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We study the optimization problem faced by a perfectly informed principal in a Bayesian game, who reveals
information to the players about the state of nature to obtain a desirable equilibrium. This signaling problem
is the natural design question motivated by uncertainty in games and has attracted much recent attention.
We present new hardness results for signaling problems in (a) Bayesian two-player zero-sum games, and (b)
Bayesian network routing games.

For Bayesian zero-sum games, when the principal seeks to maximize the equilibrium utility of a player,
we show that it is NP-hard to obtain an additive FPTAS. Our hardness proof exploits duality and the equiv-
alence of separation and optimization in a novel way. Further, we rule out an additive PTAS assuming
planted clique hardness, which states that no polynomial time algorithm can recover a planted clique from
an Erdős-Rényi random graph. Complementing these, we obtain a PTAS for a structured class of zero-sum
games (where obtaining an FPTAS is still NP-hard) when the payoff matrices obey a Lipschitz condition.
Previous results ruled out an FPTAS assuming planted-clique hardness, and a PTAS only for implicit games
with quasi-polynomial-size strategy sets.

For Bayesian network routing games, wherein the principal seeks to minimize the average latency of the
Nash flow, we show that it is NP-hard to obtain a (multiplicative)

(
4
3
− ε

)
-approximation, even for linear

latency functions. This is the optimal inapproximability result for linear latencies, since we show that full
revelation achieves a 4

3
-approximation for linear latencies.
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1. INTRODUCTION
In Bayesian games, players’ payoffs depend on the state of nature, which may be hid-
den from the players. Instead, players receive a signal regarding the state of nature
which they use to form beliefs about their payoffs, and choose their strategies. Thus
the strategic decisions and payoffs of the players depend crucially on the information
available from the signal they receive. Since applications are often rife with uncer-
tainty, understanding the effect of information available to players is a fundamental
problem in game theory; see, e.g., [Akerlof 1970; Bergemann et al. 2013; Blackwell
1951; Hirshleifer 1971; Lehrer et al. 2010; Milgrom and Weber 1982]. Whereas for
a single player, it is known that more information leads to better payoffs [Blackwell
1951], with multiple players, outcomes are more complex and often counterintuitive
with “more” (information) not necessarily translating to “better” (payoffs). The latter
was first observed by [Hirshleifer 1971]; recently, [Dughmi 2014] gave an example
where neither full-revelation nor no-revelation is optimal.
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While classical work has focused on the role of information in influencing strategies,
the computational problem of designing optimal information structures for Bayesian
games, commonly called the signaling problem, has received much recent attention
[Bro Miltersen and Sheffet 2012; Dughmi et al. 2014; Emek et al. 2012; Guo and
Deligkas 2013]. Here, a perfectly-informed principal seeks to reveal selective infor-
mation to the players to optimize some function of the resulting equilibrium, such as
the revenue, or payoff of a particular player. Two-player zero-sum games and network
routing games are natural starting points for investigating the signaling problem due
to their fundamental importance and appealing structure. They admit a canonical,
tractable choice of equilibrium; this also decouples the concerns of optimal-signaling
computation and equilibrium computation.

Our results. We study signaling in two widely studied classes of games: two-player
zero-sum games, and network routing games. As in much of previous work, in our set-
ting players share the same prior belief on the state of nature, and signaling schemes
are symmetric: the principal reveals the same information to all players. Further, as
previously, our results are for additive approximations in Bayesian zero-sum games,
and for multiplicative approximations in Bayesian network routing games. Our main
contribution is to derive hardness results for these classes of games that close the gap
between what is achievable in polytime (or quasi-polytime) and what is intractable.

In Section 4, we consider Bayesian (two-player) zero-sum games, in which the prin-
cipal seeks to maximize the value of the game — the equilibrium payoff of the row
player.1 First, we settle the complexity of the signaling problem with respect to NP-
hardness by showing that it is NP-hard to obtain an additive FPTAS (Theorem 4.1).
Previous work [Dughmi 2014] ruled out an FPTAS assuming the planted clique hard-
ness (see Conjecture 2.2). Thus, we replace an average-case hardness assumption with
the much more conventional worst-case assumption of NP-hardness.

Next, we consider the hardness of obtaining a PTAS for the signaling problem. Since
there is a quasi-polytime approximation scheme for signaling [Cheng et al. 2015], it is
unlikely that a PTAS for signaling is NP-hard. We show that assuming planted-clique
hardness, there does not exist an PTAS for the signaling problem (Theorem 4.4). Previ-
ously, the non-existence of a PTAS was shown (assuming planted-clique hardness) only
for implicit zero-sum games with quasi-polynomial-size strategy sets [Dughmi 2014].
Complementing these hardness results, we devise a PTAS for a structured class of
zero-sum games (Theorem 4.12), when the payoff matrices obey a Lipschitz condition.

In Section 5, we consider the signaling problem in (nonatomic, selfish) Bayesian net-
work routing games, wherein the principal seeks to reveal partial information to mini-
mize the average latency of the equilibrium flow. We show that it is NP-hard to obtain
any multiplicative approximation better than 4

3 , even with linear latency functions
(Theorem 5.1). This yields an optimal inapproximability result for linear latencies,
since we show that full revelation obtains the price of anarchy of the routing game as
its approximation ratio (Theorem 5.4), which is 4

3 for linear latency functions [Rough-
garden and Tardos 2002]. These are the first results for the complexity of signaling in
Bayesian network routing games.

We also obtain hardness results for two related signaling problems in Bayesian
zero-sum games (Section 6). Firstly, we rule out a PTAS for computing the best prior
(the maximum prior problem), under the exponential time hypothesis (ETH). Previ-
ously, [Cheng et al. 2015] studied a mixture-selection problem and showed that in
the absence of a property called noise-stability, obtaining a PTAS was hard, assum-

1In zero-sum games, this also captures the problem of maximizing a weighted combination of players’ equi-
librium payoffs.



ing planted-clique hardness. Our result shows that in their setting a QPTAS is in fact
the best possible approximation obtainable, assuming the ETH. Finally, if the princi-
pal’s value depends on the players’ strategies, and not just their payoffs, we show that
obtaining a PTAS is NP-hard (Theorem 6.1).

Our techniques. Our results for Bayesian zero-sum games are obtained via two main
ideas. Our NP-hardness result, the PTAS for a structured class of games, and the
PTAS-hardness for the maximum prior problem, all follow by considering the signal-
ing problem from a dual perspective. The signaling problem can be written as a math-
ematical program (P) with linear objective and constraints, but an infinite number of
variables. Ignoring this issue, we can consider the dual problem (D). Motivated by the
separation problem for the dual, we consider the dual signaling problem (Section 3).
Our key insight is that the dual signaling problem is a rather useful tool for both de-
riving hardness results and devising approximation algorithms. This usefulness stems
from the equivalence of separation and optimization [Grötschel et al. 1993], which
shows that an algorithm for the separation problem can be used to solve the optimiza-
tion problem and vice versa. We exploit and build upon this equivalence. We prove
that this equivalence holds despite the infinite-dimensionality of (P), and furthermore,
is approximation preserving: an FPTAS for signaling yields an FPTAS for the dual
signaling problem (Theorem 4.2), and a PTAS for the dual signaling problem yields a
PTAS for signaling (Theorem 4.10).

