
Truthful Mechanism Design for Multi-Dimensional Scheduling via

Cycle Monotonicity∗

Ron Lavi

Industrial Engineering and Management
The Technion — Israel Institute of Technology

ronlavi@ie.technion.ac.il

Chaitanya Swamy†

Combinatorics and Optimization
University of Waterloo

cswamy@math.uwaterloo.ca

Abstract

We consider the problem of makespan minimization on m unrelated machines in the con-
text of algorithmic mechanism design, where the machines are the strategic players. This is a
multidimensional scheduling domain, and the only known positive results for makespan mini-
mization in such a domain are O(m)-approximation truthful mechanisms [30, 28]. We study a
well-motivated special case of this problem, where the processing time of a job on each machine
may either be “low” or “high”, and the low and high values are public and job-dependent. This
preserves the multidimensionality of the domain, and generalizes the restricted-machines (i.e.,
{pj ,∞}) setting in scheduling. We give a general technique to convert any c-approximation al-
gorithm to a 3c-approximation truthful-in-expectation mechanism. This is one of the few known
results that shows how to export approximation algorithms for a multidimensional problem into
truthful mechanisms in a black-box fashion. When the low and high values are the same for all
jobs, we devise a deterministic 2-approximation truthful mechanism. These are the first truthful
mechanisms with non-trivial performance guarantees for a multidimensional scheduling domain.

Our constructions are novel in two respects. First, we do not utilize or rely on explicit
price definitions to prove truthfulness; instead we design algorithms that satisfy cycle mono-
tonicity. Cycle monotonicity [31] is a necessary and sufficient condition for truthfulness that is
a generalization of value monotonicity for multidimensional domains. However, whereas value
monotonicity has been used extensively and successfully to design truthful mechanisms in single-
dimensional domains, ours is the first work that leverages cycle monotonicity in the multidi-
mensional setting. Second, our randomized mechanisms are obtained by first constructing a
fractional truthful mechanism for a fractional relaxation of the problem, and then converting it
into a truthful-in-expectation mechanism. This builds upon a technique of [23], and shows the
usefulness of fractional mechanisms in truthful mechanism design.

JEL classification numbers: C70, C61, D44, D71.

∗A preliminary version of this paper, without the results in Section 6 and the exposition in Section 5.1, appeared
in the Proceedings of the 8th Annual ACM Conference on Electronic Commerce, 2007.

†Supported in part by NSERC grant 32760-06.

1

1 Introduction

Motivation. Mechanism design studies the implementation of social choice functions under the
presence of strategic players with privately known types. The focus of classic literature as well as
the more recent work on algorithmic mechanism design has mainly been on settings where the social
planner or designer wishes to maximize the social welfare (or equivalently, minimize social cost), or
on auction settings where revenue-maximization is the main goal. Alternative optimization goals,
such as those that incorporate fairness criteria (which have been investigated both in social choice
theory and algorithms design), have received much less attention.

In this paper, we consider such an alternative goal in the context of machine scheduling, namely,
makespan minimization. There are n jobs or tasks that need to be assigned to m machines, where
each job has to be assigned to exactly one machine. Assigning a job j to a machine i incurs a load
(cost) of pij ≥ 0 on machine i, and the load of a machine is the sum of the loads incurred due to the
jobs assigned to it; the goal is to schedule the jobs so as to minimize the maximum load of a machine,
which is termed the makespan of the schedule. Makespan minimization is a common objective in
scheduling environments, and has been well studied algorithmically in both the Computer Science
and Operations Research communities (see, e.g., the survey [17]). Following the work of Nisan and
Ronen [30], we consider each machine to be a strategic player or agent who privately knows its
own processing time for each job, and may misrepresent these values in order to decrease its load
(which is its incurred cost). Hence, we approach the problem via mechanism design: the social
designer, who holds the set of jobs to be assigned, needs to specify, in addition to a schedule, suitable
payments to the players in order to incentivize them to reveal their true processing times. We focus
on the solution concept of dominant-strategy implementation (i.e., implementation under dominant
strategies), and describe techniques to obtain incentive-compatible dominant-strategy mechanisms.
Throughout, we will use the more compact phrase truthful mechanism to denote a dominant-
strategy incentive-compatible mechanism.

The makespan-minimization objective is quite different from the classic goal of social-welfare
maximization (SWM), where one wants to maximize the total welfare (or minimize the total cost) of
all players. Instead, it corresponds to maximizing the minimum welfare and the notion of max-min
fairness, and appears to be a much harder problem from the viewpoint of mechanism design. The
possibility of constructing a truthful mechanism for makespan minimization is strongly related to
assumptions on the players’ processing times, in particular, the “dimensionality” of the domain.
Nisan and Ronen considered the setting of unrelated machines where the pij values may be arbitrary.
This is a multidimensional domain, since a player’s private type is its entire vector of processing
times (pij)j . Very few positive results are known for multidimensional domains and non-SWM
objectives in general. In particular, the celebrated VCG [36, 12, 15] family of mechanisms does not
apply to the makespan minimization problem, and Nisan and Ronen [30] showed that employing a
VCG mechanism for this problem may result in a makespan that is m times worse than the optimal
makespan. To date, no truthful mechanism is known to achieve a better (than Ω(m)) bound for
makespan minimization in any multidimensional scheduling domain, regardless of computational
considerations.

In this work, we explore the issue of how multidimensionality affects the implementability of
the makespan-minimization objective. As is common in Computer Science, we consider the notion
of worst-case performance guarantees and say that a mechanism or algorithm is a c-approximation
mechanism or algorithm if on every instance, it returns a makespan that is at most c times the opti-
mal makespan; c is often called the approximation ratio or performance guarantee of the mechanism
or algorithm. Our aim is to devise truthful mechanisms for the makespan-minimization problem
that attain small approximation ratios and are computationally efficient. With VCG ruled out,

2

we need to devise new techniques to approach our goal. As mentioned above, even without any
computational considerations, no truthful mechanism with an approximation ratio significantly
better than m is known to exist for makespan minimization in any multidimensional scheduling
domain. On the negative side, Nisan and Ronen showed that no truthful deterministic mechanism
can achieve an approximation ratio better than 2, and strengthened this lower bound to m for two
specific classes of deterministic mechanisms. These lower bounds have been recently improved and
extended in a series of results [28, 11, 10, 19].

In stark contrast with the above state of affairs, much stronger (and many more) positive
results are known for a special case of the unrelated machines problem, namely, the setting of
related machines. Here, we have pij = pj/si for every i, j, where pj is public knowledge, and
the speed si is the only private parameter of machine i. This assumption makes the domain
of players’ types single-dimensional. Truthfulness in such domains is equivalent to a convenient
value-monotonicity condition [29, 4]. This provides ample flexibility in mechanism design and
appears to make it significantly easier to design truthful mechanisms in such domains. Archer and
Tardos [4] first considered the related machines setting and gave a polynomial time randomized
3-approximation truthful-in-expectation mechanism. The gap between the single-dimensional and
multidimensional domains is perhaps best exemplified by the fact that [4] showed that there exists a
truthful mechanism that always outputs an optimal schedule. (Recall that in the multidimensional
unrelated machines setting, it is impossible to obtain a truthful mechanism with approximation ratio
better than 2.) Various follow-up results [3, 5, 2, 20] have given polyonomial time mechanisms that
have strengthened the notion of truthfulness and/or improved the approximation ratio.

Such difficulties in moving from the single-dimensional to the multidimensional setting also arise
in other mechanism design settings (e.g., auctions). Thus, in addition to the specific importance
of scheduling in strategic environments, ideas from multidimensional scheduling may also have a
bearing in the more general context of truthful mechanism design for multidimensional domains.

Overview of results. We consider the makespan-minimization problem for a special case of
unrelated machines, where the processing time of a job is either “low” or “high” on each machine.
More precisely, in our setting, pij ∈ {Lj ,Hj} for every i, j, where the Lj , Hj values are publicly
known (Lj ≡“low”, Hj ≡“high”). We call this model the “job-dependent two-values” case. This
generalizes the classic “restricted machines” setting where pij ∈ {Lj ,∞}, which has been well-
studied algorithmically. A special case of our model is when Lj = L and Hj = H for all jobs j,
which we denote as the “two-values” scheduling model. Both of our domains are multidimensional,
since the machines are unrelated: one job may be low on one machine and high on the other, while
another job may follow the opposite pattern. The private information of each machine is therefore a
vector specifying which jobs are low and high on it. Thus, they retain the core property underlying
the difficulty of truthful mechanism design for unrelated machines, and by studying these special
settings we hope to gain some insights that will be useful for tackling the general problem.

Our first result (Section 4) is a general method to convert any c-approximation algorithm for the
job-dependent two values setting into a 3c-approximation truthful-in-expectation mechanism. This
is one of the very few known results that use an approximation algorithm in a black-box fashion to
obtain a truthful mechanism for a multidimensional problem. Our result makes progress towards
an important goal in algorithmic mechanism design, namely that of finding ways of translating al-
gorithmic results (i.e., when all information is public knowledge) into the mechanism-design domain
(to obtain truthful mechanisms). Our result implies that there exists a 3-approximation truthful-in-
expectation mechanism for the Lj-Hj setting. Interestingly, the proof of truthfulness is not based
on supplying explicit prices, and our construction does not necessarily yield efficiently-computable
prices (but the allocation rule is efficiently computable).

3

Our second result (Section 5) applies to the two-values setting (Lj = L, Hj = H), for which
we improve both the approximation ratio and strengthen the notion of truthfulness. We obtain a
deterministic 2-approximation truthful mechanism for this problem for which the payments may
also be computed efficiently. These are the first truthful mechanisms with non-trivial performance
guarantees for a multidimensional scheduling domain. Complementing this, we observe that even
this seemingly simple setting does not admit truthful mechanisms that return an optimal schedule
(unlike in the case of related machines). By exploiting the multidimensionality of the domain, we
prove that no truthful deterministic mechanism can obtain an approximation ratio better than
1.1 to the makespan (irrespective of computational considerations). In Section 6, we show that
the algorithm from Section 5 also yields a 2-approximation truthful-in-expectation mechanism for
the Lj-Hj setting when the ratio Hj/Lj is equal for all jobs and is sufficiently large (which also
generalizes the restricted-machines case). We also devise a truthful mechanism that, for every
equal-ratio instance, returns a fractional assignment of makespan at most the optimal makespan
for that instance.

The main technique, and one of the novelties, underlying our constructions and proofs, is that
we do not rely on explicit price specifications to prove the truthfulness of our mechanisms. Instead
we exploit certain algorithmic monotonicity conditions that characterize truthfulness to first design
an implementable algorithm, that is, an algorithm for which prices ensuring truthfulness exist, and
then find these prices (by further delving into the proof of implementability). This kind of analysis
has been the method of choice in the design of truthful mechanisms for single-dimensional domains,
where value-monotonicity yields a convenient characterization enabling one to concentrate on the
algorithmic side of the problem (see, e.g., [4, 9, 5, 2, 20]). But for multidimensional domains, almost
all positive results have relied on explicit price specifications to prove truthfulness (an exception
is the work on unknown single-minded players in combinatorial auctions [24, 9]), which yet again
shows the gap in our understanding of multidimensional vs. single-dimensional domains.

Our work is the first to leverage monotonicity conditions for truthful mechanism design in arbi-
trary domains. The monotonicity condition we use, which is sometimes called cycle monotonicity,
was first proposed by Rochet [31] (see also [16]). It is a generalization of value-monotonicity and
completely characterizes truthfulness in every domain. Our methods and analyses demonstrate
the potential benefits of this characterization, and show that cycle monotonicity can be effectively
utilized to devise truthful mechanisms for multidimensional domains. Consider, for example, our
first result showing that any c-approximation algorithm can be “exported” to a 3c-approximation
truthful-in-expectation mechanism. At the level of generality of an arbitrary approximation algo-
rithm, it seems unlikely that one would be able to come up with prices to prove truthfulness of
the constructed mechanism. But, cycle monotonicity does allow us to prove such a statement. In
fact, some such condition based only on the underlying algorithm (and not on the prices) seems
necessary to prove such a general statement.

The method for converting approximation algorithms into truthful mechanisms involves another
novel idea. Our randomized mechanism is obtained by first constructing a truthful mechanism that
returns a fractional schedule. Moving to a fractional domain allows us to “plug-in” truthfulness
into the approximation algorithm in a rather simple fashion, while losing a factor of 2 in the ap-
proximation ratio. We then use a suitable randomized rounding procedure to convert the fractional
assignment into a random integral assignment. For this, we use a recent rounding procedure of
Kumar et al. [21] that is tailored for unrelated-machine scheduling. This preserves truthfulness,
but we lose another additive factor equal to the approximation ratio. Our construction uses and ex-
tends some observations of Lavi and Swamy [23], and further demonstrates the benefits of fractional
mechanisms in truthful mechanism design.

4

Related work Nisan and Ronen [30] first considered the makespan-minimization problem for
unrelated machines. They gave an m-approximation truthful mechanism and proved various lower
bounds including a lower bound of 2 on the approximation ratio achievable by deterministic truth-
ful mechanisms. Recently, Mu’alem and Schapira [28] proved a lower bound of 2 for randomized
truthful-in-expectation mechanisms, and Christodoulou, Koutsoupias, and Vidali [11] proved a
(1 +

√
2)-lower bound for deterministic truthful mechanisms, which has been further strengthened

to 2.6 [19]. Very recently, Christodoulou, Koutsoupias, and Kovacs [10] showed that no fractional
truthful mechanism can achieve approximation better than 2− 1

m
. Archer and Tardos [4] first consid-

ered the related-machines problem and gave a 3-approximation truthful-in-expectation mechanism.
This has been improved in [3, 5, 2, 20] to: a 2-approximation randomized mechanism [3]; for any
fixed ǫ > 0 and fixed number of machines, a (1 + ǫ)-approximation truthful mechanism due to
Andelman, Azar and Sorani [2]; and a 3-approximation deterministic mechanism by Kovács [20].

