problems since the variance
quently use(w, A, P)-subgradients which we abbreviate in the scenario costs could be quite (exponentially) large,
to (w, A)-subgradients. We need the following sampling so one cannot estimate the true function value, that is, the
lemma which is proved using simple Chernoff bounds. expected scenario cost, to within a reasonable accuracy

using a small (polynomial) number of samples. The basic
Lemma24Llet X;i = 1,...,. N = 4(1;72(1,)2111(%) be problem is that there could be very low-probability out-
iid random variables where eacN; € [—a,b], a,b > 0, comes that contribute significantly towards the cost in the
a = max(1,a/b), andc is an arbitrary positive number.  true problem, but will almost never be sampled with only a
Let X = (Zi XZ-)/N and p = E[X} = E[XJ Then polynomial number of samples (so they contribute nothing
Pr[X € [ —cbpu+cb]] > 134, to the sample average function). The key insight is that
suchrare outcomes do not much influence the optimal first-
stage decisionssince one would defer decisions for such
outcomes till later. The minimizer of a convex function is
determined by its “slope” (i.e., gradient or subgradient),

Suppose we have a black-bo>§ t.h.at can gengrate, for aMYyhich suggests that perhaps we should compare the slopes
sequence of outcomes for the initial stages, mdependenbf the sample-average and the true objective functions and

samples from the conditional distribution of scenarios given show that they are close to each other, and argue that this
those initial outcomes. A natural approach to computing is sufficient to prove the near-equivalence of the corre-

nlgar—opt|mal splu;mns forlthese problems given $UChssam'sponding minimization problems. Our proof builds upon
pling access is the sample average approximation (SAA) s jntuition. A subgradientis the analogue of a gradient

approach: sample sonfe times from the distribution on ¢, 1o gifferentiable function, and is a measure of the
scenarios, estimate the actual distribution by the d|str|but|on,.slope,, of the function. We identify a notion of closeness

induggd by the_ samples_, and S(_)Ivg th_e multi-stage IOrObIembetween any two functions based on their (approximate)
specified by this approximate distribution. For 2-stage pro- g, radients so that if two functions are close under this

grams, we just estimate the probability of a scenatiby . iiarion, then minimizing one is approximately equivalent
its frequency in the _sampled setz fbfstqge programs we . minimizing the other. Next, we show that the objective
co_nstruct an approximatelevel distribution 'gree by sam- functions of the original multi-stage problem, and the sam-
pling repeatedly at each level: we samfletimes to ob- le average problem with polynomially bounded sample

1ain some §tage 2 outcomes,.fpr each S‘?mp,'ed qutcome Wize, satisfy this “closeness-in-subgradients” property, and
sampleZ; times from the conditional distribution given that thus we obtain the desired result

outcome and so on, and for each sampled outcome we es-
timate its conditional probability of occurrence given the
previous-stage outcome by its frequency in the sampled setProof details. The proof is organized as follows. First,
The multi-stage problem specified by the approximate dis-in Lemma 3.1 we show that given functiopsand g that
tribution is called thesample average problerand its ob- agree in terms of their (approximate) subgradients at points
jective function is called theample average function in a polytopeP, everyoptimal solution tomin,cp g(x) is

If the total number of samplesV is polynomially a near-optimal solution tenin,cp g(z). Some intuition
bounded, then since the approximate distribution has sup-about why this closeness-in-subgradients property is suf-
port of size at mosf\V, the sample average problem can ficient can be obtained by considering the ellipsoid-based
be solved efficiently by solving a polynomial size linear algorithm for convex minimization given in [13]. This al-
program. The issue here is the sample size@equired to gorithm uses only (approximate) subgradient information
guarantee thatvery optimal solution to the sample-average about the convex function to be minimized, using a sub-
problem is a near-optimal solution to the original problem gradient or anvu-subgradient of the function to derive a cut
with high probability. We show that for any givén(which passing through the center of the current ellipsoid at a fea-
is not part of the input), for a large class/oktage stochas-  sible point and make progress. Suppose at every feasible
tic LPs, one can bount” by a polynomial in the input size, pointz € P, there is a vectai,, that is both a subgradient of
the inverse of the desired accuracy, and the maximatio 9(.) and anv-subgradient ofj(.) atz. One can then usé,
A between the cost of an action in successive stages. to generate the cut at so that the ellipsoid-based algorithm

Intuitively, to prove such a theorem, we need to show will run identicallyon bothmin,cp g(x) andmin,cp g(z)
that the sample-average function is a close approximationand return a point that isimultaneouslynear-optimal for
to the true function in some sense. One obvious approachboth objective functions. Lemma 3.1 makes this intuition
would be to argue that, with high probability, the values of precise while weakening the assumption and strengthening