This equivalence paves the way for our results. Whereas, typically, an (approximate)
separation oracle is used to (approximately) solve the optimization problem, we exploit
this equivalence in an unorthodox fashion by also leveraging the hardness of the dual
signaling problem to prove hardness results for the signaling (i.e., primal optimization)
problem. We show that it is NP-hard to obtain an FPTAS for the dual signaling prob-
lem, and thus obtain that it is NP-hard to obtain an FPTAS for the signaling problem.
Notably, in contrast to the (weaker) planted-clique hardness result in [Dughmi 2014]
for the signaling problem, we obtain our NP-hardness result with minimal effort, a
fact that underscores the benefits of moving to the dual signaling problem. On the pos-
itive side, we obtain a PTAS for the dual signaling problem for our structured class
of Bayesian zero-sum games, which thus yields a PTAS for the signaling problem for
this class. Interestingly, when cast in the mixture-selection framework of [Cheng et al.
2015], the signaling problem for our structured class does not satisfy the noise-stability
property stated in [Cheng et al. 2015]. When noise-stability holds, [Cheng et al. 2015]
give a PTAS, and in the absence of noise-stability, they show planted-clique hardness
for obtaining a PTAS. Our result bypasses both of these, and we obtain a PTAS for
a problem for which noise-stability does not hold. Finally, we show that a PTAS for
the maximum-prior problem yields a PTAS for the dual signaling problem, and we
rule out the latter via a simple, clean reduction from the best-Nash problem and the
recent result of [Braverman et al. 2015]. This result also strengthens the hardness
result from [Cheng et al. 2015] mentioned above, by showing that in the absence of
noise-stability, a QPTAS is the best-possible approximation for the mixture selection
problem, assuming the ETH.

Our second main idea, used to rule out a PTAS assuming planted-clique hardness,
is a “direct” reduction that combines and strengthens techniques from [Dughmi 2014;
Feder et al. 2007]. We utilize the planted clique cover problem defined in [Dughmi
2014] — multiple cliques are now planted and one seeks to recover a constant fraction
of them — and shown to be at least as hard as the planted clique problem. The idea
is to set up a Bayesian zero-sum game where both the principal and the row player
must randomize over Ω(log n)-size high-density node sets for the signaling scheme to
achieve large value; recovering these large-density sets from a near-optimal signaling



scheme allows one to solve the planted-clique cover (and hence, the planted clique)
problem. The FPTAS-hardness reduction in [Dughmi 2014] creates a network secu-
rity game (see Section 2) with payoffs of absolute value Ω(log2 n) (or alternatively, a
quasi-polynomial-size strategy set for the column player) to enforce the above prop-
erty. Payoffs of magnitude Ω(log n) seem necessary with this kind of approach, which
therefore only yields an O(1/log n) gap that is insufficient to rule out a PTAS. We
abandon the use of network security games and instead leverage a device from [Feder
et al. 2007] to ensure the above “large-spreading” property. This idea is also used to
show planted-clique hardness for the best-Nash problem [Hazan and Krauthgamer
2011]; however we are constrained to work with zero-sum games, and therefore need
to apply this idea carefully. A subtle, but crucial, technical issue is that we need to
significantly tighten the planted-clique recovery result in [Dughmi 2014]. To recover
a specific planted clique S of size k = ω(log2 n) (in the presence of other such planted
cliques), [Dughmi 2014] requires a set T with |T | = Θ(k), |S ∩ T | = Ω(k), whereas we
only require that |T |, |S ∩ T | = Ω(log n), and this is crucial since we can only ensure
that spreading takes place over O(log n)-size sets.

Our hardness result for Bayesian routing games is a direct reduction from the prob-
lem of computing edge tolls that minimize the total (latency + toll)-cost of the resulting
equilibrium flow, which is inapproximable within a factor of 4

3 .

Related work. Whereas understanding the role of information in influencing strate-
gies is a classical problem in game theory, the computational problem of designing
optimal information structures has been studied more recently. Much of this work has
focused on signaling in auctions, where the goal is to maximize revenue [Bro Miltersen
and Sheffet 2012; Emek et al. 2012; Guo and Deligkas 2013] or social welfare [Dughmi
et al. 2014]. Dughmi [Dughmi 2014] initiated the computational study of signaling in
Bayesian zero-sum games, and obtained various hardness results under the planted-
clique hardness assumption. This work left open the question of whether hardness re-
sults can be obtained under standard worst-case assumptions, such as P6=NP, a ques-
tion that we answer in the affirmative. On the positive side, Cheng et al. [Cheng et al.
2015] showed that for Bayesian normal form games with a constant number of play-
ers and for general objectives of the principal, an ε-approximate signaling scheme that
maximizes the objective at an ε-approximate Nash equilibrium can be computed in
quasi-polynomial time. This work left open the question of whether a PTAS is possible
for signaling in Bayesian zero-sum games. We preclude this under the planted-clique
hardness assumption, and complementing this, design a PTAS for a structured class
of games. As noted earlier, the latter result does not follow from [Cheng et al. 2015]
since the resulting signaling problem fails to have small noise stability.

The planted-clique problem was introduced in [Jerrum 1992] and [Kučera 1995],
and despite extensive efforts (see, e.g., [Ames and Vavasis 2014; Dekel et al. 2011;
Feige and Ron 2010] and the references therein), no polytime algorithm is known for
recovering cliques of size k = o(

√
n). There is a quasi-polytime algorithm known when

k ≥ 2 log2 n; on the other hand, various algorithmic strategies have been ruled out for
this problem [Feige and Krauthgamer 2003; Feldman et al. 2013; Jerrum 1992]. The
planted-clique problem has thus been used in various reductions (see, e.g., [Hazan and
Krauthgamer 2011; Juels and Peinado 2000]), and is an example where an average-
case hardness assumption has been used to derive hardness results.

Recently, [Rubinstein 2015] has independently also obtained hardness results for
signaling in zero-sum games. He shows that there is no additive PTAS assuming ETH,
and obtaining a multiplicative PTAS is NP-hard. These results are orthogonal to ours,
as there is no known reduction between ETH and planted-clique hardness. Furthur,
NP-hardness of a multiplicative PTAS does not rule out an additive FPTAS.



In Bayesian network routing games, [Vasserman et al. 2015] also study the ability of
signaling to reduce the average latency. They define the mediation ratio as the average
latency at equilibrium for the best signaling scheme, to the average latency for the
social optimum, and give tight bounds on the mediation ratio with graphs consisting of
parallel links. On these simple networks, popular navigation services (such as Waze or
Google Maps) cannot do anything to improve the latency of the Nash flow. Our work, in
contrast, studies the computational complexity of obtaining the best signaling scheme
in general graphs, and conclude that even when Waze can carefully reveal information
to improve the Nash flow, finding an (approximate) optimal policy is still NP-hard.

2. PRELIMINARIES AND NOTATION
We use R+ for the set of nonnegative reals. For integer n, [n] := {1, 2, . . . , n}. If n ≥ 1,
we use ∆n to denote the (n− 1)-dimensional simplex {x ∈ Rn+ :

∑
i xi = 1}. Let 1n ∈ Rn

be the vector with 1 in all its entries, In×n be the n × n identity matrix, and ei be the
vector containing 1 as its i-th entry and 0 elsewhere.

Bayesian zero-sum games and signaling schemes. A Bayesian zero-sum game is spec-
ified by a tuple

(
Θ, {Aθ}θ∈Θ, λ

)
, where Θ = {1, . . . ,M} denotes the states of nature, and

λ is a prior distribution on the states of nature (thus λ ∈ ∆M ). We assume the row and
column player has r, c pure strategies respectively. For each state of nature θ ∈ Θ,
Aθ ∈ [−1, 1]r×c specifies the payoffs of the row player in a zero-sum game. Let µ ∈ ∆M

be an arbitrary distribution over states of nature. ThenAµ :=
∑
θ∈Θ µθAθ is the matrix

of expected payoffs for the row player under distribution µ.
A signaling scheme is a policy by which a principal reveals (partial) information

about the state of nature. We focus on symmetric signaling schemes which reveals the
same information to all the players. A signaling scheme specifies a set of signals Σ and
a map ϕ : Θ 7→ ∆|Σ| from the states of nature Θ to distributions over the signals in
Σ. Thus, ϕ(θ)σ is the probability that the principal selects signal σ when the state of
nature is θ. When the state θ is revealed, the principal computes a signal σ ∼ ϕ(θ). Both
players receive σ and correspondingly update their belief on the state-distribution to
µσ, where for each state θ,

µσθ =
Pr(σ|θ) Pr(θ)

Pr(σ)
=

ϕ(θ)σλθ∑
θ′∈Θ ϕ(θ′)σ

.

