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ABSTRACT
We give an algorithm for learning a mixture of unstructured
distributions. This problem arises in various unsupervised
learning scenarios, for example in learning topic models from
a corpus of documents spanning several topics. We show
how to learn the constituents of a mixture of k arbitrary
distributions over a large discrete domain [n] = {1, 2, . . . , n}
and the mixture weights, using O(npolylogn) samples. (In
the topic-model learning setting, the mixture constituents
correspond to the topic distributions.)

This task is information-theoretically impossible for k > 1
under the usual sampling process from a mixture distri-
bution. However, there are situations (such as the above-
mentioned topic model case) in which each sample point
consists of several observations from the same mixture con-
stituent. This number of observations, which we call the
“sampling aperture”, is a crucial parameter of the problem.

We obtain the first bounds for this mixture-learning prob-
lem without imposing any assumptions on the mixture con-
stituents. We show that efficient learning is possible ex-
actly at the information-theoretically least-possible aperture
of 2k − 1. Thus, we achieve near-optimal dependence on n
and optimal aperture. While the sample-size required by our
algorithm depends exponentially on k, we prove that such a
dependence is unavoidable when one considers general mix-
tures.

A sequence of tools contribute to the algorithm, such as
concentration results for random matrices, dimension reduc-
tion, moment estimations, and sensitivity analysis.

∗Supported in part by NSF CCF-1038578, NSF CCF-
0515342, NSA H98230-06-1-0074, and NSF ITR CCR-
0326554.
†Supported in part by NSERC grant 32760-06, an NSERC
Discovery Accelerator Supplement Award, and an Ontario
Early Researcher Award.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ITCS’14, January 12–14, 2014, Princeton, New Jersey, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2698-8/14/01 ...$15.00.
http://dx.doi.org/10.1145/2554797.2554818.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems; G.2 [Discrete
Mathematics]; G.3 [Probability and Statistics]

Keywords
Randomized algorithms; mixture learning; topic models; spec-
tral techniques; moment methods; linear programming; con-
vex geometry

1. INTRODUCTION
We give an algorithm for learning a mixture of unstruc-

tured distributions. More specifically, we consider the prob-
lem of learning a mixture of k arbitrary distributions over
a large finite domain [n] = {1, 2, . . . , n}. This finds appli-
cations in various unsupervised learning scenarios including
collaborative filtering [29], and learning topic models from a
corpus of documents spanning several topics [39, 11], which
is often used as the prototypical motivating example for this
problem. Our goal is to learn the probabilistic model that is
hypothesized to generate the observed data. In particular,
we learn the constituents of the mixture and their weights in
the mixture. (In the topic models application, the mixture
constituents are the topic distributions.)

It is information-theoretically impossible to reconstruct
the mixture model from single-snapshot samples. Thus, our
work relies on multi-snapshot samples. To illustrate, in the
(pure documents) topic model introduced in [39], each doc-
ument consists of a bag of words generated by selecting a
topic with probability proportional to its mixture weight and
then taking independent samples from this topic’s distribu-
tion (over words); so n is the size of the vocabulary and k is
the number of topics. Notice that typically n will be quite
large, and substantially larger than k. Also, clearly, if very
long documents are available, the problem becomes easy, as
each document already provides a very good sample for the
distribution of its topic. Thus, it is desirable to keep the
dependence of the sample size on n as low as possible, while
at the same time minimize what we call the aperture, which
is the number of snapshots per sample point (i.e., words per
document). These parameters govern both the applicability
of an algorithm and its computational complexity.