3. The Sample Average Approximation method



the conclusion: we only require that at every painin a 2-stage primal stochastic problem. We use the earlier SAA
sufficiently dense finite sé&t C P there be a vectai, that theorem for 2-stage programs to show that any optimal so-

is both a subgradient gf(.) and anw-subgradient of(.), lution to this 2-stage LP in the sample average dual, is a
and we prove thatveryoptimal solution tanin,cp g(x) is near-optimal solution to the 2-stage LP in the true dual. This
a near-optimal solution tmin,cp g(z). Lemma 3.2 proves  shows that the two dual objective functions (in this new rep-
an analogous result for maximization problems. resentation) are close in terms of theiax-subgradients,

The second part of the proof is to show that the objec- thereby proving that an optimal solution the sample aver-
tive functions of the true problem and the sample average29€ dual is a near-optimal solut_lon to the t_rue dual. This in
problem (with polynomial samples) satisfy this closeness- t_urn estal_)hshes the closeness in subgradients of the objec-
in-subgradients property. This is divided into three parts. tivé functions of the 3-stage sample average problem and
For the class of 2-stage linear programs considered in [13],[h€ true 3-stage problem and yields the SAA theorem.
this is easy to show (Theorem 3.5) because the subgradient
at any point is the expectation (according to the scenarioSufficiency of closeness in subgradientsLetg :
distribution) of a quantity derived from the optimal solu- R™ — R andg : R™ — R be two functions with Lipschitz
tions to the dual of the recourse LP for each scenario, andconstant (at mostx . Let? C RZ, be the bounded feasible
this recourse LP is the same in both the sample average andegion andR be a radius such th& is contained in the ball
the true problems. Thus, since the subgradient components3(0, R) = {z : ||z|| < R}. Lete,y > 0 be two parameters

have bounded variance [13], the closeness property follows.with v < 1. SetN = log(@) andw = gk. LetG' =

For thek-stage problem however, one needs to develop 1% € P & = ni (x77), mi € Zforalli =1,....m}
several substantial new ideas to show this closeness propSetG = G' U {:r +it(y—z),y+t(x—y): z,ye G, t=
erty, even wherk = 3. We introduce these ideas in Sec- 2% i =1,...,N}. We callG theextendedK]\fim—grid

tion 4 by focusing on 3-stage problems, and in particu- of the polytopeP. Note that for every: € P, there exists

lar, on the LP relaxation of 3-stage set cover as an illus- ;7 ¢ G’ such that|z — 2/|| < 5. FiX A > 0. We first

trative example. We then generalize these ideas to proveconsider minimization problems. We say that functigns
an SAA theorem for a large class of 3-stage linear pro- andy satisfy property (A) if

grams, and in Section 5 inductively apply the arguments

to a broad cIas; o%-.stage problems. The main difficu'lty, Vr €@, 3d, € R™
and the essential difference from the 2-stage case, is that
now the recourse problem for each second-stage outcome
is a 2-stage stochastic LP whose underlying distribution is ] N .
only estimated in the sample average problemtissam- ~ Leémma 3.1 Suppose functiong and g satisfy property
ple average problem and the true problem solve different (A). Letz",z € 7 be points that respectively minimize
recourse problems for each stage 2 outcome(approxi-  9(-) andg(.), with g(z*) > 0, and letz” < P be a point
mate) subgradient is obtained from the (approximately) op- SUch thag(z) < g(x)+p. Then, (i)g(z) < (1+7)g(z")+
timal solutions to the dual of the 2-stage recourse LP for 6¢+2NA; (i) g(«') < (1+7)g(2")+6e+2NA+2Np.
each scenario, therefore to show closeness in subgradients

we need to argue that maximizing the sample average duaProof : We prove part (i); part (i) is proved almost iden-
yields a near-optimal solution to the true dual, that is, prove tically. Suppose first that € G’. Let & be the point
an SAA theorem for thelual of a 2-stage stochastic primal in G’ closest toxz*, so ||z — z*|| < 5 and therefore
program! Mimicking the approach for the primal problem, ¢(z) < g(z*) +e Lety = 2(1 — 3&) + (38)% € G
we prove this by showing that the two dual objective func- and consider the vectat, given by property (A). It must
tl_ons agree in tgrms of theinax-subgradients Howgver, be thatc?y @ —y) = _gy (¥ —y) < 0, otherwise
simply considering the LP dual of the _2—stage prlmal re- we would havej(z) > §(y) contradicting the optimal-
course LP does not work; max-subgradient of the linear i of 7 So, by the definition of arfw, A)-subgradient,
dual obje_c_nve function !s_!ustthe constantvectorspemfymg we haveg(y) < (1+w)g(5c)+A < (14 40)(g(@) + A) <
the conditional probabilities of the stage 3 scenarios given . lw o 1

