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Abstract

We consider various stochastic models that incorporate
the notion of risk-averseness into the standard 2-stage
recourse model, and develop novel techniques for solving
the algorithmic problems arising in these models. A
key notable feature of our work that distinguishes it
from work in some other related models, such as the
(standard) budget model and the (demand-) robust
model, is that we obtain results in the black-box setting,
that is, where one is given only sampling access to the
underlying distribution. Our first model, which we call
the risk-averse budget model, incorporates the notion
of risk-averseness via a probabilistic constraint that
restricts the probability (according to the underlying
distribution) with which the second-stage cost may
exceed a given budget B to at most a given input
threshold p. We also a consider a closely-related model
that we call the risk-averse robust model, where we seek
to minimize the first-stage cost and the (1 — p)-quantile
(according to the distribution) of the second-stage cost.

We obtain approximation algorithms for a variety of
combinatorial optimization problems including the set
cover, vertex cover, multicut on trees, and facility lo-
cation problems, in the risk-averse budget and robust
models with black-box distributions. Our main contri-
bution is to devise a fully polynomial approximation
scheme for solving the LP-relazations of a wide-variety
of risk-averse budgeted problems. Complementing this,
we give a simple rounding procedure that shows that
one can exploit existing LP-based approximation algo-
rithms for the 2-stage-stochastic and/or deterministic
counterpart of the problem to round the fractional so-
lution and obtain an approximation algorithm for the
risk-averse problem. To the best of our knowledge, these
are the first approrimation results for problems involv-
ing probabilistic constraints and black-box distributions.
A notable feature of our scheme is that it extends easily

cswamy@math.uwaterloo.ca. Dept. of Combinatorics and
Optimization, Univ. Waterloo, Waterloo, ON N2L 3G1. Sup-
ported in part by NSERC grant 32760-06.

to handle a significantly richer class of risk-averse prob-
lems, where we impose a joint probabilistic budget con-
straint on different components of the second-stage cost.
Consequently, we also obtain approximation algorithms
in the setting where we have a joint budget constraint
on different portions of the second-stage cost.

1 Introduction

Stochastic optimization models provide a means to
model uncertainty in the input data where the uncer-
tainty is modeled by a probability distribution over the
possible realizations of the actual data, called scenar-
i0s. An important and widely-used model is the 2-stage
recourse model: first, given the underlying distribution
over scenarios, one may take some first-stage actions to
construct an anticipatory part of the solution, z, in-
curring an associated cost ¢(z). Then, a scenario A
is realized according to the distribution, and one may
take additional second-stage recourse actions ya incur-
ring a certain cost fa(z,ya). The goal in the standard
2-stage model is to minimize the total expected cost,
c(z) + Ea[fa(z,ya)]. Many applications come under
this setting. An oft-cited motivating example is the 2-
stage stochastic facility location problem. A company
has to decide where to set up its facilities to serve client
demands. The demand-pattern is not known precisely
at the outset, but one does have some statistical in-
formation about the demands. The first-stage decisions
consist of deciding which facilities to open initially, given
the distributional information about the demands; once
the client demands are realized according to this dis-
tribution, we can extend the solution by opening more
facilities, incurring their recourse costs. The recourse
costs are usually higher than the original ones (e.g.,
because opening a facility later involves deploying re-
sources with a small lead time), could be different for
the different facilities, and could even depend on the
realized scenario.

A common criticism of the standard 2-stage model
is that the expectation measure fails to adequately mea-
sure the “risk” associated with the first-stage decisions:



two solutions with the same expected cost are valued
equally. But in realistic settings, one also considers
the risk involved in the decision. For example, in the
stochastic facility location problem, given two solutions
with the same expected cost, one which incurs a mod-
erate second-stage cost in all scenarios, and one where
there is a non-negligible probability that a “disaster sce-
nario” with a huge associated cost occurs, a company
would naturally prefer the former solution.

Our models and results. We consider various
stochastic models that incorporate risk-averseness into
the standard 2-stage model and develop novel tech-
niques for solving the algorithmic problems arising in
these models. A key notable feature of our work that
distinguishes it from work in some other related mod-
els [21, 11], is that we obtain results in the black-box
setting, that is, where one is given only sampling access
to the underlying distribution. To better motivate our
models, we first give an overview of some related mod-
els considered in the approximation-algorithms litera-
ture that also embody the idea of risk-protection, and
point out why these models are ill-suited to the design
of algorithms in the black-box setting.

One simple and natural way of providing some as-
surance against the risk due to scenario-uncertainty is
to provide bounds on the second-stage cost incurred in
each scenario. Two closely related models in this vein
are the budget model, considered by Gupta, Ravi and
Sinha [21], and the (demand-) robust model, consid-
ered by Dhamdhere, Goyal, Ravi and Singh [11]. In
the budget model, one seeks to minimize the expected
total cost subject to the constraint that the second-
stage cost fa(x,ya4) incurred in every scenario A be
at most some input budget B. (In general, one could
have scenario-dependent budgets, but for simplicity we
focus on the uniform-budget model.) Gupta et al. con-
sidered the budget model in the polynomial scenario
setting, where one is given explicitly a list of all sce-
narios (with non-zero probability) and their probabili-
ties, thereby restricting their attention to distributions
with a polynomial-size support. In the robust model
considered by Dhamdhere et al. [11], which is more in
the spirit of robust optimization, the goal is to mini-
mize c(x) + maxa fa(z,ya). It is easy to see how the
two models are related: if one “guesses” the maximum
second-stage cost B incurred by the optimum, then the
robust problem essentially reduces to the budget prob-
lem with budget B; that is, one can use an approxima-
tion algorithm for the budget problem to obtain a near-
optimal solution to the robust problem: scaling down
the second-stage costs (and B) to make the second-stage
contribution negligible) makes the objective functions
of the budget and robust problems essentially identical

(modulo the constant term B). Notice that it is not
clear how to even specify problems with exponentially
many scenarios in the robust model. Feige et al. [14] ex-
panded the model of [11] by considering exponentially
many scenarios, where the scenarios are implicitly spec-
ified by a cardinality constraint. But this seems rather
specialized, especially in the context of stochastic opti-
mization; e.g., in facility location, it is rather stylized
(and overly conservative) to assume that every set of k
clients (for some k) may show up in the second-stage.
We will consider a more general way of specifying (ex-
ponentially many) scenarios in robust problems, where
the input specifies a black-box distribution and the col-
lection of scenarios is then given by the support of this
distribution. We shall call this model the distribution-
based robust-model.

Both the budget and the (distribution-based) ro-
bust model suffer from certain common drawbacks.
A serious algorithmic limitation (see Section 7) is
that for almost any (non-trivial) stochastic problem
(e.g., fractional stochastic set cover with at most 3
{elements,sets,scenarios}), one cannot obtain any ap-
proximation guarantees in the black-box setting using
any bounded number of samples (even allowing for a
bounded budget inflation). Intuitively, this is because
there could be scenarios that occur with vanishingly
small probability that one will almost never encounter
in our samples, but which essentially force one to take
certain first-stage actions in order to satisfy the bud-
get constraints in the budget model, or obtain a low-
cost solution in the robust model. Notice also that
both models adopt the conservative view that one needs
to bound the second-stage cost in every scenario, re-
gardless of how likely it is for the scenario to occur.
In contrast, risk-models considered in the finance and
stochastic-optimization literature, such as the mean-risk
model [29], value-at-risk (VaR) [31, 25, 33], conditional
VaR [35], do factor in the probabilities of different sce-
narios.

Our models for risk-averse stochastic optimization
address the above issues, and significantly refine and
extend the budget and robust models. Our goal is to
come up with a model that is sufficiently rich in mod-
eling power to allow for black-box distributions, and in
which one can obtain strong algorithmic results. Our
models are motivated by the observation that it is pos-
sible to obtain approximation guarantees in the bud-
get model with black-box distributions, if one allows
the second-stage cost to exceed the budget with some
“small” probability p. We can now incorporate this so-
lution concept into the model to arrive at the following
new budget model, which we call the risk-averse bud-
get model. We are now given a probability threshold



p € [0,1] and a budget B, and we seek (x, {y4}) so as to
minimize ¢(x)+E4 [fa(z,ya)] subject to the probabilis-
tic constraint Pra[fa(x,ya) > B] < p. The correspond-
ing risk-averse (distribution-based) robust model seeks
to minimize ¢(z) + Q,[fa(z,ya)], where Q,[fa(z,ya)]
is the (1—p)-quantile of {f4(x,y4)}aca (i-e., the small-
est B such that Pry[fa(x) > B] < p). Notice that p
allows us to control the risk-aversion level and tradeoff
risk-averseness against conservatism (as in [41]). Taking
p = 1 in the risk-averse budget model gives the standard
2-stage recourse model, and p = 0, yields the (standard)
budget- and robust models. In the sequel, we treat p as
a constant that is not part of the input.

We obtain approximation algorithms for a variety
of combinatorial optimization problems (Section 5) in-
cluding the set cover, vertex cover, multicut on trees,
and facility location problems, in the risk-averse bud-
get and robust models with black-box distributions. We
obtain near-optimal solutions that preserve the bud-
get approximately and incur a small blow-up of the
probability threshold. (One should expect to inflate
the budget; otherwise, by setting very high first-stage
costs, one would be able to solve the decision version
of an NP-hard problem!) To the best of our knowl-
edge, these are the first approximation results for prob-
lems with probabilistic constraints and black-box distri-
butions. Our results extend to various more general set-
tings, the most noteworthy one being where we have
a joint budget constraint on different portions of the
second-stage cost. We can also handle non-uniform
scenario-budgets, and a generalization where the goal
is to minimize c(z) plus a weighted combination of
Ea[fa(z,ya)] and Q,[fa(x,ya)]. We mainly consider
risk-averse budgeted problems in the sequel, since (as in
the case of the (standard) budget- and robust-problems)
the risk-averse robust problem reduces to the risk-averse
budgeted problem (see Sections 4.1 and 5).

Our results are built on two components. First,
and this is the technically more difficult component
and our main contribution, we devise a fully polynomial
approximation scheme for solving the LP-relaxations of
a wide-variety of risk-averse problems (Theorem 4.3).
We show that in the black-box setting, for a wide
variety of 2-stage problems, for any €,x > 0, in time
poly(ﬁ), one can compute (with high probability) a
solution to the LP-relaxation of the risk-averse budgeted
problem, of cost at most (1+4¢) times the optimum where
the probability that the second-stage cost exceeds the
budget B is at most p(1 + k). Here X is the maximum
ratio between the costs of the same action in stage
IT and stage I (e.g., opening a facility or choosing a
set). We show in Section 7 that the dependence on

=5 18 unavoidable in the black-box setting (as is the

dependence on A [46]). One major difficulty faced in
solving a probabilistic program such as ours, which
one does not encounter for 2-stage problems, is that
the feasible region of even the fractional risk-averse
problem (i.e., where one can take fractional decisions) is
a non-convex set. Thus, even in the polynomial-scenario
setting, it is not clear how to solve (even) the fractional
risk-averse problem (in fact, this is often NP-hard).
We formulate an LP-relaxation (of even the fractional
problem), where for every scenario A, we introduce a
variable 74, to indicate whether the budget is exceeded
in that scenario, along with two sets of decision variables
to denote the decisions taken in these two cases, and
impose the constraint ), para < p (in addition to
various problem-specific constraints). This constraint
however couples the different scenarios (notice again
the contrast with the standard 2-stage recourse model),
and to get around this difficulty, we use a Lagrangian-
relaration approach, where we decouple the scenarios by
Lagrangifying this coupling constraint; Section 2 gives
a more detailed outline of our algorithm. A key notable
feature of our scheme (and the Lagrangian-relaxation
approach) is that it extends easily to handle a richer
class of risk-averse problems, where we impose a joint
probabilistic budget constraint on different components
of the second-stage cost (e.g., facility- and assignment-
costs in risk-averse facility location).

