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Abstract. We consider profit-maximization problems for combinatorial auctions
with non-single minded valuation functions and limited supply. We obtain fairly
general results that relate the approximability of the profit-maximization prob-
lem to that of the corresponding social-welfare-maximization (SWM) problem,
which is the problem of finding an allocation (S1, . . . , Sn) satisfying the ca-
pacity constraints that has maximum total value

∑
j vj(Sj). Our results apply

to both structured valuation classes, such as subadditive valuations, as well as
arbitrary valuations. For subadditive valuations (and hence submodular, XOS
valuations), we obtain a solution with profit OPTSWM /O(log cmax), where
OPTSWM is the optimum social welfare and cmax is the maximum item-supply;
thus, this yields anO(log cmax)-approximation for the profit-maximization prob-
lem. Furthermore, given any class of valuation functions, if the SWM problem
for this valuation class has an LP-relaxation (of a certain form) and an algo-
rithm “verifying” an integrality gap of α for this LP, then we obtain a solu-
tion with profit OPTSWM /O(α log cmax), thus obtaining an O(α log cmax)-
approximation. The latter result implies an O(

√
m log cmax)-approximation for

the profit maximization problem for combinatorial auctions with arbitrary val-
uations, and an O(log cmax)-approximation for the non-single-minded tollbooth
problem on trees. For the special case, when the tree is a path, we also obtain an
incomparableO(logm)-approximation (via a different approach) for subadditive
valuations, and arbitrary valuations with unlimited supply.

1 Introduction

Profit (or revenue) maximization is a classic and fundamental economic goal, and the
design of computationally-efficient item-pricing schemes for various profit-maximization
problems has received much recent attention [1, 11, 2, 4, 3]. We study the algorithmic
problem of item-pricing for profit-maximization for general (multi unit) combinatorial
auctions (CAs) with limited supply. There are n customers and m items. Each item is
available in some limited supply or capacity, and each customer j has a value vj(S) for
each subset S of items specifying the maximum amount she is willing to pay for that
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set (with vj(∅) = 0). Given a pricing of the items, a feasible allocation is an assignment
of a (possibly empty) subset Sj to each customer j satisfying (i) the budget constraints,
which require that the price of Sj (i.e., the total price of the items in Sj) is at most
vj(Sj), and (ii) the capacity constraints, which stipulate that the number of customers
who are allocated an item be at most the supply of that item. The objective is to de-
termine item prices that maximize the total profit or revenue earned by selling items
to the customers. Guruswami et al. [11] introduced the envy-free version of the prob-
lem, where there is the additional constraint that the set assigned to a customer must
maximize her utility (defined as value−price). Item pricing has an appealing simplicity
and enforces a basic notion of fairness wherein the seller does not discriminate between
customers who get the same item(s). Our focus on item pricing is in keeping with the
vast majority of work on algorithms for profit-maximization (for example, the above
references; in fact, with unlimited supply and unit-demand valuations, our problem es-
sentially reduces to the Max-Buy model in [1]). Various current trading practices are
described by item pricing, and thus it becomes pertinent to understand what guarantees
are obtainable via such schemes. Profit-maximization problems are typically NP-hard,
even in various specialized settings, so we will be interested in designing approximation
algorithms for these problems.

