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ABSTRACT
In this paper, we study mechanism design problems in the
ordinal setting wherein the preferences of agents are de-
scribed by orderings over outcomes, as opposed to specific
numerical values associated with them. This setting is rele-
vant when agents can compare outcomes, but aren’t able to
evaluate precise utilities for them. Such a situation arises in
diverse contexts including voting and matching markets.

Our paper addresses two issues that arise in ordinal mech-
anism design. To design social welfare maximizing mecha-
nisms, one needs to be able to quantitatively measure the
welfare of an outcome which is not clear in the ordinal set-
ting. Second, since the impossibility results of Gibbard
and Satterthwaite [14, 25] force one to move to randomized
mechanisms, one needs a more nuanced notion of truthful-
ness.

We propose rank approximation as a metric for measur-
ing the quality of an outcome, which allows us to evalu-
ate mechanisms based on worst-case performance, and lex-
truthfulness as a notion of truthfulness for randomized or-
dinal mechanisms. Lex-truthfulness is stronger than no-
tions studied in the literature, and yet flexible enough to
admit a rich class of mechanisms circumventing classical
impossibility results. We demonstrate the usefulness of the
above notions by devising lex-truthful mechanisms achiev-
ing good rank-approximation factors, both in the general
ordinal setting, as well as structured settings such as (one-
sided) matching markets, and its generalizations, matroid
and scheduling markets.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems; G.2 [Discrete
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1. INTRODUCTION
A central problem in social choice theory and mechanism

design is that of choosing a “good” outcome by aggregating
individuals’ private preferences over outcomes, where indi-
viduals are rational agents. A mechanism implementing a
social choice function (SCF) needs to elicit the preferences
of agents in a truthful fashion, that is, in a way such that
no agent may benefit by misreporting his preferences.

In this paper, we study mechanism-design problems in
ordinal settings, wherein the preferences are described by
orderings over the set of outcomes. This is in contrast with
the cardinal setting, wherein an agent specifies a value to
each outcome (which determines his preferences). Ordinal
settings reduce the “informational burden” on an agent in
the sense that he only needs to be able to compare out-
comes rather than assign values to outcomes justifying his
preferences. It is not hard to imagine settings where the
former comparison task is easier, and more aptly describes
the situation: examples span the spectrum between elec-
toral settings and the setting of allocating dormitory rooms
to students.

Two immediate issues arise in ordinal mechanism design.
A typical mechanism-design goal is to maximize social wel-
fare, but in order to approach this goal in ordinal settings,
one needs to first be able to quantitatively measure the social-
welfare value of an outcome. Second, since the Gibbard-
Satterthwaite (GS) impossibility result [14, 25] precludes
non-trivial deterministic truthful mechanisms, one is forced
to move to randomized mechanisms for which one needs a
more nuanced notion of truthfulness.

1.1 Our contributions
We propose a new framework for welfare-maximization

and truthfulness for randomized ordinal mechanisms, and
devise various near-optimal mechanisms in this framework.
Our contributions are threefold.

1) We introduce a metric called rank approximation for mea-
suring the quality of an outcome, which in turn allows us



to evaluate mechanisms in terms of their worst-case per-
formance. We show that rank approximation is a robust
notion that is appealing, and can be motivated, from var-
ious perspectives.

2) We propose a truthfulness notion called lex-truthfulness
for randomized ordinal mechanisms. This is stronger than
a notion studied in the literature, and yet flexible enough
that it admits a rich class of mechanisms bypassing clas-
sical impossibility results. We provide a characterization
result for lex-truthfulness, which we leverage to obtain
lex-truthful mechanisms for various ordinal settings. We
believe that this characterization will find application be-
yond the specific applications that we consider in this
paper.

3) We demonstrate the usefulness of the above two notions
by devising lex-truthful mechanisms achieving good rank-
approximation factors both in the general ordinal setting,
as well as structured settings such as (one-sided) matching
markets, and its generalizations, matroid and scheduling
markets.

We now elaborate on our contributions. Let n and m denote
the number of agents and number of outcomes respectively,
and �j denote agent j’s ordering over outcomes, which we
assume is strict and complete (i.e., for any two outcomes
o, o′, either o �j o′ or vice versa).

Rank approximation (Section 3.1). We say that an out-
come o has rank approximation α for preference profile �,
if for every position r, the number of agents having o as
one of their top-r outcomes is at least 1

α
· maxrankr(�),

where maxrankr(�) denotes maxô(number of agents having
ô as one of their top-r outcomes). An α-rank-approximation
mechanism is one that always returns an α-rank-approximate
outcome. While the requirement of simultaneously approx-
imating maxrankr(�) for all r seems too stringent, and
even the existence of an α-rank-approximate outcome o, for
non-trivial α seems doubtful, promisingly (as we elaborate
later), we can achieve a 2-rank-approximation for match-
ing and matroid markets, and a randomized O(logn)-rank-
approximation for general ordinal settings.

Rank approximation is a natural, purely ordinal notion
with various desirable properties. Consider any cardinal-
utility profile ~U = (U1, . . . , Un), where each Uj is consistent
with �j , that is, Uj(o) > Uj(o

′) iff o �j o′. Call such a
utility profile homogeneous, if for all r = 1, . . . ,m, all Ujs
assign the same value to their r-th ranked outcome. An α-
rank-approximation outcome o for � is such that for any
consistent homogeneous utility profile ~U , its social welfare,∑n
j=1 Uj(o), for ~U is at least a 1

α
-fraction of the optimum

social welfare for ~U . Thus, an α-rank-approximation mech-
anism simultaneously yields an α-approximation to the op-
timum social-welfare for all consistent homogeneous utility
profiles (Theorem 3.1).

Consistent homogeneous utilities are also known as scor-
ing rules [29]. A scoring rule assigns a score to each position
and returns the outcome with highest total score; a promi-
nent example is the Borda rule, which gives a score of m−k
to the k-th position. An outcome is α-approximate with re-
spect to a scoring rule, if its score is at least a 1

α
-fraction of

the score of any other outcome. Translated to this setting,
we obtain that an α-rank-approximation mechanism simul-
taneously achieves an α-approximation to all scoring rules.

In other words, given an α-rank-approximation mechanism
M, one need not be overly concerned about which scoring
rule is most suited to the problem, since M guarantees an
α-approximation to all scoring rules!

To place these simultaneous-approximation bounds in per-
spective, it is useful to consider an even stronger notion: say
that a mechanism has “strong welfare factor” α, if for every
consistent (even non-homogeneous) cardinal-utility profile
~U , the mechanism returns an α-approximation to the opti-
mum social welfare for ~U . Not surprisingly, this notion is
too strong: it is easy to show that no mechanism (determin-
istic or randomized) can have any non-trivial strong welfare
factor, even for matching markets.

Lex-truthfulness (Section 3.2). The classic impossibility
results of [14, 25] show that the space of deterministic truth-
ful mechanisms in general ordinal settings is extremely lim-
ited, forcing the move to randomized mechanisms. When
seeking to define a notion of truthfulness for ordinal ran-
domized mechanisms, one immediately encounters the fol-
lowing issue: how should one extend an agent’s preferences
over outcomes to preferences over distributions of outcomes?
The usual approach in the economics literature is to use the
stochastic dominance relation. Since this does not induce
a total order over distributions, one obtains two notions of
truthfulness: (i) strong truthfulness [15], where the truth-
telling distribution stochastically dominates any distribu-
tion obtained via a misreport; and (ii) weak truthfulness [21,
7], where the truth-telling distribution is not stochastically
dominated by any distribution obtained via a misreport.
Gibbard [15] generalized [14, 25] to show that the space of
strongly-truthful mechanisms in general ordinal settings is
also limited, leaving weak-truthfulness as the only viable no-
tion of truthfulness for randomized mechanisms.

We propose a new notion of truthfulness sandwiched (strictly)
between the above two notions. A distribution p lex-dominates
a distribution q with respect to ordering �, if, when consid-
ering outcomes in decreasing order of their ranking in �, at
the first outcome o where p and q differ, p assigns a higher
probability to o than q. Note that lex-dominance induces a
total order on distributions. We say that a mechanism is lex-
truthful (LT) if the truth-telling distribution lex-dominates
any distribution obtained by a misreport.

We show that lex-truthfulness provides us with ample flex-
ibility in mechanism design and allows us to circumvent
Gibbard’s impossibility theorem. Call a social choice func-
tion (SCF) f fully lex-truthfully (LT) implementable if for all
ε > 0, there exists a lex-truthful mechanism that agrees with
f with probability at least (1−ε) on every preference profile.
We isolate a property of an SCF, which we call pseudomono-
tonicity, that completely characterizes LT-implementability
of the SCF (Theorem 3.3). Roughly speaking, an SCF is
pseudomonotone if for any preference profile, if an agent j
changes his ordering without altering his top k choices, then
the new outcome cannot both be a better outcome for j and
a top-(k + 1) outcome for j (see Definition 5).

This characterization turns out to be instrumental in mak-
ing lex-truthfulness an amenable notion to work with, and
opens up a host of SCFs to full LT-implementation. We
show that various rank-approximation SCFs that we devise
for matching, matroid, and scheduling markets—including
the 2-rank-approximation mechanism for matching markets
mentioned earlier—are pseudomonotone. For general or-



dinal settings, we identify a rich class of pseudomonotone
SCFs which includes the plurality scoring rule. Thus, all of
these SCFs are fully LT-implementable. We view the char-
acterization of lex-truthfulness via pseudomonotonicity as
one of our main contributions, which we believe will find
further applications.

Matching, matroid, and scheduling markets (Sections 4
and 5). In addition to general ordinal mechanism-design
settings, we also consider various structured settings, and
obtain lex-truthful mechanisms with good rank-approximation
factors.

Our most-compelling results are for matching markets (Sec-
tion 4), which are one of the most well-studied ordinal set-
tings (see, e.g., the surveys [28, 1]). Here, we have n agents
and m items, and outcomes are matchings of agents to items.
Each agent has a strict preference over items, which induces
preferences over matchings based on the item the agent is
assigned in a matching. Observe that agents are indifferent
over matchings that give them the same item. The room
allocation problem is an instance of this market.

We devise a simple deterministic 2-rank-approximation
pseudomonotone algorithm MaxMatch (Theorem 4.1), which
is therefore fully LT-implementable. In contrast, we show in
Appendix B that various common algorithms proposed for
matching markets, such as the top-trading-cycle algorithm,
randomized serial dictatorship, probabilistic serial, all have
rank approximation at least Ω(

√
n). We prove a matching

lower bound of 2 on the rank-approximation factor of de-
terministic SCFs (Theorem 4.2), and obtain super-constant
lower bounds on the rank-approximation factor achievable
by deterministic truthful mechanisms.

The 2-rank-approximation for matching markets extends
to matroid markets (Theorem 4.6), which is the generaliza-
tion where we have a matroid on the agent-set for every
item, and the (possibly multiple) agents assigned to an item
are required to form an independent set in that item’s ma-
troid. Besides the increased modeling power of matroids,
this turns out to be a key component of our algorithms for
scheduling markets.

In Section 5, we consider scheduling markets. Here the
agents are jobs that need to be assigned to machines. Each
job has a private ordering over the machines, and a pub-
lic processing time on each machine, and there is makespan
bound T that limits the amount of time available on each
machine. An outcome is a partial assignment of some jobs
to machines satisfying the makespan bound. This can be
viewed as the matching problem with a knapsack constraint.
For parallel machines, we obtain an LT-mechanism that al-
ways returns an O(logn)-rank-approximation schedule with
O(T ) makespan, and we show that this bound is tight (The-
orems 5.2 and 5.3). We also obtain an O(logn)-rank ap-
proximation for unrelated machines (Theorem 5.4), albeit
not via an LT mechanism.

1.2 Other related work
The conundrum of social welfare in ordinal mechanisms,

which probably has its origins in the Condorcet paradox [11]
that states that it may so happen that a majority of agents
prefer outcome a to b, outcome b to c, and outcome c to a,
was cemented by Arrow’s impossibility theorem [4]. Subse-
quent to Arrow’s result, most works in social choice theory

has focused on Pareto optimality as the sole notion of effi-
ciency for ordinal mechanisms.