the outcome in stage 2, and one cannot estimate the trud! + 7)9(z") + 2¢ + 2A sincew = g < ;. Also
conditional distribution using only a polynomial number of [1Z — v = 125l < £ since||z — #| < 2R. So,
samples, in particular, because rare scenarios will almostd(Z) < g(y) + € < (1 +7v)g(z*) + 3e + 2A.

never be sampled. To circumvent this problem, we intro- ~ NOW suppos& ¢ G’. Let be the point inG’ closest to
duce a novetompact, non-lineaformulation of the dual, 7, S0[|7 —Z[| < g% andg(z) <g(Z)+ 5. Foranyy € G,
which turns the dual objective function into a concave func- we haved, - (z — y) < +, otherwiseg(z) > g(y) + «.
tion whosemax-subgradient can be computed by solving a Lety, = #, andy; = (z + y;—1)/2fori =1,...,N. For

. d, is a subgradient ag(.),
and an(w, A)-subgradient of(.) atz. (A)



eachy;, Jy (Y1 — i) = —cfyi (T —y) > —+, and ldo|| < A|w'||l. The sample average functior(.) has
Sincegw is an (w, A)-subgradient ofy(.) aty;, g(y;) < the same form a&(.), but has a different distribution, so
(1+ 4&))(9(?}1’—1) + £ + A). This implies thay(yn) < d, = w' — X, pa(T*)T 23 is a subgradient of(.) at z,
(1+4w)N(g(Z) + e+ NA) < (1 +7)g(z*) +4e+2NA. and||d,|| < A||w"||. So (by Claim 2.2) the Lipschitz con-
Sog(@) < g(yn) +2¢ < (14+7)g(z") +6e+2NA. = stant ofh, h is at mostK = A||w!||. Observe thatl, is just

Lemma 3.2 states an analogous result for maximization®' — (TA) 4 averaged over the random scenarios sampled
problems. We say thatandg satisfy property (B) if to constructi(.), andE [d,] = d, where the expectation is
over these random samples.
Vz € G, 3d, € R™ : d, is amax-subgradient of(.),

and an(w, A)- max-subgradient o () atz. (B) Theorem 3.5 For anye, vy > 0 (v < 1) with probability at

leastl — 4, any optimal solutiork to the sample average
problem constructed witpoly(Z, X, 2, In(¢),In(5)) sam-

Lemma 3.2 Suppose functionsandg satisfy propertyB).
PP pancy fy propertyB) ples, satisfied(z) < (1+ ) - OPT + Ge.

Let * and Z be points inP that respectively maximize
functionsg(.) and g(.), and supposg(z*) > 0. Then,

g(@) > (1 —~)g(z*) — 4¢ — NA. Proof :  We show thath(.) andﬁ(‘) satisfy property (A)
with probability 1 — § with the stated sample size; the rest
Lemma 3.3 LetG be the extendedgrid of P. Then/G| < follows from Lemma 3.1. Defin@ = log(2££), w = &
N(g)%_ and letG be the extendegl(— grid. Note thaﬂog(KR)
is polynomially bounded in the input size. Let= |G|.
The SAA bound for 2-stage programs. Wenow  Using Lemma 2.4, if we sampla/ — 400" jy, (2mn)

prove a polynomial SAA bound for the class of 2-stage pro- times to construcia(.) then at a given point, subgradient
grams considered in [13] (this was stated with extra con- d,, of h(.) is component-wise close to its expectation with
straintsB“s4 > h* but these are handled below). probability at least — §/n, so by Lemma 3.4l is anw-

. m subgradient ofi(.) at « (with high probability). So with
min h(z) = w'-z+ Z pafa(z), (P CRZ,) (P) g () ate (w ghp )

zeP h probability at least — 4, d,. is anw-subgradient of.(.) at
€A . X
. N ) everypointz € G. Using Lemma 3.3 to bound, we get
fa(z) = min {w ratqt st ra €RE 54 €REg thatV = O(mA?log? (258 ) In(2KLEm)), ]
DA s+ T 4 > j* — TAx}. Under the mild assumption that (a) the paint= 0 (i.e.,
deferring all decisions to stage 2) liesfiy and (b) for every
Here (a)T4 > 0 for every scenariol, and (b) foreveryr €~ SCEnariod, either f4 (x) is minimized witha: = 0, or w' -