The algorithmic problem (i.e., when all information is public knowledge) of makespan minimiza-
tion on unrelated machines is well understood and various 2-approximation algorithms are known.
Lenstra, Shmoys and Tardos [25] gave the first such algorithm. Shmoys and Tardos [35] later gave
a 2-approximation algorithm for the generalized assignment problem, a generalization where there
is a cost cij for assigning a job j to a machine i, and the goal is to minimize the cost subject to
a bound on the makespan. Recently, Kumar, Marathe, Parthasarathy, and Srinivasan [21] gave
a randomized rounding algorithm that yields the same bounds. We use their procedure in our
randomized mechanism.

The characterization of truthfulness for arbitrary domains in terms of cycle monotonicity seems
to have been first observed by Rochet [31] (see also Gui et al. [16]). This generalizes the value-
monotonicity condition for single-dimensional domains which was proposed by Myerson [29] and
rediscovered by [4]. As mentioned earlier, this condition has been exploited numerous times to
obtain truthful mechanisms for single-dimensional domains [4, 9, 5, 2, 20]. For convex domains
(i.e., each players’ set of private types is convex), Saks and Yu [33] showed that cycle monotonicity
is implied by a simpler condition, called weak monotonicity [22, 7, 8]. This generalizes the work
of Bikchandani et al. [8] who showed that weak monotonicity characterizes truthfulness for various
auction domains. But even this simpler condition has not found much application in truthful
mechanism design for multidimensional problems. McAfee and McMillan [27] considered convex
domains with differentiable social choice functions. Their characterization of incentive-compatibility
translates to the condition that the social choice function be a subgradient of a convex function.
As Rochet [31] observed, by a result of Rockafeller [32], this is equivalent to cycle monotonicity for
continuous domains, thus making explicit the connection between the two results.

Objectives other than social-welfare maximization and revenue maximization have received very
little attention in mechanism design. In the context of combinatorial auctions, the problems of
maximizing the minimum value received by a player, and computing an envy-minimizing allocation
have been studied briefly. Lavi, Mu’alem, and Nisan [22] showed that the former objective cannot
be implemented truthfully; Bezakova and Dani [6] gave a 0.5-approximation mechanism for two
players with additive valuations. Lipton et al. [26] showed that the latter objective cannot be
implemented truthfully. These lower bounds were strengthened in [28].

2 Preliminaries

2.1 The scheduling domain

In our scheduling problem, we are given n jobs and m machines, and each job must be assigned
to exactly one machine. In the unrelated-machines setting, each machine i is characterized by a

5

vector of processing times (pij)j , where pij ∈ R≥0 ∪ {∞} denotes i’s processing time for job j with
the value ∞ specifying that i cannot process j. We consider two special cases of this problem:

1. The job-dependent two-values case, where pij ∈ {Lj ,Hj} for every i, j, with Lj ≤ Hj,
and the values Lj,Hj are known. This generalizes the classic scheduling model of restricted
machines (also called the restricted assignment model), where Hj =∞.

2. The two-values case, which is a special case of above where Lj = L and Hj = H for all
jobs j, i.e., pij ∈ {L,H} for every i, j.

We say that a job j is low on machine i if pij = Lj, and high if pij = Hj. We will use the
terms schedule and assignment interchangeably. We represent a deterministic schedule by a vector
x = (xij)i,j , where xij is 1 if job j is assigned to machine i, thus we have xij ∈ {0, 1} for every
i, j,

∑

i xij = 1 for every job j. We will also consider randomized algorithms and algorithms that
return a fractional assignment. In both these settings, we will again specify an assignment by a
vector x = (xij)i,j with

∑

j xij = 1, but now xij ∈ [0, 1] for every i, j. For a randomized algorithm,
xij is simply the probability that j is assigned to i (thus, x is a convex combination of integer
assignments).

We denote the load of machine i (under a given assignment) by li =
∑

j xijpij, and the makespan
of a schedule is defined as the maximum load on any machine, i.e., maxi li.

2.2 Mechanism design

We consider the makespan-minimization problem in the above scheduling domains in the context
of mechanism design. Mechanism design studies strategic settings where the social designer needs
to ensure the cooperation of the different entities involved in the algorithmic procedure. Following
the work of Nisan and Ronen [30], we consider the machines to be the strategic players or agents.
The social designer holds the set of jobs that need to be assigned, but does not know the (true)
processing times of these jobs on the different machines. Each machine is a selfish entity, that
privately knows its own processing time for each job (which constitutes its type). Scheduling a
job on a machine incurs a cost to the machine equal to the true processing time of the job on
the machine, and a machine may choose to misrepresent its vector of processing times, which are
private, in order to decrease its cost.

We consider direct-revelation mechanisms: each machine reports its (possibly false) vector of
processing times, the mechanism then computes a schedule and hands out payments to the players
(i.e., machines) to compensate them for the cost they incur in processing their assigned jobs. A
(direct-revelation) mechanism thus consists of a tuple (x, P): x specifies the schedule, and P = {Pi}
specifies the payments handed out to the machines, where both x and the Pis are functions of the
reported processing times p = (pij)i,j . The mechanism’s goal is to compute a schedule that has near-
optimal makespan with respect to the true processing times; a machine i is however only interested
in maximizing its own utility, Pi − li, where li is its load under the output assignment, and may
declare false processing times if this could increase its utility. The mechanism needs to therefore
incentivize the machines/players to truthfully reveal their processing times via the payments. This
is made precise using the notion of dominant-strategy incentive compatibility, which we also refer
to frequently by the more compact term truthfulness.

Definition 2.1 (Truthfulness) A scheduling mechanism is truthful if, for every machine i, every
vector of processing times of the other machines, p−i, every true processing-time vector p1

i and any

6

other vector p2
i of machine i, we have:

P 1
i −

∑

j

x1
ijp

1
ij ≥ P 2

i −
∑

j

x2
ijp

1
ij , (1)

where (x1, P 1) and (x2, P 2) are respectively the schedule and payments when the other machines
declare p−i and machine i declares p1

i and p2
i , i.e., x1 = x(p1

i , p−i), P 1
i = Pi(p

1
i , p−i) and x2 =

x(p2
i , p−i), P 2

i = Pi(p
2
i , p−i).

To put it in words, in a dominant-strategy incentive-compatible or truthful mechanism, no machine
can improve its utility by declaring a false processing time, no matter what the other machines
declare.

We will also consider fractional mechanisms that return a fractional assignment, and randomized
mechanisms where the assignment and the payments may be random variables. The notion of
truthfulness for a fractional mechanism is the same as in Definition 2.1, where x1, x2 are now
fractional assignments. For a randomized mechanism, we will consider the notion of truthfulness in
expectation [4], which means that a machine (player) maximizes her expected utility by declaring her
true processing-time vector. Inequality (1) also defines truthfulness-in-expectation for a randomized
mechanism, where P 1

i , P 2
i now denote the expected payments made to player i, x1, x2 are the

fractional assignments denoting the randomized algorithm’s schedule (i.e., xk
ij is the probability

that j is assigned to i in the schedule output for (pk
i , p−i)).

For our two scheduling domains, the informational assumption is that the values Lj,Hj are
publicly known. The private information or type of a machine is which jobs have value Lj (or
L) and which ones have value Hj (or H) on it. We emphasize that both of our domains are
multidimensional, since each machine i’s type is a vector saying which jobs are low and high on it.

2.3 Goals and objectives

Our goal is to design truthful mechanisms that assign the jobs to the machines so as to minimize
the makespan of the schedule. As we will show, no truthful mechanism can exactly implement
the makespan-minimization objective in our multidimensional domains and hence, we consider
mechanisms that approximately implement this objective. More precisely, our aim is to devise
truthful mechanisms such that for every (true) processing-time vector (in our scheduling domains)
the mechanism returns a schedule of makespan at most c times the optimum, where c ≥ 1 is
some (small) constant. We call such a mechanism a c-approximation truthful mechanism, and we
(naturally) seek a c-approximation truthful mechanism where c is as small as possible.

As is the focus in algorithmic mechanism design, a desirable property that we want our mech-
anisms to have, is computational efficiency. Intuitively, this means that the mechanism should
reach its final outcome (that is, both the schedule and the payments) in a “small” number of steps.
Following the standard notion in Computer Science, by “small” we mean polynomial in the size of
the instance (measured by the number of bits required to represent it), that is, polynomial in m, n
and maxj log Hj (where we assume that the Ljs and Hjs are all integers). Observe, for example,
that the naive algorithm that exhaustively tries all possible assignments and chooses the one with
minimum makespan does not satisfy the polynomial-time criterion since there are mn possible as-
signments to enumerate. The requirement of computational efficiency also necessitates a notion of
approximate implementation, since it is known that the algorithmic problem (i.e., when all infor-
mation is public) of makespan minimization is computationally intractable even for the two-values
problem [25]1; thus, one must settle for some approximation if one desires computational efficiency.

1More precisely, the two-values problem is NP-hard. Unless P=NP, no polynomial time algorithm can attain

7

3 Cycle monotonicity

Although truthfulness is defined in terms of payments, it turns out that truthfulness actually boils
down to a certain algorithmic condition of monotonicity. This seems to have been first observed
for multidimensional domains by Rochet [31] in 1987, who gave a necessary and sufficient condition
that characterizes truthfulness in every domain. Rochet’s condition, which is sometimes called cycle
monotonicity, has been used successfully in algorithmic mechanism design several times, but only
for single-dimensional domains, where cycle monotonicity reduces to the simpler value-monotonicity
condition proposed by Myerson [29]. For multidimensional domains, the monotonicity condition is
more involved and there has been no success in employing it in the design of truthful mechanisms.
Most positive results for multidimensional domains have relied on explicit price specifications in
order to prove truthfulness. One of the main contributions of this paper is to demonstrate that cycle
monotonicity can indeed be effectively utilized to devise truthful mechanisms in multidimensional
settings. We include a brief exposition on cycle monotonicity for completeness. The exposition
here is largely based on [16].

Cycle monotonicity is best described in the abstract social choice setting: there is a finite set
A of alternatives, there are m players, and each player has a private type (valuation function)
v : A 7→ R, where vi(a) should be interpreted as i’s value for alternative a. In the scheduling
domain, A represents all the possible assignments of jobs to machines, and vi(a) is the negative of
i’s load in the schedule a. Let Vi denote the set of all possible types of player i. A mechanism is a
tuple (f, {Pi}) where f : V1 × · · · × Vm 7→ A is the “algorithm” for choosing the alternative, often
referred to as the social choice function or allocation rule, and Pi : V1 × · · · × Vm 7→ A is the price
charged to player i (in the scheduling setting, the mechanism pays the players, which corresponds
to negative prices). The mechanism is truthful if for every i, every v−i ∈ V−i =

∏

i′ 6=i Vi′ , and any
vi, v

′
i ∈ Vi we have vi(a)−Pi(vi, v−i) ≥ vi(b)−Pi(v

′
i, v−i), where a = f(vi, v−i) and b = f(v′i, v−i). A

basic question that arises is given an algorithm f : V1×· · ·×Vm 7→ A, do there exist prices that will
make the resulting mechanism truthful? If there exist such prices, we say that f is implementable
in dominant strategies, or simply implementable for short.

It is well known (see e.g. [22]) that the price Pi can only depend on the alternative chosen and
the others’ declarations, that is, we may write Pi : V−i × A 7→ R. Thus, truthfulness implies that
for every i, every v−i ∈ V−i, and any vi, v

′
i ∈ Vi with f(vi, v−i) = a and f(v′i, v−i) = b, we have

vi(a)−Pi(a, v−i) ≥ vi(b)−Pi(b, v−i). Now fix a player i, and fix the declarations v−i of the others.
We seek an assignment to the variables {Pa}a∈A such that vi(a)−vi(b) ≥ Pa−Pb for every a, b ∈ A
and vi ∈ Vi with f(vi, v−i) = a. (Strictly speaking, we should use A′ = f(Vi, v−i) instead of A
here.) Define δa,b := inf{vi(a) − vi(b) : vi ∈ Vi, f(vi, v−i) = a}. We can now rephrase the above
price-assignment problem: we seek an assignment to the variables {Pa}a∈A such that

Pa − Pb ≤ δa,b ∀a, b ∈ A (2)

This is easily solved by looking at the allocation graph and applying a standard basic result of graph
theory.

Definition 3.1 (Gui et al. [16]) The allocation graph of f is a directed weighted graph G =
(A,E) where E = A×A and the weight of an edge b→ a (for any a, b ∈ A) is δa,b.

approximation ratio better than 4/3 for the two-values problem, and 3/2 for the job-dependent two-values problem.
This follows from the reductions in [25] (theorems 4 and 5 respectively), which prove that the makespan minimization
on unrelated machines is NP-hard by constructing instances of these two problems.

8

Theorem 3.2 There exists a feasible assignment to (2) iff the allocation graph has no negative-
length cycles. Furthermore, if all cycles are non-negative, a feasible assignment is obtained as
follows: fix an arbitrary node a∗ ∈ A and set Pa to be the length of the shortest path from a∗ to a.