The second component is a simple, general round-
ing procedure (Theorem 4.1) complementing the above
scheme. We round an LP-solution to a solution to the
fractional risk-averse problem losing a certain factor in
the solution cost, budget, and probability of budget-
violation. This then allows us to use suitable LP-based
algorithms for the deterministic or (non-risk-averse) 2-
stage analogue of the problem to obtain a near-optimal
solution to the (integer) risk-averse problem. For exam-
ple, for various covering problems, given an LP-based
c-approximation algorithm for the deterministic ana-
logue, we obtain an O(c¢)-approximation for the risk-
averse problem using the 2c-approximation algorithm
for the 2-stage problem in [38].

Our techniques, and in particular, our scheme, yield
versatile tools that we believe will find application in the
design of approximation algorithms for other risk-averse
problems and probabilistic programs.

Related work. Stochastic optimization is a field with
a vast amount of literature; (see, e.g., [3, 31, 36]), but
these problems have only recently been studied from
an approximation-algorithms perspective. We survey
the work that is most relevant to ours. Various ap-
proximation results have been obtained in the 2-stage
recourse model, but more general models, such as risk-
optimization or probabilistic-programming models have



received little or no attention. As mentioned earlier, the
(standard) budget model was first considered by Gupta
et al. [21], who designed approximation algorithms for
stochastic network design problems in this model, and
Dhamdhere et al. [11] introduced the demand-robust
model (which we call the robust model), obtaining al-
gorithms for the robust versions of various combinato-
rial optimization problems (and [18] obtains certain im-
provements). All these works focus on the polynomial-
scenario setting. Feige et al. [14], and subsequently [26],
considered the robust model with exponentially many
scenarios that are specified implicitly via a cardinal-
ity constraint, and derived approximation algorithms in
this more general model.

There is a large body of work in the finance and
stochastic-optimization literature, dating back to [29],
that deals with risk-modeling and optimization; see
e.g., [35, 37] and the references therein. Our risk-
averse models are related to some models in finance.
In fact, the probabilistic constraint that we use is called
a walue-at-risk (VaR) constraint in the finance litera-
ture, and its use in risk-optimization is quite popular
in finance models; it has even been written into some
industry regulations [25, 33]. Problems involving prob-
abilistic constraints are called probabilistic or chance-
constrained programs [8] in the stochastic-optimization
literature, and have been extensively studied (see, e.g.,
[32]). Some recent work [5, 30, 13] has focused on re-
placing the probabilistic constraint by more tractable
ones so that any solution satisfying the new constraints
also satisfies the original probabilistic constraint with
high probability. Notice that this type of “relaxation”
is opposite to what one aims for in the design of approx-
imation algorithms. Although some approximation re-
sults are obtained in [5, 30, 13|, they are obtained under
various restrictions on the random variables (continu-
ous) and distribution (concentration-of-measure), which
are not satisfied by discrete problems. To the best of
our knowledge, there is no prior work in this litera-
ture on the design of efficient algorithms with provable
worst-case guarantees for discrete risk-optimization or
probabilistic-programming problems.

In the CS literature, [27, 16] consider stochastic
bin packing and knapsack with probabilistic constraints
and obtained novel approximation algorithms for these
problems. These results are however obtained for spe-
cialized distributions where the item sizes are indepen-
dent random variables, which is far from the black-box
setting. So et al. [41] consider the problem of mini-
mizing the first-stage cost plus a risk-measure called
the conditional VaR (CVaR) [35] and obtain approx-
imation algorithms for various problems in the black-
box setting (using quite different methods). In their

model, the fractional problem yields a convexr program,
and they are able to use a nice representation theorem
in [35] to convert their problem into a 2-stage problem
and then adapt the methods in [6]. In our case, the
non-convexity inherent in the probabilistic constraint
creates various difficulties and we consequently need
to work harder to obtain our result. Two recent un-
published manuscripts—([17], which is independent of
our work, and [1], which appeared after a preliminary
version of our work [44] appeared on the arXiv (and
cites [44])—also consider probabilistic constraints, but
in (specialized) non-black-box settings. Their problems
fall into our risk-averse models, so in various cases, our
general results yield guarantees for their specific prob-
lems. Goyal and Ravi [17] observe that approximating
even one-stage problems is “hard” even when scenar-
ios consist of only two “elements”, and proceed to con-
sider various one-element-per-scenario (1-PS) problems
(in the poly-scenario setting). One-stage problems can
be cast as 2-stage risk-averse budgeted problems by set-
ting B = 0 and negligible (but positive) second-stage
costs, so our results in Section 6 for 1-PS problems also
apply to their problems. Agrawal et al. [1] consider, in
our terminology, the one-stage and two-stage stochastic
versions of set-cover and k-center in the independent-
activation (IA) model. By exploiting independence, [1]
design algorithms for stochastic k-center and one-stage
set-cover that do not inflate the budget or p. Section 6
shows that TA-problems (and a priori stochastic prob-
lems) can often be reduced to the 1-PS setting. (We
obtained these results after [1] appeared.) We also note
that their adaptive set-cover problem can be cast as risk-
averse budgeted set cover and so in contrast to their
negative result, our results imply a bicriteria decision
algorithm that inflates the budget by O(lnn) and p by
2 (say) if the problem is feasible.

The first approximation result for 2-stage recourse
problems appears to be due to Dye, Stougie, and Tomas-
gard [12]. Starting with the work of Ravi and Sinha [34]
and Immorlica et al. [24], which gave approximation al-
gorithms for various 2-stage problems in the polynomial
scenario and TA settings, various approximation results
for 2-stage problems have been obtained; see, e.g., the
survey [45]. Approximation algorithms in the black-box
setting were first obtained by Gupta et al. [19], and
subsequently by Shmoys and Swamy [38]. Multistage
recourse problems in the black-box model were consid-
ered by [20, 46]; both obtain approximation algorithms
with guarantees that deteriorate with the number of
stages. Srinivasan [42] obtained improved guarantees
for set cover and vertex cover that do not depend on
the number of stages.

Our approximation scheme makes use of the SAA



method, which is an appealing method often used to
solve stochastic problems. The effectiveness of this
method has been analyzed in [28, 6, 46]. Kleywegt et
al. [28] prove a non-polynomial bound on the sample size
required for general 2-stage problems. Subsequently [6,
46] obtained improved polynomial bounds for a large
class of structured 2-stage problems. The proof in [46],
which also works for multistage programs, leverages
approximate subgradients; our proof uses portions of
their analysis. The proof in [6] applies only to 2-stage
programs, but shows that even approximate solutions
to the SAA problem translate to approximate solutions
to the original problem.

2 Overview of our approach

Let (RA-P): min (h(z) := c(z) + Ea[fa(2)]) s.t. x €
F, Pra[fa(z) > B] < p, denote the (discrete) risk-
averse problem, where F is the finite feasible region
of first-stage decisions, fa(x) is the minimum value
of fa(xz,ya) over all feasible recourse actions ya. A
natural sampling-based approach for attacking (RA-P),
which we call the “direct sample average approxima-
tion (SAA) approach”, is to sample a certain number
of scenarios to estimate the scenario probabilities, and
then solve the following SAA analogue of the problem
(SA-P): min (h(z) = c(z) + Y4 pafa(z)) st. z €
F, I/D;A[fA(x) > B] < p = p(l + k). Here Dy is
the frequency of scenario A, and Pr denotes the prob-
ability wrt. p. One can generalize the arguments
in [6], to show (see Theorem B.1) that if one con-
structs (SA-P) using pon(I , ﬁ) samples and can com-
pute an a-approximate solution Z to (SA-P), then, with
high probability, h(Z) < (a + O(¢)) - OPT (gra-p) and
Pralfa(#) > B] < p(1 + O(k)). (Throughout, “with
high probability” means that we can ensure a failure
probability of § with poly(ln(%)) samples.) Notice how-
ever that this only says that Z in conjunction with the
optimal recourse solutions to each scenario A yields a
solution of cost at most (a + O(e)) - OPT (ga-p). The
recourse problem is often NP-hard, and so using a (-
approximation algorithm for the recourse problem yields
only a worse (a3 + €)-approximation to the black-box
problem. This introduces an undesirable approxima-
tion gap between the poly-scenario SAA problem and
the black-box true problem; e.g., for risk-averse bud-
geted set cover, this only yields an O(In” n)-guarantee,
whereas one can obtain an O(lnn)-guarantee. Also, we
still need to solve the poly-scenario risk-averse problem
(SA-P), which is a challenging task, and remains chal-
lenging even if one moves to a fractional version of the
problem (which would be one way of avoiding the is-
sue of approximation gap, since the fractional recourse

problem is easily solvable).

To circumvent these difficulties, we adopt a differ-
ent approach where we directly attack the black-box
problem (instead of approximating it via an SAA prob-
lem), and hence obtain matching performance guar-
antees for both black-box and poly-scenario problems.
Our approach also has the significant benefit that it
also leads to approximation algorithms for more general
risk-averse problems (see below). Since even the frac-
tional version of the problem is a non-conver optimiza-
tion problem, we formulate an LP-relaxation of (even)
the (fractional) black-box problem, where we introduce
a variable r4 for every scenario A intended to indicate
if the budget is exceeded in scenario A, and impose the
constraint »_ ,para < p to capture the probabilistic
budget constraint. This LP may have an exponential
number of both variables and constraints (since both
are indexed by scenarios), and moreover, the scenar-
ios are now coupled by the above constraint. To get
around the difficulty posed by coupling, we Lagrangify
the above constraint using a dual variable A > 0 to ob-
tain a Lagrangian relaxation (LD), which has a struc-
tured 2-stage LP (25t-P) embedded in it. Our goal now
is to perform a search for the “right” value of A. That is,
we consider different values of A, computing, for each A,
a near-optimal solution to (25t-P) (using say the SAA
method), and then return the solution whose > , para
is closest to p. However, it turns out that the strong
near-optimality guarantees obtained in [38, 46, 6] for the
classes of 2-stage programs considered therein, where
one obtains an FPTAS, do not apply to (2St-P); in par-
ticular, (2St-P) does not fall into the class of programs
considered in [38, 46], and the analysis in [38, 46, 6] only
yields a super-polynomial sample size for obtaining a
(1 + €)-optimal solution to (2St-P) (see the discussion
following Lemma 4.1). The key insight here is to realize
that aiming for a (1 + €)-approximation is not the right
notion of near-optimality for (P). We make the crucial
observation that one can instead obtain a (weak) “near-
optimality” guarantee for (P) (see Lemma 4.1) that (a)
is weak enough that one can prove such a guarantee
with polynomial sample size using the SAA method by
leveraging the approximate-subgradients based analy-
sis in [46], and (b) yet is strong enough that it can be
exploited in the search for the “right” A. Rounding
this fractional solution yields (matching) approxima-
tion guarantees for various (poly-scenario and) black-
box risk-averse problems.

A notable benefit of the Lagrangian-relaxation ap-
proach is that it is flexible enough to yield an approxi-
mation scheme for solving the LP-relaxation of a richer
class of risk-averse problems, where there is a joint
probabilistic budget constraint on different components



of the second-stage cost. For example, in risk-averse
budgeted facility location, one can incorporate a con-
straint like Pr4[(total cost of A)> B, or (facility-cost
of A)> Bp, or (assignment-cost of A)> Be] < p (see
“Facility location” in Section 5). Obtaining an approxi-
mation result for this general risk-averse problem is sig-
nificantly more challenging, due to the fact that the
recourse action in a scenario is no longer determined
solely by the first-stage decision (unlike before). The
“direct SAA approach” is ill-equipped to deal with this
complication as its analysis crucially relies on the fact
that given a first-stage decision x, both the SAA and
true problems will take the same recourse action in a
scenario, which is no longer true (and we do not have a
good handle on the various choices available to the SAA
and true problems). In fact, an approach that decouples
scenarios appears necessary to make any headway here.