P, Y acapafa(z) > 0and the primal and dual problems  © + fa(z) > 1 for everym € P, it was shown in [13]
corresponding td4 (z) are feasible for every scenarib It that by sampling\ ln( ) times |n|t|aIIy one can detect with
is assumed tha® C B(0, R) whereln R is polynomially ~ Probability 1 — ¢ (with § < 1), that e|therx = 0is an
optimal solution to (P), or thatt)PT > T (1/0) So if we
detect thatOPT is large, then we can set e appropriately
to get a(1 + «)-optimal solution with probabllltyl — 20,
using the SAA method witholy (Z, A, £,In(})) samples.

Rk

bounded. Defin@ = max(1, maxaca,s Z—?A) we assume
that A\ is known. LetOPT be the optimam value and
denote the size of the input. The sample average problem is
to minimize the sample average func'ub(m) =wl-z+
Yoacabafa(z)overz € P, wherepy = Na/N, Nis

the total number of samples and, is the number of times
scenarioA is sampled.

4. 3-stage stochastic programs

3-stage stochastic set cover.Our techniques yield a

Lemma 3.4 Letd be a subgradient dfi(.) at the pointz €~ polynomial-sample bound for a broad class of 3-stage pro-
P, and suppose that is a vector such thatly € [ds — grams, but before considering a generic 3-stage program,
wwk, ds +wwl] for all S, Thendis anw-subgradient (i.e., we introduce and explain th.e main ideas involved by focus-
an (w, 0)-subgradient) of(.) at z. ing on the 3-stage stochastic set cover problem. . _
In the stochastic set cover problem, we are given a uni-

It is shown in [13] that at any point € P, if (23) verseU of n elements and a family of m subsets of/,
is an optimal solution to the dual ¢fs(z), then (i)d, = and the set of elements to cover is determined by a proba-
wh =Y, pa(T4)T 2% is a subgradient of(.); (i) for any bility distribution. In the 3-stage problem this distribution
componentS and any scenarid, components of the vec- is specified by a 3-level tree. We ugeto denote an out-

tor w! — (T)T2% lies in [-Awk, wi]; and therefore (iii)  come in stage 2, anfl4, B) to denote a stage 3 scenario



where A was the stage 2 outcome. Ldtbe the set of all  to prove the closeness inax-subgradients of the sample

stage 2 outcomes, and for eaghe Alet B4 = {B : average dual and the true dual. In Section 5 we show that
(A, B)isascenarip. Letpy andpas g be the probabili-  this argument can be applied inductively to prove an SAA
ties of outcomed and scenarigA, B) respectively, and let  bound for a large class @fstage stochastic LPs.

qap = Z=F. Notethaty" . 4pa = 1= Y pcp, 94 Let £4(0; W) (respectivelyf4(0; 1)) denote the re-

for every A € A.. We hav_e to cover the (random) set of course problemy 4 (z) (respectivelyfA(x)) with z = 0

elementst (A, B) in scenario 4, B), and we can buy aset  and costasd = W, that is, f4(0; W) = miny,>o (W -

S in stage 1,orin s%ageAZ outc%ni; orin scgnarlc(A, B) Ya+ Y pen, 44.8f4,5(0,y4)). We formulate the follow-

incurring a cost ofvg, w§ andws’. respectively. ~ing dual of the true and sample average recourse problems:
We usez,y4 andz4 p respectively to denote the deci-

sions in stage 1, outcomé and scenarid A, B) respec- LD s(z) = max ls(z;0a4), fBA(x) = max zA(x aq)

tively and consider the following fractional relaxation: 0<as<wA 0<as<wA
min wsfﬁs 4 pAfA (3ssc_p) wherelA(x;AaA) = —QA -.T-i—fA(O;CMA) andlA(x;aA) =
Oszs<1 VS Z g —aa-x+ fa(0;04).
fa(z) = niny {ZwSyA s+ B%; qa.5fa.5(2, yA)} Lemma 4.1 At any pointz € P and outcomed € A,
. Y LS
(BRec-p) fa(®) = LDa(z)andfa(z) = LD a(x).
. A,B . .
faB(x,ya) = ,, in {Z wWg' T ZA,B,S Lemma 4.2 Fix € P. Letay be a solution toL D 4 (z)
AEETz0 Mg of valuels(z;aq4) > (1 — E)LDA(:L‘) —ew' -2 — €
saps>1— Tq+ Ve € £(A, B) L. for everyA € A. Then, ()d = w' — Y, paca is
S;S ABS S;S( s+ 3as) ( )} an (e, )-subgradient off(.) at = with ||d|| < )\HwIH
(ii) if d is a vector such thatl — ww! < d < d + ww!
LetP = {z € R™ : 25 € [0,1] VS} andOPT = thendis an(c + w, ¢)-subgradient of(.) at z.
mingcp h(z). The total sample size in the sample average
problem isT; - 73 where, (i)7 is the sample size used to es- Lemma 4.1 proves strong duality (in this new dual rep-