Proof : Suppose first that there exists a feasible assignment {Pa}a∈A to (2). Consider any cycle
a1 ← a2 . . . ← aK ← a1. Adding the inequalities, Pak

− Pak+1
≤ δak ,ak+1

for k = 1, . . . ,K, where

K + 1 ≡ 1, shows that
∑K

k=1 δak ,ak+1
≥ 0, that is, the length of the cycle is nonnegative.

Now suppose that the length of every cycle is nonnegative. Fix some arbitrary a∗ ∈ A, and
set Pa to be the length of the shortest path from a∗ to a. Since there are no negative cycles, the
shortest-path distance from a∗ to a is well defined and Pa is finite for all a ∈ A. It follows that for
any a, b ∈ A, we have Pa − Pb ≤ δa,b since the shortest-path distance from a∗ to a is at most δa,b

plus the shortest-path distance from a∗ to b.

The theorem leads to the following definition, which is another way of phrasing the condition
that the allocation graph have no negative cycles.

Definition 3.3 (Cycle monotonicity) A social choice function f satisfies cycle monotonicity if
for every player i, every v−i ∈ V−i, every integer K, and every v1

i , . . . , v
K
i ∈ Vi,

K
∑

k=1

[

vk
i (ak)− vk

i (ak+1)
]

≥ 0

where ak = f(vk
i , v−i) for 1 ≤ k ≤ K, and aK+1 = a1.

Corollary 3.4 There exist prices P such that the mechanism (f, P) is truthful iff f satisfies cycle
monotonicity.

Recently, Saks and Yu [33] showed that if each set Vi is convex, then cycle monotonicity reduces
to a simpler condition called weak monotonicity [8], which is the condition that the allocation graph
contains no negative 2-cycles. Even this simpler condition, however, has not found much use in the
design of truthful mechanisms for multidimensional problems.

We now consider our specific scheduling domain. Fix a player i, p−i, and any p1
i , . . . , p

K
i . Let

x(pk
i , p−i) = xk for 1 ≤ k ≤ K, and let xK+1 = x1, pK+1 = p1. xk could be a {0, 1}-assignment

or a fractional assignment. We have vk
i (xk) = −∑

j xk
ijp

k
ij, so cycle monotonicity translates to

∑K
k=1

[

−∑

j xk
ijp

k
ij +

∑

j xk+1
ij pk

ij

]

≥ 0. Rearranging, we get

K
∑

k=1

∑

j

xk+1
ij

(

pk
ij − pk+1

ij

)

≥ 0. (3)

Thus (3) “reduces” our mechanism design problem to a concrete algorithmic problem. For most
of this paper, we will consequently ignore any strategic considerations and focus on designing an
approximation algorithm for minimizing makespan that satisfies (3).

4 A general technique to obtain randomized mechanisms

In this section, we consider the case of job-dependent Lj , Hj values (with Lj ≤ Hj), which gen-
eralizes the classical restricted-machines model (where Hj = ∞). We show the power of ran-
domization, by providing a general technique that converts any c-approximation algorithm into a

9

3c-approximation, truthful-in-expectation mechanism. This is one of the few results that shows
how to export approximation algorithms for a multidimensional problem into truthful mechanisms
when the algorithm is given as a black box.

Our construction and proof are simple, and based on two ideas. First, as outlined earlier, we
prove truthfulness using cycle monotonicity. It seems unlikely that for an allocation rule obtained
(using our construction) from an arbitrary approximation algorithm given only as a black box,
one would be able to prove implementability by coming up with payments, but cycle monotonic-
ity allows us to prove precisely this. Second, we obtain our randomized mechanism by (a) first
moving to a fractional domain, and constructing a fractional truthful mechanism that is allowed
to return fractional assignments; then (b) using a rounding procedure to express the fractional
schedule as a convex combination of integer schedules. This builds upon a theme introduced by
Lavi and Swamy [23], namely that of using fractional mechanisms to obtain truthful-in-expectation
mechanisms.

We should point out however that one cannot simply plug in the results of [23]. Their results
hold for social-welfare-maximization problems and rely on using VCG to obtain a fractional truthful
mechanism. VCG however does not apply to makespan minimization, and in our case even the
existence of a near-optimal fractional truthful mechanism is not known. We use the following result
adapted from [23].

Lemma 4.1 (Lavi and Swamy [23]) Let M = (x, P) be a fractional truthful mechanism. Let
R be a randomized rounding algorithm that given a fractional assignment x, outputs a random
assignment R(x) such that E

[

R(x)ij
]

= xij for all i, j. Define X(p) to be the random assignment
R(x(p)). There exist payments P ′ such that the mechanism M ′ = (X,P ′) is truthful in expectation.
Furthermore, if M is individually rational2 then M ′ is individually rational for every realization of
coin tosses.

Let OPT (p) denote the optimal makespan (over integer schedules) for instance p. As our
first step, we take a c-approximation algorithm and convert it to a 2c-approximation fractional
truthful mechanism. This conversion works even when the approximation algorithm returns only a
fractional schedule (satisfying certain properties) of makespan at most c ·OPT (p) for every instance
p. We prove truthfulness by showing that the fractional algorithm satisfies cycle monotonicity (3).
Although Corollary 3.4 also holds for an infinite alternative set, we note that the alternative-set
of our fractional mechanism is finite (although the set of all fractional assignments is infinite): its
cardinality is at most that of the input domain, which is 2mn in the two-value case. To convert
this fractional truthful mechanism into a randomized truthful mechanism we need a randomized
rounding procedure satisfying the requirements of Lemma 4.1. Fortunately, such a procedure
is implicit in the work of Shmoys and Tardos [35], and is made explicit by Kumar, Marathe,
Parthasarathy, and Srinivasan [21].

Lemma 4.2 ([35, 21]) Given a fractional assignment x and a processing-time vector p, there
exists a randomized rounding procedure that yields a (random) assignment X such that,

1. for any i, j, E
[

Xij

]

= xij .

2. for any i,
∑

j Xijpij <
∑

j xijpij + max{j:xij>0} pij with probability 1.

For completeness, we include the proofs of Lemmas 4.1 and 4.2 in the appendix.

2A mechanism satisfies individual rationality if each player’s utility is non-negative if she reveals her true value.

10

Property 1 will be used to obtain truthfulness in expectation, and property 2 will allow us to
prove an approximation guarantee. We first show that any algorithm that returns a fractional
assignment having certain properties satisfies cycle monotonicity.

Lemma 4.3 Let A be an algorithm that for any input p, outputs a (fractional) assignment x such
that, if pij = Hj then xij ≤ 1/m, and if pij = Lj then xij ≥ 1/m. Then A satisfies cycle
monotonicity.

Proof : Fix a player i, and the vector of processing times of the other players p−i. We need to
prove (3), that is,

∑K
k=1

∑

j xk+1
ij

(

pk
ij − pk+1

ij

)

≥ 0 for every p1
i , . . . , p

K
i , where index k = K + 1 is

taken to be k = 1. We will show that for every job j,
∑K

k=1 xk+1
ij

(

pk
ij − pk+1

ij

)

≥ 0.

If pk
ij is the same for all k (either always Lj or always Hj), then the above inequality clearly

holds. Otherwise we can divide the indices 1, . . . ,K, into maximal segments, where a maximal
segment is a maximal set of consecutive indices k′, k′ + 1, . . . , k′′ − 1, k′′ (where K + ℓ ≡ ℓ for
1 ≤ ℓ < K) such that pk′

ij = Hj ≥ pk′+1
ij ≥ · · · ≥ pk′′

ij = Lj . This follows because there must be some

k such that pk
ij = Hj > pk−1

ij = Lj. We take k′ = k and then keep including indices in this segment

till we reach a k such that pk
ij = Lj and pk+1

ij = Hj . We set k′′ = k, and then start a new maximal
segment with index k′′ + 1. Note that k′′ 6= k′ and k′′ + 1 6= k′ − 1. We now have a subset of
indices and we can continue recursively. So all indices are included in some maximal segment. We
will show that for every such maximal segment k′, k′ + 1, . . . , k′′,

∑

k′−1≤k<k′′ x
k+1
ij

(

pk
ij − pk+1

ij

)

≥ 0.
Adding this for each segment yields the desired inequality.

So now focus on a maximal segment k′, k′ + 1, . . . , k′′ − 1, k′′. Thus, there is some k∗ such that
for k′ ≤ k < k∗, we have pk

ij = Hj, and for k∗ ≤ k ≤ k′′, we have pk
ij = Lj. Now the left hand

side of the above inequality for this segment is simply xk′

ij (Lj − Hj) + xk∗

ij (Hj − Lj) ≥ 0, since

xk′

ij ≤ 1
m
≤ xk∗

ij as pk′

ij = Hj and pk∗

ij = Lj.

We now describe how to use a c-approximation algorithm to obtain an algorithm satisfying the
property in Lemma 4.3. For simplicity, first suppose that the approximation algorithm returns
an integral schedule. The idea is to simply “spread” this schedule. We take each job j assigned
to a high machine and assign it to an extent 1/m on all machines. For each job j assigned to
a low machine, say i, we assign 1/m-fraction of it to every other machine where it is low, and
assign its remaining fraction (which is at least 1/m) to i. The resulting assignment clearly satisfies
the desired properties. Also observe that the load on any machine has at most increased by
1
m
· (load on other machines) ≤ makespan, and hence the makespan has at most doubled. This

“spreading out” can also be done if the initial schedule is fractional. Since a job j could be assigned
to multiple machines, we consider each machine i for which xij > 0 in turn, and “spread” this
xij-fraction over the machines: if i is a high-machine for j, we assign an xij/m-fraction of j to all
machines; if i is a low-machine for j, we assign j to an extent xij/m on every other low-machine

and the remaining xij

(

1− |{i′ 6=i: pi′j=Lj}|

m

)

-fraction of it to i. We describe this more precisely below.

Algorithm 1 Let A be any algorithm that on any input p outputs a possibly fractional assignment
x such that xij > 0 implies that pij ≤ makespan(x). (In particular, note that any algorithm
that returns an integral assignment has these properties.) Our algorithm returns the following
assignment xF . For every i, j,

1. if pij = Hj, set xF
ij =

∑

i′:pi′j=Hj
xi′j/m;

2. if pij = Lj, set xF
ij = xij +

∑

i′ 6=i:pi′j=Lj
(xi′j − xij)/m +

∑

i′:pi′j=Hj
xi′j/m.

11

Theorem 4.4 Suppose algorithm A satisfies the conditions in Algorithm 1 and returns a makespan
of at most c · OPT (p) for every p. Then, Algorithm 1 is a 2c-approximation, cycle-monotone
fractional algorithm. Moreover, if xF

ij > 0 on input p, then pij ≤ c ·OPT (p).

Proof : First, note that xF is a valid assignment: for every job j we have

∑

i

xF
ij =

∑

i

xij +
∑

i,i′ 6=i:pij=pi′j=Lj

xi′j − xij

m
=

∑

i

xij = 1.

We also have that if pij = Hj then xF
ij =

∑

i′:pi′j=Hj
xi′j/m ≤ 1/m. If pij = Lj, then xF

ij =

xij(1 − ℓ/m) +
∑

i′ 6=i xi′j/m where ℓ = |{i′ 6= i : pi′j = Lj}| ≤ m− 1; so xF
ij ≥

∑

i′ xi′j/m = 1/m.
Thus, by Lemma 4.3, A′ satisfies cycle monotonicity.

The total load on any machine i under xF is at most
∑

j:pij=Hj

∑

i′:pi′j=Hj

Hj ·
xi′j

m
+

∑

j:pij=Lj

Lj

(

xij +
∑

i′ 6=i

xi′j

m

)

,

which is at most
∑

j pijxij +
∑

i′ 6=i

∑

j pi′jxi′j/m ≤ 2c ·OPT (p). Finally, suppose xF
ij > 0 for some

i and j. If pij = Lj, clearly pij ≤ OPT (p); if pij = Hj, then for some i′ (possibly i) with pi′j = Hj

we have xi′j > 0, so by assumption, pi′j = Hj = pij ≤ c ·OPT (p).

Theorem 4.4 combined with Lemmas 4.1 and 4.2, gives a 3c-approximation, truthful-in-expectation
mechanism. The entire mechanism is summarized below.

Mechanism M ′ = (X, P ′) (Given: An algorithm A satisfying the conditions in Algorithm 1.)
On input p, the mechanism outputs the following random assignment and prices.

Assignment X(p). Compute the assignment xF by running Algorithm 1 on the assignment
x = A(p). The random assignment X(p) is the assignment obtained by using Lemma 4.2 to
round xF .

Payments {P ′

i(p)}. Define A′′ to be the algorithm such that xF = A′′(p). First compute the
payment scheme P so that M ′′ = (A′′, P) is a fractional truthful mechanism: the payment Pi(p)
to player i for the assignment xF is computed by using Theorem 3.2. (Note that the weights
δab for the edges in the allocation graph for player i may be computed trivially in O(2mn) time
since one can simply go through the 2mn possible two-value inputs.) Now use Lemma 4.1 on the
mechanism M ′′ to obtain the (random) payments P ′

i (p).

Theorem 4.5 Given a c-approximation fractional algorithm A satisfying the conditions in Algo-
rithm 1, mechanism M ′ described above is a 3c-approximation, truthful-in-expectation mechanism.

The trivial procedure mentioned in mechanism M ′ for computing payments is not a polynomial-
time procedure. A more efficient procedure will likely need to exploit specific properties of the
underlying algorithm A. We leave the problem of finding an approximation algorithm A for which
the payments P ′ in mechanism M ′ are computable in polynomial time as an open problem.

