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Abstract

Stochastic optimization problems provide a means to
model uncertainty in the input data where the uncertainty
is modeled by a probability distribution over the possible
realizations of the actual data. We consider a broad class
of these problems in which the realized input is revealed
through a series of stages, and hence are called multi-stage
stochastic programming problems. Our main result is to
give the first fully polynomial approximation scheme for a
broad class of multi-stage stochastic linear programming
problems with any constant number of stages. The algo-
rithm analyzed, known as the sample average approxima-
tion (SAA) method, is quite simple, and is the one most com-
monly used in practice. The algorithm accesses the input by
means of a “black box” that can generate, given a series of
outcomes for the initial stages, a sample of the input accord-
ing to the conditional probability distribution (given those
outcomes). We use this to obtain the first polynomial-time
approximation algorithms for a variety ofk-stage general-
izations of basic combinatorial optimization problems.

1. Introduction

Stochastic optimization problems provide a means to
model uncertainty in the input data where the uncertainty is
modeled by a probability distribution over the possible real-
izations of the actual data. We shall consider a broad class
of these problems in which the realized input is revealed
through a series of stages, and hence are calledmulti-stage
stochastic programming problems. Multi-stage stochastic
linear programming is an area that has received a great
deal of attention within the Operations Research commu-
nity, both in terms of the asymptotic convergence results, as
well as computational work in a wide variety of application
domains. For example, a classic example of such a model
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seeks to minimize the expected cost of operating a water
reservoir where one can decide, in each time period, the
amount of irrigation water to be sold while maintaining the
level of the reservoir within a specified range (where penal-
ties are incurred for violating this constraint). The source
of uncertainty is, of course, the variability in rainfall, and
there is a simulation model that provides a means to sample
from the distribution of inputs (of rainfall amounts per time
period within the planning horizon) [2]. Observe that it is
important to model this as a multi-stage process, rather than
as a 2-stage one, since it allows us to capture essential con-
ditional information, such as given a drought over the previ-
ous period, the next period is more likely to continue these
conditions. Furthermore, within multi-stage stochastic lin-
ear programming, most work has focused on applications
in which there are a small number of stages, including for-
est planning models electricity investment planning, bond
investment planning, and currency options selection, as dis-
cussed in the recent survey of Ariyawansa and Felt [1].

Our main result is to give the first fully polynomial ran-
domized approximation scheme (FPRAS) for a broad class
of multi-stage stochastic linear programming problems with
any constant number of stages. Although our results are
much more general, we shall focus on a canonical example
of the class of problems, a 3-stage stochastic variant of the
fractional set covering problem. We are given a family of
sets over a ground set and a probability distribution over the
subsets that specifies a target set of ground elements that
must be covered. We can view the three stages as specified
by a scenario tree with 3 levels of nodes: the root, inter-
nal nodes, and leaves; the root corresponds to the initial
state, each leaf is labeled with a target subset of elements
that must be covered, and for each node in the tree there is
a conditional distribution of the target sets at leaves within
this subtree (where we condition on the fact that we have
reached that node). One can buy (fractionally) sets at any
node paying a cost that depends both on the set and the node
at which it is bought. We want to be able to compute, given
a node in the tree, the desired action, so as to minimize the
expected total cost of fractionally covering the realized tar-
get set. This problem can be modeled as an exponentially



large linear program (LP) in which there is, for each setS
and each node in the tree, a variable that indicates the frac-
tion ofS that is bought at that node. The constraints say that
for each leaf, for each ground elemente in its corresponding
target set, the total fraction bought of setsS that containe
along this root-leaf path must be at least 1. If we view the
probability of reaching a node as specified, it is straightfor-
ward to express the expected total cost as a linear function
of these decision variables. As a corollary of our FPRAS,
we also give the first approximation algorithms for the anal-
ogous class of multi-stage stochastic integer programs (IPs),
such as the integer version of this set covering problem.

For a rich class ofk-stage stochastic linear programming
problems, wherek is assumed to be constant and not part
of the input, we show that, for anyε > 0, we can com-
pute, with high probability, a solution with expected cost
guaranteed, for any probability distribution over inputs, to
be within a(1 + ε) factor of the optimal expected cost, in
time bounded by a polynomial in the input size,1

ε , and a
parameterλ that is an upper bound on the ratio between the
cost of the same action (e.g., buying the setS) over succes-
sive stages. The algorithm accesses the input by means of
a “black-box” (simulation) procedure that can generate, for
any node in the scenario tree, a sample of the input accord-
ing to the conditional distribution for this node. This is an
extremely general model of the distribution, since it allows
all types of correlated effects within different parts of the
input. We improve upon our earlier work [13], which han-
dles the very special case in whichk = 2, not only by being
able to handleany fixed number of stages, but whereas the
earlier algorithm is based on the ellipsoid method, we can
now show that the algorithm most commonly used in prac-
tice, thesample average approximationmethod (SAA), also
yields the claimed approximation scheme.

The algorithm of Shmoys & Swamy[13] for 2-stage
problems is based on computing an approximate subgra-
dient with respect to a compact convex programming for-
mulation, and this is done by estimating each component
of the subgradient sufficiently accurately, and then apply-
ing the ellipsoid method using these approximate subgra-
dients. In the sample average approximation method, we
merely sample scenarios a given (polynomial) number of
timesN , and by computing the frequencies of occurrence
in these samples, we derive a new LP that is a polynomial-
sized approximation to the original exponential-sized LP,
and the solve this compact LP explicitly. We first argue
that using (approximate) subgradients one can establish a
notion of closeness between two functions (e.g., the ob-
jective functions of the “true” LP and the SAA LP), so
that if two functions are “close” in terms of their subgra-
dients, then minimizing one function is equivalent to ap-
proximately minimizing the other. Next, we show that with
a polynomially bounded sample size, the objective func-

tions of the “true” problem and the sample-average problem
satisfy this “closeness-in-subgradients” property with high
probability, and therefore minimizing the sample-average
problem yields a near-optimal solution to the true problem;
thus we prove the polynomial-time convergence of the SAA
method. Our proof does not rely on anything specific to dis-
crete probability distributions, and therefore extends to the
case of continuous distributions.

Compare now the 3-stage and 2-stage problems. In the 2-
stage fractional set-covering problem, the compact convex
program has variables corresponding only to the decisions
made at the root to (fractionally) buy sets. Each component
of the subgradient at the current point can be estimated by
sampling a leaf from the scenario tree and using the optimal
dual solution for the linear program that minimizes the cost
to cover each element in this leaf’s target set to the extent it
is not already covered by the root variables. In the 3-stage
version, a2-stage stochastic LPplays the analogous role
of the linear program and we need to obtain a near-optimal
dual solution for this exponentially large mathematical pro-
gram to show the closeness property. Moreover, one diffi-
culty that is not encountered in the 2-stage case, is that now
this 2-stage recourse LP is different in the sample average
and the “true” problems, since the conditional distribution
of scenarios given a second-stage outcome is onlyapprox-
imated in the sample average problem. Thus to show the
closeness property one has to argue that solving the dual
of the sample average 2-stage recourse LP yields a near-
optimal solution to the “true” 2-stage recourse LP. We intro-
duce a novelcompact non-linear formulation of this dual,
for which we can prove such a statement for the duals, and
thereby obtain the “closeness-in-subgradients” property for
the 3-stage problem. In fact, this formulation yields a new
means to provide lower bounds on 2-stage stochastic LPs,
which might be of interest in its own right. The analogous
idea can be applied inductively to obtain the FPRAS for
any fixed number of stages. We believe that our proof is of
independent interest and that our approach of using subgra-
dients will find applications in proving convergence results
in other stochastic models as well.

