
Approximation algorithms for prize collecting forest problems with

submodular penalty functions

Yogeshwer Sharma∗ Chaitanya Swamy† David P. Williamson‡

Abstract

In this paper, we study the prize-collecting version
of constrained forest problems with an arbitrary 0-1
connectivity requirement function and a submodular
penalty function. Our framework generalizes the Prize
Collecting Generalized Steiner Tree framework of Ha-
jiaghayi and Jain [HJ06] to incorporate more general
connectivity requirements and penalty functions. We
generalize their primal-dual algorithm using submod-
ular function minimization to give a 3-approximation
algorithm, and devise an LP rounding algorithm with a
performance guarantee of 2.54.

1 Introduction and related work

Over the past decade and a half, there has been a sig-
nificant amount of work in the study of approximation
algorithms for network design problems (see, for exam-
ple, the survey of Kortsarz and Nutov [KN06]). This
study has led to the revitalization of the primal-dual
method for approximation algorithms and new meth-
ods in the design of approximation algorithms, such as
Jain’s iterated rounding technique [Jai01].

Early in this sequence, Bienstock, Goemans,
Simchi-Levi and Williamson [BGSLW93] considered a
problem of allowing some connectivity constraints to be
violated in exchange for paying a penalty (based on a
problem earlier proposed by Balas [Bal89]). In particu-
lar, they gave an approximation algorithm for the prize-
collecting Steiner tree problem (PCST). In the PCST,
we are given an undirected graph G = (V, E) with a
root vertex r ∈ V , nonnegative costs ce ≥ 0 on the
edges e ∈ E, and nonnegative penalties πi ≥ 0 on the
vertices i ∈ V . The goal is to find a tree rooted at
r that minimizes the sum of the costs of the edges in
the tree plus the penalties of the vertices not spanned

∗Department of Computer Science, Cornell University, Ithaca,

NY 14853. Email: yogi@cs.cornell.edu. Supported by NSF

grant CCF-0514628.
†Dept. of Combinatorics & Optimization, University of Water-

loo, Waterloo, ON N2L 3G1. Email: cswamy@math.uwaterloo.ca.

Supported by NSERC grant 32760-06.
‡Department of Operations Research and Industrial En-

gineering, Cornell University, Ithaca, NY 14853. Email:

dpw@cs.cornell.edu. Supported by NSF grant CCF-0514628.

by the tree. The PCST captures the problem of a ca-
ble company deciding how to expand its network, where
the penalties represent foregone profits [JMP00]. Goe-
mans and Williamson [GW95] later gave a primal-dual
2-approximation algorithm for the problem.

Two recent works have expanded on this theme
of allowing violated connectivity constraints in ex-
change for a penalty. Hayrapetyan, Swamy, and Tardos
[HST05] define a version of the PCST where the objec-
tive function is now the sum of the cost of the edges in
the tree plus the value of a set function h on the set of
unspanned vertices. They show that when h is mono-
tone and submodular, the primal-dual PCST algorithm
can be extended to produce a 2-approximation algo-
rithm for this problem. Hajiaghayi and Jain [HJ06] con-
sider the extension of the PCST to the prize-collecting
generalized Steiner tree (PCGST) problem. In the gen-
eralized Steiner tree problem, we are given an undi-
rected graph G = (V, E), a set of pairs of vertices
(s1, t1), . . . , (sk, tk), and nonnegative costs ce ≥ 0 on the
edges e ∈ E. We must find a minimum-cost set of edges
F such that each si-ti pair is connected by F . In the
PCGST, we are additionally given nonnegative penal-
ties πi ≥ 0 for each pair (si, ti) of vertices. The goal is
to find a set of edges F ⊆ E that minimizes the sum of
the cost of the edges in F plus the penalties of the pairs
of vertices not connected by F . Hajiaghayi and Jain
show that by applying ideas of the primal-dual PCST
algorithm to a novel integer programming formulation
of the problem (which they derive from a more straight-
forward formulation), they are able to obtain a primal-
dual 3-approximation algorithm and an LP rounding
2.54-approximation algorithm for the problem. Some of
the technical difficulty of their algorithm lies in deter-
mining the next dual constraint that will go tight in the
dual increase phase of their algorithm.

In this paper, we continue this study in an attempt
to find a general form for network design problems
where violated connectivity constraints are allowed in
exchange for a penalty. Our main contribution is a gen-
eral model of this problem with a very general penalty
function that still allows for a good approximation al-
gorithm. In particular, we generalize the connectivity

constraints from Steiner trees (as in PCST) and gen-
eralized Steiner trees (as in PCGST) to any 0-1 con-
nectivity requirement function. We also generalize the
penalty function allowed from a monotone submodular
set function (as in [HST05]) or penalties on pairs of ver-
tices (as in [HJ06]) to a monotone submodular function
whose ground elements are sets of vertices. We impose
some additional properties on the function that we will
discuss later. Our model captures the problems of both
Hayrapetyan et al. [HST05] and Hajiaghayi and Jain
[HJ06]. We show that an extension of the PCGST al-
gorithm gives a primal-dual 3-approximation algorithm
for our model. Furthermore, we give an LP rounding
algorithm for the problem with performance guaran-
tee 2.54 when the connectivity requirement function is
proper [GW95], extending previous work of Goemans
[Goe98] (on PCST) and Hajiaghayi and Jain [HJ06] (on
PCGST). For simplicity, we call our problem the prize-
collecting forest problem (PCF).

We now specify our model. Let f : 2V → {0, 1} be

any function, and π : 22V

→ Z≥0 be a penalty function
whose form we will specify later; for now, note that the
domain of π is the set of all collections S of subsets
of vertices. We consider the network design problem of
finding a subset F of edges that minimizes the cost of the
edges plus the penalties of subsets whose requirement
is not satisfied, that is, we want a set F minimizing
∑

e∈F ce + π({S ⊆ V : f(S) = 1, δ(S) ∩ F = ∅}). We
can model this by the following integer program:

min
∑

e∈E

cexe +
∑

S⊆2V

π(S)zS (PCF-IP)

s.t.
∑

e:e∈δ(S)

xe +
∑

S⊆2V :S∈S

zS ≥ f(S) ∀S ⊆ V, S 6= ∅

xe, zS ∈ {0, 1} ∀e ∈ E, ∀S ⊆ 2V .

