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Abstract

The analysis of network routing games typically assumes precise and detailed information about the
latency functions. Such information may, however, be unavailable or difficult to obtain. Moreover, one
is often primarily interested in enforcing a desired target flow as the equilibrium by suitably influencing
player behavior in the routing game. We ask whether one can achieve target flows as equilibria without
knowing the underlying latency functions.

Our main result gives a crisp positive answer to this question. We show that, under fairly general
settings, one can efficiently compute edge tolls that induce a given target multicommodity flow in a
nonatomic routing game using a polynomial number of queries to an oracle. The oracle takes candidate
tolls as input, and returns the resulting equilibrium flow. This result is obtained via a novel application of
the ellipsoid method. Our algorithm extends easily to many other settings, such as (i) when certain edges
cannot be tolled, or there is an upper bound on the total toll paid by a user, and (ii) general nonatomic
congestion games. We obtain tighter bounds on the query complexity for series-parallel networks, and
single-commodity routing games with linear latency functions, and complement these with a query-
complexity lower bound. We also obtain strong positive results for Stackelberg routing to achieve target
equilibria in series-parallel graphs.

Our results build upon various new techniques that we develop pertaining to the computation of, and
connections between, different notions of approximate equilibrium; properties of multicommodity flows
and tolls in series-parallel graphs; and sensitivity of equilibrium flow with respect to tolls. Our results
demonstrate that one can indeed circumvent the potentially onerous task of modeling latency functions,
and yet obtain meaningful results for the underlying routing game.
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1 Introduction

Network routing games are a popular means of modeling settings where a collection of self-interested,
uncoordinated users or agents route their traffic along an underlying network—prominent examples include
communication and transportation networks—and have been extensively studied from various perspectives
in the Transportation Science and Computer Science literature; see, e.g., [41, 4, 30, 31, 16, 23, 43, 44, 40],
and the references therein. These games are typically described in terms of an underlying directed graph
G = (V,E), modeling the network; a set of commodities specified by source-sink pairs and the volume
of traffic routed between them, modeling the different user-types; and latency functions or delay functions
(l∗e : R+ 7→ R+)e∈E on the edges, with l∗e(x) modeling the delay experienced on edge e when volume x
of traffic is present on it. The outcome of users’ strategic behavior is described by an equilibrium traffic
pattern, where no user may unilaterally deviate and reduce her total delay.

The typical means of mathematically investigating network routing games takes the above specification
as input, and thus, assumes, right at the onset, that one has precise, detailed information about the underlying
latency functions. However, such precise information may be unavailable or hard to obtain, especially in
large systems, without engaging in a highly non-trivial and potentially expensive modeling task. In fact,
the task of capturing observed delays via suitable delay functions is a topic of much research in itself in
fields such as queuing theory and transportation science. Recognizing that the modeling task of obtaining
suitable latency functions is often really a means to facilitating a mathematical analysis of the underlying
routing game, we ask whether one can sidestep this potentially demanding task and analyze the routing
game without knowing the underlying latency functions. This is the question that motivates our work.

In routing games, there is often a central authority who has some limited ability to influence agents’
behavior by making suitable changes to the routing game, e.g., imposing tolls on the network edges. This
influence can be used to alleviate the detrimental effects of selfish agent behavior, which might be expressed
both in terms of the agents’ costs (i.e., price of anarchy) and externalities not captured by these (e.g., pollu-
tion costs in a road network). Thus, a natural and well-studied goal in network routing games is to induce
a desirable target traffic pattern as an equilibrium by suitably influencing agents’ behavior. Such a target
traffic pattern may be obtained by, e.g., limiting the traffic on every edge to a fraction of its capacity, or
reducing the traffic near hospitals and schools. It is evident here that suitably modeling the latency functions
is only a means to the end goal of achieving the target traffic pattern. Our work aims to shed light on the
following question: can one achieve this end without the means? The only tool we allow ourselves in order
to study the network, is the same intervention capability that will ultimately be used to create the preferred
flow.

1.1 Our contributions

We initiate a systematic study of network routing games from the perspective of achieving target equilibria
without knowing the latency functions. We introduce a query model for network routing games to study
such questions, and obtain bounds on the query complexity of various tasks in this model.

The query model. We are explicitly given the underlying network G = (V,E), the set of commodities
specified by the source-sink pairs and the demands to be routed between them, and the target multicommod-
ity flow f∗ that we seek to achieve. We do not, however, know the underlying latency functions (l∗e)e∈E .
Instead, the only information that we can glean about the latency functions is via queries to a black box or
oracle (e.g., a simulation procedure) that outputs the equilibrium flow under a specified stimulus to the rout-
ing game. We investigate two methods for influencing agent behavior that have been considered extensively
in the literature, which gives rise to two types of queries.
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We primarily focus on the task of computing edge tolls to induce f∗ (Sections 3 and 5.1). This yields the
following query model: each query consists of a vector of tolls on the edges, and returns the equilibrium flow
that results upon imposing these tolls. The goal is to minimize the number of queries required to compute
tolls that yield f∗ as the equilibrium.

We also explore, in Sections 4 and 5.2.2, the use of Stackelberg routing to induce f∗. Here, we control an
α fraction of the total traffic volume. Each query is a Stackelberg routing, which is a flow of volume at most
α times the total volume, and returns the equilibrium flow under this Stackelberg routing. The goal is to min-
imize the number of queries required to compute a Stackelberg routing that induces f∗ as the equilibrium.

Our results and techniques. Our main result is a crisp and rather sweeping positive result showing that
one can always obtain tolls that induce a given target flow f∗ with a polynomial number of queries (Sec-
tion 3.1). With linear latency functions, our algorithm computes tolls that enforce f∗ exactly (Theorem 3.2).
With more general latency functions, such as convex polynomial functions, equilibria may be irrational, so
it is not meaningful to assume that a query returns the exact equilibrium. Instead, we assume that each query
returns a (suitably-defined) approximate equilibrium and obtain tolls that enforce a flow that is component-
wise close to f∗ (Theorem 3.6).

The chief technical novelty underlying these results is an unconventional application of the ellipsoid
method. We view the problem as one where we are searching for the (parameters of the) true latency
functions l∗ and tolls that induce f∗. It is information-theoretically impossible, however, to identify l∗ (or
even get close to it) in the query model since—as is the case even when G is a single edge—there may be no
way of distinguishing two sets of latency functions. The key insight is that, notwithstanding this difficulty,
if the current candidate tolls τ do not enforce f∗, then one can use the resulting equilibrium flow to identify
a hyperplane that separates our current candidate (l, τ) from the true tuple (l∗, τ∗). This enables one to use
the machinery of the ellipsoid method to obtain tolls enforcing f∗ in a polynomial number of queries.

Our ellipsoid-method based algorithm is quite versatile and can be easily adapted to handle various
generalizations (Section 3.2). For instance, we can incorporate any linear constraints that tolls inducing
f∗ must satisfy, which one can separate over. This captures constraints where we disallow tolls on certain
edges, or place an upper bound on the total toll paid by an agent. All our machinery extends seamlessly to
the more-general setting of nonatomic congestion games. Finally, another notable extension is to the setting
of atomic splittable routing games under the assumption that the equilibrium is unique.

In Sections 3.3 and 3.4, we devise algorithms with substantially improved query complexity for (a)
multicommodity routing games on series-parallel (sepa) networks, and (b) single-commodity routing games
on general networks, both with linear latency functions. For (a), we exploit the combinatorial structure of
sepa graphs to design an algorithm with near-linear query complexity. We show that any toll-vector in a sepa
graph can be converted into a simpler canonical form, which can be equivalently viewed in terms of certain
labelings of the subgraphs of the sepa graph obtained via parallel joins; leveraging this yields an algorithm
with near-linear query complexity. Our algorithm works more generally whenever we have an oracle that
returns the (exact) equilibrium. For (b), we prove that (roughly speaking) the equilibrium flow is a linear
function of tolls, and use linear algebra to infer the constants defining this linear map in Õ(|E|2) queries.

Complementing these upper bounds, we prove an Ω(|E|) lower bound (Theorem 5.1) on the query com-
plexity of computing tolls that induce a target flow, even for single-commodity routing games on parallel-link
graphs with linear delays. This almost matches the query complexity of our algorithm for sepa graphs.

En route to obtaining the above results, we prove various results that provide new insights into net-
work routing games even in the standard non-black-box model where latency functions are known. For
instance, we obtain results on: (a) the computation of approximate equilibria and their properties (Lem-
mas 3.4 and 3.5); (b) structural properties of tolls and multicommodity flows in sepa graphs (Section 3.3);
and (c) sensitivity of equilibrium flow with respect to tolls (Theorem 3.24). We believe that these results and
the machinery we develop to obtain them are of independent interest and likely to find various applications.
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In Section 4, we investigate the use of Stackelberg routing to induce a given target flow. Stackelberg
routing turns out to be significantly harder to leverage than edge tolls in the query model. This is perhaps
not surprising given that designing effective Stackelberg routing strategies turns out to be more difficult than
computing suitable edge tolls, even in the standard non-black-box setting where latency functions are given
(see, e.g., [33, 9]). Nevertheless, we build upon the machinery that we develop for sepa graphs to give an
efficient and general combinatorial algorithm that finds the desired Stackelberg routing using at most |E|
queries to an oracle returning equilibrium flows. This applies to any strictly increasing latency functions,
and in particular, to linear latency functions. (Observe that this query complexity is even better than our
query-complexity bound for inducing flows via tolls on sepa graphs.) Moreover, our algorithm determines
the Stackelberg routing of smallest volume that can induce f∗.

We obtain various lower bounds in Section 5.2.2 that allude to the difficulty of computing a Stackelberg
routing in general networks that induces a target flow. One possible strategy for finding such a Stackelberg
routing is to use the queries to infer an (approximately) “equivalent” set of delay functions l, in the sense
that any Stackelberg routing yields the same (or almost the same) resulting equilibrium under the two sets
of delay functions. Then, since given the latency functions, it is easy to compute a Stackelberg routing that
induces a target flow (see Lemma 2.2), one can find the desired Stackelberg routing. Theorem 5.8 shows
that such an approach cannot work: in the query model, any algorithm that learns even an approximately
equivalent set of delay functions must make an exponential number of queries. Theorem 5.10 proves an
orthogonal computational lower bound showing that determining the equivalence of two given sets of latency
functions is an NP-hard problem. As in the case of tolls, along the way, we uncover a new result about the
hardness of Stackelberg routing. We show that the problem of finding a Stackelberg routing that minimizes
the average delay of the remaining equilibrium flow is NP-hard to approximate within a factor better than
4/3 (Theorem 5.13). The query complexity of finding a Stackelberg routing in general networks that induces
a target flow remains an interesting open question for further research.

Our results on tolls and Stackelberg routing demonstrate that it is indeed possible to circumvent the
potentially-onerous task of modeling latency functions, and yet obtain meaningful results for the underlying
routing game. Our array of upper- and lower- bound results indicate the richness of the query model, and
suggest a promising direction for further research.

1.2 Related work

Network routing/congestion games with nonatomic players—where each player controls an infinitesimal
amount of traffic and there is a continuum of players—were first formally studied in the context of road traf-
fic by Wardrop [41], and the equilibrium notion in such games is known as Wardrop equilibrium after him.
Network routing games have since been widely studied in the fields of Transportation Science, Operations
Research, and Computer Science; see, e.g., the monographs [30, 31] and the references therein. We limit
ourselves to a survey of the results relevant to our work.

Equilibria are known to exist in network routing games, even with atomic players with splittable flow [28].
Nonatomic equilibria are known to be essentially unique, but this is not the case for atomic splittable routing
games, where uniqueness criteria were recently obtained by Bhaskar et al. [6]. Equilibria in routing games
are known to be inefficient, and considerable research in algorithmic game theory has focused on quantify-
ing this inefficiency in terms of the price of anarchy (PoA) [24, 26] of the game, which measures, for a given
objective, the worst-case ratio between the objective values of an equilibrium and the optimal solution. A
celebrated result of Roughgarden [32], and Roughgarden and Tardos [37] gives tight bounds on the PoA for
nonatomic routing games for the social welfare objective. Recently, similar results were obtained for the
PoA in atomic splittable routing games [19, 36].

Given the inefficiency of equilibria, researchers have investigated ways of influencing player behavior so
as to alleviate this inefficiency. The most common techniques studied to influence player behavior in network
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congestion games are the imposition of tolls on the network edges, and Stackelberg routing. Network tolls
are a classical means of congestion control, dating back to Pigou [27], and various results have demonstrated
their effectiveness for both nonatomic routing [4, 10, 16, 23, 43] and atomic splittable routing [40, 44]
showing that any minimal flow (in particular, an optimal flow) can be enforced via suitable efficiently-
computable tolls. Stackelberg routing has also been well studied, and it is known that this is less effective in
reducing the PoA. Whereas they can help in reducing the PoA to a constant for certain network topologies
such as parallel-link graphs [33] and series-parallel graphs [40], it is known that this is not possible for
general graphs [9]. Furthermore, it is known that it is NP-hard to compute the Stackelberg routing that
minimizes the total cost at equilibrium, even for parallel-link graphs with linear delay functions [33]; a
PTAS is known [25] for parallel-link graphs. All of these results pertain to the setting where one is given
the latency functions.

To our knowledge, before our work, our query model was not studied in the literature. It is useful to
contrast our query model with work in empirical game theory, which also studies games when players’ costs
are not explicitly given. In empirical game theory, each query specifies a (pure or mixed) strategy-profile,
and returns the (expected) cost of each player under this strategy profile. In contrast, in our query model,
we observe the equilibrium flow instead of individual player delays. This is more natural in the setting of
routing games: in the absence of knowledge of the latency functions, one may only be able to calculate
player delays under a strategy profile by routing players along the stipulated paths (and then observing
player delays); but this may be infeasible since one cannot in fact impose routes on self-interested players.
Moreover, whereas our goal is to obtain a desirable outcome as the equilibrium, the focus in empirical game
theory is to compute an (approximate) equilibrium. Generic approaches to generate strategy-profiles for
this purpose, and examples where these have proved useful are discussed by Wellman [42]. An oblivious
algorithm that does not depend on player utilities, and instead uses best-responses to compute a pure Nash
equilibrium in bimatrix games was given by Sureka and Wurman [39]. Starting with [35], various papers
have studied the complexity of computing an exact or approximate correlated equilibrium in multi-player
games using both pure- and mixed-strategy queries [2, 20, 21]. More recently, Fearnley et al. [14] study
algorithms in the empirical-game-theory model for bimatrix games, congestion games, and graphical games,
and obtain various bounds on the number of queries required for equilibrium computation.

A problem closely related to that studied in our paper is to efficiently learn parameters of the model from
observing equilibrium behavior in response to stimuli. This is known as learning from revealed preferences.
In the single-buyer problem, a single agent has a utility function over a set of goods, and chooses goods
given a set of prices and a budget. Efficient algorithms for learning the utility function are known for
this problem for various classes of utility functions, both in the statistical model when prices and budgets
are drawn from a distribution [45, 3], and in the query model, when the algorithm can choose prices and
budgets [3]. The problem of profit-maximization for a seller faced with such a buyer is studied by Amin
et al. [1]. For linear utilities, they give an algorithm for which the regret of the seller decreases linearly
in the number of queries. For the case of multiple buyers with linear utilities, when the response to prices
for goods consists of aggregate demands from the buyers, Bei et al. give efficient algorithms that learn the
utilities of the buyers [5]. Finally, Roth et al. [29] consider the problem of obtaining optimal outcomes in
games, such as minimum-cost flow in nonatomic routing games and profit-maximizing prices in the single-
buyer problem, when the parameters are unknown but equilibrium behavior is observed, and give efficient
algorithms. Specialized to nonatomic routing games, their algorithm uses the inducement of a target flow as
equilibrium as a subroutine. However, in contrast to our work, they use a tatonnement-like process to induce
a given flow as equilibrium instead of the ellipsoid method.
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2 Preliminaries and notation

A nonatomic routing game (or simply a routing game) is denoted by a tuple Γ = (G, l,K), where G =
(V,E) is a directed graph with m edges and n nodes, l = (le)e∈E is a vector of latency or delay functions
on the edges of the graph, andK = {(si, ti, di)}i≤k is a set of k triples denoting sources, sinks, and demands
for k commodities. The delay function le : R+ 7→ R+ gives the delay on edge e as a function of the total
flow on the edge. (Here, R+ is the set of nonnegative reals.) We assume that le is continuous and strictly
increasing. For each commodity i, the demand di specifies the volume of flow that is routed from si to ti
by self-interested agents, each of whom controls an infinitesimal amount of flow and selects an si-ti path as
her strategy. The strategies selected by the agents thus induce a multicommodity flow (f i)i≤k, where each
f i = (f ie)e∈E is an si-ti flow of value di. That is, the vector f i = (f ie)e satisfies:

f i ≥ 0,
∑

(v,w)∈E

f ivw −
∑

(u,v)∈E

f iuv = 0 ∀v ∈ V \ {si, ti},
∑

(s,w)∈E

f isw −
∑

(u,s)∈E

f ius = di.

We call f = (f i)i≤k a feasible flow. We say that f is acyclic if {e : f ie > 0} is acyclic for every commodity
i. We overload notation and use f to also denote the total-flow vector f =

∑
i≤k f

i. For a path P , we use
fP > 0 to denote fe > 0 for all e ∈ P . We sometimes refer to

⋃
i{si, ti} as the terminals of the routing

game or multicommodity flow. Given an s-t flow f , we use |f | to denote the value of f .
Let P i denote the collection of all si-ti paths. Given a multicommodity flow (f i)i≤k induced by the

agents’ strategies, the delay of an agent that selects an si-ti path P is the total delay, lP (f) :=
∑

e∈P le(fe),
incurred on the edges of P . Each agent in a routing game seeks to minimize her own delay. To analyze the
resulting strategic behavior, we focus on the concept of a Nash equilibrium, which is a profile of agents’
strategies where no individual agent can reduce her delay by changing her strategy, assuming other agents
do not change their strategies. In nonatomic routing games, this is formalized by the notion of Wardrop
equilibrium.

Definition 2.1. A multicommodity flow f̂ is a Wardrop equilibrium (or simply an equilibrium) of a routing
game Γ if it is feasible and for every commodity i, and all paths P , Q ∈ P i with f̂ iP > 0, we have
lP (f̂) ≤ lQ(f̂).

A Wardrop equilibrium can be computed by solving the following convex program:

min Φ(f) :=
∑
e

∫ fe

0
le(x) dx s.t. f =

k∑
i=1

f i, f i is an si-ti flow of value di ∀i = 1, . . . , k. (1)

Given a routing game Γ and a feasible flow f , define Di(l, f) := minP∈Pi lP (f) for each commodity
i, and call an edge e a shortest-path edge for commodity i with respect to f if e lies on some path P ∈ P i
such that lP (f) = Di(l, f). Let Si(l, f) be the set of shortest-path edges for commodity i with respect to f .

Tolls, Stackelberg routing, and our query model. We investigate both the use of edge tolls and Stack-
elberg routing to induce a given target flow. Tolls are additional costs on the edges that are paid by every
player that uses the edge. A vector of tolls τ = (τe)e ∈ R

E
+ on the network edges thus changes the de-

lay function on each edge e to lτe (x) := le(x) + τe, and so the delay of an agent who chooses P is now
lP (f) + τ(P ), where τ(P ) :=

∑
e∈P τe. We use f(l, τ) to denote the equilibrium flow obtained with delay

functions l = (le)e and tolls τ = (τe)e. We say that τ enforces a multicommodity flow f with latency
functions l if the total flow f(l, τ)e = fe on every edge e.

For Stackelberg routing, in keeping with much of the literature, we focus on single-commodity routing
games. Given a single-commodity routing game Γ = (G, l, (s, t, d)) and a parameter α ∈ [0, 1], a central
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authority controls at most an α-fraction of the total s-t flow-volume d and routes this flow in any desired
way, and then the remaining traffic routes itself selfishly. That is, a Stackelberg routing g is an s-t flow
of value at most αd, which we call the Stackelberg demand. The Stackelberg routing g modifies the delay
function on each edge e to l̃e(g;x) := le(x + ge). The remaining (1 − α)d volume of traffic routes itself
according to a Wardrop equilibrium, denoted by f(l, g), of the instance (G, l̃, (1 − α)d). The total flow
induced by a Stackelberg routing g is thus g + f(l, g).

We shorten f(l, τ) to f(τ), and f(l, g) to f(g) when l is clear from the context.
In our query model, we are given the graph G, the commodity set K = {(si, ti, di)}i≤k, and a feasible

target multicommodity flow f∗. There is an underlying routing game Γ = (G, l∗,K), to which we are given
query access. If our method of influencing equilibria is via tolls, then the oracle takes a toll-vector τ as input
and returns the equilibrium flow f(l∗, τ) or a (suitably-defined) approximate equilibrium. Our goal is to
minimize the number of queries required to compute tolls τ∗ such that f(l∗, τ∗) = f∗.