Due to its simplicity and its use in practice, the SAA
method has been studied extensively in the stochastic pro-
gramming literature. Although it has been shown that the
SAA method produces solutions that converge to the opti-
mal solution as the number of samplesN gets sufficiently
large (see, e.g., [11] and its references), no results were
known that bound the number of samples needed to ob-
tain a(1 + ε)-optimal solution by a polynomial in the input
size, 1

ε andλ. Prior to our work, for 2-stage stochastic op-
timization, bounds on the sample size required by the SAA
method were proved in [9], but this bound depends on the
variance of a certain quantity that need not depend polyno-
mially on the input size orλ. Recently, Nemirovskii and



Shapiro (personal communication) showed that for 2-stage
set-cover with non-scenario-dependent second-stage costs,
the bound of [9] is a polynomial bound, provided that one
applies the SAA method after some preprocessing to elimi-
nate certain first-stage decisions.

For multi-stage problems with arbitrary distributions, to
the best of our knowledge, there are no results known about
the rate of convergence of the sample average approxima-
tion to the true optimal solution (with high probability). In
fact, we are not aware of any work (even outside of the sam-
ple average approach) that proves worst-case bounds on the
sample size required for solving multi-stage stochastic lin-
ear programs with arbitrary distributions in the black-box
model. Very recently, Shapiro [12] proved bounds on the
sample size required in the SAA method for multi-stage
problems, under the strong assumption thatthe distributions
in the different stages are independent. In particular, this
implies that the distribution of the outcomes in any stage
i, and hence of the scenarios in stagek, does not depend
on the outcomes in the previous stages, which fails to cap-
ture the notion of learning new information about the un-
certainty as one proceeds through the stages. Moreover, as
in the 2-stage case, the bounds in [12] are not polynomial
in the input size orλ, even when the number of stages is
fixed. It is important to note that we prove that an optimal
solution to the SAA LP is a near-optimal solution to true LP,
not that the optimal value of the SAA LP is a good approx-
imation to the true optimal value. Indeed, one interesting
question is to show, for any class of stochastic IPs and LPs,
if one could obtain an approximation algorithm to the case
in which there are only a polynomial number of scenarios,
then one can also obtain an approximation algorithm for the
general case. Subsequent to the dissemination of early ver-
sions of our work [14], Charikar, Chekuri and Pál [3] have
obtained such a result for 2-stage problems.

There has been a series of recent papers on approxi-
mation algorithms for 2-stage stochastic integer program-
ming problems. Most of this work has focused on more
restricted mechanisms for specifying the distribution of in-
puts [4, 10, 8]; Gupta, Ṕal, Ravi, and Sinha [5] were the
first to consider the “black-box” model, and gave approx-
imation algorithms for various 2-stage problems, but with
the restriction that the second-stage costs be proportional
to the first-stage costs. Shmoys and Swamy [13] showed
that one could derive approximation algorithms for most of
the stochastic integer programming problems considered in
[4, 10, 8, 5] by adopting a natural LP rounding approach
that, in effect, converted an LP-based approximation guar-
antee for the deterministic analogue to a guarantee for the
stochastic generalization (where the performance guarantee
degraded by a factor of 2 in the process).

An immediate consequence of our approximation
scheme for multi-stage stochastic linear programs is that we

obtain approximation algorithms for several natural multi-
stage stochastic integer programming problems, by extend-
ing the rounding approach of [13]. The only other work
on multi-stage problems in the black-box model is due
to Hayrapetyan, Swamy, and Tardos [7], and Gupta et
al. [6] (done concurrently with this work). Both present
O(k)-approximation algorithms for ak-stage version of the
Steiner tree problem under some restrictions on the costs;
the latter also gives algorithms for thek-stage versions of
the vertex cover and facility location problems under the
same cost restrictions, but their approximation ratio isex-
ponentialin k. In contrast, in the black-box model without
any cost restrictions, we obtain performance guarantees of
k log n for k-stage set cover,2k for k-stage vertex cover and
k-stage multicut on trees, and1.71(k− 1) + 1.52 for thek-
stage facility location problem. Finally, we obtain a FPRAS
for ak-stage multicommodity flow problem as a direct con-
sequence of our stochastic linear programming result.

2. Preliminaries

We state some definitions and basic facts that we will
frequently use. Let‖u‖ denote thè 2 norm of u. We say
that functiong : Rm 7→ R, hasLipschitz constantK if
|g(v)− g(u)| ≤ K‖v − u‖ for all u, v ∈ Rm.

Definition 2.1 We say thatd is a subgradient of a function
g : Rm 7→ R at the pointu if the inequalityg(v)− g(u) ≥
d · (v − u) holds for everyv ∈ Rm. We say that̂d is an
(ω, ∆,D)-subgradient ofg at u ∈ D if for everyv ∈ D, we
haveg(v)− g(u) ≥ d̂ · (v − u)− ωg(u)− ωg(v)−∆.

The above definition is slightly weaker than the notion
of an(ω,D)-subgradient as defined in [13], but it is easy to
see that one can also implement the algorithm in [13] using
the notion of an approximate subgradient given by Defini-
tion 2.1. The following claim will be useful in bounding the
Lipschitz constant of the functions encountered.

Claim 2.2 ([13]) Let d(x) denote a subgradient of a func-
tion g : Rm 7→ R at point x. Suppose‖d(x)‖ ≤ K for
everyx. Theng(.) has Lipschitz constant (at most)K.

We will consider both convex minimization problems
and concave maximization problems where we optimize
over a polytopeP ⊆ Rm

≥0. Analogous to Definition 2.1,
we define amax-subgradient, and an approximate version
of it, that we use for concave maximization problems.

Definition 2.3 We say thatd is a max-subgradient of a
functiong : Rm 7→ R at u ∈ Rm if for every pointv ∈ Rm,
we haveg(v) − g(u) ≤ d · (v − u). We say that̂d is an
(ω, ∆,D)- max-subgradient ofg(.) at u ∈ D if for every
v ∈ D we haveg(v)− g(u) ≤ d̂ · (v − u) + ωg(u) + ∆.



WhenD is clear from the context, we drop theD from
(ω, ∆,D)-subgradient and(ω, ∆,D)- max-subgradient,
and if ∆ = 0 we drop it from the notation. We will fre-
quently use(ω, ∆,P)-subgradients which we abbreviate
to (ω, ∆)-subgradients. We need the following sampling
lemma which is proved using simple Chernoff bounds.