3 Preliminaries

Let ||u|| denote the 5 norm of u. The Lipschitz constant
of a function f : R™ +— R is the smallest K such
that |f(z) — f(y)] < K|z — y||. We consider convex
minimization problems mingcp f(x), where P C R
with P C B(0,R) = {x : ||z|| < R} for a suitable R,
and f is convex.

DEFINITION 3.1. Let f : R™ +— R be a function. We
say that d € R™ is a subgradient of f at the point u if
the inequality f(v) — f(u) > d- (v — u) holds for every
v € R™. We say that d is an (w,€)-subgradient [38]
of f at the point u € P if for every v € P, we have

f) = fu) >d- (v—u) —wf(v) —wflu) - &

One can infer that, letting d, denote a subgradient
of f at x, the Lipschitz constant of f is at most
maxy ||d;||. Let K > 0, and 7, 0 > 0 be parameters with
7 < 1. Let N = log(25£). Let G C P be a discrete
set such that for any = € P, there exists 2/ € G with
le—2'|| < F- Define G- = GLU{z+t(y—z),y+t(z—
y):x,ye G, t=2""i=1,...,N}. We call G, and
G', an Iy -net and an extended 5 -net respectively
of P. If P contains a ball of radius V' (where V < 1
without loss of generality), then one can construct G’
so that |G| = poly (log(££)) [46]. The following result
from [46], which we have adapted to our setting, will be

our main tool for analyzing the SAA method.

LeMMA 3.1. ([46]) Let f and f be two nonnegative
conver functions with Lipschitz constant at most K
such that at every point v € G, there exists a vector
dy € R™ that is a subgradient of f(.) and an (g5, %)—
subgradient of f(.) at x. Let & = argminmepf(x). Then,
f(&) < (1+ o) mingep f(x) 4 67 +&.

LEMMA 3.2. (CHERNOFF-HOEFFDING BOUND [23])
Let Xy,..., XN be iid random variables with X; € [0,1]
and p = E[XZ] Then, PrH%ZiXi - ,u’ > e] <
26—262]\['

4 The risk-averse budgeted set cover problem:
an illustrative example

Our techniques can be used to efficiently solve the
risk-averse versions of a variety of 2-stage stochastic
optimization problems, both in the risk-averse budget
and robust models. In this section, we illustrate the
main underlying ideas by focusing on the risk-averse
budgeted set cover problem. In the risk averse budgeted
set cover problem (RSC), we are given a universe U of
n elements and a collection S of m subsets of U. The
set of elements to be covered is uncertain: we are given
a probability distribution {ps}aca of scenarios, where
each scenario A specifies a subset of U to be covered.
The cost of picking a set S € S in the first-stage is wk,
and is wé in scenario A. The goal is to determine which
sets to pick in stage I and which ones to pick in each
scenario so as to minimize the expected cost of picking
sets, subject to Pra[cost of scenario A > B] < p, where
p is a constant that is not part of the input. Notice
that the costs wg‘ are only revealed when we sample
scenario A; thus, the “input size”, denoted by Z is
O(m+n+ ) glogws + log B).

Let P = [0,1]™. For a point x € P, define
fa(z) to be the minimum value of w? - y4 subject to
ES:@ES Yya,s 2 1- ZS:eGS rs for e € A’ and Ya,s 2 0
for all S. As mentioned in the Introduction, the set
of feasible solutions to even the fractional risk-averse
problem (where one can buy sets fractionally) is not in
general a convex set. We consider the following LP-
relaxation of (even) the (fractional) problem. Through-
out we use A to index the scenarios in A, and S to index
the sets in S.

min Z U)ISZL'S + ZpA (wéyA,s + UJ?ZA,S) (RSCP)

S A.S
s.t. ZpArA <p (4.1)
A
3 (zs+yas)+ra>1 VAee A (42)
S:e€S
Z (5175 +yas+ ZA,s) >1 VAec A, (4.3)
S:eesS
ZwéyA,S <B VA (4.4)
S
T$,YA S, %24,5,74 >0 VA S (4.5)

Here x denotes the first-stage decisions. The variable
r4 denotes whether one exceeds the budget of B for
scenario A, and the variables y4 5 and z4, s denote re-



spectively the sets picked in scenario A in the situations
where one does not exceed the budget (so r4 = 0) and
where one does exceed the budget (so r4 = 1). Conse-
quently, (4.4) ensures that the cost of the y4 decisions
does not exceed the budget B, and (4.1) ensures that
the total probability mass of scenarios where one does
exceed the budget is at most p.

Let OPT denote the optimum value of (RSCP),
which is at most the optimum value of fractional RSC.
We show (Theorem 4.3) that for any €, > 0, one can
efficiently compute a first-stage solution x and solutions
(ya,z4,74) In every scenario A satisfying (4.2)—(4.5)
such that w' -z + >, paw® - (ya +24) < (1+2¢)OPT,
and Y ,para < p(1 + k). Complementing this, we
give a simple rounding procedure (Theorem 4.1) based
on the rounding theorem in [38] to convert a fractional
solution to (RSCP) to an integer solution using an LP-
based c-approximation algorithm for the deterministic
set cover (DSC) problem, that is, an algorithm that
returns a set cover of cost at most ¢ times the optimum
of the standard LP-relaxation for DSC. We state our
rounding theorem first, in order to better motivate our
goal of solving (RSCP).

THEOREM 4.1. (ROUNDING) Let (z,{(ya,24,74)}) be

a solution satisfying (4.2)—(4.5) of objective value C =

(wA-J:—l-ZApAwA-(yA—&—ZA)), and let P =" ,paTa.

Given any € > 0, one can obtain

(i) a solution & such that w' -3 + > pafa(d) <
(1+1)C and Pra[fa(@) > 1+ 1)B] < (1+¢)P;

€
(it) an integer solution (Z,{ja}) of cost at most 2c(1+
1)C such that Pry[w?-ja > 2¢B(1+1)] < (1+¢)P
using an LP-based c-approximation algorithm for
the deterministic set cover problem.
Moreover, we need only x to compute & and T, and can
compute §4 given only T (or &).

Proof. Set & = (1 + %)x Consider any scenario A.
Observe that (ya + z4) yields a feasible solution to the
second-stage problem for scenario A. Also, if r4 < ﬁ,
then (1+ 1)y also yields a feasible solution. Thus, we
have f4(2) < wA(ya+za)andifry < ﬁ then we also
have f4(2) < (1+1)B. Sow'- 2+, pafa(@) < (1+
é)C and Prgy [fA(i‘) > (1 + é)B] < ZAiTAZﬁ pa <
(1+¢)P.

We can now round Z to an integer solution
(Z,{ya}) using the Shmoys-Swamy [38] rounding pro-
cedure (which only needs &) losing a factor of 2¢ in the
first- and second-stage costs. This proves part (ii). ™

Simple examples show that the (1+é, 1+5) -tradeoft
above is unavoidable (i.e., given our LP-relaxation
(RSCP)); see Appendix A. Notice that a blow-up in

the (cost and) budget is unavoidable, since the recourse
problem for a scenario is an NP-hard problem. So the
main question is whether one can obtain a tradeoff-
free guarantee to the (fractional or integer) risk-averse
problem in polytime, where the probability threshold
violated by an arbitrarily small (1 + ¢)-factor, and the
cost and budget are inflated by a bounded (small)
factor that is independent of €. We call (z,{yA}) a
(c1, c2, c3)-solution if its cost is at most ¢p(optimum)
and Pra[fa(z,ya) > c2B] < egp. A (c1,c2)-scheme is
an algorithm that for any € > 0, returns a (c1, ¢a, 14¢)-
solution in time pon(I7 %) Theorem 4.2 (proved in
Appendix A) shows that, even for fractional RSC in the
polynomial-scenario setting, a tradeoff-free guarantee
such as a (¢1, ¢2)-scheme, would yield guarantees for the
densest k-subgraph (DkS) problem and its minimization
version MinDkS; this strengthens a result of [17].

THEOREM 4.2. A (c1,c2)-scheme for integer/fractional
RSC (even in the polynomial-scenario setting) yields a
c1-approximation algorithm for MinDkS, and hence, a
2c2-approximation algorithm for DES.

Solving the risk-averse problem (RSCP). We
now describe and analyze the procedure used to solve
(RSCP). First, we get around the difficulty posed by
the coupling constraint (4.1) in formulation (RSCP) by
taking the Lagrangian dual of (4.1) introducing a dual
variable A. This yields the following formulation, whose
optimal value is also equal to OPT (this is easy to show
using LP-duality).

_ : R )
ax Ap—&-(ggg h(A;z) == w :c—&—ZA:pAgA(A,x))

(LD)

where g4(A;z) := min ng(yA,s+zA,s)+ArA
S

s.t. (42) - (44), YA,5,2A,5,TA Z 0 for all S. (P)
Let OPT(A) = mingep h(A;x). So
OPT = maXAZ()(OPT(A) — Ap). Let

A= max{l,maXA,S(wﬁ/w}g)}, which we assume
is known. The main result of this section is as follows.

THEOREM 4.3. For any e€,7,k > 0, RiskAlg (see
Fig. 1) runs in time pon(I, %,log(%)), and returns
with high probability a first-stage solution x, and a
solution (ya,za,ra) in each scenario A, such that
(z.{(ya,za,74)}) satisfy (4.2)~(4.5) and (i) w' -z +
Yoapaw?” - (ya + za) < (1 4+ €)OPT + v; and (it)
Yoapara < p(1+ k). Under the very mild assumption
() that w' -z + fa(x) > 1 for every A#0, x € P, we
can convert this guarantee into a (1 + 2¢)-multiplicative
guarantee in the cost in time poly(I A).

7 €R



RiskAlg (€,v,k) [e < k < 1; p?, cost™, (ya, za,r4)
are used only in the analysis.]

Rl. Fix ¢ = ¢/6, ¢ = /4, n = pr/16, 0 = ¢€/6.
Consider the A values Ag, A1, ..., Ay, where Ag = /4,
Ait1 = Ai(14+0) and k is the smallest value such that
Ao(1+0)* > UB. Note that k = O(log(22)/0).

For each A;, construct the SAA problem
minger (M(A;2) = w' -z + >, paga(A;z)) us
ing poly(Z, 2> log(%)) samples (where pa is the

Y en?
frequency of scenario A in the sampled set), and

R2.

compute its optimal solution (x(i), {(y?, zif), TS))})
(where (yf?, zif), r?) is implicitly given). By sampling
n = WIH(%) scenarios, for each i = 0,...,k,
compute an estimate p') = 3, &\Arfj) of ZApArX),
where G4 is the frequency of scenario A in the sampled
set. Let p’ = p(1+ 3K/4).

If p"@ < p' then return z(?) as the first-stage solution.
[In scenario A, return (ya,za,r4) = (yff), sz), 7"1(40))}.
Otherwise (i.e., p'® > p') find an index i such that
p’@ > p' and p'*tY < p' (we argue that such an i must
exist). Let a be such that a - p'(i) + (1 — a)p’ V) = p'.
Return the first-stage solution 2 = a-® +(1—a)z+D.
[In scenario A, return the solution (ya,za,ra) =

i i i it1 i+1 i+1
a2 k) + (- )T, G

R3.

R4.

Figure 1: Procedure RiskAlg.

We show in Section 7 that the dependence on %p is
unavoidable in the black-box model. The “greedy algo-
rithm” for deterministic set cover [10] is an LP-based
In n-approximation algorithm. So using Theorems 4.1
and 4.3, for any €, k,e > 0, we can efficiently compute
a (¢,¢,1+ Kk + €)-solution, where ¢ = 2Inn(1+ e+ 1).