If our method of influencing equilibria is via Stackelberg routing, then we are also given the parameter
α ∈ [0, 1]. Each query takes a Stackelberg routing g with |g| ≤ αd as input and returns the flow f(l∗, g).
Our goal is to minimize the number of queries required to compute a Stackelberg routing g∗ of value at most
αd such that f(l∗, g∗) + g∗ = f∗, or determine that no such Stackelberg routing exists.

Properties of equilibria. The following facts about Wardrop equilibria, network tolls, and Stackelberg
routing will be useful. Recall that the delay functions are nonnegative, continuous, and strictly increasing.

• A feasible flow f is an equilibrium flow iff
∑

e(fe−ge)le(fe) ≤ 0 for every feasible flow g; see, e.g., [30].
Thus, the total-flow vector (fe)e induced by an equilibrium flow is unique for strictly increasing delay
functions.

• Every routing game admits an acyclic Wardrop equilibrium f̂ . If the delay functions are polynomial-time
computable, then one can solve (1) and compute: (i) f̂ in polynomial time for linear delay functions; (ii)
an acyclic flow f such that Φ(f) ≤ Φ(f̂) + ε in time poly

(
input size, log(1ε )

)
. See, e.g., [30], for details.

• Every minimal feasible flow f is enforceable via tolls [16, 23, 43], where f is minimal if there is no other
feasible flow g 6= f such that ge ≤ fe for every edge e. Given the edge delays

(
le(fe)

)
e
, these tolls can

be computed by solving an LP, and are rational provided the commodity demands (di)i and the delays(
le(fe)

)
e

are rational.

The following lemma was essentially shown in [22]; we include a self-contained proof in Appendix A.

Lemma 2.2. Let (G, l, (d, s, t), α) be a Stackelberg routing instance, and f∗ be a feasible flow. Then,
f(g) + g = f∗ for a Stackelberg routing g iff ge ≤ f∗e for every edge e, and ge = f∗e for all e 6∈ S(l, f∗).

Standard delay functions and encoding length. Our results hold for a broad class of underlying delay
functions, that we now formally describe. We assume that we have an estimate U such that the target flow
f∗, the parameters of the unknown true delay functions (l∗e)e, and the quantities that we seek to compute—
tolls τ∗ or the Stackelberg routing g∗ inducing f∗—all have encoding length O(logU). So we may assume
that every f∗e , τ∗e , g∗e value is a multiple of 1

U , and is at most U . Throughout, we use I to denote the input
size. We view U as part of the input, so I ≥ logU and is at least the encoding length of the given routing
game.

When considering non-linear delay functions, we assume that the l∗es are convex functions with dl∗e(x)
dx ≥

1
U for all x ≥ 0. Although some of our results apply in more general settings (in particular, the ellipsoid-
based method for computing tolls), we will often assume that the l∗es have a convenient parametric form,
namely, they are (convex) polynomials of degree at most some known constant r. Given the O(logU)
encoding length, we may assume that all coefficients lie in [0, U ] and and are multiples of 1

U . We refer to
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such functions as standard degree-r polynomials. Under these conditions, it is easy to show (see Lemma 2.3)
that there is some constant K := K(r) = poly(U,

∑
i di) such that every delay function l∗e satisfies

(x− y)
(
l∗e(x)− l∗e(y)

)
≤ ε2

K =⇒ |x− y| ≤ ε for all x, y, ε ≥ 0 (2)

|l∗e(x)− l∗e(y)| ≤ K|x− y| for all x, y ∈ [0,
∑

i di] (3)

l∗e(2x) ≤ Kl∗e(x) for all x ≥ 0 (4)

These properties are referred to as inverse-K-continuity, K-Lipschitz, and K-growth-boundedness re-
spectively.

Lemma 2.3. Let l(x) = a0 + a1x+ . . .+ arx
r be a convex degree-r polynomial such that a1 > 0, and all

ais lie in [0, U ] and are multiples of 1
U . Then l satisfies (2)–(4) with K = max{U, 2r, rU(

∑
i di)

r−1}.

Proof. Let l′(x) := dl(x)
dx denote the derivative of l. Since l is convex, we have |l(x) − l(y)| ≥ |x − y| ·

l′(min{x, y}) ≥ |x − y| · l′(0) ≥ |x − y|/U . Therefore, (x−y)2
U ≤ (x − y)

(
l(x) − l(y)

)
≤ ε2

K and so
|x− y| ≤ ε.

Again, by convexity, |l(x) − l(y)| ≤ |x − y| · l′(max{x, y}) and l′(z) ≤ rU(
∑

i di)
r−1 ≤ K for all

z ≤
∑

i di.
Finally, it is clear that l(2x) ≤ 2rl(x) ≤ Kl(x) for all x ≥ 0. �

Asymptotic notation, NP-hard-ness, and inapproximability Our goal in this paper is to obtain asymp-
totic bounds, both upper and lower, on the problem of enforcing a target flow. While our primary concern
is the number of queries, in Section 5 we will also be concerned with computational complexity. We fre-
quently employ asymptotic notation to denote the complexity (query or time) of our algorithms and lower
bounds. In particular, the notation Õ(f(n)) is used to denote a function that asymptotically grows no faster
than cf(n) logk n for some constants c, k, independent of the input. That is, the polylogarithmic factors
are “hidden”. A good reference for a fuller introduction to asymptotic notation, and other concepts in this
subsection, is [12].

Unlike query complexity, where unconditional lower bounds can be obtained frequently, for computa-
tional complexity very few unconditional lower bounds are known. Instead, a standard practice for showing
computational lower bounds for a problem is to show that the problem is NP-hard. The class of NP-hard
problems consists of those for which no polynomial-time algorithms are unknown, and in fact a polynomial-
time algorithm for a single such problem would give polynomial-time algorithms for the entire related class
of NP-complete problems. The standard method for showing a problem (say P) is NP-hard is to give a
polynomial-time reduction from an existing NP-hard problem (say Q). Thus if one can solve P in polyno-
mial time, one can also solve Q, which was known to be NP-hard. We use this in Section 5. For NP-hard
problems, since it is unlikely that an exact solution can be obtained in polynomial time, one can then ask
if an approximate solution with a particular approximation ratio — with approximation ratio appropriately
defined — can be obtained in polynomial time. We can extend the notion of NP-hard-ness to hardness of
obtaining such approximate solutions as well. The class of APX-hard problems are those for which there
exists a constant, such that it is NP-hard to obtain a solution with an approximation ratio better than the
constant.

3 Inducing target flows via tolls

Recall that here we seek to compute tolls that enforce a given target flow f∗ given black-box access to
a routing game Γ ∗ = (G, l∗, (si, ti, di)i≤k), i.e., without knowing l∗. Our main result is a crisp positive
result showing that we can always achieve this end with a polynomial number of queries by leveraging the
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ellipsoid method in a novel fashion (Section 3.1). Our algorithm computes tolls that enforce: (a) f∗ exactly,
for standard linear latency functions (where it is reasonable to assume that the black box returns the exact
equilibrium); and (b) a flow that is component-wise close to f∗, for standard polynomial functions, where
we now assume that each query only returns an approximate equilibrium (see Definition 3.3). The main
idea here is to view the parameters of the latency functions and the tolls as variables, and use the ellipsoid
method to search for the tuple (l∗, τ∗), where τ∗ is such that f(l∗, τ∗) = f∗. The key observation is that
although we cannot hope to nail down l∗, given a candidate (l, τ) such that f(l∗, τ) 6= f∗, one can derive a
hyperplane separating (l, τ) from (l∗, τ∗) using f∗ and the equilibrium flow f(l∗, τ) returned by our oracle.

We showcase the versatility of our algorithm by showing that it is easily adapted to handle various
extensions (Section 3.2). For instance, we can impose any linear constraints on tolls given by a separation
oracle; examples include the constraint that certain edges cannot be tolled or that the total toll paid by a user
is at most a given budget. Other notable extensions include the extension to general nonatomic congestion
games, and to atomic splittable routing games under the assumption that the equilibrium is unique.

Finally, we devise algorithms with significantly improved query complexity for multicommodity routing
games on series-parallel (sepa) networks (Section 3.3), and single-commodity routing games on general
networks (Section 3.4), both with linear latency functions. We exploit the combinatorial structure of sepa
graphs to design an algorithm with near-linear query complexity, which almost matches the linear lower
bound shown in Theorem 5.1 for even parallel-link graphs with linear latencies. For single-commodity
routing games on general graphs with linear latencies, we show that flows are linear functions of tolls and
infer this linear map using Õ(m2) queries.

3.1 An ellipsoid-method based algorithm for general routing games

The ellipsoid method for finding a feasible point starts by containing the feasible region within a ball and
generates a sequence of ellipsoids of successively smaller volumes. In each iteration, one examines the
center of the current ellipsoid. If this is infeasible, then one uses a violated inequality to obtain a hyper-
plane, called a separating hyperplane, to separate the current ellipsoid center from the feasible region. One
then generates a new ellipsoid by finding the minimum-volume ellipsoid containing the half of the current
ellipsoid that includes the feasible region. We utilize the following well-known theorem about the ellipsoid
method.

Theorem 3.1 ([18]). Let X ⊆ R
n be a polytope described by constraints having encoding length at most

M . Suppose that for each y ∈ Rn, we can determine if y /∈ X and if so, return a hyperplane of encoding
length at most M separating y from X . Then, we can use the ellipsoid method to find a point x ∈ X or
determine that X = ∅ in time poly(n,M).

Linear latencies. We first consider the case where each latency function l∗e(x) is a standard linear function
of the form a∗ex + b∗e, and our black box returns the exact equilibrium flow induced by the input (rational)
tolls. Thus, for every e, a∗e ∈ (0, U), b∗e ∈ [0, U ], and a∗e, b

∗
e are multiples of 1

U . In a somewhat atypical use
of the ellipsoid method, we use the ellipsoid method to search for the point (a∗e, b

∗
e, τ
∗
e )e. Abusing notation

slightly, for a linear latency function l(x) = ax+ b, we use l to also denote the tuple (a, b).

Theorem 3.2. Given a target acyclic multicommodity flow f∗ and query access to Γ ∗, we can compute
tolls that enforce f∗ or determine that no such tolls exist, in polynomial time using a polynomial number of
queries.

Proof. We utilize the ellipsoid method and Theorem 3.1. Given the center (l̂ = (âe, b̂e)e, τ̂) of the current
ellipsoid, we first check if â, b̂, τ̂ ≥ 0, and if not, use the violated constraint as the separating hyperplane.
Next, we use the black box to obtain g = f(l∗, τ̂). If g = f∗, then we are done. Otherwise, we obtain
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a separating hyperplane of encoding length poly(I) as follows. (Note that the encoding length of (l̂, τ̂) is
poly(I).) We consider two cases.
Case 1: f(l̂, τ̂ ) 6= f∗. Note that we can determine this without having to compute the equilibrium flow
f(l̂, τ̂). Since f∗ is acyclic, we can efficiently find a commodity i, and si-ti paths P,Q such that f∗P > 0 and
l̂P (f∗)+τ̂(P ) > l̂Q(f∗)+τ̂(Q). But since f∗ = f(l∗, τ∗), we also have l∗P (f∗)+τ∗(P ) ≤ l∗Q(f∗)+τ∗(Q).
Thus, the inequality

lP (f∗) + τ(P ) ≤ lQ(f∗) + τ(Q)

where the parameters of l and τ are variables yields the desired separating hyperplane.
Case 2: f(l̂, τ̂ ) = f∗. Now since g 6= f∗ and is acyclic, we can again find efficiently a commodity i and
paths P,Q ∈ P i such that gP > 0 and l̂P (g) + τ̂(P ) > l̂Q(g) + τ̂(Q). Since g = f(l∗, τ̂), we also have
l∗P (g) + τ̂(P ) ≤ l∗Q(g) + τ̂(Q). Thus, the inequality lP (g) + τ̂(P ) ≤ lQ(g) + τ̂(Q), where now only the les
are variables, yields the desired separating hyperplane. �

Polynomial latency functions and approximate equilibria. We now consider the setting where the la-
tency functions (l∗e)e are standard degree-r polynomials, where r is a known constant. As before, we also
use l to denote the tuple of coefficients of the polynomial given by l. Since the Wardrop equilibrium may
now require irrational numbers, it is unreasonable to assume that a query returns the equilibrium flow. So
we assume that our black box returns an acyclic approximate equilibrium and show that we can nevertheless
compute tolls that induce an equilibrium that is component-wise close to f∗. We first define approximate
equilibria. Recall that Di(l, f) = minP∈Pi lP (f), and given tolls τ , we define lτe (x) := le(x) + τe.

Definition 3.3. We say that a feasible flow f is an ε-approximate equilibrium, or simply an ε-equilibrium,
of a routing game (G, l, (si, ti, di)i≤k) if

∑
e fele(fe) ≤

∑
i di
(
Di(l, f) + ε

)
.

Notice that our approximate-equilibrium notion is implied by the more-stringent (and oft-cited) condi-
tion requiring that if fP > 0 for P ∈ P i then lP (f) ≤ Di(l, f) + ε. Importantly, our notion turns out to be
weak enough that one can argue that an acyclic ε-equilibrium can be computed in time poly

(
I, log(1ε )

)
for

any ε > 0, which lends credence to our assumption that the black box returns an acyclic ε-equilibrium, and
yet is strong enough that one can leverage it within the framework of the ellipsoid method (see Theorem 3.6).
Unless otherwise stated, when we refer to a routing game below, we assume that the latency functions satisfy
the mild conditions (2)–(4), with logK being polynomially bounded. The following Lemma is proved in
Appendix B.

Lemma 3.4. Given a routing game with polynomial-time computable latency functions, one can compute
an acyclic ε-equilibrium in time poly

(
I, log(1ε )

)
.

Lemma 3.5. Let f̂ be a Wardrop equilibrium and g be an ε-equilibrium of a routing game (G, l, (si, ti, di)i≤k).
Then, ‖g − f̂‖∞ := maxe |ge − f̂e| ≤

√
Kε
∑

i di.

Proof. We have
∑

e gele(ge) ≤
∑

i di
(
Di(l, g) + ε

)
and

∑
e f̂ele(ge) ≥

∑
i diD

i(l, g). So
∑

e(ge −
f̂e)le(ge) ≤ ε

∑
i di. Also,

∑
e(f̂e − ge)le(f̂e) ≤ 0. So

∑
e(ge − f̂e)

(
le(ge) − le(f̂e)

)
≤ ε

∑
i di. Each

term of this summation is nonnegative and hence, at most ε
∑

i di; therefore, |ge − f̂e| ≤
√
Kε
∑

i di by
inverse-K-continuity. �

Define an ε-oracle for tolls to be an oracle that receives tolls τ ∈ RE+ as input and returns an ε-equilibrium
of the routing game (G, l∗τ , (si, ti, di)i≤k) having encoding length poly

(
I, log(1ε )

)
.

Theorem 3.6. Let f∗ be a target acyclic multicommodity flow and δ > 0. Let ε = δ2

Kmk
∑
i di

. Then,

in time poly
(
I, log(1δ )

)
and using poly

(
I, log(1δ )

)
ε-oracle queries, we can compute tolls τ such that

‖f(l∗, τ)− f∗‖∞ ≤ 2δ or determine that no such tolls exist.
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Proof. As before, we use the ellipsoid method. Let (l̂, τ̂) be the center of the current ellipsoid. Assume
that l̂, τ̂ ≥ 0 and each function l̂e has slope at least 1

U ; otherwise, we can use a violated constraint as the
separating hyperplane. We use the oracle with toll-vector τ̂ to obtain an acyclic ε-equilibrium flow g. Then,
we have ‖g − f(l∗, τ̂)‖∞ ≤

√
Kε
∑

i di = δ/
√
mk by Lemma 3.5.

We can efficiently determine if f(l̂, τ̂) 6= f∗, and if so, then as in Case 1 in the proof of Theorem 3.2,
we can obtain a separating hyperplane of encoding length poly

(
I). So assume otherwise.

Now we check if g is an mkε-equilibrium for the latency functions (l̂τ̂e )e. If so, then ‖g−f∗‖∞ ≤ δ and
so ‖f(l∗, τ̂)−f∗‖∞ ≤ 2δ and we are done. Otherwise, we find a valid path-decomposition x = (xi,P )i,P∈Pi
of g having support of size at most mk. That is, we have x ≥ 0,

∑
P∈Pi xi,P = di for every commodity i,∑

i

∑
P∈Pi:e∈P xi,P = ge for all e, and

∑
i |{P : xi,P > 0}| ≤ mk. We may assume that every non-zero

xi,P value has encoding length that is polynomial in I and the size of g. Then∑
i

∑
P∈Pi

xi,P
(
l̂τ̂P (g)−Di(l̂τ̂ , g)

)
=
∑
e

ge l̂
τ̂
e (ge)−

∑
i

diD
i(l̂τ̂ , g) > mkε

∑
i

di

where the last inequality follows since g is not an mkε-equilibrium for (l̂τ̂e )e. Since the support of x has size
at most mk, this implies that there is some commodity j and some path R ∈ Pj such that xj,R

(
l̂τ̂R(g) −

Dj(l̂τ̂ , g)
)
> ε

∑
i di. Moreover, we can find such a j and path R ∈ Pj efficiently by simply enumerating

the paths in the support of x. Let Q ∈ Pj be such that l̂τ̂Q(g) = Dj(l̂τ̂ , g).
Since g is an ε-equilibrium for the latency functions (l∗τ̂e )e, again considering the path-decomposition

x, we have
∑

i

∑
P∈Pi xi,P

(
l∗τ̂P (g)−Di(l∗τ̂ , g)

)
≤ ε

∑
i di. Each term in this sum is nonnegative, so each

term is at most ε
∑

i di. In particular, we have xj,R
(
l∗τ̂R (g)−l∗τ̂Q (g)

)
≤ xj,R

(
l∗τ̂R (g)−Dj(l∗τ̂ , g)

)
≤ ε

∑
i di.

So the inequality xj,R
(
lR(g)+ τ̂(R)−lQ(g)− τ̂(Q)

)
≤ ε

∑
i di, with les as the variables, is valid for (l∗, τ∗)

but is violated by (l̂, τ̂). This yields a separating hyperplane of encoding length poly
(
I, log(1ε )

)
. �

General latency functions. We now consider the setting where the l∗es are arbitrary nonnegative, contin-
uous, convex, strictly increasing functions. Let D =

∑
i di. Abstracting away the properties underlying

standard polynomial functions, we assume that we have estimates U ∈ Z+, and σγ ∈ (0, 1] for all γ > 0
such that the l∗es satisfy:

l∗e(x) ∈ [0, U ],
dl∗e(x)

dx
∈
[

1

U
, U

]
, l∗e

(
(1+σγ)x

)
≤ (1+γ)l∗e(x) ∀γ > 0 for all x ∈ [0, D] (5)

It is not hard to see that the bounds on
{dl∗e
dx

}
e

imply that the l∗es satisfy (2), (3) with K = U ; the third
condition above can be viewed as a refinement of (4). We assume (as before) that every f∗e and τ∗e value is a
multiple of 1

U ; we also assume that D is a multiple of 1
U . As before, we assume that U is specified with the

input so I ≥ logU .
Let δ > 0 be a parameter specifying that the tolls τ we compute should satisfy ‖f(l∗, τ)−f∗‖∞ = O(δ).

We will adapt our ellipsoid-based algorithm to obtain an algorithm with query-complexity poly
(
I, 1

σγ
, log(1δ )

)
,

where γ = poly
(

δ
UDmk

)
. Unlike before, we do not now have a convenient parametric representation for the

l∗es, so the chief new ingredient here is to come up with a compact discretized representation of the l∗es that
does not incur much loss, and then use the ellipsoid method to infer this representation (or obtain suitable
tolls enroute). We first describe the discretized representation (Definitions 3.7, 3.8) and show that it satisfies
some useful properties (Lemma 3.9), and then show how we can leverage the ellipsoid method to work with
this representation (Theorem 3.11).

For any B > 0 and x ∈ R, we use bxcB := bBxc /B to denote the largest multiple of 1/B that is at
most x. Similarly, dxeB := dBxe /B denotes the smallest multiple of 1/B that is at least x. Set ε = δ2

UDmk
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and γ = ε
UDm , and let σ = σγ . Let U1 = U dm/εe and U2 = U1U . Roughly speaking, the discretized

version of l∗e records dl∗e(x)eU2
for all points of the form (1+σ)i

U1
in [0, D]. More precisely, define

X = {0, D} ∪ {f∗e : e ∈ E} ∪
{⌊

(1+σ)i

U1

⌋
U1

,
⌈
(1+σ)i

U1

⌉
U1

: i ≥ 0, (1+σ)i

U1
≤ D

}
.

Observe that M := |X| = O
( log(DU1)

σ

)
= poly

(
I, 1σ

)
, all points in X are multiples of 1

U1
, and X ⊆ [0, D]

since D is a multiple of 1
U . Let X = {x1, x2, . . . , xM}, where x1 = 0 < x2 < . . . < xM = D. Note that

x2 ≤ x1 + 1
U1

and xi+1 ≤ (1 + σ)xi for all i = 2, . . . ,M − 1.

Definition 3.7. Let l : R+ 7→ R+. The discretization of l is specified by the vector l⊥ :=
(
dl(x)eU2

)
x∈X .

