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ABSTRACT
We consider vehicle-routing problems (VRPs) that incorpo-
rate the notion of regret of a client, which is a measure of the
waiting time of a client relative to its shortest-path distance
from the depot. Formally, we consider both the additive and
multiplicative versions of, what we call, the regret-bounded
vehicle routing problem (RVRP). In these problems, we are
given an undirected complete graph G = ({r} ∪ V,E) on n
nodes with a distinguished root (depot) node r, edge costs
{cuv} that form a metric, and a regret bound R. Given a
path P rooted at r and a node v ∈ P , let cP (v) be the dis-
tance from r to v along P . The goal is to find the fewest
number of paths rooted at r that cover all the nodes so
that for every node v covered by (say) path P : (i) its ad-
ditive regret cP (v)− crv, with respect to P is at most R in
additive-RVRP; or (ii) its multiplicative regret, cP (v)/crv,
with respect to P is at most R in multiplicative-RVRP.

Our main result is the first constant-factor approxima-
tion algorithm for additive-RVRP. This is a substantial im-
provement over the previous-best O(logn)-approximation.
Additive-RVRP turns out be a rather central vehicle-routing
problem, whose study reveals insights into a variety of other
regret-related problems as well as the classical
distance-constrained VRP (DVRP), enabling us to obtain guar-
antees for these various problems by leveraging our algo-
rithm for additive-RVRP and the underlying techniques. We
obtain approximation ratios ofO

(
log( R

R−1
)
)

for multiplicative-

RVRP, and O
(
min

{
OPT , logD

log logD

})
for DVRP with distance
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bound D via reductions to additive-RVRP; the latter im-
proves upon the previous-best approximation for DVRP.

A noteworthy aspect of our results is that they are ob-
tained by devising rounding techniques for a natural
configuration-style LP. This furthers our understanding of
LP-relaxations for VRPs and enriches the toolkit of tech-
niques that have been utilized for configuration LPs.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems; G.2 [Discrete
Mathematics]

Keywords
Approximation algorithms; Vehicle routing; Configuration
LPs; LP rounding; Distance-constrained vehicle routing

1. INTRODUCTION
Vehicle-routing problems (VRPs) constitute a broad class

of combinatorial-optimization problems that find a wide range
of applications and have been widely studied in the Oper-
ations Research and Computer Science communities (see,
e.g., [15, 19, 27, 4, 2, 20, 7] and the references therein).
These problems are typically described as follows. There are
one or more vehicles that start at some depot and provide
service to an underlying set of of clients, and the goal is to
design routes for the vehicles that visit the clients as quickly
as possible. The most common way of formalizing the objec-
tive of minimizing client delays is to seek a route of minimum
length, or equivalently, a route that minimizes the maxi-
mum client delay, which gives rise to (the path variant of)
the celebrated traveling salesman problem (TSP). However,
this objective does not differentiate between clients located
at different distances from the depot, and a client closer
to the depot may end up incurring a larger delay than a
client that is further away, which can be considered a source
of unfairness and hence, client dissatisfaction. Adopting a
client-centric approach, we consider an alternate objective
that addresses this unfairness and seeks to design routes
that promote customer satisfaction.

Noting that the delay of a client is inevitably at least the
shortest-path distance from the depot to the client location,
following [25, 22], we seek to ensure that the regret of a client,
which is a measure of its waiting time relative to its shortest-
path distance from the depot, is bounded. More precisely, we



Symmetric metrics Asymmetric metrics

RVRP kRVRP Multiplicative-RVRP Multiplicative-kRVRP DVRP RVRP kRVRP
31 O(k2) O

(
log( R

R−1
)
)

O(1) O
( logD
log logD

)
O(logn) O(k2 logn)

Table 1: Summary of our results. Our main result, for RVRP, yields guarantees for other symmetric-metric problems.

consider the following genre of vehicle-routing problems. We
are given an undirected complete graph G = ({r}∪V,E) on
n nodes with a distinguished root (depot) node r, and met-
ric edge costs or distances {cuv}. Given a path P rooted at
r and a node v ∈ P , let cP (v) be the distance from r to v
along P (i.e., the length of the r-v subpath of P ). There are
two natural ways of comparing cP (v) and crv to define the
regret of a node v on path P . We define the additive regret of
v with respect to P to be cP (v)−crv,1 and the multiplicative
regret of v with respect to P to be cP (v)/crv. We are also
given a regret bound R ≥ 0. Fixing a regret measure, a fea-
sible solution is a collection of paths rooted at r that cover
all the nodes in G such that the regret of every node with
respect to the path covering it is at most R. Thus, a fea-
sible solution to: (i) the additive-regret problem yields the
satisfaction guarantee that every client v is visited by time
crv + R; and (ii) the multiplicative-regret problem ensures
that every client v is visited by time crv · R. The goal is to
find a feasible solution that uses the fewest number of paths.
We refer to these two problems as additive-regret-bounded
VRP (additive-RVRP) and multiplicative-regret-bounded VRP

(multiplicative-RVRP) respectively.
Additive-RVRP has been sometimes referred to as the school-

bus problem in the literature [25, 22, 5]. However, this term
is used to refer to an umbrella of vehicle-routing problems,
some of which do not involve regret, so we use the more de-
scriptive name of additive-RVRP. Both versions of RVRP are
APX-hard via a simple reduction from TSP (Theorem 7.1),
so we focus on approximation algorithms.

Our results. We undertake a systematic study of regret-
related vehicle-routing problems from the perspective of ap-
proximation algorithms. As we illustrate below, additive-
RVRP turns out to be the more fundamental of the above
two problems and a rather useful problem to investigate, and
our study yields insights and techniques that can be applied,
often in a black-box fashion, to derive algorithms for various
vehicle-routing problems that include both regret-related
problems as well as classical problems such as
distance-constrained vehicle routing. We therefore focus on
additive regret; unless otherwise stated, regret refers to ad-
ditive regret, and a regret-related problem refers to the prob-
lem under the additive-regret measure.

Our main result is the first constant-factor approxima-
tion algorithm for (additive) RVRP (Theorem 3.2). This is
a substantial improvement over the previous-best O(logn)-
approximation ratio for RVRP obtained in [5] via the stan-
dard set-cover greedy algorithm and analysis.

A noteworthy aspect of our result is that we develop linear-
programming (LP) based techniques for the problem. While
LP-relaxations have been exploited with striking success in
the design and analysis of approximation algorithms, our
understanding of LP-relaxations for VRPs is quite limited,
and this has been a stumbling block in the design of approx-

1The distinction between the delay and additive regret of a client
is akin to the distinction between the completion time and flow
time of a job in scheduling problems.

imation algorithms for many of these problems. Notably, we
develop LP-rounding techniques for a natural configuration-
style LP-relaxation for RVRP, which is an example of the
set-partitioning model for vehicle routing with time win-
dows (see [27]). While it is not difficult to come up with
such (approximately-solvable) configuration LPs for vehicle-
routing problems, and they have been observed computa-
tionally to provide excellent lower bounds on the optimal
value [9], there are few theoretical bounds on the effective-
ness of these LPs. Moreover, the limited known guaran-
tees (for general metrics) typically only establish logarithmic
bounds [20, 5], which follow from the observation that the
configuration LP can be viewed as a standard set-cover LP.
In contrast, we exploit the structure of our configuration LP
for RVRP using novel methods and prove a constant integral-
ity gap for the relaxation, which serves to better justify the
good empirical performance of these LPs. Although configu-
ration LPs are often believed to be powerful, they have been
leveraged only sporadically in the design of approximation
algorithms; some notable exceptions are [16, 3, 26, 23, 10].
Our work contributes to the toolkit of techniques that have
been utilized for configuration LPs, and our techniques may
find wider applicability.