The framework of combinatorial auctions is an extremely rich framework that en-
capsulates a variety of applications. In fact, recognizing the generality of the envy-free
profit-maximization problem for CAs, Guruswami et al. [11] proceeded to study various
more-tractable special cases of the problem. In particular, they introduced the follow-
ing two structured problems in the single-minded (SM) setting, where each customer
desires a single fixed set: (a) the tollbooth problem where the items are edges of a graph
and the customer-sets correspond to paths in this graph, which can be interpreted as
the problem of pricing transportation links or network connections; (b) a further special
case called the highway problem where the graph is a path, which can also be motivated
from a scheduling perspective (the path corresponds to a time-horizon). The non-SM
versions of such structured problems can also be used to capture various interesting
scenarios.
Our results. We obtain fairly general polytime approximation guarantees for profit-
maximization problems involving combinatorial auctions with limited supply and non-
single-minded valuations. We obtain results for both (a) certain structured valuation
classes, namely subadditive valuations (where v(A) + v(B) ≥ v(A ∪ B)) and hence,
submodular valuations, which have been intensely studied recently (e.g. [14, 8, 9, 3];
and (b) arbitrary valuations. Our results relate the approximability of the profit-
maximization problem to that of the corresponding social-welfare-maximization (SWM)
problem, which is the problem of finding an allocation (S1, . . . , Sn) satisfying the ca-
pacity constraints that has maximum total value

∑
j vj(Sj). Our main theorem, stated

informally below and proved in Section 3, shows that any LP-based approximation al-
gorithm that provides an integrality-gap bound for the SWM problem with a given class
of valuations, can be leveraged to obtain a corresponding approximation guarantee for
the profit-maximization problem with that class of valuations. Let cmax ≤ n denote the
maximum item supply, and OPTSWM denote the optimum value of the SWM problem,
which is clearly an upper bound on the maximum profit achievable.
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Theorem 1. (i) For the class of subadditive (and hence submodular) valuations, one
can obtain a solution with profit OPTSWM /O(log cmax), thus achieving anO(log cmax)-
approximation; (ii) Given any class of valuations for which the corresponding
SWM problem admits a packing-type LP relaxation with an integrality gap of α as
“verified” by an α-approximation algorithm, one can obtain a solution with profit
OPTSWM /O(α log cmax), thereby achieving an O(α log cmax)-approximation.

(Part (ii) above does not imply part (i), because for part (ii) we require an integrality-gap
guarantee which, roughly speaking, means that we require an algorithm that returns a
“good” solution for every profile of n valuations; see Definition 1.)

A key notable aspect of our theorem is its versatility. One can simply “plug in” var-
ious known (or easily derivable) results about the SWM problem to obtain approxima-
tion algorithms for various limited-supply profit-maximization problems. For example,
as corollaries of part (ii) of our theorem, we obtain an O(

√
m log cmax)-approximation

for profit-maximization for combinatorial auctions with arbitrary valuations, and an
O(log cmax)-approximation for the non-single-minded tollbooth problem on trees (see
Section 3.1). The first result follows from the various known O(

√
m)-approximation

algorithms for the SWM problem for CAs with arbitrary valuations that also bound the
integrality gap [15, 12]. For the second result, we devise a suitable O(1)-approximation
for the SWM problem corresponding to non-SM tollbooth on trees, by adapting the
randomized-rounding approach of Chakrabarty et al. [6].

Notice that with bundle-pricing, which is often used in the context of mechanism
design for CAs, the profit-maximization problem becomes equivalent to the SWM prob-
lem. Thus, our results provide worst-case bounds on how item-pricing (which may be
viewed as a fairness constraint on the seller) diminishes the revenue of the seller versus
bundle-pricing. It is also worth remarking that our algorithms for an arbitrary valua-
tion class (i.e., part (ii) above) can be modified in a simple way to return prices and an
allocation (S1, . . . , Sn) with the following ε-“one-sided envy-freeness” property while
diminishing the profit by a (1 − ε)-factor (for any ε ∈ [0, 1]): for every non-empty Sj ,
the utility that j obtains from Sj is at least ε times the maximum utility j may obtain
from any set (see Remark 2).