Our results. We provide the first bounds for the mixture-
learning problem without making any limiting assumptions
on the mixture constituents. Let probability distributions
p1, . . . , pk ∈ ∆n−1 denote the k-mixture constituents, where
∆n−1 is the (n−1)-simplex, and w1, . . . , wk denote the mix-



ture weights. Our algorithm uses
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documents (i.e., samples) and reconstructs with high prob-
ability (see Theorem 4.1) each mixture constituent up to
`1-error ε, and each mixture weight up to additive error ε.
We make no assumptions on the constituents. The asymp-
totic notation hides factors that are polynomial in wmin :=
mint wt and the “width” of the mixture (which intuitively
measures the minimum variation distance between any two
constituents). The three terms in (1) correspond to the re-
quirements for the number of 1-, 2-, and (2k− 1)-snapshots
respectively. So we need aperture 2k − 1 only for a small
part of the sample (and this is necessary).

Notably, we achieve near-optimal dependence on n and op-
timal aperture. To see this, and put our bounds in perspec-
tive, notice importantly that we recover the mixture con-
stituents within `1-distance ε. One needs Ω

(
n/ε2

)
samples to

learn even a single arbitrary distribution over [n] (i.e., k = 1)
within `1-error ε; for larger k but fixed aperture (indepen-
dent of n), a sample size of Ω(n) is necessary to recover even
the expectation of the mixture distribution with constant
`1-error. On the other hand, aperture Ω

(
(n + k2) lognk

)
is sufficient for algorithmically trivial recovery of the model
with constant `∞ error using few samples. Restricting the
aperture to 2k − 2 makes recovery impossible to arbitrary
accuracy (without additional assumptions): we show that
there are two far-apart k-mixtures that generate exactly the
same aperture-(2k − 2) sample distribution; moreover, we
prove that with O(k) aperture, an exponential in k sam-
ple size is necessary for arbitrary-accuracy reconstruction.
These lower bounds hold even for n = 2, and hence ap-
ply to arbitrary mixtures even if we allow O(k logn) aper-
ture. Also, they apply even if we only want to construct
a k-mixture source that is close in transportation distance
to the true k-mixture source (as opposed to recovering the
parameters of the true mixture). Section 6 presents these
lower bounds. (Interestingly, an exponential in k sample-
size lower bound is also known for the problem of learning a
mixture of k Gaussians [36], but this lower bound applies for
the parameter-recovery problem and not for reconstructing
a mixture that is close to the true Gaussian mixture.)

Our work yields new insights into the mixture-learning
problem that nicely complements the recent interesting work
of [4, 3, 2]. These papers posit certain assumptions on
the mixture constituents, use constant aperture, and ob-
tain incomparable sample-size bounds: they recover the con-
stituents up to `2 or `∞ error using sample size that is
poly(k) and sublinear in (or independent of) n. An impor-
tant new insight revealed by our work is that such bounds
of constant aperture and poly(k) sample size are impossible
to achieve for arbitrary mixtures. Moreover, if we seek to
achieve `1-error ε, there are inputs for which their sample
size is Ω(n3) (or worse, again ignoring dependence on wmin

and “width”; see Appendix B). This is a significantly poorer
dependence on n compared to our near-linear dependence
(so our bounds are better when n is large but k is small).
To appreciate a key distinction between our work and [4, 3,
2], observe that with Ω(n3) samples, the entire distribution
on 3-snapshots can be estimated fairly accurately; the chal-
lenge in [4, 3, 2] is therefore to recover the model from this

relatively noiseless data. In contrast, a major challenge for
achieving `1-reconstruction with O(npolylogn) samples is
to ensure that the error remains bounded despite the pres-
ence of very noisy data due to the small sample size, and we
develop suitable machinery to achieve this.

We now give a rough sketch of our algorithm (see Sec-
tion 3) and the ideas behind its analysis (Section 4). Let
P = (p1, . . . , pk), r =

∑
t wtp

t be the expectation of the

mixture, and k′ = rank(p1 − r, . . . , pk − r). We first argue
that it suffices to focus on isotropic mixtures (Lemma 3.3).
Our algorithm reduces the problem to the problem of learn-
ing one-dimensional mixtures. Note that this is a special
case of the general learning problem that we need to be able
to solve (since we do not make any assumptions about the
rank of P ). We choose k′ random lines that are close to
the affine hull, aff(P ), of P and “project” the mixture on to
these k′ lines. We learn each projected mixture, which is a
one-dimensional mixture-learning problem, and combine the
inferred projections on these k′ lines to obtain k points that
are close to aff(P ). Finally, we project these k′ points on to
∆n−1 to obtain k distributions over [n], which we argue are
close (in `1-distance) to p1, . . . , pk.