We use our algorithm for additive-RVRP to obtain an
O
(
log( R

R−1
)
)
-approximation for multiplicative-RVRP with re-

gret bound R (Theorem 4.2). Thus, we obtain a constant-
factor approximation for any fixed R.

Interestingly, our algorithm for RVRP yields improved guar-
antees for (the path-variant of) the classical distance-constrained
vehicle-routing problem (DVRP) [17, 19, 20]—find the fewest
number of rooted paths of length at most D that cover all
the nodes—via a reduction to RVRP. (DVRP usually refers
to the version where we seek tours containing the root; [20]
shows that the path- and tour-versions are within a factor of
2 in terms of approximability.) We obtain an O

(
logRmax

log logRmax

)
-

approximation for DVRP (Theorem 5.1), where Rmax ≤ D
is the maximum regret of a node in an optimal solution,
which improves upon the previous-best O(logD)-guarantee
for DVRP [20]. We believe that this reduction is of indepen-
dent interest. We also exploit our LP-based guarantee for
RVRP to show that the integrality gap of the natural config-
uration LP for DVRP is at most O(OPTLP), where OPTLP

is the optimal value of the LP. This is interesting because
for the standard set-cover LP, there are O(logn)-integrality-
gap examples even when the optimal LP-value is a constant;
although the configuration LP for DVRP is also a set-cover
LP, our result precludes such an integrality-gap construction
for this LP and raises the enticing possibility that the addi-
tional structure in DVRP can be further exploited, perhaps
by refining our methods, to derive improved guarantees.

We leverage our techniques to obtain guarantees for vari-
ous variants and generalizations of RVRP (Section 6), includ-
ing, most notably, (i) the variants where we fix the number
k of rooted paths (used to cover the nodes) and seek to mini-
mize the maximum additive/multiplicative regret of a node,



which we refer to as additive/multiplicative- kRVRP; and (ii)
(additive) RVRP and kRVRP in asymmetric metrics.

We obtain an O(k2)-approximation for additive-kRVRP,
(Theorem 6.2), which is the first approximation guaran-
tee for kRVRP. Previously, the only approximation results
known for kRVRP were for the special cases where we have a
tree metric [5] (note that the O(logn)-distortion embedding
of general metrics into tree metrics does not approximate
regret), and when k = 1 [4]. In particular, no approxima-
tion guarantees were known previously even when k = 2;
in contrast, we achieve a constant-factor approximation for
any fixed k. Partially complementing this result, we show
that the integrality gap of the configuration LP for kRVRP
is Ω(k) (Theorem 7.3). Multiplicative-kRVRP turns out to
be an easier problem, and the LP-rounding ideas in [6] yield
an O(1)-approximation for this problem (Theorem 6.3).

For asymmetric metrics, we exploit the simple but key
observation that regret can be captured via a suitable asym-
metric metric that we call the regret metric creg (see Fact 2.1).
This alternative view of regret yields surprising dividends,
since we can directly plug in results for asymmetric met-
rics to obtain results for regret problems. In particular, re-
sults for k-person asymmetric s-t TSP-path [12, 11] trans-
late to results for asymmetric RVRP and kRVRP, and we
achieve approximation ratios of O(logn) and O(k2 logn) re-
spectively for these two problems. Although regret metrics
form a strict subclass of asymmetric metrics, we uncover an
interesting connection between the approximability of asym-
metric RVRP and ATSP. We show that an α-approximation
for asymmetric RVRP implies a 2α-approximation for ATSP

(Theorem 7.2); thus an ω(log log n)-improvement to the ap-
proximation we achieve for asymmetric RVRP would improve
the current best O

(
logn

log logn

)
-approximation for ATSP [1].

Our techniques. Our algorithm for additive-RVRP (see Sec-
tion 3) is based on rounding a fractional solution to a natu-
ral configuration LP (P), where we have a variable for every
path of regret at most R and we enforce that every node
is covered to an extent of 1 by such paths. Although this
LP has an exponential number of variables, we can obtain
a near-optimal solution x∗ by using an approximation algo-
rithm for orienteering [4, 7] (see “Related work”) to provide
an approximate separation oracle for the dual LP.

Let k∗ =
∑
P x
∗
P . To round x∗, we first observe that it

suffices to obtain O(k∗) paths of total regret O(k∗R) (see
Lemma 2.2). At a high level, we would ideally like to en-
sure that directing the paths in the support of x∗ away from
the root yields a directed acyclic graph H. If we have this,
then by viewing x∗ as the path decomposition of a flow in
H, and by the integrality property of flows, we can round
x∗ to an integral flow that covers all the nodes, has value at
most dk∗e, and whose cost in the regret metric is at most the
creg-cost of x∗, which is at most k∗R. This integral flow de-
composes into a collection of dk∗e paths that cover V (since
H is acyclic), which yields the desired rounding.

Of course, we need not be in this ideal situation. Our goal
will be to identify a subset W of “witness nodes” such that:
(a) x∗ can be converted into a fractional solution that covers
W and has the above acyclicity-property without blowing up
the creg-cost by much; and (b) nodes in V \W can be attached
to W incurring only an O(k∗R) cost. The new fractional
solution can then be rounded to obtain integral paths that
cover W , which can then be extended so that they cover V .

In achieving this goal, we gain significant leverage from the
fact that the configuration LP yields a collection of fractional
paths that cover all the nodes, which is a stronger property
than having a flow where every node has at least one unit of
incoming flow. We build a forest F of cost O(k∗R) and select
one node from each component of F as a witness node; this
immediately satisfies (b). The construction ensures that:
first, every witness node w has an associated collection of
“witness paths” that cover it to a large extent, say, 1

2
; and

second, for every path P , the witness nodes that use P as
a witness path have strictly increasing distances from the
root r and occur on P in order of their distance from r.
It follows that by shortcutting each path to only contain
the witness nodes that use the path as a witness path, and
blowing up the x∗ values by 2, we achieve property (a).

Our algorithms for multiplicative-RVRP and DVRP capital-
ize on the following insight. If there exist k paths covering a
given set S of nodes incurring additive regret at most R for
these nodes, then, for any ε > 0, we can use our algorithm
for RVRP to cover S with O

(
k
ε

)
paths causing additive re-

gret at most εR to the nodes in S. For multiplicative-RVRP
with regret bound R, an O

(
log( R

R−1
)
)
-approximation fol-

lows by applying this observation to the nodes in every“ring”
Vi := {v : crv ∈ [2i−1, 2i)}, and concatenating the paths ob-
tained for the Vis whose indices are O

(
log( R

R−1
)
)

apart.
For DVRP, we use dynamic programming to obtain the

regret bounds and the corresponding node-sets to cover via
paths satisfying the regret bound. Crucially, in the analysis,
we bound the number of paths needed to cover a set of nodes
with a given regret bound by suitably modifying the paths of
a structured near-optimal solution O. We then argue that a
specific choice (depending on O) of regret bounds and node-
sets yields an O

(
logRmax

log logRmax

)
-approximation. In doing so,

we argue that each choice of regret bound is such that we
make progress by decreasing either the regret bound or the
number of paths needed. Since our RVRP-algorithm is in fact
LP-based, this also yields a bound on the integrality gap of
the natural configuration LP for DVRP.

For the O(OPTLP) integrality-gap result for DVRP, we
show that one can partition the nodes so that for each part
S, there is a distinct node tS such that the paths ending at
tS cover the S-nodes to an extent of Ω

(
1

OPTLP

)
. Multiply-

ing the LP-solution by O(OPTLP) then yields a fractional
solution that covers the S-nodes

Related work. There is a wealth of literature on vehicle
routing problems (see, e.g., [27]), and the survey [22] dis-
cusses a variety of problems under the umbrella of schoolbus-
routing problems; we limit ourselves to the work that is rele-
vant to our problems. The use of regret as a vehicle-routing
objective seems to have been first considered in [25], who
present various heuristics and empirical results.