It is known that one can compute in polynomial time the smallest makespan T ∗ for which there
exists a feasible fractional assignment x having the property xij > 0 =⇒ pij ≤ T ∗ (see [25, 35]).
Observe that T ∗ ≤ OPT (p). Taking A in mechanism M ′ above to be this optimal algorithm, we
obtain a 3-approximation mechanism.

Corollary 4.6 There exists a truthful-in-expectation mechanism with approximation ratio 3 for
the Lj-Hj setting.

12

ce =∞
j1

j2

j3

1

ce = 1

∞

∞

1

ts

i2

ce = ⌊T
L
⌋ = 1i1

1

Figure 1: Flow network for (p, T), where there are 3 jobs and 2 machines, and T = L.

5 A deterministic mechanism for the two-values case

We now present a deterministic 2-approximation truthful mechanism for the case where pij ∈ {L,H}
for all i, j. As in Section 4, our goal is to obtain an approximation algorithm that satisfies cycle
monotonicity. We divide the description and analysis of the mechanism into several parts. We
start by giving a brief exposition of network flows, which is the main technical tool that we use
in our construction, and discussing its connection to our scheduling problem (Section 5.1). We
then describe the algorithm (Section 5.2). In Sections 5.3 and 5.4 respectively, we bound its
approximation guarantee and prove that it satisfies cycle monotonicity. In Section 5.5, we make
the payments yielding a truthful mechanism explicit and show that they can be computed efficiently.
We conclude the section by proving a lower bound on the best possible approximation achievable
by any cycle-monotone algorithm (Section 5.6).

Throughout this section, we will often say that j is assigned to a low-machine to denote that j
is assigned to a machine i where pij = L. We will call a job j a low job of machine i if pij = L; the
low-load of i is the load on i due to its low jobs, i.e.,

∑

j:pij=L xijpij.

5.1 Network flows

In this section, we give a brief introduction to network flows; the reader is referred to the text-
books [1, 18] for more details. A flow network is defined by a directed graph G = (V,E) with a
capacity ce ≥ 0 associated with every edge e ∈ E, a source s ∈ V , and a sink t ∈ V . A flow is a
function f : E → R≥0 satisfying the following properties:

1. (Capacity conditions) For each edge e, we have 0 ≤ fe ≤ ce: the flow on e is at most its
capacity.

2. (Conservation conditions) For every node v ∈ V \{s, t}, we have
∑

e into v fe =
∑

e out of v fe:
the flow entering v must be equal to the flow leaving v.

The value of a flow is the total outgoing flow from the source s, or equivalently the total flow
entering the sink t. A maximum flow (or simply a max-flow) is a flow of maximum value.

A core component of our algorithm will be a procedure that takes an integer load threshold T
and computes an integer partial assignment x of jobs to machines such that (a) each job is assigned
either to a low machine or not at all; (b) the load on any machine is at most T ; and (c) the number
of jobs assigned is maximized. Such an assignment can be computed by finding a max-flow in the

13

∞
j1

j2

j3

∞ ts

i2

i1
∞

1

1

1

1
1

1 : backward edge

: forward edge

Figure 2: Residual graph of the network in Figure 1 wrt. the flow/assignment j1 7→ i1.

following flow network. We construct a directed bipartite graph (see Fig. 1) with a node for every
job j and every machine i, and an edge (j, i) of infinite (i.e., very large; any number ≥ 1 will suffice)
capacity if pij = L. We add a source node s with edges (s, j) having capacity 1, and a sink node
t with edges (i, t) having capacity ⌊T/L⌋. Figure 1 shows an example with three jobs and two
machines, with pi1j1 = pi1j2 = pi2j1 = L and pi1j3 = pi2j2 = pi2j3 = H, and T = L.

Any integer flow in this network corresponds to an integer partial assignment x, where xij = 1
if and only if there is a flow of 1 on the edge from j to i. Clearly, the load on any machine i due
to x is L times the flow on the edge (i, t) and hence is at most T , and the number of jobs assigned
by x is equal to the value of the flow. Conversely, any (partial) assignment satisfying (a) and (b)
translates to an integer flow in the above network of value equal to the number of jobs assigned by
x. Thus, an integer max-flow yields the desired assignment that maximizes the number of assigned
jobs. We will therefore use the terms assignment and flow interchangeably. We will refer to the
above flow network as the flow network for (p, T), and an integer max-flow in this network as a
max-flow for (p, T).

The residual graph of G with respect to a given flow f is defined as follows: it consists of the
same nodes as in G. For every original edge e = (u, v) ∈ E, if fe < ce we add edge e to the residual
graph with capacity ce − fe: we call such an edge a forward edge; further, if fe > 0 we add edge
e′ = (v, u), which is called a backward edge, with capacity fe to the residual graph. Figure 2 shows
the residual graph of the flow network in Figure 1 with respect the unit-flow fs,j1 = fj1,i1 = fi1,t = 1
(and fe = 0 for the remaining edges).

A basic important fact about flows is that if a flow is not a max-flow, then there exists a path
in the residual graph, called an augmenting path, that can be used to increase the value of the flow.
We explain this now for our specific flow networks. Let x be an integer flow that is not a max-flow
for (p, T). Then there must be an augmenting path P = (s, j1, i1, j2, i2, . . . , jK , iK , t) in the residual
graph. Here the edges (s, j1), (jℓ, iℓ) for ℓ = 1, . . . ,K, and (iK , t) are forward edges, and the edges
(iℓ, jℓ+1) for ℓ = 1, . . . ,K − 1 are backward edges. This augmenting path denotes that in the
current assignment x, j1 is unassigned, xiℓjℓ

= 0 as denoted by the forward edges (jℓ, iℓ), and jobs
j2, . . . , jK are assigned to i1, . . . , iK−1 respectively, (i.e., xiℓjℓ+1

= 1) as denoted by the backward
edges (iℓ, jℓ+1). Augmenting x using P means that we change the flow/assignment so that each jℓ

is assigned to iℓ in the new assignment. Notice that j1 is now assigned, so this increases the value of
the flow by 1. Observe that any simple augmenting path does not decrease the load of any machine.
In the example in Figure 2, a possible (simple) augmenting path is (s, j2, i1, j1, i2, t). This modifies
the original assignment (job j1 to machine i1) to the new assignment: j1 to i2 and j2 to i1.

14

The existence of augmenting paths leads to a simple algorithm for computing a maximum flow,
called the Ford-Fulkerson algorithm [13] (see also [1, 18]). We start off with the zero-flow (i.e.,
fe = 0 for all edges), and then repeatedly use augmenting paths to increase the value of the flow
until no such path exists. This iterative algorithm has one important implication that will be quite
useful: there always exists an integer max-flow if all capacities are integers. For example, in the
flow network for (p, T), this follows since we start with an integral flow (the zero-flow), and every
time we use an augmenting path to augment an integral flow, we get a new integral flow.

We need to introduce one additional concept that is needed for our algorithm. There could
potentially be many max-flows, and we will be interested in the most “balanced” ones, which we
formally define as follows. Fix some max-flow. Let ni

p,T be the amount of flow on edge (i, t) (or
equivalently the number of jobs assigned to i in the corresponding schedule), and let np,T be the total
value of the max-flow, i.e., np,T =

∑

i n
i
p,T . For any T ′ ≤ T , define ni

p,T |T ′ = min(ni
p,T , ⌊T ′/L⌋),

that is, we “truncate” the flow/assignment on i so that the total load on i is at most T ′. Define
np,T |T ′ =

∑

i n
i
p,T |T ′ . We define a prefix-maximal flow or assignment for T as follows.

Definition 5.1 (Prefix-maximal flow) A flow for the above network with threshold T is prefix-
maximal if for every integer T ′ ≤ T , we have np,T |T ′ = np,T ′.

That is, in a prefix-maximal flow for (p, T), if we truncate the flow at some T ′ ≤ T , we are left
with a max-flow for (p, T ′). A prefix-maximal flow for a threshold T always exists, as shown by the
following algorithm: compute a max-flow for threshold 1, use simple augmenting paths to augment
it to a max-flow for threshold 2, and repeat, each time augmenting the max-flow for the previous
threshold t to a max-flow for threshold t + 1 using simple augmenting paths. Since, in each such
transition, the load on each machine never decreases, this results in a prefix-maximal flow.

5.2 A cycle-monotone approximation algorithm

We now describe our cycle-monotone algorithm that achieves a 2-approximation. The algorithm
consists of three steps. First, we compute a large enough threshold T ∗(p), so that after we maximally
pack the low jobs up to this threshold, there is enough room left (over all machines) within the
threshold to fit in the remaining high jobs (fractionally). We then maximally pack the low jobs
up to the threshold T ∗(p) by a max-flow computation (as detailed above). Finally, we assign
the remaining jobs (which will be high jobs) greedily by assigning them iteratively to the current
least-loaded machine.

Algorithm 2 Given a vector of processing times p, construct an assignment of jobs to machines
as follows.

1. Compute T ∗(p) = min
{

T ≥ H, T multiple of L : np,T ·L+(n−np,T) ·H ≤ m ·T
}

.3 Note
that np,T ·L + (n−np,T) ·H −m · T is a decreasing function of T , so T ∗(p) can be computed
in polynomial time via binary search.

2. Compute a prefix-maximal flow for threshold T ∗(p) and the corresponding partial assignment
(i.e., j is assigned to i iff there is 1 unit of flow on edge (j, i)).

3. Assign the remaining jobs, i.e., the jobs unassigned in the flow-phase, in a greedy manner as
follows. Consider these jobs in an arbitrary order and assign each job to the machine with
the current lowest load (where the load includes the jobs assigned in the flow-phase).

3The restriction to multiples of L is not essential, but simplifies certain arguments.

15

Our algorithm needs to compute a prefix-maximal assignment for the threshold T ∗(p). The proof
showing the existence of a prefix-maximal flow yields an algorithm for computing it that uses at
most n augmenting paths overall, since there are only n jobs to assign (so the value of the max-flow
is at most n, for any threshold T). Thus, this algorithm has polynomial running time.

The main theorem of this section is as follows.

Theorem 5.2 Algorithm 2 is a polynomial time deterministic 2-approximation algorithm for the
two-values scheduling domain, and is implementable. Moreover, one can efficiently compute pay-
ments that yield a truthful mechanism.

In Sections 5.3 and 5.4, we prove that Algorithm 2 is a 2-approximation cycle-monotone algo-
rithm. This will then allow us to compute payments in Section 5.5 and prove Theorem 5.2.

5.3 Proof of approximation

The proof of the approximation guarantee is fairly straightforward. Recall that OPT (p) denotes
the optimal makespan over integer schedules for p. It is easy to show that if OPT (p) < H then
the makespan returned is at most OPT (p), since both our schedule and the optimal schedule
would then assign all jobs to low machines. Suppose OPT (p) > H. In Claim 5.4 we argue

that T ∗(p) ≤ OPT (p) + L. This follows because if we take T = L · ⌈OPT (p)
L
⌉ ≤ OPT (p) + L

as a candidate threshold then np,T is at least the number of jobs assigned to low machines in an
optimum schedule (since T ≥ OPT (P)); so the total load after the remaining high-jobs are assigned
is at most m · OPT (p) ≤ m · T implying that T ∗(p) ≤ T . We next show (Lemma 5.6) that the
greedy scheduling of jobs in step 3 results in makespan at most T ∗(p) + H (roughly). The proof
is a standard list-scheduling argument showing that a larger makespan would imply that the total
load after the high-machines are assigned is strictly greater than m ·T ∗(p), which is a contradiction.
These two facts imply the 2-approximation guarantee.

Claim 5.3 If OPT (p) < H, the makespan is at most OPT (p).

Proof : If OPT (p) < H, it must be that the optimal schedule assigns all jobs to low machines, so
np,OPT(p) = n. Thus, we have T ∗(p) = L · ⌈H

L
⌉. Furthermore, since we compute a prefix-maximal

flow for threshold T ∗(p) we have np,T ∗(p)|OPT (p) = np,OPT(p) = n, which implies that the load on
each machine is at most OPT (p). So the makespan is at most (and hence exactly) OPT (p).

Claim 5.4 If OPT (p) ≥ H, then T ∗(p) ≤ L · ⌈OPT (p)
L
⌉ ≤ OPT (p) + L.

Proof : Let nOPT (p) be the number of jobs assigned to low machines in an optimum schedule. The
total load on all machines in this optimum schedule is exactly nOPT(p)·L+(n−nOPT(p))·H, and is at

most m ·OPT (p), since every machine has load at most OPT (p). So taking T = L · ⌈OPT (p)
L
⌉ ≥ H,

since np,T ≥ nOPT(p) we have that np,T · L + (n − np,T) · H ≤ m · T . Hence, T ∗(p), which is the

smallest such T , is at most L · ⌈OPT (p)
L
⌉.

Claim 5.5 Each job assigned in step 3 of the algorithm is assigned to a high machine.

Proof : Suppose j is assigned to machine i in step 3. If pij = L, then we must have ni
p,T ∗(p) =

T ∗(p)/L, otherwise we could have assigned j to i in step 2 to obtain a flow of larger value. So
at the point just before j is assigned in step 3, the load of each machine must be at least T ∗(p).

16

Hence, the total load after j is assigned is at least m · T ∗(p) + L > m · T ∗(p). But the total load is
also at most np,T ∗(p) · L + (n− np,T ∗(p)) ·H ≤ m · T ∗(p), yielding a contradiction.

Lemma 5.6 The above algorithm returns a schedule with makespan at most OPT (p)+min{H,OPT (p)}.