The only previous guarantees for limited-supply CAs with a general valuation-class
are those obtained via a reduction in [2], showing that an α-approximation for the SWM
problem and an algorithm for the unlimited-supply SM problem that returns profit at
least OPTSWM /β yield an αβ-approximation. A simple “grouping-by-density” ap-
proach gives β = O(logm + log n); using the best known bound on β [4] yields
an O

(
α(logm + log cmax)

)
guarantee, which is significantly weaker than our guar-

antees. (E.g., we obtain an O(α)-approximation for constant cmax.) The O(log cmax)-
factor we incur is unavoidable if one compares the profit against the optimal social
welfare: a well-known example with one item, n = cmax customers shows a gap of
Hcmax := 1+ 1

2 + · · ·+
1

cmax
between the optima of the SWM- and profit-maximization

problems. Almost all results for profit-maximization for CAs with non-SM valuations
also compare against the optimum social welfare, so they also incur this factor. Also,
it is easy to see that with cmax = 1, the profit-maximization problem reduces to the
SWM problem, so an inapproximability result for the SWM problem also yields an
inapproximability result for our problem. Thus, we obtain an m

1
2 -, or n-, inapproxima-
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bility for CAs with even SM valuations (see, e.g., [10]), and APX-hardness for CAs
with subadditive, submodular valuations, and the tollbooth problem on trees.

In Section 4, we consider an alternate approach for the non-SM highway prob-
lem that does not use OPTSWM as an upper bound and achieves an (incompara-
ble) O(logm)-approximation factor. We decompose the instance via an exponential-
size configuration LP, which is solved approximately using the ellipsoid method and
rounded via randomized rounding. Here, we use LP duality to handle dependencies
arising from the non-SM setting.

Theorem 2. There is anO(logm)-approximation algorithm for the non-single-minded
highway problem with (i) subadditive valuations with limited supply; and (ii) arbitrary
valuations with unlimited supply.

2 Problem definition and preliminaries

The general setup of profit-maximization problems for (multi unit) combinatorial auc-
tions (CAs) is as follows. There are n customers and m items. Let [n] := {1, . . . , n}
and [m] := {1, . . . ,m}. Each item e is available in some limited supply or capacity ce.
Each customer j has a valuation function vj : 2[m] 7→ R+, where vj(S) specifies the
maximum amount that customer j is willing to pay for the set S; equivalently this is j’s
value for receiving the set S of items. We assume that vj(∅) = 0; we often assume for
convenience that vj(S) ≤ vj(T ) for S ⊆ T , but this monotonicity requirement is not
crucial for our results. The objective is to find non-negative prices pe ≥ 0 for the items,
and an allocation (S1, . . . , Sn) of items to customers (where Sj could be empty) so as to
maximize the total profit

∑
j∈[n]

∑
e∈Sj

pe =
∑
e∈[m] pe|{j : e ∈ Sj}|while satisfying

the following two constraints: (i) Budget constraints: p
(
Sj
)
:=
∑
e∈Sj

pe ≤ vj
(
Sj
)
;

and (ii) Capacity constraints: Each element e is assigned to at most ce customers:
|{j ∈ [m] : e ∈ Sj}| ≤ ce.

As is standard in the literature on combinatorial auctions and profit-maximization
problems (see, e.g., [13, 9, 3]), we assume that a valuation v is specified by a demand or-
acle, which means that given item prices {pe}, the oracle returns a set S that maximizes
the utility v(S)− p(S). We write cmax := maxe ce.

An LP relaxation. We consider a natural linear programming (LP) relaxation (P) of the
SWM problem for combinatorial auctions, and its dual (D). Throughout, we use j to
index customers, e to index items, and S to index sets of items.

max
∑
j,S

vj(S)xj,S (P)

s.t.
∑
S

xj,S ≤ 1 ∀j (1)∑
j

∑
S:e∈S

xj,S ≤ ce ∀e (2)

xj,S ≥ 0 ∀j, S

min
∑
e

ceye +
∑
j

zj (D)

s.t.
∑
e∈S

ye + zj ≥ vj(S) ∀j, S

ye, zj ≥ 0 ∀e, j.