Algorithm RiskAlg is essentially a search procedure
for the “right” value of A, wrapped around the SAA
method, which is used in step (R2) to compute a “near-
optimal” solution to mingep h(A;z) for any given A >
0. As mentioned in Section 2, a key ingredient of the
algorithm and analysis is to figure out a suitable notion
of near-optimality to apply to the 2-stage problem
mingep h(A; ). In particular, as discussed below, the
results in [38, 46, 6] for structured 2-stage programs do
not quite apply here, and obtaining an FPTAS for the
problem is too strong a guarantee to aim for.

The proofs in [38, 46] require that one be able to
compute an (w, £)-subgradient of the objective function
h(A;.) at any given point x for sufficiently small w,&
(see Lemma 3.1). This can be done for their class of 2-
stage programs since each component of the subgradient
lies in an interval of the form [—wA, w] and can hence be
estimated up to an additive error of ww using poly(%)
samples, which then yields an (w, 0)-subgradient. How-
ever, mingecp h(A; z) does not fall into the class of prob-

lems considered in [38, 46]: for a subgradient d = (dg)
of h(A;.), we can only say that ds € [~w§ — A, w}],
which prevents us from obtaining an (w, §)-subgradient
using polynomial sample size for a suitably small (w, ).
(In particular, estimating dg within an additive error
of wwk to obtain an (w,&)-subgradient would require
poly(% + wﬁI ) samples, and A/wg need not be poly-
nomially botfnded.) The proof in [6] shows that if A
is such that g4(A;z) — ga(A;0) < Aw' -z for every A
and x € P, then poly(Z, 2) samples suffice to construct
a suitable SAA problem. But for our problem, we can
only obtain the bound ga(A;2)—ga(4A;0) < Mwl-z+A,
and A might be large compared to w' - z.

Lemma 4.1 states the precise (weak) approximation
guarantee satisfied by the solution returned in step (R2).
The key insight underlying its proof (as elaborated in
the analysis) is that since we allow for an additive error
measured relative to A, it suffices to approximate each
component dg of the subgradient within an additive
error proportional to (wl + A), and this requires only
poly(\) samples.

Given Lemma 4.1, we argue that by considering
polynomially many A values that increase geometrically
up to some upper bound UB, one can find efficiently
some A where the solution (z,{(ya,24,74)}) returned
for A is such that ), para is “close” to p. However,
this search procedure is complicated by the fact that
we have two sources of error whose magnitudes we need
to control: first, we only have an approximate solution
(z,{(ya,za,74)}) for A, which also means that one
cannot use any optimality conditions; second, for any
A, we have only implicit access to the second-stage
solutions {(ya,za,74)} computed by Lemma 4.1, so
we cannot actually compute or use Y ADATA In our
search, but will need to estimate it via sampling. We set

UB = 16(}_ 5 wk)/p, so log UB is polynomially bounded.

Analysis. For the rest of this section, €7,k are
fixed values given by Theorem 4.3. We may assume
e<k<l1.

LEMMA 4.1. Using pon(I,ﬁ,log(%)) samples one

can construct an SAA problem in step (R2) of RiskAlg,
so that with high probability, = satisfies h(Ay; z?)) <

We defer the proof of Lemma 4.1 to the end of
the analysis. Let v = ~/4, 8 = k/8. Define
pD =3 part? and cost® = h(A;;2®) = w20 +
S apaga(Ai;2). By Lemma 3.2, Pr[vi, |[p'® —p()| <
Bp] > 1—46. Given Lemma 4.1, we assume that the high
probability event “Vi, cost™ < (14+e)OPT(A)+nA;+
¢ and [p'™ — pI| < Bp” happens.

CLAIM 4.1. We have p*) < p/2 and p'*) < p/2.



Proof of Theorem 4.5. Let = be the first-stage solution
returned by RiskAlg, and (ya,z4,74) be the solution
returned for scenario A. It is clear that (4.2)—(4.5) are
satisfied. Suppose first that p'(®) < p’ (so z = z(©).
Part (ii) of the theorem follows since p(®) < p/(9) + 3p <
p(1 + k). Part (i) follows since w' - z(® + 3", paw?

0 0
@Y + =)

<h(;2) <(1+e)OPT(H) +my' +¢
<(14+¢e)OPT++'(1+e+n)+<¢.

The last inequality is because for any A, we have
OPT(A) < OPT(0)+ A < OPT + A.

Now suppose that p(®) > p/. In this case, there
must exist an i such that p’® > p/, and p/GtD) < pf
because p'© > p and p*) < p' (by Claim 4.1),
so step C4 is well defined. We again prove part (ii)
first. We have >, para = a-p® + (1 — a)pt+) <
P+ Bp < p(1 + k). To prove part (i), observe that
w4+ 3 paw? - (ya + 24) < a-costD + (1 —a)-
cost™D — A;(a-p® + (1 —a)-p*V), which is at most

(1+¢)(a- OPT(A) + (1 - a) OPT(Aiy) )+
n(al; + (1 - a)Aiy1) + ¢ — Ai(p" — Bp).

Now noting that A;41 = (1 + 0)4;, it is easy
to see that OPT(Ai41) < (1 + 0)OPT(4A;). Also,
p—08p—n(l+o) > (1+¢e+ 20)p. So the above
quantity is at most (1+¢&+20)(OPT(A;) — Aip) +¢ <

(14+€)OPT + ~.

The running time is at most (k + 1)
pon(I,ﬁJog(%)) + 0(5252)7 which is

poly(Z, Z:,1og(3)) (plugging in &,7,¢, k).

Proof of multiplicative guarantee. We show that
by initially sampling roughly max{1/p, A} times, with
high probability, one can either determine that x = 0 is
an optimal first-stage solution, or obtain a lower bound
on OPT and then set  appropriately in RiskAlg to
obtain the multiplicative bound. Recall that fa(z) is
the minimum value of w* - ya over all y4 > 0 such that
Yogecs¥as > 1 =3 g cqxgforec A Call A=0a
null scenario. Let ¢ =37 4. 4 pa and o = min{p, 1/A}.
Note that OPT > ¢q. Let Zj be an optimal solution
to fa(0). Define a solution (ga,Za,74) for scenario A
as follows. Set (§a,2za,74) = (0,0,0) if A = @, and
(0,24,1) if A # (. We first argue that if ¢ < a, then
(0,{(§a,24,74)}) is an optimal solution. It is clear
that the solution is feasible since ) , paTa = ¢ < p.
To prove optimality, suppose (x*, {(y, 25, ’I“Z)}) is an
optimal solution. Consider the solution where z = 0
and the solution for scenario A is (0,0,0) if A = 0,
and (0, 2% +y% + 2%, 1) otherwise. This certainly gives
a feasible solution. The difference between the cost of

this solution and that of the optimal solution is at most
ZA:A#D paw? - z* —w' - 2*, which is nonpositive since
wd < w' and ¢ < 1/X. Tt follows that setting z4 = 24
for a non-null scenario also gives an optimal solution.

Let § be the desired failure probability, which we
may assume to be less than % without loss of generality.
We determine with high probability if ¢ > «. We draw
M = W samples and compute X =number of times
a non-null scenario is sampled. We claim that with high
probability, if X > 0 then OPT > LB = ﬁ - a;
in this case, we return the solution RiskAlg(e, eLB, k) to
obtain the desired guarantee. Otherwise, if X = 0, we
return (0, {(74,%4,74)}) as the solution.

Let r = Pr[X =0] = (1 - ). So1—-qM <
r<e ™ If ¢ > In(3)/M, then Pr[X = 0] < 4, so
with probability at least 1 — § we say that OPT > LB,
which is true since OPT > ¢ > «. If ¢ < §/M, then
Pr[X = 0] > 1 — ¢ and we return (0,{(ya,24,74)}) as
the solution, which is an optimal solution since ¢ < a.
If /M < q < In(3)/M, then we always return a correct
answer since it is both true that OPT > ¢ > LB, and
that (0,{(ya,24,74)}) is an optimal solution. [

Proof of Lemma 4.1. Throughout, €,7, { are fixed val-
ues given by Lemma 4.1. Fix A > 0, and let (BSC-P)
denote the problem min,ep h(A;x). The proof proceeds
by analyzing the subgradients of h(A;.) and TL(A;.)
and showing that they are component-wise close, and
thereby arguing that Lemma 3.1 can be applied here.
Let R = +/m, V = %, so P C B(0,R) and contains a
ball of radius V. Let 7 = (/6.

The proof has three parts. First, we obtain an
expression for the subgradients of h(A;.) and h(A;.) at
x and prove the bound on the Lipschitz constant. The
subgradient of h(A;.) and h(A;.) at z is obtained from
the optimal solutions to ga(A;z) for every scenario A.
The dual of ga(A;z) is given by

max Z(OéA,e‘f'ﬁA,e)(l— Z aﬁs) —B-04

S:eesS

(D)

s.t. Z(OZA@ + Bae) < w?(l +04) VS,
ecsS
ZﬂA,e < wé VSa ZOCA,e < Av
ecS e

aA,e;ﬁA,e Z 0 ve’ QA e = ﬁA7e =0 Ve ¢ A.

Here o4, and (4. are respectively the dual vari-
ables corresponding to the covering constraints (4.2)
and (4.3), and 04 is the dual variable correspond-
ing to (4.4). Let (af,0%,0%) be an optimal dual
solution to ga(A;z). As in [38], we then have
that the vectors d, and Jz with components d, s =

Wy — YaPAYees(@he + Bie) dos = wh —



SoaPaYees(@h . + Bh.), are respectively subgradi-
ents of h(A;.) and h(A;.) at z. Since d, and d, both
have 5 norm at most A|w!|| + |A], 2(A;.) and h(A;.)
have Lipschitz constant at most K = \||w!|| + |A|.

Next, we argue that if d is a subgradient of h(A;.)
at some point z € P, and d is a vector such that
lds — dg| < wwy + &/2m for all S, then d is an (w, €)-
subgradient of h(A;.) at . Let y be any point in P.
We have h(A;y) —h(A;z) > d-(y—z)+ (d—d) - (y— ).
The second term is at least Zs;dsgds (ds — (fs)ys +
Y sidesds(ds —ds)rs > —w) g (whys + wizrs) — & >
—wh(A;y) — wh(Ajx) — &

Recall from Section 3 that G, C P is an ex-
tended y-net of P, where N = 1og(@). We
use N = SNQ(% + %)Zln(%) samples, which
is poly(Z, %,log(%)). In the sequel, we set w =
¢/8N, £ =nA/2N. Finally, we argue that with proba-
bility at least 1—4, at every point € G, the vectors d,
and d, defined above are component-wise close; in par-
ticular, they satisfy |Jm’s—dm75\ < wwIS—i—f/Qm for all S
and hence, d,, is an (w, &)-subgradient of h(A;.) at z. So
by Lemma 3.1, if Z is a minimizer of iAL(A; .) over P, then
h(A;2) < (14 ¢)OPT(A) + nA + ¢, which completes
the proof.