The players then, based on their posterior belief, play the zero-sum game given byAµσ .
Each signal σ thus yields a posterior distribution µσ ∈ ∆M , and these posterior

distributions form a convex decomposition of the prior λ =
∑
σ Pr(σ)µσ. As observed

in [Dughmi 2014], specifying a signaling scheme (Σ, ϕ) is in fact equivalent to specify-
ing a distribution α over posterior distributions µ ∈ ∆M that yield a convex decompo-
sition of the prior λ. Thus, a signaling scheme can also be described as α := (αµ)µ∈∆M

,
where

∑
µ∈∆M

αµµ = λ. The signals Σ in such a signaling scheme are described implic-
itly, and correspond to the posteriors µ for which αµ > 0. This will be our perspective
on signaling schemes throughout. In Section 4.2, we will explicitly need to describe the
signals, and then use µσ for the posterior corresponding to signal σ and ασ for Pr(σ).

Let val : ∆M 7→ R be the principal’s objective function. For the bulk of our results,
we consider the objective function val(µ) for µ ∈ ∆M that evaluates to the row-player’s
payoff at equilibrium in the zero-sum game specified by Aµ. Note that val(µ) is unique,
val(µ) := maxx∈∆r

minj∈[c](x
TAµ)j , although there could be multiple Nash equilibria.

The quality of a signaling scheme α for a Bayesian zero-sum game is then given
by
∑
µ∈∆M

αµ val(µ). The signaling problem in a Bayesian zero-sum game is to find a
signaling scheme α that maximizes

∑
µ∈∆M

αµ val(µ). Let opt(I) denote the value of



the optimal signaling scheme for a Bayesian zero-sum game I. We note that opt(I)
is a concave function of the prior λ, since if λ1 and λ2 form a convex decomposition
of λ, so do the optimal posteriors for λ1 and λ2. By Caratheodory’s theorem, M + 1
posteriors (equivalently, signals) suffice to specify any convex decomposition of the
prior. Together, this implies that an optimal signaling scheme can be specified by at
most M + 1 posteriors.

We say that an algorithm for the signaling problem is an (additive) ε-approximation
algorithm if for every instance I the algorithm runs in polytime and returns a signal-
ing scheme of value at least opt(I)− ε. A polytime approximation scheme (PTAS) is an
algorithm that runs in polytime and returns a solution of value at least opt(I) − ε for
every instance I and constant ε > 0; an FPTAS is a PTAS whose running time for an
instance I and parameter ε is poly

(
size of I, 1

ε

)
.

Security games. Some of our results utilize a class of zero-sum games that we call
extended security games, wherein the payoff matrix for state θ is given by

Aθ := A+ bθ1Tc + 1r(d
θ)T , where bθ ∈ Rr, dθ ∈ Rc. (1)

Let B and D be matrices having columns {b1, . . . , bM}, and {d1, . . . , dM} respectively.
We obtain the following expressions for Aµ and val(µ) for µ ∈ ∆M .

Aµ= A+ (Bµ)1Tc + 1r(µ
TDT ), val(µ) = max

x∈∆r

{
xTBµ+ min

j∈[c]

(
xTA+ µTDT

)
j

}
. (2)

A special case of an extended security game (and the reason for this terminology)
is the network security game defined by [Dughmi 2014]. Given an undirected graph
G = (V,E) with n = |V | and a parameter ρ ≥ 0, the states of nature correspond to the
vertices of the graph. The row and column players are called attacker and defender
respectively. The attacker and defender’s pure strategies correspond to nodes of G. Let
B be the adjacency matrix of G, and set A = DT = −ρIn×n. Then, for a given state of
nature θ ∈ V , and pure strategies a, d ∈ V of the attacker and defender, the payoff of
the attacker is given by eTaBeθ − ρ(eTa + eTθ )ed. The interpretation is that the attacker
gets a payoff of 1 if he selects a vertex a that is adjacent to θ. This payoff is reduced by
ρ if the defender’s vertex d lies in {θ, a}, and by 2ρ if d = θ = a.

Planted clique and planted clique cover. Some of our hardness results are based
on the hardness of the planted-clique and planted clique cover problems. The latter
problem was introduced in [Dughmi 2014].

DEFINITION 2.1. (Planted clique cover problem PCover(n, p, k, r) [Dughmi 2014])
Let G ∼ G(n, p, k, r) be a random graph on n vertices generated by: (1) including every
edge independently with probability p; and (2) for i = 1, . . . , r, picking a set Si of k
vertices uniformly at random, adding all edges having both endpoints in Si. We call
the Si’s the planted cliques and p the background density. We seek to recover a constant
fraction of the planted cliques S1, . . . , Sr, given G ∼ G(n, p, k, r).

In the planted clique problem PClique(n, p, k), there is a single planted clique (r =
1) and the goal is to recover this clique. The following hardness assumption for the
planted-clique problem has been used in deriving various hardness results.

CONJECTURE 2.2 (PLANTED-CLIQUE CONJECTURE). For some k = k(n) satisfying
k = ω(log n) and k = o(

√
n), there is no probabilistic polytime algorithm that solves

PClique
(
n, 1

2 , k
)

with constant success probability.

The ellipsoid method. We utilize the ellipsoid method to translate hardness and ap-
proximation results for the dual of the signaling problem to signaling.



THEOREM 2.3. (Ch. 4, 6 in [Grötschel et al. 1993]; Sec. 9.2 in [Nemirovski and
Yudin 1983]]) LetX ⊆ Rn be a polytope described by constraints having encoding length
at most L. Suppose that for each y ∈ Rn, we can determine in time poly(size of y, L) if
y /∈ X and if so, return a hyperplane of encoding length at most L separating y from X.
(i) The ellipsoid method can find x ∈ X or determine that X = ∅ in time poly(n,L).

(ii) Let h : Rn 7→ R be a concave function and K = supx∈X h(x)− infx∈X h(x). Suppose we
have a value oracle for h that for every x ∈ X, returns ψ(x) satisfying |ψ(x)−h(x)| ≤ δ.
There exists a polynomial p(n) such that for any ε ≥ p(n)δ, the shallow-cut ellipsoid
method can find x∗ ∈ X such that h(x∗) ≥ maxx∈X h(x)− 2ε (or determine X = ∅) in
time T = poly

(
n,L, log(Kε )

)
, and using at most T queries to the value oracle for h.

3. THE DUAL SIGNALING PROBLEM
The signaling problem can be formulated as the following mathematical program,

max
∑
µ∈∆M

αµ val(µ) s.t.
∑
µ∈∆M

αµµθ = λθ for all θ ∈ Θ, α ≥ 0. (P)

Notice that any feasible α must also satisfy
∑
µ∈∆M

αµ = 1; hence, α is indeed a dis-
tribution over ∆M , and a feasible solution to (P) yields a signaling scheme. Let opt(λ)
denote the optimal value of (P), and note that this is a concave function of λ. Although
(P) has a linear objective and linear constraints, it is not quite a linear program (LP)
since there are an infinite number of variables. Ignoring this issue for now, we consider
the following dual of (P).

min wTλ s.t. wTµ ≥ val(µ) for all µ ∈ ∆M , w ∈ RM . (D)

The separation problem for (D) motivates the following dual signaling problem.

DEFINITION 3.1 (DUAL SIGNALING WITH PRECISION ε). Given a Bayesian zero-
sum game

(
Θ, {Aθ}θ∈Θ, λ

)
, w ∈ RM , and ε > 0, distinguish between:

(i) val(µ) ≥ wTµ+ ε for some µ ∈ ∆M ; if so return µ ∈ ∆M s.t. val(µ) ≥ wTµ− ε;
(ii) val(µ) < wTµ− ε for all µ ∈ ∆M .
The threshold signaling problem is the special case of dual signaling where w = η1M
for some η ∈ R.

Notice that the dual signaling problem is unconstrained: λ plays no role. We say that
an algorithm is an FPTAS for the dual signaling problem if it solves the dual signaling
problem in time poly

(
size of (I, w), 1

ε

)
for every input (I, w, ε).

4. BAYESIAN ZERO-SUM GAMES
We now prove the following results for signaling in Bayesian zero-sum games. We show
that the signaling problem does not admit an FPTAS unless P=NP (Theorem 4.1) and
does not admit a PTAS assuming the hardness of the planted-clique problem (Theo-
rem 4.4). Complementing these hardness results, we present a PTAS for a structured
class of extended security games (Theorem 4.12).