Proof : If OPT (p) < H, then by Claim 5.3, we are done. So suppose OPT (p) ≥ H. By Claim 5.4,
we know that T ∗(p) ≤ OPT (p) + L. If there are no unassigned jobs after step 2 of the algorithm,
then the makespan is at most T ∗(p) and we are done. So assume that there are some unassigned
jobs after step 2. To complete the proof, we will show that the makespan after step 3 is at most
T+H

(

1− 1
m

)

where T = min
{

T ∗(p),OPT (p)
}

. Suppose the claim is false. Let i be the machine with
the maximum load, so li > T +H

(

1− 1
m

)

. Let j be the last job assigned to i in step 3, and consider
the point just before it is assigned to i. So li > T −H/m at this point. Also since j is assigned to i,
by our greedy rule, the load on all the other machines must be at least li. So the total load after j is
assigned, is at least H +m · li > m ·T (since pij = H by Claim 5.5). Also, for any assignment of jobs
to machines in step 3, the total load is at most np,T ∗(p) ·L+(n−np,T ∗(p)) ·H since there are np,T ∗(p)

jobs assigned to low machines. Therefore, we must have m · T < np,T ∗(p) · L + (n − np,T ∗(p)) · H.
But we will argue that m · T ≥ np,T ∗(p) · L + (n− np,T ∗(p)) ·H, which yields a contradiction.

If T = T ∗(p), this follows from the definition of T ∗(p). If T = OPT (p), then letting nOPT(p)

denote the number of jobs assigned to low machines in an optimum schedule, we have np,T ∗(p) ≥
nOPT(p). So np,T ∗(p) · L + (n − np,T ∗(p)) ·H ≤ nOPT(p) · L + (n− nOPT(p)) ·H. This is exactly the
total load in an optimum schedule, which is at most m ·OPT (p).

5.4 Proof of cycle monotonicity

The cycle-monotonicity proof is somewhat involved, so we begin by giving a high-level overview.
We first simplify condition (3) for our two-values {L,H} scheduling domain to obtain a condition
that will be more convenient to work with. Throughout, we fix a machine i. Considering (3)
and fixing an index k, it is clear that each non-zero term in the inner summation for index k is
± (H − L). Thus, we can replace (3) by an equivalent, more convenient condition stated in terms
of the number of jobs assigned to machine i in xk that switch from high to low, or the other way
round, on machine i when one moves from pk to pk+1. To this end, we define

nk,ℓ
H =

∣

∣{j : xk
ij = 1, pk

ij = L, pℓ
ij = H}

∣

∣ (4)

nk,ℓ
L =

∣

∣{j : xk
ij = 1, pk

ij = H, pℓ
ij = L}

∣

∣. (5)

Then,
∑

j xk+1
ij (pk

ij − pk+1
ij) = (nk+1,k

H − nk+1,k
L)(H − L). Plugging this into (3) and dividing by

(H − L), we get the following.

Proposition 5.7 Cycle monotonicity in the two-values scheduling domain is equivalent to the con-
dition that, for every player i, every p−i, every integer K, and every p1

i , . . . , p
K
i ,

K
∑

k=1

(

nk+1,k
H − nk+1,k

L

)

≥ 0. (6)

To get a better feel for condition (6), consider for simplicity the case where we have only two
inputs p1 = (p1

i , p−i), p2 = (p2
i , p−i). Suppose first that p2

i ≤ p1
i , that is, in moving from p1

i to
p2

i , machine i only decreases some jobs from H to L. Then, (6) simplifies to n2,1
H ≥ n1,2

L ; to put it

17

in words, this requires that the number of jobs assigned to i that were decreased (from H to L)
should weakly increase when one moves from p1 to p2. In the general case of arbitrary p1 and p2,
one can similarly parse condition (6) as requiring that the difference, (number of jobs assigned to
i that were decreased − number of jobs assigned to i that were increased), should weakly increase
when one transitions from p1 to p2.

We now give some intuition about why Algorithm 2 should satisfy (6). Consider first the
special case where all the thresholds T ∗(pk

i , p−i) for k = 1, . . . ,K are equal. Let T ∗ be this common
threshold. Let pk denote the input (pk

i , p−i). Consider the schedule x2 computed for p2. Note that
the number of jobs assigned by x2 to low machines is precisely np2,T ∗. We claim that if we assign
to each machine i′ all the jobs j for which x2

i′j = 1 and p1
i′j = L, then we obtain a valid flow for

(p1, T ∗) of value np2,T ∗ − n2,1
H + n2,1

L . It is clear that the number of low jobs on each machine i′ 6= i

is ni′

p2,T ∗ , so the low-load on i′ is at most T ∗. The set of low jobs on machine i can be written as

{j : x2
ij = 1, p2

ij = L} \ {j : x2
ij = 1, p2

ij = L, p1
ij = H} ∪ {j : x2

ij = 1, p2
ij = H, p1

ij = L}.

Thus, the number of low jobs on i is exactly ni
p2,T ∗ −n2,1

H + n2,1
L ; also, it is not hard to see that the

low-load on i is at most T ∗. Since np1,T ∗ is the value of the max-flow for (p1, T ∗), it follows that

np1,T ∗ ≥ np2,T ∗−n2,1
H +n2,1

L . We can repeat the exact same argument for any pk+1 and pk to obtain

the inequality npk,T ∗ ≥ npk+1,T ∗ − nk+1,k
H + nk+1,k

L (where K + 1 ≡ 1). Adding all these inequalities
gives precisely (6).

Of course, in general, the thresholds for the different pk’s will be different, so to prove (6) in
general, we will need to (prove and) use certain properties of prefix-maximal flows. By delving
into the structure of prefix-maximal flows, we show (essentially) that we can replace T ∗ in the
above analysis (where the common threshold T ∗ allowed us to “compare across” different pk’s) by
the threshold TL = T ∗(~L, p−i), where ~L is the all-low processing time vector. More precisely, we
prove (6) by showing that the inequality np1,T L ≥ np2,T L − n2,1

H + n2,1
L (inequality (7)) holds for

any p1 = (p1
i , p−i) and p2 = (p2

i , p−i). The proof of this inequality requires considering a few cases
(Lemmas 5.10 and 5.11). A key insight that leads to the proof is exposited in Lemma 5.8 and
Corollary 5.9, where we show that if T ∗(p) > TL then it must be that all the low-jobs of i are
assigned by the TL-threshold by the assignment computed for p. This allows us to, in some cases,
establish the desired inequality by comparing the assignments for p1 and p2 truncated at TL and
using a max-flow argument similar to the one used in the common-threshold scenario.

Lemma 5.8 Consider any two instances p = (pi, p−i) and p′ = (p′i, p−i) where p′i ≥ pi, i.e.,
p′ij ≥ pij ∀j. If T is a threshold such that np,T > np′,T , then every maximum flow x′ for (p′, T)
must assign all jobs j such that p′ij = L.

Proof : Let Gp′ denote the residual graph for (p′, T) and flow x′ (see Fig. 3). Suppose by
contradiction that there exists a job j∗ with p′ij∗ = L that is unassigned by x′. Since p′i ≥ pi, all
edges (j, i) that are present in the network for (p′, T) are also present in the network for (p, T).
Thus, x′ is a valid flow for (p, T). But it is not a max-flow, since np,T > np′,T . So there exists
an augmenting path P in the residual graph for (p, T) and flow x′. Observe that node i must be
included in P, otherwise P would also be an augmenting path in the residual graph Gp′ contradicting
the fact that x′ is a max-flow. In particular, this implies that there is a path P ′ ⊂ P from i to the
sink t. Let P ′ = (i, j1, i1, . . . , jK , iK , t). All the edges of P ′ are also present as edges in Gp′ — all
backward edges (iℓ, jℓ+1) are present since such an edge implies that x′

iℓjℓ+1
= 1; all forward edges

(jℓ, iℓ) are present since iℓ 6= i so p′iℓjℓ
= piℓjℓ

= L, and x′
iℓjℓ+1

= 0. But then there is an augmenting

path (s, j∗, i, j1, i1, . . . , jK , iK , t) in Gp′ (see Fig. 3) which contradicts the maximality of x′.

18

i

: augmenting path in Gp′ assigning j∗: augmenting path P

Gp′: residual graph for (p′, T) and flow x′Residual graph for (p, T) and flow x′

i1

j∗j∗

ts

iK
jK

j2

j1
i1

i

ts

iK
jK

j2

j1

Figure 3: The residual graphs in the proof of Lemma 5.8.

Let ~L denote the all-low processing-time vector. Define TL
i (p−i) = T ∗(~L, p−i), that is, the value

of T ∗ for the input p = (~L, p−i). Since we are focusing on machine i, and p−i is fixed throughout,
we abbreviate TL

i (p−i) to TL. Also, let pL = (~L, p−i). Note that T ∗(p) ≥ TL for every instance
p = (pi, p−i).

Corollary 5.9 Let p = (pi, p−i) be any instance and let x be any prefix-maximal flow for (p, T ∗(p)).
Then, the low-load on machine i is at most TL.

Proof : Let T ∗ = T ∗(p). If T ∗ = TL, then this is clearly true. Otherwise, consider the assignment
x′ obtained by truncating x at TL. Since x is prefix-maximal, we know that x′ constitutes a max-
flow for (p, TL). Also, np,T L < npL,T L because T ∗ > TL. So by Lemma 5.8, this truncated flow
must assign all the low jobs of i. By the definition of a truncated flow, it follows that xij ≥ x′

ij for
all i, j, so if a job j is assigned by x′ (i.e.,

∑

i′ x
′
ij = 1) then its machine-assignment is identical in x′

and x. In particular, the assignment of the low jobs of i remains the same in x′ and x, and hence,
the (low-)load on machine i does not change when we move from x′ to x. Thus, the low-load of i
(under the assignment x) is at most TL.

Using these properties, we will prove the following key inequality: for any p1 = (p1
i , p−i) and

p2 = (p2
i , p−i),

np1,T L ≥ np2,T L − n2,1
H + n2,1

L (7)

where n2,1
H and n2,1

L are as defined in (4) and (5), respectively. Notice that this immediately
implies cycle monotonicity, since if we take p1 = pk and p2 = pk+1, then (7) implies that npk,T L ≥
npk+1,T L − nk+1,k

H + nk+1,k
L ; summing this over all k = 1, . . . ,K gives (6).

Let T 1 = T ∗(p1) and T 2 = T ∗(p2).

Lemma 5.10 If T ∗(p1) > TL, then (7) holds.

Proof : Take the prefix-maximal flow x2 for (p2, T 2), truncate it at TL, and remove all the jobs
from this assignment that are counted in n2,1

H , that is, all jobs j such that x2
ij = 1, p2

ij = L, p1
ij = H.

19

Denote this flow by x. Observe that x is a valid flow for (p1, TL), and the value of this flow is
exactly np2,T 2|T L −n2,1

H = np2,T L −n2,1
H . Also none of the jobs that are counted in n2,1

L are assigned

by x since each such job j is high on i in p2. Since T 1 > TL, we must have np1,T L < npL,T L . So if

we augment x to a max-flow for (p1, TL), then by Lemma 5.8 (with p = pL and p′ = p1), all the
jobs corresponding to n2,1

L must be assigned in this max-flow. Thus, the value of this max-flow is

at least (value of x) + n2,1
L , that is, np1,T L ≥ np2,T L − n2,1

H + n2,1
L , as claimed.

Lemma 5.11 Suppose T ∗(p1) = TL. Then (7) holds.

Proof : Let x1, x2 be the complete assignment, that is, the assignment after both steps 2 and
3, computed by our algorithm for p1, p2 respectively. Let S = {j : x2

ij = 1 and p2
ij = L} and

S′′ = {j : x2
ij = 1 and p1

ij = L}. Therefore, |S′′| = |S| − n2,1
H + n2,1

L and |S| = ni
p2,T 2 = ni

p2,T 2|T L

(by Corollary 5.9). Let T ′′ = |S′′| · L. We consider two cases.
Suppose first that T ′′ ≤ TL. Consider the following flow for (p1, TL): assign to every machine

other than i the low-assignment of x2 truncated at TL, and assign the jobs in S′′ to machine i. This
is a valid flow for (p1, TL) since the load on i is T ′′ ≤ TL. Its value is equal to

∑

i′ 6=i n
i′

p2,T 2|T L+|S′′| =
np2,T 2|T L − n2,1

H + n2,1
L = np2,T L − n2,1

H + n2,1
L . The value of the max-flow for (p1, TL) is no smaller,

and the claim follows.
Now suppose T ′′ > TL, so T ′′ ≥ TL + L since T ′′ and TL are both multiples of L. Since

|S| · L ≤ TL (by Corollary 5.9), it follows that n2,1
L > n2,1

H ≥ 0. Let M = np2,T 2 − n2,1
H + n2,1

L =

|S′′|+ ∑

i′ 6=i ni′

p2,T 2 . We first show that

m · TL < M · L + (n−M) ·H. (8)

Let N be the number of jobs assigned to machine i in x2. We have |S′′| · L + (N − |S′′|) · H ≥
|S′′| · L > TL. Now consider the point in the execution of the algorithm on instance p2 just before
the last high job is assigned to i in Step 3 (there must be such a job since n2,1

L > 0). The load on i

at this point is |S| · L + (N − |S| − 1) ·H ≥ |S′′| · L− L− (n2,1
L − 1) · L + (N − |S| − 1) ·H, which

is at least |S′′| · L−L ≥ TL since n2,1
L − 1 ≤ N − |S| − 1. By the greedy property, every i′ 6= i also

has at least this load at this point, so
∑

j p2
i′jx

2
i′j ≥ TL. Adding these inequalities for all i′ 6= i, and

the earlier inequality for i, we get that |S′′| · L + (N − |S′′|) ·H +
∑

i′ 6=i

∑

j p2
i′jx

2
i′j > mTL. But

the left-hand-side is exactly M · L + (n−M) ·H.
On the other hand, since T 1 = TL, we have

m · TL ≥ np1,T L · L + (n− np1,T L) ·H. (9)

Combining (8) and (9), we get that np1,T L > M = np2,T 2 − n2,1
H + n2,1

L ≥ np2,T L − n2,1
H + n2,1

L .