This integer program is a generalization of the one
introduced by Hajiaghayi and Jain. The 0-1 variable
xe denotes whether edge e is selected to be in the
solution, and the 0-1 variables zS denote the collection
of sets whose connectivity requirement we decide not to
fulfill. The constraint enforces that for each set S with
f(S) = 1, either we choose an edge e ∈ δ(S) (where
δ(S) is the set of edges with exactly one endpoint in S)
or zS = 1 for some S ∋ S. Our objective minimizes
the cost of the edges selected plus the penalty on the
collection of sets whose requirement is not satisfied.

We require the following properties from our
penalty function in order for our algorithm to work:

• (Emptyset property) π(∅) = 0;

• (Monotonicity) If S ⊆ T , then π(S) ≤ π(T).

• (Submodularity) For any collections S and T ,
π(S) + π(T) ≥ π(S ∪ T) + π(S ∩ T).

• (Union property) For any two subsets S1 and S2,
π({S1, S2, S1 ∪ S2}) = π({S1, S2}).

• (Complement property) For any subset S ⊆ V ,
π({S, Sc}) = π({S}).

• (Inactivity property) For any subset S ⊆ V with
f(S) = 0, π({S}) = 0.

The first property says that if we fulfill all requirements,
there is no penalty. The second says that the penalty
cannot go down for fulfilling fewer requirements. The
third one says that the more requirements go unfulfilled,
the less costly it is to violate some particular require-
ment. The fourth and fifth state that there is no addi-
tional penalty for violating the requirement on the union
of two sets, if the two sets are already violated, or on
a set if its complement is already violated. The final
property states that there is no penalty associated with
a set on which we have no requirement. The final three
properties have some interesting connections to the no-
tion of a 0-1 proper connectivity requirement function
as defined in [GW95]. They also appear to be necessary
for our algorithms and their analyses to work.

Though our algorithms are generalizations of previ-
ous work, we need some non-trivial extensions to both
the algorithms and the analyses in order to obtain our
results. For the primal-dual algorithm, our general
penalty function necessitates a bit of care in bounding
the cost of the edges. Also, implementing the primal-
dual algorithm in polynomial time requires some work.
We assume we have oracle access to the penalty func-
tion π, but note that we must be careful in using it
since the input size to the oracle is potentially expo-
nential in the size of the input to the problem. As with
Hajiaghayi and Jain, finding the next dual constraint to
go tight in the primal-dual algorithm is nontrivial, but
we show that our model allows us to find this by sub-
modular function minimization. Given integer penalty
values and integer edge costs, we will show that our al-
gorithm runs in time polynomial in log maxS π(S) and
the problem input size.

For the LP rounding algorithm, the main difficulty
is solving the linear program in polynomial time, since
the linear program has an exponential number of con-
straints and a doubly-exponential number of variables.
We reformulate the linear program as a convex pro-
gram and carefully apply the ellipsoid method to solve
it. For our separation oracle, we use Edmonds’ method
[Edm70] for optimizing over polymatroids associated
with the submodular penalty function π, and show that

despite the fact that the base set is exponential, we can
find a solution for this problem in polynomial time.

The rest of the paper is organized as follows. In Sec-
tion 2, we discuss how the results of Hajiaghayi and Jain
[HJ06] are special cases of our model, and we discuss fur-
ther aspects of our class of penalty functions. In Section
3, we give our primal-dual algorithm. In Section 4, we
show the primal-dual algorithm is a 3-approximation al-
gorithm. Section 5 discusses implementation details of
the primal-dual algorithm, and shows that it can be im-
plemented in polynomial time. This is a non-trivial issue
since we have to determine which of a family of 22n

dual
inequalities corresponding to the families S will next be
tight. In Section 6, we sketch our LP rounding algo-
rithm and the algorithm for solving the linear program.
Due to space constraints some proofs, and most of the
LP rounding argument, are omitted.

2 Our model

In this section, we further discuss our prize-collecting
forest problem (PCF). We begin by discussing the
connection of PCF to the 0-1 proper functions of
[GW95]. Next, we show that the result of Hajiaghayi
and Jain [HJ06] is a special case of our model. Finally,
we show that PCF does not reduce to the PCGST of
Hajiaghayi and Jain. We also note that the model of
Hayrapetyan et al. [HST05] is a special case of our
model, but defer details to the full version of the paper.

2.1 Connection to proper functions Proper con-
nectivity requirement functions were first defined in
[GW95]. A function f : 2V → {0, 1} is proper if
f(V) = 0, f(V − S) = f(S) for all S ⊆ V , and for
disjoint sets A and B, f(A ∪B) ≤ max(f(A), f(B)).

We now argue that proper functions are closely
related to the penalty function we have introduced.
Given an arbitrary 0-1 connectivity function f : 2V →
{0, 1}, we can ensure that our algorithm returns a
feasible solution for the function by setting π(S) = ∞
whenever there is S ∈ S such that f(S) = 1 and π(S) =
0 otherwise. This penalty function obeys the emptyset,
monotonicity, submodularity, and inactivity properties.
However, in order to obey the complement property, we
cannot have f(S) 6= f(V − S), and in order to obey
the union property we cannot have f(A) = f(B) = 0
and f(A ∪ B) = 1 for disjoint A and B. Thus for our
model of penalty function, if we enforce that a feasible
solution is returned for the connectivity function f , that
function must be proper.

2.2 PCGST problem of Hajiaghayi and Jain
[HJ06] Hajiaghayi and Jain [HJ06] consider the
the prize-collecting generalized Steiner tree prob-

lem in which there are a set of pairs of vertices
(s1, t1), . . . , (sk, tk) to connect along with penalties πi

for not connecting the pair (si, ti). The goal is to find
a set of edges F that minimizes the cost of the edges
in F plus the penalties of the pairs of vertices not con-
nected by F . We can map this problem into our frame-
work as follows. The connectivity requirement function
f for our model is the function f(S) = 1 iff there ex-
ists some i such that |S ∩ {si, ti}| = 1, and the penalty
π for a family S for our model is the sum of penalties
of pairs which are separated by some set in S; that is
π(S) =

∑

i:∃S∈S:|S∩{si,ti}|=1 πi. The resulting penalty,
as it turns out, satisfies all properties that we require
from the penalty function: it is easy to see that the emp-
tyset, inactivity, and monotonicity properties are satis-
fied. Hajiaghayi and Jain show that the submodularity
property is satisfied (Lemma 2.3 of [HJ06]). The com-
plement property is not hard to see: V −S separates no
more pairs than S. Similarly, for any two S1, S2, their
union S1 ∪ S2 separates no more pairs than do S1 and
S2, so the union property is satisfied.