timate probabilityp 4 by the frequencys = 75,4 /7>, and resentation), which is used by Lemma 4.2. Lemm§4.2 also
(i) 73 is the number of samples generated from the condi- shows that any optimal solutiain, to LDA( ) yieldsd, =

tional distribution of scenarios i 4 for eachA with p4 > w' — 3", Pa@ia as a subgradient dt( ) atz, so to prove
0 to estimatey, s by §a,p = T5,4,5/T5- The sample av-  the closeness in subgradientstoands it suffices to argue
erage problem is similar to (3SSC-P) wjih replacingpa,  thata, is a near-optimal solution tdD 4(z). (Note that

andg, 5 replacingy 4, in the recourse problerfu (z). We -y, andj have Lipschitz constant at ma&t = Aljw!||.)
usefa(z) = mlnyA>0 (w? YA+ pen, 1A falz, y4))  We could try to argue this by showing that(z;.) and

andh(z) = w' -z + Y 4c 4 Pafa(z) to denote the sam- 1a(z;.) are close in terms of theinax-subgradients (i.e.,
ple average recourse problem for outcarhand the sample  satisfy property (B)), however some technical difficulties
average function respectively. arise here. Anax-subgradient of 4 (z; .) ata. is obtained

As mentioned earlier, the main difficulty in showing from a solution to the 2-stage problem givenby(0; a4),
that the sample average and the true functions satisfy theand to show closeness inax- subgradients ak 4 we need
closeness-in-subgradients property, is that these two probig argue that an optimal solutiofi, to fA(O ay) is a
lems now solve different recourse problemf () and  near-optimal solution tof(0;a4). But this need not be
fa(x) respectively, for an outcomd. Since the subgra-
dient is obtained from a dual solution, this entails first prov-
ing an SAA theorem for the dual which suggests that solv-
ing the dual offA(;z:) yields a near-optimal solution to the
dual of f4(z). To achieve this, we first formulate the dual — PR i
as a compact concave maximization problem, then show@NdLD a;p(z) = ma‘XPwISOCfISWA la(z; aq) for a suitable
that by slightly modifying the two dual programs, the dual # > 0- Defmeh,)( ) = w -z + 34 palDa,(x) and
objective functions become close in terms of theifix- hp(x) = w'-2+ Y, PaLD a,,(x). Asin Lemma 4.2, one
subgradients, and then use Lemma 3.2 to obtain the require@an show that near-optimal solutiong to LD 4.,(z) for
SAA theorem (for the duals). Anax-subgradient of the everyA € Ayield an approximate subgradient iof(.) at
dual objective function is obtained from the optimal solu- 2. But now the cost ratio in the 2-stage probl¢m(0; a)
tion of a 2-stage primal problem and we use Theorem 3.5is at mostA forany A € A, and this gives the SAA bound

A
true since the rationaxg (== B) of the second- and first-
stage costs in the 2-stage problgfmo a4), could be un-
bounded. To tackle this, we consider instead the modified
dual problemsLD 4.,(r) = max,,i<q,<wa la(z;ca)



stated in Lemma 4.3 below; we present the proof after The-(1 —
orem 4.6. Using Lemma 4.3, we show the closeness in sub-we get that,(z) <

gradients ofy,(.) andﬁp(.), and this suffices to show that if
Z minimizesh(.) then it is a near-optimal solution fd.).

Lemma 4.3 For any parameters,p,e > 0, anyz €
P, and any outcomed € A, if we use7 (e, p,e,d) =

poly(Z, ;E,ln( ),In(5)) samples to construct the recourse

problemfA( ), then any optimal solutiofi 4 to @A;p(x)
satisfied 4 (x;04) > (1 — €)LD 4, ,(z) — ew' -  — e with
probability at leastl — §.