Recent work, mostly in the CS literature, has led to a more
nuanced notion of efficiency. Procaccia and Rosenchein [23]
studied the strong welfare factor notion (that they call dis-
tortion), and noticed that deterministic mechanisms have
unbounded distortion. Boutilier et al. [8] proposed random-
ized mechanisms and showed that the strong welfare factor
is at most O(

√
m log∗m), if the consistent cardinal-utility

profile is normalized. In contrast, our rank approximation
results imply O(logn)-approximate outcomes, but under a
stronger restriction on the consistent cardinal utilities. The
notion of approximations to scoring rules was studied by
Procaccia [22] where he described strongly truthful mecha-
nisms which 2-approximate Borda, but O(

√
m)-approximate

the plurality rule. In contrast, our (non-truthful) mechanism
O(logn)-rank approximates any scoring rule, and plurality
can be arbitrarily well approximated by a lex-truthful mech-
anism.

Another notion of social welfare in ordinal mechanisms,
called ordinal welfare factor (OWF), was recently proposed
by Bhalgat et al [6]. A mechanism has OWF β ∈ [0, 1] if
for any outcome o, at least βn agents prefer the outcome
returned by the mechanism to o. This is in fact a quantifica-
tion of the notion of popular outcomes; an outcome is popu-
lar if a majority prefer it to any other fixed outcome. Note
that popular outcomes have OWF of at least 0.5. A popu-
lar outcome may not exist, but a popular distribution over
outcomes always does. Popular outcomes were studied by
economists in the matching setting [13], and as strict maxi-
mal lotteries in the general setting [12, 18]; subsequently, a
large body of literature has been developed by computer sci-
entists on popular matchings [2, 17, 16, 19]. The notions of
rank approximation and OWF (and therefore the notion of
popularity) are incomparable. That is, there are outcomes
with “good” OWF and “bad” rank approximation, and vice-
versa.

Subsequent to the Gibbard-Satterthwaite result, researchers
focused on design of randomized mechanisms. As mentioned
above, this led to differing notions of truthfulness. Strong
truthfulness was proposed by Gibbard [15]. Postlewaite and
Schmeidler [21] proposed weak truthfulness and proved that
no weakly truthful mechanism on 4 or more outcomes, can
be (ex ante) Pareto optimal if agents are allowed to have pri-
ors on their (own) preferences. Subsequently, Aziz et al [5]
removed the prior condition, but prove impossibility of only
certain kinds of mechanism. We remark that our lex-truthful
mechanisms, which are also weakly truthful, do not con-
tradict these results, since our mechanisms are not Pareto
optimal. However, our mechanisms are ε-implementations
of Pareto-optimal SCFs, so they satisfy Pareto optimality
with probability at least 1 − ε. Thus, we bypass the above
impossibility results while sacrificing a modicum of Pareto-
optimality.

Matching markets are one of the most widely studied ex-
amples of the ordinal setting. There is a vast amount of
literature, and we point to excellent surveys [24, 28, 1]. In
Section B, we describe three well known mechanisms in this
setting. These are the random serial dictatorship, Gale’s
top trading cycle algorithm [27], and the probabilistic se-
rial (PS) mechanism [7]. The first two mechanisms are at
least strongly truthful; PS is weakly truthful, and we show
that it is lex-truthful as well. However, we show that all



these three mechanisms have rank approximation as bad as
Ω(
√
n). In contrast, we obtain a fully LT-implementable 2-

rank-approximation mechanism using our pseudomonotone
2-rank-approximation algorithm MaxMatch.

2. PRELIMINARIES
In the general ordinal mechanism design setting, we have

a set N of n agents, and a set O of m outcomes (or alterna-
tives). We use the terms agent and player interchangeably.
Each agent j ∈ N has a private complete preference list or
ordering �j over outcomes, that is, o �j o′ or o′ �j o for
every o, o′ ∈ O. This is typically referred to as ordinal util-
ities/preferences, to distinguish them from cardinal utilities
wherein the utility function assigns a value to each outcome.
Let Σj denote the publicly-known set of allowed preference
lists for agent j, and Σ :=

∏n
j=1 Σj . A preference profile is

a combination �= (�1, . . . ,�n) of agents’ preference lists.
For k ∈ Z+, we use [k] to denote the set {1, . . . , k}. A pref-
erence list is called strict, and denoted �, if there are no
indifferences: exactly one of o � o′ and o′ � o holds for
every two distinct outcomes o, o′ ∈ O. Given a strict prefer-
ence �, we will sometimes say o � o′ to denote that o � o′

or o = o′. Given a preference list �, let alt(�, r) ∈ O denote
the r-th ranked outcome in �, and pos(�, o) ∈ [m] denote
the rank of outcome o in �. For a tuple x = (x1, . . . , xn),
we use x−j to denote (x1, . . . , xj−1, xj+1, . . . , xn). Similarly,
let Σ−j :=

∏
k 6=j Σk.

In addition to the general setting mentioned above, we
consider three specific mechanism-design settings in this pa-
per: one-sided matching markets, which have been studied
extensively in the literature (see, e.g., [28, 1]) and two gener-
alizations of these, matroid markets and scheduling markets,
that we introduce.

Matching markets (Section 4). We nave n agents and
m items. Each agent j has a strict preference �j over the m
items. The outcomes are matchings of agents to items. We
say that an outcome M assigns an agent j the “null” item ∅
to denote that he is not assigned an item in M ; we set i �j ∅
for every item i. An agent is indifferent between matchings
M and M ′ if they allot him the same item (counting ∅ as an
item), and otherwise, prefers M to M ′ if he prefers the item
allotted to him in M to the item allotted to him in M ′.

Matroid markets (Section 4.1). We again have n agents
who have a strict preference over m items. We also have a
matroid Mi = (N, Ii) on the set N of agents, for each item
i ∈ [m]. An outcome is an allocation that assigns at most
one item to each agent j such that, for each item i, the set
of agents allotted item i is an independent set of Mi. Note
that multiple agents may be allocated the same item. An
agent’s ordering over outcomes is induced by his ordering of
the items as in the setting of matching-markets. It is easy
to see that a matching market is the special case where Mi

encodes that at most one agent may be assigned to item i.

Scheduling markets (Section 5). The agents are n jobs
that need to be scheduled on m machines, where the ma-
chines are in general unrelated. Each job j possesses a pri-
vate strict complete preference order �j over the machines,
and has a publicly-known processing time pij on machine
i. Furthermore, there is a bound T on the maximum load
allowed on any machine (i.e., makespan). An outcome is
an (partial) assignment of some jobs to machines that re-
spects the makespan bound. The ordering over outcomes

is induced by the ordering over machines as in the above
two cases. The parallel machines setting is the case where
pij = pj for every machine i and job j.

Note that in the above three markets, agents’ preferences
over outcomes are not strict; however, for each agent j,
the outcome-set may be partitioned into indifference classes
such that j is indifferent between the outcomes in an indif-
ference class, and has a strict ordering over the indifference
classes. Our framework and results apply to such settings
with cosmetic notational changes (see “Settings with indif-
ferences” in Section 3), but we stick for the most part to the
setting of strict preferences for notational ease.

A social choice function (SCF) is a function f : Σ 7→ O.
In settings with no monetary transfers, there is no formal
distinction between an SCF and a deterministic algorithm
or direct-revelation mechanism, which maps the preference
profile given by the agents’ reported preference lists to an
outcome. An SCF f is said to be implementable or truthful
if for every player j, every �j ,�′j∈ Σj , and every �−j∈
Σ−j , we have f(�j ,�−j) �j f(�′j ,�−j); that is, no agent
benefits by misreporting his preference list.

A randomized mechanism is allowed to output a distribu-
tion (also called a lottery) over outcomes. Let L(O) denote
the collection of distributions over the outcome-set O. A
randomized mechanism is formally then a function mapping
preference profiles to distributions in L(O). We sometimes
refer to a mechanism that works with ordinal preferences as
an ordinal mechanism.

Definition 1. A randomized mechanism M is said to ε-
implement an SCF f (or that f is ε-implementable by M),
if Pr[M(�) = f(�)] ≥ 1− ε for all �∈ Σ, where the proba-
bility is over the random choices ofM. We say that a family
{Mε} of mechanisms fully implements f if for all ε > 0,Mε

ε-implements f . (This is in the same spirit as the notion of
virtual implementation in Nash equilibrium [20, 3].)

Truthfulness for randomized mechanisms may be defined
in various ways. The strongest notion is universal truthful-
ness, wherein a randomized truthful mechanism is a random-
ization (or mixture) over deterministic truthful mechanisms,
where the mixture weights are input-independent. A some-
what weaker notion is obtained by considering the stochastic
dominance relation. Given an ordering � over O, and two
lotteries p,q ∈ L(O), we say that p (first-order) stochasti-
cally dominates q with respect to �, if

∑
`≤i p(alt(�, `)) ≥∑

`≤i q(alt(�, `)) for all i = 1, . . . ,m. Since stochastic dom-

inance does not induce a total ordering on L(O), this yields
two notions of truthfulness that have been studied in the
literature.

Definition 2. A randomized mechanism M is said to be:

• strongly truthful [15]: if M(�j ,�−j) stochastically
dominates M(�′j ,�−j) with respect to �j , for all j,
all �j ,�′j∈ Σj , and all �−j∈ Σ−j .

• weakly truthful [21, 7]: if M(�j ,�−j) is not stochas-
tically dominated by M(�′j ,�−j) with respect to �j ,
for all j, all �j ,�′j∈ Σj , and all �−j∈ Σ−j .

A universally truthful mechanism is also strongly truth-
ful, and in fact, this inclusion is strict (Theorem 3.2). Gib-
bard [15] extended the impossibility result of [14, 25] to show
that the space of strongly truthful mechanisms is also rather



limited. A deterministic mechanism is: (i) dictatorial if there
exists j ∈ N such that the mechanism’s output is always j’s
top choice; and (ii) duple if the mechanism’s range f(Σ)
consists of at most two outcomes. A (deterministic or ran-
domized) mechanism is unilateral if there exists some fixed
j ∈ N such that the mechanism’s output depends only on
j’s (reported) preference list.

Theorem 2.1. (Gibbard-Satterthwaite and Gibbard impos-
sibility results) (i) If m ≥ 3 and f(Σ) = O, then f is truthful
iff it is dictatorial. (ii) Any strongly truthful mechanism is a
mixture of truthful unilateral and deterministic truthful du-
ple mechanisms with input-independent mixture weights.

Theorem 2.1 leaves weak truthfulness as the only notion
that potentially allows for some sophisticated mechanisms.
In Section 3.2, we propose a stronger notion of truthfulness
and show that this is flexible enough that one can bypass
Gibbard’s impossibility result and obtain various interesting
mechanisms including, in particular, mechanisms that yield
“good” social welfare under the metric we introduce in Sec-
tion 3.1.

3. RANK APPROXIMATION AND
LEX-TRUTHFULNESS

3.1 Welfare in ordinal settings: rank approx-
imation

We introduce a notion of social welfare that we call rank
approximation. Given a preference profile �= (�1, . . . ,�n),
the i-rank of an outcome o ∈ O in �, denoted ranki(o;�),
is the number of agents having o in their top i choices:
ranki(o;�) =

∣∣{j : pos(�j , o) ≤ i}
∣∣. Define

maxranki(�) := maxo∈O ranki(o;�).

Definition 3. A randomized mechanism M is an α-rank-
approximation mechanism, if for every preference profile �,
we have E

[
ranki(M(�);�)

]
≥ maxranki(�)/α for all i =

1, . . . ,m, where the expectation is taken over the random
choices of M. We say that α is the rank-approximation
factor of M.