In the primal LP, we have a variable xj,S for each customer j and set S that indicates if
j receives set S, and we relax the integrality constraints on these variables to obtain (P).
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The dual (D) has variables zj and ye for each customer j and element e respectively,
which correspond to the primal constraints (1) and (2) respectively. Although (D) has
an exponential number of constraints, it can be solved efficiently given demand oracles
for the valuations as these oracles yield the desired separation oracle for (D). This in
turn implies that (P) can be solved efficiently. We say that an algorithmA for the SWM
problem is an LP-based α-approximation algorithm for a class V of valuations if for
every instance involving valuation functions (v1, . . . , vn), where each vj ∈ V ,A returns
an integer solution of value at least OPT/α. For example, the algorithm in [9] is an LP-
based 2-approximation algorithm for the class of subadditive valuations.

Definition 1 We say that an algorithmA for the SWM problem “verifies” an integrality
gap of (at most) α for an LP-relaxation of the SWM problem (e.g.,(P)), if for every
profile of (monotonic) valuation functions (v1, . . . , vn), A returns an integer solution
of value at least (LP-optimum)/α.

As emphasized above, an integrality-gap-verifying algorithm must “work” for every
valuation-profile. In particular, an LP-based α-approx. algorithm for a given structured
class of valuations (e.g., submodular or subadditive valuations) does not verify the in-
tegrality gap for the LP-relaxation. This is precisely why our guarantee for subadditive
valuations (part (i) of Theorem 1) does not follow from part (ii) of Theorem 1.

In certain cases however, one may be able to encapsulate the combinatorial structure
of the SWM problem with a structured valuation class by formulating a stronger LP-
relaxation for the SWM problem, and thereby prove that an approximation algorithm for
the structured valuation class is in fact an integrality-gap-verifying approximation algo-
rithm with respect to this stronger LP-relaxation. For example, in Section 3.1 we con-
sider the setting where items are edges of a tree and customers desire paths of the tree.
This leads to the structured valuation where v(T ) = max{v(P ) : P is a path in T}
(with v(P ) ≥ 0 being the value for path P ). We design an O(1)-approximation al-
gorithm for such valuations, and formulate a stronger LP for the corresponding SWM
problem for which our algorithm verifies a constant integrality gap.

For a given instance I =
(
m,n, {vj}j∈[n], {c(e)}e∈[m]

)
, our algorithms will con-

sider different capacity vectors k ≤ c. Let (Pk) and (Dk) denote respectively (P) and
(D) with capacity-vector k = (ke), and OPT (k) denote their common optimal value.
Let OPT := OPT (c) denote the optimum value of (P) with the original capacities. We
utilize the following facts, which follow from complementary slackness, and a rounding
result that follows from the work of Carr and Vempala [5], and are made explicit in [13].

Claim 1 Let k = (ke) be any capacity-vector, and let x∗ and (y∗, z∗) be optimal so-
lutions to (Pk) and (Dk) respectively: (i) If x∗j,S > 0, then

∑
e∈S y

∗
e ≤ vj(S); (ii) If

x∗j,S > 0, and vj is subadditive, then
∑
e∈T y

∗
e ≤ vj(T ) for any T ⊆ S; (iii) If y∗e > 0,

then
∑
j,S:e∈S x

∗
j,S = ke.

Remark 1. As mentioned above, we will sometimes consider a different LP-relaxation
when considering the SWM problem with a structured class of valuations. Roughly
speaking, the only properties we require of this LP are that it should: (a) include a
constraint similar to (2) that encodes the supply constraints; and (b) be a packing LP,
i.e., have the form Ax ≤ b, x ≥ 0 where A is a nonnegative matrix. Given this, parts
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(i) and (iii) of Claim 1 continue to hold with ye denoting (as before) the dual variable
corresponding to the supply constraint for item e, since the dual is then a covering LP.

Lemma 1 ([5, 13]). Given a fractional solution x to the LP-relaxation of an SWM
problem that is a packing LP (e.g., (Pk)), and a polytime integrality-gap-verifying α-
approx. algorithm A for this LP, one can express x

α as a convex combination of integer
solutions to the LP in polytime. Thus, one can round x to a random integer solution x̂
satisfying the following “rounding property”: xj,S

α ≤ Pr[x̂j,S = 1] ≤ xj,S for all j, S.