Bock et al. [5] developed the first approximation algo-
rithms for RVRP, but focus mainly on tree metrics, for which
they achieve a 3-approximation. For general metrics, they
observe that RVRP can be cast as a covering problem, and
finding a minimum-density set is an orienteering problem [14,
4]: given node rewards, end points s, t, and a length bound
B, find an s-t path of length at most B that gathers max-
imum total node-reward. Thus, the greedy set-cover algo-
rithm combined with a suitable O(1)-approximation for ori-
enteering [4, 7] immediately yields anO(logn)-approximation
for RVRP. Previously, this was the best approximation algo-



rithm for RVRP in general metrics. For kRVRP, no previous
results were known for general metrics, even when k = 2.
(Note that we obtain a constant approximation for kRVRP
for any fixed k.) [5] obtain a 12.5-approximation for kRVRP
in tree metrics. When k = 1, kRVRP becomes as a special
case of the min-excess path problem introduced by [4], who
devised a (2 + ε)-approximation for this problem.

To the best of our knowledge, multiplicative regret, and
the asymmetric versions of RVRP and kRVRP have not been
considered previously. Our algorithm for multiplicative-kRVRP
uses the LP-based techniques developed by [6] for the mini-
mum latency problem. The set-cover greedy algorithm can
also be applied to asymmetric RVRP. This yields approxima-

tion ratios of O
(

log3 n
log logn

)
in polytime, and O(log2 n) in quasi-

polytime using the O
(

log2 n
log logn

)
- and O(log OPT )- approxi-

mation algorithms for directed orienteering in [21] and [8]
respectively. Both factors are significantly worse than the
O(logn)-approximation that we obtain via an easy reduc-
tion to kATSPP (find k s-t paths of minimum total cost
that cover all nodes). Friggstad et al. [12] obtained the
first results for kATSPP which were later improved by [11]
to an O(k logn)-approximation and a bicriteria result that
achieves O(logn)-approximation using at most 2k paths.

Replacing the notion of client-regret in our problems with
client-delay gives rise to some well-known vehicle-routing
and TSP problems. The client-delay version of RVRP cor-
responds to (path-) DVRP. Nagarajan and Ravi [20] give an
O(log min{D,n})-approximation for general metrics, and a
2-approximation for trees. Obtaining a constant-factor ap-
proximation for DVRP in general metrics has been a long-
standing open problem. As noted earlier, regret can be
captured by the asymmetric regret metric and thus RVRP

is precisely (path-) DVRP in the regret metric. Thus, our
work yields an O(1)-approximation for DVRP in this specific
asymmetric metric. We find this to be quite interesting and
surprising since one would normally expect that DVRP would
become harder in an asymmetric metric.

The client-delay version of kRVRP yields the kTSP problem
of finding k rooted paths of minimum maximum cost that
cover all nodes, which admits a constant-factor approxima-
tion via a reduction to TSP.

The orienteering problem plays a key role in vehicle-routing
problems, including our algorithm for RVRP where it yields
an approximate separation oracle for the dual LP. Blum et
al. [4] obtained the first constant-factor approximation algo-
rithm for orienteering, and the current best approximation
is 2 + ε due to Chekuri et al. [7]. [21, 7] study (among other
problems) directed orienteering and obtain approximation

ratios of O
(

log2 n
log logn

)
and O(log2 OPT ) respectively. The

backbone of all of these algorithms is the min-regret K-path
problem (called the min-excess path problem in [4])—choose
a min-regret path covering at leastK nodes—which captures
kRVRP when k = 1.[8] used a different approach and gave a
quasi-polytime O(log OPT )-approximation for directed ori-
enteering. Finally, Bansal et al. [2] and Chekuri et al. [7]
consider orienteering with time windows, where nodes have
time windows and we seek to maximize the number of nodes
that are visited in their time windows, and its special case
where nodes have deadlines, both of which generalize orien-
teering. They obtain polylogarithmic approximation ratios
for these problems.

2. PRELIMINARIES
Recall that an instance of RVRP is specified by a complete

undirected graph G = ({r}∪V,E), where r is a distinguished
root node, with metric edge costs {cuv}, and a regret bound
R. Let n = |V | + 1. We call a path in G rooted if it
begins at r. Unless otherwise stated, we think of the nodes
on P as being ordered in increasing order of their distance
along P from r, and directing P away from r means that
we direct each edge (u, v) ∈ P from u to v if u precedes
v (under this ordering). We use Dv to denote crv for all
v ∈ V ∪ {r}. For a set S of edges, we sometimes use c(S)
to denote

∑
e∈S ce. We may assume that cuv > 0 and is an

integer for all (u, v) ∈ V ∪{r} since nodes at distance 0 from
each other may be merged.

Unless otherwise stated, we focus throughout on additive
regret. It will be convenient to assume that R > 0: if R =
0 then we can determine whether an edge (u, v) lies on a
shortest rooted path, and if so direct (u, v) as u → v if
Dv = Du+cuv, to obtain a directed acyclic graph (DAG) H.
Our problem then reduces to finding the minimum number
of directed rooted paths in H to cover all the nodes, which
can be solved efficiently using network-flow techniques. The
following equivalent way of viewing regret will be convenient.
For every ordered pair of nodes u, v ∈ V ∪ {r}, define the
regret distance (with respect to r) to be creguv := Du+cuv−Dv.

Fact 2.1 (i) The regret distances creguv are nonnegative and
satisfy the triangle inequality: creguv ≤ creguw+cregwv for all u, v, w ∈
V ∪ {r}. Hence, {creguv} forms an asymmetric metric that we
call the regret metric.
(ii) For a u ; v path P , we have creg(P ) :=

∑
e∈P c

reg
e =

Du + c(P )−Dv, and for a cycle Z, we have creg(Z) = c(Z).
Properties (i) and (ii) hold even when the underlying {cuv}
metric is asymmetric.

We infer from Fact 2.1 that if P is a rooted path and
v ∈ P , then the regret of v with respect to P is simply the
creg-distance to v along P , which we denote by cregP (v), and
the regret of nodes on P cannot decrease as one moves away
from the root (since creg ≥ 0). We define the regret of P
to be the regret of the end-node of P , which by part (ii) of
Fact 2.1 is given by creg(P ) =

∑
e∈P c

reg
e .

Lemma 2.2 makes the key observation that one can al-
ways convert a collection of paths with average regret at
most αR into one where every path has regret at most R by
blowing up the number of paths by an O(max{α, 1}) factor,
and hence, it suffices to obtain a near-optimal solution with
average regret O(R).

Lemma 2.2 Given rooted paths P1, . . . , Pk with total regret
αkR, we can efficiently find at most (α+ 1) · k rooted paths,

each regret at most R, that cover
⋃k
i=1 Pi.

Proof. Let α1R, . . . , αkR be the regrets of P1, . . . , Pk
respectively. We show that for each path Pi, we can obtain
max{dαie , 1} rooted paths of regret at most R that cover
the nodes of Pi. Applying this to each path Pi, we obtain
at most

∑k
i=1(αi + 1) = (α+ 1) · k rooted paths with regret

at most R that cover
⋃k
i=1 Pi.

Fix a path Pi. If αi ≤ 1, there is nothing to be done, so
assume otherwise. The idea is to simply break Pi at each
point where the regret exceeds a multiple of R, and connect
the starting point of each such segment directly to r. More



formally, for ` = 1, . . . , βi := dαie−1, let v` be the first node
on P with cregP (v) > `R, and let u`−1 be its (immediate)
predecessor on P . Let v0 = r and uβi be the end point
of Pi. We create the dαie paths given by r, v` ; u` for
` = 0, . . . , βi, which clearly together cover the nodes of Pi.
The regret of each such path is cregrv` + cregP (u`) − cregP (v`) =
cregP (u`) − cregP (v`) ≤ (` + 1)R − `R = R, where the last
inequality follows from the definitions of v`, v`+1 and u`
(which precedes v`+1).