As mentioned in the Introduction, rank approximation is
an appealingly robust notion from various perspectives. A
utility function U is consistent with a preference ordering �
if U(o) > U(o′) whenever o � o′. A collection of cardinal
utility functions (U1, . . . , Un) consistent with a preference
profile � is called homogeneous if for all i ∈ [m], the value
that an agent assigns to his i-th choice is the same across
all agents, that is, Uj(alt(�j , i)) = Uj′(alt(�j′ , i)) for all
i ∈ [m], j, j′ ∈ N .

An α-rank-approximation mechanism yields an α approxi-
mation to social welfare for any homogeneous cardinal-utility
profile consistent with the agents’ preferences.

Theorem 3.1. Let M be an α-rank-approximation ran-
domized mechanism. Then, for every preference profile �,
we have E

[∑
j∈N Uj

(
M(�)

)]
≥ 1

α
·maxo∈O

∑
j∈N Uj(o) for

any homogeneous utility profile (U1, . . . , Un) consistent with
�.

Proof. Let p = M(�). Let U(i) be the common value
of Uj(alt(�j , i)). Define rank0(o;�) = 0 for all o ∈ O, and

U(m + 1) = 0. Let o∗ = argmaxo∈O
∑
j∈N Uj(o). Then

E
[∑

j∈N Uj
(
M(�)

)]
is

∑
o∈O

p(o)

m∑
i=1

(
ranki(o;�)− ranki−1(o;�)

)
U(i)

=

m∑
i=1

(∑
o∈O

p(o) ranki(o;�)
)(
U(i)− U(i+ 1)

)
≥ 1

α
·
m∑
i=1

ranki(o
∗;�)

(
U(i)− U(i+ 1)

)
=

1

α
·
∑
j∈N

Uj(o
∗).

Consistent homogeneous utilities may be equivalently viewed
as a scoring rule; Viewed from this perspective, Theorem 3.1
shows that an α-rank-approximation mechanism simultane-
ously achieves an α-approximation to all scoring rules.

In fact, rank approximation satisfies an even more general
robustness property. Associate with each outcome o an m-
vector called its histogram, given by hist(o;�) = {ranki(o;�
)}i∈[m]. Define the g-value of an outcome o to be g

(
hist(o;�

);�
)
, where g(x;�) := mini∈[m]

xi
maxranki(�)

. It is not hard

to see that g is a concave function of x and non-decreasing
in each coordinate. A deterministic α-rank-approximation
mechanism outputs an outcome with g-value at least 1

α
.

Now suppose h(x;�) is any concave non-decreasing func-
tion and we measure the value of an outcome o by h

(
hist(o;�

);�
)
. This yields a natural SCF fh, where fh(�) is

argmaxo′∈O h(o′;�). Note that scoring rules correspond to
the special case where h(·) is linear with all coefficients non-
negative. Analogous to α-rank-approximation, we can define
an SCF f ′ to be an α-approximation for fh if (h-value of f ′(�)) ≥
1
α
· (h-value of fh(�)) for all �.
An α-rank-approximation mechanism simultaneously achieves

an α-approximation mechanism for all such histogram-based
concave SCFs: if o is the outcome returned, we get g

(
hist(o;�

);�
)
≥ 1

α
, and therefore hist(o;�) ≥ 1

α
·hist(o′;�) coordinate-

wise for any o′ ∈ O. Since h is non-decreasing and concave,
this implies that h

(
hist(o;�);�

)
≥ 1

α
·maxo′∈O h

(
hist(o′;�

);�
)

= 1
α
· fh(�).

3.2 Truthfulness for randomized ordinal mech-
anisms: lex-truthfulness

We propose a new notion for truthfulness relying on lex-
icographic ordering. Given an ordering � over O, and two
lotteries p 6= q ∈ L(O), p lexicographically dominates q with
respect to �, if there exists i ∈ [m] such that p(alt(�, i)) >
q(alt(�, i)) and p(alt(�, `)) = p(alt(�, `)) for all ` = 1, . . . , i−
1. Note that lex-dominance imposes a total order on L(O).
This motivates the following definition of truthfulness.

Definition 4. A randomized mechanism M is called lex-
truthful (LT) if for all j ∈ N , all �j�′j∈ Σj , and all �−j ,
we have that either M(�j ,�−j) ≡ M(�′j ,�−j), or M(�j
,�−j) lexicographically dominatesM(�′j ,�−j) with respect
to �j .

Observe that if p stochastically dominates q, then p lex-
dominates q as well. Since lex-dominance is a total order,
this implies that if p lex-dominates q, then q cannot stochas-
tically dominate p. We obtain the following hierarchy be-



tween the various notions of truthfulness for randomized or-
dinal mechanisms.

Theorem 3.2. Let UnivT, StrongT, WeakT, LexT de-
note the classes of universally-, strongly-, weakly-, and lex-
truthful mechanisms respectively. Then UnivT ( StrongT (
LexT ( WeakT.

We defer the proof of Theorem 3.2 to Appendix A. We
shorten“implementable by a lex-truthful mechanism”to“lex-
truthfully (LT) implementable” in the sequel. We show that
lex-truthful implementability is equivalent to a property of
the social-choice function that we call pseudomonotonicity.
This characterization immediately opens up a host of SCFs
that are fully LT-implementable. We heavily exploit this in
Sections 4 and 5 to show that the rank-approximation SCFs
that we devise for various problems are fully LT-implementable.
In Section 6, we leverage this to show that an interest-
ing class of SCFs in general ordinal settings are fully LT-
implementable.

Definition 5. A social choice function f is pseudomono-
tone (or satisfies pseudomonotonicity) if the following holds.
Consider any player j, �−j∈ Σ−j , and �j ,�′j∈ Σj . Let
o = f(�) and o′ = f(�′). Then, either (i) o �j o′, or (ii)
there is an outcome o′′ such that o′′ �j o′ and pos(�j , o′′) <
pos(�′j , o′′).

A useful way to view pseudomonotonicity is as follows: if
a player’s deviation leaves his first k preferences unaltered,
then the deviation cannot both yield him a better outcome
and a top-(k + 1) outcome.

Theorem 3.3. (i) Let f be a pseudomonotone SCF. Then
f is ε-implementable by a lex-truthful mechanism for any
ε > 0; that is, f is fully lex-truthfully implementable.
(ii) Conversely, if f is ε-LT implementable for some ε < 1

2
,

then f is pseudomonotone.

Proof. First consider part (i). Given ε > 0, one can find
ε1 > ε2 > · · · > εm > 0 such that

∑
i εi = ε. Consider the

randomized mechanism M that on input �, returns f(�)
with probability (1− ε), and with probability ε it chooses a
random agent a and returns his i-th preference with proba-
bility εi/ε.

It is clear by definition thatM ε-implements f . To prove
lex-truthfulness, fix an agent j and consider any �′= (�′j
,�−j), where �′j 6=�j . Let o = f(�) and let o′ = f(�′).
Also let p =M(�), q =M(�′). Let 1(A) be 1 if A is true,
and 0 otherwise. For any outcome ô, we have

p(ô)− q(ô) =
1

n

(
εpos(�j ,ô) − εpos(�′j ,ô)

)
+ 1(ô = o) · (1− ε)− 1(ô = o′) · (1− ε).

Considering outcomes in the preference order of �j , let o′′

be the first outcome such that pos(�j , o′′) 6= pos(�′j , o′′).
Then pos(�j , o′′) < pos(�′j , o′′). By pseudomonotonicity of
f , we know that o �j o′ or o′′ �j o′. In the latter case, we
have p(ô)− q(ô) ≥ 0 for all ô �j o′′ and p(o′′)− q(o′′) > 0,
so we are done. In the former case, if o = o′ or o′′ �j o, then
the same argument holds. So suppose o �j o′′ and o �j o′.
Then p(ô)− q(ô) ≥ 0 for all ô �j o and p(o)− q(o) > 0, so
again we are done.

We now prove part (ii). Let M be an LT mechanism
that ε-LT implements f , where ε < 1

2
. Suppose for a con-

tradiction, there is some agent j, and �= (�j ,�−j) and
�′= (�′j ,�−j) such that o = f(�) and o′ = f(�′) vi-
olate the conditions for pseudomonotonicity. That is, we
have o′ �j o and for every outcome o′′ �j o′, we have
pos(�j , o′′) ≥ pos(�′j , o′′). This means that pos(�j , o′′) =
pos(�′j , o′′) for all o′′ �j o′. Let p =M(�) and q =M(�′).

Since M ε-LT implements f , we have p(o′) ≤ ε and
q(o′) ≥ 1 − ε, so p(o′) < q(o′). Let o1, . . . , or be the out-
comes o′′ such that o′′ �j o′ listed in decreasing preference
order according to �j . Since pos(�j , o′′) = pos(�′j , o′′) for
all o′′ �j o′, we have o` �′j o′ for all ` ∈ [r], and the or-
dering of the o`s is the same in �j and �′j . We claim that
p(o`) = q(o`) for all ` = 1, . . . , r, which contradicts the fact
that M is lex-truthful.

We prove the claim by induction on `. Considering �j
to be j’s true preference list, we must have p(o1) ≥ q(o1),
and considering �′j to be j’s true preference list, we must
have q(o1) ≥ p(o1). Suppose that p(ok) = q(ok) for k =
1, . . . , ` − 1. Again considering �j and �′j be j’s true pref-
erence lists in turn, we obtain that p(o`) = q(o`).

Settings with indifferences.
As noted earlier, many of the settings we consider involve

non-strict preferences. In these settings, the outcome set
is partitioned into indifference classes Oj1, . . . , O

j
mj

for each
agent j. Agent j is indifferent between any two outcomes
in the same indifference class, and has a strict complete or-
dering over his indifference classes that specifies his ordering
between two outcomes in different classes. Formally, given
�j∈ Σj , we define pos(�j , o) = r ∈ [mj ] if o lies in the in-
difference class of j ranked r under �j , and alt(�j , r) ⊆ O
is now the indifference class of j ranked r under �j (that is,
{o : pos(�, o) = r}). The preferences induced over outcomes
are then: o �j o′ iff pos(�j , o) ≤ pos(�j , o′), and o �j o′ iff
pos(�j , o) < pos(�j , o′). Say that o ∼j o′ if o and o′ belong
to the same indifference class of j.

One requires mostly notational changes to extend our frame-
work and results to this more-general setting. With the
above notation in place, the definitions of ranki(o;�) (as
|{j : pos(�j , o) ≤ i}|, maxranki(�), rank-approximation
(Definition 3) and pseudomonotonicity (Definition 5) remain
unchanged.

We extend lex-dominance and lex-truthfulness as follows.
Since players have indifference classes it is not meaningful
to consider probabilities assigned to individual outcomes;
instead, we consider the total probability assigned to an in-
difference class. Given a lottery p ∈ L(O) and S ⊆ O, define
p(S) :=

∑
o∈S p(o). Given �j∈ Σj , and lotteries p 6= q ∈

L(O), we say that p lex-dominates q with respect to �j if
there exists r ∈ [mj ] such that p(alt(�j , r)) > q(alt(�j , r))
and p(alt(�j , `)) = q(alt(�j , `)) for all ` = 1, . . . , r − 1.
With this definition of lex-dominance, lex-truthfulness re-
mains as defined in Definition 4.

We can now mimic the proof of Theorem 3.3 to prove
the following analogue for the above setting, showing that
pseudomonotonicity is necessary and sufficient for full LT-
implementability. The proof appears in Appendix A.

Theorem 3.4. (i) Let f be a pseudomonotone SCF. Then
f is fully lex-truthfully implementable.



(ii) Conversely, if f is ε-lex-truthfully implementable for any
ε < 1

2
, then f is pseudomonotone.

4. MATCHING MARKETS
Recall that in a matching market there are n agents and

m items, and outcomes are matchings of agents to items.
Each agent j has a strict total ordering over items, which
induces his preferences over outcomes: j prefers outcome o
to o′ if he prefers his allotted item in o to the one in o′.