Lemma 2.4 Let Xi, i = 1, . . . ,N = 4(1+α)2

c2 ln
(

2
δ

)
be

iid random variables where eachXi ∈ [−a, b], a, b > 0,
α = max(1, a/b), and c is an arbitrary positive number.
Let X =

(∑
i Xi

)
/N and µ = E

[
X

]
= E

[
Xi

]
. Then

Pr
[
X ∈ [µ− cb, µ + cb]

]
≥ 1− δ.

3. The Sample Average Approximation method

Suppose we have a black-box that can generate, for any
sequence of outcomes for the initial stages, independent
samples from the conditional distribution of scenarios given
those initial outcomes. A natural approach to computing
near-optimal solutions for these problems given such sam-
pling access is the sample average approximation (SAA)
approach: sample someN times from the distribution on
scenarios, estimate the actual distribution by the distribution
induced by the samples, and solve the multi-stage problem
specified by this approximate distribution. For 2-stage pro-
grams, we just estimate the probability of a scenarioA by
its frequency in the sampled set; fork-stage programs we
construct an approximatek-level distribution tree by sam-
pling repeatedly at each level: we sampleT2 times to ob-
tain some stage 2 outcomes, for each sampled outcome we
sampleT3 times from the conditional distribution given that
outcome and so on, and for each sampled outcome we es-
timate its conditional probability of occurrence given the
previous-stage outcome by its frequency in the sampled set.
The multi-stage problem specified by the approximate dis-
tribution is called thesample average problem, and its ob-
jective function is called thesample average function.

If the total number of samplesN is polynomially
bounded, then since the approximate distribution has sup-
port of size at mostN , the sample average problem can
be solved efficiently by solving a polynomial size linear
program. The issue here is the sample sizeN required to
guarantee thatevery optimal solution to the sample-average
problem is a near-optimal solution to the original problem
with high probability. We show that for any givenk (which
is not part of the input), for a large class ofk-stage stochas-
tic LPs, one can boundN by a polynomial in the input size,
the inverse of the desired accuracy, and the maximumratio
λ between the cost of an action in successive stages.

Intuitively, to prove such a theorem, we need to show
that the sample-average function is a close approximation
to the true function in some sense. One obvious approach
would be to argue that, with high probability, the values of

the sample average function and the true function are close
to each other, at a sufficiently dense set of points. This
however immediately runs into problems since the variance
in the scenario costs could be quite (exponentially) large,
so one cannot estimate the true function value, that is, the
expected scenario cost, to within a reasonable accuracy
using a small (polynomial) number of samples. The basic
problem is that there could be very low-probability out-
comes that contribute significantly towards the cost in the
true problem, but will almost never be sampled with only a
polynomial number of samples (so they contribute nothing
to the sample average function). The key insight is that
suchrare outcomes do not much influence the optimal first-
stage decisions, since one would defer decisions for such
outcomes till later. The minimizer of a convex function is
determined by its “slope” (i.e., gradient or subgradient),
which suggests that perhaps we should compare the slopes
of the sample-average and the true objective functions and
show that they are close to each other, and argue that this
is sufficient to prove the near-equivalence of the corre-
sponding minimization problems. Our proof builds upon
this intuition. A subgradientis the analogue of a gradient
for a non-differentiable function, and is a measure of the
“slope” of the function. We identify a notion of closeness
between any two functions based on their (approximate)
subgradients so that if two functions are close under this
criterion, then minimizing one is approximately equivalent
to minimizing the other. Next, we show that the objective
functions of the original multi-stage problem, and the sam-
ple average problem with polynomially bounded sample
size, satisfy this “closeness-in-subgradients” property, and
thus we obtain the desired result.

Proof details. The proof is organized as follows. First,
in Lemma 3.1 we show that given functionsg and ĝ that
agree in terms of their (approximate) subgradients at points
in a polytopeP, everyoptimal solution tominx∈P ĝ(x) is
a near-optimal solution tominx∈P g(x). Some intuition
about why this closeness-in-subgradients property is suf-
ficient can be obtained by considering the ellipsoid-based
algorithm for convex minimization given in [13]. This al-
gorithm uses only (approximate) subgradient information
about the convex function to be minimized, using a sub-
gradient or anω-subgradient of the function to derive a cut
passing through the center of the current ellipsoid at a fea-
sible point and make progress. Suppose at every feasible
pointx ∈ P, there is a vectordx that is both a subgradient of
ĝ(.) and anω-subgradient ofg(.) atx. One can then usedx

to generate the cut atx, so that the ellipsoid-based algorithm
will run identicallyon bothminx∈P g(x) andminx∈P ĝ(x)
and return a point that issimultaneouslynear-optimal for
both objective functions. Lemma 3.1 makes this intuition
precise while weakening the assumption and strengthening



the conclusion: we only require that at every pointx in a
sufficiently dense finite setG ⊆ P there be a vectordx that
is both a subgradient of̂g(.) and anω-subgradient ofg(.),
and we prove thateveryoptimal solution tominx∈P ĝ(x) is
a near-optimal solution tominx∈P g(x). Lemma 3.2 proves
an analogous result for maximization problems.

The second part of the proof is to show that the objec-
tive functions of the true problem and the sample average
problem (with polynomial samples) satisfy this closeness-
in-subgradients property. This is divided into three parts.
For the class of 2-stage linear programs considered in [13],
this is easy to show (Theorem 3.5) because the subgradient
at any point is the expectation (according to the scenario
distribution) of a quantity derived from the optimal solu-
tions to the dual of the recourse LP for each scenario, and
this recourse LP is the same in both the sample average and
the true problems. Thus, since the subgradient components
have bounded variance [13], the closeness property follows.

For thek-stage problem however, one needs to develop
several substantial new ideas to show this closeness prop-
erty, even whenk = 3. We introduce these ideas in Sec-
tion 4 by focusing on 3-stage problems, and in particu-
lar, on the LP relaxation of 3-stage set cover as an illus-
trative example. We then generalize these ideas to prove
an SAA theorem for a large class of 3-stage linear pro-
grams, and in Section 5 inductively apply the arguments
to a broad class ofk-stage problems. The main difficulty,
and the essential difference from the 2-stage case, is that
now the recourse problem for each second-stage outcome
is a 2-stage stochastic LP whose underlying distribution is
only estimated in the sample average problem. Sothe sam-
ple average problem and the true problem solve different
recourse problems for each stage 2 outcome. A (approxi-
mate) subgradient is obtained from the (approximately) op-
timal solutions to the dual of the 2-stage recourse LP for
each scenario, therefore to show closeness in subgradients
we need to argue that maximizing the sample average dual
yields a near-optimal solution to the true dual, that is, prove
an SAA theorem for thedual of a 2-stage stochastic primal
program! Mimicking the approach for the primal problem,
we prove this by showing that the two dual objective func-
tions agree in terms of theirmax-subgradients. However,
simply considering the LP dual of the 2-stage primal re-
course LP does not work; amax-subgradient of the linear
dual objective function is just the constant vector specifying
the conditional probabilities of the stage 3 scenarios given
the outcome in stage 2, and one cannot estimate the true
conditional distribution using only a polynomial number of
samples, in particular, because rare scenarios will almost
never be sampled. To circumvent this problem, we intro-
duce a novelcompact, non-linearformulation of the dual,
which turns the dual objective function into a concave func-
tion whosemax-subgradient can be computed by solving a