Definition 3.8. Given any v ∈ R
X
+ , we define the interpolation of v, denoted by ιv, to be the following

piecewise-linear function with domain [0, D]:

ιv(x) := vxi +
vxi+1 − vxi
xi+1 − xi

· (x− xi) ∀x ∈ [xi, xi+1], ∀i = 1, . . . ,M − 1.

Lemma 3.9. Let l : R+ 7→ R+ be a function satisfying (5). Let l⊥ ∈ R
X
+ be the discretization of l, and

l̃ : [0, D] 7→ R+ be the interpolation of l⊥ (i.e., l̃ = ιl
⊥

). Then, the following hold.
(i) l(x) ≤ l̃(x) ≤ U for all x ∈ [0, D]

(ii) l̃(x) ≤ l(x) + 1
U2

for all x ∈ X , and l̃(x) ≤ (1 + γ)l(x) + U
U1

+ 1
U2

for all x ∈ [0, D] \X

(iii) The slope of each linear segment of l̃ lies in
[
1
U , U

]
.

Proof. We have l(x) ≤ l⊥x ≤ l(x)+ 1
U2

for all x ∈ X by definition. Also, since l(x) ≤ U andU is a multiple
of 1

U2
, we have l⊥x ≤ U for all x ∈ X . For every x ∈ [0, D], l̃(x) is either l⊥x or a convex combination

αl⊥a + (1− α)l⊥b for some α ∈ [0, 1], a, b ∈ X such that x = αa + (1− α)b. In the former case, we have
already shown that l(x) ≤ l̃(x) ≤ U . In the latter case, we again have l̃(x) ≤ U , and since l is is a convex,
we have l̃(x) ≥ αl(a) + (1− α)l(b) ≥ l(x). This proves part (i).

For part (ii), for x ∈ X , we have l̃(x) = l⊥x ≤ l(x) + 1
U2

. For x ∈ [0, D] \X , suppose x ∈ (xi, xi+1).
Then

l̃(x) ≤ max
{
l⊥xi , l

⊥
xi+1

}
≤ l(xi+1)+

1

U2
≤ l
(

(1+σ)xi+
1
U1

)
+

1

U2
≤ (1+γ)l(xi)+

U

U1
+

1

U2
≤ (1+γ)l(x)+

1

U2

where the penultimate inequality follows from (5).
For part (iii), consider a linear segment of l̃ between a = xi, b = xi+1 ∈ X . We haveU2 l̃(b) ≥ U2l(b) ≥

U2l(a) + U2(b − a)/U since dl(x)
dx ≥

1
U for all x ∈ [0, D]. Now U2 l̃(b) and U2(b − a)/U are integers, so

we also have U2 l̃(b) ≥ dU2l(a)e + U2(b − a)/U , or equivalently that l̃(b) − l̃(a) ≥ (b − a)/U . Similarly,
we have U2l(b) ≤ U2 l̃(a) + U2U(b − a). Therefore, dU2l(b)e ≤ U2 l̃(a) + U2U(b − a), or equivalently,
l̃(b)− l̃(a) ≤ U(b− a). �

Our goal now is to search for the point (l∗⊥, τ∗) := (l∗e
⊥, τ∗e )e. Note that the encoding length of (l∗⊥, τ∗)

is poly
(
I, 1σ , log(1δ )

)
. Let l̃∗e denote the interpolation of l∗e

⊥ for every edge e. Slightly abusing notation, we
say that a piecewise linear function l satisfies dle(x)

dx ∈
[
1
U , U

]
if the slope of every linear segment of l lies in[

1
U , U

]
. We begin by observing that Lemma 3.5 continues to hold for latency functions satisfying (5), since

we only utilize (2) (i.e., inverse K-continuity) for x, y ∈ [0, D] in the proof, which holds with K = U if
dle(x)
dx ≥ 1

U for all x ∈ [0, D].
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Claim 3.10. Let f̂ be a Wardrop equilibrium and g be an ε-equilibrium of a routing game (G, l, (si, ti, di)i≤k),
where the les satisfy dle(x)

dx ≥ 1
U for all x ∈ [0,

∑
i di]. Then, ‖g − f̂‖∞ := maxe |ge − f̂e| ≤

√
Uε
∑

i di.

Theorem 3.11. Let f∗ be a target acyclic multicommodity flow f∗ and δ > 0. Let ε = δ2

UDmk , γ = ε
UDm

and σ = σγ . Then, in time poly
(
I, 1σ , log(1δ )

)
and using poly

(
I, 1σ , log(1δ )

)
ε-oracle queries, we can

compute tolls τ such that ‖f(l∗, τ)− f∗‖∞ ≤ 5δ or determine that no such tolls exist.

Proof. Again, we use the ellipsoid method and dovetail the proof of Theorem 3.6. Let (l̂, τ̂) be the center
of the current ellipsoid. Let l̃ = ιl̂ denote the interpolation of l̂. We first check that τ̂ ≥ 0, and for every e,
the following hold.

l̂e,x ∈ [0, U ] ∀x ∈ X, xi+1 − xi
U

≤ l̂e,xi+1 − l̂e,xi ≤ U(xi+1 − xi) ∀i = 1, . . . ,M − 1.

Parts (i) and (iii) of Lemma 3.9 imply that (l∗⊥, τ∗) satisfies the above constraints. So if any of the above
constraints do not hold, then we can use the violated constraint as a separating hyperplane. So assume
otherwise. Then l̃(x) ∈ [0, U ] and dl̃(x)

dx ∈
[
1
U , U

]
for all x ∈ [0, D]. (But l̃ need not be convex.) Note that

the equilibrium flow f(l̃, τ̂) is well defined.
We determine if there is a commodity i and paths P,Q ∈ P i such that f∗P > 0 and l̃P (f∗) + τ̂(P ) >

l̃Q(f∗) + τ̂(Q) + ε. (As before, we can do this efficiently since f∗ is acyclic.) Since f∗ = f(l∗, τ∗), we also
have l∗P (f∗) + τ∗(P ) ≤ l∗Q(f∗) + τ∗(Q), which implies that l̃∗P (f∗) + τ∗(P ) ≤ l̃∗Q(f∗) + τ∗(Q) + ε by
part (ii) of Lemma 3.9 since f∗e ∈ X for all e and 1

U2
≤ ε

m . Since f∗e ∈ X for all e, we have l̃e(f∗e ) = l̂e,f∗e
and l̃∗e(f

∗
e ) = l∗e

⊥
f∗e

. Thus, in this case, the inequality∑
e∈P

(le,f∗e + τe) ≤
∑
e∈Q

(le,f∗e + τe) + ε

where the le,f∗e s and the τes are variables yields the desired separating hyperplane of encoding length
poly

(
I, 1σ , log(1δ )

)
.

So assume that the above case does not happen. Then f∗ is an ε-equilibrium for the latency functions
(l̃τ̂e )e, and so ‖f(l̃, τ̂)− f∗‖∞ ≤

√
UDε = δ/

√
mk by Claim 3.10. We use the oracle with toll-vector τ̂ to

obtain an acyclic ε-equilibrium flow g. Then, we have ‖g−f(l∗, τ̂)‖∞ ≤
√
UDε = δ/

√
mk by Claim 3.10.

Now we check if g is an 6mkε-equilibrium for the latency functions (l̃τ̂e )e. If so, then

‖g − f∗‖∞ ≤ ‖g − f(l̃, τ̂)‖∞ + ‖f(l̃, τ̂)− f∗‖∞ ≤
√

6UDmkε+
√
UDε ≤ 4δ

and so ‖f(l∗, τ̂)− f∗‖∞ ≤ 5δ and we are done.
Otherwise, as in the proof of Theorem 3.6, if x = (xi,P )i,P∈Pi is a path-decomposition of g hav-

ing support of size at most mk, then we can find some commodity j and paths R,Q ∈ Pj such that
xj,R

(
l̃τ̂R(g)− l̃τ̂Q(g)

)
> 6εD. Also, as before, since g is an ε-equilibrium for the latency functions (l∗τ̂e )e,

we have xj,R
(
l∗τ̂R (g)− l∗τ̂Q (g)

)
≤ εD. By part (ii) of Lemma 3.9 and since U

U1
, 1
U2
≤ ε

m and xj,R ≤ D, we

have xj,R
∑

e∈R
(
l̃∗e(ge)+ τ̂e

)
≤ (1+γ)xj,Rl

∗τ̂
R (g)+2εD. Since we also have l̃∗e(ge) ≥ l∗e(ge) for all e (part

(i) of Lemma 3.9), this implies that

xj,R

(∑
e∈R

(
l̃∗e(ge) + τ̂e

)
−
∑
e∈Q

(
l̃∗e(ge) + τ̂e

))
≤ xj,R

(
(1 + γ)l∗τ̂R (g)− l∗τ̂Q (g)

)
+ 2εD

≤ (1 + γ)xj,R
(
l∗τ̂R (g)− l∗τ̂Q (g)

)
+ γDl∗τ̂Q (g) + 2εD

≤ (1 + γ)εD + γD · 2mU + 2εD ≤ 6εD.
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The penultimate inequality above follows since l∗e(ge) + τ̂e ≤ 2U for every edge e. Let ge = αeae + (1 −
αe)be, where αe ∈ [0, 1], and ae, be are consecutive values in X . Note that the αes have encoding length
poly

(
I, log(1δ )

)
. Then the inequality

xj,R

(∑
e∈R

(
αele,ae + (1− αe)le,be + τ̂e

)
−
∑
e∈Q

(
αele,ae + (1− αe)le,be + τ̂e

))
≤ 6εD

yields a separating hyperplane of encoding length poly
(
I, 1σ , log(1δ )

)
. �

3.2 Extensions

Linear constraints on tolls given by a separation oracle. Here, we require that the tolls τ∗ imposing the
target flow f∗ should lie in some polyhedron X , where X is given by means of a separation oracle. This is
rich enough to model the following interesting scenarios.
• A subset F of edges cannot be tolled. This corresponds to the explicit constraint τe = 0 for all e ∈ F .

• The total toll paid by any player under the flow f∗ is at most a given budget B. This corresponds to the
constraints τ(P ) ≤ B for every commodity i and path P ∈ P i with f∗iP > 0. One can separate over
these exponentially-many constraints efficiently via a longest-path computation since f∗ is acyclic.

The only change to our algorithm is that we first check if our current toll-vector τ̂ lies in X . If not then the
separation oracle provided yields the separating hyperplane; otherwise, we proceed as before. The query
complexity is now polynomial in the input size and the encoding length of X .

Nonatomic routing games with heterogenous players. In a routing game Γ = (G, l,K) with heteroge-
nous players, each commodity i ∈ [k] has additionally a parameter γ ∈ R+. For flow f and tolls τ , a player
of commodity has delay le(fe) + γiτe on edge e (for homogenous players, γi = 1 for each commodity i).
In our query model, we assume we are given G, the commodity set K = {(si, ti, di, γi)}, and the feasible
target multicommodity flow f∗.

General nonatomic congestion games. This is a generalization of network routing games, where the
graph is replaced by an arbitrary set E of resources, and P i ⊆ 2E is the strategy-set associated with player-
type i; a more complete definition appears in Appendix B. Our ellipsoid-based algorithm uses essentially
no information about the underlying graph. We only require that given a congestion-vector f , we can find
the maximum-delay set P ∈ P i for a given player-type i, and can find a valid decomposition of f of small
support. Both of these are trivial since the P i sets are explicitly given in the input. Thus, our algorithms
readily extend to general nonatomic congestion games and Theorems 3.2 and 3.6 (with mk replaced by∑

i |P i|) continue to hold.

Atomic splittable routing games. Here, each commodity i represents a single player who controls di
volume of flow and her strategy is to choose an si-ti flow f i of value di. The cost incurred by a player i
under a feasible multicommodity flow (i.e., strategy profile) f = (f i)i≤k is

∑
e f

i
ele(fe).

Our results extend to atomic splittable routing games if we assume that for all valid choices of param-
eters of the latency functions and tolls (as encountered during the ellipsoid method), the underlying atomic
splittable routing game has a unique Nash equilibrium. Here, by uniqueness we mean that if f and g are two
Nash equilibria, then f ie = gie for all commodities i and edges e. This is not without loss of generality, but
is known to hold, for example, if all latency functions are convex polynomials of degree at most 3, or if the
graph is a generalized nearly-parallel graph and xle(x) is strictly convex for all e (see [6]). When we say
that tolls τ induce a flow f∗ = (f∗i)i≤k here, we mean that the flow of every commodity i on every edge
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e is f∗ie in the resulting equilibrium. Our result shows that the task of computing tolls that induce specific
commodity-flows can be reduced to the task of computing Nash equilibria (under the uniqueness assump-
tion), even in the black-box setting. Although, to our knowledge, no algorithm is known for either of these
tasks, even when latency functions are given, we believe that this reduction is of independent interest. The
proof of Theorem 3.12 is very similar to that of Theorem 3.2: the only change is that to find the separating
hyperplane, we now consider the marginal delay functions instead of the delay functions; see Appendix B.

Theorem 3.12. In an atomic splittable routing game satisfying the aforementioned assumption, tolls that
induce a target flow f∗ = (f∗i)i≤k at equilibrium, if they exist, can be obtained with a polynomial number
of queries to an oracle that returns the equilibrium flow under tolls.

3.3 An algorithm for series-parallel networks with near-linear query complexity

We now give an algorithm for series-parallel networks with Õ(m) query complexity. This is a significant
improvement over the ellipsoid-based algorithm, and almost matches the linear lower bound proved in The-
orem 5.1 for single-commodity routing games on parallel-link graphs with linear latency functions.

Theorem 3.13. On two-terminal series-parallel graphs, one can compute in polynomial time tolls that
induce a given target multicommodity flow f∗ using Õ(m) queries to an oracle that returns the equilibrium
flow. Thus, we obtain Õ(m) query complexity for multicommodity routing games with standard linear delay
functions.

We first recall some relevant details about series-parallel graphs. A two-terminal directed series-parallel
graph, abbreviated series-parallel (sepa) graph, with terminals s and t is defined inductively as follows. A
basic sepa graph is a directed edge (s, t). Given two sepa graphs G1 = (V1, E1) and G2 = (V2, E2), with
terminals s1, t1 and s2, t2 respectively, one can create a new sepa graph G = (V,E) as follows. A series
join of G1 and G2 yields the graph obtained by identifying t1 and s2, with terminals s = s1 and t = t2. A
parallel join of G1 and G2 yields the graph obtained by identifying s1 and s2, and t1 and t2; its terminals
are s = s1 = s2 and t = t1 = t2.

For every series-parallel graph G = (V,E), the recursive construction naturally yields a binary decom-
position tree. The leafs of the tree are edges of G, and each internal node specifies a series- or a parallel-
join. Each node of the tree also represents a subgraph of the G (obtained by performing the joins specified
by the subtree rooted at that node), which is also clearly a sepa graph. In the sequel, we fix a decomposition
tree corresponding to G. Whenever we say a subgraph of G, we mean a subgraph corresponding to a node
of this decomposition tree. Given a subgraph H , we use sH , tH to denote its two terminals, and P(H) to
denote the set of all sH -tH paths. We sometimes call sH and tH , the source and sink of H respectively. Let
H be the collection of subgraphs corresponding to the parallel-join nodes of the decomposition tree. For
each H ∈ H obtained via the parallel join of H1 and H2, we identify one of these as the “left” subgraph HL

and the other as the “right” subgraph HR. Let P denote the set of all s-t paths, where s = sG, t = tG.

Proof outline. Before we delve into the proof of Theorem 3.13, we give some intuition and give a roadmap
of the proof. It is useful to first consider the simplest case of a graph with two parallel edges. Observe that
any target flow can be obtained by varying the difference in tolls on these two edges. Further, the correct
difference in tolls can be obtained by a binary search. Our key insight is that this intuition can be extended
to series-parallel graphs via a suitable transformation of tolls. We show that tolls required to obtain a target
flow can actually be described by the difference in tolls for each pair of parallel subgraphs, and then use
binary search to obtain the correct differences that yield the target flow.

Formally, we show that any edge tolls in a sepa graph can in fact be transformed into certain canonical
tolls that are defined in terms of subgraphs (Claim 3.15). Further, formalizing the intuition that what is
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relevant is only the difference in tolls on parallel subgraphs, we make the novel connection that canonical
tolls are in fact equivalent to labels on subgraphsH ∈ H (Lemma 3.16), where the label on subgraphH ∈ H
stores the difference in the canonical tolls of subgraphs HL and HR whose parallel-join yields H .

Thus, our problem reduces to finding the correct labels on subgraphs H ∈ H, which we aim to find via
binary search. To do so, we establish certain structural properties of multicommodity flows in sepa graphs
(Lemma 3.18). We leverage these to argue that if the canonical edge-tolls obtained from our current labels
do not enforce the target flow, then we can find a subgraph H ∈ H and deduce whether its label should be
increased or decreased. The query complexity is thus at most |H| times a logarithmic term depending on the
accuracy required and the parameters of the routing game. A detailed description appears after Claim 3.19.

The presence of multiple commodities complicates things, since in the particular decomposition tree that
we fix forG, all edges in a subgraph may be shortest-path edges for one commodity but not for another. Thus
creates problems with the binary search since Claim 3.19 may not hold. We handle this by first arguing that
there always exist tolls enforcing f∗ such that every s-t path, and hence every si-ti path is a shortest-path
under edge costs (l∗τ

∗
e (f∗e ))e (Claim 3.14).

We believe that our structural insights into tolls and multicommodity flows on sepa graphs are of inde-
pendent interest and likely to find other applications. In fact, our results on flows in sepa graphs also play
an important role in our algorithm for inducing target flows via Stackelberg routing in Section 4.

Claim 3.14. For Γ ∗ = (G, l∗, (si, ti, di)i≤k) and target flow f∗ there exist tolls τ∗ ∈ RE+ such that:

(i) minP∈P τ
∗(P ) = 0;

(ii) l∗P (f∗) + τ∗(P ) = l∗Q(f∗) + τ∗(Q) for every i and paths P,Q ∈ P i; and therefore

(iii) f(l∗, τ∗) = f∗.

Proof. We will show that for any edge costs (ce)e, there exist tolls τ so that every s-t path is a shortest
path under edge costs (ce + τe)e, and minP∈P τ(P ) = 0. The claim follows simply by taking edge costs
(ce = l∗e(f

∗
e ))e and setting τ∗ = τ , since every si-ti path clearly belongs to some s-t path.

The proof is by induction on the height of the decomposition tree for G. In the base case, if the de-
composition tree has height 1, G consists of a single edge and setting τe = 0 satisfies the claim. For the
inductive step, suppose G is formed by the composition of H1 and H2, and let c1 and c2 be the edge costs in
subgraphs H1 and H2 respectively. Let τ1 and τ2 be the tolls that satisfy the claim for costs c1 in subgraph
H1, and costs c2 in subgraph H2 respectively.

If G consists of H1 and H2 composed in series, let τe = τ1e if e ∈ E(H1) and τe = τ2e otherwise. Then
since any s-t path P consists of an s1-t1 path and an s2-t2 path, each of which is a shortest path in H1 and
H2 respectively, every s-t path is a shortest path. Secondly, by the inductive hypothesis, there is a path P in
H1 with τ1(P ) = 0, and a path Q in H2 with τ2(Q) = 0. The concatenation of paths P and Q yields an s-t
path R with τ(R) = 0.

Suppose G consists of H1 and H2 composed in parallel. For any paths P ∈ P(H1) and Q ∈ P(H2), let
δ = c(Q) + τ2(Q)− c(P )− τ1(P ). We may assume that δ ≥ 0 (otherwise switch H1 and H2). Note that
by the inductive hypothesis the value of δ is independent of the choice of P and Q. Define tolls τ for graph
G as follows:

τvw =


τ1vw + δ, if v = s and (v, w) ∈ E(H1).
τ1vw, if v 6= s and (v, w) ∈ E(H1).
τ2vw, if (v, w) ∈ E(H2).

Then for any s-t path P , if P ∈ P(H1) then c(P ) + τ(P ) = c(P ) + τ1(P ) + δ. If Q ∈ P(H2)
then c(Q) + τ(Q) = c(Q) + τ2(Q). By definition of δ and the induction hypothesis, every s-t path is
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thus a shortest s-t path. Since the tolls on paths in H2 remain the same, there is also an s-t path R with
τ(R) = 0. �

Claim 3.15. For any tolls τ ∈ RE+ on the edges of G, there exist α ∈ RE+ such that:

(i) τ(P ) = α(P ) for all P ∈ P , and

(ii) for every subgraph H and every edge e = (sH , v) ∈ E(H), αe ≥ minP∈P(H) α(P ).

Proof. The proof is again by induction on the height of the decomposition tree. If G is a single edge, then
α = τ . If G is composed of subgraphs H1 and H2, let τ1 and τ2 be the projection of τ onto the subgraphs.
If H1 and H2 are in parallel, and tolls α1 and α2 satisfy the claim for tolls τ1 and τ2 in the subgraphs, it is
easy to verify that tolls α defined by αe = α1

e for e ∈ E(H1) and αe = α2
e for e ∈ E(H2) satisfy the claim.