4.1. NP-hardness of obtaining an FPTAS
THEOREM 4.1 (COROLLARY OF THEOREMS 4.2 AND 4.3). There is no FPTAS for

the signaling problem, even for network security games, unless P=NP.

THEOREM 4.2. There is a polynomial q(M) such that an ε
q(M) -approximation al-

gorithm B for the signaling problem I yields a polytime algorithm for the threshold
signaling problem (I, η1m, ε). Thus, an FPTAS for the signaling problem yields an FP-
TAS for the threshold signaling problem.



PROOF. Let
(
Θ, {Aθ}, λ

)
, η1M , ε be the input to the threshold signaling problem,

with precision parameter ε. Note that for any µ ∈ ∆M , we have −1 ≤ opt(µ) ≤ 1 since
|Aθi,j | ≤ 1 for all θ, i, j. Let p(M) be the polynomial given by part (ii) of Theorem 2.3.
Set q(M) = p(M) + 1. We utilize part (ii) of Theorem 2.3 with X = ∆M , δ = ε

q(M) ,
h(·) = opt(·) (which is concave, as noted earlier), K = 2, and using B as the imperfect
value oracle, to find z ∈ ∆M in polytime such that opt(z) ≥ maxµ∈∆M

opt(µ)−p(M)δ. We
run B on the prior z to obtain a signaling scheme α of value v ≥ opt(z)−ε. If v ≥ η, then
we return that we are in case (i) and one of the points µ ∈ ∆M with αµ > 0 must satisfy
val(µ) ≥ η. If v < η, then we have maxµ∈∆M

val(µ) ≤ maxµ∈∆M
opt(µ) < η+

(
p(M) + 1)δ,

so we return that we are in case (ii).

THEOREM 4.3. There is no FPTAS for the threshold signaling problem, even for
network security games, unless P=NP.

PROOF. The proof follows readily via a reduction from the balanced complete bi-
partite subgraph (BCBS) problem [Garey and Johnson 1979], which illustrates the
convenience of working with the dual signaling problem. In BCBS, given a bipartite
graph G = (V ∪W,E) and an integer r ≥ 0, we want to determine if G contains Kr,r

(i.e., an r × r biclique). Given a BCBS instance, set ε = 1
2n8 , where n = |V | + |W |,

and η = 1 − (2n + 1)ε. We create a Bayesian network security game by letting G be
the graph in the network security game, and setting ρ = 2rnε. Recall that this means
that states of nature correspond to nodes of G, so Θ = V ∪W , and the payoff matrix
for a distribution µ ∈ ∆Θ is given by (2) where B is the adjacency matrix of G and
A = DT = −ρIn×n. This creates an instance of the threshold signaling problem with
precision parameter ε; the prior λ is irrelevant. We show that solving this instance
would decide the BCBS-instance.

If G has the required subgraph V ′, W ′, set µv = 1/r for all v ∈ V ′ and xv = 1/r for
all v ∈ W ′. Then, by (2), we have val(µ) ≥ xTBµ− ρ‖µ+ x‖∞ ≥ 1− ρ/r = η + ε. where
we have xTBµ = 1 since V ′, W ′ form a complete bipartite subgraph.

Suppose there exists µ ∈ ∆M so that val(µ) ≥ η − ε. We show then that G contains
Kr,r. Let x be the equilibrium strategy of the attacker, so val(µ) = xTBµ − ρ‖µ + x‖∞.
Let V ′ := {v ∈ V ∪ W : µv ≥ 1/n3} and W ′ := {v ∈ V ∪ W : xv ≥ 1/n3}. Then∑
v∈V ′ µv = 1 −

∑
v 6∈V ′ µv > 1 − 1/n2. Similarly

∑
v∈W ′ xv > 1 − 1/n2. Every vertex

in V ′ must be adjacent to every vertex in W ′, otherwise xTBµ ≤ 1 − 1/n6 < η. Thus,
V ′ and W ′ must be in different partitions. Assume V ′ ⊆ V and W ′ ⊆ W . For each
vertex v, µv + xv ≤ (1+1/n)

r , otherwise val(µ) < 1 − (2n + 2)ε. Hence, |V ′| ≥
∑
v∈V ′ µv

(1+1/n)/r >

r 1−1/n2

(1+1/n) = r(1 − 1/n), and therefore |V ′| ≥ r. Similarly |W ′| ≥ r, and this yields the
r × r biclique.

We conjecture that Theorem 4.2 can, in fact, be strengthened to show that an ε-
approximation for signaling yields an O(ε)-approximation for threshold signaling, so
that a PTAS for signaling yields a PTAS for threshold signaling. This would rule out
a sub-quasipolytime approximation scheme (i.e., an nΩ̃(log1−o(1) n)-time approximation
scheme) for signaling under the (deterministic) exponential time hypothesis (ETH),
since we prove in Section 6 that there is no sub-quasi-PTAS for threshold signaling
assuming ETH. 2

2Rubinstein [Rubinstein 2015] shows that obtaining a sub-quasi-PTAS for signaling is ETH-hard via a direct
reduction that builds upon ideas in [Aaronson et al. 2014]. It remains open whether a PTAS for signaling
yields a PTAS for threshold signaling.



This is an optimal hardness result since a quasi-PTAS follows from [Cheng et al.
2015]. Such a strengthening would follow by tightening part (ii) of Theorem 2.3; we
leave this as an intriguing open question. Below, we rule out a PTAS for signaling
under an orthogonal hardness assumption.

4.2. Planted-clique hardness of obtaining a PTAS
THEOREM 4.4. There is a constant ε0 such that, assuming the planted-clique hard-

ness conjecture (Conjecture 2.2), there is no ε0-approximation for the signaling problem
in Bayesian zero-sum games.

Our hardness result strengthens the one in [Dughmi 2014], which rules out an FP-
TAS assuming the planted-clique conjecture. The reduction therein creates a network
security game from a graph G ∼ G

(
n, 1

2 , k, r
)

(see Section 2). The idea is that if a sig-
naling scheme achieves value close to 1, then it must place a large weight on posteriors
and attacker mixed-strategies that randomize over a large set of nodes. Further, the
posterior and attacker must essentially identify dense components of G, as otherwise
the attacker’s value would be close to the background density 1

2 . As noted earlier, a
limitation of this type of construction is that the parameter ρ used in the network se-
curity game needs to be roughly Ω(log n) to ensure that the posterior and the attacker’s
mixed strategies are supported on an Ω(log n)-size set of nodes. This only yields an
Θ
(

1
polylog(n)

)
gap, which is insufficient to rule out a PTAS. We overcome this obstacle

by moving away from a network security game, and instead exploiting an idea of [Feder
et al. 2007] to eliminate all equilibria of O(log n)-size support from the game. Theorem
4.4 follows immediately by combining Lemmas 4.5 and 4.6.

LEMMA 4.5. Let ε > 0, k = k(n) satisfy k = ω(log n) and k = o(
√
n), and r = Θ(n/k).

Suppose there is a polytime algorithm that takes as input G ∼ G
(
n, 1

2 , k, r
)

with planted
cliques {Si}, and outputs a family T ⊆ 2V of clusters satisfying the following with
constant probability, for any constant c3 ≥ 103 :

for an ε-fraction of {Si}, ∃T ∈ T with |T ∩ Si| ≥ max
{
ε|T |, c3 log n

}
. (*)

Then there is a polynomial-time algorithm for PClique
(
n, 1

2 , k
)

having constant suc-
cess probability.

LEMMA 4.6. Let k = k(n) satisfy k = ω(log n) and k = o(
√
n), and r = 5n

k . There is a
polynomial-time randomized reduction that takes a graphG ∼ G

(
n, 1

2 , k, r
)

as input and
outputs a Bayesian zero-sum game such that the following hold with high probability.
(Completeness) There is a signaling scheme having value at least 0.99.
(Soundness) Given a signaling scheme of value at least 0.97, one can obtain in poly-
time a collection T of clusters satisfying condition (*) in Lemma 4.5.