Let (a%,3%,0%) be the optimal dual solution to
ga(A;x) used to define d, and d,. Notice that cfxys
is simply w§ — Y cg(ef,, + 54,.) averaged over the
scenarios sampled independently to construct the SAA
problem h(A;.), and E[d,)s] = dy,s. The sample size
N is specifically chosen so that the Chernoff bound
(Lemma 3.2) implies the claim about component-wise
closeness with probability at least 1 — 4. |

4.1 Risk-averse robust set cover In the risk-
averse robust set cover problem, the goal is to choose
some sets x in stage I and some sets y4 in each sce-
nario A so that their union covers A, so as to min-
imize w! - x + Q,[w? - ya]. Recall that Q,[w? - y4]
is the smallest B such that Pra[w? - ya > B] < p.
As mentioned in the Introduction, this problem can
be essentially reduced to RSC by simply “guessing”
B = Q,[w” - ya] for an optimal solution. We briefly de-
scribe this reduction here. Let OPTg,, denote the opti-
mum value of the fractional risk-averse robust problem
mingep (w2 +Q,[fa(z)]). For a given B > 0, we scale
all the second-stage costs wé and B by u = ﬁ
So the contribution from the second-stage cost to tﬁe
objective function is now at most 7. (Note that the
“X” for the resulting scaled problem is 1, so now the
number of samples does not in fact depend on A.) Let
OPTRop(B) denote the optimum value of the resulting

(RSCP) problem, which is a decreasing function of B.
For any guess B > 0, and any €,v,x > 0, we can use
RiskAlg to compute (nonnegative) (x, {yA,zA,rA}) in
time pon(I, %, log(%)) satisfying (4.2)—(4.4) such that
whz < cost(x, {(yA,zA,rA)}) < (14€)OPTges(B)+7~
and >, para < p(1+k). Let W be an upper bound on
the optimum such that log W is polynomially bounded,
eg, W=>g¢ wg We enumerate values of B in pow-
ers of (1 4 €), starting at v and ending at the small-
est value that is at least W. We use RiskAlg to com-
pute a solution for each B, and return the one that
minimizes w' -  + B. Let (f, {74, EA,FA}), computed
for B, denote this solution. Let B* be the “correct”
guess. Note that OPTRrop(B*) < OPTRrop — B* +7. We
are guaranteed to enumerate B’ € [B*, (1 + ¢)B* 4 7).
Let (x’, {y4, z;l,r;l}) be the solution computed for B’.
Then we have w' -z + B < w'-2/ + B < (1 +
€)OPTrop(B')+ (1 +€)B* +2y < (14 €) OPTgep + 4.
We remark that the same ideas yield a similar guarantee
for the LP-relaxation of a generalization of the problem,
where we wish to minimize w' - z plus a weighted com-
bination of E4[w? - ya] and Q,[w® - y4].

We can convert the above guarantee into a purely
multiplicative one, under the same assumption (x)
stated in Theorem 4.3. Let ¢ = ZA#A pa. Note
that if ¢ < p, then OPTgrep, = 0 and z = 0 is an

optimal solution; otherwise OPTg,, > 1. Let 6 be
such that (1 + H)ﬁ < 1. Using m(;ﬂ samples

(where p’ is set in RiskAlg) we can determine with high
probability if ¢ < p’ or if ¢ > p. In the former case,
we return £ = 0 and y4 in scenario A where y4 = 0
if A = (, and any feasible solution otherwise. Note
that w! - 2 + Q, [w? - ya] = 0. In the latter case, we
set v = €, and execute the procedure detailed above to
obtain a (1 + 5¢)-multiplicative guarantee.

Now one can use Theorem 4.1 as is to convert the
obtained fractional solution (sc, {ymzA,rA}) into an
integer solution, or a solution to the fractional risk-
averse robust problem. The budget-inflation can now
be absorbed into the approximation ratio. For any
€,k,6 > 0, we obtain a fractional solution # such
that w' - & + Qpswse)[fa(®)] < (1 + €+ 1) OPTrop,
and an integer solution (Z,{7}) such that w' - % +
Qp(145+¢) [wh - ga] < 20(1 + €+ é) OPTpR,p, using an
LP-based c-approximation algorithm for deterministic
set cover.

5 Applications to combinatorial optimization
problems

We now show that the techniques developed in Section 4
for risk-averse budgeted set cover can be used to obtain
approximation algorithms for the risk-averse versions



of various combinatorial-optimization problems such as
covering problems—set cover, vertex cover, multicut on
trees—and facility location. This includes many of the
problems considered in [19, 38, 11] in the standard 2-
stage and demand-robust models. In all the applica-
tions, the first step is to prove an analogue of Theo-
rem 4.3, that is, argue that RiskAlg can be used to ob-
tain a near-optimal solution to a suitable LP-relaxation
of the problem. (For facility location, we need to adapt
the arguments slightly.) The second step, which is more
problem-specific, is to round the LP-solution to an inte-
ger solution. Analogous to part (i) of Theorem 4.1, we
first obtain a solution to the fractional risk-averse prob-
lem. Given this, our task is now reduced to rounding
a fractional solution to a standard 2-stage problem into
an integral one. For this latter step, one can use any “lo-
cal” LP-based approximation algorithm for the 2-stage
problem, where a local algorithm is one that preserves
approximately the cost of each scenario.

Our results are intended to illustrate that approx-
imation guarantees developed for the deterministic or
2-stage version of the problem can be converted to
analogous guarantees for the risk-averse budgeted prob-
lem once we have a near-optimal solution to the LP-
relaxation of the risk-averse problem, and we have not
sought to optimize the approximation factors. Our ap-
proximation results also hold for non-uniform budgets,
and translate to the risk-averse robust versions of our
applications: an algorithm that returns a (c1,co,c3)-
solution (az, {yA}) for the budgeted problem can be
sued to obtain a solution to the robust problem where
c(x) + Qp14eq)[fa(z,ya)] < max{ci,ca} - OPTRoy. We
also achieve guarantees for the problem of minimizing
c(z) plus a weighted combination of E4 [fa(z,y4)] and
Qplfa(w,ya)).

5.1 Vertex cover and multicut on trees In the
stochastic vertex cover problem, we are given a graph
whose edges need to covered by vertices. The edge-
set is random and determined by a distribution; one
needs to pick vertices in stage I and in each scenario
so that their union forms a vertex cover for the edges
revealed in the scenario. In the stochastic multicut on
trees problem, we are given a tree, and a (black-box)
distribution over sets of s;-t; pairs; a feasible solution
needs to choose edges in stage I and in each scenario
such that the union of edges picked in stage I and in
scenario A forms a multicut for the s;-t; pairs that
are revealed in scenario A. In the risk-averse budgeted
versions of these problems we are given a budget B and
threshold p, and the goal is to compute a minimum-
cost feasible solution such that Pr[second-stage cost >
B] < p. Both problems are structured cases of risk-

averse budgeted set cover, so one can formulate an
LP-relaxation of the risk-averse problem exactly as in
(RSCP) and by Theorem 4.3, obtain a near-optimal
solution to the relaxation. Since there is an LP-based 2-
approximation algorithm for the deterministic versions
of both problems, applying Theorem 4.1 yields the
following guarantees.

THEOREM b5.1. For any €,k,e > 0, one can compute in
polynomial time a (4(1+e+2),4(1+e+1),1+r+e)-
solution for the risk-averse budgeted vertex cover and
multicut on trees problems.

5.2 Facility location In the risk-averse budgeted
facility location problem (RFL), we have a set of m
facilities F, a client-set D, and a distribution over client-
demands. For notational simplicity, we consider the
case of {0,1}-demands, so a scenario A C D simply
specifies the clients that need to be assigned in that
scenario. We may open facilities in stage I or in a given
scenario, and in each scenario A we must assign each
client j € A to a facility opened in stage I or in that
scenario. The costs of opening a facility ¢ € F in stage
I and in a scenario A are f} and f/* respectively; the
cost of assigning a client j to a facility ¢ is ¢;;, where the
cij's form a metric. The first-stage cost is the cost of
opening facilities in stage I, and the cost of scenario A
is the total facility-opening and client-assignment cost
incurred in that scenario. The goal is to minimize the
total expected cost subject to the usual condition that
Pr[second-stage cost > B] < p. We formulate the
following LP-relaxation of the problem. Throughout,
i indexes the facilities in F and j the clients in D.

min Z flyi + Z A (Z A (ya; +vay)

ACD
+ 3 eis(@ai +uas)) (RFLP)
JEA
.t > para<op (5.6)
A
ZZUA,U +ra>1 VjeA (5.7)
7
D (vauj+uay) =1 VjeA (58)
7
Taij SYi+yai Vi€ A (5.9)
T FuA Y +yatva; Vi€ A
(5.10)
S fyai+ Y cjrag <B VA (5.11)

JEA,I
Vi, YA,is VA, TAij, WA ij, T4 >0 VA 4,5 (5.12)

Here y; denotes the first-stage decisions. Decisions
(€A,ij,Ya,i) and (uaij,va,:) represent respectively the



actions taken in scenario A when does not exceed the
budget (ra = 0), and does exceed the budget (rq =
1). Constraints (5.7)—(5.10) enforce that every client
is assigned to an open facility (in both cases), and
(5.11) is the budget constraint for a scenario. Let
OPT be the optimal value of (RFLP). Given first-stage
decisions y € P := [0,1]™, let £4(y) be the minimum
facility-location cost, over fractional solutions, incurred
in scenario A to satisfy the clients in A.

THEOREM 5.2. For any €7,k > 0, m
time pon(I, %, 1og(%)), one can compute
(v, {(xa,ya,ua,va,74)}) that satisfies (5.7)~(5.12)
with objective value C < (1 4+ €)OPT + v such that
Yoapara < p(1 4+ k). This can be converted to a
(1+ 2¢)-guarantee in the cost provided f'-y-+£4(y) > 1
for every y € [0,1]™, A # 0.

Proof Sketch. As in Section 4, we Lagrangify (5.6)
using a dual variable A > 0 to obtain the prob-
lem maxa>o(—Ap + OPT(A)) where OPT(A) =
mingep h(A;9)), M(A;y) = f1y+ > 4 paga(d;y), and
ga(A;y) is the minimum value of >°, f(ya,i +va,) +
ZjeA,i Cij(Taj +ua,ij) + Arg subject to (5.7)—(5.12)
(where the y;’s are fixed now). We argue briefly that
RiskAlg can be used to compute the desired near-optimal
solution; given this, the proof of the multiplicative guar-
antee is as in Theorem 4.3. Proving this involves two
things: (a) coming up with a bound UB such that log UB
is polynomially bounded so that one can restrict the
search for the right value of A in RiskAlg; and (b) show-
ing that for any A > 0, an optimal solution to the
SAA-problem minyep h(A;y) (constructed in step (R2)
of RiskAlg) yields a solution to minyep h(A;y) that sat-
isfies the approximation guarantee in Lemma 4.1.
There are two notable aspects in which risk-averse
facility location differs from risk-averse set cover. First,
unlike in set cover, one cannot ensure that the cost
incurred in a scenario is always 0 by choosing the
first-stage decisions appropriately. Thus, the problem
(RFLP) may in fact be infeasible. This creates some
complications in coming up with an upper bound UB for
use in RiskAlg. We show that one can detect by an initial
sampling step that either the problem is infeasible, or
come up with a suitable value for UB. Second, due to the
non-covering nature of the problem, one needs to delve
deeper into the structure of the dual LP for a scenario
(after Lagrangifying (5.6)) to prove the closeness-in-
subgradients property for the SAA objective function
constructed in step (R2) and the true objective function.
Assume first that we have shown (b). Define Cy =
> jea(min;c;;) and C = 3 (min; ¢;5). Note that Ca
is the minimum possible assignment cost that one can
incur in scenario A. We may determine with high

probability using O(pin) samples if Pry[C4 > B] > por

Pra[Ca > B] < p(1 + 3£). In the former case, we

can conclude that the problem is infeasible. In the
latter case, we set p = p(l + %) and A& such that

p(1 + &) = p(1 + k), and call procedure RiskAlg with
these values of p and % (and the given ¢,), taking

I
UB = W It is not hard to see that with

this upper bound, we have p*), p'(F) < o = 5(14-34/4),
and (as in the proof of Theorem 4.3) this suffices for the
search for A in RiskAlg to go through.

Task (b) boils down to showing that the objective
function h(A;.) of the SAA-problem (in step (R2))
and the true problem h(A;.) satisfy the conditions of
Lemma 3.1. Again, with R = /m and V = 1, we
have that P C B(0, R) and contains a ball of radius V.
Lemma 5.1 proves that this holds with high probability,
with K = A|fY| +|A], 0 = ¢, € = nA and 7 = (/6
(and N = log(25£) as in Section 3). Due to the
non-covering nature of the formulation, we need to
derive additional insights about optimal dual solutions
to ga(A;y) to prove this. So by Lemma 3.1, the solution
g = argminyepﬁ(Ai; y) obtained in step (R2) for each
A, satisfies the requirements of Lemma 4.1. [ |

LEMMA 5.1. With probability at least 1 — 4, /H(A;.)
and h(A;.) satisfy the conditions of Lemma 3.1 with
K=\|fY+1A|, o=¢ and £ =nA, and 7 = (/6 (and
N =log(2££)).