2.3 Some other problems that can be cast
into our model Consider the PCGST problem of
Hajiaghayi and Jain with a variation on the penalty of
a solution. There are k pairs of vertices with penalties
π1 = · · · = πk = 1. The penalty of the solution
is the minimum of the number of unconnected pairs
and a fixed number l ≤ k. It means that the penalty
increases linearly with the number of unconnected pairs,
but is upper bounded by l. This problem does not
fit Hajiaghayi-Jain’s model. We next show that the
problem can be cast into our framework.

The connectivity requirement function f is same as
the one described in Section 2.2. The penalty function
is also the one described in the section except that it is
upper bounded by l. It is easy to see that the penalty
function satisfies emptyset and monotonicity properties.
The union, complement, and inactivity properties also
follow the same argument as in Section 2.2. For
submodularity of the penalty function, we will prove
the equivalent statement that for families S and T ⊇ S
and for any subset S 6∈ T , π(S ∪ {S}) − π(S) ≥
π(T ∪ {S}) − π(T). If S separates more than l pairs,
then the inequality is trivially true. Let S separate a ≤ l
pairs which are to be connected and S separates an
additional b pairs (not already separated by S). Clearly
T separates a+ ≥ a pairs and T ∪{S} separates at most
a+ + b pairs. So the left hand side of the inequality is
min(a + b, l) − a, and the right hand side is at most
min(a+ + b, l) −min(a+, l). One can easily check that
min(a + b, l) − a ≥ min(a+ + b, l) − min(a+, l). This
proves the submodularity of the function π(·).

3 The primal dual algorithm

In this section, we give a primal-dual approximation
algorithm to solve our problem. The LP relaxation of
the integer program (PCF-IP) is:

min
∑

e

cexe +
∑

S

π(S)zS (PCF-LP)

s.t.
∑

e∈δ(S)

xe+
∑

S:S∈S

zS ≥ f(S) for all S ⊆ V,

xe, zS ≥ 0 for all e,S.

The dual of the LP relaxation (PCF-LP) is

max
∑

S⊆V

f(S) · yS (PCF-D)

s.t.
∑

S:e∈δ(S)

yS ≤ ce ∀e ∈ E (type-(e))

∑

S:S∈S

yS ≤ π(S) ∀S ⊆ 2V (type-(f))

yS ≥ 0 ∀S ⊆ V.

Our algorithm is similar to Algorithm A in [HJ06],
though it differs in how it finds the tight family of
subsets and how it performs the reverse delete step. We
next give the idea behind our algorithm. For its precise
description, see Algorithm 1.

We introduce some terminology first. We call an
edge e tight if its corresponding inequality (of type-(e))
in (PCF-D) holds with equality, i.e.,

∑

S:e∈δ(S) yS =

ce. Similarly, we call a family S ⊆ 2V tight if
its corresponding inequality (of type-(f)) holds with
equality, i.e.,

∑

S∈S yS = π(S). For a family S ⊆ 2V ,
we call T the closure of S (denoted closure(S)) if T ⊇ S
and T is closed under taking unions and complements
(and hence intersections and set differences too).

We keep track of three types of components, (i) ac-
tive components (Ca)—components that need an edge
out of them (f(S) = 1) but do not have one yet, (ii) in-
active components (Di)—components having f(S) = 0,
and (iii) marked components (Dm)—components that
needed an edge out of them originally but our algo-
rithm has decided not to have such an edge and pay the
penalty; these are denoted by f(S) = 1→ 0.

To start off, there are n components corresponding
to n singleton vertices. We set them active or inactive
depending on whether their connectivity requirement is
1 or 0 respectively. This is the initialization phase.

In the dual-increase phase, we uniformly increase
the duals of all active subsets in Ca. In this process,
either another edge becomes tight or another family of
subsets becomes tight. (See Section 5 for details on how
to check tightness of edges and families.) If an edge e

connecting two components Cu and Cv becomes tight,
we add e to the set of candidate edges for the output
solution, remove Cu and Cv from the family Ca of active
sets (if they are there), make a new component Cu∪Cv,
and set it active (and add it to Ca) if f(Cu∪Cv) = 1, and
inactive otherwise (and add it to Di). If, on the other
hand, a family S of subsets {S1, S2, . . . , S|S|} becomes
tight, we mark all these subsets, remove them from the
family Ca of active sets (if they are there), and add them
to the family Dm of marked sets.

When there is no active component remaining
whose dual can be increased, we enter the reverse delete
phase of our algorithm. We consider edges added to the
solution in the reverse order. Consider the two compo-
nents C1 and C2 resulting from deletion of edge e in the
current solution. If e is the only edge out of Ci (i = 1
or 2) and Ci is not in the closure of inactive sets and
marked sets then we retain the edge e; otherwise, we
delete it from the solution. The idea is that if e is redun-
dant or only necessary for sets whose penalty has been
paid for (because they are either inactive or marked), it
should be deleted from the solution to decrease the cost
of edges in the solution.

Let F ′ be the set of edges remaining after the reverse
delete procedure and let C(V, F ′) be the connected
components of F ′. Then our algorithm returns F ′ as
its set of edges and closure(C(V, F ′)) as the family of
subsets on which it will pay the penalty.

4 Analysis of the primal dual algorithm

In this section, we prove that Algorithm 1 has a
performance guarantee of 3 for the prize-collecting forest
problem. We first ensure that the penalty paid by the
solution produced by the algorithm is no more than
the cost of the optimum solution. We then show in
Section 4.3 that the cost of edges finally selected by the
algorithm (after reverse delete) is no more than twice
the cost of the optimum solution. This will prove a
performance guarantee of 3.

4.1 Penalty paid by the algorithm is bounded
by OPT The proof in this section will break naturally
into two parts. We first prove that the penalty of all
marked and inactive subsets is bounded by the value of
our dual solution, and follow that with the proof that
the actual penalty of the algorithm is no more than the
penalty of all marked and inactive subsets. We begin
by inferring some properties of the penalty function.

Lemma 4.1. Let S be any collection of subsets with
S1, S2 (not necessarily different subsets) in S, and let
S be a subset such that f(S) = 0. Then π(S) =
π(S ∪ {S1 ∪ S2}) = π(S ∪ {Sc

1}) = π(S ∪ {S}).