We show in Section B that various common mechanisms
all have bad rank approximation. In contrast, we devise a
simple deterministic algorithm, MaxMatch, that is a pseu-
domonotone, 2-rank-approximation algorithm (Theorem 4.1).
We complement this by showing two lower bounds. Theo-
rem 4.2 shows that 2 is the best rank approximation achiev-
able by any deterministic algorithm, proving the tightness
of our positive result. Next, Theorems 4.3 and 4.4 demon-
strate limitations of deterministic truthful mechanisms for
matching markets by showing that such mechanisms cannot
achieve any constant rank approximation.

Algorithm MaxMatch .
Fix a tie-breaking rule over agents. On input�, MaxMatch

allocates items to agents in m stages. In stage r, we consider
the bipartite graphGr with agents and items as vertices, and
an edge from agent j to item i, if i is a top-r item of agent
j. Note that maxrankr(�) is precisely the size of the maxi-
mum matching in Gr. Let M denote the current matching of
agents to items (which is ∅ when r = 1), which is a matching
in Gr. We maintain that at he beginning of stage r, M is a
maximal matching in Gr−1; observe this is true when r = 1.
Since M is a maximal matching in Gr−1, then any agent has
an edge to at most one item in Gr\M . For every unmatched
item i that has non-zero degree in Gr \M (that is, i is a
top-r item of some agent that is currently unmatched) we
use our tie-breaking rule to pick an agent j ∈ Gr \M ; we
assign item i to j and update M . Thus, M is updated to a
maximal matching in Gr. We output the matching at the
end of m stages.

Theorem 4.1. MaxMatch a pseudomonotone, 2-rank ap-
proximation algorithm for matching markets, and hence is
fully LT-implementable.

Proof. The 2-rank-approximation guarantee of MaxMatch
follows immediately from the fact that MaxMatch maintains
a maximal matching in the “top-r” graph Gr for all r, and
the size of any maximal matching is at least half the size of
a maximum matching, and thus at least maxrankr(�)/2.

Fix an agent j. Suppose that j deviates from �j to �′j
without altering his top-r items and their ordering, that is,
alt(�j , `) = alt(�′j , `) for all ` = 1, . . . , r, and pos(�′j , i) >
r + 1 for i = alt(�j , r + 1). Let �= (�j ,�−j) and �′=
(�′j ,�−j). Since the other agents’ inputs have not changed,
MaxMatch(�) and MaxMatch(�′) proceed identically up to
the end of stage r. So if j has been assigned an item by this
time (which happens in both runs) we are done. Otherwise,
in MaxMatch(�′), all of j’s top-r items are unavailable, and
since j demotes i in �′, edge (j, i) does not belong to the
graph Gr+1 constructed in stage r+ 1; so j does not obtain
i or a top-r item under input �′. This proves pseudomono-
tonicity.

Theorem 4.2. No deterministic algorithm for matching
markets can have rank-approximation 2− ε, for any ε > 0.

Proof. We create an instance with n = 2K − 1 players
and items, where K

2K−1
< 1

2−ε . We specify the first K pref-
erences of the players; the remaining preferences may be set
arbitrarily. Let � denote the resulting input (with arbitrary
remaining preferences). Since this is the only input we con-
sider, we drop the � in rankr(o;�) and maxrankr(�) in the
sequel.
• For r = 2, . . . ,K − 1, the r-th preference of a player j is

item:

 r ; if j = r,
K + r − 1 ; if j = r − 1,
r − 1 ; otherwise.

• The first preference of a player j is: item 1 if j = 1, and
item n otherwise.

• The K-th preference of a player j is: item K if j = K−1,
and item K − 1 otherwise.
First, we claim that maxrankr ≥ 2r for all r ∈ [K−1]. For

r = 1, this is achieved by matching player 1 to item 1, and
an arbitrary other player to item n. For r = 2, . . . ,K − 1,
this is achieved by matching player r to item r, each player
j ∈ [r − 1] to item K + j, matching one player from {r +
1, . . . , n} to item n and r − 1 other arbitrary players from
{r+ 1, . . . , n} arbitrarily to items in [r− 1]. Note that each
player is matched to a top-r item in this matching. Also,
maxrankK = n. This is achieved by matching playerK−1 to
item K, each player j ∈ [K−2] to item K+j, matching one
player from {K, . . . , n} to item n, and the remaining K − 1
players from {K, . . . , n} arbitrarily to items in [K − 1].

Now fix a matching o. We show that if rankr(o) > maxrankr /2
for r = 1, . . . ,K − 1, then we must have rankK(o) ≤ K <
maxrankK /(2−ε). Thus, we cannot have rankr(o) ≥ maxrankr /(2−
ε) for all r ∈ [K].

We show by induction on r that if rank`(o) > maxrank` /2
for all ` ∈ [r], where r < K, then o must match player ` to
item ` for all ` ∈ [r]. For the base case, if rank1(o) >
maxrank1 /2 ≥ 1, then o must match player 1 to item 1
since all other players have item n as their top item. For
the induction step, suppose that rank`(o) > maxrank` /2
for all ` ∈ [r], where 1 < r < K. Then, by the induction
hypothesis, we know that o matches player ` to item ` for all
` ∈ [r−1]. We require that rankr(o) ≥ r+1. Examining the
preferences of the players in {r, . . . , n}, we see that for player
r, items r and n are the only unmatched items in his top-r
list, and for a player j ∈ {r + 1, . . . , n}, item n is the only
unmatched item in j’s top-r list. Therefore, rankr(o) ≥ r+1
is only possible if o matches player r to item r.

Given the above claim, for players j = K, . . . , n, item n is
the only unmatched item in their top-K list, so rankK(o) ≤
K.

We now show that randomization is necessary to achieve
good rank approximation via truthful mechanisms. As a
warm up, we first prove a lower bound of n− 1 on the rank-
approximation factor achievable by truthful no-bossy mech-
anisms [25]. A no-bossy mechanism for matching markets is
one where no agent can change his preference and modify
the outcome without also modifying his own allocation.

Suppose there are n items. Let �∗:= (1, 2, . . . , n) denote
the ordering where item i is the i-th ranked item, for all
i ∈ [n]. Let �∗ ◦(k− 1, 1), denote the preference list that is
identical to �∗ except that items (k−1) and 1 are swapped.
That is, (k−1) is the top-item, 1 is the kth-choice, and item
i is the i-th choice for all i 6= 1, k − 1. Given n agents and
any set S ⊆ {2, 3, . . . , n}, let �S be the preference profile



where each agent k ∈ S has preference �∗ ◦(k − 1, 1), while

each k /∈ S has preference �∗. Thus, �∅ is the preference
profile where every agent has the same preference order �∗
over items. For notational convenience, we think of a player
who is not assigned an item as being assigned item n + 1,
which is lower ranked than any (true) item in [n].

Theorem 4.3. No deterministic truthful no-bossy mech-
anism for matching markets can have rank-approximation
smaller than (n− 1).

Proof. We consider a matching market with n (agents
and) items. Let M be any deterministic truthful no-bossy

mechanism. Suppose that M(�∅) assigns items to N play-
ers. By renaming players if necessary, we may assume that
M(�∅) assigns item i to player i for all i ∈ [N ], and item
n+ 1 to the remaining players.

Consider the input �{k}. We claim that M(�{k}) =

M(�∅). Due to no-bossiness, it suffices to show that agent

k’s allocation is the same inM(�{k}) andM(�∅). Suppose

agent k obtains item i in M(�{k}). Invoking truthfulness
when k’s true preference list is �∗ (and the other players’
preference lists are �∗), we obtain that k �∗ i, that is, k ≤ i.
Similarly, if k’s true preference list were �∗ ◦(k− 1, 1), then
truthfulness dictates that i ≤ k. Hence, we have i = k.

The above argument can be generalized to show that for
any S ⊆ [n], we have M(�S) =M(�S\k) =M(�∅) for all

k ∈ S. In particular, M(�{2,...,n}) assigns item i to player

i for all i ∈ [n]. Now, under the preference profile �{2,...,n},
at most one agent, agent 1, gets his top choice; however,
assigning every player j > 1 item j − 1 yields an outcome
where n− 1 agents get their top choice.

While no-bossiness was crucial above, we show via a more
sophisticated argument that no deterministic truthful mech-
anism can obtain constant rank approximation.

Theorem 4.4. Every deterministic truthful mechanism has
rank approximation Ω

(
log logn

log log logn

)
.

Proof. Let n be large enough so thatK :=
⌊

log logn
log log logn

⌋
−

2 ≥ 1. We show that on instances with n (agents and) items,
no deterministic truthful mechanism can have rank approx-
imation better than K.

As before, if M(�∅) assigns items to N players, we may
assume that it matches agent i to item i for i ∈ [N ], and the
remaining players are unassigned (i.e., assigned item n+ 1).
Given agents {a1, . . . , ak} and integers r1, . . . , rk ≥ 1, we let

�(a1,r1),(a2,r2),...,(ak,rk) denote the preference profile where
all agents other than these a`’s have preference order �∗,
while each a` has preference order �∗ ◦(r`, 1)). That is, a`’s
top choice is item r`, his r`-th choice is item 1, and his i-th
choice is item i for all i 6= 1, r`. We show that there ex-
ist agents a1, . . . , aK and distinct integers r1, . . . , rK ∈ [K],

such that, in M(�(a1,r1),...,(aK ,rK)), every agent a1, . . . , aK
gets an item whose index is larger than K. Since all other
agents have the same top item, the number of agents get-
ting their top item is at most 1. This proves that the rank
approximation is at least K, since assigning item r` to agent
a` for all ` ∈ [K], yields an outcome where K agents obtain
their top-choice item.

To find these K agents, we proceed in K stages. In stage
`, we will have a subset S` of agents with |S`| ≥ ` hav-
ing the following property. For any t < `, any t agents

{a1, . . . , at} ⊆ S`, and for any t distinct integers r1, . . . , rt ∈
[K], M(�(a1,r1),...,(at,rt)) allocates all agents in S` an item
indexed larger than K.

Note that if we reach stage K, then we are done due to the
following reason. Consider any K agents a1, . . . , aK ∈ SK
and any K distinct integers r1, . . . , rK ∈ [K]. Consider any

index ` ∈ [K]. Let�′=�(a1,r1),...,(a`−1,r`−1),(a`+1,r`+1),(aK−1,rK−1)

and �=�(a1,r1),...,(aK ,rK). We know that M(�′) allocates
all agents in SK an item indexed larger than K. This also
implies that o :=M(�) allocates a` an item indexed larger
than K, otherwise given the preference profile �′, player `
has an incentive to deviate from his preference list �∗ and
report �∗ ◦(r`, 1). Since this holds for all `, it follows that o
allocates every agent a1, . . . , aK an item indexed larger than
K.

We now show how to obtain the S` sets. The base case
is S1 = {K + 1, . . . , n}, which satisfies the stated property.
Given a set S` at the end of stage ` < K we now show how
to construct the set S`+1 ⊆ S`. We construct the follow-
ing hypergraph H`. The vertices are the agents in S`. The
hyperedges are subsets of vertices of size at most (`+1) con-
structed as follows. For every `-size subset {a1, . . . , a`} of S`,
and every a ∈ S` (which could be the same as one of the ats),
we add the hyperedge {a1, . . . , a`, a} if there exist ` distinct

integers r1, . . . , r` ∈ [K] such that M(�(a1,r1),...,(a`,r`)) al-
locates agent a an item with index at most K. Note that
the number of hyperedges is at most |S`|` ·K`+1 since there
are |S`| choices for each at, and K choices for each rt, and
once these are fixed, there at most K choices for a.

Call a subset U ⊆ S` independent if no hyperedge is com-
pletely contained in it. Observe that U is a valid input to
stage (` + 1) if |U | ≥ ` + 1: consider any t < ` + 1 agents
a1, . . . , at ∈ U and any distinct integers r1, . . . , rt ∈ [K].

Suppose thatM(�(a1,r1),...,(at,rt)) allocates some agent a ∈
U an item with index at most K. Then we must have t = `,
otherwise this would contradict the property assumed of S`,
and then {a1, . . . , at, a} would be a hyperedge, contradicting
independence of U .