Lemma 4.4 Consider the sample average functifmrgen-
erated using\” = Tg(w,6) = 1804 )y, (4m) samples

from stage 2, and’ (e, p, %, 55 ) samples from stage 3 for
each outcomel with p4 > 0. At any pointz € P, sub-
gradientd,, of i »(.) is an(w, €)-subgradient o, (.) with

probability at Ieastl — 0.

Claim 4.5 Foranyz € P, hy(x) < h(z) < hy(z)+pw'-z.
Similarly 2, (z) < h(z) < h,(z) + pw" - .

Theorem 4.6 For anye,v > 0 (v < 1), one can construct
h with poly (Z, A, ;ln( ),In(3)) samples, and with prob-
ability at leastl —§, any optimal solutio’ to min,cp ﬁ(x)
satisfiesh(z) < (14 7y) - OPT + 18e.

Proof :  Assume thaty < 1 without loss of gener-
ality. Let N = log(2££) andw = gk. Note that
log(KR) is polynomlally bounded in the input size. Set
¢ = & andp = ;. We show that (i) a near-optimal
solution tomin,cp ﬁp(x) yields a near-optimal solution to
mingep h,(x), and (i) minimizingh(.) andﬁ(.) overP is
roughly the same as approximately minimizihg(.) and
ﬁp(.) respectively ovep.

Let £ be an optimal solution tanin,cp ﬁp(x). By
Claim 4.5,h,(%) < h,(Z) + pw' - Z, and0 < OPT, =
mingep hy(x) < OPT. LetG be the extende%m—

grid of P andn = |G|. Let N’ = Mm(%)
which is a polynomial irZ, 2, In( )andln( ), where we

use Lemma 3.3 to bound We constructh(.) usingN =
N'-T(€,p, %, 5:5~) samples. Sincad/” is polynomially
bounded, Lemma 4.3 shows that sg\is Using Lemma 4.4
and the union bound over all points@# probability at least
1 — 4, at every pointz € G, subgradient?m of ﬁp(.) is
an (w, ¢')-subgradient of,(.). So by parts (i) and (i) of
Lemma 3.1, we have that,(Z) < (14v) OPT ,4+6e+2N¢€
andh,(z) < (1—t—'y) OPT +66+2N(pw -Z+€') with high
probabihty(smceh (@) < h »(Z)+pw'-F). Combining this
with the bound orOPT the bound$l—p)w'-z < h,(7),

Ta(z;) by K/ =

p)h(z) < h,(Z) (Claim 4.5), and plugging ie andp,
(14+7v)OPT + 18e. [

Under the very mild assumption that for every scenario
(A, B) with £(A, B) # 0, for everyz € P andys > 0,
wh-z+w? ya+ fap(z,ya) > 1, we have the following.

Lemma 4.7 By samplingM = \? ln( ) times, one can
detect with probabilityl — & (6 < 3) that eitherz = 0 is
an optimal solution tq3SSC-P)or that OPT > %

Thus, as in the 2-stage case, we can obtafh & «)-
optimal solution with the SAA method (with high probabil-
ity) using polynomially many samples.

Proof of Lemma 4.3 : LetDy = {a4 € R™ : puw! <
aa < wA}. Clearly we may assume that s < 1in the
problemsf4(0; 4) and f4(0;v4). Let R = [wd|| <
A|wl|], soDa C B(0,R’). We want to show that ifi 4
solvesLD 4., (), thenly(z;a,4) > (1 — e)LD a,p(z) —
ew! - £ — e with high probability. By a now familiar ap-
proach, we will show thaEA( .) andis(z;.) are close in
terms of theirmax—subgradients and then use Lemma 3.2.
Letg(aasya) = aa-ya+ > pep, 44.8f4,8(0,y4). We
only consider(w, A, D4)- max-subgradients, so we drop
DA from now on. Amax-subgradient td(z;.) (resp.
lA( ;.)) ata4 is obtained from the solution to the 2-stage

problemf4(0; c4) (resp.fA(O; aq)):

Lemma4.8Fix x € Pandas € Dy Letw = %.
If y4 is a solution tof4(0;4) of value g(aa;ya) <
(1 + w)fa(0;04) + €, thend = ya — z is an
(w,ww! - z + €)- max-subgradient of 4 (z;.) at a4.

;.) and
Vvm, sincexg,ya s < 1. Sinceay €

D 4, the ratio of costs in the two stages in the 2-stage prob-
lem f4(0;q) is at most*—;.