3 The main algorithm and its applications

Claim 1 leads to the simple, but important observation that if k ≤ c and the optimal
primal solution x∗ is integral, then by using {y∗e} as the prices, one obtains a feasible
solution to the profit-maximization problem with profit

∑
e key

∗
e . There are two main

obstacles encountered in leveraging this observation and turning it into an approxima-
tion algorithm. First, (Pk) will not in general have an integral optimal solution. Second,
it is not clear what capacity-vector k ≤ c to use, e.g.,

∑
e cey

∗
e could be much smaller

than OPT , and in general,
∑
e key

∗
e could be quite small for a given capacity-vector

k ≤ c. We overcome these difficulties by taking an approach similar to the one in [7].
We tackle the second difficulty by utilizing a key lemma proved by Cheung and

Swamy [7], which is stated in a slightly more general form in Lemma 3 so that it can be
readily applied to various profit-maximization problems. This lemma implies that one
can efficiently compute a capacity-vector k ≤ c and an optimal dual solution (y∗, z∗)
to (Dk) such that

∑
e key

∗
e is

(
OPT − OPT (1)

)
/O(log cmax), where 1 denotes the

all-ones vector (Corollary 1). To handle the first difficulty, notice that part (i) of Claim 1
implies that one can still use {y∗e} as the prices, provided we obtain an allocation (i.e.,
integer solution) x̂ that only assigns a set S to customer j (i.e., x̂j,S = 1) if x∗j,S > 0.
(In contrast, in the envy-free setting, if we use {y∗e} as the prices then every customer j
with z∗j > 0, and hence

∑
S x
∗
j,S = 1, must be assigned a set S with x∗j,S > 0; this may

be impossible with non-single-minded valuations, whereas this is easy to accomplish
with single-minded valuations (as there is only one set per customer).) Furthermore, for
subadditive valuations, part (ii) of Claim 1 shows that it suffices to obtain an allocation
where x̂j,T = 1 implies that there is some set S ⊇ T with x∗j,S > 0. This is precisely
what our algorithms do. We show that one can round x∗ into an integer solution x̂
satisfying the above structural properties, and in addition ensure that the profit obtained,∑
j,T x̂j,T

(∑
e∈T y

∗
e

)
, is “close” to

∑
e key

∗
e (Lemma 4).

So if
∑
e key

∗
e is OPT/O(log cmax) then applying this rounding procedure to the

optimal primal solution to (Pk) yields a “good” solution. On the other hand, Corollary 1
implies that if this is not the case, then OPT (1) must be large compared to OPT , and
then we observe that an α-approximation to the SWM problem trivially yields a solution
with profit OPT (1)/α (Lemma 2). In either case we obtain the desired approximation.

The algorithm is described precisely in Algorithm 1. If we use an LP-relaxation
different from (P) for the SWM problem with a given valuation class that satisfies the
properties stated in Remark 1, then the only change to Algorithm 1 is that we now use
this LP and its dual (with the appropriate capacity-vector) instead of (P) and (D) above.
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Algorithm 1 Non-single-minded profit-maximization
Input: a profit-maximization instance I =

(
m,n, {vj}, {ce}

)
with demand oracle for each vj

1. Define k1, k2, . . . , k` as the following capacity-vectors. Let k1e = 1 ∀e. For j > 1, let
kje = min

{
d(1 + ε)kj−1

e e, ce
}

; let ` be the smallest index such that k` = c.
2. For each vector k = kj , j ∈ [`], compute an optimal solution (y(k), z(k)) to (Dk) maximiz-

ing
∑
e key

(k)
e among all such solutions. Select u ∈ {k1, . . . , k`} maximizing

∑
e uey

(u)
e .