2-stage primal stochastic problem. We use the earlier SAA
theorem for 2-stage programs to show that any optimal so-
lution to this 2-stage LP in the sample average dual, is a
near-optimal solution to the 2-stage LP in the true dual. This
shows that the two dual objective functions (in this new rep-
resentation) are close in terms of theirmax-subgradients,
thereby proving that an optimal solution the sample aver-
age dual is a near-optimal solution to the true dual. This in
turn establishes the closeness in subgradients of the objec-
tive functions of the 3-stage sample average problem and
the true 3-stage problem and yields the SAA theorem.

Sufficiency of closeness in subgradients.Let g :
Rm 7→ R andĝ : Rm 7→ R be two functions with Lipschitz
constant (at most)K. LetP ⊆ Rm

≥0 be the bounded feasible
region andR be a radius such thatP is contained in the ball
B(000, R) = {x : ‖x‖ ≤ R}. Let ε, γ > 0 be two parameters
with γ ≤ 1. SetN = log

(
2KR

ε

)
andω = γ

8N . Let G′ =
{x ∈ P : xi = ni ·

(
ε

KN
√

m

)
, ni ∈ Z for all i = 1, . . . ,m}

SetG = G′ ∪
{
x + t(y− x), y + t(x− y) : x, y ∈ G′, t =

2−i, i = 1, . . . , N
}

. We callG theextended ε
KN

√
m

-grid
of the polytopeP. Note that for everyx ∈ P, there exists
x′ ∈ G′ such that‖x − x′‖ ≤ ε

KN . Fix ∆ > 0. We first
consider minimization problems. We say that functionsg
andĝ satisfy property (A) if

∀x ∈ G, ∃d̂x ∈ Rm : d̂x is a subgradient of̂g(.),
and an(ω, ∆)-subgradient ofg(.) atx. (A)

Lemma 3.1 Suppose functionsg and ĝ satisfy property
(A). Let x∗, x̂ ∈ P be points that respectively minimize
g(.) and ĝ(.), with g(x∗) ≥ 0, and letx′ ∈ P be a point
such that̂g(x′) ≤ ĝ(x̂)+ρ. Then, (i)g(x̂) ≤ (1+γ)g(x∗)+
6ε+2N∆; (ii) g(x′) ≤ (1+γ)g(x∗)+6ε+2N∆+2Nρ.

Proof : We prove part (i); part (ii) is proved almost iden-
tically. Suppose first that̂x ∈ G′. Let x̃ be the point
in G′ closest tox∗, so ‖x̃ − x∗‖ ≤ ε

KN and therefore
g(x̃) ≤ g(x∗) + ε. Let y = x̂

(
1 − 1

2N

)
+

(
1

2N

)
x̃ ∈ G

and consider the vector̂dy given by property (A). It must
be that d̂y · (x̂ − y) = −d̂y · (x̃ − y) ≤ 0, otherwise
we would haveĝ(x̂) > ĝ(y) contradicting the optimal-
ity of x̂. So, by the definition of an(ω, ∆)-subgradient,
we haveg(y) ≤ (1+ω)g(x̃)+∆

1−ω ≤ (1 + 4ω)(g(x̃) + ∆) ≤
(1 + γ)g(x∗) + 2ε + 2∆ since ω = γ

8N ≤ 1
4 . Also

‖x̂ − y‖ = ‖x̂−x̃‖
2N ≤ ε

K since ‖x̂ − x̃‖ ≤ 2R. So,
g(x̂) ≤ g(y) + ε ≤ (1 + γ)g(x∗) + 3ε + 2∆.

Now supposêx /∈ G′. Let x̄ be the point inG′ closest to
x̂, so‖x̄− x̂‖ ≤ ε

KN andĝ(x̄) ≤ ĝ(x̂)+ ε
N . For anyy ∈ G,

we haved̂y · (x̄ − y) ≤ ε
N , otherwisêg(x̄) > ĝ(y) + ε

N .
Let y0 = x̃, andyi = (x̄ + yi−1)/2 for i = 1, . . . , N . For



eachyi, d̂yi · (yi−1 − yi) = −d̂yi · (x̄ − yi) ≥ − ε
N , and

since d̂yi is an (ω, ∆)-subgradient ofg(.) at yi, g(yi) ≤
(1 + 4ω)(g(yi−1) + ε

N + ∆). This implies thatg(yN ) ≤
(1 + 4ω)N (g(x̃) + ε + N∆) ≤ (1 + γ)g(x∗) + 4ε + 2N∆.
Sog(x̂) ≤ g(yN ) + 2ε ≤ (1 + γ)g(x∗) + 6ε + 2N∆.

Lemma 3.2 states an analogous result for maximization
problems. We say thatg andĝ satisfy property (B) if

∀x ∈ G, ∃d̂x ∈ Rm : d̂x is amax-subgradient of̂g(.),
and an(ω, ∆)- max-subgradient ofg(.) atx. (B)

Lemma 3.2 Suppose functionsg andĝ satisfy property(B).
Let x∗ and x̂ be points inP that respectively maximize
functionsg(.) and ĝ(.), and supposeg(x∗) ≥ 0. Then,
g(x̂) ≥ (1− γ)g(x∗)− 4ε−N∆.

Lemma 3.3 LetG be the extendedε-grid ofP. Then|G| ≤
N

(
2R
ε

)2m
.

The SAA bound for 2-stage programs. We now
prove a polynomial SAA bound for the class of 2-stage pro-
grams considered in [13] (this was stated with extra con-
straintsBAsA ≥ hA but these are handled below).

min
x∈P

h(x) = wI · x +
∑
A∈A

pAfA(x), (P ⊆ Rm
≥0) (P)

fA(x) = min
{

wA · rA + qA · sA : rA ∈ Rm
≥0, sA ∈ Rn

≥0,

DAsA + TArA ≥ jA − TAx
}

.

Here (a)TA ≥ 000 for every scenarioA, and (b) for everyx ∈
P,

∑
A∈A pAfA(x) ≥ 0 and the primal and dual problems

corresponding tofA(x) are feasible for every scenarioA. It
is assumed thatP ⊆ B(000, R) wherelnR is polynomially

bounded. Defineλ = max
(
1,maxA∈A,S

wA
S

wI
S

)
; we assume

that λ is known. LetOPT be the optimum value andI
denote the size of the input. The sample average problem is
to minimize the sample average functionĥ(x) = wI · x +∑

A∈A p̂AfA(x) over x ∈ P, wherep̂A = NA/N , N is
the total number of samples andNA is the number of times
scenarioA is sampled.