We can bound the Lipschitz constant bf(x

Sety = cande = & SetN = log(25H)
andw = gk. Observe thatog(K'R’) is polynomi-
ally bounded. Recall tha4 is an optimal solution to
LD 4;,(x). Let G be the exten_dedﬁ\/m-grid of Dy
andn = |G|. By Theorem 3.5, if we us& (e, p,e,0) =

poly(Z, ;, 2 In(2Y),In(2)) samples fromB,4 to con-

struct LDA;p(:c), then with probability at least — %

at a given pointay € D4, any optimal solutiony, to
f(0;a0) satisfiesg(aa;7a) < (1 + %) fa(0;04) + 55-

So by applying Lemma 4.8 and the union bound over all
points in G, with probability at least — ¢, at each point
ag € G themax -subgradienfi, —z of L4 (z;.) ata4 is an
(w,ww' - 2 + 55)- max-subgradient of 4 (z;.) ata4. By
Lemma3.2,we havey (z;a4) > (1— W)LDA,,)( x)—4e —
Nwuw'-z—§ whichis atleastl —e) LD 4,,(z) —cw'-z—e.



Since Inn and N are poly(Z,In(1)), we get that
T (€, p,e,6) = poly(Z, 2, In(2),1n(})). [ |

» pe?

A class of solvable 3-stage programs.The above

the rootr of this tree at level 1, which represents the first-
stage. Each nodeat level: represents an outcome in stage
7. At a leaf node, the uncertainty has completely resolved
itself and we know the input precisely. gcenarioalways
refers to a stagé outcome, i.e., a leaf of the tree. The

arguments can be adapted to prove an SAA bound for thegoal is to choose the first stage elements so as to minimize

following broad class of 3-stage stochastic programs.

min =
”’GPQR%LO

fa(z)

h(z) = w'-z+ ) pafale),

AcA

A
0{w yat Y. QA,BfA,B(xvyA)}»

min
>
yaz BeBa

(3G-P)

min {wA’B “zA,B + B SAB:
za,B € RY,

faB(z,ya) =

SA B € Rgo

DA,BSA’B n TA,BZAA’B > jA,B _ TA,B(m n yA)}’

where for every scenarip4, B), (a) T4% > 0, and (b)
foreveryz € P andya > 0,0 < fa(z), faB(z,ya)

A A,B
< +00. LetA = maxg aca,pes, max(1, 25, 25 ); we

Y ws ! w

assume thad is known. LetOPT be the optimum value

andZ denote the input size. We assume that there is some

R with In R = poly(Z) such that? C B(0, R), and fur-
ther we assume that for amyc P and anyA € A, there

is an optimal solution tof4(x) lying in B(0, R). These
assumptions are fairly mild and unrestrictive; in particular,
they hold trivially for the fractional relaxations of 0-1 in-

teger programs and many combinatorial optimization prob-

the total expected cost, i.&,+_, E [stagei cosi where the
expectation is taken over all scenarios. tkild(u) be the
set of all children ofu, path(u) be the set of all ancestors
(includingw) of u. Letp, be the probability that outcome
occurs, andy, be theconditional probabilitythat« occurs
given the previous-stage outconiBhe distribution can be
arbitrary, and can incorporate correlation effects from pre-
vious stages. Let* denote the costs in outcome y,, be
the decisions taken in outcomeandy, = (yr,...,¥s),
where{r,...,v} = path(v) andv is u’s parent, be all the
decisions taken in the previous stages. L et y,. = y,. for
the rootr. We consider the following generiestage LP.

fer =min(h(@) = w2+ Y qufi-1u(@), (G-P)

zEP -
u€child(r)
fr—it1,u(y») = min {wu “Yut E qwfkfi,u’(yv:yu)}v
Yu >0
u’ €child(u)

foru atleveli, 2 <i < k,

fl,u(yqz) = min {wu “Yu sy Yy € Rgo: Su € Rgm

Disy+ Ty 25"~ > Ty},
tepath(v)

lems. We obtain the guarantee stated in Theorem 4.9 below\Ve need that for every. with parentv and feasible de-

as before, we can use Lemma 4.7 to convert thigfotax )-
guarantee under the mild assumption that= 0 € P,
and for every scenariQA, B) either f4 g(z,y4) is mini-
mized atz = y4 = 0 or for everyx € P andyy > 0,
wh-x +wt ya+ fap(z,ya) > 1.

Theorem 4.9 For any ¢, > 0, one can construct
the sample average approximatioh to (3G-P) with
poly(Z, A, %, In(1),1n(3)) samples, and with probability at
leastl — 0, any optimal solutior¥ to min,cp ﬁ(m) satisfies
h(Z) < (14 77) - OPT + 18e.

Remark: Theorem 4.9 also handles programs, with con-
straintsT4y 4 > j4 — T4z, with Ty > 0, in fa(z).