Algorithms for symmetric TSP variants often exploit the
fact that edges may be traversed in any direction, to convert
a connected subgraph into an Eulerian tour while losing a
factor of 2 in the cost. This does not work for RVRP since
creg is an asymmetric metric. Instead, we exploit a key ob-
servation of Blum et al. [4], who identify portions of a rooted
path P whose total c-cost can be charged to creg(P ).

Definition 2.3 Let P be a rooted path ending at w. Con-
sider an edge (u, v) of P , where u precedes v on P . We
call this a red edge of P if there exist nodes x and y on
the r-u portion and v-w portion of P respectively such that
Dx ≥ Dy; otherwise, we call this a blue edge of P . For a
node x ∈ P , let red(x, P ) denote the maximal subpath Q of
P containing x consisting of only red edges (which might be
the trivial path {x}).

We call a maximal blue/red subpath of a rooted path P
a blue/red interval of P . The blue and red intervals of P
correspond roughly to the type-1 and type-2 segments of P ,
as defined in [4]. Distinguishing the edges on P as red or
blue serves two main purposes. First, the total cost of the
red edges is proportional to the regret of P (Lemma 2.4).
Second, if we shortcut P so that it contains only one node
from each red interval, then the resulting edges must all
be distance increasing (Lemma 2.5). Consequently, if we
perform this operation on a collection of paths and direct
edges away from the root, then we obtain a DAG.

Lemma 2.4 (Blum et al. [4]) For any rooted path P , we
have

∑
e red on P ce ≤

3
2
creg(P ).

Lemma 2.5 (i) Suppose u, v are nodes on a rooted path P
such that u precedes v on P and red(u, P ) 6= red(v, P ), then
Du < Dv. (ii) Hence, if P ′ is obtained by shortcutting P so
that it contains at most one node from each red interval of
P , then for every edge (x, y) of P ′ with x preceding y on P ′,
we have Dx < Dy.

Proof. Since u precedes v on P and red(u, P ) 6= red(v, P ),
there must be some edge (a, b) ∈ P such that (a, b) is blue on
P , and a, b lie on the u-v portion of P (it could be that a = u
and/or b = v). So if Du ≥ Dv then (a, b) would be classified
as red. Part (ii) follows immediately from part (i).

Orienteering. Our algorithms are based on rounding the
solution to an exponential-size LP-relaxation of the prob-
lem. A near-optimal solution to this LP can be obtained by
solving the dual LP approximately. The separation oracle
for the dual LP corresponds to a point-to-point orienteering
problem, which is defined as follows. We are given an undi-
rected complete graph with nonnegative node-rewards, edge
lengths that form a metric, origin and destination nodes s,

t, and a length bound B. The goal is to find an s-t path
P of total length at most B that gathers maximum total
reward. In the rooted orienteering problem, we only spec-
ify the origin s, and a path rooted at s. Unless otherwise
stated, we use orienteering to mean point-to-point orienteer-
ing. Clearly, an algorithm for orienteering can also be used
for rooted orienteering. A related problem is the min-excess
path (MEP) problem defined by [4], where we are given s, t,
and a target reward Π, and we seek to find an s-t path of
minimum regret that gathers reward at least Π.

In the unweighted version of these problems, all node re-
wards are 0 or 1. Observe that the weighted versions of
these problems can be reduced to their unweighted version
in pseudopolynomial time by making co-located copies of a
node. For orienteering, by suitably scaling and rounding the
node-rewards, one can obtain a poly

(
input size, 1

ε

)
-time re-

duction where we lose a (1+ ε)-factor in approximation. For
MEP, this data rounding yields a bicriteria approximation
where we obtain an s-t path with reward at least Π/(1 + ε).
Both the unweighted and weighted versions of orienteering
and MEP are NP-hard. The current best approximation fac-
tors for these problems are (2 + ε) for orienteering due to
Chekuri et al. [7], and (2 + ε) for unweighted MEP due to
Blum et al. [4], for any positive constant ε.

3. AN LP-ROUNDING CONSTANT-FACTOR
APPROXIMATION FOR (ADDITIVE) RVRP

We consider the following configuration-style LP-relaxation
for RVRP, which was also mentioned in [5]. Let CR denote
the collection of all rooted paths with regret at most R. We
introduce a variable xP for each path P ∈ CR to denote if P
is chosen. Throughout, we use P to index paths in CR.

min
∑
P

xP s.t.
∑
P :v∈P

xP ≥ 1 ∀v ∈ V, x ≥ 0. (P)

Let OPT denote the optimal value of (P). Note that
OPT ≥ 1. It is easy to give a reduction from TSP showing
that it is NP-complete to decide if there is a feasible solu-
tion that uses only 1 path; hence, it is NP-hard to achieve an
approximation factor better than 2 (Theorem 7.1). Comple-
menting this, we devise an algorithm for RVRP based on LP-
rounding that achieves a constant approximation ratio (and
thus yields a corresponding integrality-gap bound). This is
a significant improvement over the previous-best O(logn)-
approximation ratio obtained by [5]. Although (P) has an
exponential number of variables, one can obtain a near-
optimal solution x∗ by solving the dual LP (which has an
exponential number of constraints) to near-optimality via
the use of an approximation algorithm for orienteering to
obtain an approximate separation oracle for the dual.

Lemma 3.1 We can use a γorient-approximation algorithm
for orienteering to efficiently compute a feasible solution x∗

to (P) of value at most γorient ·OPT .

Let k∗ =
∑
P x
∗
P ≤ γorient ·OPT . Our goal is to round x∗

to a solution using at most O(k∗) paths that have average
regret O(R). We can then apply Lemma 2.2 to obtain O(k∗)
paths, each having regret at most R, and thereby obtain an
O(1)-approximate solution. We prove the following theorem.

Theorem 3.2 We can efficiently round x∗ to a solution
using at most (8 + 4

√
3)k∗ + 1 rooted paths. This yields



(8 + 4
√

3)γorientOPT + 1 ≤ 30.86 ·OPT rooted paths by tak-
ing γorient = 2 + ε [7], and shows that the integrality gap of
(P) is at most 9 + 4

√
3 ≤ 15.93.

We present a rounding procedure that obtains a slightly
worse approximation ratio. We show how to obtain the guar-
antee stated above in the full version of the paper. Let
supp(x∗) := {P : x∗P > 0} be the paths in the support of
x∗. To gain some intuition, suppose first that it happens
that when we direct every path P ∈ supp(x∗) away from r,
we obtain a directed graph H that is acyclic. We can then
set up a network-flow problem to find a minimum creg-cost
flow in H of value at most dk∗e such that every node has at
least one unit of flow entering it. Since x∗ can be viewed as
a path decomposition of a feasible flow of creg-cost at most
k∗R, by the integrality property of flows, there is an integral
flow of creg-cost at most k∗R. Since H is acyclic, this flow
may be decomposed into at most dk∗e paths that cover all
the nodes, and the average regret of this path collection is
at most R, so we obtain the desired rounding.

Of course, in general H will not be acyclic and rounding
x∗ as above may yield an integral flow that does not decom-
pose into a collection of only paths. So we seek to identify a
subset W ⊆ V of “witness” nodes and a collection of O(k∗)
fractional paths from CR covering W such that: (a) direct-
ing each path in this collection away from r yields a DAG;
and (b) given any collection of integral paths covering W ,
one can graft the nodes of V \W into these paths (to ob-
tain new paths covering V ) incurring an additional creg-cost
of O(k∗R). Property (a) allows one to use the aforemen-
tioned network-flow argument to obtain O(k∗) paths cover-
ing W with total regret O(k∗R), and property (b) enables
one to modify this to obtain O(k∗) (integral) paths covering
V while keeping the total regret to O(k∗R) (so that one can
then apply Lemma 2.2).