Lemma 5.12 Algorithm 2 satisfies cycle monotonicity.

Proof : Taking p1 = pk and p2 = pk+1 in (7), we get that npk,T L ≥ npk+1,T L − nk+1,k
H + nk+1,k

L .
Summing this over all k = 1, . . . ,K (where K + 1 ≡ 1) yields (6).

20

5.5 Computation of prices

Lemmas 5.6 and 5.12 show that our algorithm is a 2-approximation algorithm that satisfies cycle
monotonicity. Thus, by the discussion in Section 3, there exist prices that yield a truthful mecha-
nism. To obtain a polynomial-time mechanism, we also need to show how to compute these prices
(or payments) in polynomial-time. It is not clear, if the procedure outlined in Section 3 based
on computing shortest paths in the allocation graph yields a polynomial time algorithm, since the
allocation graph has an exponential number of nodes (one for each output assignment). Instead
of analyzing the allocation graph, we will leverage our proof of cycle monotonicity, in particular,
inequality (7), and simply spell out the payments.

Recall that the utility of a player is ui = Pi− li, where Pi is the payment made to player i. For
convenience, we will first specify negative payments (i.e., the Pis will actually be prices charged to
the players) and then show that these can be modified so that players have non-negative utilities
(if they act truthfully). Let Hi denote the number of jobs assigned to machine i in step 3. By
Corollary 5.5, we know that all these jobs are assigned to high machines (according to the declared
pis). Let H−i =

∑

i′ 6=iHi′ and n−i
p,T =

∑

i′ 6=i n
i′

p,T . The payment Pi to player i is defined as:

Pi(p) = −L · n−i
p,T ∗(p) −H · H−i(p)− (H − L)

(

np,T ∗(p) − np,T L

)

(10)

Recall that TL denotes TL
i (p−i) = T ∗(~L, p−i). We can interpret our payments as equating the

player’s cost to a careful modification of the total load (in the spirit of VCG prices). The first and
second terms in (10), when subtracted from i’s load li equate i’s cost to the total load. The term
np,T ∗(p) − np,T L is in fact equal to n−i

p,T ∗(p) − n−i
p,T ∗(p)|T L since the low-load on i is at most TL (by

Corollary 5.9). Thus the last term in equation (10) implies that we treat the low jobs that were
assigned beyond the TL-threshold (to machines other than i) effectively as high jobs for the total
utility calculation from i’s point of view. It is not clear how one could have conjured up these
payments a priori in order to prove the truthfulness of our algorithm. However, by relying on
cycle monotonicity, we were not only able to argue the existence of payments, but also our proof
paved the way for actually inferring these payments. The following lemma explicitly verifies that
the payments defined above do indeed give a truthful mechanism.

Lemma 5.13 Fix a player i and the other players’ declarations p−i. Let i’s true type be p1
i . Then,

under the payments defined in (10), i’s utility when she declares her true type p1
i is at least her

utility when she declares any other type p2
i .

Proof : Let c1
i and c2

i denote i’s total cost, defined as the negative of her utility, under the
inputs p1 = (p1

i , p−i) and p2 = (p2
i , p−i) respectively. Since p−i is fixed, we omit p−i from the

expressions below for notational clarity. The true load of i when she declares her true type p1
i is

L · ni
p1,T ∗(p1) + H · Hi(p1), and therefore

c1
i = L · np1,T ∗(p1) + H · (n− np1,T ∗(p1)) + (H − L)

(

np1,T ∗(p1) − np1,T L

)

= n ·H − (H − L)np1,T L . (11)

On the other hand, i’s true load when she declares p2
i is L · (ni

p2,T ∗(p2)−n2,1
H + n2,1

L) + H · (Hi +

n2,1
H − n2,1

L) (since i’s true processing-time vector is p1
i), and thus

c2
i = n ·H − (H − L)np2,T L + (H − L)n2,1

H − (H − L)n2,1
L .

Thus, (7) implies that c1
i ≤ c2

i .

21

Price specifications are commonly required to satisfy, in addition to truthfulness, individual
rationality, that is, a player’s utility should be non-negative if she reveals her true value. The
payments given by (10) are not individually rational as they actually charge a player a certain
amount. However, it is well-known that this problem can be easily solved by adding a large-enough
constant to the price definition. In our case, for example, letting ~H denote the vector of all H’s,
we can add the term n ·H − (H − L)n(~H,p−i),T L to (10). Note that this is a constant for player i.

Thus, the new payments are

Qi(p) = n ·H − L · n−i
p,T ∗(p) −H · H−i(p)− (H − L)

(

np,T ∗(p) − np,T L + n(~H,p−i),T L

)

.

As shown by (11), this will indeed result in a non-negative utility for i (since n(~H,p−i),T L ≤
n(pi,p−i),T L for any type pi of player i). This modification also ensures the additionally desired
normalization property that if a player receives no jobs then she receives zero payment: if player
i receives the empty set for some type pi then she will also receive the empty set for the type ~H
(this is easy to verify for our specific algorithm), and for the type ~H, her utility equals zero; thus,
by truthfulness this must also be the utility of every other declaration that results in i receiving
the empty set. This completes the proof of Theorem 5.2.

5.6 The impossibility of exact implementation

We now show that irrespective of computational considerations, there does not exist a cycle-
monotone algorithm for the L-H case with an approximation ratio better than 1.1. Let H = α · L
for some 2 < α ≤ 2.5 that we will choose later. There are two machines I, II and seven jobs.
Consider the following two scenarios:

Scenario 1. Every job has the same processing time on both machines: jobs 1–5, are L, and jobs
6, 7 are H. Any optimal schedule assigns jobs 1–5 to one machine and jobs 6, 7 to the other, and
has makespan OPT 1 = 5L. The second-best schedule has makespan at least Second 1 = H + 3L.

Scenario 2. If the algorithm chooses an optimal schedule for scenario 1, assume without loss
of generality that jobs 6, 7 are assigned to machine II. In scenario 2, machine I has the same
processing-time vector. Machine II lowers jobs 6, 7 to L and increases 1–5 to H. An optimal
schedule has makespan 2L + H, where machine II gets jobs 6, 7 and one of the jobs 1–5. The
second-best schedule for this scenario has makespan at least Second 2 = 5L.

Theorem 5.14 No deterministic truthful mechanism for the two-value scheduling problem can
obtain an approximation ratio better than 1.1.

Proof : We argue that a cycle-monotone algorithm cannot choose the optimal schedule in both
scenarios. Suppose the algorithm chooses an optimum schedule for scenario 1. So machine II is the
one on which jobs 6, 7 are scheduled, and whose processing-time vector changes in scenario 2. Now
the algorithm cannot choose an optimal schedule for scenario 2, otherwise cycle monotonicity is
violated for machine II. Taking p1

II
, p2

II
to be machine II’s processing-time vectors for scenarios 1, 2

respectively, we get
∑

j(p
1
II ,j−p2

II ,j)(x
2
II ,j−x1

II ,j) = (L−H)(1−0) < 0. Thus, any truthful mecha-
nism must return a sub-optimal makespan in at least one scenario, and therefore its approximation
ratio is at least min

{

Second1

OPT1
, Second2

OPT2

}

, which attains its maximum value of 1.1 when α = 2.5 (recall
that α ∈ (2, 2.5]).

22

6 Truthful mechanisms for equal-ratio job-dependent two-values

We now consider the {Lj,Hj}-case where there is a common ratio r =
Hj

Lj
for all jobs j. Notice

that this setting also captures the restricted-machines scheduling problem, since one can choose r
to be a very large number. First, in Section 6.1, we show that the equal-ratio setting reduces to
the two-values problem discussed in Section 5. This reduction will immediately show that for any
r, Algorithm 2 combined with the prices in Section 5.5 gives a fractional truthful mechanism that
outputs a fractional assignment of makespan at most 2 ·OPT (p). (Recall that OPT (p) denotes the
optimal makespan over integer schedules for input p.)

In Section 6.2, we improve upon the performance guarantee of 2 obtained via the reduction de-
tailed in Section 6.1. We build upon the ideas introduced in Section 5 to design a fractional truthful
mechanism (with polynomial-time computable prices) that returns an assignment of makespan at
most OPT (p) for every equal-ratio instance p. Unfortunately, neither the assignment x returned
by this algorithm nor the one returned by Algorithm 2 need satisfy the condition that xij > 0
implies that pij is bounded with respect to makespan(x) for arbitrary r. Therefore, we cannot use
Lemmas 4.1 and 4.2 to obtain a truthful-in-expectation mechanism with constant approximation
ratio. We leave this as an open problem.

6.1 A reduction from the equal-ratio {Lj, Hj}-case to the {L, H}-case

Recall that the Ljs and Hjs are all integers. We view each job j as consisting of Lj sub-jobs: each
of these sub-jobs has size 1 on machine i if pij = Lj , and size r if pij = Hj. Let p̃ denote this new
instance. Notice the following two simple, but important facts:

• Every sub-job has size 1 or r on every machine, so p̃ is an instance of the two-values problem
discussed in Section 5.

• Every assignment x̃ for the instance p̃ yields a corresponding fractional assignment x for p,
where xij =

(
∑

j′: sub-job of j x̃ij′
)

/Lj . So pijxij =
∑

j′: sub-job of j p̃ij′x̃ij′ , and the load on every
machine i under assignment x̃ for instance p̃ is the same as its load under assignment x for
instance p.

Conversely, every assignment x for the instance p yields an assignment x̃ for p̃, where we set
x̃ij′ = xij for every sub-job j′ of j. So we again have pijxij =

∑

j′: sub-job of j p̃ij′x̃ij′ .

We set f(p) to be the assignment x obtained as above (by converting the assignment x̃ returned
by Algorithm 2 on input p̃). The second fact implies (by Lemma 5.6) that the makespan of x is at
most 2 ·OPT (p̃) ≤ 2 ·OPT (p). We set Pi(p) = Qi(p̃), where Qi(.) is the price defined in Section 5.5.
So for every machine i, every p−i, every true processing-time vector pi, and every p′i, we obtain
that

Pi(pi, p−i)− li(pi, p−i) = Qi(p̃i, p̃−i)− l̃i(p̃i, p̃−i) ≥ Qi(p̃
′
i, p̃−i)− l̃i(p̃

′
i, p̃−i) = Pi(p

′
i, p−i)− li(p

′
i, p−i)

where li and l̃i denote the load on machine i according to the true processing-time vectors pi and
p̃i respectively. Thus, M = (f, P) is an individually-rational 2-approximation fractional truthful
mechanism for the equal-ratio job-dependent two-value setting.

Implementing the above reduction directly yields only a pseudopolynomial time algorithm, that
is, an algorithm whose running time is polynomial in

∑

j Hj. Instead, we will show that for the
input p̃ obtained as above, Steps 1 and 2 of Algorithm 2, that is, the computation of T ∗(p̃) and
a prefix-maximal flow for T ∗(p̃), can be implemented in polynomial time via a suitable max-flow

23

computation. We remark that Step 3 of the algorithm can be implemented in polynomial time. For
each job j, we can compute which machine i will have the least load after all remaining sub-jobs
of j have been assigned, and thus compute how many sub-jobs of j get assigned to each machine
with load at most li.

As before, we say that j is a low job of i, or equivalently i is a low-machine for j, if pij = Lj; the
low-load of i is

∑

j:pij=Lj
pijxij. Notice that the number of sub-jobs in p̃ assigned to low-machines

in Step 2 of Algorithm 2 is simply the total work assigned to low-machines. We compute the
maximum amount of work that can be assigned to low machines subject to a load threshold of T by
computing a max-flow in the following network, which can be viewed as a compact representation
of the flow network (described in Section 5.1) for (p̃, T). We create a bipartite graph with nodes for
every job j and machine i, a source s and sink t. We add edges (s, j) with capacity Lj, edges (i, t)
with capacity T , and edges (j, i) with infinite (any number that is at least min(Lj , T) will suffice)
capacity if pij = Lj . Any flow g in this network corresponds to a fractional partial assignment x of
makespan at most T , where xij = g(j, i)/Lj .

As in Section 5.1, we define np,T to be the value of the max-flow (i.e., the total work assigned to
all machines) in the above network. Since all capacities are integers there always exists an integer
max-flow. Observe that np,T is precisely the value of the max-flow in the network for (p̃, T). Let
ni

p,T be the flow on edge (i, t) (i.e., the total work assigned to machine i), so np,T =
∑

i n
i
p,T .

Define ni
p,T |T ′ = min(ni

p,T , T ′) and np,T |T ′ =
∑

i n
i
p,T |T ′ . We say that g is prefix-maximal if for

every integer T ′ ≤ T , we have np,T |T ′ = np,T ′. As before, prefix-maximal flows exist, since one can
iteratively augment (via simple augmenting paths) the prefix-maximal flow for T − 1 to obtain a
prefix-maximal flow for T . But this again only yields a pseudopolynomial time algorithm. We next
describe how to compute a prefix-maximal flow for a threshold T efficiently.