5. The bound for k-stage stochastic programs

We now extend our techniques to sok#stage stochas-
tic linear programs. Herg is a constant that is not part of
the input; the running time will be exponentialin

In the k-stage problem, the scenario distribution is spec-

ified by ak-level tree, called thecenario tree We start at

cisionsy,, 7% > 0 and0 < fi_it1u(yo) < 00,
and that there is somR with In R polynomially bounded
such that eachfi,_;+1,.(yv), ¢ < k, has an optimal so-
lution in B(0, R). LetZ be the input sizej be the ratio
max (1, max, ,cchi(v) 2 ). The sample average problem
is of the same form as:(5-P), where the probability,, is
estimated by the frequengy, of outcomeu in the appro-
priate sampled set.

The SAA bound for programs of the forrh@-P) follows
by induction. Theorem 3.5 supplies the base case; the in-
duction step, where we show that an SAA boundfor 1)-
stage programs of the forify_; , yields an SAA bound for
f,r, follows by dovetailing the arguments in Section 4. As
in the 3-stage case, we formulate a concave-maximization
problem LD, ,(x) that is dual tofx_1 ,(z), which is
a max-min problem with a(k — 1)-stage primal problem
embedded inside it. Using the induction hypothesis, we ar-
gue that the objective functions of the (slightly modified)
true and sample-average dual programs are close in terms
of their max-subgradients, so that any optimal solution to
the (modified) sample-average dual is a near-optimal solu-
tion to the (modified) true dual. This in turn allows us to
show (essentially) the closeness in subgradients of the sam-



ple average and true functions. Lemma 3.1 completes theFacility location problems

induction step. We obtain the following result, which also
yields a(1 + x)-guarantee under some mild assumptions.

Theorem 5.1 For any ¢,y > 0, with probability 1 — 4,
any optimal solutiorx to the sample average problem con-
structed usingoly(Z, 3, In(;.)) samples satisfiels(z) <
(I+79) fir+e

6. Applications
We consider a number df-stage stochastic optimiza-

tion problems, wheré: is a constant, for which we prove
the first known performance guarantees. Our algorithms do

not assume anything about the distribution or the cost struc-

ture of the input. Previously, algorithms for these problems
were known only in the 2-stage setting initially in restricted
settings [10, 8, 5], and later without any restrictions [13].
For each of thesg-stage problems, we can writékestage

LP for the linear relaxation of the problem for which Theo-
rem 5.1 applies, and round the near-optimal fractional solu-
tion obtained by solving the sample average problem using
an extension of the rounding scheme in [13].

Multicommodity flow We consider a stochastic version
of the concurrent multicommodity flow problem where we
have to buy capacity to install on the edges so that one
can concurrently ship demand of each commodifyom

its sources; to its sinkt;. The demand is uncertain and is
revealed ink-stages. We can buy capacity on edga any
stagei outcomeu at a cost ofc?; and the total amount of
capacity that we can install on an edge is limited by its ca-
pacityI'.. The goal is to minimize the expected capacity
installation cost. We obtain @ + ¢)-optimal solution.

Covering problems We consider thé-stage versions of
set cover, vertex cover and the multicut problem on trees.

In each of these problems, there are elements in some uni-

verse that need to covered by sets. Inkkstage stochastic
problem, the target set of elements to cover is determined
by a probability distribution, and becomes known after a
sequence ok stages. In each outcomg we can purchase

a setS at a price ofc}. We have to determine which sets
to buy in stage | so as to minimize the (expected) total cost
of buying sets. We can generalize the rounding theorem
in [13] to show that g-approximation algorithm for the de-

terministic analogue, that uses the natural LP relaxation as a

lower bound, yields &kp + ¢)-approximation algorithm for
the k-stage problem. In general, to compute the decisions
in a stage outcome, we solve & — i + 1)-stage problem,

and round the solution. We get performance guarantees of

(klogn + €) for k-stage set cover, ar@k + ¢) for k-stage
vertex cover and-stage multicut on trees.

In the k-stage uncapacitated
facility location (UFL) problem, we are given some candi-
date facility locations, a set of clients, and a probability dis-
tribution on the client demands that evolves okestages.

In each stage, one can buy facilities paying a certain facility
opening cost; in stagk, we know the exact demands and
we have to assign each client’s demand to an open facility
incurring a client assignment cost. The goal is to minimize
the expected total cost. Adapting the procedure in [13], we
obtain aO(k)-approximation algorithms fok-stage UFL,
andk-stage UFL with penalties, or with soft capacities.
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