If H1 and H2 are in series, let α1 and α2 satisfy the claim for tolls τ1 and τ2 in the subgraphs. Define
δ = minP∈P(H2) α

2(P ) and define the tolls

αvw =


α1
vw + δ, if v = s1 and (v, w) ∈ E(H1)
α1
vw, if v 6= s1 and (v, w) ∈ E(H1)
α2
vw − δ, if v = s2 and (v, w) ∈ E(H2)
α2
vw, if v 6= s2 and (v, w) ∈ E(H2).

Any s-t path P consists of segment P1 between vertices s = s1 and t1, and segment P2 between t1 = s2
and t = t2. Then

α(P ) = α(P1) + α(P2) = α1(P1) + δ + α2(P2)− δ = τ1(P1) + τ2(P2) = τ(P ) .

Thus the first part of the claim is satisfied.
For the second part, consider any subgraph H . If H = G, then since every path P ∈ P(H) consists of

segments P1 ∈ P(H1) and P2 ∈ P(H2), for every edge e = (s, v) ∈ E,

αsv = α1
sv + δ

≥ min
P∈P(H1)

α1(P ) + min
P∈P(H2)

α2(P ) (by the inductive hypothesis and definition of δ)

= min
P∈P(H1)

α1(P ) + δ + min
P∈P(H2)

α2(P )− δ

= min
P∈P(H)

α(P ) .

If H 6= G, then since every path path P ∈ P(H) contains exactly one edge incident to sH , the toll along
every path changes by exactly the same quantity (+δ, −δ, or zero). �

We call tolls α ∈ R
E
+ that satisfy property (ii) of Claim 3.15 canonical tolls. Thus, any edge tolls can

be modified to obtain canonical edge tolls α. These in turn can be mapped to a labeling (L,∆), where
∆ = (∆H)H∈H ∈ RH+ , by setting L = minP∈P α(P ), and ∆H = minP∈P(HL) α(P )−minP∈P(HR) α(P )
for all H ∈ H. Lemma 3.16 shows that this mapping is in fact invertible. Given the labeling (L,∆) we can
obtain canonical edge tolls α by the following procedure. Note that |H| ≤ m.

M1. Initialize αe = 0 for all e.
M2. We traverse subgraphs in H in a bottom-up manner, i.e., we consider all subgraphs in H that are descendants

of H ∈ H before considering H . When we consider a subgraph H , we set αe = αe + max{0,∆H} for all
e = (sH , v) ∈ E(HL), and αe = αe + max{0,−∆H} for all e = (sH , v) ∈ E(HR).

M3. Finally, we set αe = αe + L for all e = (s, v) ∈ E.
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Lemma 3.16. Let (L,∆) be the labeling obtained from some canonical tolls α ∈ R
E
+, and β be the tolls

obtained from (L,∆) by the above procedure. Then α = β.

Proof. Let β′ be the tolls obtained after step 1 of the above procedure, i.e., before adding L to the edges
incident to s. We will show that for each edge e not incident to s, β′e = αe, while for each edge e incident
to s, β′e = αe −minP∈P α(P ).

The proof is by induction on the size of G. If G = {e}, then since there are no parallel compositions,
H = ∅, and hence β′e = 0 = αe −minP∈P α(P ). If G is the series-join of H1 and H2, then for each edge
not incident to sH1 or sH2 , β′e = αe by the inductive hypothesis. Further, note that the minimum toll α(P )
over all sH2-tH2 paths must be zero, since otherwise, on any edge e = (s, v), αe would be strictly less than
the minimum toll over s-t paths. Hence by the inductive hypothesis β′e = αe for edges that leave sH2 . For
edges incident to s, since any s-t path consists of a path between s and t1 = s2 and between s2 and t, and
by the inductive hypothesis,

β′e = αe − min
P∈P(H1)

α(P ) = αe −min
P∈P

α(P )

where the second equality follows because, as earlier observed, the minimum toll α(P ) over all sH2-tH2

paths must be zero. Thus the inductive hypothesis holds in this case.
If G is the parallel-join of H1 and H2, then for each edge not incident to s, β′e = αe by the inductive

hypothesis. Further, assume without loss of generality that minP∈P(H1) α(P ) = minP∈P α(P ). Then by
the inductive hypothesis, for each edge e = (s, v) ∈ E(H1),

β′e = αe − min
P∈P(H1)

α(P ) = αe −min
P∈P

α(P )

as stated in the claim. Let δ = minP∈P(H2) α(P )−minP∈P(H1) α(P ) ≥ 0. By the procedure for computing
β′, if H1 = HL and H2 = HR, then ∆H = −δ, otherwise ∆H = δ. In both cases, when considering
G, we only modify the tolls on edges of E(H2) incident to sH2 by adding δ to these. So for each edge
e = (s, v) ∈ E(H2), we have

β′e = αe − min
P∈P(H2)

α(P ) + δ

= αe − min
P∈P(H2)

α(P ) + min
P∈P(H2)

α(P )− min
P∈P(H1)

α(P )

= αe −min
P∈P

α(P )

which completes the induction step, and hence, the proof. �

Definition 3.17. Given multicommodity flows f and f̃ , we call a pairH1,H2 of subgraphs, (f, f̃)-discriminating
if:

(i) the parallel-join of H1 and H2 is a subgraph inH; and

(ii) fe > f̃e for all e ∈ E(H1), and fe ≤ f̃e for all e ∈ E(H2).

Lemma 3.18. Let f and f̃ be two feasible multicommodity flows for (G, (si, ti, di)i≤k). If f 6= f̃ , then there
exists an (f, f̃)-discriminating pair of subgraphs.

Proof Sketch. We use induction on the series-parallel structure to first show a slightly weaker statement:
there exist subgraphs H1 and H2 whose parallel join is in H such that: (a) fe ≥ f̃e for all e ∈ E(H1),
fe ≤ f̃e for all e ∈ E(H2), and (b) |fH1 |, which we define to be the total flow routed under f in H1 for
commodities not internal to H1, is greater than |f̃H1 |, and |fH2 | < |f̃H2 |. Now if fe > f̃e for all e ∈ E(H1)
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then we are done. Otherwise, we show that if we consider the minimal subgraph K of H1 (under the same
decomposition tree used forG) that contains both fe > f̃e and fe = f̃e edges, thenK must be a parallel-join
of subgraphs that form an (f, f̃)-discriminating pair. �

We defer a full proof of Lemma 3.18 until Appendix C.

Claim 3.19. Let f̂ = f(l∗, τ). If there is a subgraph H such that f̂e > f∗e for all e ∈ E(H) then there is
some commodity i such that every sH -tH path is part of a shortest si-ti path under edge costs (l∗τe (f̂e))e.

Proof. The proof is by induction on the size of H . If H is an edge e, there is some commodity i such
that f̂ ie > 0, so the statement holds. If H is the parallel join of H1, H2, then it follows from the induction
hypothesis that every sH -tH path must be of equal length (since there are commodities corresponding to
both H1 and H2); hence, there is a commodity corresponding to H and the statement follows. Suppose H
is the series composition of H1, H2. Let K be the set of commodities i such that

∑
e=(sH ,v)∈E(H) f̂

i
e > 0.

For every i ∈ K such that ti ∈ V (H) \ {tH}, the set of edges (sH , v) ∈ E(H) forms an si-ti cut, and so the
flow across the cut must be the same in f̂ i and f∗i. However,

∑
e=(sH ,v)∈E(H) f̂e >

∑
e=(sH ,v)∈E(H) f

∗
e , so

there is some commodity j ∈ K such that sj , tj /∈ V (H) \ {sH , tH}. For commodity j, some sH -tH path
is part of a shortest sj-tj path under edge costs (l∗τe (f̂e))e. Applying the induction hypothesis to H1, H2

yields that all sH -tH paths are of the same length. Thus, every sH -tH path is part of a shortest sj-tj paths
under edge costs (l∗τe (f̂e))e. �

We now describe the algorithm for Theorem 3.13. Let τ∗ be tolls given by part (b) of Claim 3.14 and
(0,∆∗) be the labeling obtained from τ∗. We may assume that τ∗e ∈ [0, U ′] and is a multiple of 1

U ′ for all e,
where U ′ = mpoly(U,

∑
i di). E.g., with standard linear latencies, since every f∗e , a

∗
e, b
∗
e ∈ [0, U ] and is a

multiple of 1
U , we can take U ′ = max{U2,mK

∑
i di}.

T1. Initialize, LH = −mU ′, UH = mU ′, ∆H = 0 for all H ∈ H. Let L = 0. Let M = m log(8mU ′2).
T2. For r = 1, . . . ,M , we do the following. Map (L,∆) to canonical tolls α as described in steps M1–M3. Query

the oracle to obtain f̂ = f(l∗, α). If f̂ = f∗, then exit the loop. Otherwise, find an (f̂ , f∗)-discriminating pair
of subgraphs H1, H2 (which exists by Lemma 3.18).
LetH be the parallel join ofH1, H2. IfH1 = HL, update LH ← ∆H , else update UH ← ∆H . If |UH−LH | <
1
U ′ , set ∆H to be the multiple of 1

U ′ in [LH , UH ]; else update ∆H = (LH + UH)/2.
T3. Return tolls α.

Proof of Theorem 3.13. Let α∗ be the canonical tolls obtained from τ∗ via Claim 3.15, and let (L∗,∆∗) be
the corresponding labeling. We have L∗ = 0 due to Claims 3.14 and 3.15. The proof of Claim 3.15 shows
that, under the assumptions on τ∗, we have α∗e is a multiple of 1

U ′ , and is in [0,mU ′] for all e. Hence,
∆∗H ∈ [−mU ′,mU ′] and is a multiple of 1

U ′ , for all H ∈ H.
We say that the intervals [LH , UH ] assigned to H ∈ H are valid if ∆∗H ∈ [LH , UH ] for all H ∈ H. We

argue below that our algorithm maintains valid intervals. Give this, in each iteration we halve the length of
some interval, and this may happen at most log(8mU ′2) times for the interval of some H ∈ H until we find
∆∗H , since ∆∗H is a multiple of 1

U ′ . Since there are at most m subgraphs in H, after M iterations (without
reaching f∗), we obtain ∆∗.

We now prove that the algorithm maintains valid intervals. Given tolls τ and a subgraph H , define
τH := minP∈P(H) τ(P ). So ∆∗H = α∗HL −α

∗
HR

. The intervals are clearly valid at the start of the algorithm.
Suppose the intervals are valid at the start of an iteration in step T2. We may assume that f̂ 6= f∗. By
Claim 3.19, there is some commodity i such that every sH1-tH1 path is part of a shortest si-ti path under
edge costs (l∗e(f̂e) + αe)e. Let P = argminP ′∈P(H1) α

∗(P ′) and Q = argminQ′∈P(H2) α(Q). Since P is a
segment of a shortest-path for commodity i, We have

l∗P (f∗) + αH1 < l∗P (f̂) + αH1 ≤ l∗P (f̂) + α(P ) ≤ l∗Q(f̂) + α(Q) = l∗Q(f̂) + αH2 ≤ l∗Q(f∗) + αH2 .
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Here, the first and last inequalities follow since H1, H2 is (f̂ , f∗)-discriminating. The second inequality
follows from the definition of αH1 ; the third, since P is part of a shortest si-ti path; and the fourth equality,
from the definition of Q. We know that every s-t path is a shortest s-t path under edge costs (l∗e(f

∗
e ) +α∗e)e.

So we have
l∗P (f∗) + α∗H1

= l∗P (f∗) + α∗(P ) = l∗Q(f∗) + α∗(Q) ≥ l∗Q(f∗) + α∗H2
.

Combining this with the earlier inequality gives αH1−αH2 < α∗H1
−α∗H2

. So ifH1 = HL, then ∆H < ∆∗H ;
otherwise, ∆H > ∆∗H . Thus, our update for H preserves the validity of the intervals. �

Remark 3.20. Our analysis shows that the above algorithm works whenever we have a “sign oracle” that
given input tolls τ and a flow f∗, returns the sign of f(l∗, τ)e − f∗e for all edges e. This is clearly weaker
than having an exact-equilibrium oracle.

Tolls in sepa graphs with an approximate oracle We focus on single-commodity routing games on
sepa graphs. As before, we use H to denote the collection of parallel subgraphs of G under a given sepa
decomposition tree for G. For any tolls τ we use f̃(τ) to denote the flow returned by the ε-oracle, and
use f(τ) to denote the actual equilibrium flow. Note that f̃(τ) may not be a continuous function of τ . In
fact, if queried twice with the same tolls, the oracle may return different flows. However, on any edge,
|f̃e(τ) − fe(τ)| ≤ ε, and hence for any subgraph H , |f̃H(τ) − fH(τ)| ≤ mε. For any tolls τ , we define
N(τ) := maxP τ(P )−minP τ(P ) +mlmax(d).

Here, we describe the algorithm and the main theorem. The proof of the theorem is in Appendix F.
We now describe the algorithm for computing tolls τ ′ so that f(τ ′) is close to f∗ on every edge.

T1. We traverse all subgraphs H ∈ H of G in a bottom-up manner, i.e., we consider all subgraphs of H before
considering H . For each subgraph in this order, let τ be the current tolls. Since H ∈ H, let H be the parallel
composition of H1 and H2. Let LB = −N(τ), UB = N(τ).

T2. Let γ = 0 initially, and γ1 = (LB+UB)/2. By binary search in [−2N(τ), 2N(τ)], find γ so that
∣∣∣|f̃H(τ ′)| − |f∗H |

∣∣∣ ≤
2mε where τ ′ is as given by Lemma F.3. If |f̃H1(τ ′)| − |f∗H1

| ≥ 6mε, set LB = γ1 and repeat this step. If
|f̃H1

(τ ′)| − |f∗H1
| ≤ −6mε, set UB = γ1 and repeat this step. Otherwise, let τ = τ ′ and continue with the next

subgraph.

Theorem 3.21. The algorithm terminates with at most m3 log2 (20mlmax(d)/κ(ε/m)) queries and with
tolls τ ′ so that |fe(τ ′)− f∗e | ≤ 14m2ε on every edge.

3.4 Nearly quadratic query complexity for single-commodity, linear-delay routing games

For the case of linear delays, we show that our bound on the query-complexity from Section 3.1 can be
significantly improved upon. We give an algorithm with quadratic query complexity even in general graphs
(ignoring logarithmic terms in the query complexity). Interestingly, the quadratic complexity is used to
obtain tolls that give an equilibrium flow with the same support — i.e., on the same edges — as the target
flow. Following this, actually obtaining the correct tolls requires only a linear number of queries.

Theorem 3.22. For a single-commodity routing game Γ with standard linear delay functions, tolls that
enforce f∗ can be obtained in Õ(m2) queries.

Throughout, we assume without loss of generality that f∗ > 0; otherwise, we impose infinite tolls on
any edge where f∗e = 0, effectively removing these edges from the graph.1 We assume the delay function
on any edge e is le(x) = aex + be. Define lmax(x) := maxe∈E aex + be, and κ(x) = x2/Kd. Define the

1The use of infinite tolls is a notational convenience; the same effect can be obtained with tolls m22mlmax(d).
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support of a flow f to be the set of edges with strictly positive flow. We will use negative tolls in our proof;
however, by Claim 3.23 which we prove in Appendix D, this is again just a notational convenience. Similar
arguments were used in [15] to show boundedness of tolls, but the results are not directly applicable. Note
that f∗ is acyclic.

Claim 3.23. For a single-commodity routing game and tolls τ , there exist tolls τ ′ ≥ 0 so that f(τ) = f(τ ′)
and τ ′e′ ≤ τe′ +

∑
e:τe<0 |τe| for all e′. If the graph is acyclic, τ ′ can be obtained without knowledge of the

delay functions.

Proof outline. We show that if the support of the equilibrium flow remains fixed, the equilibrium flow is
a linear function of the tolls. Thus if we can obtain tolls τ so that the support of f(τ) is the same as f∗, we
can solve a linear system of equations to obtain tolls that enforce f∗. Accordingly, our algorithm consists of
the following two steps.

Step 1: Enforcing the correct support. We first obtain tolls τ so that fe(τ) > 0 ⇔ f∗e > 0. By suitably
large tolls on edges e for which f∗e = 0, we already have tolls that satisfy one direction of the implication.
The other direction is roughly by binary search, described in Lemma 3.26: we pick an edge r that does not
yet have flow, and impose increasingly negative tolls on this edge until it has positive flow at the equilibrium.
The difficulty here is in maintaining monotonicity of the support of the equilibrium flow. Increasing the
flow on edge r decreases flow on the other edges. We use a number of results regarding the sensitivity of
equilibrium flow for this step. In fact, this step has quadratic query complexity, while the second step that
actually obtains tolls that enforce f∗ has linear query complexity.

Step 2: Obtaining the target flow f∗. We now use Lemma 3.28 which establishes the linearity of equi-
librium flow as a function of tolls, if the support of the equilibrium flow does not change. Obtaining the
coefficients of this linear map requires us to query the oracle with a small toll on each edge. The query
complexity of this step is thus linear.

We start with some results about the continuity, monotonicity, and sensitivity of equilibrium flow as a
function of tolls. Theorem 3.24(ii) was earlier proved in [13]. Let 1e ∈ R

E be the vector with value 1 in
coordinate e, and 0 everywhere else.

Theorem 3.24. Let Γ be a single-commodity routing game with standard linear delay functions. Then,

(i) ‖f(0)− f(1eκ(ε))‖∞ ≤ ε,

(ii) f(τ) is continuous,

(iii) for edge r and δ > 0, fr(1rδ) ≤ fr(0), and

(iv) for edge r and δ > 0, |fr(−1rδ)− fr(0)| ≥ ‖f(−1rδ)− f(0)‖∞.

The proof of (i) and (ii) are straightforward from the following immediate Corollary of Lemma 3.5. We
prove (iii) and (iv) in Appendix D.

Corollary 3.25. For a multicommodity routing game Γ , let f̂ be the equilibrium flow. If g is a valid mul-
ticommodity flow that satisfies for all i, P ∈ P i, gP > 0 ⇒ lP (g) ≤ Di(l, g) + ε, then ‖g − f̂‖∞ ≤√
Kε
∑

i di.

We now show a lemma that is used to prove the first step of our proof. Lemma 3.26 shows that if edge
r has no flow or very little flow at equilibrium, then with a small number of queries we can obtain tolls so
that the flow on edge r increases, and the flow on the other edges does not change significantly.
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Lemma 3.26. Let Γ be a single-commodity nonatomic routing game, and let δ > 0, δ ≤ d. For tolls τ , let
S := {e : fe(τ) ≥ δ}, and edge r 6∈ S. Then with log (−N/κ(δ/3)) queries, we can determine tolls τ ′ so
that fe(τ ′) ≥ δ/3 for all e ∈ S ∩ {r}, where N := minP∈P τP −minP∈P:r∈P τP −mlmax(d) < 0 .

Proof. To obtain tolls τ ′, we will only vary the tolls on edge r. We thus parametrize tolls τ ′ by α, where
τ ′ = τ + 1rα.

If fr(τ) ≥ δ/3, we are done. Otherwise, we claim that if α = N , then fr(τ ′) = d. To see this, let Q be
the path that minimizes

∑
e∈P aed + be + τe over all paths P ∈ P with r ∈ P , and let f be the flow that

sends the entire demand along this path. Then the delay along this path with tolls τ ′ is

∑
e∈Q

(
aed+ be + τ ′e

)
=
∑
e∈Q

(aed+ be + τe) +N

= min
P :r∈P

∑
e∈P

(aed+ be + τe) + min
P∈P

τ(P )− min
P∈P:r∈P

τ(P )−mlmax(d)

≤ min
P∈P

τ(P ) ,

while for any path P with r 6∈ P , the delay along path P is at least this quantity. Hence f is actually an
equilibrium flow, and if α ≤ N , then fr(τ ′) = d.

Define a, b ∈ [N, 0] as follows.

a := max{α ∈ [N, 0] : fr(τ
′) = δ/3}

b := min{α ∈ [N, 0] : fr(τ
′) = 2δ/3}

By the continuity of equilibrium flow with respect to tolls (Theorem 3.24, (ii)), a, b exist. By the
monotonicity of equilibrium flow, for any α ∈ [b, a], fr(τ ′) ∈ [δ/3, 2δ/3]. Then by Theorem 3.24, (iv), for
any edge e ∈ S and α ∈ [b, a], fe(τ ′) ∈ [δ/3, δ]. Thus our problem reduces to finding an α ∈ [b, a], which
we can find by binary search. We will show that a − b ≥ κ(δ/3), which gives us the bound on the number
of queries required. To see this, let τa and τ b be the tolls obtained by setting α = a and α = b respectively.
Then if a− b ≤ κ(δ/3), then by Theorem 3.24 (i), ‖f(τa)− f(τ b)‖ ≤ δ/3. �

F1. Initialize τe ← 0 for all e, i← 1, and S ← {e : fe(τ) ≤ d/3i}.

F2. While S 6= E

F3. Pick an edge r 6∈ S

F4. By Lemma 3.26, find α ∈ [N, 0] so that if τ ′ = τ + 1rα, then fe(τ ′) ≥ d/3i+1 for all e ∈ S ∪ {r}.