To obtain W , we carefully construct a forest F of cost
O(k∗R) (step A1 below) with the property that for every
component Z of F , we can associate a single node w ∈ Z,
which we include inW , such that there is a total x∗-weight of
at least 0.5 in paths P containing w for which red(w,P ) ⊆ Z.
Notably, we achieve this in a rather clean and simple way
by defining a downwards-monotone cut-requirement function
based on the fractional solution x∗ that encodes the above
requirement, an idea that we believe has wider applicability,
especially for network-design problems.

Once we have such a forest, property (b) holds by con-
struction since the total cost of F is O(k∗R) (Lemma 3.3).
Moreover (step A2), if we shortcut each path P ∈ supp(x∗)
so that it only contains nodes w ∈ W for which red(w,P )
is contained in some component of F , then the resulting
paths cover each node in W to an extent of at least 0.5
and satisfy the conditions of part (ii) of Lemma 2.5 (see
Lemma 3.4). So by doubling the fractional values of the
resulting paths, we obtain a fractional-path collection sat-
isfying property (a). Hence, we can obtain O(k∗) integral
paths covering W (step A3) and attach the nodes of V \W
to these paths (step A4) while ensuring that the total regret
remains O(k∗R) (Lemma 3.5), and then apply Lemma 2.2.
We prove in Theorem 3.6 that the resulting solution uses at
most 16k∗ + 1 ≤ 16γorient · OPT + 1 paths. The improved
guarantee stated in Theorem 3.2 follows by fine-tuning the
threshold used to form the forest F . We now describe the
algorithm in detail and proceed to analyze it.

Algorithm 1 Input: A fractional solution x∗ to (P); k∗ =
∑
P x
∗
P .

Output: O(k∗) paths with regret at most R covering all the nodes.

A1. Finding a low-cost forest F . For a subset S ⊆ V ∪ {r}
and a node v, define τ(v, S) :=

∑
P :red(v,P )⊆S x

∗
P ; define

f(S) = 1 if τ(v, S) < 1
2

for all v ∈ S, and 0 otherwise. Note
that f is a downwards-monotone cut-requirement function:
if ∅ 6= A ⊆ B then f(A) ≥ f(B). We call a set S with
f(S) = 1, an active set.

A1.1 Use the 2-approximation algorithm for {0, 1} downwards-
monotone functions in [13] to obtain a forest F such
that |δ(S) ∩ F | ≥ f(S) for every set S ⊆ V ∪ {r}.

A1.2 For every component Z of F , obtain a tour h(Z) travers-
ing all nodes of Z by doubling the edges of Z and short-
cutting. If r /∈ Z, choose a node w ∈ Z such that
τ(w,Z) ≥ 1

2
(which exists since f(Z) = 0); call w the

witness node for Z, and denote Z by Zw. Let W ⊆ V
be the set of all witness nodes.

A2. Obtaining a fractional acyclic flow covering W .

A2.1 For every path P ∈ supp(x∗) we do the following. Let
PW ⊆ P ∩W be the set of witness nodes w ∈ P such
that red(w,P ) is contained in Zw. We shortcut P past
the nodes in P \ (PW ∪ {r}) to obtain a rooted path
φ(P ) spanning the nodes in PW . Note that shortcutting
does not increase the creg-cost. Let C′ = {φ(P ) : P ∈
supp(x∗), φ(P ) 6= {r}} ⊆ CR denote this new collection
of non-trivial paths.

A2.2 Let H = ({r} ∪ V,AH) be the digraph obtained by di-
recting each path in C′ away from r. Let z = (za)a∈AH

be the flow that sends
∑
P :φ(P )=P ′ x

∗
P flow along each

path P ′ ∈ C′. We prove in Lemma 3.4 that H is acyclic,
and that zin(w) :=

∑
a∈δin

H
(w) za ≥

1
2

for every w ∈W .

A3. Use the integrality property of flows to round 2z to an integer
flow ẑ of no greater creg-cost and value k ≤ d2k∗e such that
ẑin(w) ≥ 1 for every w ∈W . Since H is acyclic, we may de-

compose ẑ into k rooted paths P̂1, . . . , P̂k so that (possibly af-

ter shortcutting) every node ofW lies on exactly one P̂i path.

A4. Grafting in the nodes of V \W . If there is a component

Z of F containing r, pick an arbitrary path, say P̂1; modify

P̂1 by traversing h(Z) first and then visiting the nodes of P̂1\
{r} (in the same order as P̂1). Next, for every path P̂i, i =

1, . . . , k, we walk along P̂i and each time we visit a new node

w ∈ W on P̂i we traverse h(Zw) before moving on to the

next node on P̂i. Let P̃i denote the resulting new path.

A5. Apply Lemma 2.2 to P̃1, . . . , P̃k to obtain the final set of
paths (having maximum regret R).

Analysis. Let S(F ) denote the set of components of F .
Note that V ⊆

⋃
Z∈S(F ) Z.

Lemma 3.3 The forest F computed in step A1 has cost at
most 6 · k∗ ·R. Thus,

∑
Z∈S(F ) c(h(Z)) ≤ 12k∗R.

Proof. Consider the following LP for covering the cuts
δ(S) for sets S in A = {S ⊆ V ∪ {r} : S 6= ∅, f(S) = 1}.

min
∑
e

ceze s.t. z(δ(S)) ≥ 1 ∀S ∈ A, z ≥ 0. (C)

Define z by setting ze =
∑
P :e is red on P 2 ·x∗P for all e. This

is a feasible solution to (C) since for every active set S and
every node v ∈ S, we have

1

2
< 1− τ(v, S) ≤

∑
P :red(v,P )6⊆S

x∗P

≤
∑
e∈δ(S)

( ∑
P :e∈red(v,P )

x∗P

)
≤ z(δ(S))/2.



Also,
∑
e ceze = 2

∑
P x
∗
P

(∑
e red on P ce

)
≤ 3

∑
P c

reg(P )x∗P ≤
3k∗R. The penultimate inequality follows from Lemma 2.4,
and the last inequality follows because supp(x∗) ⊆ CR and∑
P x
∗
P = k∗. The 2-approximation algorithm of [13] then

guarantees that c(F ) ≤ 2 · OPT (C) ≤ 6k∗R. Therefore,∑
Z∈S(F ) c(h(Z)) ≤ 2c(F ) ≤ 12k∗R.

Lemma 3.4 (i) For every path P ∈ CR, every red interval
of P contains at most one node of PW ; so φ(P ) visits nodes
v in strictly increasing order of Dv. (ii)

∑
P :w∈φ(P ) x

∗
P ≥ 1

2

for all w ∈ W . (iii) Hence, the digraph H constructed in
step A2 is acyclic, and zin(w) ≥ 1

2
for all w ∈W .

Proof. Part (iii) follows immediately from parts (i) and
(ii). For part (i), recall that PW = {w ∈ P∩W : red(w,P ) ⊆
Zw}. If there are two nodes u, w of PW contained in some
red interval of P then Zu ∩ Zw 6= ∅, but this contradicts
the fact that we add at most one node to W from each
component of F . It follows that φ(P ) contains at most one
node from each red interval of P , and by Lemma 2.5, we
have that φ(P ) visits nodes v in strictly increasing order of
distance Dv. For part (ii), we note that for a node w ∈ W ,
by definition, we have that w ∈ φ(P ) iff red(w,P ) ⊆ Zw. So∑
P :w∈φ(P ) x

∗
P =

∑
P :red(w,P )⊆Zw

x∗P = τ(w,Zw) ≥ 1
2
, where

the last inequality follows from the definition of Zw.