Data: A graph G = (V, E), edge cost function
ce : E → Q≥0, connectivity requirement
function f : 2V → {0, 1}, and penalty

function π : 22V

→ Z≥0.
Result: F ′ ⊆ E minimizing

∑

e∈F ′ ce +
π ({S ⊆ V : f(S) = 1, δ(S) ∩ F ′ = ∅}).

Let F = ∅ (the edge set of the solution).;1

Let Ca = {{v}|v ∈ V, f({v}) = 1} (active sets),2

Di = {{v}|v ∈ V, f({v}) = 0} (inactive sets),
Dm = ∅ (marked sets), andM = {{v} : v ∈ V }
(maximal components). Set dv = 0 for all v ∈ V
and (implicitly) set yS = 0 for all S ⊆ V .
while Ca 6= ∅ do3

Find an edge e = (u, v) with u ∈ Cu ∈M,4

v ∈ Cv ∈M, Cu 6= Cv minimizing
εe = (ce − du − dv)/(f(Cu) + f(Cv)).
Find a non-tight family S = {S1, . . . , S|S|}5

with each Si ∈ Ca ∪ {S : yS > 0} minimizing
εf = (π(S) −

∑

S∈S)/(
∑

S∈S f(S)).
Set ε = min{εe, εf}.6

Set yC = yC + ε for all C ∈ Ca.7

if ε = εe then8

Let F ← F ∪ {e = {u, v}},9

M←M∪ {Cu ∪ Cv} − {Cu, Cv}, and
Ca ← Ca \ {Cu, Cv};
if f(Cu ∪ Cv) = 1 then10

Ca ← Ca ∪ {Cu ∪Cv}11

else12

Di ← Di ∪ {Cu ∪ Cv}13

end14

else15

Dm ← Dm ∪ {S1, S2, . . . , S|S|},16

Ca ← Ca − {S1, S2, . . . , S|S|}

end17

end18

Let Fl = F = {e1, e2, . . . , el}. Edges are19

arranged in order they were added to F .
for j = l down to 1 do20

Consider the graph Hj = (Vj , Ej) where21

Vj = C(V, {e1, e2, . . . , ej−1}) (components)
and Ej = Fj \ {e1, e2, . . . , ej−1}. Let uj(ej)
and vj(ej) be the two endpoints of ej in Hj .
if δ(uj(ej)) = {ej}∧uj(ej) 6∈ closure(Di∪Dm)22

∨ δ(vj(ej)) = {ej} ∧ vj(ej) 6∈ closure(Di ∪ Dm)
then

Fj−1 = Fj .23

else24

Fj−1 = Fj \ ej.25

end26

end27

Return F ′ = F0 as the set of edges.28

Algorithm 1: A primal-dual algorithm for PCF.

Let F ′ be the final set of edges returned by the
algorithm, with C(V, F ′) the set of components of F ′.
Using Lemma 4.1, we note that for a given family
S of subsets of V , π(S) = π(closure(S)). We will
prove that π(Di ∪ Dm) ≤

∑

S⊆V yS . Since the dual
value is bounded above by OPT, this will prove that
π(closure(Di ∪ Dm)) ≤ OPT. Then we show that
closure(C(V, F ′)) ⊆ closure(Di ∪ Dm), which by the
monotonicity of π will prove that the penalty paid by
the solution returned by the algorithm is at most OPT.

The following lemma states that if two families are
tight, then their union is also tight. This is the same as
Corollary 2.2 in [HJ06].

Lemma 4.2. Let y be a feasible solution to dual program
(PCF-D), and S and T be tight families w.r.t. y. Then
S ∪ T is also tight w.r.t. y.

Since Dm is a union of several tight families, it is
tight by Lemma 4.2, i.e.,

∑

S∈Dm
yS = π(Dm). Thus,

π(closure(Di ∪ Dm))

= π(Di ∪ Dm) = π(Dm) =
∑

S∈Dm
yS ≤

∑

S⊆V yS .

The second equality follows from Lemma 4.1, since the
sets in Di are inactive. The bound on the penalty of the
closure of marked and inactive subsets follows.

Recall that F ′ is the set of edges finally returned by
the algorithm and C(V, F ′) denotes the set of connected
components in the graph with vertices V and edges
F ′. We now prove that the penalty incurred by
the algorithm, π(closure(C(V, F ′))), is no more than
π(closure(Di ∪ Dm)). We will prove this bound by
showing that C(V, F ′) ⊆ closure(Di ∪ Dm). Since
the penalty function is monotonically increasing and
the closure function is idempotent, the bound on the
penalty of the algorithm will follow.

Note that in Algorithm 1, line 23 and 25, we define a
series of sets of edges F = Fl ⊇ Fl−1 ⊇ · · · ⊇ F1 ⊇ F0 =
F ′. We need to prove that C(V, Fj) ⊆ closure(Di ∪Dm)
for all j = l, l−1, . . . , 1, 0. Since F ′ = F0, this will prove
the required claim. We state it as the following lemma.

Lemma 4.3. For all j, C(V, Fj) ⊆ closure(Di ∪ Dm).

This finishes the proof that the penalty paid by the
algorithm is at most the cost of the optimal solution.

4.2 The minimal augmentation property of the
reverse delete step We present another simple prop-
erty of the reverse delete step, which we will need for
proving the final performance guarantee.

Lemma 4.4. If ej cannot be deleted in reverse delete
step when it is ej’s turn, then ej cannot be deleted later
keeping both endpoint components in closure(Di ∪ Dm).

The contrapositive of Lemma 4.4 tells that if we
can delete ej at some later instance than it was con-
sidered for deletion, then it could also have been
deleted when it was considered. In particular, Fj−1 \
{e1, e2, . . . , ej−1} gives a minimal augmentation to the
set {e1, e2, . . . , ej−1}.

4.3 Cost of edges In this section, we will prove that
the cost of edges in the output is no more than twice
the value of the dual solution. Let F ′ be the final set of
edges output by the algorithm. We want to show that

∑

e∈F ′

ce ≤

(

2−
2

n

)

∑

S⊆V

yS . (4.1)

Our proof follows the standard outline given in [GW95].
The only novelty is the proof that all “leaf components”
must be active.