Lemma 3.4 Letd be a subgradient ofh(.) at the pointx ∈
P, and suppose that̂d is a vector such that̂dS ∈ [dS −
ωwI

S , dS +ωwI
S ] for all S. Thend̂ is anω-subgradient (i.e.,

an (ω, 0)-subgradient) ofh(.) at x.

It is shown in [13] that at any pointx ∈ P, if (z∗A)
is an optimal solution to the dual offA(x), then (i)dx =
wI −

∑
A pA(TA)Tz∗A is a subgradient ofh(.); (ii) for any

componentS and any scenarioA, componentS of the vec-
tor wI − (TA)Tz∗A lies in [−λwI

S , wI
S ]; and therefore (iii)

‖dx‖ ≤ λ‖wI‖. The sample average function̂h(.) has
the same form ash(.), but has a different distribution, so
d̂x = wI −

∑
A p̂A(TA)Tz∗A is a subgradient of̂h(.) at x,

and‖d̂x‖ ≤ λ‖wI‖. So (by Claim 2.2) the Lipschitz con-
stant ofh, ĥ is at mostK = λ‖wI‖. Observe that̂dx is just
wI−(TA)Tz∗A averaged over the random scenarios sampled
to construct̂h(.), andE

[
d̂x

]
= dx where the expectation is

over these random samples.

Theorem 3.5 For anyε, γ > 0 (γ < 1) with probability at
least1 − δ, any optimal solution̂x to the sample average
problem constructed withpoly

(
I, λ, 1

γ , ln( 1
ε ), ln( 1

δ )
)

sam-
ples, satisfiesh(x̂) ≤ (1 + γ) ·OPT + 6ε.

Proof : We show thath(.) and ĥ(.) satisfy property (A)
with probability1 − δ with the stated sample size; the rest
follows from Lemma 3.1. DefineN = log

(
2KR

ε

)
, ω = γ

8N
and letG be the extended ε

KN
√

m
-grid. Note thatlog(KR)

is polynomially bounded in the input size. Letn = |G|.
Using Lemma 2.4, if we sampleN = 4(1+λ)2

3ω2 ln
(

2mn
δ

)
times to construct̂h(.) then at a given pointx, subgradient
d̂x of ĥ(.) is component-wise close to its expectation with
probability at least1 − δ/n, so by Lemma 3.4̂dx is anω-
subgradient ofh(.) at x (with high probability). So with
probability at least1 − δ, d̂x is anω-subgradient ofh(.) at
everypoint x ∈ G. Using Lemma 3.3 to boundn, we get
thatN = O

(
mλ2 log2( 2KR

ε ) ln( 2KRm
εδ )

)
.

Under the mild assumption that (a) the pointx = 000 (i.e.,
deferring all decisions to stage 2) lies inP, and (b) for every
scenarioA, eitherfA(x) is minimized withx = 000, or wI ·
x + fA(x) ≥ 1 for every x ∈ P, it was shown in [13]
that by samplingλ ln

(
1
δ

)
times initially one can detect with

probability 1 − δ (with δ ≤ 1
2 ), that eitherx = 000 is an

optimal solution to (P), or thatOPT ≥ δ
λ ln(1/δ) . So if we

detect thatOPT is large, then we can setγ, ε appropriately
to get a(1 + κ)-optimal solution with probability1 − 2δ,
using the SAA method withpoly

(
I, λ, 1

κ , ln( 1
δ )

)
samples.

4. 3-stage stochastic programs

3-stage stochastic set cover.Our techniques yield a
polynomial-sample bound for a broad class of 3-stage pro-
grams, but before considering a generic 3-stage program,
we introduce and explain the main ideas involved by focus-
ing on the 3-stage stochastic set cover problem.

In the stochastic set cover problem, we are given a uni-
verseU of n elements and a familyS of m subsets ofU ,
and the set of elements to cover is determined by a proba-
bility distribution. In the 3-stage problem this distribution
is specified by a 3-level tree. We useA to denote an out-
come in stage 2, and(A,B) to denote a stage 3 scenario



whereA was the stage 2 outcome. LetA be the set of all
stage 2 outcomes, and for eachA ∈ A let BA = {B :
(A,B) is a scenario}. Let pA andpA,B be the probabili-
ties of outcomeA and scenario(A,B) respectively, and let
qA,B = pA,B

pA
. Note that

∑
A∈A pA = 1 =

∑
B∈BA

qA,B

for everyA ∈ A. We have to cover the (random) set of
elementsE(A,B) in scenario(A,B), and we can buy a set
S in stage 1, or in stage 2 outcomeA, or in scenario(A,B)
incurring a cost ofwI

S , wA
S andwA,B

S respectively.
We usex, yA andzA,B respectively to denote the deci-

sions in stage 1, outcomeA and scenario(A,B) respec-
tively and consider the following fractional relaxation:

min
0≤xS≤1 ∀S

h(x) =
∑
S

wI
SxS +

∑
A∈A

pAfA(x), (3SSC-P)

fA(x) = min
yA≥000

{∑
S

wA
S yA,S +

∑
B∈BA

qA,BfA,B(x, yA)
}

,

(3Rec-P)

fA,B(x, yA) = min
zA,B∈Rm

≥0

{∑
S

wA,B
S zA,B,S :

∑
S:e∈S

zA,B,S ≥ 1−
∑

S:ε∈S

(xS + yA,S) ∀e ∈ E(A,B)
}

.

Let P = {x ∈ Rm : xS ∈ [0, 1] ∀S} andOPT =
minx∈P h(x). The total sample size in the sample average
problem isT2 ·T3 where, (i)T2 is the sample size used to es-
timate probabilitypA by the frequencŷpA = T2;A/T2, and
(ii) T3 is the number of samples generated from the condi-
tional distribution of scenarios inBA for eachA with p̂A >
0 to estimateqA,B by q̂A,B = T3;A,B/T3. The sample av-
erage problem is similar to (3SSC-P) withp̂A replacingpA,
andq̂A,B replacingqA,B in the recourse problemfA(x). We
usef̂A(x) = minyA≥000

(
wA ·yA +

∑
B∈BA

q̂A,BfA(x, yA)
)

and ĥ(x) = wI · x +
∑

A∈A p̂Af̂A(x) to denote the sam-
ple average recourse problem for outcomeA and the sample
average function respectively.

As mentioned earlier, the main difficulty in showing
that the sample average and the true functions satisfy the
closeness-in-subgradients property, is that these two prob-
lems now solve different recourse problems,f̂A(x) and
fA(x) respectively, for an outcomeA. Since the subgra-
dient is obtained from a dual solution, this entails first prov-
ing an SAA theorem for the dual which suggests that solv-
ing the dual off̂A(x) yields a near-optimal solution to the
dual offA(x). To achieve this, we first formulate the dual
as a compact concave maximization problem, then show
that by slightly modifying the two dual programs, the dual
objective functions become close in terms of theirmax-
subgradients, and then use Lemma 3.2 to obtain the required
SAA theorem (for the duals). Amax-subgradient of the
dual objective function is obtained from the optimal solu-
tion of a 2-stage primal problem and we use Theorem 3.5

to prove the closeness inmax-subgradients of the sample
average dual and the true dual. In Section 5 we show that
this argument can be applied inductively to prove an SAA
bound for a large class ofk-stage stochastic LPs.