Lemma 3.5 The total regret of the paths P̃1, . . . , P̃k ob-
tained in step A4 is at most 14 · k∗ ·R.

Theorem 3.6 Algorithm 1 returns a feasible solution with
at most 16k∗ + 1 ≤ 16γorient ·OPT + 1 paths.

Proof. Applying Lemma 2.2 to the paths P̃1, . . . , P̃k,
which have total regret at most 14k∗R (by Lemma 3.5),
we obtain a collection of k′ rooted paths of maximum regret
R whose union covers all nodes, where k′ ≤

(
14k∗

k
+ 1
)
k ≤

14k∗ + k ≤ 14k∗ + d2k∗e ≤ 16k∗ + 1.

4. MULTIPLICATIVE-RVRP
Recall that in multiplicative-RVRP, we are given a regret

bound R, and we want to find the minimum number of paths
covering all nodes so that each node v is visited by time
R ·Dv. When R = 1, the problem can be solved in polytime
(as this is simply additive-RVRP with regret bound 0), so we
assume that R > 1. The following observation, which falls
out of Lemma 2.2 will be quite useful.

Lemma 4.1 Let γRVRP be the approximation factor of our
RVRP-algorithm. Suppose there are k paths covering a given
set S of nodes ensuring that every node in S has additive
regret at most ρ. For any ε > 0, one can efficiently obtain
at most

⌊
γRVRPk

⌈
1
ε

⌉⌋
paths covering S such that each node

in S has regret at most ερ.

Theorem 4.2 Multiplicative-RVRP can be reduced to additive-
RVRP incurring an O

(
log( R

R−1
)
)
-factor loss. This yields an

O
(
log( R

R−1
)
)
-approximation for multiplicative-RVRP.

Proof. Let R = 1 + δ. For i ≥ 1, define Vi = {v : 2i−1 ≤
Dv < 2i}. Note that the Vis partition the non-root nodes.
Let O∗ denote the optimal value of the multiplicative-RVRP
instance. We apply Lemma 4.1 with ε = 1

4
to the Vis: for

each Vi, there are O∗ paths covering Vi such that each node

in Vi has regret at most δ · 2i, so we obtain at most N =
b4γRVRPO∗c = O(O∗) paths covering Vi such that each node
in Vi has regret at most δ · 2i−2. Pad these with the trivial
path {r} if needed, to obtain exactly N paths P i1 , . . . , P

i
N .

Let M =
⌈
log2

(
3 + 8

δ

)⌉
= O

(
log2( R

R−1
)
)
. Now for ev-

ery index i = 1, 2, . . . ,M and every j = 1, . . . , N , we con-
catenate the paths P ij , P

i+M
j , P i+2M

j , . . . by moving from the

end-node of P i+aMj to r before following P
i+(a+1)M
j for each

a ≥ 0. This yields MN paths that together cover all nodes.
To finish the proof, we show that every node v is vis-

ited by time R ·Dv. Suppose v ∈ Vi+aM and is covered by
path P i+aMj . It’s visiting time is then at most c

P i+aM
j

(v) +

2
∑
a′<a c(P

i+a′M
j ) ≤ Dv+δ·2i+aM−2+2

(
1+ δ

4

)∑
a′<a 2i+a

′M

which is at most Dv
(
1 + δ

2
+ 4 · 1+δ/4

2M−1

)
≤ R ·Dv.

5. APPLICATIONS TO DVRP
Recall that the goal in DVRP is to find the fewest number

of rooted paths of length at most D that cover all the nodes.
We say that a rooted path P is feasible if c(P ) ≤ D. Let O∗

be the optimal value, and Rmax ≤ D be the maximum regret
of a path in an optimal solution, which we can estimate
within a factor of 2.

As a warm-up, note that a simple O
(
log( Rmax

D−maxv Dv
)
)
-

approximation follows by applying Lemma 4.1 with ε = 1
2

to

the node-sets V0 =
{
v : D−Dv ≥ Rmax

2

}
, and Vi =

{
v : D−

Dv ∈ [Rmax
2i+1 ,

Rmax
2i

)
}

for i = 1, . . . , N =
⌈
log2( Rmax

D−maxv Dv
)
⌉
−

1, which partition V . For each Vi, i ≥ 0, we obtain O(O∗)
paths covering Vi, causing regret at most Rmax

2i+1 to the Vi
nodes; so the length-D prefixes of these paths cover Vi.

We now describe a more-refined reduction that yields an
improved O

(
logRmax

log logRmax

)
-approximation. The algorithm is

again based on choosing suitable pairs of regret bounds and
node-sets, and covering each node-set using paths of the
corresponding regret bound. However, instead of fixing the
regret bounds to be Rmax

2i
, we now obtain them by solving

a dynamic program (DP). Let Si = {v : D − Dv < 2i}
for i = 0, . . . ,M = dlog2De. We use DP to obtain a set
of feasible paths P(i) covering Si for all i. We use F (i)
to denote |P(i)|. For all 0 ≤ k < i, we use our algorithm
for RVRP to find a collection Q(i, k) of paths of regret at
most 2k that cover Si, Let P(0) be the fewest number of
paths of regret 0 (and hence are feasible) that cover the
nodes with Dv = D, which we can efficiently compute. For
i > 0, we set F (i) = min0≤k<i

(
|Q(i, k)|+ F (k)

)
; if k′ is the

index that attains the minimum, then we set P(i) = P(k)∪
(length-D prefixes of the paths in Q(i, k)). We return the
solution P(M) (which we show is feasible).

The analysis requires various novel ideas. Fix an optimal
solution O. We define a suitable set of indices, that is, regret
bounds, such that using these indices in the DP yields the
desired bound on the number of paths. In order to establish
a bound on F (i) by plugging in a suitable index k < i we
need two things. First, we need to bound |Q(i, k)|. This re-
quires a more sophisticated analysis than the one suggested
by Lemma 4.1. Instead of directly using all the paths from
O to bound the number of paths of certain regret required to
cover a given set of nodes, we proceed as follows. We argue
that if the paths in O satisfy a certain property, which we
can obtain via preprocessing, then Si is covered by paths of
O of regret at most 2i. We modify theseO-paths by breaking



them up (as in Lemma 2.2) to obtain paths of regret at most
2k that cover Si, which yields a bound on |Q(i, k)|. Second,
we need to argue that we make proper progress when mov-
ing from index i to index k. In a crucial departure from the
previous analysis, we make progress by either suitably de-
creasing the number, or the maximum regret, of the paths,
needed from O to cover the remaining set of nodes.

Theorem 5.1 F (M) ≤ O
(

logRmax
log logRmax

)
·γRVRPO∗. So we ob-

tain an O
(

logRmax
log logRmax

)
-approximation algorithm for DVRP.

In the full version, we prove that the natural configuration
LP for DVRP has integrality gap at most min

{
O(OPTLP),

O
(

logRmax
log logRmax

)}
. (Also, an O(logn) integrality gap follows

from set cover.) This improves upon the O(logD) integral-
ity gap proved in [20], and presents an interesting contrast
with set cover for which there are O(logn)-integrality-gap
examples even when the optimal LP-value is a constant.

6. EXTENSIONS
Additive-kRVRP. Here, we fix the number k ≥ 1 of rooted
paths that may be used to cover all the nodes and seek
to minimize the maximum regret of a node. We approach
kRVRP by considering a related problem, min-sum (addi-
tive) kRVRP, where the goal is to minimize the sum of the
regrets of the k paths. Our techniques are versatile and
yield an O(k)-approximation for min-sum kRVRP, which di-
rectly yields an O(k2)-approximation for kRVRP. These are
the first approximation guarantees for these problems, even
for k = 2. The only previous approximation results for
kRVRP were for the special cases of tree metrics [5], and
when k = 1 [4].