Above, and throughout this section, when we say with high probability, we mean suc-
cess probability 1 − 1

poly(n) . The Bayesian zero-sum game we construct always admits
a signaling scheme of large value; however finding a near-optimal signaling scheme
in polytime would refute the planted-clique conjecture. Lemma 4.5 (proved in the full
version of the paper) is similar to a planted-clique recovery result proved in [Dughmi
2014]. While we utilize similar ideas, our result works under much weaker require-
ments. Our lemma allows clusters in T to have size Θ(log n)—which is crucial for
Lemma 4.6—whereas in [Dughmi 2014], the clusters need to have size ω(log2 n). In
the rest of this section, we prove Lemma 4.6. We use the following parameters.

Z = 20, c2 = 105, c1 = c2 log(4Z/3) + 2, N = nc1 . (3)



To keep the presentation simple, we give a construction where Aθi,j ∈ [−Z,Z] (as op-
posed to [−1, 1]). Let AG denote the (n × n) adjacency matrix of G = (V,E). We split G
into G− and G+ with corresponding adjacency matrices A−G and A+

G where G− are the
background edges and G+ are the clique edges added in steps (1) and (2) of Definition
2.1 respectively. The states of nature and the row-player’s strategies correspond to the
nodes of G. The prior λ is 1n/n, thus each state of nature (each vertex) is equally likely
to occur. For every θ ∈ Θ = V , the payoff matrix Aθ ∈ [−Z,Z]n×(2N+1) is given by
[aθ B 1n(dθ)T ], which are defined as follows:

(1) aθ is the θ-th column of the adjacency matrix AG, so aθi = 1 if (i, θ) ∈ E and is
0 otherwise; (2) B is an n × N matrix, where each Bi,j is set independently to 2 − Z
with probability 3

4Z , and 2 otherwise; and (3) dθ ∈ [−Z,Z]N , where each entry dθj is set
independently to 2− Z with probability 3

4Z , and 2 otherwise.
We use Row and Col to denote the row and column players respectively. Let D be

the n×N matrix having rows (dθ)T for θ ∈ Θ.
To gain some intuition, observe that for a posterior µ and Row’s mixed strategy x,

the row vector xTAµ yielding Col’s payoffs is [xTAGµ xTB µTD]. Thus, if Col plays
action 1, the expected payoff of Row is equal to xTAGµ. If µ and x are uniform over
S, T ⊆ V , the expected payoff is exactly bi-densityG(S, T ) := |{(u,v)∈S×T :{u,v}∈E}|

|S||T | . The
remaining 2N pure strategies of Col are used to force the principal and Row to choose
a posterior µ and mixed strategy x respectively that are “well spread out”.

The average of the entries in any column of B or D is 5
4 > maxi a

θ
i . Exploiting this,

Claim 4.7(i) implies that if x and µ both randomize uniformly over a large set of ver-
tices, Col plays column 1. The completeness proof now follows from the oft-used idea of
(roughly speaking) choosing posteriors and mixed strategies for Row that randomize
uniformly over the planted cliques. Conversely, if x or µ has support of size at most
c2 log n, then Claim 4.7(ii) implies that Col can play some column of B or D and make
val(µ) negative Thus, in order to obtain value close to 1, both µ and Row have to ran-
domize over Ω(log n)-size sets of nodes. Using this, one can carefully extract a collection
of node-sets satisfying condition (*) of Lemma 4.5. This yields the soundness proof.

The following properties of the above construction will be useful.

CLAIM 4.7. Let R ⊆ V . (i) If |R| = ω(log n), with high probability, for every j ∈ [N ],
1
|R|
∑
i∈RBi,j > 1 and 1

|R|
∑
i∈RDi,j > 1. (ii) If |R| ≤ c2 log n, with high probability,

∃j, k ∈ [N ] such that Bi,j = 2− Z = Di,k for all i ∈ R.

LEMMA 4.8 (PROPOSITION B.2 IN [DUGHMI 2014] QUANTIFIED). Let ε > 0, and
c ≥ 24(2.1) ·max

{
1, 1+ε

ε2

}
. For all n ≥ 2, we have

Pr
[
∃S, T ⊆ V with |S|, |T | ≥ c log n, bi-densityG−(S, T ) > 1+ε

2

]
≤ 2

n3 .

LEMMA 4.9. With high probability, for all S, T ⊆ V with |S|, |T | ≥ c2 log n,
bi-densityG−(S, T ) ≤ 1+ε

2 .

4.2.1. Completeness proof in Lemma 4.6. We use a deterministic signaling scheme that
groups together states of nature in the same planted clique. Let S1, . . . , Sr be the
planted cliques in G in some arbitrary order. Let S′i = Si \

⋃
1≤j<i Sj for i ∈ [r] be

the set of vertices in Si that do not appear in earlier cliques. Define A := V \
⋃
j Sj as

the remaining vertices. Finally, S′0 = A ∪
{
v ∈ S′i : |S′i| < k

104

}
. Our signaling scheme is

(Σ, α, µ) where the set of signals is Σ = {0} ∪
{
i ∈ [r] : |S′i| ≥ k

104

}
. For each signal σ,

ασ =
|S′σ|
n and µσ is the uniform distribution over S′σ. Note that the signaling scheme

is independent of B and D.



For posterior µσ, where σ 6= 0, consider the strategy xσ where Row plays the uniform
distribution on S′σ. Claim 4.7(i) implies that Col’s best response to xσ is to play column
1. Therefore, val(µσ) ≥ bi-density(S′σ, S

′
σ) = 1 − 1

|S′σ|
≥ 1 − 104

k . With r = 5n
k , we have

|A| ≤ e0.1 ·E[|A|] ≤ e−4.9n with high probability due to standard Chernoff bounds (since
the events {v ∈ A}v∈V are negatively correlated). Therefore, for suitably large n, with
high probability, |S′0| ≤ |A| + 5n

k ·
k

104 ≤ e−4.7n. So, with high probability, the signaling
scheme has value at least

∑
σ∈Σ∩[r] ασ

(
1− 104

k

)
≥ (1− e−4.7)

(
1− 104

k

)
≥ 0.99.

4.2.2. Soundness proof in Lemma 4.6. For a signal σ ∈ Σ with posterior µσ, let xσ denote
Row’s equilibrium strategy for Aµσ . We first filter out the set of “useful” signals with
relatively high value. Let Σ1 = {σ ∈ Σ : val(µσ) ≥ 1−

√
ε}. We show that for all σ ∈ Σ1,

µσ and xσ place a significant mass over a large set of nodes, and use this to extract
clusters. Fix ε = 0.03. For every signal σ ∈ Σ1, define Tσ =

{
i : eTi AGµ

σ ≥ 1− Z
√
ε

Z−2

}
,

and let x̃σ be the uniform distribution on Tσ. We output T = {Tσ : σ ∈ Σ1}.
We show that T satisfies condition (*) in Lemma 4.5. The value of the signaling

scheme is
∑
σ∈Σ ασ val(µσ) ≥ 1 − ε. Noting that val(µ) ≤ 1 for all µ, by Markov’s in-

equality, we have α(Σ1) ≥ 1 −
√
ε. (Given a vector v ∈ Rk, and S ⊆ [k], we use v(S) to

denote
∑
i∈S vi.) Assume that the high probability event in Claim 4.7(ii) happens.

Fix σ ∈ Σ1. For any R ⊆ V with |R| ≤ c2 log n, we must have xσ(R) ≤ 2
Z and µσ(R) ≤

2
Z . Otherwise, suppose xσ(R) > 2

Z (the argument for µσ is similar). Then, considering
the column j of B having Bi,j = 2 − Z for all i ∈ R, we have

∑
i∈[n](x

σ)iBi,j ≤ (2 −
Z)xσ(R)+2

(
1−xσ(R)

)
< 0, which implies that val(µσ) < 0. Now since 1−

√
ε ≤ val(µσ) ≤

1, by the definition of Tσ and Markov’s inequality, we have xσ(Tσ) ≥ 2
Z , and hence

|Tσ| ≥ c2 log n. We now switch from xσ to x̃σ in order to relate the value of the signaling
scheme to bi-density and deduce that T satisfies condition (*). As before, G− are the
background edges and G+ are the clique edges added in steps (1) and (2) of Definition
2.1 respectively, and A−G and A+

G are the corresponding adjacency matrices. Let AiG be
the adjacency matrix of the clique Si. Note that AG ≤ A−G +A+

G ≤ A
−
G +

∑r
i=1A

i
G.