3. Compute an optimal solution x(u) to (Pu). Use Round(u, x(u)) to get a feasible allocation.
4. Use an LP-based α-approx. algorithm for the SWM problem (with the given valuation class)

to compute an α-approx. solution to the SWM problem with unit capacities, and a pricing
scheme for this allocation that yields profit equal to the social-welfare value of the allocation.

5. Return the better of the following two solutions: (1) allocation computed in step 3 with {y(u)e }
as the prices; (2) allocation and pricing scheme computed in step 4.

Round(µ = (µe), x
∗) (x∗ is an optimal solution to the SWM-LP with capacity-vector µ)

Subadditive valuations: Independently for each customer j, assign j at most one set S by
choosing set S with probability x∗j,S . If an item e gets allotted to more than µe customers this
way, then arbitrarily select µe customers from among these customers and assign e to these
customers. This algorithm can be derandomized via the method of conditional expectations.
General valuation class: Given an integrality-gap-verifying α-approximation algorithm
(for (Pµ)), use Lemma 1 to decompose x∗

α
into a convex combination

∑`
r=1 λrx̂

r of in-
teger solutions to (Pµ). (Here

∑
r λr = 1 and λr ≥ 0 for each r.) Return x̂(r) with

probability λr . Given item prices, this algorithm can be derandomized by choosing the
solution in {x̂(1), . . . , x̂(r)} achieving maximum profit.

Analysis. The analysis for both subadditive valuations and a general valuation class pro-
ceeds very similarly with the only point of difference being in the analysis of the round-
ing procedure (Lemma 4). First, observe that if we have an allocation (S1, . . . , Sn) that
is feasible with unit capacities, then since the sets Sj are disjoint we can charge each
customer her valuation for the assigned set by pricing one of her items at this value, and
hence, obtain profit equal to the social-welfare value

∑
j vj(Sj) of the allocation.

Lemma 2. Given an LP-based α-approximation algorithm for the SWM problem with
a given valuation class, one can compute a solution that achieves profit at least OPT (1)/α.

Lemma 3 ([7] paraphrased). Let (Ck): min kT y + bT z s.t. (y, z) ∈ P ⊆ Rm+n
+ ,

where k, y ∈ Rm+ , b, z ∈ Rn+, P 6= ∅. Let (y(k), z(k)) be an optimal solution to (Ck)
that maximizes kT y among all optimal solutions, and opt(k) denote the optimal value.
Let k1, . . . , k`, and u be as defined in steps 1 and 2 respectively of Algorithm 1. Then,∑
e uey

(u)
e ≥

(
opt(c)− opt(1)

)
/
(
2(1 + ε)Hcmax

)
.

Corollary 1. The capacity-vector u computed in step 2 of Algorithm 1 satisfies the
inequality

∑
e uey

(u)
e ≥

(
OPT (c)−OPT (1)

)
/
(
2(1 + ε)Hcmax

)
.

Lemma 4. Let x̂ be the integer solution returned by Round in step 3 of Algorithm 1.
Then x̂ combined with the pricing y(u) is a feasible solution to the profit-maximization
problem with probability 1, which achieves expected profit at least (i)

(
1− 1

e

)∑
e uey

(u)
e

for subadditive valuations; and (ii)
∑
e uey

(u)
e /α for a general valuation class.
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Theorem 3. Algorithm 1 runs in time poly
(
input size, 1ε

)
and achieves an

(i) O(log cmax)-approximation for subadditive valuations, using the 2-approximation
algorithm for the SWM problem with subadditive valuations in [9];

(ii) O(α log cmax)-approximation for a general valuation class given an integrality-
gap-verifying α-approximation algorithm for the SWM problem.