T

Proof. The proof dovetails the proof of Lemma 4.1. We
use N' = 8N%(£ 4 m)Q ln(w) samples (where

n
G, C P is an extended —Z--met of P), which is
Let

KN
poly(Z, ﬁ,log(%)). Consider any y € P.
Qs W > B g 14 5, 0% be the values of the dual vari-
ables corresponding to (5.7)—(5.11) respectively in an
optimal dual solution to g4(A;y). We choose an opti-

mal dual solution that minimizes >7, ; 3} ;;. It is easy
to show that the vectors d, = (d,;) and d, = (d.)
given by dy; = fi — 2oaPAY e (ﬁz,ij + F*A,ij) and
dyi=f{ =2 aPa>jea(Bh;+T%,;) are respectively
subgradients of iAL(A; .) and h(A;.) at y.

Now we claim that for every 4, Zj Bhi; < A and
ST < fA. Given this, ||y, ||dyl| < K where
K = \|fY| + A for any y € P, so K is an upper bound
on the Lipschitz constant of h(A;.) and h(A;.).

The second inequality is a constraint of the dual.
Suppose (8} ;; > 0 for some j. The dual enforces
the constraint o ; + ¥4 ; < ¢;(1 + 0%) + 8L, +

,ij- We claim that this must hold at equality. By
complementary slackness, we have 2% ;. = yi + ¥y,



where (z%,y%,u’,v%) is an optimal primal solution
to ga(Aj;y). So if y; > 0 then z7%,, > 0 and
complementary slackness gives the desired equality. If
y; = 0 and the above inequality is strict, then we may
decrease 3 ;; while maintaining dual feasibility and
optimality, which gives a contradiction to the choice of
the dual solution. Thus, since the dual also imposes
that ¢7 ; < ¢;; + 17 ;;, we have that 5} ;; < o ;, so
>iBa < X;ah; < A (the last inequality follows
from the dual constraint corresponding to 74).

As in Lemma 4.1, if d is a subgradient of h(A;.) at
y and d is a vector such that \dl —d;| <wfl+ %, then
d is an (w, &)-subgradient of h(A;.) at y.

Since E[czyl] = d,; for every y and i, plugging
in the sample size N' and using the Chernoff bound
(Lemma 3.2), we obtain with probability at least 1 — 4,
|y —dyi] < i+ % for all 4, for every point y in
the extended &-net G, of P. Thus, with probability

at least 1 — 6, czy is an (ﬁ, %)—subgradien‘c of h(A;.)

at y for every y € G,. [ ]

To round the LP-solution, as in part (i) of Theo-
rem 4.1, we observe that if (y,{(xA,yA,uA,vA,rA)})
is a solution satisfying (5.7)—(5.12) of objective value
C, then for any ¢ > 0, taking § = y(l + %) gives
S fili + 2 apala(d) < (1+ 1)C and Pra[la(g) >
(1+1)B] < (14¢€) Y 4para. Now one can use a local
approximation algorithm for 2-stage stochastic facility
location (SUFL) to round g.

Shmoys and Swamy [38] show that any LP-based
c-approximation algorithm for the deterministic facil-
ity location problem (DUFL) that satisfies a certain
“demand-obliviousness” property can be used to obtain
a min{2¢, ¢ + 1.5}-approximation algorithm for SUFL,
by using it in conjunction with the 1.5-approximation
algorithm for DUFL in [4]. “Demand-obliviousness”
means that the algorithm should round a fractional so-
lution without having any knowledge about the client-
demands, and is imposed to handle the fact that one
does not have the second-stage solutions explicitly.
There are some difficulties in applying this to our prob-
lem. First, the resulting algorithm for SUFL need not
be local. Second, more significantly, even if we do
obtain a local approximation algorithm for SUFL by
the conversion process in [38], the resulting algorithm
may be randomized if the c-approximation algorithm for
DUFL is randomized. Using such a randomized local -
approximation algorithm for SUFL, either the one in [38]
or its improvement in [42], would yield a random solu-
tion such that Pr4[expected cost of scenario A > yB] <
p(1 + K + €), where the expectation is over the ran-
dom choices of the algorithm. But we want to make
the stronger claim that, with high probability over the

random choices of the algorithm, we return a solution
where Pryfcost of A > vB] < p(1+ K +¢). We take
care of both these issues by imposing the following (suf-
ficient) condition on the demand-oblivious algorithm
for DUFL that is used to obtain an approximation al-
gorithm for SUFL (via the conversion process in [38]):
with probability 1, the algorithm should return a solu-
tion where each client’s assignment cost is within some
factor of its cost in the fractional solution. One can
use the the deterministic Shmoys-Tardos-Aardal (STA)
algorithm [40], or the randomized approximation algo-
rithm of Swamy [43], both of which satisfy this condition
(and are demand-oblivious). In particular, the STA-
algorithm [40] returns a 4-approximate solution, where
a client’s assignment cost is blown up by a factor of at
most 4. Combining this and the algorithm of [4] in the
rounding procedure of [38] yields the following theorem.

THEOREM 5.3. For any €,k,e > 0, one can compute
a (5.5(14+€e+1),55(1+€e+1),1+k+¢)-solution to
risk-averse budgeted facility location in polynomial time.

Proof Sketch. Let (y,{(za,ya,ua,va)}) be the solu-
tion given by Theorem 5.2. Let ¢ = y(l + é), so that
S filii + 2 apala(y) < (1+ 2)C and Prafla(y) >
(1+ 1)B] < (14 ¢e)Y 4para. Suppose we have a
demand-oblivious LP-based a-approximation algorithm
such that with probability 1, the algorithm returns an
integer solution where each client’s assignment cost is at
« times its cost in the fractional solution. We utilize the
rounding procedure in [38], which we sketch below for
completeness, and also to demonstrate how the demand-
obliviousness and “distance-preservation” properties al-
low one to (1) obtain a local approximation algorithm
for SUFL), and (2) obtain the recourse action for scenario
A given only ¢y and the rounded first-stage solution.

For the first-stage decisions, we round min{1, g;/6},
where 0 = ﬁ, using the a-approximation algorithm
to obtain the integer vector y, which gives the set of
facilities opened in stage I. Let a(j) denote the open
facility that is nearest to j. Let C'j denote the minimum
cost of assigning j fractionally to an extent of 1 to
the facility-opening vector (min{g; /6, 1})Z By demand-
obliviousness, for any client-demands (d;);ep, we have
filﬂ-i-zj djca()j < a(fl-%+zj d;C;); and by distance
preservation, we have cq(j); < aC; for all j.

In a scenario A, we first compute the solution
(Za,94) that determines f4(y) (which can be done
efficiently). For every client j € A, one can write &4 ,;; =
i‘h’ij + i:lf{’ij such that 3?:{4@- < 9; and i‘i{’ij < Jay-
Let Dy = {j € A: ), :%f“j > 0}. We assign each
J € D4 to a(j); note that c,(;); < 5>, cij;%kij. Next,
we run the LP-based 1.5-approximation algorithm for



DUFL on the instance with client-set A \ D4. This
determines the facilities to open in scenario A (§4)
and the assignment (Za4,;); of clients j in A\ Da.
We have f4 ¢+ Z]GA\DAZ cijiAij < &5 (fA

Ja + 2jeapa 2 cwa 1.i;), Also, note that fI

YA jen, Paca); < g (f y"‘ZA,jeDA,ipACijl’A,ij)-
So we obtain a solution of cost at most (a + 1.5)C' and
the cost of each scenario A is at most (a + 1.5)04(9).
Thus, with o = 4, we obtain a (5.5(1 4 €+ 1),5.5(1 +
e+ 1),1+4 Kk +¢)-solution. [

Budget constraints on individual components of
the second-stage cost. As mentioned in Section 2,
our techniques can be used to devise approximation
algorithms for a fairly general risk-averse version of
facility location (and other problems), where we impose
the joint probabilistic budget constraint Pr4[(total cost
of A)> B, or (facility-cost of A)> Bp, or (assignment-
cost of A)> B¢| < p. This has the effect of augmenting
(RFLP) with the constraints >, flya,;, < Bp, and
iji cijra,; < Bc, for each scenario A. (Note that
by setting a budget to co, we can model the absence of
a particular budget constraint.) One can model various
interesting situations by setting B, B, B¢ suitably. For
example, setting Bp = 0, B = co means that we seek
a minimum-cost solution where the facilities opened in
stage I are such that with probability at least 1 — p,
we can assign the clients in a scenario A to the stage
I facilities while incurring assignment cost at most B¢.
Algorithm RiskAlg can be applied to solve even this more
general LP, and Theorem 5.2 continues to hold here.
Note that to describe a solution, even for the fractional
risk-averse problem, an algorithm must now return not
just the first-stage solution y but also specify how to
compute the recourse action in a scenario, and RiskAlg
does indeed do this.
Rounding procedure. The rounding procedure is simi-
lar to that in Theorem 5.3 and we highlight the main
changes here. Let (y,{(za,ya,ua,v4)}) be the solu-
tion given by RiskAlg for the general risk-averse prob-
lem. Note that in each scenario A, we can compute
(xA,ya,ua,va,74) efficiently. Say that a scenario A
is c-violated if at least one of its budget constraints is
violated by more than a c-factor. We assume initially
that we have a rounding algorithm for DUFL that given
a fractional solution, returns an integer solution whose
facility-opening, client-assignment, and total- cost are
at most [ times the corresponding quantity in the frac-
tional solution. We prove later that any LP-based algo-
rithm for DUFL can be morphed into such an algorithm.
Let 0 = ;55. As before, we set §j = y(1+%) and use
the demand-oblivious distance-preserving LP-based «
approximation algorithm to round (min{g;/6, 1})1 and

obtain an integer vector gy specifying which facilities to
open in stage I. Let a(j) be the open facility nearest to
j.
In a scenario A, we first obtain (x4, YA, ua,vAa,74).
We then extract a fractional solution (Z4,74) for sce-
nario A that is feasible given the first-stage decision g.
Ifry > ﬁ (indicating that we may “violate” scenario
A), weset g4 =x4+us and g4 = ya+va. Otherwise,
we set T4 = (1 + é)xA, Jya = (1 + %)yA; note that in
this case we have f4-g4 < (1+%)BF, ZjeAJ Cij&aij <
(1+2) Bo, and f4-ga+3,c q s cistas < (14+2)B. We
now round (& 4, §4) using the rounding procedure of [38]
using the above value of 6, and the (-approximation
algorithm to determine the solution for scenario A.
That is, we split £44; as 33{4,1‘]‘ + 53{41,”' where :%14’1-]- <
7; and ﬁgﬂj < Ja,. Clients in Dy {j € A:
> ij = 0} are assigned to their nearest stage-1 fa-
cilities, and we use the (-approximation algorithm to
1i6 ((i’g,.j)jeA\DAy QA) to obtain the facilities to
open in scenario A (§4) and the assignment (Z4,;;); of
clients j € A\ Ds. The properties of the a- and (-
approximation algorithms yield the following bounds.