As in Section 3, our algorithm for min-sum kRVRP is based
on LP rounding. Let C denote the collection of all rooted
paths. We now consider the following LP-relaxation for the
problem, where we have a variable xP for every rooted path.
We use OPTR to denote the optimal value of (P2).

min

{ ∑
P∈C

creg(P )xP :
∑

P∈C:v∈P

xP ≥ 1 ∀v ∈ V (1)

∑
P∈C

xP ≤ k, x ≥ 0.

}
(P2)

Lemma 6.1 We can use a γMEP-approximation algorithm
for unweighted MEP to compute, for any ε > 0, a solution
x∗ satisfying (1),

∑
P∈C x

∗
P ≤ k

1−ε , and
∑
P∈C c

reg(P )x∗P ≤
γMEP
1−ε ·OPTR, in time poly

(
input size, 1

ε

)
.

Let k∗ =
∑
P∈C x

∗
P and ν∗ =

∑
P∈C c

reg(P )x∗P . The
rounding procedure in Section 3 yields a bicriteria approx-
imation. Choosing threshold δ = 1 − ε to define the cut-
requirement function in step A1 (as opposed to 1

2
as in A.1.2

of Algorithm 1) yields
⌈
k∗

δ

⌉
= d(1 +O(ε))ke paths with to-

tal regret at most
(
1
δ

+ 6
1−δ

)
ν∗ = O

(
1
ε

)
OPTR.

To obtain a true approximation, we choose ε in Lemma 6.1
so that k∗ ≤ k + 1

3
and set the threshold δ to be 1 − 1

3k+2
.

Steps A1 and A2 of Algorithm 1 then yield a forest F such
that c(F ) ≤ 3

1−δ ·ν
∗ = 3(3k+2)ν∗, a set W of witness nodes,

and an acyclic flow z such that zin(w) ≥ δ for all w ∈ W .
The flow ẑ = z/δ is a flow of value k′ ≤ k∗/δ ≤ k + 2

3
.

But instead of using this to obtain an integral flow of value

at most dk′e, we use the integrality property of flows in a
more subtle manner. We may decompose ẑ into a convex
combination of integral flows z̃1, . . . , z̃` such that each z̃i is
a flow of value at least bk′c satisfying z̃ini (w) ≥ 1 for all
w ∈ W . Therefore the convex combination must place a
weight of at least 1

3
on the z̃i flows that have value at most

k. Choose the flow of value at most k with smallest creg-cost,
and decompose this into k′′ ≤ k rooted paths P̂1, . . . , P̂k′′
so that (maybe after some shortcutting) every node of W

lies on exactly one P̂i path. It follows that the total creg-
cost of P̂1, . . . , P̂k′′ is at most 3 ·

∑
a∈H c

reg
a ẑa ≤ 3 · 3k+2

3k+1
·∑

a∈H c
reg
a za ≤ 4

∑
P∈C c

reg(P )x∗P . Now we apply step A4 to

obtain the final set of paths P̃1, . . . , P̃k′′ .

Theorem 6.2 The above algorithm returns at most k rooted
paths having total regret O(k) · ν∗ = O(k · γMEP) · OPTR.
Thus, we obtain an O(k)-approximation algorithm for min-
sum kRVRP. This leads to an O(k2)-approximation for kRVRP.

Partially complementing the above result, we prove in Sec-
tion 7 that a natural LP-relaxation for kRVRP along the same
lines as (P) and (P2) has an integrality gap of Ω(k).

Multiplicative-kRVRP. This is the version of kRVRP with
multiplicative regret. [6] came up with an LP-formulation
for the (k-route) minimum-latency problem involving vari-
ables xv,t denoting if node v is visited at time t. They prove
that an LP-solution x∗ can be rounded to a feasible so-
lution where the visiting time of every node v is at most
O(1) ·

∑
t tx
∗
v,t. We can adapt these ideas to obtain an O(1)-

approximation for multiplicative-kRVRP, and more gener-
ally, an O(1)-approximation for the problem of minimiz-
ing a weighted sum of the clients’ multiplicative regrets.

Theorem 6.3 There is an O(1)-approximation algorithm
for multiplicative-kRVRP. This guarantee extends to the set-
ting where we want to minimize a weighted sum of the mul-
tiplicative client-regrets (with nonnegative weights).

Asymmetric metrics. We now consider RVRP and kRVRP
in directed graphs, i.e., the distances {cuv} now form an
asymmetric metric. The regret of a node v with respect to a
directed path P rooted at r is defined as before, and we seek
rooted (directed) paths that cover all the nodes. We cru-
cially exploit that, as noted in Fact 2.1, the regret distances
{creguv} continue to form an asymmetric metric. Thus, we
readily obtain guarantees for asymmetric RVRP and asym-
metric min-sum kRVRP by leveraging known results for k-
person s-t asymmetric TSP-path (kATSPP), which is defined
as follows: given two nodes s, t in an asymmetric metric
and an integer k, find k s-t paths of minimum total cost
that cover all the nodes. Friggstad et al. [12] showed how to
obtain O(k logn) s-t paths of cost at most O(logn) ·OPTk,
where OPTk is the minimum-cost kATSPP solution that uses
k paths; this was improved by [11] to the following.

Theorem 6.4 ([11]) For any b ≥ 1, we can efficiently find
at most k + k

b
paths of total cost O(b · logn) ·OPTk.

Theorem 6.4 immediately yields results for asymmetric
min-sum kRVRP—since this is simply kATSPP in the regret
metric!—and hence, for asymmetric kRVRP.

Theorem 6.5 There is an O(k logn)-approximation algo-
rithm for asymmetric min-sum kRVRP. This implies an
O(k2 logn)-approximation for asymmetric kRVRP.



We now focus on asymmetric RVRP. We may now have
cuv = 0, but we may assume that cuv+cvu > 0, otherwise we
can again merge nodes u and v. Consequently, at most one
of (u, v) or (v, u) may lie on a shortest rooted path, and so if
R = 0, we can again efficiently solve the problem by finding
a minimum-cardinality path cover in a DAG. Let O∗ denote
the optimal value of the given asymmetric RVRP instance.
Observe that Lemma 2.2 (as also Lemmas 2.4 and 2.5) con-
tinues to hold when c is asymmetric. Thus, we again seek to
find α ·O∗ paths of average regret β ·R, for suitable values
of α and β. We show that this can be achieved by utilizing
(even) a bicriteria approximation algorithm for kATSPP.

Theorem 6.6 Suppose we have an algorithm for kATSPP
that returns a solution with at most αk s-t paths and cost
at most β · OPTk. Then, one can achieve an O(α + β)-
approximation for asymmetric RVRP. Thus, the results in [12,
11] yield an O(logn)-approximation for asymmetric RVRP.

Proof. Create an auxiliary complete digraphH = (VH , AH),
where VH = {r}∪V ∪{t}. The cost of each arc (u, v) where
u, v ∈ {r}∪V is its regret distance creguv; for every v ∈ {r}∪V ,
the cost of (v, t) is 0 and the cost of (t, v) is ∞. One can
verify that these arc costs form an asymmetric metric.

We consider all values k in 1, . . . , n and consider the kATSPP
instance specified by H, start node r, and end node t. When
k = O∗, we know that there is a solution of cost at most
O∗ · R, so using the given algorithm for kATSPP, we obtain
at most αO∗ r ; t paths in H of total cost at most β ·O∗ ·R.
So the smallest k for which we obtain at most αk paths of
total cost at most β · k · R satisfies k ≤ O∗. Removing t
from these (at most) αk ≤ α · O∗ paths yields a solution in
the original metric having total creg-cost at most β · O∗ · R.
by Lemma 2.2, this can be converted to a feasible solution
using O

(
(α+ β) ·O∗

)
rooted paths.