Lemma 4.5 shows that there is an independent set S`+1 ⊆

S` such that |S`+1| ≥ |S`|
1

`+1

K
−1. Therefore, if |S`|

1
`+1 ≥ 2K

(and hence |St|
1

t+1 ≥ 2K for all t ≤ `), then

|S`+1| ≥ |S`|
1

`+1 /2K ≥ |S1|
1

(`+1)! /(2K)` ≥
(n

2

) 1
(`+1)!

/(2K)`.

IfK ≤ log logn
log log logn

−2, then this implies that
(
n
2

) 1
K! /(2K)K−1 ≥

2K. Hence, |S`+1| ≥ 2K, and moreover, if `+ 1 < K, then

|S`+1|
1

`+2 /2K ≥
(
n
2

) 1
(`+2)! /(2K)`+1 ≥ 2K. Thus, we obtain

that |SK | ≥ 2K.

Lemma 4.5. There exists an independent set S`+1 ⊆ S`

of size |S`+1| ≥ |S`|
1

`+1

K
− 1.

Proof. Let N = |S`|. Recall the number of hyperedges
is at most N `K`+1. We first argue that all hyperedges are
of size ` + 1. Every hyperedge is of size at least `. A size-`
hyperedge {a1, . . . , a`} can only arise, if there are ` distinct
integers r1, . . . , r` ∈ [K] and some a ∈ {a1, . . . , a`}, say a1
for notational convenience such that M(�(a1,r1),...,(a`,r`))
allots a an item indexed less than K. But the definition of
S` implies that M(�(a2,r2),...,(a`,r`)) allots a1 an item with
index larger than K. This violates truthfulness, since agent



a1 has an incentive to misreport �∗ ◦(r1, 1) when his true
preference is �∗ and obtain a better item.

Consider sampling each vertex of H` with probability p =

K−1 · N−( `
`+1 ) to get a random subset X. If X contains a

hyperedge, then we remove all its vertices fromX. The prob-
ability that a hyperedge is present in X is at most p`+1, since
all hyperedges are of size ` + 1. Therefore, in expectation,
the size of X after removal is at least pN − p`+1N `K`+1 =
N1/`+1

K
− 1.

4.1 A generalization: matroid markets
In this generalization of matching markets, there is a ma-

troid Mi = (N, Ii) for each item i, and multiple agents may
be assigned to item i provided they form an independent set
of Mi. Here Ii is a collection of subsets of N with the follow-
ing properties: (i) ∅ ∈ Ii; for all A,B ⊆ N (ii) if A ∈ Ii and
B ⊆ A, then B ∈ Ii; (iii) if A,B ∈ Ii and |A| > |B|, then
there exists some j ∈ A \B such that B ∪{j} ∈ Ii. Clearly,
the lower bounds obtained for matching markets also hold in
this setting. Complementing this, we extend MaxMatch to
obtain a pseudomonotone 2-rank-approximation algorithm
for matroid markets.

Theorem 4.6. There is a pseudomonotone 2-rank approx-
imation algorithm for matroid markets, and a mechanism
that fully LT-implements it.

Proof. The algorithm is similar to MaxMatch. Again
fix an agent-ordering and an item-ordering. Consider some
input �.

We again proceed in m stages. In stage r, we consider
the “top-r” graph Gr = (N ∪O,Er), where each agent j has
edges to his top-r items. Note that every outcome induces a
feasible solution to the matroid-intersection problem defined
by the following two matroids on the universe Er. One is
MA, which is the direct sum of the Mi matroids for all i ∈ O,
i.e., a set I ⊆ N × O is independent if {j : (j, i) ∈ I} ∈ Ii
for all i ∈ O. The second is the partition matroid MB(r)
encoding that at most one edge of Er is incident to each item
j. Then every outcome induces a set that is independent in
both MA and MB(r), and maxrankr(�) is the size of the
largest common independent set.

Let M consist of the edges denoting the current (i.e., at
the start of stage r) assignment of items to agents. Our al-
gorithm will maintain the invariant that at the end of stage
r, M is a maximal set that is independent in both MA and
MB(r). The rank-approximation factor of 2 follows then
from the well-known fact that every maximal common inde-
pendent set of two matroids has size at least half the size of
maximum-cardinality common independent set; Claim 4.7
gives a self-contained proof.

Let Γr(u) denote the neighbors of node u in Gr, and
ΓrM (u) := {v : (u, v) ∈ M}. Note that if M is a maxi-
mal common independent set in Gr−1, then for every agent
j that is not assigned an item in M , among j’s top-r items
his r-th ranked item is the only item to which j can be pos-
sibly assigned while preserving independence in the item’s
matroid.

We consider each item i and augment ΓrM (i), the cur-
rent set of agents assigned to item i, to a maximal subset
Ji ⊆ Γr(i) that is independent in Mi: we initialize Ji to
ΓrM (i). Next, we consider agents in Γr(i) \ ΓrM (i) according
to the fixed agent-ordering and add agent j to Ji if this main-
tains independence in Mi. Maximality of Ji follows from the

matroid property. (In fact Ji is a maximum-size indepen-
dent subset of Γr(i).) Finally, we update M to reflect the
new assignments in stage r.

The fact that M is a maximal common independent set
of MA and MB(r) is immediate: if some edge (j, i) can
be added to M while preserving independence in MA and
MB(r), then j was unassigned at the start of stage r and
when we considered item i, j could (and would) have been
added to Ji in the iteration when j was considered.

We have already argued that the above algorithm is a
2-rank-approximation. Pseudomonotonicity of the above al-
gorithm follows from exactly the same arguments as in The-
orem 4.1.

Claim 4.7. Let M1(U, I1), M2 = (U, I2) be two matroids.
Let S ⊆ U be an inclusion-wise maximal set that is indepen-
dent in both M1 and M2. Let A be a maximum-cardinality
set that is independent in both M1 and M2. Then |S| ≥
|A|/2

Proof. Suppose |S| < |A|/2. Let T1 = {e ∈ A : S∪{e} ∈
I1}. Since A ∈ I1, by the matroid exchange property, we
have |T1| ≥ |A| − |S| > |A|/2. Similarly, if T2 = {e ∈
A : S ∪ {e} ∈ I2}, then we have |T2| > |A|/2. But since
T1, T2 ⊆ A, this means that T1∩T2 6= ∅, and so if e ∈ T1∩T2,
then e can be added to S while maintaining independence in
both M1 and M2. This contradicts the maximality of S.

5. SCHEDULING MARKETS
Recall that here the agents are n jobs that need to be

assigned on m machines. Each job j has a private strict total
ordering over the machines, and a publicly-known processing
time pij on machine i. An outcome is a partial assignment of
jobs to machines, also called a schedule, that has makespan
at most a given value T . An agent prefers outcome o to
outcome o′ if he prefers his assigned machine in o to that in
o′.

We obtain nearly tight results for scheduling markets. Say
that an algorithm is an (α, β)-approximation if it always
returns a schedule with rank-approximation factor α and
makespan at most βT . For parallel machines (pij = pj
for all i, j), we give an

(
O(logn), O(1)

)
-approximation, fully

lex-truthfully (LT) implementable algorithm (Theorem 5.2).
We show that this bound is tight by proving an algorithmic
lower bound showing that every (α, β)-approximation algo-
rithm for parallel machines must have
α = Ω(max{logm, logn}/β) (Theorem 5.3). For the setting
of general unrelated machines, we devise an

(
O(logn), O(1)

)
-

approximation algorithm (Theorem 5.4), however we do not
know how to achieve this via a fully LT-implementable al-
gorithm. We leave this as an intriguing open question.

LetN denote the set of jobs. For S ⊆ N , let�S denote the
restriction of � to jobs in S, and maxrankr(�S) denote the
maximum number of jobs from S that can be assigned to one
of their top-r machines with makespan at most T . Observe
that maxrankr(�S∪T ) ≤ maxrankr(�S) + maxrankr(�T ).

Parallel machines.
Our results rely on a bucketing argument coupled with

Theorem 4.6 for matroid-markets and some insights from the
matroid-intersection problem. We divide the set N of jobs
into k = O(logn) disjoint classes N0, N1, . . . , Nk such that
jobs in each class have roughly the same processing time. Set
N0 := {j : pj ≤ T

n
}, and N` := {j : 2`−1 · T

n
< pj ≤ 2` · T

n
}



for ` = 1, . . . , k := dlog2 ne. Note that if j /∈
⋃k
`=0N`,

then pj > T , so j cannot be assigned to any machine in any
outcome and is not counted in maxrankr(�) for any position
r. We assume for notational convenience that N does not
contain any such job in the sequel. It will be convenient to
ensure that |N0| ≥ 1. So we remove some fixed job a from
the N` set containing it and add it to N0.

Obtaining a good rank-approximation for a classN`, where
` ≥ 1, with makespan O(T ) amounts to a matroid-market
problem (in fact, a b-matching problem) since the makespan
bound can be encoded by the constraint that at most n

2`−1

jobs are assigned to each machine. Any feasible schedule for
N` yields a feasible allocation for the corresponding matroid-
market problem. So Theorem 4.6 yields a pseudomonotone
(2, 2)-approximation algorithm f` for class N`, and a mech-
anism Mε

` that ε-implements it, for all ε > 0.

Theorem 5.1. One can obtain a deterministic fully LT-
implementable

(
O(1), O(logn)

)
-approximation algorithm for

parallel-machine markets.

Proof. On input �, we output the schedule obtained
by concatenating the schedule where all jobs in N0 are as-
signed to their top machine, and all the f`(�N`) schedules.
Note that the N0-schedule has makespan at most 2T . The
resulting schedule, denoted f(�), has makespan O(T logn)
and rank-approximation factor 2 (since maxrankr(�N ) ≤∑k
`=0 maxrankr(�N`)). Fix ε > 0. The jobs in N0 clearly

have no incentive to lie. It is easy to see then that f is
ε-LT implemented by the mechanism that outputs the N0-
schedule concatenated with the (random) schedules output
by theMε

` mechanisms, where we couple the random choices
of all theMε

` mechanisms (i.e., their decisions are based on
the outcomes of the same random coins) so that Pr[∃ ` :
Mε

`(�N`) 6= f`(�N`)] ≤ ε.

Theorem 5.2. There is a randomized fully LT-implementable(
O(logn), O(1)

)
-approximation algorithm for parallel-machine

markets, where the rank-approximation and makespan bounds
hold with probability 1.

Proof. Consider an input �. As before, we assign all
jobs in N0 to their top machine. Note that simply picking
a class N` with probability 1

k
and outputting the concate-

nation of the N0-schedule and f`(�N`) is not enough since
this only yields O(k) rank approximation in expectation.
Instead, we build upon the above ideas and leverage some
results about the matroid-intersection problem.

Consider the following bipartite graph representing the
concatenation σ of all the f`(�N`) schedules. We have a
node for every machine, and every job not in N0, and an
edge (i, j) if j is assigned to machine i in schedule σ. Now
set xij = 1

k
for every edge (i, j). Define Ai,` :=

⌈
n

2`−1k

⌉
for

all i, ` and Br :=
⌊
rankr(σ;�N\N0

)/k
⌋

for all r. Consider
the following polytope:

P :=
{
y ∈ R[m]×(N\N0) :

∑
j∈N`

yij ≤ Ai,` ∀i ∈ [m], ` ∈ [k],

∑
j:pos(�j ,σ(j))≤r

yij ≥ Br ∀r ∈ [m],

0 ≤ yij ≤ 1 ∀i ∈ [m], j /∈ N0

}
.

We claim that P has integral extreme points. Any extreme
point of P is defined by a linearly independent system of

tight constraints comprising some
∑
j∈N`

yij = Ai,` equali-

ties whose supports are disjoint, and some
∑
j:pos(�j ,σ(j))≤r yij =

Br, yij = 1 equalities whose supports form a laminar family.
The constraint matrix of such a system thus corresponds to
equations coming from two laminar set systems; such a ma-
trix is known to be totally unimodular (TU) (see, e.g., [26]),
and hence a solution to this system is integral.