Let fA(000;W ) (respectivelyf̂A(000;W )) denote the re-
course problemfA(x) (respectivelyf̂A(x)) with x = 000
and costswA = W , that is,fA(000;W ) = minyA≥000

(
W ·

yA +
∑

B∈BA
qA,BfA,B(000, yA)

)
. We formulate the follow-

ing dual of the true and sample average recourse problems:

LDA(x) = max
000≤αA≤wA

lA(x;αA), L̂DA(x) = max
000≤αA≤wÂ

lA(x;αA)

wherelA(x;αA) = −αA · x + fA(000;αA) andl̂A(x;αA) =
−αA · x + f̂A(000;αA).

Lemma 4.1 At any pointx ∈ P and outcomeA ∈ A,
fA(x) = LDA(x) and f̂A(x) = L̂DA(x).

Lemma 4.2 Fix x ∈ P. Let αA be a solution toLDA(x)
of value lA(x;αA) ≥ (1 − ε)LDA(x) − εwI · x − ε
for every A ∈ A. Then, (i) d = wI −

∑
A pAαA is

an (ε, ε)-subgradient ofh(.) at x with ‖d‖ ≤ λ‖wI‖;
(ii) if d̂ is a vector such thatd − ωwI ≤ d̂ ≤ d + ωwI,
thend̂ is an(ε + ω, ε)-subgradient ofh(.) at x.

Lemma 4.1 proves strong duality (in this new dual rep-
resentation), which is used by Lemma 4.2. Lemma 4.2 also
shows that any optimal solution̂αA to L̂DA(x) yieldsd̂x =
wI −

∑
A p̂Aα̂A as a subgradient of̂h(.) at x, so to prove

the closeness in subgradients ofh andĥ it suffices to argue
that α̂A is a near-optimal solution toLDA(x). (Note that
bothh andĥ have Lipschitz constant at mostK = λ‖wI‖.)
We could try to argue this by showing thatlA(x; .) and
l̂A(x; .) are close in terms of theirmax-subgradients (i.e.,
satisfy property (B)), however some technical difficulties
arise here. Amax-subgradient oflA(x; .) atαA is obtained
from a solution to the 2-stage problem given byfA(000;αA),
and to show closeness inmax-subgradients atαA we need
to argue that an optimal solution̂yA to f̂A(000;αA) is a
near-optimal solution tofA(000;αA). But this need not be

true since the ratiomaxS

(wA,B
S

αA,S

)
of the second- and first-

stage costs in the 2-stage problemfA(000;αA), could be un-
bounded. To tackle this, we consider instead the modified
dual problemsLDA;ρ(x) = maxρwI≤αA≤wA lA(x;αA)
andL̂DA;ρ(x) = maxρwI≤αA≤wA l̂A(x;αA) for a suitable
ρ > 0. Definehρ(x) = wI · x +

∑
A pALDA;ρ(x) and

ĥρ(x) = wI · x +
∑

A p̂AL̂DA;ρ(x). As in Lemma 4.2, one
can show that near-optimal solutionsαA to LDA;ρ(x) for
everyA ∈ A yield an approximate subgradient ofhρ(.) at
x. But now the cost ratio in the 2-stage problemfA(000;αA)
is at mostλ

2

ρ for anyA ∈ A, and this gives the SAA bound



stated in Lemma 4.3 below; we present the proof after The-
orem 4.6. Using Lemma 4.3, we show the closeness in sub-
gradients ofhρ(.) andĥρ(.), and this suffices to show that if
x̂ minimizesĥ(.) then it is a near-optimal solution toh(.).

Lemma 4.3 For any parametersε, ρ, ε > 0, any x ∈
P, and any outcomeA ∈ A, if we useT (ε, ρ, ε, δ) =
poly

(
I, λ

ρε , ln( 1
ε ), ln( 1

δ )
)

samples to construct the recourse

problemf̂A(x), then any optimal solution̂αA to L̂DA;ρ(x)
satisfieslA(x; α̂A) ≥ (1 − ε)LDA;ρ(x) − εwI · x− ε with
probability at least1− δ.

Lemma 4.4 Consider the sample average functionĥ gen-

erated usingN ′ = T2(ω, δ) = 16(1+λ)2

ω2 ln
(

4m
δ

)
samples

from stage 2, andT
(
ε, ρ, ω

2 , δ
2N ′

)
samples from stage 3 for

each outcomeA with p̂A > 0. At any pointx ∈ P, sub-
gradient d̂x of ĥρ(.) is an (ω, ε)-subgradient ofhρ(.) with
probability at least1− δ.

Claim 4.5 For anyx ∈ P, hρ(x) ≤ h(x) ≤ hρ(x)+ρwI·x.
Similarly ĥρ(x) ≤ ĥ(x) ≤ ĥρ(x) + ρwI · x.

Theorem 4.6 For anyε, γ > 0 (γ ≤ 1), one can construct
ĥ with poly

(
I, λ, 1

γ , ln( 1
ε ), ln( 1

δ )
)

samples, and with prob-

ability at least1−δ, any optimal solution̂x tominx∈P ĥ(x)
satisfiesh(x̂) ≤ (1 + 7γ) ·OPT + 18ε.

Proof : Assume thatγ ≤ 1 without loss of gener-
ality. Let N = log

(
2KR

ε

)
and ω = γ

8N . Note that
log(KR) is polynomially bounded in the input size. Set
ε′ = ε

N and ρ = γ
4N . We show that (i) a near-optimal

solution tominx∈P ĥρ(x) yields a near-optimal solution to
minx∈P hρ(x), and (ii) minimizingh(.) andĥ(.) overP is
roughly the same as approximately minimizinghρ(.) and
ĥρ(.) respectively overP.

Let x̃ be an optimal solution tominx∈P ĥρ(x). By
Claim 4.5,ĥρ(x̂) ≤ ĥρ(x̃) + ρwI · x̃, and0 ≤ OPTρ =
minx∈P hρ(x) ≤ OPT . Let G be the extended ε

KN
√

m
-

grid of P and n = |G|. Let N ′ = 16(1+λ)2

ω2 ln
(

4mn
δ

)
which is a polynomial inI, λ

γ , ln
(

1
ε

)
andln

(
1
δ

)
, where we

use Lemma 3.3 to boundn. We construct̂h(.) usingN =
N ′ · T

(
ε′, ρ, ω

2 , δ
2nN ′

)
samples. SinceN ′ is polynomially

bounded, Lemma 4.3 shows that so isN . Using Lemma 4.4
and the union bound over all points inG, probability at least
1 − δ, at every pointx ∈ G, subgradient̂dx of ĥρ(.) is
an (ω, ε′)-subgradient ofhρ(.). So by parts (i) and (ii) of
Lemma 3.1, we have thathρ(x̃) ≤ (1+γ)OPT ρ+6ε+2Nε′

andhρ(x̂) ≤ (1+γ)OPT ρ+6ε+2N(ρwI ·x̃+ε′) with high
probability (sincêhρ(x̂) ≤ ĥρ(x̃)+ρwI ·x̃). Combining this
with the bound onOPT ρ, the bounds(1−ρ)wI ·x̃ ≤ hρ(x̃),

(1− ρ)h(x̂) ≤ hρ(x̂) (Claim 4.5), and plugging inε′ andρ,
we get thath(x̂) ≤ (1 + 7γ)OPT + 18ε.