Since all the edges that we include in our solution
are tight, the left hand side can be rewritten as (after
changing order of summation)

∑

e∈F ′

∑

S:e∈δ(S)

yS =
∑

S⊆V

yS · |F
′ ∩ δ(S)|

≤

(

2−
2

n

)

∑

S⊆V

yS . (4.2)

We will prove this by induction on the number of
iterations of our algorithm. The claim is initially true
(both sides are zero).

For the induction step, let us say that this inequality
holds after i steps of the algorithm and ej−1 was the
last edge added to the solution at this point in the
algorithm. Let H ′

j be a graph whose vertices correspond
to the connected components C(V, {e1, . . . , ej−1}) and
whose edges correspond to the set F ′ \ {e1, . . . , ej−1} =
Fj−1 \ {e1, e2, . . . , ej−1}; that is, edge e in H ′

j joins two
vertices if the corresponding edge joins two connected
components in C(V, {e1, . . . , ej−1}). Let Ca denote
the set of active components in H ′

j and for C ∈
C(V, {e1, e2, . . . , ej−1}), let d(C) denote the degree of
C in H ′

j . In the (i+1)-st iteration, if the dual variables
grow by ε, then the left hand side of Equation (4.2)
increases by ε ×

∑

Ca∈Ca
d(Ca) and the right hand

side increases by ε ×
(

2− 2
n

)

|Ca|. Therefore proving
induction step reduces to proving

∑

Ca∈Ca

d(Ca) ≤

(

2−
2

n

)

|Ca|. (4.3)

This is equivalent to proving that the average degree
of active components contained in C(V, {e1, . . . , ej−1})
in the graph H ′

j is at most 2 − 2
n . We will prove that

0 or 1 → 0

0
1 → 0

C

e

C ′ − C

C ′

Components of (V, Fj−1)

Components of

(V, {e1, e2, . . . , ej−1})

Figure 1: Illustration of the proof that there are no
inactive/marked leaves.

there are no non-active leaves in H ′
j , which implies, by

a standard argument [GW95], that the average degree
of active components is at most (2− 2/n).

For the sake of contradiction, assume that there is
some non-active leaf v having a single incident edge e
in H ′

j (see Figure 1 for an example). Let C be the
corresponding component; since we assume C is not
active, either it is marked or inactive. In either case, it
is in closure(Dm∪Di). By Lemma 4.3, all components of
C(V, Fj−1) (which are same as components of H ′

j since
Fj−1 = {e1, . . . , ej−1} ∪ F ′) are in closure(Dm ∪ Di).
Consider the component C′ of C(V, Fj−1) such that
C ⊆ C′. Then since C ∈ closure(Dm ∪ Di) and all
components of C(V, Fj−1) ∈ closure(Dm ∪ Di), it must
be the case that C′−C ∈ closure(Dm ∪Di). Since both
C and C′ − C are in closure(Dm ∪ Di), by Lemma 4.4,
edge e must have been deleted in the reverse delete step,
which is a contradiction to the fact that it is in F ′. This
proves that there are no non-active leaves in H ′

j , hence,
the average degree of active components in H ′

j is at most
2− 2/n, proving the claim and Equation (4.1).

5 Implementation of the algorithm

We now argue that our algorithm can be implemented in
polynomial time. The central difficulty is that of finding
which of the 22n

type-(f) dual constraints corresponding
to family of subsets will next become tight given our
dual increase scheme. We will address this in Section
5.3; however, we need some preliminary discussion first.

5.1 Polynomial time complexity Algorithm 1
makes at most 2n iterations of the while statement. This
is because in each iteration of the while loop, we de-
crease the sum of the number of active components and
the number of components. If an edge becomes tight,
then we decrease the total number of components (and

may also decrease the number of active components),
and if a family of subsets becomes tight, we again de-
crease the number of active components. To start with,
we have n components, all of which can be active, which
gives rise to a bound of 2n.

At any point, the collection of sets that have
positive dual form a laminar family (that is, for any pair
of sets with positive dual, either the two are disjoint
or one contains the other). This implies that at the
end of the algorithm there are at most 2n sets with
positive dual. Each step through the while statement
takes polynomial time. Checking the tightness of an
edge e requires us to look at all the components with
positive dual and adding the duals which have the edge
e in their boundary. We will show in Section 5.3 how
to check the tightness of a family of subsets via binary
search and submodular function minimization, which
will be implementable in polynomial time.

The reverse delete step is at most n iterations and
each iteration requires us to check whether two end
point components of an edge are in the closure of certain
sets. A polynomial-time algorithm for checking whether
a set is in the closure of certain sets is standard and we
omit the details in this version of the paper. Thus the
whole reverse delete step also runs in polynomial time.

5.2 Minimal tight families Let D+ denote the
family of subsets of V having non-zero dual. We will
prove a property of the family of subsets which ought
to go tight next in order to significantly narrow down
our search for tight families from 22n

candidates to 22n

candidates. We show that a family containing a non-
active set whose dual value is zero does not need to be
considered for determining a tight family of subsets.

Lemma 5.1. Let S be a family of subsets of V contain-
ing a non-active subset S ∈ S with yS = 0. If S goes
tight next while we increase the dual variables of active
sets, then there exists a subfamily S′ of S that will go
tight no later than S goes tight.

Proof. Let S = {S1, S2, . . . , Sk} be the family to go
tight next the earliest, Sk be a non-active subset such
that ySk

= 0, and the first j subsets of S (without loss of
generality) be active sets where 1 ≤ j ≤ k−1. We show
that the family S′ = S − {Sk} goes tight no later than
S. Indeed, the increase in the dual variables needed for

S′ to go tight is εS′ = 1
j

(

π(S′)−
∑k−1

i=1 ySi

)

and the

increase in the dual variables needed for S to go tight is

εS = 1
j

(

π(S) −
∑k

i=1 ySi

)

. Using monotonicity of the

function π and the fact that ySk
= 0, we conclude that

εS′ ≤ εS proving that the family S′ goes tight no later
than the family S.

Therefore, when looking for which family becomes
tight next, we only need to consider subfamilies of active
sets and sets with positive duals (subfamilies of Ca∪D+).
We now proceed to present a procedure to find which
family of subsets goes tight next.

5.3 The method to find a tight family We want
to find the maximum value of ε such that if we increase
all active duals by ε, all constraints of type-(f) in the
dual program are still satisfied. We can replace “all
constraints of type-(f)” to “all constraints of type-(f)
corresponding to subfamilies of Ca ∪ D+” in the above
statement, since the first constraint to be violated as we
increase dual variables will correspond to a subfamily of
Ca ∪ D+ as proved in Lemma 5.1. This problem can be
written in the form of the following program:

maximize ε,

s.t.
∑

S∈S

yS + ε|active(S)| ≤ π(S); ∀S ⊆ Ca ∪ D+.