- « N N
g+ Z PACa(j); < 7 (fI Y+ Z pACijx.IA,ij)
A,jED Y A,jEDa4,i
e . .
Ca(i)j < 5(2 Cijqu,ij) VA,j € Da
A~ ﬂ A~ A
J7ga < = (f Ja) v
< L i VA
Z CijTAij < 1-46 Z CijT A ij
jGA\'DA,’L' jEA\DA,
and [ 94 + Ve ap,i it < 12 (4 da+

2 e\ D4 Cij#i5) VA
Combining these bounds, we see that the total

cost of the solution is at most (o + 8)(1 + 1)C
and in each scenario A, the facility-opening, client-
assignment, and total-cost are all at most (a + )
times the correbponding quantity in (Z4,94). Thus,
if ra < =2 +E then these quantities are at most (« +
ﬁ)(l + 6){BF, Be, B} respectively. So we obtain that
Pra[Ais (a4 B8)(1+ e+ 1)-violated] < p(1+ K +¢).
Finally, we note that any LP-based ~-
approximation algorithm for DUFL can be used to
obtain the desired [-approximation algorithm above
with 8 = 2v. Suppose (X,Y) is the solution to a DUFL
instance with facility-costs {f;} and client-assignment
costs {Dy;}. Let P =, fiV;, Q = Zj)i ¢i;Xi; and
R = P+ @. We run the v-approximation algorithm
with facility costs %{ fi} and client-assignment costs
%{Dij} to obtain an integer solution (X,Y). It



follow§ that >, f,?, < ~-2P, Zj,icinij < v-2Q, so
> fiYi +Zj ; Cij Xi; <7v-2R. So we can obtain 8 < 3.

Taking @ = 4 and f = 2 x 1.5, we obtain
a solution of cost at most 7(1 + € + %)OPT where
Pra[Ais 7(1+ e+ 1)-violated] < p(1 + x +¢). All of
our arguments generalize to the setting with scenario-
dependent budgets {(B*, B#, B4)}.

6 Refinements

The RSC instances constructed in the proof of Theo-
rem 4.2 to show the difficulty of obtaining a (c1,¢s)-
scheme, can be easily cast as instances of other risk-
averse budgeted problems—e.g., all the problems in Sec-
tion 5—where each scenario consists of (at most) two
“elements” (e.g., clients in RFL). We show here that if
all scenarios contain (at most) one element, then one
can obtain an approximation that does not violate the
probability threshold. (Note that the examples in Ap-
pendix A showing that the guarantees of Theorem 4.1
are tight are one-element instances.) Although the one-
element-per-scenario setting appears rather restrictive,
it has (surprisingly) rich modeling power. We uncover
a close connection between the independent activation
(TA) model, where each “element” is independently “ac-
tivated” with probability p;, and the one-element-per-
scenario setting. The TA model is a popular model in
Computer Science that has been considered in various
stochastic contexts [27, 16, 24, 15, 39], and our results
suggest that an understanding of risk-averse problems
in the one-element-per-scenario setting may yield signif-
icant dividends for stochastic problems in the TA model.
We focus on RFL for concreteness, but the same reduc-
tions apply to other problems.

Let C denote the class of all one-client-per-scenario
RFL instances. (Note that clients may have non-
uniform demands). We can show that various stochastic
problems in the TA model reduce to RFL problems over
C. For example, consider a priori facility location
(APFL)—we have a distribution over client-sets and the
goal is to find an assignment of (all) clients to (open)
facilities with minimum expected cost—and its risk-
averse version, where we impose also the constraint
Pr'®[assignment cost of an activated client > B] < p.
A priori stochastic problems (see [2]) in the TA model
have very recently been considered from the perspective
of approximation algorithms in [15, 39]. Despite the
contrast between (risk-averse) APFL and RFL restricted
to class C—the former is a one-stage problem where we
choose the entire solution in advance and pay only for
facilities used by the (random) set of activated clients;
in the latter problem, we pay for all facilities opened in
stage I and can augment our solution in stage II—we can

reduce risk-averse APFL to a RFL problem over class C.
Another example is one-stage FL: minimize the facility-
opening + expected client-assignment cost, subject to
Pr'®[assignment cost of a client > B] < p. ([1] give an
approximation algorithm for a set-cover version of this
problem: select a min-cost collection of sets so that
pr'4 [element is uncovered] < p. This can be encoded as
non-metric one-stage FL with B =0, and ¢;; = 0 or pt >
0 (which is small) depending on whether or not ¢ covers
j.) In both reductions, we create a RFL instance in class
C where: (a) each client (i.e., scenario) j has non-unit
demand and budget B;; and (b) the notion of risk-
aversion is Prj[second-stage assignment cost of {j} >
Bj] < p; A (c1, ¢z, 1)-solution to RFL is a solution of cost
at most ¢; (optimum), where Pr;[{j} is co-violated] < p.
(Recall that a scenario {j} is c-violated if (at least one
of) its budget constraint(s) is violated by more than a
c-factor.)

THEOREM 6.1. Given a polytime algorithm for RFL
(resp. mon-metric RFL) that always returns a (c1,ca,1)-
solution, for both one-stage FL and risk-averse APFL
(resp. non-metric {one-stage FL, risk-averse APFL }),
one can compute an O(c1)-approzimate solution in poly-
time with PrIA[assignment cost of an activated client >
coB] < p.

Proof. The reduction from both problems to RFL is
quite similar, and we point out the common ingredi-
ents first. Let ({fi},{ci;},{p;},B,p) be an instance
of one-stage FL or risk-averse APFL, where p; is the
activation probability of client j. We assume that
the instance is feasible as this is easy to check. Let
n be the number of clients. Let £(t) = In({L;)
and ¢; = {(p;). For a client-set S, define ac(S) =
Pr' [some client in S is activated] = 1 — [Ljes(1—py)
and £(S) = ;.5 ¢;. We have (1 — e~ Hmin{1,4(9)} <
ac(S) = 1 — e~ ) < min{1,4(S)}. Thus, ac(S) < t iff
0(S) < £(t). Let M =}, ¢;. In both reductions, sce-
nario {j} occurs with probability ¢; /M in our RFL prob-
lem, and we set the probability threshold to ¢(p)/M.

For one-stage FL, scenario {j} has budget %jpj

(on the assignment cost), and client j has demand
Mp;/l;. We set the first-stage facility costs to {f;}, and
the second-stage facility costs are set very high (e.g.,
M(nmax; jcij + >, fi)/ min; £;; note that we are in
the poly-scenario model, so we need not worry about
the inflation factor ). An optimal one-stage-FL solu-
tion (K*,{a*(j)) yields a solution to the RFL instance,
where we open the facilities in K™ in stage I and assign
each client j to a*(j). This is feasible because the vi-
olated scenarios in the RFL instance correspond to the
clients in S := {j : cq=(j); > B}, and ac(S) < p im-



plies that ¢(S)/M < £(p)/M. Also, clearly the RFL-
cost is equal to its one-stage-FL-cost. Now consider any
(c1, 2, 1)-solution to the RFL problem. We may assume
that no facilities are opened in stage II. We obtain a
one-stage-FL-solution where we open all the (stage-I)
facilities opened by the RFL-solution and assign clients
as in the RFL-solution. The cost of the solution is un-
changed. If {a(j)} denotes the client assignment, then
Pr'# [assignment cost of an activated client > ¢y B] =
ac(S = {j : ¢ja(j) > c2B}), which is at most p since
6S)/M < t(p)/M.

For APFL, scenario {j} has budget
has demand p;/¢;. we set the first-stage cost of facility
i to f;/M, and its second-stage cost to f;. An optimal
APFL-solution (K*, {a* (])}) yields the following feasible
solution to the RFL problem. For ¢ € K*, we open
i in stage I if £({j : a*(j) = i}) > 1, and otherwise
we open ¢ in every scenario {j} for which a*(j) = ¢;
we assign each client j to a*(j). The RFL-cost of this
solution is 17  [Y ;e fimin{1,({j : a*(j) = i} } +
> Picar(j);] < % - OPT pppL- The feasibility of
the solution follows from the same calculations as in the
one-stage-FL problem. Suppose we have a (c1,co,1)-
solution to RFL. This translates to an APFL-solution
where we open all the (stage-I and stage-II) facilities
opened by the RFL-solution and assign clients as in
the RFL-solution. A similar calculation as above shows
that the APFL-cost is at most M (RFL-cost); also, as
in the one-stage-FL setting, if {a(j)} denotes the client
assignment and S = {j : c,(j); > c2B}, then we obtain
that ac(S) < p since £(S)/M < ¢(p)/M.

Finally, note that we do not use “metricity” any-
where, so the same reductions apply to the set-cover
versions of these problems as they can be cast as non-
metric facility-location problems. ]

Be'p i and client j

The following result for metric RFL complements the
above theorem. Its proof is deferred to the full version
of this paper.

THEOREM 6.2. For any € > 0 and any RFL problem,
one can compute a (4 + g + e,&l)-solution m time

poly (input size,log(1)).

7 Sampling lower bounds

We now prove various lower bounds on the sample-size
required in the black-box model to obtain a bounded
approximation guarantee for the risk-averse budgeted
and robust problems. Say that a solution is an (e,7)-
optimal solution if its cost is at most (1 +¢) OPT + .

THEOREM 7.1. For any ¢,y > 0, § < %, every algo-

rithm for risk-averse budgeted set cover that returns an

(e,7)-optimal solution with failure probability at most §
using a bounded number of samples

o must violate the probability threshold on some input;

o requires Q(%) samples if the probability-threshold is
violated by at most an additive k;

e requires Q(%p) samples if the probability-threshold is
violated by at most a multiplicative (1 + K)-factor.
The proof of Theorem 7.1 relies on the following

observation. Consider the following problem. We are
given as input a threshold ¢ € (0, ;) and a biased coin
with probability ¢ of landing heads, where the coin is
given as a black-box; that is, we do not know ¢ but
may toss the coin as many times as necessary to “learn”
q. The goal is to determine if ¢ < p or g > 2p; if
q € (p,20], the algorithm may answer anything. We
prove that for any § < %, any algorithm that ensures
error probability at most § on every input must need
at least N(6;0) = In(} — 1)/40 coin tosses for each
threshold p.

LEMMA 7.1. Let § < % and An(s;0) be an algorithm
that has failure probability at most § and uses at most
N(6;0) coin tosses for threshold o. Then, N(&;0) >
N(8;0) :==1In(} — 1) /40 for every o € (0, 7).

Proof. Suppose N(8;0) < N(6;0) for some o € (0,1).
Let X be a random variable that denotes the number of
times the coin lands heads. If X = 0 then the algorithm
must say “q < ©” with probability at least 1 — 4,
otherwise the algorithm errs with probability more than
6 on ¢ = 0. But then for some ¢y < i slightly greater
than 2o, we have Pr[X = 0] > (1 — 29N > 2
So A will say “q < ¢” (and hence, err) for ¢ = ¢g, with
probability more than §. ]

Proof of Theorem 7.1. Given Lemma 7.1, our strategy
is to construct a (very simple) RSC instance, where there
is one key scenario A, whose probability determines
whether or not one should take a certain first-stage
decision to achieve a low cost solution with bounded
budget inflation. We show that an algorithm that al-
ways returns an (e,)-solution can be used to distin-
guish whether py < k or ps > 2k, and hence, the algo-
rithm must draw a certain number of samples.
Suppose there is an algorithm A for risk-averse
budgeted set cover that on any input (with a black-
box distribution) draws a bounded number of samples
and returns an (e, y)-optimal solution with probability
at least 1 — 8, § < 1, where the probability-threshold is
violated by at most k. Consider the following risk-averse
budgeted set-cover instance. There are three elements
€1, ea, €3, three sets S; = {e;}, i = 1,2,3. The budget



is B > 6 and the probability threshold is p < ﬁ.
1

The costs are wg, = B for all 4, and w?l =0, wgz =
w?g = 2B/3 for every scenario A. Let k < 1. There are
3 scenarios: Ag = 0, A1 = {ey,ea,e3}, Ay = {ea,e3}
with pa, = p—kK, pa, =1—pa, —pa,. Observe that if
pa, < K, then OPT < p-4B/3, and every (e, y)-optimal
solution must have x5, +2g5, +zg, < é But if pa, > 2k
(which is possible since p < 1) then any solution where
the probability of exceeding the budget is at most p+ &
must have zg, + x5, > %7 otherwise the cost in both
scenarios A; and Ay will exceed B. Thus, algorithm A
can be used to determine if pg, < k or pa, > 2k. (This
is true even if we allow the budget to be inflated by a
factor ¢ < % since we must still have zg, + g, > %
if pa, > 2k. Choosing B > 1, p < 1, we can allow
an arbitrarily large budget-inflation.) So since A has
failure probability at most 4, by Lemma 7.1, it must
draw Q(%) samples.