Note that x ∈ P, so it can be expressed as a convex combi-
nation of some extreme points of P. Equivalently, x yields a
distribution over partial schedules forN\N0. Let Y be a ran-

dom schedule, or equivalently vector in R[m]×(N\N0), sam-
pled from this distribution. Note that Pr[j is assigned in Y ] =
xij = 1

k
for j /∈ N0. The makespan of Y is at most 6T

with probability 1. This is because
∑
j pjYij ≤

∑k
`=1

(
1 +

n
2`−1k

)
· 2` · T

n
≤ 2k+1 · T

n
+ 2T ≤ 6T . Let Π be the (ran-

dom) schedule obtained by concatenating the N0-schedule
with Y . Then Π has makespan at most 8T with probability
1. Also, rankr(Π;�) ≥ |N0| + Br with probability 1. Now
Br ≥

⌊
maxrankr(�N\N0

)/2k
⌋
. Finally,

maxrankr(�) ≤ |N0|+ maxrankr(�N\N0
)

≤ |N0|+ max{2k, 4k
⌊
maxrankr(�N\N0

/2k)
⌋
}

≤ 4k(|N0|+Br),

where the latter inequality follows since |N0| ≥ 1. Thus, the
randomized algorithm f that outputs the random schedule
Π is an

(
O(logn), O(1)

)
-approximation with probability 1.

We now proceed as in the proof of Theorems 3.3 and 3.4
to devise a mechanism M that fully LT-implements f . Fix
ε > 0, and ε1 > . . . > εm such that

∑m
r=1 εr = ε. Consider

input �. Let Y � be the random schedule for N\N0 for input
�N\N0

as obtained above. Mechanism M always assigns
jobs in N0 to their top machines. For jobs in N \ N0, it
returns schedule Y � with probability 1−ε. For each j /∈ N0

and r ∈ [m], with probability εr
n

, it returns the schedule
where j is assigned to its r-th ranked machine alt(�j , r),
and all other jobs are unassigned. Clearly, M(�) = f(�)
with probability at least 1− ε.

Jobs in N0 do not benefit by lying. Consider a job j ∈
N`, where ` ≥ 1. Let �′= (�j ,�−j), where �′j 6=�j . Let
xij = xij(�) and x′ij = xij(�′) denote the probabilities that
j is assigned to i under the random schedules Y = Y � and

Y ′ = Y �
′

respectively. Then,

∆ij := Pr[j assigned to i in M(�)]−Pr[j assigned to i in M(�′)]

= (1− ε)(xij − x′ij) +
1

n
·
(
εpos(�j ,i) − εpos(�′j ,i)

)
.

Considering machines in the preference order of �j , let î
be the first machine such that pos(�j , î) 6= pos(�′j , î). Then

pos(�j , î) < pos(�′j , î). If x′ij = 0 for all i �j î, then ∆ij ≥ 0

for all i �j î, and ∆îj > 0, so we are done. Otherwise,

j is assigned to some machine i′ �j î in f`(�′N`
). Since

all machines i �j i′ have pos(�j , i) = pos(�′j , i) and f` is
pseudomonotone, it must be that j is assigned to i′′ �j i′ in
f`(�N`). So xij = x′ij , and hence, ∆ij = 0, for all i �j i′′.
If i′′ 6= i′, then ∆i′′j > 0, otherwise ∆ij = 0 for all i �j î
and ∆îj > 0. Thus, M is lex-truthful.

Theorem 5.3. There exists an instance of a parallel-machine
market where any schedule with βT makespan has rank-
approximation factor Ω(max{logm, logn}/β).



Proof. We create an instance with n = O(m lnm) jobs

as follows. We create a set A(1) of m jobs of size (i.e., pj)

T partitioned into A
(1)
1 , . . . , A

(1)
m , where each A

(1)
i consists

of a single job whose first preference is machine i. We cre-
ate a set A(2) of 2(m − 1) jobs of size T

2
partitioned into

A
(2)
2 , . . . , A

(2)
m , all of which have machine 1 as their first pref-

erence. Each set A
(2)
i has two jobs, both having machine i

as their 2nd preference. In general for i < k, we have a
set A(i) of 2i−1(m− i+ 1) jobs of size T

2i−1 partitioned into

A
(i)
i , . . . , A

(i)
m , all of which have machine r as their r-th pref-

erence for r = 1, . . . , i − 1. Each set A
(i)
` has 2i−1 jobs, all

of which have machine ` as their i-th preference. Finally,
we have a set A(k) of 2km jobs of size T

2k
partitioned into

A
(k)
k , . . . , A

(k)
m , all having machine r as their r-th preference

for r = 1, . . . , k − 1. Each set A
(k)
` has at least 2k jobs,

all of which have machine ` as their k-th preference. The
remaining preferences of the jobs play no role, and may be
set arbitrarily. Let � be the resulting preference profile.

For r ∈ [k], we have maxrankr(�) ≥ 2r−1(m − r + 1) +

2k(r − 1) ≥ 2r−1m obtained by assigning all jobs in A
(r)
` to

machine ` for ` = r, . . . ,m, and any 2k(r−1) jobs from A(k)

to machines 1, . . . , r−1. Suppose we have a schedule σ with
makespan βT that achieves α rank approximation. Then,

rankr(σ;�) ≥ 2r−1m
α

for all r = 1, . . . , k. Let sr be the
number of jobs assigned to their r-th ranked machine in σ,
and tr be the number of jobs of size at least T

2r−1 assigned to

their r-th ranked machine in σ. Observe that tr ≥ sr − β2k

since the jobs counted in sr but not in tr lie in
⋃k
`=r+1A

(`),
all of which have machine r as their r-th ranked machine; at
most β2k such jobs can be accommodated within makespan
βT . Now βmT is at least the total size of all jobs scheduled
by σ, which is at least

∑k
r=1(sr − β2k) · T

2r−1 ≥
∑k
r=1 sr ·

T
2r−1 − β2k+1T . So

β(mT + 2k+1T ) ≥ 1

2

k∑
r=1

sr

k∑
`=r

T

2`−1

=
1

2

k∑
`=1

T

2`−1

∑̀
r=1

sr =
1

2

k∑
`=1

T

2`−1
· rank`(σ;�)

≥ 1

2

k∑
`=1

T

2`−1
· 2`−1m

α
.

Taking k = log2m, this gives 3βmT ≥ kmT
2α

, so α ≥ k
6β

=

Ω(logm/β). Also, the number of jobs is at most k · 2k =
O(m logm), so α is also Ω(logn/β).

Unrelated machines.
We obtain an

(
O(logn), O(1)

)
approximation for the gen-

eral setting of unrelated machines.

Theorem 5.4. There is a deterministic
(
O(logn), O(1)

)
approximation algorithm for scheduling markets.

Proof. We will need Lemma 5.5 stated below. Fix an
input �. We use a different kind of bucketing argument
where we group ranks that have roughly the same value of
maxrankr(�). For r ∈ [m], let σr be the schedule given by
Lemma 5.5 that yields a 2-approximation to maxrankr(�),
Nr be the set of jobs assigned by σr, and nr = |Nr|. We may
assume that n1 ≤ n2 ≤ . . . nm. Define n0 = 0. If nm = 0,

then maxrankr(�) = 0 for all r ∈ [m], and we return the
null assignment. So assume otherwise in the sequel.

Define r0 := 0 < r1 < r2 < . . . < rk < rk+1 = m + 1
as follows: r` is the smallest r such that nr > 4nr`−1 for
` = 1, . . . , k, and nm ≤ 4nrk . Thus, k ≤ dlog4 ne and
nr` ≤ nr ≤ 4nr` for all r ∈ [r`, r`+1) and all ` = 0, . . . , k.

For ` ∈ [k], define Sr` := Nr` \(
⋃`−1
q=1Nrq ); note that |Sr` | ≥

2nr`
3

.
If nrk < 2k for all r, we simply return the assignment σr1 .

Clearly, this yields a 2k rank approximation. Otherwise, let
q be the smallest index ` such that nr` ≥ 2k. Let S =⋃k
`=q Sr` . Let σ be the schedule for S, where each job j ∈ Sr`

is assigned to the machine σr`(j), for ` = q, . . . , k. Let
Li := |{j : σ(j) = i}|. Consider the following bipartite
graph, which is similar to the bipartite graph constructed
in the GAP-rounding algorithm [10]. We have a node for
every job in S, and a node (i, c) for every machine i and

c = 1, . . . ,
⌈

Li
k−q+1

⌉
. We sort the jobs assigned to i in σ

in non-increasing pij order (breaking ties arbitrarily), and
create an edge

(
(i, c), j

)
if σ(j) = i and its position in this

ordering lies in {(c − 1)(k − q + 1) + 1, . . . , c(k − q + 1)}.
Let E be the edge-set of this bipartite graph. Consider the
following polytope:

Q :=
{
y ∈ RE :

∑
j:((i,c),j)∈E

y(i,c),j ≤ 1

∀i ∈ [m], c = 1, . . . ,
⌈

Li
k−q+1

⌉
,∑

((i,c),j)∈E:j∈Sr`

y(i,c),j ≥
⌊
|Sr` |

k − q + 1

⌋
∀` = q, . . . , k,

0 ≤y(i,c),j ≤ 1 ∀
(
(i, c), j

)
∈ E

}
.

As with the polytope P (see Theorem 5.2), the constraint-
matrix defining an extreme point of Q corresponds to equa-
tions coming from two laminar systems, which is TU, so Q
has integral extreme points. Setting x(i,c),j = 1

k−q+1
for

every edge
(
(i, c), j

)
, note that x ∈ Q. So we can find an

integral y ∈ Q, which we interchangeably view as a par-
tial assignment of S. We return the schedule π obtained by
concatenating σr1 with this assignment y.

The schedule σr1 has makespan at most T . By the stan-
dard GAP-rounding proof in [10], the makespan of y is at
most

T+ 1
k−q+1

·
∑

j:σ(j)=i

pij = T+ 1
k−q+1

·
k∑
`=q

∑
j∈Sr`

:σr` (j)=i

pij ≤ 2T.

So π has makespan at most 3T . Fix some rank r. If r < r1,
then maxrankr(�) = 0. If r1 ≤ r < rq, we have rankr(π;�
) ≥ nr1 ≥ 1 > nr/2k ≥ maxrankr(�)/4k. Otherwise,
suppose r ∈ [r`, r`+1), where ` ≥ q. Then rankr(π;�) ≥⌊
|Sr`
|

k

⌋
≥
⌊

2nr`
3k

⌋
≥ nr`

3k
, where the last inequality follows

since nr` ≥ nrq ≥ 2k, and
nr`
3k
≥ nr

12k
≥ maxrankr(�)

24k
. So π

has O(k) rank approximation.

Lemma 5.5. For any preference-profile �, any set S ⊆
N , and any rank r, one can efficiently compute a 2-approximation
to maxrankr(�S).



Proof. Shmoys and Tardos [10] proved the following re-
sult about GAP. Let {cij} be “assignment costs” for assign-
ing jobs to machines, which could also be negative. Consider
the following LP, where i indexes the machines and j indexes
the jobs.

min
∑
i,j

cijxij (P)

s.t.
∑
i

xij = 1 ∀j (1)∑
j

tijxij ≤ Li ∀i

xij ≥ 0 ∀i, j
xij = 0 ∀i, j s.t. tij > Li.