Here, active(S) denotes active sets contained in S. Let
ε0 be the optimum value of ε above. We use binary
search to find the correct value of ε0. We keep a lower
bound εlow on the value of ε0 (take εlow = 0 to start
with), and an upper bound εhigh on the value of ε0

(take εhigh =
π(S)−

P

S∈S
yS

|active(S)| for a particular family to

start with, say π({S})−yS

1 for some S ∈ Ca).
Since ε0 ∈ [εlow, εhigh], ε0 ∈ [εlow, εmiddle] or ε0 ∈

[εmiddle, εhigh] where εmiddle = (εlow + εhigh)/2. To
determine which interval ε0 lies in, we use submodular
function minimization. If ε0 ≥ εmiddle, then the

minimum of the function π′(S)
def
= π(S) −

∑

S∈S yS −
εmiddle|active(S)| over all S ⊆ Ca ∪ D+ is nonnegative.
If ε0 < εmiddle, then the minimum of the function
π′(S) over all subfamilies of Ca ∪D+ is strictly negative
(because some constraint is violated). Also note that
both the conditions above are if and only if conditions.
Therefore testing whether ε0 ≥ εmiddle reduces to
checking whether the minimum of the function π′(S)
over subfamilies of Ca∪D+ is nonnegative. The function
π′(S) is a submodular function for a fixed value of
εmiddle since its first term is submodular and the last
two terms are modular. We apply a polynomial-time
submodular function minimization algorithm [IFF01,
Sch00] to minimize the function and hence determine
which of the two interval ε0 lies in. Note that we can
do this in oracle polynomial-time and time polynomial
in n, since the ground set of π′ are the sets in Ca ∪D+,
and we have previously argued that there are at most
2n such sets. This further implies that we need at most
O(n2) space to query the oracle for π(·).

Once our interval [εlow, εhigh] becomes “sufficiently”

small, we stop the binary search and find the right value
of ε0 in that interval. This is the intuitive idea, which it
turns out takes a bit of care to turn into a formal proof.
We need the following lemma to start.

Lemma 5.2. The value of each non-zero dual variable
yS and each amount ǫ of dual increase in each itera-
tion of the algorithm can be expressed by rational num-
bers whose numerators are integers of value at most
(maxS π(S) + maxe∈E ce) · (6n2)! and whose denomi-
nators are integers of value at most (6n2)!. Thus these
variables can be expressed with bit complexity at most
O(log(maxS π(S)) + log maxe∈E ce + n2 log n).

If we do binary search until the window size |εhigh−
εlow| is smaller than (1/(6n2)!)2, there can be at most
one rational number in the window with denominator
at most (6n2)!. We now want to determine the exact
value of ε in this interval. We use a procedure Best
Approximation from Grötschel, Lovász, and Schrijver
[GLS88, Theorem 5.1.9], which determines a rational
number β of denominator at most N that minimizes
|α−β| for input α. It does so in time polynomial in the
encoding size of N and α. We run one more submodular
minimization to halve the window size of the binary
search, then apply this procedure with N = (6n2)! and
α set to whichever of εhigh or εlow was last modified.
This guarantees that Best Approximation will find ε0.

Therefore, finding the right value of ε0 can be done
in time polynomial in log(maxS π(S)) + log(maxe ce) +
n2 log n. The number of iterations of binary search
required to bring the interval length down to 1/((6n2)!)2

is at most O(log(maxS π(S)) + n2 log n). Furthermore,
each iteration of binary search requires polynomial
time, so the overall time of finding a tight family
can be bounded by a polynomial in log(maxS π(S)) +
log(maxe ce) + n2 log n.

Once we find the right value of ε0, we solve the
problem of minimizing π(S) −

∑

S∈S yS − ε0|active(S)|
over subfamilies of Ca ∪ D+. As argued above, the
minimum value will be zero and the corresponding
minimizer family will be the candidate family to go tight
next. Thus, the family to go tight next can be found in
polynomial time.

6 An LP-rounding approach

In this section, we present an LP-rounding algorithm
with a better performance guarantee when the connec-
tivity requirement function f is proper. Notice that for-
mulation (PCF-LP) has an exponential number of con-
straints and a doubly exponential (22n

where n = |V |)
number of variables, so even solving the LP is a chal-
lenging task. In fact, it is not even clear that a basic
solution of (PCF-LP) admits a polynomial-size descrip-

tion — a basic solution of the LP may yet set 2n of the
zS variables to be positive!

Our result is built on three components. First, we
show that by suitably transforming (PCF-LP), one can
obtain a compact, convex programming relaxation of the
problem that is equivalent to (PCF-LP) and has only
xe variables. Next, we give a simple procedure to round
any fractional solution to this convex program to an
integer solution losing a factor of at most 2.54. Since the
convex program is equivalent to the LP (PCF-LP), the
rounding procedure may also be viewed as a rounding
procedure for (PCF-LP) with the property that one
only needs the x-component of the fractional solution
in order to implement it. Finally, we show that the
convex program can be solved efficiently using the
ellipsoid method. The key ingredient that we need to
run the ellipsoid method is a procedure that computes
a subgradient of the objective function at any point
x. Although the convex program yields a compact
relaxation of the prize-collecting problem, this poses
several challenges since computing the subgradient at
a given point requires solving an exponential-size linear
program. Nevertheless, we will prove certain structural
properties and show that a subgradient can indeed be
computed in polynomial time.

6.1 A compact convex programming relaxation
The idea behind the compact formulation is simple.
Suppose we fix the values of the xe variables. Then,
one can consider an optimal setting of the zS variables
corresponding to these xe values and denote the penalty
incurred for these zS values (which is a function of
only the xe variables) by g(x). So we can restate the
objective function as

∑

e cexe + g(x), and our problem
is to minimize

∑

e cexe +g(x) subject to the constraints
that 0 ≤ xe ≤ 1 for every edge e. More formally, we
obtain the following program:

min h(x) :=
∑

e

cexe + g(x) (PC-CP)

subject to 0 ≤ xe ≤ 1 ∀e,

where g(x) := min
∑

S

π(S)zS (Pen-P)

s.t.
∑

S:S∈S

zS ≥ f(S)−
∑

e∈δ(S)

xe ∀S ⊆ V,

zS ≥ 0 ∀S.