Let R denote the c2 log n largest entries in x̃σTA−G, and let µ̃σ be the uniform dis-
tribution on R. Since µ̃σ and x̃σ are uniform distributions over R and Tσ respectively
(which have size at least c2 log n), we have x̃σTA−Gµ̃

σ = bi-density(Tσ, R) ≤ 1+ε
2 due to

Lemma 4.9 below. Moreover, µσ(R) ≤ 1
10 , and since the maximum entry of x̃σTA−G out-

side of R is at most the average entry in R, we have x̃σTA−Gµ
σ ≤ 1

10 + 9
10 ·x̃

σTA−Gµ̃
σ < 0.6.

Finally, we also have
∑
σ∈Σ1

ασ(x̃σTAGµ
σ) ≥ (1−

√
ε)
(
1− Z

√
ε

Z−2

)
> 0.85. Therefore,

1

4
<
∑
σ∈Σ1

ασx̃
σT (AG −A−G)µσ ≤

∑
σ∈Σ1

ασ

r∑
i=1

x̃σTAiGµ
σ =

r∑
i=1

∑
σ∈Σ1

ασµ
σ(Si)

|Tσ ∩ Si|
|Tσ|

≤
r∑
i=1

(∑
σ∈Σ1

ασµ
σ(Si)

)(
max
T∈T

|T ∩ Si|
|T |

)
(∗∗)
≤

r∑
i=1

|Si|
n

max
T∈T

|T ∩ Si|
|T |

=
5

r

r∑
i=1

max
T∈T

|T ∩ Si|
|T |

.

Inequality (∗∗) follows since for every v ∈ Θ, we have
∑
σ∈Σ1

ασ(µσ)v is at most∑
σ∈Σ ασ(µσ)v = λv = 1

n . Therefore 1
r

∑r
i=1

(
maxT∈T

|T∩Si|
|T |

)
≥ 1

20 . This implies that

at least a 1
39 -fraction of S1, . . . , Sr satisfy maxT∈T

|T∩Si|
|T | ≥

1
40 . Since |T | ≥ c2 log n for all

T ∈ T , T satisfies condition (*) in Lemma 4.5.



4.3. A PTAS for structured extended security games
We now devise a PTAS for a structured class of extended security games (Theo-
rem 4.12). First, we reduce the signaling problem to the dual signaling problem using
the ellipsoid method (Theorem 4.10). This reduction applies to all Bayesian zero-sum
games. Next, we devise a PTAS for the dual signaling problem for our class of extended
network security games (Theorem 4.12).

THEOREM 4.10 (DUAL SIGNALING TO SIGNALING). A polytime algorithm B for the
dual signaling problem with precision ε gives a 5ε-approximation algorithm for the
signaling problem. In particular, a PTAS for the dual signaling problem yields a PTAS
for the signaling problem.

PROOF SKETCH. We utilize the ellipsoid method, specifically, part (i) of Theo-
rem 2.3, adapting the standard transformation from separation to optimization to take
into account the additive error in the dual separation problem. We approximate (P) by
a finite-dimensional LP, where we restrict the variables in (P), and, analogously the
constraints in (D) to a suitable δ-net of ∆M . Let I =

(
Θ, {Aθ}, λ

)
be a Bayesian zero-

sum game. Recall that |Aθi,j | ≤ 1 for all θ, i, j. For δ ∈ (0, 1] with 1/δ ∈ Z, and µ ∈ ∆M ,
define Sδ :=

{
µ′ ∈ ∆M : µ′θ/δ ∈ Z ∀θ ∈ Θ

}
. We work with the finite-dimensional coun-

terparts of (P) and (D) and argue that this approximation only yields a small error.

max
∑
µ∈Sδ

αµ val(µ) s.t.
∑
µ∈Sδ

αµµ = λ; (Pδ)

min wTλ s.t. wTµ ≥ val(µ) ∀µ ∈ Sδ. (Dδ)
Since λ ∈ conv(Sδ(λ)), (Pδ) is feasible for any λ ∈ ∆M . Clearly, a solution to (Pδ) gives
a solution to (P) of equal value. We show the converse is also approximately true.

Now the basic idea is to solve (Dδ) with the ellipsoid method using the algorithm B
to obtain a separation oracle for (Dδ) with an additive error. In the course of solving
(Dδ), we also obtain a polynomial-size LP consisting of the violated inequalities of (Dδ)
returned by the separation oracle during the execution of the ellipsoid method whose
optimal value is the same as opt (Dδ). Taking the dual of this compact LP yields an LP
of the same form as (Pδ) but with only polynomially many αµ variables; solving this
yields the desired approximate signaling scheme. The error in the separation oracle for
(Dδ) complicates these arguments; the details are in the full version of the paper.

DEFINITION 4.11 (γ-LIPSCHITZ). A matrix A ∈ Rr×c is γ-Lipschitz if ‖xTA −
x′TA‖∞ ≤ γ‖x− x′‖∞ for all x, x′ ∈ ∆r.

Observe that an extended security game specified by matrices A,B,D (see (1), (2)) is
γ-Lipschitz if DT is γ-Lipschitz. We place no constraints on the matrices A and B. We
design a simple PTAS for the dual signaling problem on γ-Lipschitz extended security
games, for constant γ. By Theorem 4.10, this yields a PTAS for the signaling problem
for γ-Lipschitz extended security games.

THEOREM 4.12. There is a PTAS for the dual signaling problem on γ-Lipschitz
extended security games. This yields a PTAS for the signaling problem on γ-Lipschitz
extended-security games.

PROOF. Given Theorem 4.10, we only need to prove the first statement. Let (I, w, ε)
be the input to the dual signaling problem where I is a γ-Lipschitz extended security
game. Set ε′ = ε/γ. Our algorithm simply finds µ̂ = argmaxµ∈Sε′

(
val(µ) − wTµ

)
by

exhaustive search. If val(µ̂) − wT µ̂ ≥ 0, we state that we are in case (i) and return µ̂;
else we state that we are in case (ii).



First, note that the algorithm runs in time poly
(
size of I,M

γ
ε

)
, since |Sε′ | ≤(

M
1/ε′

)(
1
ε′

)1/ε′ (there are
(
M

1/ε′

)
choices for the support, and at most 1

ε′ choices for each of
the at most 1

ε′ coordinates in the support).
Let µ∗ maximize val(µ)−wTµ, and x∗ be the equilibrium strategy for the row player

in the resulting zero-sum game. We claim that val(µ∗) − wTµ∗ ≤ val(µ̂) − wT µ̂ + ε,
which shows that we correctly solve the dual signaling problem: if case (i) applies,
then val(µ̂)− wT µ̂ ≥ 0; if case (ii) applies, then clearly, val(µ̂)− wT µ̂ < −ε.

We now prove the claim. Since µ∗ ∈ conv(Sε′(µ
∗)), there exists some µ′ ∈ Sε′(µ∗) such

that x∗TBµ∗ − wTµ∗ ≤ x∗TBµ′ − wTµ′. Further, since DT is γ-Lipschitz, for all j ∈ [c],(
x∗TA + µ∗TDT

)
j
≤
(
x∗TA + µ′TDT

)
j

+ γε′. Combining these inequalities yields that
val(µ′)− wTµ′ ≥ val(µ∗)− wTµ∗ − ε.

5. BAYESIAN NETWORK ROUTING GAMES
We now consider the signaling problem in Bayesian network routing games and prove
an optimal inapproximability result for linear latency functions: It is NP-hard to ob-
tain a multiplicative approximation better than 4/3 (Theorem 5.1), and this approx-
imation is achieved for linear latency functions by a simple signaling scheme that
simply reveals the state of nature (Theorem 5.4).