F5. τ ← τ ′, i← i+ 1, S ← {e : fe(τ) ≤ d/3i}

Lemma 3.27. The stated algorithm terminates with tolls τ so that fe(τ) ≥ d/3m on every edge, and
requires O(m2 log(3mlmax(d)) queries.

Proof of Lemma 3.27. LetN(i) be the value ofN in the ith iteration of the while loop. Then by Lemma 3.26,
the ith iteration requires log(−N(i)/κ(d/3i+1)) queries to complete, and adds at least one edge to the set
S. Thus, there are at most m iterations of the while loop. We will show that |N(i)| ≤ m2i−1lmax(d), thus
proving the bound on the number of queries. Note that since all tolls are negative, |minP τP −minP :r∈P τP |
≤ |minP τP |.
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The proof is by induction. In the first iteration since τ = 0 initially, N(1) ≤ mlmax(d). In the
ith iteration, there are at most i − 1 other edges with tolls on them, and along any path the sum of the
absolute values of these tolls is at most

∑
j≤i−1 2j−1mlmax(d) = (2i−1− 1)mlmax(d), and hence |N(i)| ≤

2i−1mlmax(d). �

This completes the first step of our proof. We now proceed with the second step. Lemma 3.28 shows
that the equilibrium flow is a linear function of the tolls, as long as the set of edges with strictly positive
flow remains constant. While a similar result on the linearity of the equilibrium flow was shown in [11],
Lemma 3.28 shows how to obtain the coefficients of the linear map.

Lemma 3.28. For any routing game Γ and tolls τ (1), let f(τ (1)) > 0. Then there exist coefficients
(βe,e′)e,e′∈E so that for any tolls τ ,

(i) f(τ + τ (1)) > 0⇒ f(τ + τ (1)) = f(τ (1)) + βτ , and

(ii) f(τ (1)) + βτ > 0⇒ f(τ + τ (1)) = f(τ (1)) + βτ .

Proof. We first show how to obtain the coefficients (βe,e′)e,e′ . Define fmin = mine f(0) > 0. For each edge
e′, let αe

′
:= 1e′κ(fmin/2). By Corollary 3.25, f(τ (1) + αe

′
) > fmin/2 for each edge e′. Then for each

edge e ∈ E, define βe,e′ =
(
fe(τ

(1) + αe
′
)− fe(τ (1))

)
/κ(fmin/2).

Given tolls τ , let g := f(τ (1)) +
∑

e′ βe,e′τe′ . In general, g may be negative on some edges. However,
we show that g is an s-t pseudoflow of value d: it satisfies all the conditions for being a flow except
nonnegativity. Further, we show that g is a minimizer of (1) if we allow each f to be a pseudoflow, rather
than a flow.

To see the first claim, note that for a fixed edge e′ since βe,e′ is the difference of two (scaled) flows of
the same value, it is a circulation. Then g is the sum of a flow and a set of circulations, and is hence a
pseudoflow.

To show that g equalizes the delay on every s-t path with tolls τ , for any s-t path p,

∑
e∈p

le(g)− le(f(τ1)) =
∑
e∈p

ae
(
ge − fe(τ1)

)
=
∑
e∈p

ae
∑
e′

βe,e′τe′

=
∑
e′

τe′

κ(fmin/2)

∑
e∈p

ae

(
fe(τ

(1) + αe
′
)− fe(τ (1))

)
(6)

Since f(τ (1) + αe
′
) and f(τ (1)) are equilibrium flows with tolls τ (1) + αe

′
and τ (1) respectively, and both

are strictly positive on every edge, it follows from (6) that

∑
e∈p

le(g)− le(f(τ (1))) =
∑
e′

τe′

κ(fmin/2)

(
D(f(τ (1) + αe

′
))−D(f(τ (1)))−

∑
e∈p

αe
′
e

)

and since αe
′
e = 0 for e 6= e′,

∑
e∈p

le(g)− le(f(τ (1))) =
∑
e′

τe′

κ(fmin/2)

(
D(f(τ (1) + αe

′
))−D(f(τ (1)))

)
−
∑
e∈p

τe .

Thus for any path p,
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∑
e∈p

le(g) + τe =
∑
e∈p

le(f(τ (1))) +
∑
e′

τe′

κ(fmin/2)

(
D(f(τ (1) + αe

′
))−D(f(τ (1)))

)
.

Further, for any path p,
∑

e∈p le(f(τ (1))) = D(f(τ (1) −
∑

e∈p τ
(1)
e . Hence for any path p,

∑
e∈p le(g) +

τe + τ
(1)
e is equal. It follows immediately that if the second condition in the lemma is true, i.e., if g > 0,

then g must be an equilibrium flow with tolls τ (1) + τ , and since the equilibrium is unique, f(τ + τ (1)) = g.
This completes the proof of the second statement.

For the first statement, for 0 ≤ λ ≤ 1 define h(λ) = f(τ (1) + τ) + λ(g − f(τ (1) + τ)). Since on any
path p as shown earlier

∑
e∈p le(g) + τe + τ

(1)
e is equal, and f(τ (1) + τ) > 0 by assumption, this is also true

for h(λ). Further since f(τ (1) + τ) > 0, there exists λ > 0 so that h(λ) > 0. Then h(λ) must also be an
equilibrium flow with tolls τ . By the uniqueness of equilibria, this is only possible if f(τ + τ (1)) = g. �

L1. Use the earlier algorithm to get tolls τ (1) so that f(τ (1)) ≥ d/2m.

L2. Obtain the coefficients (βe,e′)e,e′ as in Lemma 3.28

L3. Solve the linear equations βτ (2) = f∗ − f(τ (1)) for tolls τ (2). Then f(τ (2) + τ (1)) = f∗.

Proof of Theorem 3.22. We will show that the algorithm is correct, and requires O(m2 log(3mlmax(d))
queries. The correctness of the first step follows from Lemma 3.27. To use Lemma 3.28, since fmin ≥ d/2m,
to obtain the coefficients (βe,e′)e,e′ , we require an additional m queries, each of which applies an additional
toll (relative to τ (1)) of κ(d/2m+1) on individual edges.

Let τ∗ be tolls such that f(τ∗) = f∗. By the first part of Lemma 3.28, then f∗ = f(τ (1))+β(τ∗−τ (1)).
Now τ (2) is a solution to the system of linear equalities βτ (2) = f∗ − f(τ (1)); since τ∗ − τ (1) satisfies this,
we know a solution exists. Further, by the second part of the Lemma since f(τ (1)) + βτ (2) = f∗ > 0, in
fact f(τ (1) + τ (2)) = f∗. Hence τ (1) + τ (2) are the tolls required to obtain the target flow. �

4 Inducing target flows via Stackelberg routing on series-parallel graphs

Recall that here we have a single-commodity routing game Γ ∗ = (G, l∗, (s, t, d)). We are given a parameter
α ∈ [0, 1] and a target flow f∗, and we seek an s-t flow g of value of at most αd such that g+ f(l∗, g) = f∗,
if one exists. We abbreviate f(l∗, g) to f(g). We consider the setting where G is a directed sepa graph with
terminals s and t, and devise an efficient algorithm that computes a Stackelberg routing inducing f∗ using at
most m queries to an oracle that returns the equilibrium flow. The flow g we compute is in fact of minimum
value among all Stackelberg flows that induce f∗. (So either g is the desired Stackelberg flow, or none exists
if |g| > αd.) Our algorithm works for arbitrary increasing delay functions provided, as in Section 3.3, we
have an oracle that returns the correct sign of ((f(g)+g

)
e
−f∗)e given a Stackelberg routing g. In particular,

the algorithm works for increasing linear latencies.
As before, we fix a decomposition tree for G, and a subgraph refers to a subgraph corresponding to a

node of this tree. For a flow f and subgraph H , let fH denote (fe)e∈E(H). We again leverage the concept of
a good pair of subgraphs, which becomes much simpler to state in the single-commodity setting.

Definition 4.1 (specialization of Definition C.1). Given s-t flows f , f̃ , we call a pair of subgraphs H1, H2

(f, f̃)-good if:

(i) the parallel-join of H1, H2 is a subgraph;

(ii) fe ≥ f̃e for all e ∈ E(H1) and fe ≤ f̃e for all e ∈ E(H2); and
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(iii) |fH1 | > |f̃H1 | and |fH2 | < |f̃H2 |.

Lemma 4.2. Let g be any Stackelberg routing. If f(g) + g 6= f∗, there exists an (f(g) + g, f∗)-good pair
of subgraphs.

Lemma 4.2 follows from a more general result proved in Lemma C.2 for multicommodity flows. The
proof in the single-commodity setting becomes much simpler, and follows immediately from Claim 4.3
since |f(g) + g| = |f∗|.
Claim 4.3. For any two s-t flows f , f̃ in a sepa graph G, either there is an (f, f̃)-good pair of subgraphs,
or one of the following holds:

(i) If |f | = |f̃ | then f = f̃ .

(ii) If |f | > |f̃ | then f ≥ f̃ .

(iii) If |f | < |f̃ | then f ≤ f̃ .

Proof. The proof is by induction on the size of the graph. For a single edge, there is no good pair of
subgraphs, but one of the three cases must hold. For the induction step, let G be the join of subgraphs G1

and G2. Let f1 = fG1 , f̃1 = f̃G1 , and f2 = fG2 , f̃2 = f̃G2 . Clearly, f1, f̃1 are sG1-tG1 flows, and f2, f̃2
are sG2-tG2 flows. If G1 contains an (f1, f̃1)-good pair, or G2 contains an (f2, f̃2)-good pair, then the same
pair is an (f, f̃)-good pair, and we are done. So assume otherwise.

Suppose G1 and G2 are in series. Then, |f1| = |f | = |f2|, and |f̃1| = |f̃ | = |f̃2|. So whichever case
applies to f and f̃ , the same applies to f1, f̃1, and f2, f̃2. By the induction hypothesis, we have the desired
relationship between f1, f̃1 and f2, f̃2, and hence between f and f̃ . So the statement holds for G.

Suppose G1 and G2 are in parallel. If |f1| > |f̃1| and |f2| < |f̃2|, then by the induction hypothesis,
f1 ≥ f̃1, f2 ≤ f̃2, so G1, G2 is an (f, f̃)-good pair. Similarly, if |f1| < |f̃1| and |f2| > |f̃2|, then G2, G1 is
an (f, f̃)-good pair. So assume neither case holds.

Now if |f | = |f̃ |, then (after eliminating the above cases) |f1| = |f̃1|, |f2| = |f̃2|. Hence, by the
induction hypothesis, we have f1 = f̃1, f2 = f̃2, and so f = f̃ .

If |f | > |f̃ |, then it must be that |f1| ≥ |f̃1| and |f2| ≥ |f̃2|. Therefore, f1 ≥ f̃1, f2 ≥ f̃2, and so f ≥ f̃ .
Finally, if |f | < |f̃ |, then it must be that |f1| ≤ |f̃1|, |f2| ≤ |f̃2|. Hence, f1 ≤ f̃1, f2 ≤ f̃2, and so

f ≤ f̃ . This completes the induction step, and hence, the proof. �

Our algorithm is now quite simple to describe. We keep track of the set S̄, initialized to ∅, of edges
not on any shortest s-t path under the edge costs (l∗e(f

∗
e ))e. By Lemma 2.2, S̄ must be saturated by any

Stackelberg routing that induces f∗. We repeatedly do the following.

S1. Find the flow g of minimum value that saturates every edge in S̄ and satisfies ge ≤ f∗e for all e.
S2. Query the oracle with g as the Stackelberg flow. If f∗ = f(g) + g, exit and return g. Otherwise, find an

(f(g) + g, f∗)-good pair of subgraphs H1, H2. Add every edge in H2 to S̄ (and repeat the process).

Theorem 4.4. The above algorithm computes a Stackelberg flow g of minimum value that induces f∗ in at
most m queries.

Proof. In every iteration, |S̄| increases by at least 1: since |fH2(g) + gH2 | < |f∗H2
| and g saturates every

edge in S̄, we know that at least one edge in H2 is not in the current set S̄. When S̄ = E, we have g = f∗.
So the algorithm terminates in at most m iterations with some flow g that induces f∗. To complete the
proof, we only need to show that any edge added to S̄ is indeed a non-shortest-path edge. Let h = f(g) + g.
Let s′ = sH1 = sH2 , t′ = tH1 = tH2 . Since |hH1 | > |f∗H1

|, there is some s′-t′ path P in H1 such that
(h − f∗)P > 0. So P belongs to a shortest s-t path under edge costs (l∗e(he))e. So for every s′-t′ path Q
in H2, we have l∗P (f∗) < l∗P (h) ≤ l∗Q(h) ≤ l∗Q(f∗). So every edge of H2 is a non-shortest-path edge under
edge costs (l∗e(f

∗
e ))e. �
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Stackelberg routing with an approximate oracle Define an ε-oracle for Stackelberg flows (or simply an
ε-oracle) for routing game (G, l, s, t, d, ) as an oracle that takes as input a Stackelberg flow g and returns
an ε-equilibrium of the routing game (G, l(g; ·), s, t, d− |g|) having encoding length poly(I, log(1/ε)). In
this section, we show that we can use such an ε-oracle to obtain a Stackelberg flow g that approximately
enforces f∗, and has value at most that of g∗, i.e., the Stackelberg flow that enforces f∗. Define ε′ =

√
Kdε.

As before, we fix a particular decomposition of the series-parallel graphG. Each subgraph then corresponds
to a node in the decomposition tree.

Here, we give the main definition, the algorithm, and the theorem statement. The proof of the theorem
is in Appendix E.

Definition 4.5. Given s-t flows f , f̃ , we call a pair of subgraphs H1, H2 (f, f̃)-ε′-good if, with m′ :=
|E(H1)|+ |E(H2)|,

1. The parallel-join of H1, H2 is a subgraph,

2. There exists r ∈ E(H1) with fr − f̃r ≥ (2mK)2m
′
ε′,

3. For every subgraph H ′ of H1 with r ∈ E(H ′), |fH′ | − |f̃H′ | ≥ 2(m+ 1)ε′ ,

4. For every edge e ∈ E(H2), fe − f̃e ≤ (2mK)2|E(H2)|ε′, and

5. |fH2 | − |f̃H2 | < 0 .

Our algorithm is similar to the algorithm given for the case of the exact oracle, except that instead of a
good pair of subgraphs, we find an ε′-good pair of subgraphs. We keep track of the set S̄, initialized to ∅, of
edges not on any shortest s-t path under the edge costs (le(f

∗
e ))e. By Lemma 2.2, S̄ must be saturated by

any Stackelberg routing that induces f∗. We repeatedly do the following.

S1. Find the flow g of minimum value that saturates every edge in S̄ and satisfies ge ≤ f∗e for all e.
S2. Query the ε-oracle with g as the Stackelberg flow and let f̃ be the flow returned by the oracle. If ‖f̃+g−f∗‖∞ ≤

(2mK)2m
√
Kdε, exit and return g. Otherwise, find an (f̃+g, f∗)-ε′-good pair of subgraphsH1,H2. Add every

edge in H2 to S̄ (and repeat the process).

Theorem 4.6. Let g∗ be a Stackelberg flow that induces f∗. Then with m ε-oracle queries, the above
algorithm finds a Stackelberg flow g so that ‖f(g) + g − f∗‖∞ ≤ (2mK)2mε′ + ε′ and |g| ≤ |g∗|.

5 Query- and computational- complexity lower bounds

Our algorithms in the previous section show that tolls for enforcing a target flow can be obtained with
a polynomial number of queries in general, and for routing games with linear latencies, with near-linear
and near-quadratic queries for series-parallel and general graphs respectively. For Stackelberg routing, we
similarly give a linear-query algorithm for series-parallel graphs. We now give a lower bound for the query-
complexity with tolls, showing that at least a linear number of queries are required in the worst case to
enforce a target flow. The bound is in fact for parallel links with linear delay functions, and hence our
algorithm for series-parallel graphs is nearly optimal. We then consider the related problem of determining
an equivalent set of delay functions, and give strong evidence that this is a hard problem. We show that
even the computational question — i.e., determining if two given sets of delay functions are equivalent — is
NP-hard, both for tolls and Stackelberg routing. For Stackelberg routing, we additionally give exponential
lower bounds for the query-complexity of determining an equivalent set of delay functions. Finally, using
the techniques developed in this section, we prove that given a routing game, the optimization problem
of determining the Stackelberg routing to minimize cost of the remaining players, called the Stackelberg
Equilibrium Delay Minimization problem, is APX-hard.
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5.1 A linear lower bound for query complexity with tolls

We show a lower bound of Ω(m) on the number of queries required to obtain tolls that give the target flow.

Theorem 5.1. Any deterministic algorithm that computes tolls required to enforce a target flow requires
Ω(m) queries, even for a single commodity instance on parallel links with linear delay functions.

Our example for the lower bound consists of a single commodity on m parallel links, with the demand
d = m and the target flow f∗e = 1 on each edge. In fact, our lower bound is actually for the problem of
obtaining tolls τ with the right support: fe(τ) > 0 iff f∗e > 0.

For our lower bound example, our delay functions are defined by a permutation π∗ : [m] → [m]. The
delay function on the parallel edge ei is be given by (x/m)+2(π∗(i)−1). Thus, we use the notation f(π, τ)
for the equilibrium flow, where the permutation π identifies the delay functions. We show that any algorithm
that computes the correct tolls to enforce f∗ must obtain the correct permutation π∗, and we design an oracle
that after k queries has only revealed information about π∗−1(1), · · · , π∗−1(k). Thus, in order to compute
the correct tolls, any algorithm requires m− 1 queries.

Our oracle works as follows. Initially, let A0 = ∅ be the set of assigned edges in the partial permutation
π∗. For the jth query τ j = (τ je )e∈E , our oracle returns the equilibrium flow described below.

Oracle: Pick an arbitrary edge e that with minimum toll τ je , so that e is not in Aj−1. Let π∗(e) = j and
Aj = Aj−1 ∪ {e}. Let π(j) be a complete permutation that extends the partial permutation π∗, and return
f(π(j), τ

j) as the equilibrium flow in response to tolls τ j .

Claim 5.2. For j ∈ [m], let σ be any permutation that satisfies σ(e) = π(j)(e) for all edges e ∈ Aj . Then
for any edge e 6∈ Aj , fe(σ, τ j) = 0

Proof. By description of the oracle and since e 6∈ Aj , e is not the unique edge with minimum toll in τj . That
is, there exists an edge h ∈ Aj with τ jh ≤ τ je . Since h ∈ Aj , σ(h) ≤ j < σ(e). Further since τ jh ≤ τ je , by
description of the delay functions, le(0) > lh(d), and hence edge e cannot have flow at equilibrium. �

We now show that the equilibrium flows returned by our oracle are consistent.

Lemma 5.3. There exists a permutation σ so that for every j ∈ [m], f(π(j), τ
j) = f(σ, τ j).

Proof. Fix j ≤ m, and let σ be a complete permutation that extends π∗. The image of every edge e ∈ Aj is
the same in π∗ and π(j). Thus the delay functions on both edges is the same. By Claim 5.2, the equilibrium
is zero for any edge not in Aj . Since edges in Aj have the same delay function, the equilibrium flow must
be the same for permutations σ and π(j). �

Proof of Theorem 5.1. From Lemma 5.3, for any sequence of m − 1 toll queries, the oracle returns a
consistent sequence of equilibrium responses. Further, from Claim 5.2, since |Aj | ≤ m− 1 for j ≤ m− 1,
there is an edge e with no flow in the equilibrium returned by the oracle. Hence, since f∗ has positive flow
on every edge, any deterministic algorithm requires at least m queries to compute tolls that obtain f∗. �

5.2 Lower bounds for determining equivalence

Given the ability to query a routing game and obtain the equilibrium flow, a natural question is if we can in
fact obtain the delay functions on the edges. It is obvious that the exact delay functions cannot be obtained,
even for a single edge. However, is it possible to obtain delay functions that are equivalent, in the sense
that any tolls or Stackelberg routing would yield the same equilibrium flow as in the routing game? In fact,
we show that the problem of determining equivalence of delay functions is NP-hard, even if we are given
two sets of delay functions and our task is to determine if they are equivalent. For Stackelberg routing we
additionally show exponential lower bounds for the query complexity.
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5.2.1 Equivalence with tolls

For tolls, we show that even with delay functions that are constant on every edge, determining equivalence
is NP-hard. Since with constant delay functions we may have multiple equilibria, we instead consider the
set of edges on any shortest path from s to t. For delay function l = (le)e and tolls τ on the edges we define

sp(l, τ) := {e : e lies on a shortest path from s to t with edge lengths l(f(l, τ)) + τ} .

Definition 5.4. Given a graph G with demand d between s and t, two sets of delay functions on the edges
l1 and l2 are equivalent with regard to tolls if for every vector of tolls (τe)e, sp(l1, τ) = sp(l2, τ).

Theorem 5.5. Given two constant cost functions l1 = (c1e)e and l2 = (c2e)e, it is NP-hard to determine if
there exist tolls τ ≥ 0 so that sp(l1, τ) 6= sp(l2, τ).