Here (Pen-P) is the LP that determines the penalty
incurred at a fractional solution x. It is easy to see
that (PC-CP) is equivalent to (PCF-LP), and it is
straightforward to show that the objective function of
(PC-CP) is convex. Let OPTLP denote the optimal
value of (PC-CP) (and (PCF-LP)).

6.2 A rounding procedure We now describe a pro-
cedure for rounding a fractional solution to (PC-CP),
based on the rounding procedure given by Bienstock
et al. [BGSLW93] and Goemans [Goe98] for the prize-
collecting TSP and Steiner tree problems. We assume
that the requirement function f is a proper function.

Let x be a fractional solution to (PC-CP). For a
set of edges E′, we use x(E′) to denote

∑

e∈E′ xe. Let
α ∈ (0, 1) be a parameter that we will set later. For any
collection S ⊆ 2V , define z-clos(S) to be the maximal
collection T ⊇ S such that π(T) = π(S). Note that T
is well-defined (i.e., the maximal collection is unique),
and T ⊇ closure(S). We need the following structural
property (whose proof we leave to the full version of the
paper): one can compute in polynomial time a laminar
family of sets T1, . . . , Tk, k ≤ n, with f(Ti) = 1 for each
i, where the sets are ordered so that w0 := 0 ≤ w1 :=
x(δ(T1)) ≤ . . . ≤ wk := x(δ(Tk)) ≤ wk+1 := 1, such
that if Si = {T1, . . . , Ti} for i = 1, . . . , k with S0 = ∅,
and Ti = z-clos(Si) for i = 0, . . . , k, then the solution
zTi = wi+1 − wi for i = 0, . . . , k, and zS = 0 for any
other S ⊆ 2V , is an optimal solution to (Pen-P) at the
point x. Moreover, Tk = 2V .

So suppose that we are given sets T1, . . . , Tk with
the above properties, and let z be the optimal solution
to (Pen-P) determined by these sets. For any set
S ⊆ V , let i(S) ∈ {0, . . . , k} be the smallest index such
that πSi(S) ≡ πSi({S}) := π(Si ∪ {S}) − π(Si) = 0
Equivalently i(S) is the smallest index such that S ∈ Ti.
Observe that such an index always exists. Consider the
function f̂ : 2V 7→ {0, 1} defined by f̂(S) = 1 if f(S) = 1
and

∑

i≥i(S) zTi < α, and 0 otherwise.

One can argue that f̂ is a proper function. Note
that f̂(S) can be calculated in polynomial time for
any set S (given an oracle for the function f). Thus,
one can use the Goemans-Williamson (GW) primal-dual
algorithm [GW95] to obtain an integer feasible solution
x̃ to the following network design problem determined
by the connectivity function f̂ :

min
{

∑

e

ceue s.t. u(δ(S)) ≥ f̂(S) ∀S ⊆ V,

ue ≥ 0 ∀e ∈ E.
}

(ND-P)

We return x̃ as the final solution.
We now sketch the analysis. Let P = {S ⊆ V :

f(S) = 1, x̃(δ(S)) = 0}. Lemma 6.1 states that f̂ is
a proper function. We then proceed to bound the cost
of the edges bought by x̃ (Lemma 6.2), and the penalty
incurred for the collection P (Lemma 6.3).

Lemma 6.1. If f is a proper function, then so is f̂ .

Lemma 6.2. We have
∑

e cex̃e ≤
2

1−α ·
∑

e cexe.

Proof. We will show that 1
1−α ·x is a feasible solution to

(ND-P). Since the GW algorithm is a 2-approximation
algorithm, this implies that

∑

e cex̃e ≤
2

1−α ·
∑

e cexe.

For any set S with f̂(S) = 1, we have x(δ(S)) ≥
1 −

∑

S:S∈S zS = 1 −
∑

i:S∈Ti
zTi > 1 − α. The

first inequality follows since z is a feasible solution to
(Pen-P) at the point x, and the last one follows since
∑

i:S∈Ti
zTi =

∑

i≥i(S) zTi < α because f̂(S) = 1.

Lemma 6.3. For each set S ∈ P, we have
∑

S:S∈S zS =
∑

i≥i(S) zTi ≥ α. Consequently, the penalty incurred,

π(P), is at most 1
α ·

∑

S π(S)zS = 1
α · g(x).

Theorem 6.1. For any α > 0, the above algorithm
returns a solution of cost at most 2

1−α ·
∑

cexe+ 1
α ·g(x).

Taking x to be an optimal solution to (PC-CP) and,
(i) setting α = 1

3 yields a 3-approximation algorithm;
(ii) choosing α ∈ (0, β] uniformly at random, where
β = 1− e−1/2, yields a solution of expected cost at most

1
1−e−1/2

·OPTLP ≈ 2.54 ·OPTLP .

Proof. The proof of the first statement, which di-
rectly implies part (i), follows from Lemma 6.2 and
Lemma 6.3. For part (ii), we need a more re-
fined analysis. The expected cost of the edges is at
most E

[

2
1−α

]
∑

e cexe = 2
β ln(1/(1 − β))

∑

e cexe. The

penalty incurred for a given value of α is π({S ⊆
V :

∑

S:S∈S zS ≥ α}). This is equal to π(Ti) if

α ∈
(
∑

j:i<j≤k zTj ,
∑

j:i≤j≤k zTj

]

for i = 0, . . . , k,
which happens with probability at most zTi/β. There-
fore, the expected penalty incurred is at most 1

β ·
∑

i π(Ti)zTi = 1
β · g(x). Thus, the total expected

cost is at most 1
β max

(

2 ln(1/(1 − β)), 1
)

· OPTLP =
1

1−e−1/2
·OPTLP ≈ 2.54 ·OPTLP . This randomized al-

gorithm can be easily derandomized. Since there are
only k + 1 “combinatorially-distinct” values of α, one
can simply try out all these values and return the least-
cost solution found.

6.3 Solving the convex program The convex pro-
gram (PC-CP) can be solved efficiently using the ellip-
soid method provided that one can find a subgradient of
the objective function at any given point. A subgradi-
ent of h at x is a vector d ∈ Rm, m = |E|, such that
h(x′) − h(x) ≥ d · (x′ − x) for any feasible x′. It turns
out that a subgradient can be computed if we can solve
the following dual of (Pen-P).

max
∑

S

(

f(S)−x(δ(S))
)

yS (Pen-D)

s.t.
∑

S∈S

yS ≤ π(S) for all S ⊆ 2V , (6.4)

yS ≥ 0 for all S ⊆ V.