[10] showed that a fractional solution x to (P) can be rounded
to an integer solution x̃ of cost at most the cost of x such
that the total load

∑
j tij x̃ij on each machine i is at most

2Li. Examining their rounding algorithm more closely, one
can infer that the total load on each machine i under x̃ is
at most Li if

∑
j xij ≤ 1, and at most Li + maxj:xij>0 tij

otherwise.
We apply this result to our problem of approximating

maxrankr(�S) as follows. The set of jobs is S. Our problem
is a prize-collecting problem, which we can reduce to GAP
by creating a “machine” Ij for every job j ∈ S and setting
tIjk = 0 if k = j and ∞ otherwise. There is no makespan
bound for these Ij machines. For every (regular) machine i
and job j, we set tij = pij if pos(�j , i) ≤ r and ∞ other-
wise; the makespan bound for i is T . Finally, our objective
is to maximize the number of jobs assigned to the regular
machines (with tij <∞). In terms of the LP (P), constraint
(1) now reads

∑
i xij + zj = 1 for every j ∈ S, where zj in-

dicates if j is assigned to Ij , and the objective function is to
maximize

∑
i

∑
j∈S xij .

Applying the GAP-rounding algorithm, we obtain an as-
signment x̃ with makespan at most 2T such that rankr(x̃;�S
) = maxrankr(�S). To turn this into a feasible schedule
with makespan T , we leverage the stronger property of the
rounding algorithm mentioned above. If the load on ma-
chine i under x̃ is more than T , then we know that i has
at least two jobs assigned to it, and there is a job assigned
to i whose removal decreases the load on i to at most T .
We simply remove this job from every overloaded machine
i. This reduces the number of jobs assigned to an overloaded
machine i by a factor of at most 2 (since

∑
j x̃ij ≥ 2), so now

we obtain a schedule with makespan T where the number
of jobs assigned (to one of their top-r machines) is at least
maxrankr(�S)/2.

6. MECHANISMS FOR GENERAL ORDI-
NAL SETTINGS

In this section, we evaluate the strength and flexibility
provided by the notions of rank approximation and lex-
truthfulness in general ordinal settings. We devise anO(logn)-
rank-approximation randomized mechanism, and show that
this guarantee is tight for randomized mechanisms (Theo-
rems 6.2 and 6.3). We also observe that deterministic mech-
anisms cannot in general achieve good rank approximation.
Next, we consider lex-truthfulness and justify our earlier re-
mark that lex-truthfulness allows one to circumvent Gib-
bard’s impossibility result. We describe a rich class of pseu-

domonotone SCFs called top-choice SCFs, which thus lead
to (non-unilateral, non-duple) LT mechanisms.

Rank approximation.
It is easy to see that any deterministic dictatorial SCF

has rank approximation (at most) n. Also, the plurality
scoring rule fPl, which returns the outcome that maximizes
the number of agents who have it as their top choice, has
rank1

(
fPl(�);�) ≥ n

m
, so its rank-approximation factor is

at most m. It is not hard to prove a matching lower bound
for deterministic mechanisms.

Theorem 6.1. No deterministic mechanism can have rank
approximation better factor than min{n,m − 1} in general
ordinal settings.

Proof. Consider a preference profile with n agents and
n + 1 outcomes, where the top choices of all agents are the
distinct outcomes {1, . . . , n}, while the second choice of all
agents is n+ 1.

Randomization leads to an exponential improvement (but
no more), but we do not know how to achieve this in a lex-
truthful manner.

Theorem 6.2. There is a randomized O(logn)-rank ap-
proximation mechanism for general ordinal settings.

Proof. We first describe the mechanism, and then ana-
lyze its rank approximation. Fix a preference profile �. For
brevity, let nr = maxrankr(�). Let o∗r be an outcome with
rankr(o

∗
r ;�) = nr. We use a bucketing argument where we

group ranks that have roughly the same nr value. Define
r1 := 1 < r2 < . . . < rk < rk+1 := m + 1 be such that
nr` ≤ nr ≤ 2nr` ∀r ∈ [r`, r`+1) ∩ Z, for all ` = 1, . . . , k
Observe that k ≤ dlog2 ne. The mechanism chooses an in-
dex ` ∈ [k] uniformly at random, and outputs o∗r` .

To argue about the rank approximation, consider any rank
r. Suppose r ∈ [r`, r`+1). If we choose index `, which hap-
pens with probability 1/k, then at least rankr(o

∗
r` ;�) ≥

rankr`(o∗r` ;�) = nr` ≥
nr
2

agents are allotted a top-r item.
So E[rankr(M(�);�)] ≥ nr

2k
.

Theorem 6.3. Every randomized mechanism has rank ap-
proximation factor Ω(logn).

Proof. Fix a parameter k. We construct an instance
with n = 2k+1 − 2 agents and m = (k − 1) · (2k+1 − 2) + k
outcomes. The agents are divided into k groups A1, . . . , Ak,
where |A`| = 2`. There are k special outcomes {o1, . . . , ok}.
The remaining m−k outcomes are partitioned into n groups
O1, . . . , On, each having k − 1 outcomes. We now describe
the preference lists. For every agent j in group A`, outcome
o` is their `-th ranked outcome, and the outcomes in Oj
occupy the other positions in [k] \ {`}; the exact positions
of these outcomes are irrelevant. The outcomes in positions
r ≥ k + 1 are also immaterial. Thus, the top-k outcome
sets of agents j and j′ are: disjoint if they are from different
groups, and have exactly one outcome, o`, in common, at
the `-th position, if they both belong to group A`. Let �
denote this input.

Observe that maxrankr(�) = 2r for all r ∈ [k], and the
outcome achieving this is or. Furthermore, rankr(o) is 2` if
o = o` for ` ∈ [r], and is at most 1 otherwise.

Now consider a randomized mechanism that attains rank
approximation α. Let p` be the probability with which it



returns the outcome o`. Let q be the probability with which
it returns an outcome in

⋃n
j=1Oj . Then, by the definition of

rank approximation we have q+
∑
`>r pr+

∑
`≤r p`·2

` ≥ α·2r

for all r ∈ [k]. Dividing this inequality by 2r and summing

over all r = 1, . . . , k, we obtain that kα ≤ q ·
∑k
r=1

(
1
2r

)
+∑k

`=1 p` ·
(∑

r<`
1
2r

+
∑
r≥`

2`

2r

)
≤ q · 1 +

∑k
`=1 p` · 3 ≤ 3.

Hence, α ≤ 3
k

.

Lex-truthful mechanisms.
Consider any SCF of the form f(�) = g

(
{alt(�j , 1)}nj=1

)
,

where g : On 7→ O has the following property: for all
o−j = (o1, . . . , oj−1, oj+1, . . . , on) ∈ On−1 and all o ∈ O, if
g(o, o−j) = o′ then g(o′, o−j) = o′. We call such an SCF
a top-choice SCF since it only looks at the top choices of
the players. It is not hard to see that the plurality scoring
rule fPl mentioned earlier (with a fixed tie-breaking rule for
outcomes) is an example of such an SCF. We show that any
top-choice SCF is pseudomonotone, and so by Theorem 3.3
is fully LT-implementable.

Theorem 6.4. Every top-choice SCF is pseudomonotone,
and hence is fully LT-implementable.

Proof. Let f be a top-choice SCF defined by g : On 7→ O
having the required property. Consider an agent j, and �=
(�j ,�−j), �′= (�′j ,�−j). Let o = alt(�j , 1). If f(�) = o
or f(�) =f(�′), then we are done. Otherwise, since f(�
) 6= o, we also have f(�′) 6= o due to the property of g, and
also pos(�′j , o) > 1 (otherwise f(�) = f(�′)), and so the
pseudomonotonicity condition (Definition 5) is satisfied.
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APPENDIX
A. PROOFS OMITTED FROM SECTION 3

Proof of Theorem 3.2. Clearly UnivT ⊆ StrongT. If
p stochastically dominates q, then p lex-dominates q, so
StrongT ⊆ LexT. If p lex-dominates q, then q cannot
stochastically dominate p, so LexT ⊆WeakT. We now prove
that the various inclusions are strict.

UnivT ( StrongT. Fix a player j. Consider the uni-
lateral mechanism M that returns one of the top 2 out-
comes of j, each with probability 1

2
. M is clearly strongly

truthful. But it is not universally truthful. Consider some
input �= (�j ,�−j). If M is a mixture of deterministic
truthful mechanisms, then this mixture must assign a prob-
ability mass exactly 1

2
to deterministic truthful mechanisms

M1 satisfying M1(�) = o = alt(�j , 1); call these type-1
mechanisms. Similarly, it must assign probability mass ex-
actly 1

2
to deterministic truthful mechanismsM2 satisfying

M2(�) = o′ = alt(�j , 2); call these type-2 mechanisms.
For any preference list �∗j , a type-2 mechanism cannot

return o under the input (�∗j ,�−j) due to truthfulness, oth-
erwise on input �, j has an incentive to lie in the type-2
mechanism and report �∗j . Hence, for any preference list
�∗j , where o is one of the top two outcomes, every type-1
mechanism must return o on input (�∗j ,�−j). A symmetric
argument shows that for any preference list �∗j where o′ is
one of the top two outcomes, every type-2 mechanism must
return o′ on input (�∗j ,�−j).

Now consider some �′j , where the top two outcomes are
o′′, ô /∈ {o, o′}. Applying the arguments above we obtain
that there are type-3 and type-4 deterministic truthful mech-
anisms, both of which are assigned probability mass 1

2
(in

the mixture yielding M): the type-3 mechanisms which al-
ways return o′′ whenever j’s preference list has o′′ as one of
the top two outcomes, and the type-4 mechanisms always
return ô whenever j’s preference list has ô as one of the top
two outcomes.

Now some mechanism M′ in the mixture yielding M,
must be of multiple types, say type-1 and type-3 for illustra-
tion. Then, if �′′j has o and o′′ as the top two outcomes of
j,M′ must return both o and o′′ on input (�′′j ,�−j), which
cannot happen.

StrongT ( LexT. Consider a setting with one player
and three outcomes: a, b, c. Consider the top-choice SCF f
defined by the following function: g(a) = a, g(b) = g(c) = c,
which satisfies the property required for f to be a top-choice
SCF. By Theorem 6.4, f is pseudomonotone. Let M be
the LT mechanism that 1

3
-implements f . Let �= (b, a, c)

denoting that b is top-outcome, and �′= (a, b, c). Let p =
M(�) and q = M(�′). Then p(b) + p(a) ≤ 1

3
since f(�

) = g(b) = c, but q(b) + q(a) ≥ 2
3

since f(�′) = g(a) = a.
Thus, M is not strongly truthful.

LexT ( WeakT. Consider a setting with one player and
four outcomes: a, b, c, d. Let �∗= (a, b, c, d), denoting
that a is the top outcome. Define the following randomized
mechanism M: M(�∗) returns a with probability 1

2
and b,

c, d with probability 1
6
; on every other input �, M returns

one of the top three outcomes of � with probability 1
3
. M

is weakly truthful, because if �6=�∗ then M assigns total
probability 1 to the top three outcomes of �. If �=�∗,
then M assigns probability 1

2
to the top outcome a under

�∗, whereas for every other input M assigns probability at
most 1

3
to a.

But M is not lex-truthful: if �= (a, b, d, c), then by re-
porting (a, b, c, d), the player can increase the probability of
his top-outcome a from 1

3
to 1

2
.

Proof of Theorem 3.4. We mimic the proof of Theo-
rem 3.3. For all j, and all r ∈ [mj ], fix some outcome ojr ∈ Ojr
form the indifference class Ojr of agent j.

We prove part (i) first. Our randomized mechanism M
does the following. On input �, it returns f(�) with prob-
ability (1− ε); with probability ε, it picks a random agent a
and returns outcome oar with probability εar/ε, where εa1 >
· · · > εama

> 0 are such that
∑ma
r=1 ε

a
r = ε.

Clearly,M ε-implements f . To prove lex-truthfulness, fix
an agent j and consider any �′= (�′j ,�−j), where �′j 6=�j .
Let o = f(�) and let o′ = f(�′). Let Ojt1 and Ojt2 be
the indifference classes of j containing outcomes o and o′

respectively. Also, let p =M(�), q =M(�′).
Considering indifference classes in the preference order of
�j , letOjr be the first indifference class such that pos(�j , ojr) <
pos(�′j , ojr). Let o′′ = ojr. By pseudomonotonicity of f ,
we know that o �j o′ or o′′ �j o′. In the latter case, we
have p(Ojt ) − q(Ojt ) ≥ 0 for all t such that ojt �j o′′, and
p(Ojr)− q(Ojr) > 0, so we are done.