The reduction for NP-hardness is from the problem of 2-Directed Disjoint Paths, which is known to be
NP-complete [17]:

Definition 5.6 (2-Directed Disjoint Paths (2DDP)). Given a directed graph G and vertices s1, s2, t1 and t2,
do there exist si-ti paths pi such that p1 and p2 are vertex-disjoint?

Proof of Theorem 5.5. Given an instance of 2DDP on graph G, we modify the instance as follows. We add
two vertices s and t. We add 6 additional edges. We first add edges (s, s1), (s, s2), (t1, t), and (t2, t).
We also add edges (s, t) and (t1, s2). This last edge is called the diagonal edge. This gives us graph
G′ = (V,E′).

In l1, every edge in G′ has cost l1e = 1. In l2, every edge except the diagonal edge has cost 1, while the
diagonal edge has length 2.

We first show that if G has 2 directed disjoint paths, then there exist the required tolls. Let p1, p2 be
the vertex-disjoint paths between s1, t1 and s2, t2 respectively, and let mi be the number of edges in pi. In
graph G′, let

F := {p1 ∪ p2 ∪ {(s, s1), (t1, s2), (t2, t), (s, t)}}

and consider the tolls given by

τe =


|F | e 6∈ E′
m1 +m2 + 3/2, e = (s, t)
0 otherwise

Then with cost function l1 and tolls τ , the path along edge (s, t) is the shortest path of total cost m1 +m2 +
5/2 = |F | − 3/2, while with cost function l1 and tolls τ the edges of F \ {(s, t)} form the shortest path of
total cost |F | − 1. Thus, sp(l1 + τ) 6= sp(l2 + τ).

Now we will show that if there exist tolls τ so that sp(l1 + τ) 6= sp(l2 + τ), there exist vertex-disjoint
paths between s1, t1 and s2, t2. Given such tolls, let Si := sp(l1 + τ). Since each edge has a cost of at
least 1 and all tolls are nonnegative, S1 and S2 must be acyclic. Further, since l1e = l2e for every edge other
than the diagonal edge, this edge must be in exactly one of the sets, say S1. Then S1 must contain a simple
s-t path p containing the diagonal edge. Since the diagonal edge is (t1, s2), and by construction the only
edges incident on s are (s, s1) and (s, s2), p must consist of the (s, s1) edge, followed by an s1-t1 path, the
diagonal edge, and s2-t2 path, and the edge (t2, t). Since the path is simple, the si-ti paths must be disjoint,
completing the proof. �
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5.2.2 Equivalence with Stackelberg routing

We start by defining equivalence for Stackelberg routing.

Definition 5.7. Given a graph G with demand d between s and t and a Stackelberg demand fraction α, two
sets of delay functions on the edges l1 and l2 are ε-equivalent with regard to Stackelberg routing if for every
Stackelberg routing g with |g| ≤ αd, ‖f(l1, g)− f(l2, g)‖∞ ≤ ε.

We prove strong lower bounds for both the query complexity and the computational complexity. In
fact, for the query complexity, the lower bound instance is a graph of constant size. The size of the input is
determined by the demand d, and we show that although the size of the input isO(log d) any deterministic al-
gorithm that determines ε-equivalence for a fixed ε must make Ω(

√
d) queries. For computational hardness,

we show that even if we are explicitly given affine delay functions l1 and l2, determining 1/2-equivalence is
NP-hard. Our proof for computational hardness builds upon a reduction given by Roughgarden [34].

Query complexity. We are now given a graph G with demand d between s and t, a Stackelberg demand
fraction α, and a set of delay functions l1 on the edges of G. In addition, we are given query access to a
second set of delay functions l2. As before, each query consists of a Stackelberg routing g, and the response
is the equilibrium flow f(l2, g). We show the following result.

s t

d

u

v

e1

e2

e3

e4

e5

Figure 1: Braess graph instance for proving hardness of equivalence determination.

Theorem 5.8. Any deterministic algorithm that determines ε-equivalence for ε ≤ 1/16 requires an expo-
nential number of queries.

Our proof of the theorem is based on a particular property exhibited by the Braess graph shown in
Figure 1: there exist demands d1 ≤ d2 that depend on the parameters a and b so that for any demand d < d1
and d > d2 the set of shortest-path edges is the same, and differs from the set of shortest-path edges for any
demand d1 ≤ d ≤ d2. This is formalized by the following claim.

Claim 5.9. For the routing game depicted in Figure 1, and any d1, d2 ∈ R+ with d2 > d1 ≥ 1, there exist
parameters a and b so that the equilibrium flow f on the Braess edge is strictly positive iff d1 < d < d2,
where d is the demand being routed. Further, if d2 − d1 ≥

√
2(d1 + d2), then fuv ≥ 1/12 for demand

d = (d1 + d2)/2.

Proof. We choose a = 1 + (d1 + d2)/2 and b = (d1d2)/4. Then for any d, consider the flow that routes
d/2 on the s-u-t path and d/2 on the s-v-t path. It is easy to verify that this is the equilibrium flow if and
only if d ≤ d1 or d ≥ d2. Given the symmetric delay functions, it is then apparent that for d ∈ (d1, d2) the
(u, v) edge must have strictly positive flow.

For the second part of the proof, let σ = d1 + d2, δ = d2 − d1. Thus a = 1 + σ/2, b = (σ2 − δ2)/16,
and d = σ/2 = a − 1. Let fsu = x. Then by the symmetry of the delay functions fsv = fut = d − x
and fuv = 2x − d. Since we know for this demand fuv > 0, and edge (s, v) has zero delay if fsv = 0,
lsu(f) + luv(f)− lsv(f) = 0. Hence
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0 = x2 + x+ b− a(d− x)

and solving for fuv = 2x− d, and substituting the values of a, b and d yields

2x− d =
√

(a+ 1)2 + 4(ad− b)− (a+ 1 + d) = x2 + (a+ 1)x+ (b− ad)

=
√

(2 + σ)2 + δ2/4− (2 + σ) .

Using the fact that
√

1 + x ≥ 1 + x/3 for |x| ≤ 1 by the Taylor expansion, we get

2x− d ≥ δ2

12(2 + σ)

Since δ ≥
√

2σ ≥
√

2 + σ by assumption, this completes the proof. �

Proof of Theorem 5.8. We demonstrate that on the Braess graph in Figure 1 with an additional (s, t) edge,
demand d > 8, and where a, b have value O(d2), any algorithm requires Ω(

√
d) queries to determine if two

sets of delay functions l1, l2 are equivalent. Since the size of the input is O(log d), this would prove the
lemma.

For delay functions l1 that are explicitly given, a = 1, b =∞ and l1st =∞. Delay functions l2 also have
l2st =∞ but different values for a and b, which are determined after seeing the queries. Let gi, i ≤ k be the
set of queries. We will show that if k ≤

√
d then there exist a, b so that f(l1, gi) = f(l2, gi) for all i ≤ k,

but there exists g so that fuv(l2, gi) ≥ 1/12. Since l1uv = ∞, it must be that fuv(l1, gi) = 0, and hence
the two delay functions are distinct. Thus any algorithm that makes less than

√
d must fail to distinguish

between these delay functions.
For any query gi, our oracle returns the equilibrium flow f(l1, gi). Now given gi for i ≤ k ≤

√
d, let

α1, α2 ∈ [1, d] be such that α2 − α1 ≥
√
d, and for all i, d − gist 6∈ [α1, α2]. Since edge (s, t) has infinite

delay, any flow on this edge must be Stackelberg flow. Hence we require α1 and α2 so that the total flow on
the Braess graph is always outside the interval [α1, α2], and α2−α1 ≥

√
d. Since k ≤

√
d, such an interval

must exist. We then select a and b as in Claim 5.9 to complete our definition of delay function l2.
It remains to show that for all gi, f(l2, gi) = f(l1, gi) for correctness of the oracle. Fix i, and let

d′ = d− gist. Note that d′ 6∈ [α1, α2]. Let g1, g2 and g3 be the Stackelberg flow on paths s-u-t, s-u-v-t, and
s-v-t respectively. By our choice of l2, if g1 = g2 = g3 = 0, then the equilibrium flow would split demand
d′ equally between the s-u-t and s-v-t paths, and hence

l2sv(d
′/2) ≤ b+ l2su(d′/2) . (7)

We consider the following cases.
Case 1: Either g1 or g3 is strictly greater than (d′ − g2)/2. Suppose g1 > (d′ − g2/2). We claim
that at equilibrium, the non-Stackelberg demand is entirely routed on the s-v-t path, i.e., f(g) = h where
hsv(g) = hvt(g) = d′ − (g1 + g2 + g3). To see this, note that hsv + gsv < d′/2, hence comparing with (7),
delay on the s-v-t path is less than the delay on the s-u-v-t. Further, hsv + gsv < gut, and hvt + gvt < gsu.
By the symmetry of delay functions, the s-v-t path is therefore the shortest path, and hence h = f(g).
Case 2: Both g1 and g3 are at most (d′ − g2)/2. We claim that at equilibrium, fsu(g) = fut(g) =
d′/2− (g1 + g2) and fsv(g) = fvt(g) = d′/2− (g3 + g2). Thus at equilibrium the remaining flow d′ − g2
is divided equally between the s-u-t and s-v-t paths, and again the edge (u, v) has no flow at equilibrium.
To verify the claim, note that
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fsv(g) + gsv ≤ fsu(g) + gsu = d′/2 and fut(g) + gut ≤ fvt(g) + gvt = d′/2

and hence, comparing with (7),

l2sv(f(g) + g) ≤ l2sv(f(g) + g) + b and l2ut(f(g) + g) ≤ l2vt(f(g) + g) + b .

It is further easy to see that, since the total flow on edges (s, u), (v, t) is equal, and the total flow on edges
(s, v), (u, t) is equal,

l2sv(f(g) + g) + l2vt(f(g) + g) = l2su(f(g) + g) + l2ut(f(g) + g) .

Hence paths s-u-t and s-v-t are shortest paths with the described flow, and since fP (g) > 0 only on these
paths, it is an equilibrium.

As noted earlier, if the Stackelberg flow is rational, then so is f(g). In fact as shown the equilibrium
flow in all cases is very simple and can be computed directly from g. �

We note that in our example, the equilibrium flow returned by the oracle is particularly simple and in
fact does not depend on the delay functions. E.g., in the simpler case in the proof sketch, the oracle always
returns fe(g) = (d− gst)/2 for all e 6= (s, t), (u, v).

Computational complexity. We now show that even if delay functions l1 and l2 are given explicitly,
determining if they are ε-equivalent is computationally hard for ε ≤ 1/2. This is true even if all delay
functions are affine. Our proof uses properties of the Braess graph together with ideas from a reduction
from 2-Directed Disjoint Paths shown by Roughgarden [34].
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Figure 2: Braess graph instance for proving hardness of equivalence determination with respect to Stackel-
berg routing.
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Figure 3: 2DDP instance with additional edges for proving hardness of equivalence determination with
respect to Stackelberg routing.

Theorem 5.10. The problem of determining the ε-equivalence of delay functions for ε ≤ 1/2 is NP-hard.
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We use the following claim about Stackelberg routing in the Braess graph.

Claim 5.11. In any Stackelberg routing instance on the graph with delay functions l as in Figure 2 and
Stackelberg routing g, if fuv(g) > 0, then d < 2 and D(l, g) ≤ 2. Further, if ge = 0 for every edge in the
Braess graph and the demand d ∈ [1/2, 3/2], then fuv(g) ≥ 1/2.

Proof. For the first part of the claim, het h = f(l, g) + g. If (u, v) ∈ S(l, g), then the path p = (s, u, v, t)
must be a shortest path for flow h. Then lsu(h) + luv(h) ≤ lsv(h), and hence lsu(h) ≤ 1. Thus hsu ≤ 1.
Similarly, hvt ≤ 1. The first part follows. For the second part, if d ≤ 1 it is easy to see that the equilibrium
flow routes the entire demand on the s-u-v-t path. If d ∈ [1, 2] then consider the flow hsu = hvt = 1,
huv = 2− d and hsv = hut = d− 1. It can be verified that h is the equilibrium flow. �

Proof of Theorem 5.10. We show a reduction from 2DDP. Given an instance of the 2DDP problem, after the
addition of a source s and a sink t and additional edges described next (and shown in Figure 3), we add this
graph in parallel with a standard Braess graph (Figure 2). The delay functions l1, l2 will differ only on edge
(u, v) in the Braess graph. We use H1 to refer to the Braess graph and H2 to refer to the graph in the 2DDP
instance with vertices s and t and the additional edges, and H to refer to their parallel composition. For a
flow f , |fHi | is the value of the flow in subgraph Hi.

The specifics of the construction are as follows. Let m = |E| be the number of edges in the given
instance of 2DDP. All of these edges have delay function x/m2. We add a source s, vertex s′ and a sink t.
We add an edge (s, s′) with constant delay function 1/8, and edges (s′, si) and (ti, t) for i ∈ {1, 2}. Edges
(s, s1) and (t2, t) have delay function x, while edges (s, s2) and (t1, t) have delay function 1. Further,
there is an (s, t) edge with delay function ∞, and for every edge e = (x, y) in the original instance, the
new instance additionally contains edges (s, x) and (y, t) with delay function∞. This constitutes the graph
H2. Graph H1 consists of the Braess graph instance in Figure 2, and graph H is obtained by a parallel
composition of H1 and H2. The Stackelberg instance has demand m4 + 3, and α = m4/(3 + m4). The
delay functions l1, l2 are as described, except l2uv =∞ on the Braess edge.

Since l1, l2 differ only on the delay function on edge (u, v), it is easy to see that for any Stackelberg
routing g, if fuv(l1, g) = 0 then fuv(l1, g) = fuv(l

2, g). Further, since l2uv = ∞, if fuv(l1, g) = fuv(l
2, g)

then in fact fuv(l1, g) = 0. Hence the delay functions are equivalent iff fuv(l1, g) = 0 for every Stackelberg
routing g. For the proof of the theorem, we will show that if the instance of 2DDP is a positive instance,
then there exists a Stackelberg routing g so that fuv(l1, g) ≥ 1/2, otherwise for any Stackelberg routing,
fuv(l

1, g) = 0.
In the remainder of the proof we focus on delay functions l1. Suppose that the instance is a positive

instance. Then the Stackelberg routing g sends m3 units of flow on every edge e = (x, y) in the original
instance that is not on the vertex-disjoint paths pi, using the additional edges (s, v), (v, w). Any remaining
Stackelberg flow is routed on the (s, t) edge. Thus every edge that is not on the vertex-disjoint paths now
has delay at least m, while ge = 0 for every edge on the vertex-disjoint paths. Further, ge = 0 for every
edge e ∈ H1.

We claim that for the equilibrium flow, 1/2 ≤ |fH1 | ≤ 3/2. To see this, if |fH1 | < 1/2, then the
delay at equilibrium in H1 is at most 1. However |fH2 | > 5/2, hence at least one of the two s-t parallel
paths has delay at equilibrium greater than 1. If |fH1 | > 3/2 then the delay at equilibrium in H1 is 2.
However, |fH2 | ≤ 3/2, hence at least one of the two s-t parallel paths has delay at equilibrium less than
1+1/8+3/4×(1+1/m)< 2. Thus at equilibrium, 1/2 ≤ |fH1 | ≤ 3/2, and by Claim 5.11, fuv(g) ≥ 1/2.

Now suppose that for some Stackelberg routing g, fuv(g) > 0. Then by Claim 5.11, |fH1 | ≤ 2 and the
delay at equilibrium is at most 2. However, then |fH2 | ≥ 1 and the delay at equilibrium is at most 2. Since
there is an (s, s′) edge with constant delay 1/8, following the proof of Theorem 5.13, this is only possible if
the instance of DDP is a positive instance. �
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In fact, using very similar ideas, we can show that the problem of minimizing D(f(g)) over all Stackel-
berg strategies is (4/3 − ε)-inapproximable, even with linear delays. Roughgarden has shown that finding
the Stackelberg routing that minimizes the average delay of the total flow g+f(g) is NP-hard, even in paral-
lel links with affine delays [33]. Despite considerable interest in Stackelberg routing, nothing stronger than
NP-hardness is known for this problem. Our result thus shows that a closely related problem is APX-hard.

Definition 5.12 (Stackelberg Equilibrium Delay Minimization (SEDM)). Given a Stackelberg routing in-
stance (G, l, (d, s, t), α), find the Stackelberg routing g that minimizes the average delay for the equilibrium
flow f(g).

Theorem 5.13. The SEDM problem is (4/3− ε)-inapproximable, for any fixed ε > 0.

Proof. Given an instance of the 2DDP problem, we modify it to obtain a Stackelberg routing instance as
follows. Let m = |E| be the number of edges in the original instance. All of these edges have delay
function x/m2. We add a source s and a sink t, and edges (s, si) and (ti, t). Edges (s, s1) and (t2, t) have
delay function x, while edges (s, s2) and (t1, t) have delay function 1. Further, there is an (s, t) edge with
delay function ∞, and for every edge e = (v, w) in the original instance, the new instance additionally
contains edges (s, v) and (w, t) with delay function∞. The Stackelberg instance has demand m4 + 1, and
α = m4/(1 +m4).

We claim that if the instance of 2DDP is a positive instance, then there exists a Stackelberg routing g with
D(l, f(g)) ≤ 3/2 + 1/m, otherwise for any Stackelberg routing, D(f(g)) ≥ 2. Suppose that the instance is
a positive instance. Then the Stackelberg routing g sends m3 units of flow on every edge e = (v, w) in the
original instance that is not on the vertex-disjoint paths pi, using the additional edges (s, v), (v, w). Thus
every edge that is not on the vertex-disjoint paths now has delay at least m, while ge = 0 for every edge
on the vertex-disjoint paths. Any remaining Stackelberg flow is routed on the (s, t) edge. It is now easy to
verify that the equilibrium flow f(g) splits one unit of demand approximately equally between the two paths
p1 and p2, and has a delay at equilibrium of at most 3/2 + 1/m.

Now suppose the given instance does not contain two vertex-disjoint paths bet ween s1, t1 and s2, t2.
Following the argument in [7], for a contradiction let g be a Stackelberg routing for whichD(f(g)) < 2. Let
F be the set of edges with positive flow at equilibrium. Then F must contain all four edges (s, s1), (s, s2),
(t1, t), (t2, t); the absence of any of these edges would give a delay of at least 2. Further, F cannot contain
an s-s2-t1-t path since again this would given delay of at least 2. Hence F must contain an s-s1-t1-t path
and an s-s2-t2-t path. These paths cannot be vertex disjoint; let v be the common vertex. Then the delay on
any s-v path must be at least 1, and the delay on any v-t path must be at least 1. Hence the total delay in
any instance that does not contain two vertex-disjoint paths is at least 2, which gives us a contradiction. The
hardness of determining the existence of these paths thus shows that minimizing the delay of the equilibrium
flow with Stackelberg routing is (4/3− ε) inapproximable, for any ε > 0. �
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A Proofs from Section 2

Proof of Lemma 2.2. The necessity of the first condition, that ge ≤ f∗e on every edge, is obvious. For the
necessity of the second condition, assume f∗ is an equilibrium flow and on some edge e 6∈ S, ge < f∗e .
Then fe(g) > 0 since f(g) + g = f∗. By definition of Wardrop equilibrium, then there must exist a path P
with e ∈ P and lP (f∗) ≤ lQ(f∗) for any path Q. This contradicts that e 6∈ S.

For the sufficiency of the conditions, consider the flow f∗ − g. This is strictly positive only on shortest-
path edges, and hence satisfies the conditions for Wardrop equilibrium with Stackelberg flow g. Since the
equilibrium is unique, f(g) = f∗ − g. �

B Proofs from Sections 3.1 and 3.2

Proof of Lemma 3.4. Let (G, l, (si, ti, di)i≤k) be the given routing game. Recall that we assume that the
les satisfy (2)–(4) with logK = poly(I). Recall the convex program (1) used to compute the Wardrop
equilibrium.

min Φ(f) :=
∑
e

∫ fe

0
le(x) dx s.t. f =

k∑
i=1

f i, f i is an si-ti flow of value di ∀i = 1, . . . , k. (1)

Set δ = ε
4mK and ε = min

{ ε(∑i di)
2 , δ2

2K2

}
. Let f̂ be the Wardrop equilibrium, and g be a feasible flow such

that Φ(g) ≤ Φ(f̂) + ε that we compute in time poly
(
I, log(1ε )

)
= poly

(
I, log(1ε )

)
. (We will later require

that g is computed via a specific algorithm for solving (1).)
First, we note that given any feasible flow g, one can always obtain an acyclic feasible flow g′ ≤ g

by simply canceling flow along flow-carrying cycles (of each commodity). So in the sequel, we ignore the
acyclicity condition and concentrate on obtaining an approximate equilibrium.
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Observe that for any feasible flows h, f , we have Φ(h) − Φ(f) ≥ vf · (h − f), vf = (le(fe))e; vf is
called the subgradient of Φ at f . So we have∑

e

gele(f̂e)−
∑
i

diD
i(l, f̂) =

∑
e

(ge − f̂e)le(f̂e) ≤ Φ(g)− Φ(f̂) ≤ ε.