Various difficulties arise in implementing this plan. We
first learn a good approximation to aff(P ) using spectral
techniques and 2-snapshots. We use ideas similar to [35, 6,
34], but our challenge is to show that the covariance ma-
trix A =

∑
t wt(p

t − r)(pt − r)† can be well-approximated
by the empirical covariance matrix with only O(n ln6 n) 2-
snapshots. A random orthonormal basis of the learned affine
space supplies the k′ lines on which we project our mixture.
Of course, we do not know P , so “projecting” on to a basis
vector b actually means that we project snapshots from P
on to b by mapping item i to bi. For this to be meaningful,
we need to ensure that if the mixture constituents are far
apart in variation distance then their projections (b†pt)t∈[k]

are also well separated relative to the spread of the support
{b1, . . . bn} of the one-dimensional distribution. In general,
we can only claim a relative separation of Θ

(
1√
n

)
(since

mint6=t′ ‖pt − pt
′
‖2 may be Θ

(
1√
n

)
). We avoid this via a

careful balancing act: we prove (Lemma 4.3) that the `∞
norm of unit vectors in aff(P ) is O

(
1√
n

)
, and argue that

this isotropy property suffices since b is close to aff(P ).
Finally, a key ingredient of our algorithm (see Section 5) is

to show how to solve the one-dimensional mixture-learning
problem and learn the real projections (b†pt)t∈[k] from the
projected snapshots. This is technically the most difficult
step and the one that requires aperture 2k − 1 (the small-
est aperture at which this is possible). We show that the
projected snapshots on b yield empirical moments of a re-
lated distribution and use this to learn the projections and
the mixture weights via a method of moments (see, e.g., [25,
24, 31, 10, 36, 3]). One technical difficulty is that variation
distance in ∆n−1 translates to transportation distance [42]
in the one-dimensional projection. We use a combination of
convex programming and numerical-analysis techniques to
learn the projections from the empirical “directional” mo-
ments. In the process, we establish some novel properties
about the moment curve—an object that plays a central
role in convex and polyhedral geometry [8]—that may be of
independent interest.

Related work. The past decade has witnessed tremen-
dous progress in the theory of learning statistical mixture



models. The most striking example is that of learning mix-
tures of high dimensional Gaussians. Starting with Das-
gupta’s groundbreaking paper [20], a long sequence of im-
provements [21, 5, 41, 32, 1, 24, 13] culminated in the re-
cent results [31, 10, 36] that essentially resolve the problem
in its general form. In this vein, other highly structured
mixture models, such as mixtures of discrete product distri-
butions [33, 26, 18, 25, 14, 16] and similar models [18, 9, 37,
32, 19, 15, 22], have been studied intensively. One impor-
tant difference between this line of work and ours is that the
structure of those mixtures enables learning using single-
snapshot samples, whereas this is impossible in our case.
Another interesting difference between our setting and the
work on structured models (and this is typical of most results
on PAC-style learning) is that the amount of information in
each sample point is roughly in the same ballpark as the in-
formation needed to describe the model. In our setting, the
amount of information in each sample point is exponentially
sparser than the information needed to describe the model
to good accuracy. Thus, the topic-model learning problem
motivates the natural question of inference from sparse sam-
ples. This issue is also encountered in collaborative filtering;
see [34] for some related theoretical problems.

Recently and independently, [4, 3, 2] have considered much
the same question as ours.1 They make certain assump-
tions about the mixture constituents which makes it possible
to learn the mixture with constant aperture and poly(n, k)
sample size (for `1-error). In comparison with our work,
their sample bounds are attractive in terms of k but come
at the expense of added assumptions (which are necessary),
and have a worse dependence on n.