If o �j o′, and Ojt1 = Ojt2 or o′′ �j o, then the above
argument still holds. So suppose o �j o′ and o �j o′′.
Then p(Ojt ) − q(Ojt ) ≥ 0 for all t such that ojt �j o and
p(Ojt1)− q(Ojt1) > 0, so again we are done.

Now consider part (ii). Let M be an LT mechanism that
ε-LT implements f , where ε < 1

2
. Suppose for a contradic-

tion, there is some agent j, and �= (�j ,�−j) and �′= (�′j
,�−j) such that o = f(�) and o′ = f(�′) violate the condi-
tions for pseudomonotonicity. Then we have o′ �j o and for
every outcome o′′ �j o′, we have pos(�j , o′′) = pos(�′j , o′′).
Let Ojt1 and Ojt2 be the indifference classes of j contain-
ing outcomes o and o′ respectively. Let p = M(�) and
q =M(�′).

Since M ε-LT implements f , we have p(Ojt2) ≤ ε and

q(Ojt2) ≥ q(o′) ≥ 1−ε, so p(Ojt2) < q(Ojt2). LetOjr1 , . . . , O
j
r`

be the indifference classes of j that are ranked higher than
Ojt2 under �j , ordered so that ojr1 �j o

j
r2 �j · · · �j o

j
r` .

Since pos(�j , o′′) = pos(�′j , o′′) for all o′′ �j o′, Ojr1 , . . . , O
j
r`

are also the indifference class of j that are ranked higher than
Ojt2 under �′j , and we have ojr1 �

′
j o

j
r2 �

′
j · · · �′j ojr` . As in

the proof of Theorem 3.3, this implies that p(Ojrt) = q(Ojrt)
for all t = 1, . . . , `, which contradicts the fact that M is
lex-truthful.

B. QUALITY OF KNOWN MECHANISMS
FOR MATCHING MARKETS

In this section, we investigate the rank approximation
and lex-truthfulness of three extensively studied mechanisms
for matching markets. These are random serial dictator-
ship mechanism (RSD), Gale’s top-trading-cycle algorithm
(TTCA), and the probabilistic serial mechanism (PS).



Random Serial Dictatorship.
Initially all items are marked unallocated. A random per-

mutation of agents is sampled and the agents are considered
according to this order. Each agent is allocated his best
item among the unallocated items. This item henceforth is
marked allocated.

Top Trading Cycle.
This appears in a paper by Shapley and Shubik [27] who

attributed it to David Gale and is applicable when the num-
ber of items equals the number of agents.

The algorithm starts with an arbitrary assignment σ of
agents to items. This assignment, which is called the initial
endowment of agents, is independent of the preference orders
of the agents. Subsequently, the agents will trade among
themselves to return the final allocation.

The algorithm then proceeds in rounds. Initially all agents
are marked active. In each round, one constructs a directed
graph with the active agents as nodes. There is an arc from
agent j to agent j′, if the item σ(j′) is the top choice of agent
j among the items owned by the active agents, that is, the
set {σ(j) : j active }. Note that each agent has out-degree
exactly 1 (self loops are allowed and counted as both out and
in degree). Therefore, there exists at least one directed cycle
in the graph. A cycle (self loops are also cycles) is picked ar-
bitrarily. For each arc (j, j′) in the cycle, we allocate agents
j the item σ(j′). We mark all agents in this cycle inactive
and proceed to the next round. The algorithm stops when
all agents are marked inactive.

Probabilistic Serial.
This algorithm is due to Bogomolnaia and Moulin [7].

We first describe the algorithm when the number of agents
equals the number of items.

The algorithm first finds a fractional matching, that is,
xij ’s for items i and agents j such that each xij ≥ 0 and∑
i∈I xij = 1 for all agents j, and

∑
j∈A xij = 1 for all

items i. By the Birkhoff-von Neumann theorem, we can find
a distribution on matchings such that the probability agent
j is allocated item i is exactly xij . This is the distribution
returned by the algorithm.

The algorithm proceeds in rounds. Initially all xij ’s are
0. For any item i, we denote its capacity as

∑
j∈A xij . Any

item with capacity strictly < 1 is called unallocated. In
each round, every agent points to the best item among the
unallocated items. For each unallocated item i we simulta-
neously raise the xij for agents j which point to item i at
the same rate. This continues till some unallocated item’s
capacity becomes 1. At this point we end the round and
proceed to the next round. The algorithm terminates when
all items are allocated. Since the procedure maintains that∑
i∈I xij is same for agents always, at the end we end up

with a fractional matching.

A lot of literature exists on all three mechanisms; we point
the reader to surveys [28, 1] for a detailed reference. Before
stating the rank approximations and lex truthfulness, let us
mention some relevant known facts. RSD is strongly truth-
ful (in fact, it is universally truthful). TTCA is the only
deterministic algorithm among the three. It is known that
for any initial endowment, the algorithm is truthful [27]. PS
is known to be weakly truthful and not strongly truthful [7].
Bhalgat et al [6] proved that the ordinal welfare factor (cf.

Section 1.2) of RS and PSD are 1/2, which is the best pos-
sible. The OWF of TTCA is 1/n since it is deterministic.

Rank Approximations of RSD, TTCA, and PS.
We show that all three mechanisms have ‘bad’ rank ap-

proximation. Rank approximation of TTCA is at least (n−
1), while RSD and PS have rank approximation of Ω(

√
n).

Recall that MaxMatch has rank approximation 2.
We know that TTCA is deterministic and truthful. It is

also non-bossy; if an agent changes his preference but still
gets the same item, it implies that in the round when he
gets allocated an item, the cycle is the same as before, since
no other changes preferences. Therefore from Theorem 4.3,
we get the rank apporximation is at least (n− 1).

Consider an instance � with n agents and n items with
preference lists as follows. Let k = d

√
ne. Agents 1 ≤ i ≤ k

have item i as their top choice. Agents k + 1 ≤ i ≤ n have
item n as their top choice. These agents are now grouped
into k groups G1, . . . , Gk, each group containing n/k − 1
agents. Agents in group G` have item ` as their second
choice. All the other choices of all agents is immaterial and
can be assumed to be arbitrary. Observe that maxrank1(�
) = k + 1.

Let’s first take RSD and calculate the expected number of
agents who get their top choice. With 1 − k/n probability,
an agent k+ 1 ≤ j ≤ n shows up as the first agent; he picks
item n. No other agent k + 1 ≤ j ≤ n gets his top choice.
Henceforth, for any 1 ≤ ` ≤ k, the probability that a guy
in G` shows up before agent ` is at least 1 − 2k

n
. If that

occurs, then agent ` doesn’t get his top choice. Therefore,
the expected number of agents getting their top choice is at
most 1 + 2k2/n+ o(n). Thus, setting k = Θ(

√
n), the rank

approximation is Ω(
√
n).

In PS, the calculation is easier. For 1 ≤ ` ≤ k, we get

x`` = 1
n−k + k

n

(
1− 1

n−k

)
= k−1

n
. For agent k + 1 ≤ ` ≤ n,

we get xn` = 1
n−k . Therefore, the expected number of agents

getting their top choice in PS is precisely 1+ k(k−1)
n

. Setting
k = Θ(

√
n), we get that the rank approximation is Ω(

√
n).

We do not know if the rank approximation for RSD and
PS is Θ(

√
n) or not.

Lex-Truthfulness of RSD, TTCA, and PS.
TTCA is truthful and RSD is universally truthful. There-

fore, they are lex-truthful as well. PS was shown to be
weakly truthful by [7]. We show that in fact PS is lex-
truthful as well. The proof below is akin to the proof of
weak truthfulness in [7] mentioned above; we include it for
completeness.

Theorem B.1. PS is lex-truthful.

Proof. Consider any preference profile �. By renaming
items we may assume �j= (1, 2, . . . , n) for some agent j.
Suppose agent j misreports his preference as �′j 6=�j , and
let �′:= (�′j ,�−j). Let k be the first position at which �j
and �′j differ. That is, for r < k, alt(�′j , r) = alt(�j , r) = r.
Note that j has ‘demoted’ k in the misreported preference,
that is, pos(�′j , k) > k. Let p and q be the distributions over
items that j obtains on reporting �j and �′j respectively.
Let x and x′ be the respective fractional matchings.

Observe that since PS has a notion of time (since xij ’s
are incremented at a certain rate), we can define x(t) as the
assignment at time t. So x(0) ≡ 0. Let t0 ≥ 0 be the time till



which we have x(t0) ≡ x′(t0). If t0 is ill defined, then x ≡ x′
and so p ≡ q and there’s nothing to prove. We must have
that till time t0, agent j points to the same items in both
runs, and right after that instant agent j points to different
items in the two runs. Say at t0, agent j pointed to item
k in the original run, and k′ in the new run. Observe that
all items r < k have been completely allocated in both runs
since j is pointing to k in the original run. Thus, p(r) = q(r)
for r < k since x(t0) ≡ x′(t0).

We claim p(k) > q(k). This will show p lexicographically
dominates q. To do so, we need to introduce some notation.
Let t∗ and t′ be the times at which k is completely allocated
in the original and new run respectively. Let t1 be the time
at which j points to k in the new run. Observe t0 < t1 ≤ t′.
Also observe that xjk = t∗ − t0 and x′jk = t′ − t1.

Now, if t′ ≤ t∗, we get xjk > x′jk, and we are done. So
we may assume t′ > t∗. For t ≥ t0, let S(t, k) and S′(t, k)
be the set of agents pointing to item k at time t. Observe
that PS satisfies the following monotonicity condition: if an
agent points to an item at time t, then he continues to do
so till the item is fully allocated. Using this, one can prove
the following claim; we defer the proof to the end.

Claim B.2. For all t0 ≤ t < t1, |S′(t, k)| ≥ |S(t, k)| − 1,
for t1 ≤ t < t∗, |S′(t, k)| ≥ |S(t, k)|, and for t∗ ≤ t < t′,
|S′(t, k)| ≥ |S(t∗, k)|.

Using the claim, we now show xjk > x′jk. Let C denote
the capacity of item k at time t0. We know that C < 1.
Now, from the run of PS we get∫ t∗

t0

|S(t, k)|dt = (1− C) =

∫ t′

t0

|S′(t, k)|dt (2)

Using the claim above and rearranging, we get

t0 − t1 ≤ −
∫ t′

t∗
|S(t∗, k)|dt

Now suppose |S(t∗, k)| = 1, that is, in the original run
only one guy points to item k. This must be agent j. This
implies |S(t, k)| = 0 for t < t0, the time at which j points
to k. In particular, we get C = 0, and thus xjk = 1. We
know that x′jk′ > 0 since j points to k′ 6= k in the new

run. Therefore, x′jk < 1 since
∑
k∈I xjk = 1. Thus, we may

assume |S(t∗, k)| > 1, which implies that t0−t1 < −(t′−t∗).
Thus,

x′jk = t′ − t1 < t∗ − t0 = xjk

Proof of Claim B.2. (Sketch) In fact, we claim that
for every item i 6= k, the subset S(t, i) ⊆ S′(t, i) for t0 ≤
t < t′. This can be proved by induction. Suppose the claim
is true at some time; it is true at time t0. The next in-
teresting time t is when some item is i is completely allo-
cated in one of the runs. By our assumption, this time t
occurs in the new run since S′(t, i) ≥ S(t, i) for i 6= k. At
this point the agents pointing to i point to different items
increasing their corresponding S′(t, ·)s. The same occurs
in the original run albeit at a later time say t′′; however,
by monotonicity property S′(t′′, i) ⊇ S′(t, i), and therefore
|S′(t′′, i)| ≥ |S(t′′, i)|. For the item k, note that the above
argument implies |S′(t, i) \ k| ≥ |S(t, i) \ k|, and then after
t1, j enters S′(t, k) as well.
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