6.1.1 Computing prefix-maximal flows

We reduce the problem of computing a prefix-maximal flow for a threshold T to a minimum-cost
flow problem with convex cost functions (see, e.g., [1]). The directed graph is the same as the one
detailed above. In addition to capacities, edges now also have costs associated with them. All the
edges (s, j) and (j, i) have 0 cost, and we give each edge (i, t) the convex cost function C(x) = x2.
Given a flow g, its cost is given by

∑

i C
(

g(i, t)
)

=
∑

i g(i, t)2. We seek an integer max-flow in this
flow network whose cost is minimum over all integer max-flows. It is known that such a flow can
be computed in time poly

(

log(T),
∑

j log Lj

)

[1, 14]; since T is at most
∑

j Hj, this is polynomial
in the number of bits required to encode the scheduling instance.

Let g be a min-cost integer max-flow in the above flow network. We show that g is a prefix-
maximal flow for threshold T . For an integer x ≥ 1, let δ(x) = C(x)−C(x− 1) = 2x− 1. We will
use the following property, which is a consequence of the well-known fact that the residual graph
of a min-cost flow contains no negative cycles (see, e.g., [1]):

for any path P = (i1, j1, . . . , jK−1, iK) in the residual graph where

g(i1, t) > 0 and g(iK , t) < T , we have − δ
(

g(i1, t)
)

+ δ
(

g(iK , t) + 1
)

≥ 0.
(∗)

Lemma 6.1 The min-cost integer max-flow g is prefix-maximal for threshold T .

Proof : Clearly g is a max-flow for T , so consider any integer T ′ < T and suppose that np,T |T ′ <
np,T ′. That is, if g′ is the flow of g truncated to threshold T ′, then g′ is not a max-flow for
threshold T ′. As stated in Section 5.1, this implies that there exists an augmenting path P =
(s, j1, i1, . . . , jK , iK , t) in the residual graph for (p, T ′) and flow g′. Thus, we have g′(iK , t) =
g(iK , t) ≤ T ′ − 1. Now consider the residual graph for (p, T) and flow g. Since g ≥ g′, all the

24

backward edges (iℓ, jℓ+1) for ℓ = 1, . . . ,K − 1 of path P also appear in this residual graph. Also,
the edges (jℓ, iℓ) for ℓ = 1, . . . ,K appear as forward edges since these edges have infinite capacity.
Thus, there is path (j1, i1, . . . , jK , iK , t) in this residual graph. Since g is a max-flow for T , the
edge (s, j1) must be saturated by the flow g (otherwise P would be an augmenting path in the
residual graph for (p, T) and flow g). Thus, j1 is assigned to a greater extent by the flow g than
by the flow g′. So there must be some machine i (which could be one of i1, . . . , iK−1) such that
g(j1, i) > g′(j1, i). This in turn implies that g(i, t) > g′(i, t), so g(i, t) > T ′. Thus, we have a
path (i, j1, i1, . . . , jK , iK) in the residual graph for (p, T) and flow g, where g(i, t) ≥ T ′ + 1 and
g(iK , t) ≤ T ′ − 1. This gives a contradiction to (∗) since −δ

(

g(i, t)
)

+ δ
(

g(iK , t) + 1
)

≤ −2 < 0.

We obtain the following theorem.

Theorem 6.2 The mechanism M = (f, P) obtained by the above reduction is a fractional truthful
mechanism for the the equal-ratio job-dependent two-values domain, that on each such instance p
returns a (fractional) schedule with makespan at most 2 ·OPT (p).

6.2 A fractional optimal mechanism for any ratio r

We now present a fractional truthful mechanism for the equal-ratio problem that improves upon the
2-approximation guarantee obtained by the reduction in Section 6.1. We describe a cycle-monotone
algorithm (with efficiently computable prices) that returns a fractional assignment with makespan
at most OPT (p) for every equal-ratio instance p. As mentioned earlier, neither this algorithm nor
the earlier 2-approximation algorithm need have the property that if xij > 0, then pij is bounded
with respect to makespan(x).

We only need to change Step 3 of Algorithm 2. We replace the earlier greedy rule by a more
efficient greedy rule for packing the unassigned fraction of jobs, which will allow us to argue that
the fractional assignment has makespan at most OPT (p). Algorithm 3 summarizes these steps.

Algorithm 3 Given a vector of processing times p, construct an assignment of jobs to machines
as follows. (Observe that in the instance p̃ obtained from p, we have L = 1 and H = r.)

1. Compute T ∗(p) = min
{

T ≥ r, T integer : np,T +(
∑

j Lj−np,T) ·r ≤ m ·T
}

in polynomial
time via binary search.

2. Compute a prefix-maximal flow for threshold T ∗(p) (as in Section 6.1.1).

3. Complete the partial assignment obtained in step 2 by assigning the remaining portions of
jobs in a greedy manner. Conceptually, the easiest way to think of this step is to view the
unassigned load of job j as being composed of infinitely many units of infinitesimal work, and
schedule these units greedily as in step 3 of Algorithm 2.

Consider the jobs in arbitrary order. Let j be a job that is not completely assigned, and
yj = 1−∑

i xij be its unassigned fraction. Compute tj such that
∑

i:li<tj
(tj−li) = Hjyj, where

li is the load on machine i. For every machine i with li < tj, we set xij ← xij + (tj − li)/Hj .
We argue in Lemma 6.3 that tj ≤ T ∗(p), so pij = Hj for every machine i with li < tj; thus,
the load on every machine i with li < tj increases to tj (which now becomes the least load).

We repeat this until all jobs are completely assigned. We call each iteration of the above
loop, a phase.

25

6.2.1 Analysis

The analysis follows the same outline as in Sections 5.3 and 5.4. We show in Lemma 6.3 that
Algorithm 3 returns an assignment of makespan at most OPT (p), and in Lemma 6.8 that it
satisfies cycle monotonicity. The proof of cycle monotonicity dovetails the proof in Section 5.4, but
as suggested by the reduction in Section 6.1, whereas earlier, we considered the number of assigned
jobs at various places, the analysis here will be based on the total load/work that is assigned to
the machines. As in Section 5.5, this proof will also yield polynomial-time computable prices and
hence give a fractional truthful mechanism (Theorem 6.10).

Claims 5.3 and 5.4 continue to hold (with L = 1, H = r). Therefore, since OPT (p) is an
integer (since all the Ljs and Hjs are integers), we get that T ∗(p) ≤ OPT (p). We now show that
the unassigned fractions of jobs are packed in Step 3 within the T ∗(p) threshold, showing that the
makespan is at most OPT (p).

Lemma 6.3 Algorithm 3 computes a fractional assignment of makespan at most OPT (p).

Proof : The makespan at the end of Step 2 is at most T ∗(p), which is at most OPT (p). We argue
by induction that the makespan remains at most T ∗(p) in any phase of Step 3, which will prove the
lemma. Consider any phase of Step 3, and let j be the job assigned in this phase. On every machine
i with load li < T ∗(p), we must have pij = Hj, otherwise we could have assigned some portion of
j to i and increased the value of the flow computed in Step 2, contradicting the fact that the flow
computed is a max-flow. Consider the quantity tj computed for job j. If tj > T ∗(p), then after j
is assigned, the total load is strictly greater than m ·T ∗(p). But this gives a contradiction since for
any assignment, the total load is at most np,T ∗(p) + (

∑

j Lj − np,T ∗(p)) · r ≤ m · T ∗(p). Therefore,
tj ≤ T ∗(p). Hence, the load on any machine i at the end of this phase is max(li, tj) ≤ T ∗(p).

We also state the following Corollary that will be useful later.

Corollary 6.4 Let j be a job assigned (partially) in a phase of Step 3 to a machine i. Then, i is
a least-loaded machine at the end of Step 3.

Proof : At the end of the phase where j is assigned, the load on i must be tj (since pij = Hj),
which is also the least load on any machine. Inductively, due to our packing rule, i continues to be
a least-loaded machine in every subsequent phase.

We now show that the algorithm satisfies cycle monotonicity. We first simplify the cycle-
monotonicity condition (3) slightly as follows: Analogous to (4) and (5), we now define

nk,ℓ
H =

∑

j:xk
ij>0,

pk
ij=Lj , pℓ

ij=Hj

Ljx
k
ij and nk,ℓ

L =
∑

j:xk
ij>0,

pk
ij=Hj ,pℓ

ij=Lj

Ljx
k
ij.

Notice that these definitions correspond to (4) and (5) respectively, when applied to the instance p̃
obtained from p. With these definitions, (3) translates to

K
∑

k=1

(

nk+1,k
H − nk+1,k

L

)

≥ 0. (12)

Let ~L denote the all-Lj processing-time vector. Define TL
i (p−i) = T ∗(~L, p−i). Since we are focusing

on machine i, and p−i is fixed throughout, we abbreviate TL
i (p−i) to TL. Also, let pL = (~L, p−i).

Clearly T ∗(p) ≥ TL for every instance p = (pi, p−i). Applying Lemmas 5.8 and Corollary 5.9 to
the instance p̃ and translating back to the instance p gives the following.

26

Lemma 6.5 Consider any two instances p = (pi, p−i) and p′ = (p′i, p−i) such that p′ij ≥ pij ∀j. If
T is a threshold such that np,T > np′,T , then every maximum flow x′ for (p′, T) must completely
assign all jobs j such that p′ij = Lj.

Corollary 6.6 Let p = (pi, p−i) be any instance and let x be any prefix-maximal flow for (p, T ∗(p)).
Then, the low-load on machine i is at most TL.

As before, we show (12) by showing that for any p1 = (p1
i , p−i) and p2 = (p2

i , p−i), we have
np1,T L ≥ np2,T L − n2,1

H + n2,1
L . The only portion of the proof in Section 5.4 that will change is the

second-half of the proof of Lemma 5.11, which is the only place where we use information from
Step 3 of the algorithm.

Lemma 6.7 np1,T L ≥ np2,T L − n2,1
H + n2,1

L .

Proof : Let T 1 = T ∗(p1) and T 2 = T ∗(p2). If T 1 > TL, then the proof follows from Lemma 6.5
as in the proof of Lemma 5.10. So let T 1 = TL. We mimic the proof of Lemma 5.11. Let x1, x2 be
the complete assignment, i.e., the assignment after both steps 2 and 3, returned by Algorithm 3 for
p1, p2 respectively. Let S = {j : x2

ij > 0 and p2
ij = Lj} and S′′ = {j : x2

ij > 0 and p1
ij = Lj}. Let

T ′′ =
∑

j∈S′′ Ljx
2
ij. Therefore, T ′′ =

∑

j∈S Ljx
2
ij −n2,1

H + n2,1
L and

∑

j∈S Ljx
2
ij = ni

p2,T 2 = ni
p2,T 2|T L

(by Corollary 6.6). The case where T ′′ ≤ TL follows exactly as in Lemma 5.11, so we are left with
the case T ′′ > TL.

Since
∑

j∈S Ljx
2
ij ≤ TL (by Corollary 6.6), it follows that n2,1

L > n2,1
H ≥ 0. Let M = np2,T 2 −

n2,1
H + n2,1

L = T ′′ +
∑

i′ 6=i n
i′

p2,T 2. We first show that m · T ′′ ≤ M + (
∑

j Lj −M) · r. Clearly,

T ′′ + (
∑

j Ljx
2
ij − T ′′) · r ≥ T ′′. Consider Step 3 of the execution of Algorithm 3 on instance p2.

Notice that there exists some job j such that x2
ij > 0 and p2

ij = Hj (because n2,1
L > 0), that is, j is

assigned partially to i in Step 3 of the algorithm. By Corollary 6.4, i has the least load at the end
of Step 3 (and the algorithm). Thus, we get that for every machine i′ 6= i,

ni′

p2,T 2 +
(

∑

j

Ljx
2
i′j − ni′

p2,T 2

)

· r =
∑

j

p2
i′jx

2
i′j ≥

∑

j

p2
ijx

2
ij ≥

∑

j

Ljx
2
ij ≥ T ′′.

Adding these inequalities for all i′ 6= i, and the earlier inequality for i, we obtain that M +(
∑

j Lj−
M) · r ≥ m · T ′′.

On the other hand, since T 1 = TL, we have m · T ′′ ≥ m · TL ≥ np1,T L + (
∑

j Lj − np1,tL) · r.
Combining this with the above upper bound on m · T ′′, we get that np1,T L > M = np2,T 2 − n2,1

H +

n2,1
L ≥ np2,T L − n2,1

H + n2,1
L .

Lemma 6.8 Algorithm 3 satisfies cycle monotonicity.

Proof : Applying the above lemma with p1 = pk and p2 = pk+1, we get that npk,T L ≥ npk+1,T L −
nk+1,k

H + nk+1,k
L . Summing this over all k = 1, . . . ,K (where K + 1 ≡ 1) yields (12).

We now use Lemma 6.7 to derive payments that when combined with Algorithm 3 will yield
an individually-rational truthful mechanism. Let ~H denote the all-Hj processing-time vector. Let
n−i

p,T =
∑

i′ 6=i ni′

p,T . The payment Pi to player i given assignment x is defined as:

Pi(p) =
∑

j

Hj −
∑

i′ 6=i

pi′jxi′j − (r − 1)
(

np,T ∗(p) − np,T L + n
(~H,p−i),T L

)

. (13)

27

We now verify that these payments do indeed give an individually-rational truthful mechanism.
Recall that the utility of a machine i is her payment minus her load.

Lemma 6.9 Fix a player i and the other players’ declarations p−i. Let i’s true type be p1
i . Then,

under the payments defined in (13), i’s utility when she declares her true type p1
i is nonnegative,

and at least her utility when she declares any other type p2
i .