Under the very mild assumption that for every scenario
(A,B) with E(A,B) 6= ∅, for everyx ∈ P andyA ≥ 000,
wI ·x+wA ·yA +fA,B(x, yA) ≥ 1, we have the following.

Lemma 4.7 By samplingM = λ2 ln
(

1
δ

)
times, one can

detect with probability1 − δ (δ < 1
2 ) that eitherx = 000 is

an optimal solution to(3SSC-P), or thatOPT ≥ δ
M .

Thus, as in the 2-stage case, we can obtain a(1 + κ)-
optimal solution with the SAA method (with high probabil-
ity) using polynomially many samples.

Proof of Lemma 4.3 : Let DA = {αA ∈ Rm : ρwI ≤
αA ≤ ωA}. Clearly we may assume thatyA,S ≤ 1 in the
problemsfA(000;αA) and f̂A(000;αA). Let R′ = ‖wA‖ ≤
λ‖wI‖, soDA ⊆ B(000, R′). We want to show that if̂αA

solvesL̂DA;ρ(x), then lA(x; α̂A) ≥ (1 − ε)LDA;ρ(x) −
εwI · x − ε with high probability. By a now familiar ap-
proach, we will show that̂lA(x; .) andlA(x; .) are close in
terms of theirmax-subgradients and then use Lemma 3.2.
Let g(αA; yA) = αA · yA +

∑
B∈BA

qA,BfA,B(000, yA). We
only consider(ω, ∆,DA)- max-subgradients, so we drop
DA from now on. A max-subgradient tolA(x; .) (resp.
l̂A(x; .)) at αA is obtained from the solution to the 2-stage
problemfA(000;αA) (resp.f̂A(000;αA)):

Lemma 4.8 Fix x ∈ P and αA ∈ DA. Let ω′ = ω
λ .

If yA is a solution tofA(000;αA) of value g(αA; yA) ≤
(1 + ω′)fA(000;αA) + ε′, then d = yA − x is an
(ω, ωwI · x + ε′)- max-subgradient oflA(x; .) at αA.

We can bound the Lipschitz constant oflA(x; .) and
l̂A(x; .) by K ′ =

√
m, sincexS , yA,S ≤ 1. SinceαA ∈

DA, the ratio of costs in the two stages in the 2-stage prob-
lemfA(000;αA) is at mostλ

2

ρ .

Set γ = ε and ε′ = ε
8 . Set N = log

(
2K′R′

ε′

)
and ω = γ

8N . Observe thatlog(K ′R′) is polynomi-
ally bounded. Recall that̂αA is an optimal solution to
L̂DA;ρ(x). Let G be the extended ε′

KN
√

m
-grid of DA

andn = |G|. By Theorem 3.5, if we useT (ε, ρ, ε, δ) =
poly

(
I, λ2

ρ , λ
ω , ln( 2N

ε ), ln(n
δ )

)
samples fromBA to con-

struct L̂DA;ρ(x), then with probability at least1 − δ
n ,

at a given pointαA ∈ DA, any optimal solution̂yA to
f̂(000;αA) satisfiesg(αA; ŷA) ≤

(
1 + ω

λ

)
fA(000;αA) + ε

2N .
So by applying Lemma 4.8 and the union bound over all
points inG, with probability at least1 − δ, at each point
αA ∈ G, themax-subgradient̂yA−x of l̂A(x; .) atαA is an
(ω, ωwI · x + ε

2N )- max-subgradient oflA(x; .) at αA. By
Lemma 3.2, we havelA(x; α̂A) ≥ (1−γ)LDA;ρ(x)−4ε′−
NωwI ·x− ε

2 which is at least(1−ε)LDA;ρ(x)−εwI ·x−ε.



Since lnn and N are poly
(
I, ln( 1

ε )
)
, we get that

T (ε, ρ, ε, δ) = poly
(
I, λ

ρε , ln( 1
ε ), ln( 1

δ )
)
.

A class of solvable 3-stage programs.The above
arguments can be adapted to prove an SAA bound for the
following broad class of 3-stage stochastic programs.

min
x∈P⊆Rm

≥0

h(x) = wI · x +
∑
A∈A

pAfA(x), (3G-P)

fA(x) = min
yA≥000

{
wA · yA +

∑
B∈BA

qA,BfA,B(x, yA)
}

,

fA,B(x, yA) = min
zA,B ∈ Rm

≥0

sA,B ∈ Rn
≥0

{
wA,B · zA,B + cA,B · sA,B :

DA,BsA,B + TA,BzA,B ≥ jA,B − TA,B(x + yA)
}

,

where for every scenario(A,B), (a) TA,B ≥ 000, and (b)
for every x ∈ P and yA ≥ 000, 0 ≤ fA(x), fA,B(x, yA)

< +∞. Let λ = maxS,A∈A,B∈BA
max

(
1,

wA
S

wS
,

wA,B
S

wA
S

)
; we

assume thatλ is known. LetOPT be the optimum value
andI denote the input size. We assume that there is some
R with lnR = poly(I) such thatP ⊆ B(000, R), and fur-
ther we assume that for anyx ∈ P and anyA ∈ A, there
is an optimal solution tofA(x) lying in B(000, R). These
assumptions are fairly mild and unrestrictive; in particular,
they hold trivially for the fractional relaxations of 0-1 in-
teger programs and many combinatorial optimization prob-
lems. We obtain the guarantee stated in Theorem 4.9 below;
as before, we can use Lemma 4.7 to convert this to a(1+κ)-
guarantee under the mild assumption thatx = 000 ∈ P,
and for every scenario(A,B) eitherfA,B(x, yA) is mini-
mized atx = yA = 000 or for everyx ∈ P andyA ≥ 000,
wI · x + wA · yA + fA,B(x, yA) ≥ 1.

Theorem 4.9 For any ε, γ > 0, one can construct
the sample average approximation̂h to (3G-P) with
poly

(
I, λ, 1

γ , ln( 1
ε ), ln( 1

δ )
)

samples, and with probability at

least1− δ, any optimal solution̂x to minx∈P ĥ(x) satisfies
h(x̂) ≤ (1 + 7γ) ·OPT + 18ε.

Remark: Theorem 4.9 also handles programs, with con-
straintsTAyA ≥ jA − TAx, with TA ≥ 000, in fA(x).