The assumptions in [4, 3, 2] impose some limitations on
the applicability of their algorithms. To understand this, it
is illuminating to consider the case where all the pts lie on a
line-segment in ∆n−1 as an illustration. This poses no prob-
lems for our algorithm: we recover the pts along with their
mixture weights. However, as we show below, the algorithms
in [4, 3, 2] all fail to reconstruct this mixture. Anandkumar
et al. [3] solve the same problem that we consider, under the
assumption that P (viewed as an n× k matrix) has rank k.
This is clearly violated here, rendering their algorithm in-
applicable. The other two papers [4, 2] consider the setting
where each multi-snapshot is generated from a combination
of mixture constituents [39, 28]: first a convex combina-
tion λ ∈ ∆k−1 is sampled from a mixture distribution T
on ∆k−1, then the snapshot is generated by sampling from
the distribution

∑k
t=1 λtp

t. The goal is to learn the mixture
constituents and the mixture distribution. (The problem we
consider is the special case where T places weight wt on the
t-th vertex of ∆k−1.) [4] posits a ρ-separability assumption
on the mixture constituents, wherein each pt has a unique

“anchor word” i such that pti ≥ ρ and pt
′
i = 0 for every t′ 6= t,

whereas [2] weakens this to the requirement that P has rank
k. Both papers handle the case where T is the Dirichlet dis-
tribution (which gives the latent Dirichlet model [12]); [4]
obtains results for other mixture distributions as well.

In order to apply these algorithms, we can view the input
as being specified by two constituents, x and y, which are
the end points of the line segment; T then places weight wt

1An earlier stage of this work, including the case k = 2 as well as
some other results that are not subsumed by this paper, dates to
2007. The last version of that phase has been posted since May
2008 at [40]. The extension to arbitrary k is from 2012.

on the convex combination (λt, 1 − λt)†, where pt = λtx +
(1 − λt)y. This T is far from the Dirichlet distribution,
so [3] does not apply here. Suppose that x and y satisfy the
ρ-separability condition. (Note that ρ may only be O

(
1
n

)
,

even if x and y have disjoint supports.) We can then apply
the algorithm of Arora et al. [4]. But this does not recover
T ; it returns the “topic correlation” matrix ET [λλ†], which
does not reconstruct the mixture (w,P ).

This limitation should not be surprising since [4] uses con-
stant aperture. Indeed, [4] notes that it is impossible to
reconstruct T with arbitrary accuracy (with any constant
aperture) even if one knows the constituents x and y. In
this context, we remark that our earlier work [40] uses the
approach presented in this paper and solves the problem
for arbitrary mixtures of two distributions, yielding a crisp
statement about the tradeoff between the sampling aperture
and the accuracy with which T can be learnt.

Our methods bear some resemblance with the recent inde-
pendent work of Gravin et al. [27] who consider the problem
of recovering the vertices of a polytope from its directional
moments. [27] solves this problem for a polynomial density
function assuming that exact directional moments are avail-
able; they do not perform any sensitivity analysis for mea-
suring the error in their output if one has noisy information.
In contrast, we solve this problem given only noisy empirical
moment statistics and using much smaller aperture, albeit
when the polytope is a subset of the (n−1)-simplex and the
distribution is concentrated on its vertices.

Finally, it is also pertinent to compare our mixture-learning
problem with the problem of learning a mixture of prod-
uct distributions (e.g., [25]). Multi-snapshot samples can be
thought of as single-snapshot samples from the power dis-
tribution on [n]K , where K is the aperture. The product
distribution literature typically deals with samples spaces
that are the product of many small cardinality components,
whereas our problem deals with samples spaces that are the
product of few large cardinality components.