Taking « = 0 shows that obtaining guarantees
without violating the probability threshold is impossible
with a bounded sample size, whereas taking k = kp
shows that a multiplicative (1 + k)-factor violation
of the probability threshold requires Q(%p) samples.
Moreover, taking p = 0 shows that one cannot hope to
achieve any approximation guarantees in the (standard)

budget model with black-box distributions. |

To show the impossibility of approximation in the
standard robust model with a bounded sample size,
consider the following set cover instance. We have
a single element e that gets “activated” with some
probability p; the cost of the set S = {e} is 1 in stage
I and some large number M in stage II. If p = 0 then
OPT = 0, otherwise OPT = 1. Thus, it is easy to see
that an algorithm returning an (e, ~)-optimal solution
can be used to distinguish between these two cases (it
should set x5 < -y in the former case, and xg sufficiently
large in the latter).
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Tightness of Theorem 4.1,
Theorem 4.2

and proof of

Consider a

RSC instance with k scenarios, each occurring with
probability % Each scenario A specifies a disjoint set of
1 —i—é elements to be covered, and each of these elements
is covered by a unique set. For notational simplicity, we
assume that no set can be chosen in stage I; clearly,

this

can be simulated by setting exorbitant first-stage

costs. We set the second-stage cost of all sets to 1, and

set B=1,p= —
for all the sets S covering A, rq =

Then, the solution ya,s = 15

1 .
= for all A is

1+e”

feasible to (RSCP). But any solution to (RSCP) with
ra € {0,1} must violate either (4.1) by a (1 + ¢)-factor
or (4.4) by a (1 + 1)-factor; equivalently, if we require
that Pra[fa(0) > vB] < op, then either v > (1+ 1) or

o>

(1+¢).
Now, modify the above instance so that there is



now just one set S that covers all the elements, whose
first-stage cost is 1 + é and the second-stage cost is
negligible but non-zero. We set B = 0, so that the
risk-averse budgeted problem becomes essentially a one-
stage problem (of picking sets in stage I so as to cover
“most” scenarios). In the following discussion We ignore
the negligible second-stage cost incurred; all we need is
that if some element of A is not covered in stage I, then
the budget-constraint of scenario A is violated. The
solution s = 75, ya,s = 0, ra = 3 forall A is
feasible to (RSCP) and has cost 1. But if z is a solution
to the fractional risk-averse problem of cost v - OPT
with Pra[fa(z) > 0] < op, then either y > (14 1) or
o> (1+e¢).

Proof of Theorem 4.2. Let G = (V, E), k be the input
to the MinDkS problem. Let n = |V|, m = |E]|.
create a RSC instance with m + 1 scenarios. For each
edge e = (u,v), we create two elements (e, u) and (e, v)
in our universe. For each node u € V, we create a set
Sy = {(e,u) : e € 6(u)}. For each edge e = (u,v) € E,
we create a scenario A,., where we need to cover the two
elements (e, u), (e,v); each such scenario A, occurs with
probability 21 We set the first-stage cost of each set S,
to 1, its second-stage cost to be negligible (e.g., —) but
non-zero. Also, we set B = 0. So the budget constraint
of a scenario Auv is satisfied iff both S, and S, are
picked (to an extent of 1) in stage I; otherwise, we incur
a negligible second-stage cost for A,,. In the sequel,
we ignore this negligible second-stage cost incurred for
“unsatisfied” scenarios. Observe that the RSC problem
now essentially becomes a one-stage problem of picking
suitable sets in stage I. If we now set p = (m — k)/2m,
then it is easy to argue that any (cy,-,1)-solution to
RSC yields a cj-approximate solution to MinDkS. This
was shown by Goyal and Ravi [17]. To strengthen their
result and prove that even obtaining a (cq, -)-scheme is
difficult (modulo MinDkS), even when p is a constant, we
do the following. We create a “filler” element f in our
universe, a filler set Sy = { f} and a filler scenario Ay
occurring with probability 5 where we have to cover
f (and the null scenario @ occurs with the remaining
probability). We give Sy a very high first-stage cost
(e.g., n?), and its second-stage cost to be negligible but
nonzero. Note that any any (ci,-,-)-solution to RSC
with ¢; < n, will avoid picking Sy in stage I. We set
p = % It is clear that the size of the RSC instance is
poly(m,n, k).

Any solution to MinDkS translates to a solution to
RSC of the same cost where we pick the sets correspond-
ing to the nodes in the solution in stage I. Now consider
any (cl, 5 (14 ﬁ))—solution to RSC (so Sy is not picked
in stage I). Let &’ be the number of edges in the sub-
graph induced by the nodes corresponding to the sets

picked in stage I. Then, (m—k&')- ﬁ +pa, < %(1—1— ﬁ),
som — k' +k <m+ 1; k' is an integer, so this implies
that k' > k. So we obtain a ci-approximate solution to
MinDkS in polytime.

The same reduction works for fractional RSC, since
as mentioned above, a scenario A, is satisfied iff both
S, and S, are picked to an extent of 1 in the (fractional)
solution.

Finally, Hajiaghayi and Jain [22] showed that a
ci-approximation algorithm for MinDiS yields a 2¢3-
approximation algorithm for DkS. |

B Proof of SAA result stated in Section 2

Recall that
min (h(m) =

)+ > pafa(@))

a (RA-P)
s.t. x €F, Pralfalz)>B]<p

denotes the (discrete) risk-averse problem, and

z) + ZﬁAfA(I))
A

s.t. x e F, f’\rA[fA(x)>B}§A

min (ﬁ(w) =

=p(l1+ k).
(SA-P)

is the corresponding SAA problem. Let 7, C F be the
feasible region of (RA-P). Let z* € F, be an optimal
solution to (RA-P), and O* = h(z*) denote its value.
We prove the following theorem.

THEOREM B.1. Consider k = %log(%) SAA problems
(SA-P) with objective functions hV, ... h®) each con-
structed using N = poly( , €+Hp,ln( )) independent
samples. Let ]-'pg) denote the (possibly empty) feasible
region of (SA-P). Then, with probability at least 1 — 406,
(i) if fg) = for some i, then (RA-P) is infeasible;
(i1) Suppose for eachi =1,... k, (x(i), {yg)}) is a (pos-
sibly infeasible) solution to the i-th SAA problem such
that

C(w“))+2ﬁ)ffx(x“),yf§)) <a- min b)),
€ 5'

Py fa(e®,59) > vB] < p(1+ O(x))

(2.13)

where v > 1. Let j = argmin_[c(z®) +
J)

=1
SaB e y)] and (3.444}) = (=9, {53}).
Then, h(z) < (o + O(e))O* and Pra[fa(d) > ’yB] <
p(1+0(r)).
Proof. The proof is along the lines of the proof of

the SAA method in [6] and generalizes some of their
arguments. We argue at various places that the sample



size implies that a certain event must happen with
high probability, and proceed with the proof assuming
that this high probability event happens. Note that
In|F| = poly(Z). The sample size is chosen so that
using standard Chernoff bounds, one can prove that

Pry [fa(@) > B — Pralfa(e) > Bl| < rp, and

|Prx)[fA(x) >yB] = Pra[fa(z) > 'yBH < kp, for every
i and every x € F, with probability at least 1—4§/(k|F|).
So these properties hold simultaneously for all ¢ and all
x € F with probability at least 1 — ¢. This means that
for each i, we have F, C }'@, so if .7:9) = (), then
(RA-P) i 1s 1nfeas1ble Also, thls shows that Pra[fa(z) >

vB] <Pr [fA( ) > vB] + kp < p(1+4 O(k)). Now to

bound h(Z), we observe that since F, C }—,éi) for all 14,

(2.13) implies that
A0 () = c(z®) + Zﬁ a4 )

< a- min h(i)(x) Vi=1,...,k.
x€F,

(2.14)

This says that for every i, z(¥) is an a-approximate
solution over F,. We now proceed in a way similar to [6],
and adapt their arguments to show that the “best” of
these z(9) a-approximate solutions, which we call Z, will
be such that its h(.)-value will be an a-approximation
to the minimum h(.)-value over F,

Let M = % - O*. Call a scenario A “high”,
if f4(0) > M, and “low” otherwise. Let p" =
> A:A s high Pa We use E, [.] (resp. EY [.]) to denote
the expectation (wrt. the true, i.e., p- distribution)
where non-low (resp. non-high) scenarios contribute

0 (o Bal] = B[]+ BAL]. Let pO4, B,
and Ei‘) H denote these quantities for the i-th SAA
problem.

Since h(z*) > Ef [fa(@z*)] = p"(M = Xe(z*)), we
have p" < £. The sample size N is chosen so that
Chernoff bounds ensure that with probability at least

1 — 6, for every i, we have p) < % It follows that

B [£4(0)]

z)h

—ER [fa(z)] < ec(z) VzeF (2.15)

[£4(0)] — BY" [£a(@)] < 2ec(a) Vi, y e F.
(2.16)

Since fa(z) < fa(0) < M for all low scenarios A and
all x € F, again using Chernoff bounds, one can verify
that with probability 1 — §, we have

A(z)l
‘ —E4 [fa(z

‘<60* Vi, z € F. (2.17)

Finally, notice that for every i, the expected value

~(i),h i . .
of Ey [fA(O)} = D aais highiﬁ(A)fA(O) is precisely

Eh' [ fa(o )} Therefore, by Markov’s inequality, we

have that By A [ fa(o )] > (14 €)E’4 [f4(0)] holds with
probability at most = < 1 —¢€/2. So the probability
that this happens for all ¢ = 1,...,k is at most
(1—-¢/2)F <6. So we may assume that there is some

index ¢ such that EA [fA( )] is at most

(1+ B [fa(0)] < EL[fala™)] +p"Ae(z”)

< O* + ec(z™) (2.18)

Finally, we combine these various inequalities to obtain
the desired result. Applying (2.14) to j and ¢, we have
hU)(&) < o - B9 (z*) and

h()( <cx(J) +Z ), ))
)30
Multiplying the first inequality by é and the second by

1 - é and adding, we get ﬁ(j)(;@) < ﬁ(j)( ) +

RO (%), Let Y7 = B4 [£a(0)] — B [£4(0)].
repeatedly using (2.15)—(2.17), we get

h(#) = (&) + EY [fa(@)] + B [fa(2)]
< ofd) + (B [fa(@)] + <07)
+ (B [fa@)] + Y7 + 26c(2)
< (ﬁm(m*) + Yj) + (a —1)A® (z%)
+ 0" + 2ec().

(t) (t)) < aﬁ(t)(x*).

( =

By

(2.19)

We bound A (2*) + YU by

c(z*)+ (Ei‘ [fa(z®)] +€O*) + (Eff‘ [fa(z")] —l—ec(x*))

< (1460 + ec(z"). (2.20)

Similarly, we have h(®(z*) < c(a*) + (E%h[fA(x*)] +
0) + ((Bh[fa@)] + eela) + By [14(0)] -

)
EZ [fA(O)D) Substituting EA [ Al )] EZ [fA(O)] <
Bl [f4(0)] < eO*+€%c(a*) from (2.18), we can simplify
the above bound to

R (2*) < (14 26)0* + 2ec(z*).

Finally, substituting this bound and (2.20), in
we obtain

h(#) < (1+€)0* + ec(z™) + (a — 1) ((1 +20)0% + Qec(a:*))
+ O™ + 2ec(2).

(2.19),

This implies that () < (o + O(€))O*. The success
probability is at least 1 — 44. [ ]