5. The bound for k-stage stochastic programs

We now extend our techniques to solvek-stage stochas-
tic linear programs. Herek is a constant that is not part of
the input; the running time will be exponential ink.

In thek-stage problem, the scenario distribution is spec-
ified by ak-level tree, called thescenario tree. We start at

the rootr of this tree at level 1, which represents the first-
stage. Each nodeu at leveli represents an outcome in stage
i. At a leaf node, the uncertainty has completely resolved
itself and we know the input precisely. Ascenarioalways
refers to a stagek outcome, i.e., a leaf of the tree. The
goal is to choose the first stage elements so as to minimize
the total expected cost, i.e.,

∑k
i=1 E

[
stagei cost

]
where the

expectation is taken over all scenarios. Letchild(u) be the
set of all children ofu, path(u) be the set of all ancestors
(includingu) of u. Letpu be the probability that outcomeu
occurs, andqu be theconditional probabilitythatu occurs
given the previous-stage outcome.The distribution can be
arbitrary, and can incorporate correlation effects from pre-
vious stages. Letwu denote the costs in outcomeu, yu be
the decisions taken in outcomeu andyv =

(
yr, . . . , yv

)
,

where{r, . . . , v} = path(v) andv is u’s parent, be all the
decisions taken in the previous stages. Letx ≡ yr ≡ yr for
the rootr. We consider the following generick-stage LP.

fk,r = min
x∈P

(
h(x) = wI · x +

∑
u∈child(r)

qufk−1,u(x)
)
, (kG-P)

fk−i+1,u(yv) = min
yu≥000

{
wu · yu+

∑
u′∈child(u)

qu′fk−i,u′(yv, yu)
}

,

for u at leveli, 2 ≤ i < k,

f1,u(yv) = min
{

wu · yu + cu · su : yu ∈ Rm
≥0, su ∈ Rn

≥0,

Dusu + Tuyu ≥ ju −
∑

t∈path(v)

Tuyt

}
.

We need that for everyu with parentv and feasible de-
cisions yv, Tu ≥ 000 and 0 ≤ fk−i+1,u(yv) < ∞,
and that there is someR with lnR polynomially bounded
such that eachfk−i+1,u(yv), i < k, has an optimal so-
lution in B(000, R). Let I be the input size,λ be the ratio
max

(
1,maxv,u∈child(v)

wu

wv

)
. The sample average problem

is of the same form as (kG-P), where the probabilityqu is
estimated by the frequencŷqu of outcomeu in the appro-
priate sampled set.

The SAA bound for programs of the form (kG-P) follows
by induction. Theorem 3.5 supplies the base case; the in-
duction step, where we show that an SAA bound for(k−1)-
stage programs of the formfk−1,r yields an SAA bound for
fk,r, follows by dovetailing the arguments in Section 4. As
in the 3-stage case, we formulate a concave-maximization
problemLDk−1,u(x) that is dual tofk−1,u(x), which is
a max-min problem with a(k − 1)-stage primal problem
embedded inside it. Using the induction hypothesis, we ar-
gue that the objective functions of the (slightly modified)
true and sample-average dual programs are close in terms
of their max-subgradients, so that any optimal solution to
the (modified) sample-average dual is a near-optimal solu-
tion to the (modified) true dual. This in turn allows us to
show (essentially) the closeness in subgradients of the sam-



ple average and true functions. Lemma 3.1 completes the
induction step. We obtain the following result, which also
yields a(1 + κ)-guarantee under some mild assumptions.

Theorem 5.1 For any ε, γ > 0, with probability 1 − δ,
any optimal solution̂x to the sample average problem con-
structed usingpoly

(
I, λ

γ , ln( 1
δε )

)
samples satisfiesh(x̂) ≤

(1 + γ) · fk,r + ε.

6. Applications

We consider a number ofk-stage stochastic optimiza-
tion problems, wherek is a constant, for which we prove
the first known performance guarantees. Our algorithms do
not assume anything about the distribution or the cost struc-
ture of the input. Previously, algorithms for these problems
were known only in the 2-stage setting initially in restricted
settings [10, 8, 5], and later without any restrictions [13].
For each of thesek-stage problems, we can write ak-stage
LP for the linear relaxation of the problem for which Theo-
rem 5.1 applies, and round the near-optimal fractional solu-
tion obtained by solving the sample average problem using
an extension of the rounding scheme in [13].

Multicommodity flow We consider a stochastic version
of the concurrent multicommodity flow problem where we
have to buy capacity to install on the edges so that one
can concurrently ship demand of each commodityi from
its sourcesi to its sinkti. The demand is uncertain and is
revealed ink-stages. We can buy capacity on edgee in any
stagei outcomeu at a cost ofcu

e ; and the total amount of
capacity that we can install on an edge is limited by its ca-
pacity Γe. The goal is to minimize the expected capacity
installation cost. We obtain a(1 + ε)-optimal solution.

Covering problems We consider thek-stage versions of
set cover, vertex cover and the multicut problem on trees.
In each of these problems, there are elements in some uni-
verse that need to covered by sets. In thek-stage stochastic
problem, the target set of elements to cover is determined
by a probability distribution, and becomes known after a
sequence ofk stages. In each outcomeu, we can purchase
a setS at a price ofcu

S . We have to determine which sets
to buy in stage I so as to minimize the (expected) total cost
of buying sets. We can generalize the rounding theorem
in [13] to show that aρ-approximation algorithm for the de-
terministic analogue, that uses the natural LP relaxation as a
lower bound, yields a(kρ+ ε)-approximation algorithm for
thek-stage problem. In general, to compute the decisions
in a stagei outcome, we solve a(k− i + 1)-stage problem,
and round the solution. We get performance guarantees of
(k log n + ε) for k-stage set cover, and(2k + ε) for k-stage
vertex cover andk-stage multicut on trees.

Facility location problems In the k-stage uncapacitated
facility location (UFL) problem, we are given some candi-
date facility locations, a set of clients, and a probability dis-
tribution on the client demands that evolves overk-stages.
In each stage, one can buy facilities paying a certain facility
opening cost; in stagek, we know the exact demands and
we have to assign each client’s demand to an open facility
incurring a client assignment cost. The goal is to minimize
the expected total cost. Adapting the procedure in [13], we
obtain aO(k)-approximation algorithms fork-stage UFL,
andk-stage UFL with penalties, or with soft capacities.
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stochastic optimization.Proc. RANDOM, 2005. To appear.

[4] S. Dye, L. Stougie, and A. Tomasgard. The stochastic sin-
gle resource service-provision problem.Naval Research Lo-
gistics, 50(8):869–887, 2003. Also appeared as COSOR-
Memorandum 99-13, Dept. of Mathematics and Computer
Sc., Eindhoven, Tech. Univ., Eindhoven, 1999.

[5] A. Gupta, M. Ṕal, R. Ravi, and A. Sinha. Boosted sampling:
approximation algorithms for stochastic optimization.Proc.
36th STOC, pages 417–426, 2004.
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