We can obtain an O(logn)-approximation to OPTk using
(at most) k logn paths [12], or 2k paths (taking b = 1 in The-
orem 6.4); plugging this in yields an O(logn)-approximation
for asymmetric RVRP.

In Section 7, we prove that an α-approximation for asym-
metric RVRP yields a 2α-approximation for ATSP (Theo-
rem 7.2); thus an ω(log logn)-factor improvement to the ap-
proximation ratio obtained in Theorem 6.6 would improve
the state of the art for ATSP.

Non-uniform RVRP. In this broad generalization of RVRP—
which captures both multiplicative-RVRP and DVRP—we have
non-uniform integer regret bounds {Rv}v∈V and we seek the
fewest number of rooted paths covering all the nodes where
each node v has regret at most Rv. Let Rmax = maxv Rv
and Rmin = minv:Rv>0Rv. We apply Lemma 4.1 to the sets
V0 = {v : Rv = 0}, and Vi = {v : 2i−1 ≤ Rv < 2i} for
i = 1, . . . , O(logRmax). There are at most O

(
log2(Rmax

Rmin
)
)

non-empty Vis. Let O∗ be the optimal value. We cover V0

using at most O∗ shortest paths, and cover every other Vi-
set using O(O∗) paths of regret at most 2i−1. This yields a
feasible solution using O

(
log(Rmax

Rmin
)
)
·O∗ paths.

We remark that applying the set-cover greedy algorithm
yields anO(log2 n)-approximation, since finding a minimum-
density set now amounts to a deadline TSP problem [2, 7]
for which we only know of an O(logn)-approximation [2].

Capacitated variants. Vehicle-routing problems are of-
ten considered in capacitated settings, where we are given

a capacity bound C, and a path/route is considered fea-
sible if it contains at most C nodes (and is feasible for
the uncapacitated problem). Capacitated additive-kRVRP
does not admit any multiplicative approximation in poly-
time, since it is NP-complete to decide if there is a solu-
tion with zero regret [24]. However, when we do not fix the
number of paths, a standard reduction [20, 5] shows that
an α-approximation to the uncapacitated problem yields an
(α + 1)-approximation to the capacitated version. This re-
duction also holds in asymmetric metrics. Thus, we obtain
approximation ratios of 31.86 and O(logn) for capacitated
RVRP in symmetric and asymmetric metrics.

7. APPROXIMATION AND INTEGRALITY-
GAP LOWER BOUNDS

We now present lower bounds on the inapproximability
of RVRP and kRVRP, and the integrality gap of the configu-
ration LPs considered. We obtain both absolute inapprox-
imability results (assuming P6=NP), and results relating the
approximability of our problems to that of other well-known
problems. A simple reduction from TSP shows the following.

Theorem 7.1 It is NP-hard to achieve an approximation
factor better than 2 for additive- and multiplicative- RVRP.
Moreover, no additive approximation is possible in polytime.

Next, we prove that the approximability of asymmetric
RVRP is closely related to that of ATSP; in particular, im-
proving the results in Theorem 6.6 by an ω(log logn)-factor
would improve the state-of-the-art for ATSP.

Theorem 7.2 An α-approximation algorithm for RVRP in
asymmetric metrics yields a 2α-approximation for ATSP.

Proof. Suppose we have an ATSP instance with distances
cuv whose optimal value is OPTATSP. For a given parameter
R, the following algorithm will return a solution of cost at
most 2α ·R provided R ≥ OPTATSP. We can then use binary
search to find the smallest R for which the algorithm returns
a solution of cost at most 2α · R, and thus obtain an ATSP

solution of cost at most 2α ·OPTATSP.
Fix any node as the root r. We firs runs the α-approximation

for asymmetric RVRP on the RVRP instance specified by the
metric c and regret bound R to find a collection of rooted
paths P1, . . . , Pk. Let vi be the end node of Pi. For each Pi,
we add the (vi, r) arc to obtain an Eulerian graph. The cost

of the resulting Eulerian tour is
∑k
i=1(c(Pi) + cvir).

We claim that if R ≥ OPTATSP then this cost is at most
2α · R. To see this, note that an optimal solution to the
ATSP instance also yields a Hamiltonian path starting at r
of cost at most R. Since the regret cost of a rooted path is
at most its cost, we infer that the optimum solution to the
asymmetric RVRP instance with regret bound R uses only 1
path. Thus, we obtain that k ≤ α. We know that c(Pi) ≤
Dvi + R, and Dvi + cvir ≤ OPTATSP for every i = 1, . . . , k.

Thus,
∑k
i=1(c(Pi) + cvir) ≤ α(R+ OPTATSP) ≤ 2αR.

Integerality-gap lower bounds. We prove that a natu-
ral configuration-style LP-relaxation for kRVRP has an Ω(k)
integrality gap. A common technique used for min-max
(or bottleneck) problems is to “guess” the optimal value B,
which can often be used to devise stronger relaxations for



the problem as well as strengthen the analysis, since B now
serves as a lower bound on the optimal value; see, e.g., the
algorithms of [18, 26] for unrelated-machine scheduling. We
show that this approach does not work for kRVRP. Given a
guess R on the maximum regret, similar to (P) and (P2),
one can consider the following feasibility problem to deter-
mine if there are k rooted paths in CR (i.e., the collection of
rooted paths with regret at most R) that cover all nodes.∑
P∈CR:v∈P

xP ≥ 1 ∀v ∈ V,
∑
P∈CR

xP ≤ k, x ≥ 0. (P3)

Let RLP be the smallest R for which (P3) is feasible, and
R∗ be the optimal value of the kRVRP instance. We describe
instances where R∗ ≥ k ·RLP.

Theorem 7.3 For any integers h, c ≥ 1, there is a kRVRP
instance with k = c(2h−1) such that RLP ≤ 1 but any integer
solution with maximum regret less than 2h − 1 must use at
least k+ c rooted paths. Thus, (i) c = 1 yields R∗ ≥ k ·RLP;
(ii) taking c = h shows that one needs k+c = k+ k

2h−1
paths

to achieve maximum regret less than (2h− 1)RLP.

Proof. Our instance will consist of copies of the fol-
lowing “ladder graph” Lh = ({r} ∪ V,E). We have V =
{u1, v1, u2, v2, . . . , u2h−1, v2h−1}. Define u0 = r = v0. E
consists of the edges {(ui, ui+1), (vi, vi+1) : 0 ≤ i < 2h− 1},
which have cost h, along with edges {(ui, vi) : 1 ≤ i ≤
2h− 1}, which have unit cost.

Consider the shortest path metric of Lh. Any rooted path
that covers all nodes of Lh must have regret at least 2h− 1
(which is achieved by the path r, u1, v1, v2, u2, . . . , u2h−1, v2h−1).
Consider the paths P1, . . . , P2h−1 given by

Pi =

{
r, u1, u2, . . . , ui, vi, vi+1, vi+2, . . . , v2h−1 if i is odd

r, v1, v2, . . . , vi, ui, ui+1, ui+2, . . . , u2h−1 if i is even

Each Pi has regret exactly 1 and each node w 6= r lies on h
such paths. So setting xPi = 1

h
for all i = 1, . . . , 2h− 1, and

xP = 0 for all other paths in C1 yields a solution that covers
all nodes in V to an extent of 1 using 2− 1

h
paths.

The final instance consists of ch copies of Lh that share
the root r but are otherwise disjoint. We set k = c(2h− 1).
Taking the above fractional solution for each copy of Lh,
yields a feasible solution to (P3) when R = 1. Now consider
any integer solution with maximum regret less than 2h− 1.
Note that any rooted path with regret less than 2h can only
traverse nodes from a single ladder Lh. Also, as noted above,
if a single path covers all the nodes of some copy of Lh, then
this path has regret at least 2h− 1. Therefore, the solution
must use at least 2ch = k + c paths.
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