Proof : Let u1
i , u

2
i denote i’s utility, and x1 and x2 be the assignments returned, when i declares

p1, and p2, respectively (and the others declare p−i). Since p−i is fixed, we omit p−i from the
expressions below for notational clarity. Also let pH

i denote (~H, p−i). The utility of i when she
declares her true type p1

i is

u1
i =

∑

j

Hj −
∑

i′,j

p1
i′jx

1
i′j − (r − 1)

(

np1,T ∗(p1) − np1,T L + npH
i ,T L

)

=
∑

j

Hj − np1,T ∗(p1) − r
(

∑

j

Lj − np1,T ∗(p1)

)

− (r − 1)
(

np1,T ∗(p1) − np1,T L + npH
i ,T L

)

= (r − 1)
(

np1,T L − npH
i ,T L

)

≥ 0.

When i declares p2
i , her true load is

∑

j p1
ijx

2
ij = ni

p2,T ∗(p2) +(r−1)n2,1
H − (r−1)n2,1

L + r
(
∑

j Ljx
2
ij−

ni
p2,T ∗(p2)

)

. Therefore, her utility is

u2
i =

∑

j

Hj − np2,T ∗(p2) − r
(

∑

j

Lj − np2,T ∗(p2)

)

− (r − 1)n2,1
H + (r − 1)n2,1

L

− (r − 1)
(

np2,T ∗(p2) − np2,T L + npH
i ,T L

)

which simplifies to u2
i = (r− 1)

(

np2,T L −n2,1
H +n2,1

L −npH
i

,T L

)

. Thus, by Lemma 6.7, it follows that

u1
i ≥ u2

i .

Theorem 6.10 Algorithm 3 combined with the payments specified in (13) gives a polynomial time
deterministic fractional truthful mechanism for the equal-ratio job-dependent two-values scheduling
domain, that on every instance p returns a (fractional) schedule with makespan at most OPT (p).

Acknowledgments

We thank Elias Koutsoupias for his help in refining the analysis of the lower bound in Section 5.6.
We thank the reviewers of the EC’07-version of this paper, and the journal referees for their various
helpful comments and suggestions.

References

[1] R. Ahuja, T. Magnanti, and J. Orlin. Network Flows: Theory, Algorithms, and Applications.
Prentice Hall, 1993.

[2] N. Andelman, Y. Azar, and M. Sorani. Truthful approximation mechanisms for scheduling
selfish related machines. Theory of Computing Systems, 40(4): 423–436, 2007.

28

[3] A. Archer. Mechanisms for Discrete Optimization with Rational Agents. PhD thesis, Cornell
University, 2004.

[4] A. Archer and É. Tardos. Truthful mechanisms for one-parameter agents. In Proc. 42nd FOCS,
pages 482–491, 2001.

[5] V. Auletta, R. De-Prisco, P. Penna, and G. Persiano. Deterministic truthful approximation
mechanisms for scheduling related machines. In Proc. 21st STACS, pages 608–619, 2004.

[6] I. Bezáková and V. Dani. Allocating indivisible goods. In ACM SIGecom Exchanges, 2005.

[7] S. Bikhchandani, S. Chatterjee, and A. Sen. Incentive-compatibility in multi-unit auctions.
Working paper, 2003.

[8] S. Bikhchandani, S. Chatterjee, R. Lavi, A. Mu’alem, N. Nisan, and A. Sen. Weak monotonicity
characterizes deterministic dominant-strategy implementation. Econometrica, 74:1109–1132,
2006.

[9] P. Briest, P. Krysta, and B. Vöcking. Approximation techniques for utilitarian mechanism
design. In Proc. 37th STOC, pages 39–48, 2005.

[10] G. Christodoulou, E. Koutsoupias, and A. Kovács. Mechanism design for fractional scheduling
on unrelated machines. To appear in Proc. 34th ICALP, 2007.

[11] G. Christodoulou, E. Koutsoupias, and A. Vidali. A lower bound for scheduling mechanisms.
In Proc. 18th SODA, pages 1163–1170, 2007.

[12] E. Clarke. Multipart pricing of public goods. Public Choice, 8:17–33, 1971.

[13] L. Ford and R. Fulkerson. Maximal flow through a network. Canadian Journal of Mathematics,
8:399–404.

[14] A. Goldberg and R. Tarjan. Solving minimum-cost flow problems by successive approximation.
Mathematics of Operations Research, 15:430–466, 1990.

[15] T. Groves. Incentives in teams. Econometrica, 41:617–631, 1973.

[16] H. Gui, R. Muller, and R. V. Vohra. Characterizing dominant strategy mechanisms with
multi-dimensional types. Working paper, 2004.

[17] L. A. Hall. Approximation algorithms for scheduling. In D. Hochbaum, editor, Approximation
Algorithms for NP-Hard Problems. PWS Publishing, MA, 1996.

[18] J. Kleinberg and É. Tardos. Algorithm Design. Addison Wesley, 2006.

[19] E. Koutsoupias and A. Vidali. A 1+φ lower bound for truthful scheduling. To appear in Proc.
32nd MFCS, 2007.

[20] A. Kovács. Fast monotone 3-approximation algorithm for scheduling related machines. In
Proc. 13th ESA, pages 616–627, 2005.

[21] V. A. Kumar, M. V. Marathe, S. Parthasarathy, and A. Srinivasan. Approximation algorithms
for scheduling on multiple machines. In Proc. 46th FOCS, pages 254–263, 2005.

29

[22] R. Lavi, A. Mu’alem, and N. Nisan. Towards a characterization of truthful combinatorial
auctions. In Proc. 44th FOCS, pages 574–583, 2003.

[23] R. Lavi and C. Swamy. Truthful and near-optimal mechanism design via linear programming.
In Proc. 46th FOCS, pages 595–604, 2005.

[24] D. Lehmann, L. O’Callaghan, and Y. Shoham. Truth revelation in approximately efficient
combinatorial auctions. Journal of the ACM, 49:577–602, 2002.

[25] J. K. Lenstra, D. B. Shmoys, and É. Tardos. Approximation algorithms for scheduling unre-
lated parallel machines. Math. Prog., 46:259–271, 1990.

[26] R. J. Lipton, E. Markakis, E. Mossel, and A. Saberi. On approximately fair allocations of
indivisible goods. In Proc. 5th EC, pages 125–131, 2004.

[27] R. McAfee and J. McMillan Multidimensional incentive compatibility and mechanism design.
Journal of Economic Theory, 46:335-354, 1988.

[28] A. Mu’alem and M. Schapira. Setting lower bounds on truthfulness.
http://www.cs.huji.ac.il/~ahumu/scheduling.pdf. Extended abstract appeared in Proc. 18th
SODA, 1143–1152, 2007.

[29] R. Myerson. Optimal auction design. Mathematics of Operations Research, 6:58–73, 1981.

[30] N. Nisan and A. Ronen. Algorithmic mechanism design. Games and Econ. Behavior, 35:166–
196, 2001.

[31] J. C. Rochet. A necessary and sufficient condition for rationalizability in a quasilinear context.
Journal of Mathematical Economics, 16:191–200, 1987.

[32] R. Rockafellar. Convex Analysis. Princeton University Press, NJ, 1972.

[33] M. Saks and L. Yu. Weak monotonicity suffices for truthfulness on convex domains. In Proc.
6th EC, pages 286–293, 2005.

[34] A. Schrijver. Theory of Linear and Integer Programming. John Wiley & sons, 1998.

[35] D. B. Shmoys and É. Tardos. An approximation algorithm for the generalized assignment
problem. Mathematical Programming, 62:461–474, 1993.

[36] W. Vickrey. Counterspeculations, auctions, and competitive sealed tenders. J. Finance, 16:8–
37, 1961.

A Proofs from Section 4

Proof of Lemma 4.1 : The proof is borrowed from [23], where a somewhat more general
statement was proved.

We are given that X(p) is the random assignment R(x(p)) that satisfies E
[

X(p)ij
]

= x(p)ij for
all i, j. (Recall that M = (x, P) is the fractional truthful mechanism, so x(p) is the assignment,
and Pi(p) is the payment made to player i on input p.) We need to define the (possibly random)
payments P ′

i (p) to each player i such that M ′ = (X,P ′) is a truthful-in-expectation mechanism.
For an input p, machine i and assignment x, define pi(x) =

∑

j pijxij.

30

Observe that for any inputs p1 and p2, we have E
[

p1
i (X(p2))

]

= p1
i (E

[

X(p2)
]

) = p1
i (x(p2)),

where the first equality follows from the linearity of p1
i (.), and the second since E

[

X(p2)ij
]

= x(p2)ij
for every i, j. Thus, if we set the payments P ′

i (.) so that E
[

P ′
i (p)

]

= Pi(p) for every input p, the
expected utility of player i when her true input is p1 and reported input is p2 will be exactly the
utility she receives under the mechanism M when her true input is p1 and reported input is p2. It
follows that since M is truthful, M ′ is truthful in expectation.

The condition E
[

P ′
i (p)

]

= Pi(p) leaves plenty of flexibility in devising the payments (e.g., one
could simply set P ′

i (p) = Pi(p)). We want a payment-scheme that “transfers” individual rationality
from M to M ′. We do so by devising the following payments. Let {y(1)(p), . . . , y(k)(p)} be the
support of the random variable X(p), that is, the y(ℓ)(p)’s are all possible values (i.e., integer
assignments) that the random variable X(p) takes. We set P ′

i (p) to be the following random
variable:

P ′
i (p) =

{

pi(y
(ℓ)(p)) · Pi(p)

pi(x(p)) if pi(x(p)) > 0 and X(p) = yℓ(p);

Pi(p) if pi(x(p)) = 0.

It is clear that E
[

P ′
i (p)

]

= Pi(p). If M is individually rational, we have that Pi(p) ≥ pi(x(p)) for
every input p. This implies that P ′

i (p) ≥ pi(X(p)) under every coin toss, so M ′ is individually
rational for every coin toss.

Proof of Lemma 4.2 : This lemma follows from a theorem (Theorem 11) proved in [21], and
is implicit in the work of Shmoys and Tardos [35]. The rounding procedure we describe is simply
a randomized version of the rounding algorithm in [35]. Our exposition very closely follows the
exposition in [35, 17] (see Section 1.4.2 in [17]).

The idea behind the rounding procedure is as follows. Let ni = ⌈∑j xij⌉. Given the fractional
assignment x, we will create a bipartite graph G = (V,W,E). W is a set of job nodes containing
a node wj for each job j, and V is a set of machine nodes; for each machine i, we create ni nodes
vi,c, where c = 1, . . . , ni. We sketch the way in which the edges are created; more details may be
found in [35, 17]. For each machine i, we order the jobs with xij > 0 in decreasing order of their
pijs. We first consider “copy” vi,1. Considering jobs in this order, we create an edge (vi,1, wj) for
each job j until the total xij-weight of these jobs becomes at least 1. We then move on to the next
copy vi,2, consider the remaining jobs (again in order), and create an edge (vi,2, wj) for each such
job until the total xij-weight of these jobs exceeds 1, and so on and so forth. One point of detail
here is the following: it may happen that for a copy vi,c, the total xij-weight of the jobs with edges
to vi,c exceeds 1. If this happens, then for the last job k (in the ordering) with an edge (vi,c, wk),
when we move on to the next copy vi,c+1 we still consider k as a “remaining” job, but with an
xik-weight equal to (the original) xik decreased by the amount required to make the total x-weight
for copy vi,c exactly 1; thus job k is “split” between copies vi,c and vi,c+1, and will be the first job
considered for vi,c+1. We summarize some properties of this bipartite graph.

(a) G contains an edge (vi,c, wj) for some copy vi,c iff xij > 0. For every i, j with xij > 0, the
edges incident to wj comprise either (i) a single edge of the type (vi,c, wj); or (ii) two edges
of the type (vi,c, wj), (vi,c+1, wj).

(b) For each machine i and edges (vi,c, wj), (vi,c′ , wk), where c < c′, we have pij ≥ pik.

(c) Any matching in G that matches all the job nodes corresponds to an integer assignment,
where a job j is assigned to machine i iff there is an edge of type (vi,c, wj) in the matching.
Moreover, this assignment satisfies property 2, that is, the load on each machine i is at most
∑

j xijpij + max{j:xij>0} pij .

31

(d) The assignment x translates to a fractional matching in this graph that completely matches
all the job nodes and all nodes vi,c, c = 1, . . . , ni − 1. The total weight assigned to edges of
the type (vi,c, wj) by this fractional matching is exactly xij .

The details about the bipartite-graph construction may be found in [17]. Notice that property
(c) follows from property (b): let MF be the fractional matching obtained from x, which assigns
weight MF

vi,c,wj
to edge (vi,c, wj). If y is the assignment corresponding to an integer matching M

that matches all job nodes, then the load on machine i is at most

max
{j:xij>0}

pij +

ni
∑

c=2

∑

j:(vi,c,wj)∈M

pij ≤ max
{j:xij>0}

pij +

ni
∑

c=2

∑

j:(vi,c−1,wj)∈E

MF
vi,c,wj

pij

≤ max
{j:xij>0}

pij +
∑

j:xij>0

xijpij.

It is well known that a fractional matching in a bipartite graph can be expressed as a convex
combination of integer matchings; for example, this follows since the matching polytope for bipartite
graphs has integer extreme points (see e.g., [34]). Moreover, such a convex combination can be
found efficiently (for example, by repeated max-flow computations). We can thus decompose (the
matching yielded by) x into a convex combination of integer matchings. Notice that each such
matching must match all the job nodes (since the matching yielded by x completely matches all
job nodes), and thus corresponds to an integer assignment satisfying property 2. This convex
combination may be equivalently viewed as a probability distribution over integer assignments,
which yields the desired randomized rounding procedure.

32