A network routing game is a tuple Γ =
(
G = (V,E), {le}e∈E , {(si, ti, di)}i∈[k]

)
, where G

is a directed graph with latency function le : R+ 7→ R+ on each edge e. Each (si, ti, di) de-
notes a commodity; di specifies the volume of flow routed from si to ti by self-interested
agents, each of whom controls an infinitesimal amount of flow and selects an si-ti path
as her strategy. A strategy profile thus corresponds to a multicommodity flow composed
of si-ti flows of volume di for all i; we call any such flow a feasible flow. The latency on
edge e due to a flow f is given by le(fe), where fe is the total flow on e. The latency of a
path P is lP (f) :=

∑
e∈P le(fe). The total latency of a flow f is C(l; f) :=

∑
e∈E fele(fe);

an optimal flow is a feasible flow with minimum latency. A feasible flow f in a routing
game is a Nash flow (also called a Wardrop flow), if each player chooses a minimum
latency path; that is, for all i, all si-ti paths P , Q with fe > 0 for all e ∈ P , lP (f) ≤ lQ(f).
All Nash flows have the same total latency (e.g., [Roughgarden and Tardos 2002]).

In a Bayesian network routing game, the edge latency functions {lθe}e∈E may de-
pend on the state of nature θ ∈ Θ (and, as before, we have a prior λ ∈ ∆Θ). The
principal seeks to minimize the latency of the Nash flow. Given µ ∈ ∆Θ, the ex-
pected latency function on each edge e is lµe (xe) :=

∑
θ∈Θ µθl

θ
e(xe). Define val(µ) :=

C(lµ; fµ), where fµ is the Nash flow for latency functions {lµe }. The signaling prob-
lem is to determine (αµ)µ∈∆M

≥ 0 of finite support specifying a convex decomposi-
tion of λ (i.e.,

∑
µ∈∆M

αµµ = λ) that minimizes the expected latency of the Nash flow,∑
µ∈∆M

αµ val(µ).

THEOREM 5.1. For any ε > 0, obtaining a (4/3− ε)-approximation for the signaling
problem in Bayesian routing games is NP-hard, even in single-commodity games with
linear latency functions.

Let
(
G, s, t, d

)
be a single-commodity routing game. We reduce from the problem of

determining edge tolls τ ∈ RE+ that minimize C
(
l + τ ; fNE (τ)

)
, where l + τ denotes

the collection of latency functions {le(x) + τe}e and fNE (τ) is the Nash flow for l + τ .
Note that C(l+ τ ; f) =

∑
e fe(le(fe) + τe) takes into account the contribution from tolls;

we refer to this as the total cost of f . By optimal tolls, we mean tolls τ that minimize
C
(
l + τ ; fNE (τ)

)
.



THEOREM 5.2 ([COLE ET AL. 2006]). There are optimal tolls where the toll on every
edge is 0 or ∞. If P 6= NP, there is no

(
4
3 − ε

)
-approximation algorithm for the problem

of computing optimal tolls in networks with linear latency functions, for any ε > 0.

Let Γ =
(
G = (V,E), l, s, t, d

)
be an instance of a routing game with linear latencies.

Let m = |E| ≥ 2. By scaling latency functions suitably, we may assume that d = 1.
Then, for any latency functions l′, the latency of the Nash flow for l′ equals the common
delay of all flow-carrying s-t paths. Let L = C(l; fNE ) be the latency of the Nash flow
for l. Let τ∗ be optimal {0,∞}-tolls, L∗ = C

(
l + τ∗, fNE (τ∗)

)
be the optimal cost, and

K∗ := {e ∈ E : τ∗e =∞}. We can view τ∗ as simulating the removal of edges in K∗.
We create the following Bayesian routing game. Let

(
G1 = (V1, E1), s1, t1

)
and

(
G2 =

(V2, E2), s2, t2
)

be two copies of (G, l, s, t). Add vertices s, t, and edges (s, s1), (s, s2) and
(t1, t), (t2, t). Call the graph thus created H. For e ∈ E1 ∪ E2 with corresponding edge
e′ ∈ E, set the latency function in the new graph he(x) = le′(x), and set he(x) = 0 for
e = (s, s1), (s, s2), (t1, t), (t2, t). The states of nature correspond to edges in H. We set
λθ = 1/m2 for all θ ∈ E1 ∪ E2; the remaining 1 − 2

m mass is spread equally on (s, s1),
(s, s2). We set hθe(x) = he(x) + 8m3L if θ = e and he(x) otherwise. Our Bayesian routing
game is

(
(G, {hθe}θ,e, s, t, d), λ

)
.

The idea here is that state θ encodes the removal of edge θ: specifically, if µθ = Ω
(

1
m

)
for a posterior µ, then hµ simulates removing edge θ due to the large constant term
8m3L. Let Ki be the edge-set corresponding to K∗ in Gi, for i = 1, 2. The prior λ is
set up so that: (a) it admits a convex decomposition into posteriors µ1, µ2, where hµ

i

simulates that Gi \ Ki is connected to s and G3−i is disconnected from s; and (b) any
convex-decomposition of λ must be such that a large weight is placed on posteriors µ,
where hµ simulates that only one of Gi is connected to s, so that {µe8m3L}e∈Ei yields
tolls τ for edges in E such that C

(
l+ τ, fNE (τ)

)
≤ val(µ). Lemma 5.3 makes (a) and (b)

precise, and Theorem 5.1 follows immediately from Lemma 5.3 and Theorem 5.2.

LEMMA 5.3. There is a signaling scheme for the above Bayesian routing game with
latency L∗. Further, given a signaling scheme α for the above Bayesian routing game
with expected latency L′, one can obtain tolls τ such that the routing game (G, l+τ, s, t, d)

has Nash latency at most L′

1−4/m .

THEOREM 5.4. The full-revelation signaling scheme, i.e., revealing the state of na-
ture, has the price of anarchy for the underlying latency functions as its approximation
ratio. In particular, for linear latencies, it achieves a 4

3 -approximation.

6. EXTENSIONS: HARDNESS RESULTS FOR RELATED PROBLEMS
6.1. Maximum prior problem
This is the closely-related problem of finding µ ∈ ∆M that maximizes opt(µ). The proof
of Theorem 4.2 in fact shows that a PTAS for the maximum-prior problem yields a
PTAS for threshold signaling. Theorem 6.1 uses this implication to rule out a PTAS for
the maximum prior problem under the exponential time hypothesis (ETH) by giving a
simple, clean reduction from the best-Nash problem in general two-player games, for
which a PTAS is ruled out by [Braverman et al. 2015]. Theorem 6.1 establishes the
optimal hardness result for the maximum prior problem, since a quasi-PTAS for the
maximum prior problem was recently presented in [Cheng et al. 2015].

Theorem 6.1 also implies that the maximum prior problem studied in [Cheng et al.
2015] has no PTAS under the ETH, when the objective function is Lipschitz but not
noise-stable. ([Cheng et al. 2015] ruled out PTAS assuming hardness of planted clique.)
This is because the objective function for signaling in zero-sum games is Lipschitz.



THEOREM 6.1. Assuming ETH, there is a constant ε0 such that, any algorithm
that returns an (additive) ε0-approximation for the maximum prior problem, even for
extended security games, must run in quasipolynomial, i.e., nΩ̃(log1−o(1) n), time. In par-
ticular, assuming ETH, there is no PTAS for the maximum prior problem, even for
extended security games.

Recall that, as noted earlier, the proof of Theorem 4.2 shows that, for any ε, a poly-
time ε-approximation for the maximum prior problem yields a polytime algorithm for
the threshold signaling problem with precision parameter 2ε. Thus, it suffices to show
that, assuming ETH, there is some constant ε0 such that solving the threshold signal-
ing problem with precision parameter ε0, even for extended security games, requires
quasipolynomial running time. To show this, we reduce from the problem of finding an
ε-Nash equilibrium in a general two-player game with ε-approximate social welfare,
and utilize the following hardness result for this problem.