2. PRELIMINARIES

2.1 Mixture sources, snapshots, and projec-
tions

Let [n] denote {1, 2, . . . , n}, and ∆n−1 denote the (n−1)-
simplex {x ∈ Rn≥0 :

∑
i xi = 1}. A k-mixture source (w,P )

on [n] consists of k mixture constituents P = (p1, . . . , pk),
where pt has support [n] for all t ∈ [k], along with the cor-
responding mixture weights w = (w1, . . . , wk) ∈ ∆k−1. An
m-snapshot from (w,P ) is obtained by choosing t ∈ [k] ac-
cording to the distribution w, and then choosing i ∈ [n] m
times independently according to the distribution pt. The
probability distribution on m-snapshots is thus a mixture
of k power distributions on the product space [n]m. We
also consider mixture sources whose constituents are distri-
butions on R. A k-mixture source (w,P ) on R consists of
k mixture constituents P = (p1, p2, . . . , pk), where each pt

is a probability distribution on R, along with corresponding
mixture weights w = (w1, . . . , wk) ∈ ∆k−1.

Given a distribution p on [n] and a vector x ∈ Rn, we
define the projection of p on x, denoted πx(p), to be the dis-
crete distribution on R that assigns probability mass

∑
i:xi=β

pi
to β ∈ R. (Thus, πx(p) has support {x1, . . . , xn} and E[πx(p)] =
x†p.) Given a k-mixture source (w,P ) on [n], we define the



projected k-mixture source (w, πx(P )) on R to be the k-
mixture source on R given by

(
w, (πx(p1), . . . , πx(pk))

)
.

We also denote by (w,E[πx(P )]) the distribution that as-
signs probability mass wt to E[πx(pt)] = x†pt for all t ∈ [k].
This is an example of what we call a k-spike distribution,
which is a distribution on R that assigns positive probabil-
ity mass to k points in R.

2.2 Transportation distance for mixtures
Let

(
w, (p1, . . . , pk)

)
and

(
w̃, (p̃1, . . . , p̃`)

)
be k- and `-

mixture sources on [n] respectively. The transportation dis-
tance (with respect to the total variation distance 1

2
‖x−y‖1

on measures on ∆n−1) between these two sources, denoted

by Tran(w,P ; w̃, P̃ ), is the optimum value of the following
linear program (LP).

minimize

k∑
i=1

∑̀
j=1

xij ·
1

2
‖pi − p̃j‖1 subject to

∑̀
j=1

xij = wi ∀i ∈ [k],

k∑
i=1

xij = w̃j ∀j ∈ [`], x ≥ 0.

The transportation distance Tran(w,α; w̃, α̃) between a k-
spike distribution

(
w,α = (α1, . . . , αk)

)
and an `-spike dis-

tribution
(
w̃, α̃ = (α̃1, . . . , α̃`)

)
is defined as the optimum

value of the above LP with the objective function replaced
by
∑
i∈[k],j∈[`] xij |αi − α̃j |.

2.3 Perturbation results and operator norm
of random matrices

Definition 1. The operator norm of A (induced by the `2
norm) is defined by ‖A‖op = maxx 6=0

‖Ax‖2
‖x‖2

. The Frobenius

norm of A = (Ai,j) is defined by ‖A‖F =
√∑

i,j A
2
i,j .

Lemma 2.1 (Weyl; see Theorem 4.3.1 in [30]). Let A and
B be n× n matrices such that ‖A−B‖op ≤ ρ. Let λ1(A) ≥
. . . ≥ λn(A), and λ1(B) ≥ . . . ≥ λn(B) be the sorted list of
eigenvalues of A and B respectively. Then |λi(A)−λi(B)| ≤
ρ for all i = 1, . . . , n.

Lemma 2.2. Let A,B be n×n positive semi-definite (PSD)
matrices whose nonzero eigenvalues are at least ε > 0. Let
ΠA and ΠB be the projection operators onto the column
spaces of A and B respectively. Let ‖A − B‖op ≤ ρ. Then

‖ΠA −ΠB‖op ≤
√

4ρ/ε.