We show below that
∑

e(ge−f̂e)le(ge) ≤
δ2

K . Since f̂ is an equilibrium, we also have
∑

e(f̂e−ge)le(f̂e) ≤ 0.
Adding the two inequalities gives

∑
e(ge− f̂e)

(
le(ge)− le(f̂e)

)
≤ δ2

K . Each term in this sum is nonnegative
and hence is at most δ

2

K , and therefore we have |ge− f̂e| ≤ δ for every edge e (due to inverse-K-continuity).
Given this, we have that lP (g) ≤ lP (f̂) + mKδ due to the K-Lipschitz condition, and so Di(l, g) ≤
Di(l, f̂) +mKδ for every commodity i. Therefore,∑

e

gele(ge) ≤
∑
e

gele(f̂e) +mKδ
(∑

i

di

)
≤
∑
i

di
(
Di(l, f̂) +mKδ

)
+ ε

≤
∑
i

di
(
Di(l, g) + 2mKδ

)
+ ε ≤

∑
i

di
(
Di(l, g) + ε

)
.

We now show that
∑

e(ge − f̂e)le(ge) ≤ δ2

K . Suppose we obtain the near-optimal solution to (1) by
running the ellipsoid method with error parameter ω = ε

mK
∑
i di

. This takes time poly
(
I, log( 1

ω )
)

=

poly
(
I, log(1ε )

)
.) The near-optimality of g then follows from the fact that there exists another feasible flow

h satisfying: (i) ‖h − f̂‖∞ ≤ ω, and so Φ(h) − Φ(f̂) ≤
∑

e(he − f̂e)le(he) ≤ ωm(maxe le(he)) ≤
ωmK

∑
i di = ε; (ii)

∑
e(he − ge)le(ge) = 0; see, e.g., Sections 3 and 4 and in particular, Lemma 4.5,

in [38]. Thus, we have
∑

e(f̂e − ge)le(ge) ≥ 0− ωm(maxe le(ge)) ≥ −ωmK
∑

i di ≥ −
δ2

K . �

Definition of general nonatomic congestion games. This is the following generalization of nonatomic
routing games. The edge set is now replaced by a set E of resources, and there are k player-types. Each
resource e has a nonnegative, continuous, and strictly increasing delay function, le : R+ 7→ R+. Each
player-type i is described by a player-volume di and an explicitly-given non-empty strategy set P i ⊆ 2E .
The combined strategy-choices of the infinitely-many infinitesimal players of each type i can be described
by an assignment f = (f1, . . . , fk), where f i : P i 7→ R+ satisfies

∑
P∈Pi f

i
P = di; the cost incurred by

a strategy Q ∈
⋃
i P i is then lQ(f) :=

∑
e∈Q le(fe), where fe =

∑
P∈

⋃
i Pi:e∈P

f iP . We define Di(l, f)

and an ε-equilibrium as before: so Di(l, f) = minP∈Pi lP (f), and f is an ε-equilibrium if
∑

e fele(fe) ≤∑
i di(D

i(l, f) + ε). A Nash equilibrium or Nash assignment is a 0-equilibrium, and is known to be unique.
The question with tolls is whether one can impose tolls τ ∈ RE on resources—which, as before, yield

delay functions (lτe (x) := le(x) + τe)e—in order to achieve a target assignment f∗ as the Nash assignment,
or ensure that (f∗e )e is component-wise close to the Nash assignment.

Proof of Theorem 3.12. We first recall the definition of a Nash equilibrium. A Nash equilibrium of the
atomic splittable routing game is a feasible flow f such that

∑
e f

i
ele(fe) ≤

∑
e g

i
ele(fe− f ie + gie) for every

si-ti flow gi of value di. Equivalently, defining the marginal latency function li,e(f ;x) := le(x) + f iel
′
e(x),

where l′(x) is the derivative of l, this means that if f iP > 0 for P ∈ P i, then P is a shortest si-ti path under
the edge costs

(
li,e(f ; fe)

)
e
.

We use the ellipsoid method and dovetail the proof of Theorem 3.2. Given the current ellipsoid center
(l̂, τ̂), we obtain a separating hyperplane as in the proof of Theorem 3.2, except that we use the marginal
delay functions

(
l̂τ̂i,e
)
i,e

. Let g = f(l∗, τ̂) = (gi)i≤k be the flow returned by the oracle. If gi = f∗i for

all i, then we are done, so suppose otherwise. Suppose that f(l̂, τ̂) 6= f∗, that is, there is some i such that
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f(l̂, τ̂)i 6= f∗i. Note that this can be efficiently determined. We can find a player j and paths P,Q ∈ Pj

such that f∗jP > 0, but
∑

e∈P l̂
τ̂
j,e(f

∗; f∗e ) >
∑

e∈Q l̂
τ̂
j,e(f

∗; f∗e ). Thus, the inequality∑
e∈P

lj,e(f
∗; f∗e ) + τ(P ) ≤

∑
e∈Q

lj,e(f
∗; f∗e ) + τ(Q)

where both l and τ are variables is violated by (l̂, τ̂) but satisfied by (l∗, τ∗) since (l∗, τ∗) induce f∗ (by
definition). Notice that the above inequality is indeed linear in l and τ .

Now suppose f(l̂, τ̂)i = f∗i for all i. Then, g 6= f∗, we can again find a player j and paths P,Q ∈ Pj

such that gjP > 0, but
∑

e∈P l̂
τ̂
j,e(g; ge) >

∑
e∈Q l̂

τ̂
j,e(g; ge). So consider the inequality∑

e∈P
lj,e(g; ge) + τ̂(P ) ≤

∑
e∈Q

lj,e(g; ge) + τ̂(Q)

where now only the les are variables. This is violated by (l̂, τ̂) but satisfied by (l∗, τ∗) since g = f(l∗, τ̂).
�

C Proofs from Section 3.3

C.1 Proof of Lemma 3.18

As mentioned in the proof sketch, we first show a property that is weaker than having a discriminating pair.
To this end, we define a good pair of subgraphs (Definition C.1) and first show in Lemma C.2 that a pair of
subgraphs satisfying this weaker property always exist.

Let (G, {(si, ti, di)}i∈K) be a multicommodity flow instance on a sepa graph. Let H be the collection
of parallel subgraphs of G under a given sepa decomposition tree for G. For any subgraph H ∈ H we
define the internal nodes of H as V int(H) := V (H) \ {sH , tH}. The internal commodities of H are
Kint(H) := {i ∈ K : {si, ti} ∩ V int(H) 6= ∅}. The external commodities of H are Kext(H) := {i ∈ K :
sH , tH lie on some si-ti path}.

Let f = (f i)i∈K and f̃ = (f̃ i)i∈K be two feasible multicommodity flows. Define

|f iH | :=
∑

e=(sH ,v)∈E(H)

f ie , and |fH | :=
∑

i∈Kext(H)

|f iH | .

Definition C.1. Given feasible flows f , f̃ in G, subgraphs H1, H2 are (f, f̃ ,H)-good if:
(i) the parallel-join of H1 and H2 is a subgraph inH;

(ii) fe ≥ f̃e for all e ∈ E(H1) and fe ≤ f̃e for all e ∈ E(H2); and

(iii) |fH1 | > |f̃H1 | and |fH2 | < |f̃H2 |.

Lemma C.2. For any subgraph H of G, let H′ be the set of subgraphs of H obtained by parallel joins in
a given decomposition tree of G, and let f , f̃ be feasible multicommodity flows in G. Either there exists an
(f, f̃ ,H′)-good pair of subgraphs or one of the following must hold.

1. If |fH | = |f̃H | then fe = f̃e for all e ∈ E(H).

2. If |fH | > |f̃H | then fe ≥ f̃e for all e ∈ E(H).

3. If |fH | < |f̃H | then fe ≤ f̃e for all e ∈ E(H).
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Proof. We proceed by induction on the size of H . In the base case, when H is a single edge, there is no
good pair of subgraphs, but one of the three cases clearly holds. For the induction step, supposeH is the join
of subgraphs H1 and H2. If H is the parallel join of H1 and H2, then any external commodities of H are
external commodities of H1 and H2 as well; similarly, any external commodities of H1 and H2 are external
commodities of H as well. Hence |fH | = |fH1 | + |fH2 |. Note that if |fHi | > |f̃Hi | and |fHj | < |f̃Hj | for
i 6= j and i, j ∈ {1, 2} then H1 and H2 form a good pair.

To verify the three cases, suppose |fH | = |f̃H |. If |fHi | = |f̃Hi | for i ∈ {1, 2}, then by induction
fe = f̃e for e ∈ E(H). Otherwise, by the induction hypothesis for i 6= j and i, j ∈ {1, 2}, |fHi | > |f̃Hi |
and |fHj | < |f̃Hj | yielding a good pair. If |fH | > |f̃H | then again, either |fHi | > |f̃Hi | and |fHj | < |f̃Hj |
yielding a good pair, or |fHi | > |f̃Hi | and |fHj | = |f̃Hj |. In this case, by induction, fe ≥ f̃e for all
e ∈ E(H).

Now suppose H1 and H2 are in series. In this case, note that Kext(H) ⊆ Kext(Hi) for i ∈ {1, 2}.
Further, if commodity i ∈ Kext(H1) but i 6∈ Kext(H), then ti must be an internal node of H2. Since
every si-ti path contains sH1 , and f , f̃ are feasible flows in G, |f iH1

| = |f̃ iH1
|. Similarly, if commodity

i ∈ Kext(H2) but i 6∈ Kext(H), then si must be an internal node of H1. Since every si-ti path contains sH2 ,
|f iH2
| = |f̃ iH2

|. Thus,

|fH1 | − |f̃H1 | =
∑

i∈Kext(H1)∩Kext(H)

(
|f iH1
| − |f̃ iH1

|
)

+
∑

i∈Kext(H1)\Kext(H)

(
|f iH1
| − |f̃ iH1

|
)

=
∑

i∈Kext(H1)∩Kext(H)

(
|f iH1
| − |f̃ iH1

|
)

=
∑

i∈Kext(H)

(
|f iH1
| − |f̃ iH1

|
)

= |fH | − |f̃H |

Similarly, |fH2 | − |f̃H2 | = |fH | − |f̃H |. By induction, either there is a good subgraph, or one of the
three cases in the lemma must hold. �

Proof of Lemma 3.18. Since f and f̃ are feasible multicommodity flows and f 6= f̃ , Lemma C.2 implies
that there is an (f, f̃ ,H)-good pair of subgraphs H1, H2. So (a) fe ≥ f̃e for all e ∈ E(H1) and fe ≤ f̃e for
all e ∈ E(H2), and (b) |fH1 | > |f̃H1 | and |fH2 | < |f̃H2 |. If fe > f̃e for all e ∈ E(H1), then we are done.
So suppose otherwise.

In the fixed decomposition tree of G, consider the subgraphs in the subtree rooted at subgraph H1. Let
K be a minimal subgraph that contains both fe > f̃e edges and fe = f̃e edges; that is, every subgraph of
K only contains fe > f̃e edges or fe = f̃e edges but not both. Let K be the join of K1 and K2, where K1

contains fe > f̃e edges. If K1, K2 are in parallel, then K1,K2 is an (f, f̃ ,H)-discriminating pair.
To complete the proof, we show that it cannot be that K1 and K2 are in series. Let v be the node joining

K1 and K2, so all edges with v at their head lie in E(K1), and all edges with v at their tail lie in E(K2).
Given a feasible multicommodity flow h, define bv(h) =

∑
(v,u)∈E hv,u−

∑
(u,v)∈E hu,v. Observe that bv(h)

is simply the node balance
∑

i:v=si
di −

∑
i:v=ti

di, and is thus independent of the multicommodity flow.
Therefore, bv(f) = bv(f̃). Rearranging, this gives

∑
e∈E(K1):e=(u,v)(fe− f̃e) =

∑
e∈E(K2):e=(v,u)(fe− f̃e),

which is a contradiction. �

D Proofs from Section 3.4

Proof of Claim 3.23. We assume that in τ , there is a single edge e′ = (u,w) with negative tolls. If there are
multiple such edges, simply repeating the procedure in this proof gives the required tolls τ ′. If fe′(τ) = 0,
increasing the toll on this edge does no change the equilibrium flow. Hence we assume that fe′(l, τ) > 0.
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Let E+ be the edge set of the graph if it is acyclic; otherwise, let E+ be the set of edges with strictly
positive flow in g = f(l, τ). Since g is an equilibrium flow, the set of edges E+ is acyclic. Let σ(v) be an
ordering of the vertices given by a topological sort of the graph (V,E+). Define S = {v ∈ V : σ(v) ≤
σ(u)}, where e′ = (u, v) is the edge with negative toll. Then s ∈ S and t ∈ V \ S. Let τ ′ be the tolls
obtained by adding −τe′ to every edge e 6∈ E+, and also to every edge e = (x, y) ∈ E+ across the cut
(S, V \ S). That is,

τ ′xy =

{
τxy − τe′ if x ∈ S, y ∈ V \ S, or (x, y) 6∈ E+

τxy otherwise.

By this procedure, the toll does not decrease on any edge and increases to zero on edge e′. We claim that the
flow at equilibrium remains unchanged. Consider first a path P with gP > 0. All edges e ∈ P are in E+,
and exactly one edge crosses the cut (S, V \ S). Hence the delay on every such path increases by exactly
−τe′ . On any other path, there is at least one edge e 6∈ E+, hence the delay these paths increases by at least
−τe′ . The flow g is thus a flow on shortest paths with tolls τ ′, and hence g = f(l, τ ′). �

Proof of Theorem 3.24. We first prove (iii). Let τ := 1rδ. Let Φ be the potential function as defined in (1)
for the delay functions in Γ , and Φτ be the potential function with delay functions that include the toll τ .
Note that for any flow f , Φτ (f) = Φ(f) + τrfr. Suppose for a contradiction that fr(τ) > fr(0). Then

Φτ (f(0)) = Φ(f(0)) + τrfr(0) < Φ(f(0)) + τrfr(τ) < Φ(f(τ)) + τrfr(τ) = Φτ (f(τ)) .

But this is a contradiction, since f(τ) is the unique minimizer of Φτ .
We now prove part (iv) of the theorem. Let τ := −1rδ. We first prove the lemma for the case that

S(l, f(τ)) = S(l, f(0)), and then extend it to the case when the set of shortest-path edges differ. For two
flows f and g of the same value in G, the difference h = f − g is a circulation and is possibly negative on
some edges. If huv > 0 then (u, v) is a forward edge, and if huv < 0 then (u, v) is a backward. We use E+

and E− for the set of forward and backward edges respectively.
We want to define a decomposition of h along cycles. For this, let D be the directed graph with the

same vertex set as G, but with (u, v) ∈ E(D) if (u, v) ∈ E and huv > 0, and (v, u) ∈ E(D) if (u, v) ∈ E
and huv < 0. Then h defines a circulation h̃ in graph D, where h̃uv = huv if (u, v) is a forward edge, and
h̃vu = −huv if (u, v) is a backward edge. Let {h̃C}C∈C be a decomposition of h̃ along directed cycles in
D. Then for (u, v) ∈ E+, huv =

∑
C:(u,v)∈C h̃C , and for (u, v) ∈ E−, huv = −

∑
C:(v,u)∈C h̃C .

Let edge r = (x, y). We will show that (y, x) is in every cycle C. For a contradiction, suppose there
exists C ′ ∈ C so that (y, x) 6∈ C ′. For any edge e ∈ E+, fe(τ) > fe(0), and for any edge e ∈ E−,
fe(τ) < fe(0). Further, since S(f(0)) = S(f(τ)), the sum of latencies along cycle C ′ must be zero for
both flows f(τ) and f(0). However,

∑
e∈C′

le(fe(τ)) =
∑

e∈E+∩C′
(le(fe(τ)) + τe)−

∑
e∈E−∩C′

(le(fe(τ)) + τe)

>
∑

e∈E+∩C′
(le(fe(0)) + τe)−

∑
e∈E−∩C′

(le(fe(0)) + τe)

≥
∑

e∈E+∩C′
le(fe(0))−

∑
e∈E−∩C′

le(fe(0)) = 0 .

where the second inequality is because τe = 0 for e 6= r, and r 6∈ E− ∩ C ′. This is a contradiction, since
the sum of latencies along cycle C ′ must be zero for flow f(τ). Thus, for every cycle C ∈ C, (y, x) must be
in C.
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Then

fuv(τ) = fuv(0) +
∑

C∈C:(u,v)∈C

fC −
∑

C∈C:(v,u)∈C

fC .

Since by the claim edge r is a backward edge in every cycle C ∈ C, |fr(τ) − fr(0)| = |
∑

C∈C fC |,
which is obviously an upper bound on the change in flow on any edge.

We now extend the lemma for the case where S(f(0)) 6= S(f(τ)). In fact, we show that for any ε > 0,
|fr(τ) − fr(0)| ≥ ‖f(τ) − f(0)‖∞ − ε. Pick ν = ε2/(Kd22m), where m is the number of edges. Let
a0 = 0. For any ai we define

bi = sup{x ∈ [ai, δ] : S(f(−1rx)) = S(f(−1rai))} .

and ai+1 = bi+ν. Let j be such that δ ∈ [aj , aj+1]. By definition, either δ = bj or δ ∈ [bj , aj+1]. Since the
number of possible sets of shortest-path edges is 2m, j ≤ 2m. Also, for all i, by the first part of the lemma
and by continuity of equilibrium flow, |fr(−1rai) − fr(−1rbi)| ≥ ‖f(−1rai) − f(−1rbi)‖∞. Further by
Corollary 3.25, ‖f(−1rbi)− fr(−1rai+1)‖ ≤

√
Kdν. Summing up,

‖f(0)− f(−1rδ)‖∞ ≤
j∑
i=0

‖f(−1rai)− f(−1rai+1)‖∞

≤
j∑
i=0

‖f(−1rai)− f(−1rbi)‖∞ +

j∑
i=0

‖f(−1rbi)− f(−1rai+1)‖∞

≤
j∑
i=0

|fr(−1rai)− fr(−1rbi)|+ 2m
√
Kdν

≤ |fr(0)− fr(−1rδ)|+ ε

where the last inequality follows be the monotonicity of fr as a function of the toll on edge r. By taking
limits, ‖f(0)− f(τ)‖∞ ≤ |fr(0)− fr(τ)|. �

E Proof of Theorem 4.6

In the following discussion, we fix a Stackelberg flow g, and define f̂ = f(g). Flow f̃ is the flow returned
by the ε-oracle. Define δe = f̃e + ge − f∗e , and for subgraph H , δH = ‖f̃H + gH‖ − ‖f∗H‖. By Lemma 3.5,
if f̃ is the flow returned by the ε-oracle with Stackelberg flow g, then ‖f̂ − f̃‖∞ ≤ ε′. Further, recall that by
our assumptions on the delay functions,

dle(x)

dx
≥ 1

K
, and |le(x)− le(y)| ≤ K|x− y|

for all x, y ∈ [0, d].

Claim E.1. Fix an edge r with δr ≥ 2(m + 1)ε′. Let H be a subgraph with r ∈ E(H) so that for every
subgraph H ′ of H with r ∈ E(H ′), δH′ ≥ 2(m + 1)ε′. Then there is an sH -tH path P with r ∈ P and
δe ≥ 2ε′ on every edge e ∈ P .
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Proof. We first show that for any subgraphH ′ if δH′ ≥ 2mε′, then there is an sH′-tH′ path P ′ with δe ≥ 2ε′

on every edge e ∈ P ′. Otherwise, removing all edges with δe < 2ε′ must disconnect the terminals of H .
However, the total flow on these edges is at most 2mε′, while there is net flow of 2(m + 1)ε′ between the
terminals. Hence there must be an sH′-tH′ path on which every edge has δe ≥ 2ε′.

We now prove the claim by induction. If H is a single edge, the claim is obviously true. If H is the
series-composition ofH1 andH2, say r ∈ E(H1). Since δH2 = δH ≥ 2(m+1)ε′, by the above proof, there
is an sH2-tH2 path P2 on which every edge has δe ≥ 2ε′. Further, by the inductive hypothesis, there is an
sH1-tH1 path P1 with r ∈ P1 and on which every edge has δe ≥ 2ε′. Path P is then the concatenation of P1

and P2. Lastly, if H is the parallel-composition of H1 and H2 with r ∈ E(H2), such a path must already
exist in H1 by the inductive hypothesis. This is the path P required in the claim. �

Lemma E.2. If subgraphs H1, H2 are (f̃ + g, f∗)-ε′-good and ge ≤ f∗e on every edge, then every edge in
H2 is a non-shortest-path edge with edge costs (l∗e(f

∗
e ))e.