Remark 2. Note that if the allocation (S1, . . . , Sn) returned by Algorithm 1 is ob-
tained via Round, then Sj is always a subset of a utility-maximizing set of j, and with
a general valuation class, if Sj 6= ∅, it is a utility-maximizing set (under the com-
puted prices). Also, if (S1, . . . , Sn) is obtained in step 4, then we may assume that
vj(Sj) > vj(Sj \ {e}) for all e ∈ Sj ; moreover, with a general valuation class, this so-
lution can be modified to yield an approximate “one-sided envy-freeness” property. We
compute (S1, . . . , Sn) by rounding x(1) as described in Lemma 1. Now choose prices
{p′e} (arbitrarily) such that p′ ≥ y(1) and p′(Sj) = max{y(1)(Sj), (1 − ε)vj(Sj)} for
every j. Since any non-empty Sj is a utility-maximizing set under y(1), it follows that
(a) p′ is a valid item-pricing yielding profit at least (1 − ε)

∑
j vj(Sj); (b) if Sj 6= ∅,

then the utility j derives from Sj under p′ is at least ε(max utility of j under p′).

3.1 Applications

Arbitrary valuation functions. The integrality gap of (P) is known to be Θ(
√
m), and

there are efficient (deterministic) algorithms that verify this integrality gap [15, 12]. So
Theorem 3 immediately yields an O(

√
m log cmax)-approximation algorithm for the

profit-maximization problem for combinatorial auctions with arbitrary valuations.

Non-single-minded tollbooth problem on trees. In this profit-maximization problem,
items are edges of a tree and customers desire paths of the tree. More precisely, let
P denote the set of all paths in the tree (including ∅). Each customer j has a value
vj(S) ≥ 0 for path S ∈ P , and may be assigned any (one) path of the tree. This leads
to the structured valuation function vj : 2[m] 7→ R+ where vj(T ) = max{vj(S) :
S is a path in T}. We use Algorithm 1 to obtain anO(log cmax)-approximation guaran-
tee by formulating an LP-relaxation of the SWM problem that is tailored to this setting
and designing an O(1)-integrality-gap-verifying algorithm for this LP.

The “new” LP is almost identical to (P), except that we now only have variables
xj,S for S ∈ P . Correspondingly, in the dual (D), we only have a constraint for (j, S)
when S ∈ P . Clearly, this new LP satisfies the properties stated in Remark 1, so parts
(i) and (iii) of Claim 1 hold for this new LP, and so does Lemma 1. Thus, we only need
to design an O(1)-integrality-gap-verifying algorithm for this new LP to apply Theo-
rem 3. Let {vj : P 7→ R+}j∈[n] be any instance and x∗ be an optimal solution to this
new LP for this instance. We design a randomized algorithm that returns a (random) in-
teger solution x̂ of expected objective value Ω(

∑
j,S∈P vj(S)x

∗
j,S). This algorithm can

be derandomized using the work of [16]; this yields an O(1)-integrality-gap-verifying
algorithm for the new LP. Our algorithm is a generalization of the one proposed by [6]
for unsplittable flow on a line. Root the tree at an arbitrary node. Define the depth of an
edge (a, b) to be the minimum of the distances of a and b to the root. Define the depth
of an edge-set T to be the minimum depth of any edge in T . Let α = 0.01.
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1. Independently, for every customer j, choose at most one path S, by picking S with
probability αx∗j,S . Let Sj be the set assigned to j. (If j is unassigned, then Sj = ∅.)

2. Let W = ∅. Consider the sets {Sj} in non-decreasing order of their depth (breaking
ties arbitrarily). For each set T = Sj , if T can be added to {Si : i ∈ W} without
violating any capacities, add j to W , otherwise discard T .

Let x̂ be the (random) integer solution computed. Using a similar argument as in [6],
we can prove that Pr[x̂j,S = 1] ≥ 0.004x∗j,S , so E

[∑
j,S∈P vj(S)x̂j,S

]
≥ 0.004 ·∑

j,S∈P vj(S)x
∗
j,S . We thus obtain the following theorem as a corollary of Theorem 3.

Theorem 4. There is an O(1)-integrality-gap-verifying algorithm for the above LP,
and thus an O(log cmax)-approx. algorithm for the non-SM tollbooth problem on trees.