But this dual has 2n variables and 22n

constraints! One
helpful and important fact is that since π is submodular
and the feasible region of (Pen-D) is the polymatroid
associated with π, we can use the Edmonds’ greedy
algorithm [Edm70] to obtain an optimal solution to
both (Pen-D) and (Pen-P). This still does not solve the
problem fully since the ground set of the polymatroid is
still of size 2n, and the naive greedy algorithm iterates
through all ground elements. The main idea, now,
is to show that there exists an optimal solution to
(Pen-P) with at most n non-zero z values and an optimal
solution to (Pen-D) with at most n non-zero y values,
and in fact, one where the sets S with yS > 0 form a
sparse laminar collection. Using the solution y, we can
compute a subgradient of h in (PC-CP) in polynomial
time, and thereby implement the ellipsoid method. Note
that we do not require f to be proper in order to solve
(PC-CP); this is only needed for the rounding argument.

The algorithm to compute an optimal dual solution
is as follows. For a set S and collectionA, let confl(S,A)
denote the number of “conflicts” between S and A, that
is, |{S′ ∈ A : S ∩ S′ 6= ∅, S \ S′ 6= ∅, S′ \ S 6= ∅}|. We
initialize yS ← 0 for all sets S, and L ← ∅. While
closure(L) 6= 2V , (i) let vL := min{x(δ(S)) : S /∈
closure(L), confl(S,L) = 0}; find a set T /∈ closure(L)
such that confl(T,L) = 0 and x(δ(T)) = vL. (ii) Set
yT = πL(T) = πclosure(L)(T) and L ← L ∪ {T }.

We very briefly argue the correctness of the algo-
rithm; the details are deferred to the full version of the
paper. One way to prove this is to show that the above
algorithm is in a sense equivalent to a run of Edmonds’
greedy algorithm. The above algorithm considers sets
in increasing order of x(δ(S)) value, instead of decreas-
ing f(S) − x(δ(S)) value as required by the greedy al-
gorithm. But one can show that ordering sets in this
way, and setting their values as in the greedy algo-
rithm (so as to satisfy (6.4)), also works. Intuitively,
this is because a set S with f(S) = 0 adds 0 value
to the penalty of any collection, so these sets can be
“swapped around” without affecting optimality. Next,
one can show (Lemma 6.4) that although the algorithm
only considers sets that preserve the laminarity of L,
there is an underlying valid ordering of the sets (by in-
creasing x(δ(.)) value) that yields the same solution y.
Combining these two properties shows that the solution
constructed y is optimal to (Pen-D).

Lemma 6.4. For every set T , we have T ∈ closure(LT),
where LT = {S ∈ L : x(δ(S)) ≤ x(δ(T))}.

Let L = {S1, . . . , Sℓ}, ℓ ≤ n, where x(δ(S1)) ≤
. . . ≤ x(δ(Sℓ)). Using this laminar family, one can
construct a sparse optimal solution to (Pen-P) that
satisfies the properties stated in Section 6.2. Let L>0 =

{S ∈ L : yS > 0} = {T1, . . . , Tk}, where Tj = Si(j) and
i(0) := 0 < i(1) ≤ . . . ≤ i(k) < i(k + 1) := ℓ + 1. Let
Si = {S1, . . . , Si} for i = 0, . . . , ℓ (with S0 := ∅). Define
S0 = ∅ = T0, and let Tj = z-clos(Si(j)), wj := x(δ(Tj))
for j = 0, . . . , k, and wk+1 := 1.

Theorem 6.2. (i) y is an optimal solution to (Pen-D).
(ii) The solution z = (zS)S⊆2V given by zTj = (wj+1 −
wj) for j = 0, . . . , k, and zS = 0 for any other S ⊆ 2V

is an optimal solution to (Pen-P).

7 Acknowledgments

The first author would like to thank Ara Hayrapetyan
and Zoya Svitkina for useful discussions.

References

[Bal89] Egon Balas. The prize collecting traveling salesman
problem. Networks, 19:621–636, 1989.

[BGSLW93] Daniel Bienstock, Michel X. Goemans, David
Simchi-Levi, and David P. Williamson. A note on
the prize collecting traveling salesman problem. Math.

Programming, 59:413–420, 1993.
[Edm70] Jack Edmonds. Submodular functions, matroids,

and certain polyhedra. In R. Guy, H. Hanani, N. Sauer,
and J. Schönheim, editors, Combinatorial Structures

and Their Applications, pages 68–87, 1970.
[GLS88] M. Grötschel, L. Lovász, and A. Schrijver. Ge-

ometric algorithms and combinatorial optimization.
Springer Verlag, 1988.

[Goe98] Michel Goemans, 1998. Personal communication.
[GW95] Michel X. Goemans and David P. Williamson. A

general approximation technique for constrained forest
problems. SIAM J. Comput., 24(2):296–317, 1995.

[HJ06] M.T. Hajiaghayi and K. Jain. The prize-collecting
generalized Steiner tree problem via a new approach of
primal-dual schema. In SODA, pages 631–640, 2006.

[HST05] Ara Hayrapetyan, Chaitanya Swamy, and Éva
Tardos. Network design for information networks. In
SODA, pages 933–942, 2005.

[IFF01] S. Iwata, L. Fleischer, and S. Fujishige. A combi-
natorial strongly polynomial algorithm for minimizing
submodular functions. J. ACM, 48(4):761–777, 2001.

[Jai01] Kamal Jain. A factor 2 approximation algorithm for
the generalized Steiner network problem. Combinator-

ica, 21(1):39–60, 2001.
[JMP00] David S. Johnson, Maria Minkoff, and Steven

Phillips. The prize collecting Steiner tree problem:
theory and practice. In SODA, pages 760–769, 2000.

[KN06] G. Kortsarz and Z. Nutov. Approximating mini-
mum cost connectivity problems. In T. Gonzales, edi-
tor, Handbook of Approximation Algorithms and Meta-

heuristics. CRC Press, 2006.
[Sch00] A. Schrijver. A combinatorial algorithm minimizing

submodular functions in strongly polynomial time. J.

Comb. Theory, Ser. B, 80(2):346–355, 2000.