THEOREM 6.2 ([BRAVERMAN ET AL. 2015]). Assuming ETH, there is a constant
ε∗ > 0 such that any algorithm for finding an ε∗-approximate Nash equilibrium with
social welfare at least OPT − ε∗ in a general bimatrix game requires nΩ̃(log1−o(1) n) time,
where OPT is the optimal welfare of a Nash equilibrium.

PROOF OF THEOREM 6.1. Let (R, C) be a bimatrix game, where R, C ∈ [−1, 1]m×n

are the payoffs for the row- and column- players respectively. To avoid confusion with
the extended security game, we refer to the row- and column- players in the bimatrix
game as theR- and C- players. A pair of mixed strategies (x, y) for theR- and C- players
respectively is an ε-approximate equilibrium if:

xT (R+ C)y − max
i∈[m]

(Ry)i −max
j∈[n]

(xTC)j ≥ −ε. (4)

The social welfare of (x, y) is defined as xT (R + C)y. Let OPT be the maximum social
welfare of a (mixed) Nash equilibrium of (R, C). Note that −2 ≤ OPT ≤ 2.

We construct an extended security game where the states of nature correspond to
the pure strategies of the C-player (in the bimatrix game), and the row-player’s pure
strategies (in the extended security game) correspond to the R-player’s strategies (in
the bimatrix game). We will set things up so that the expected payoff in the extended
security game to the row player under a posterior distribution µ and when he plays a
mixed strategy x is a linear combination of the LHS of (4) (viewing (x, µ) as a mixed-
strategy profile for the bimatrix game (R, C)) and the social welfare of (x, µ) in the
bimatrix game (R, C). Let ε > 0 be a parameter. The payoffs in the extended secu-
rity game will have absolute value at most 1 + O(1/ε). We will show that solving the
threshold signaling problem for the resulting extended security game with threshold
η = η′−ε, and precision parameter ε yields a 6ε-approximate Nash equilibrium of (R, C)
with social welfare at least η′−2ε, whenever there is a Nash equilibrium of (R, C) with
social welfare at least η′ or we state that we are in case (i) of the threshold signaling
problem. So via binary search, we can obtain a 6ε-approximate Nash equilibrium of
(R, C) with social welfare at least OPT − 3ε. Thus, setting ε0 = Θ(ε∗

2

), 3 where ε∗ is as
given by Theorem 6.2, we obtain that, assuming ETH, the threshold signaling problem
with precision parameter ε0 requires quasipolynomial time, completing the proof.

We proceed to describe the extended security game and prove the desired claim. We
set Θ = [n], so M = n. The row-player’s pure-strategy set is [m], and the column-
player’s pure-strategy set is [m]× [n], so the row- and column- players have r = m and

3The Θ(e∗
2
) is because we need additive error Θ(ε∗) when payoffs are bounded in absolute value by 1 +

O(1/ε∗); when we scale payoffs so that they lie in [−1, 1], this translates to an Θ(ε∗
2
)-approximation.



c = mn pure strategies respectively. The r × c matrix A, r ×M matrix B, and c ×M
matrix D in the extended security game are given by

Ai,(i′,j) = −1

ε
Ci,j ∀i ∈ [m], (i′, j) ∈ [m]× [n]

Bi,j =
(

1 +
1

ε

)
(Ri,j + Ci,j) ∀i ∈ [m], j ∈ [n]

D(i,j′),j = −1

ε
Ri,j ∀(i, j′) ∈ [m]× [n], i ∈ [m].

CLAIM 6.3. For all µ ∈ ∆M , x ∈ ∆r, we have

min
k∈[c]

(
xTA+ µTDT

)
j

= −1

ε

(
max
i∈[m]

(Rµ)i + max
j∈[n]

(xTC)j
)
.

PROOF. Consider any column-player strategy k = (i′, j′) ∈ [m]× [n].

(xTA)k + (µTDT )k =
∑
i∈[m]

xiAi,(i′,j′) +
∑
j∈[n]

µjD(i′,j′),j

= −1

ε

(∑
i∈[m]

xiCi,j′ +
∑
j∈[n]

µjRi′,j
)

= −1

ε

(
(xTC)j′ + (Rµ)i′

)
.

It follows from Claim 6.3 that for any µ ∈ ∆M , we have

val(µ) = max
x∈∆r

(
xTBµ+ min

j∈[c]

(
xTA+ µTDT

)
j

)
= max
x∈∆m

[(
1 +

1

ε

)
xT (R+ C)µ− 1

ε

(
max
i∈[m]

(Rµ)i + max
j∈[n]

(xTC)j
)]

= max
x∈∆m

[
xT (R+ C)µ− 1

ε

(
max
i∈[m]

(Rµ)i + max
j∈[n]

(xTC)j − xT (R+ C)µ
)]

(5)

Now suppose we solve the threshold signaling problem with threshold η = η′−ε (where
η′ ≤ 2) and precision parameter ε. Suppose (x∗, µ∗) is a Nash equilibrium of (R, C) with
social welfare at least η′. It follows from (5) that val(µ∗) ≥ η′. So we are not in case (ii)
of the threshold signaling problem, and must obtain µ ∈ ∆n such that val(µ) ≥ η − ε =
η′ − 2ε. From (5), this implies that there is x ∈ ∆m such that xT (R+ C)µ ≥ η′ − 2ε and

max
i∈[m]

(Rµ)i + max
j∈[n]

(xTC)j − xT (R+ C)µ ≤ ε
(
xT (R+ C)µ− η′ + 2ε

)
≤ 6ε

where the last inequality follows since R, C ∈ [−1, 1]m×n. The same calculation holds
whenever we state that we are in case (i) and return µ ∈ ∆n.

6.2. Hardness with other equilibrium notions
It is known that in zero-sum games, correlated equilibria and Nash equilibria are
payoff-equivalent, that is, they yield the same payoffs (this was also noted in [Dughmi
2014]). Thus, our hardness results extend to the case of correlated equilibria, as well
as other notions of stability that are payoff-equivalent to Nash equilibria in zero-sum
games. To see this, note that for µ ∈ ∆M , due to the payoff equivalence, val(µ) is also the
payoff of the row player in any correlated equilibrium in the zero-sum game specified
by Aµ. Hence, the statement of the signaling problem and its optimal value remain
unchanged. Further, any signaling scheme for correlated equilibria gives a signaling
scheme for Nash equilibria of equal value. This immediately extends all our hardness



results (Theorem 4.1, Theorem 4.3, Theorem 4.4, Theorem 6.1) to correlated equilibria
(and other payoff-equivalent equilibria).

6.3. Signaling with general objective functions
We now consider a more general signaling problem in Bayesian zero-sum games, where
the principal’s value may depend on the players’ strategies, and show that it is NP-
hard to obtain a PTAS. Formally, we have a Bayesian zero-sum game

(
Θ, {Aθ}θ∈Θ, λ

)
and a Θ × r × c principal objective tensor F =

(
Fθ(i, j)

)
; that is, Fθ ∈ [−1, 1]r×c for all

θ ∈ Θ. We now define val(µ) = max(xµ,yµ)∈NE(Aµ) x
T
µ (
∑
θ µθFθ)yµ, where NE (Aµ) is the

set of all (exact) Nash equilibria of Aµ. As before, we seek a signaling scheme (Σ, α, µ)
that maximizes

∑
σ∈Σ ασ val(µσ).

THEOREM 6.4. Given a Bayesian zero-sum game
(
Θ, {Aθ}θ∈Θ, λ

)
, and a principal

objective tensor F , it is NP-hard to distinguish whether the optimal signaling scheme
has value 0 or at least 1

2 .

We remark that it is important to allow the principal’s payoff to depend on specific
strategies, and also to enforce exact Nash equilibrium. Intuitively, these two ingredi-
ents together make the objective function val(µ) very “sensitive” in µ. Moreover, these
two conditions are essentially necessary for an NP-hardness result, as [Cheng et al.
2015] gave a bi-criteria quasi-PTAS for this general signaling problem, i.e., a quasi-
polytime algorithm that loses an additive ε in the objective as well as in the Nash
equilibrium constraints.
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