Since the above algorithm satisfies the rounding property in Lemma 1, we can use it to
round x(u) (more efficiently) to a feasible allocation in step 3 of Algorithm 1, instead
of using the Carr-Vempala procedure (which relies on the ellipsoid method).

4 Refinement for the non-single-minded highway problem

In this section, we describe a different approach that does not use OPTSWM as an upper
bound on the optimum profit. Instead our approach is based on using an exponential-size
configuration LP to decompose the original instance into various smaller (and easier)
instances. We use this to obtain an O(logm)-approx. for the non-SM highway problem
with subadditive valuations, and arbitrary valuations but unlimited supply (Theorem 2).

Let P be the set of all intervals on the line (with m edges). As with the non-SM
tollbooth problem on trees, each customer j has a value for each subpath (which is now
an interval). So we view vj as a function vj : P 7→ R+, and subadditivity means that
vj(A∪B) ≤ vj(A)+vj(B) for any two intervalsA,B, whereA∪B is also an interval.

We sketch the proof of Theorem 2. First, we use a standard decomposition to par-
tition the intervals in P into O(logm) disjoint sets, where each set is a union of item-
disjoint “pyramids”. A pyramid is a set of paths that share a common edge; two pyra-
mids P1 and P2 are item-disjoint, if A ∩ B = ∅ for all A ∈ P1, B ∈ P2. Thus, to
get an O(logm)-approximation algorithm, it suffices to give an O(1)-approximation
algorithm when the intervals form a union of item-disjoint pyramids. It is unclear how
to achieve a near-optimal solution even in this structured setting, as there are various
dependencies between the pyramids in a set: a customer can only be assigned an interval
in one of the pyramids. We solve this “union-of-pyramids” pricing problem as follows.
We first trim each pyramid Pi in our set randomly to a one-sided half-pyramid Hi by
(essentially) ignoring the items to the left or right of the common edge ofPi. The details
of this truncation are slightly different depending on whether we have subadditive or ar-
bitrary valuations, but a key observation is that, in expectation, we only lose a factor of
2 by this truncation. We formulate an LP-relaxation for the pricing problem involving
these half-pyramids. Let Ri denote the set of all possible solutions for Hi, where a so-
lution specifies a pricing of the intervals in Hi (rounded to the nearest power of 2) and
an allocation of intervals to customers satisfying the budget and capacity constraints.
We introduce a variable yjp ≥ 0 for each customer j and price p denoting if customer
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j buys a path at price p, and a variable xi,R for each R ∈ Ri denoting whether solution
R has been chosen forHi. Let pj(R) be the price that j pays under the solution R, and
Ri,j,p =

{
R ∈ Hi : pj(R) = p

}
be the set of solutions forHi where j pays price p. We

consider the following LP: max
∑
j,p p·yjp s.t.

∑
R∈Ri

xi,R = 1 ∀i,
∑
p yjp ≤ 1 ∀j,∑

i,R:R∈Ri,j,p
xi,R ≥ yjp ∀j, p, and xi,R, yjp ≥ 0 ∀i, R, j, p. We solve this LP us-

ing the ellipsoid method on the dual problem; the separation oracle is provided by the
solution to an easier pricing problem, where the half-pyramids are now decoupled. We
devise an algorithm based on dynamic programming to compute a near-optimal solution
to this pricing problem, which then yields a near-optimal solution to the LP. Finally, we
argue that this solution can be rounded to an integer solution losing only anO(1)-factor.
This gives us the desired O(1)-approx. for the “union-of-pyramids” pricing problem,
which in turn yields an O(logm)-approx. for our original non-SM highway problem.

Lemma 5. There is a 16(1 + 1
m )-approx. algorithm for the non-SM highway problem

when intervals form a union of item-disjoint pyramids for (i) subadditive valuations
with limited supply; (ii) arbitrary valuations with unlimited supply.
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