Proof. By Lemma 3.5, ‖f̂ − f̃‖∞ ≤ ε′. Let s′, t′ be the common terminals of H1 and H2. Let P be the
s′-t′ path obtained from Claim E.1 with r ∈ P , and Q be an arbitrary s′-t′ path with edges in H2. Since
f̃e + ge − f∗e ≥ 2ε′ for all edges in P by the claim, f̂e + ge − f∗e > 0. Hence

lP (f̂ + g)− lP (f∗) > lr(f̂r + gr)− lr(f∗r ) ≥ 1

K
(f̂r + gr − f∗r ) ≥ (2mK)2m

′ − 1

K
ε′ . (8)

On path Q,

lQ(f̂ + g)− lQ(f∗) =
∑
e∈Q

le(f̂e + ge)− le(f∗e ) ≤
∑
e∈Q

K|f̂e + ge − f∗e |

≤
∑
e∈Q

K
(
|f̂e − f̃e|+ |f̃e + ge − f∗e |

)
≤ mK

(
1 + (2mK)2|E(H2)|

)
ε′ . (9)

Since f̂e + ge − f∗e > 0 on every edge in P and ge ≤ f∗e , f̂P > 0, and hence lP (f̂ + g) ≤ lQ(f̂ + g). Then
from (8) and (9),

lQ(f∗)− lP (f∗) >
(2mK)2m

′ − 1

K
ε′ −mK

(
1 + (2mK)2|E(H2)|

)
ε′

≥ (2mK)2m
′
ε′
(

1

K
− 1

4mK

)
− ε′

K
−mKε′

≥ (2mK)2ε′
(

1

K
− 1

4mK

)
− ε′

K
−mKε′ > 0 .

Thus, any s′-t′ path Q containing edges in H2 must be a non-shortest-path, and hence every edge in H2 is a
non-shortest-path edge. �

Lemma E.3. Any subgraphH with δH < 2(m+1)ε′ and that contains an edge r with δr ≥ (2mK)2|E(H)|ε′,
must contain a (f̃ + g, f∗)-ε′-good pair of subgraphs.

Proof. In the base case, when graph H consists of a single edge e, the lemma is trivially true since the two
conditions cannot be satisfied together.

For the inductive step, let H1 be the largest subgraph so that r ∈ E(H1) and δL ≥ 2(m + 1)ε′ for
each subgraph L of H1 with r ∈ E(L). Then H1 must be in parallel with subgraph H2, and δH2 < 0. If
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δe ≤ (2mK)2|E(H2)|ε′ on each edge in H2, then H1 and H2 form a good pair of subgraphs. Otherwise,
δH2 < 0 and there is an edge r in H2 with δr ≥ (2mK)2|E(H2)|ε′. By the inductive hypothesis, H2 must
contain a good pair of subgraphs. �

Corollary E.4 follows from the lemma by observing that δG = 0, and if ‖f̃+g−f∗‖∞ ≥ m(2mK)2mε′

then there exists an edge with δe ≥ (2mK)2mε′.

Corollary E.4. If ‖f̃ + g− f∗‖ ≥ m(2mK)2mε′ then there exists a (f̃ + g, f∗)-ε′-good pair of subgraphs.

Proof of Theorem 4.6. Following the proof of Theorem 4.4, in every iteration, |S̄| increases by at least 1
since f̃H2 + gH2 < f∗H2

and g saturates every edge in S̄. When S = E, g = f∗. So the algorithm terminates
in at most m iterations with some flow g so that ‖f̃ + g− f∗‖∞ ≤ (2mK)2mε′. To see that |g| ≤ |g∗|, note
that by Lemma E.2, every edge in H2 must be a non-shortest-path edge, and hence every edge added to S̄ is
a non-shortest-path edge. �

F Proof of Theorem 3.21

We will use the following claim frequently in our proofs.

Claim F.1. Let subgraph H be the parallel composition of H1 and H2, and τ , τ ′ be tolls so that, for some
γ ∈ R,

τ ′e =

{
τe + γ if e = (sH , w) ∈ E(H)
τe if e 6= (sH , w) ∈ E(H)

Then (
|fH1(τ)| − |fH1(τ ′)|

)
·
(
|fH2(τ)| − |fH2(τ ′)|

)
≥ 0 .

Note that the claim does not impose any condition on tolls outside H ..

Proof. Let f = f(τ), f ′ = f(τ ′). For a contradiction, assume without loss of generality that |fH1 | > |f ′H1
|

but |fH2 | < |f ′H2
|. Then there are sH -tH paths P , Q in H1, H2 respectively so that for all e ∈ P , fe > f ′e

and for all e ∈ Q, fe < f ′e. Note that since both paths have a single edge incident to sH , τ ′(P ) = τ(P ) + γ
and τ ′(Q) = τ(Q) + γ. Then, since fP > 0, f ′Q > 0,

lτP (f) ≤ lτQ(f) < lτQ(f ′) = lτ
′
Q (f ′)− γ ≤ lτ

′
P (f ′)− γ = lτP (f ′) .

However, lτP (f ′) < lτP (f), giving us a contradiction. �

The structure of the proof is as follows. Our algorithm proceeds by considering all subgraphs in H in
a bottom-up manner, i.e., we consider all subgraphs of H before we consider H . Within any subgraph H ,
we show that by a binary search we can obtain tolls τ so that |fH(τ)| = |f∗H | (Claim F.2). Further, if H
is the parallel composition of H1 and H2, we show that by varying just two parameters γ, γ1 ∈ R, we can
obtain tolls τ so that and |fH1(τ)| = |f∗H1

| and |fH2(τ)| = |f∗H2
| (Lemma F.3). We use this in our algorithm

to show that if the oracle was exact, by conducting suitable binary searches in all subgraphs H ∈ H in a
bottom-up manner we could obtain tolls τ so that fe(τ) = f∗e on every edge.

However, since we have an ε-oracle, we show that for any tolls τ , τ ′ and subgraph H , if τ and τ ′ are
the same within subgraph H , then the difference in the total flow in H |fH(τ)− fH(τ ′)| is an upper bound
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on the difference |fe(τ) − fe(τ ′)| on any edge in E(H) (Lemma F.4). This allows us to show that in our
bottom-up approach, as long as in every subgraph we obtain tolls so that we have approximately the correct
amount of flow, the flow on every edge is approximately correct as well. Finally, Claim F.6 bounds the tolls
after every subgraph is processed, allowing us to obtain bounds on the number of binary searches and thus
the runtime.

Claim F.2. For any tolls (τe)e∈E and subgraph H , there exists γ ∈ R so that the tolls (τ ′e)e∈E given by

τ ′e =

{
τe + γ if e = (sH , w)
τe otherwise

satisfy |fH(τ ′)| = |f∗H |. Further, γ ∈ [−N(τ), N(τ)].

Proof. Since τ ′ is defined by γ, we vary γ in the proof and assume τ ′ varies accordingly. We will show that
|fH(τ ′)| = 0 and d for γ = −N(τ) and N(τ) respectively. Since 0 ≤ |f∗H | ≤ d, by the continuity of flow
with respect to tolls (Theorem 3.24(ii)), the claim is true.

For γ = −N(τ), let f = f(τ ′), and suppose fQ > 0 for some path Q ∈ P that does not contain an
edge from H . Let R ∈ P be a path with some edge (sH , w) ∈ E(H) ∩ R. Then, since τ ′(Q) = τ(Q) and
latencies are strictly increasing,

lQ(f) + τ ′(Q) > min
P
τ(P )

= mlmax(d) + max
P

τ(P )−mlmax(d)−max
P

τ(P ) + min
P
τ(P )

= mlmax(d) + max
P

τ(P )−N(τ) ≥ lR(f) + τ ′(R)

and hence, f cannot be an equilibrium flow with tolls τ ′. Thus, |fH(τ ′)| = d. A similar argument proves
that if γ = N(τ), then fe(τ ′) = 0 for any edge e = (sH , w) ∈ E(H), and hence |fH(τ ′)| = 0. �

Lemma F.3. Let H be the parallel composition of H1 and H2 and τ be arbitrary edge tolls. There exist γ∗,
γ∗1 ∈ R so that the tolls τ ′′ defined by

τ ′′e =


τe + γ∗ + γ∗1 if e = (sH , w) ∈ E(H1)
τe + γ∗ if e = (sH , w) ∈ E(H) \ E(H1)
τe otherwise

satisfy |fH1(τ ′′)| = |f∗H1
| and |fH2(τ ′′)| = |f∗H2

|. Further, γ∗1 ∈ [−2N(τ), 2N(τ)], and γ∗ ∈ [−N(τ), N(τ)].

Proof. We first obtain γ∗1 , and then γ∗. To obtain γ∗1 , we want to fix the total flow onH1 to be |f∗H1
|. For this,

consider the single-commodity routing game ΓH restricted to subgraph H with sH and tH as terminals for
the single commodity, demand dH = |f∗H |, and tolls τ . Then by Claim F.2 there exists γ1 ∈ [−N(τ), N(τ)]
so that, if τ ′ are the tolls defined in the statement of the claim and g = f(τ ′), then |gH1 | = |f∗H1

|. Further,
in the original routing game Γ with tolls τ ′ so obtained, by Claim F.2 there exists γ ∈ [−2N(τ), 2N(τ)] so
that, with tolls τ ′′ defined as τ ′′e = τ ′e+γ for e = (sH , w) ∈ E(H) and τ ′′e = τ ′e otherwise, |fH(τ ′′)| = |f∗H |.
We claim that |fH1(τ ′′)| = |f∗H1

|. This is sufficient to prove the lemma.
Let f = f(τ ′′). We prove the claim by contradiction. Suppose that |fH1 | > |f∗H1

| (the case where
|fH1 | < |f∗H1

| can be dealt with similarly). Then |fH2 | < |f∗H2
|. This implies that |fH1 | > |gH1 | and

|fH2 | < |gH2 |, where g = f(τ ′) in the game ΓH . Thus there exist sH -tH paths P and Q in H1 and H2

respectively so that for all e ∈ P , fe > ge and for all e ∈ Q, fe < ge. Since f is an equilibrium flow with
tolls τ ′′ and g is an equilibrium flow with tolls τ ′, and by construction of τ ′′,
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lτ
′′
P (f) ≤ lτ

′′
Q (f) < lτ

′′
Q (g) = lτ

′
Q (g) + γ ≤ lτ

′
P (g) + γ = lτ

′′
P (g) .

However, lτ
′′
P (g) < lτ

′′
P (f), giving us a contradiction. �

Lemma F.4. Let H be a subgraph of G and τ , τ ′ be tolls so that, for some γ ∈ R,

τ ′e =

{
τe + γ if e = (sH , w) ∈ E(H)
τe if e 6= (sH , w) ∈ E(H)

Then for any subgraph K of H ,∣∣|fK(τ)| − |fK(τ ′)|
∣∣ ≤ ∣∣|fH(τ)| − |fH(τ ′)|

∣∣ .
Proof. Let f = f(τ) and f ′ = f(τ ′). The proof is by induction on the length of the path between H and K
in the decomposition tree. In the base case, H = K, and the lemma is obviously true. Otherwise, H is the
composition of H1 and H2, and K is a subgraph of either H1 or H2. Assume that K is a subgraph of H1,
and note that tolls τ , τ ′ satisfy the condition in the lemma for subgraphs H1 and H2 as well.

If H is the series-composition of H1 and H2, by induction,∣∣|fK | − |f ′K |∣∣ ≤ ∣∣|fH1 | − |f ′H1
|
∣∣ .

Since H consists of H1 and H2 in series, |fH1 | = |fH | and |f ′H1
| = |f ′H |, hence the lemma is true in this

case.
If H is the parallel composition of H1 and H2, then by Claim F.1,

(
|fH1 | − |f ′H1

|
)
·
(
|fH2 | − |f ′H2

|
)
≥ 0 . (10)

Then

∣∣|fK | − |f ′K |∣∣ ≤ ∣∣|fH1 | − |f ′H1
|
∣∣ ≤ ∣∣|fH1 | − |f ′H1

|
∣∣+
∣∣|fH2 | − |f ′H2

|
∣∣

=
∣∣|fH1 | − |f ′H1

|+ |fH2 | − |f ′H2
|
∣∣

=
∣∣|fH | − |f ′H |∣∣ ,

where the first inequality follows by induction, the first equality follows from (10), and the second equality
is since H is the parallel composition of H1 and H2. �

For the proof of Theorem 3.21, we first show the correctness and number of steps required for each
subgraph in Step T2 (Claim F.5), bound the increase in tolls in each step (Claim F.6), and show that when
Step T2 completes for subgraph H ∈ H the flow on every edge of H is approximately equal to the target
flow (Claim F.7).

Claim F.5. For any subgraph H ∈ H, (i) each iteration of Step T2 requires at most log(4N(τ)/κ(ε/m))
queries to find γ, and (ii) Step T2 completes in at most log(2N(τ)/κ(ε/m)) iterations with tolls τ ′ that
satisfy

∣∣∣|f̃Hi(τ ′)| − |f∗Hi |∣∣∣ ≤ 6mε for i ∈ {1, 2}.
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Proof. For any γ1 ∈ [−N(τ), N(τ)] by Claim F.2, there exists γ′ ∈ [−2N(τ), 2N(τ)] so that |f̃H(τ ′)| =
|f∗H |, where tolls τ ′ are given by

τ ′e =


τe + γ′ + γ1 if e = (sH , w) ∈ E(H1)
τe + γ′ if e = (sH , w) ∈ E(H) \ E(H1)
τe otherwise .

Further, by Theorem 3.24(i), for any γ that satisfies |γ′ − γ| ≤ κ(ε/m), the flow on any edge differs from
f(τ ′) by at most ε. Thus γ can be found in at most log(4N(τ)/κ(ε/m)) queries. This completes the proof
of the first part of the claim.

Now for a particular iteration of Step T2, let γ, γ1 result in tolls τ ′ so that
∣∣∣|f̃H(τ ′)| − |f∗H |

∣∣∣ ≤ 2mε. We

will show firstly that in this iteration, the algorithm is correct: if |f̃H1(τ ′)| − |f∗H1
| ≥ 4mε, then γ1 < γ∗1 .

A similar argument shows that if |f̃H1(τ ′)| − |f∗H1
| ≤ −4mε, then γ1 > γ∗1 . Secondly, we will show that

if |γ1 − γ∗1 | ≤ κ(ε/m) and
∣∣∣|f̃H(τ ′)| − |f∗H |

∣∣∣ ≤ 2mε then
∣∣∣|f̃Hi(τ ′)| − |f∗Hi |∣∣∣ ≤ 6mε for i ∈ {1, 2}, and

hence the termination condition in the step must be satisfied in log(2N(τ)/κ(ε/m)) iterations.
For correctness of the binary search procedure, since

∣∣∣|f̃H(τ ′)| − |f∗H |
∣∣∣ ≤ 2mε and H is the parallel

composition of H1 and H2, it follows that

|f̃H2(τ ′)| − |f∗H2
| ≤ −2mε .

and hence, since ‖f̃(τ ′)− f(τ ′)‖∞ ≤ ε,

|fH2(τ ′)| < |f∗H2
| and |fH1(τ ′)| > |f∗H1

| .

Let τ∗ be the tolls as defined in Lemma F.3. Then there exist sH -tH paths P andQ inH1 andH2 respectively
so that for all e ∈ P , fe(τ ′) > fe(τ

∗) and for all e ∈ Q, fe(τ ′) < fe(τ
∗). Then since both flows are

equilibrium flows for the respective tolls, and by construction of τ ′ and τ∗,

lτ
′
P (f(τ ′)) ≤ lτ

′
Q (f(τ ′)) < lτ

′
Q (f(τ∗)) = lτ

∗
Q (f(τ∗)) + (γ − γ∗)

≤ lτ
∗
P (f(τ∗)) + (γ − γ∗) = lτ

′
P (f(τ∗)) + (γ∗1 − γ1) .

However, lτ
′
P (f(τ∗)) < lτ

′
P (f(τ ′)), and hence γ1 < γ∗1 . This proves the correctness of the step.

For termination, we assume as stated earlier that γ, γ1 are chosen so that |γ1 − γ∗1 | ≤ κ(ε/m) and∣∣∣|f̃H(τ ′)| − |f∗H |
∣∣∣ ≤ 2mε. Let τ̂ be defined as

τ̂e =


τe + γ + γ∗1 if e = (sH1 , w) ∈ E(H1)
τe + γ if e = (sH , w) ∈ E(H) \ E(H1)
τe otherwise

Since |γ1 − γ∗1 | ≤ κ(ε/m), by Theorem 3.24(i),

∣∣|fH(τ ′)| − |fH(τ̂)|
∣∣ ≤ mε . (11)

Since
∣∣∣|f̃H(τ ′)| − |f∗H |

∣∣∣ ≤ 2mε, ||fH(τ ′)| − |f∗H || ≤ 3mε. Since |f∗Hi | = |fHi(τ∗)| for i ∈ {1, 2}, by
Lemma F.4 and (11),

||fHi(τ̂)| − |fHi(τ∗)|| ≤ ||fH(τ̂)| − |fH(τ∗)|| ≤
∣∣|fH(τ ′)| − |fH(τ∗)|+mε

∣∣ ≤ 4mε .
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Since (11) also holds for H1 and H2, putting these together, we get∣∣|fHi(τ ′)| − |fHi(τ∗)|∣∣ ≤ 5mε .

and hence,
∣∣∣|f̃Hi(τ ′)| − |f∗Hi |∣∣∣ ≤ 6mε. �

Claim F.6. LetH ′ be the ith subgraph processed by the algorithm, and let τ ′ be the tolls immediately before
H ′ is processed. Then N(τ ′) ≤ 5imlmax(d).

Proof. If H ′ is the first subgraph to be processed, since initially the tolls are zero, the claim holds. Other-
wise, let H the subgraph processed immediately before H ′ and let τ be the tolls before H is processed. By
the inductive hypothesis, N(τ) ≤ 5i−1mlmax(d).

By the algorithm, when H is processed, only the tolls on edges incident to sH are changed. Since the
graph is acyclic, this means that the toll on any path changes on at most a single edge. Further, the difference
in tolls on any two edges changes by at most |γ + γ1| ≤ |4N(τ)|. Hence, the difference in tolls on any two
paths changes by at most |4N(τ)|. Thus,

N(τ ′) = max
P

τ ′P −min
P
τ ′P +mlmax(d)

≤ |max
P

τ ′P −min
P
τ ′P − (max

P
τP −min

P
τP )|+N(τ)

≤ 5N(τ) ≤ 5imlmax(d) .

�

Let K be a subgraph of H . We define the distance between H and K as the length of the path con-
necting the corresponding vertices in the decomposition tree. For any subgraph H of G, let τH be the tolls
immediately after H is processed by the algorithm.

Note that since the algorithm proceeds in a bottom-up manner, for any subgraph K of H , there exists γ
so that τHe = τKe on any edge e 6= (sK , v) ∈ E(K) and τHe = τKe + γ on any edge e = (sK , v) ∈ E(K).

Claim F.7. If K is a subgraph of H at a distance i, and H is the parallel composition of two subgraphs,
then

∣∣|fK(τH)| − |f∗K |
∣∣ ≤ 10m(i+ 1)ε.

Proof. The proof is by induction on the distance i. If i = 0, i.e, K = H , then the proof follows immediately
from the termination condition in the algorithm, noting that |fH(τH) − f̃H(τH)| ≤ mε. For the inductive
case, let K̂ and K ′ be the parent and sibling of K respectively. By the inductive hypothesis, |fK̂(τH)| −
f∗
K̂
| ≤ 14miε. If K̂ is the series composition of K and K ′, then since in any flow the flow value in K, K ′

and K̂ must be the same, the proof follows.
If K̂ is the parallel composition of K and K ′, then from the algorithm,

|fK̂(τ K̂)− f∗
K̂
| ≤ 3mε . (12)

From (12) and the induction hypothesis,

|fK̂(τ K̂)− fK̂(τH)| ≤ (10i+ 3)mε . (13)

By Lemma F.4, we know that
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|fK(τH)− fK(τ K̂)| ≤ |fK̂(τH)− fK̂(τ K̂)| ≤ (10i+ 3)mε ,

where the second inequality follows from (13). But from the algorithm, since K̂ is the parallel composition
of K and K ′,

|fK(τ K̂)− f∗K | ≤ 6mε .

The proof immediately follows. �

Proof of Theorem 3.21. Let H ∈ H be the ith subgraph processed by the algorithm, and let τ and τ ′ be the
tolls immediately before and after subgraph H is processed by the algorithm. Then by Claim F.6, N(τ) ≤
5i−1mlmax(d). By Claim F.5, the algorithm completes processing subgraphH in at most log(4N(τ)/κ(ε/m))
iterations. Since each iteration involves querying the oracle at most log(4N(τ)/κ(ε/m)) times, this implies
that the algorithm makes at most

log2
(
4m5i−1lmax(d)/κ(ε/m)

)
≤ m2 log2 (20mlmax(d)/κ(ε/m))

queries. Since there are at most m subgraphs, the bound in the statement of the theorem holds. Further, let
H be the last subgraph inH processed by the algorithm. IfH = G, then by Claim F.7, the second part of the
theorem holds immediately. If not, then G is the series composition of a number of subgraphs H1, H2, . . .,
Ht, each of which is in H. Then |fHi(τ ′)| = d for each subgraph Hi. Further, if τ i were the tolls obtained
after subgraph Hi was processed by the algorithm, and they were processed in this order (thus τ ′ = τ t),
then for each e ∈ E(Hi) and j ≥ i, τ je = τ ie. Thus, by Lemma F.4, for any subgraph Hi and any edge
e ∈ E(Hi), fe(τ ′) = fe(τ

i). By Claim F.7, |fe(τ i)− f∗e | ≤ 14m2ε. This is true for every edge, completing
the proof of the theorem. �
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