Proof. Note that AΠA = A, Π2
A = ΠA, BΠB = B, and

Π2
B = ΠB . Let x be a unit vector. Since ‖(A−B)‖op ≤ ρ and

ΠB is a contraction, ‖(A − B)ΠBx‖ ≤ ρ‖ΠBx‖ ≤ ρ. Now
note that (A − B)ΠBx = AΠBx − Bx so by the triangle
inequality, we have ‖AΠBx − Ax‖ ≤ 2ρ. Now we can also
write AΠBx−Ax = A(ΠB − I)x = A(ΠAΠB −ΠA)x. Since
A here is acting on a vector that has already been projected
down by ΠA, we can conclude

2ρ ≥ ‖AΠBx−Ax‖ = ‖A(ΠAΠB−ΠA)x‖ ≥ ε‖(ΠAΠB−ΠA)x‖.

Thus, 2ρ/ε ≥ ‖(ΠA − ΠAΠB)x‖. By the symmetric argu-
ment we also can write 2ρ/ε ≥ ‖(ΠB − ΠBΠA)x‖. Adding

these and applying the triangle inequality we have

4ρ/ε ≥ ‖(ΠA −ΠAΠB + ΠB −ΠBΠA)x‖
= ‖(Π2

A −ΠAΠB −ΠBΠA + Π2
B)x‖

= ‖(ΠA −ΠB)2x‖

Theorem 2.3 ([43]). For every µ > 0, there is a con-
stant κ = κ(µ) = O(µ) > 0 such that the following holds. Let
Xi,j , 1 ≤ i ≤ j ≤ n be independent random variables with
|Xij | ≤ K, E[Xi,j ] = 0, and Var(Xi,j) ≤ σ2 for all i, j ∈ [n],

where σ ≥ κ2n−1/2K ln2 n. Let A be the symmetric matrix
with entries Ai,j = Xmin(i,j),max(i,j) for all i, j ∈ [n]. Then,

Pr
[
‖A‖op ≤ 2σ

√
n+ κ(Kσ)1/2n1/4 lnn

]
≥ 1− n−µ.

3. OUR ALGORITHM
We now describe our algorithm that uses 1-, 2-, and (2k−

1)-snapshots from the mixture source (w,P ). Given a ma-
trix Z, we use Span(Z) to denote the column space of Z. Let

r =
∑k
t=1 wtp

t denote the 1-snapshot distribution of (w,P ).
Let M be the n × n symmetric matrix representing the 2-
snapshot distribution of (w,P ); so Mi,j is the probability of
obtaining the 2-snapshot (i, j) ∈ [n]2. Let R = rr†.

Proposition 3.1. M =
∑k
t=1 wtp

tpt† = R + A, where

A =
∑k
t=1 wt(p

t − r)(pt − r)†.

Note that M and A are both PSD. We say that (w,P ) is
ζ-wide if (i) ‖p − q‖2 ≥ ζ√

n
for any two distinct p, q ∈ P ;

and (ii) the smallest non-zero eigenvalue of A is at least

ζ2‖r‖∞ ≥ ζ2

n
. We assume that wmin := mint wt > 0. Let

k′ = rank(A) ≤ k−1. It is easy to estimate r using Chernoff
bounds (Lemma A.1).

Lemma 3.2. For every µ ∈ N and every σ > 0, if we use

N ≥ 8(µ+2)

σ3 · n lnn independent 1-snapshots and set r̃i to be
the frequency of i in these 1-snapshots for all i ∈ [n], then
with probability at least 1− n−µ the following hold.

(1− σ)ri ≤ r̃i ≤ (1 + σ)ri ∀i with ri ≥
σ

2n

r̃i ≤ (1 + σ)σ/2n ∀i with ri <
σ

2n
.

(2)

It will be convenient in the sequel to assume that our
mixture source (w,P ) is isotropic, by which we mean that
1

2n
≤ ri ≤ 2

n
for all i ∈ [n]; notice that this implies that

pti ≤ 2
wminn

for all i ∈ [n]. We show below that this can be

assumed at the expense of a small additive error.

Lemma 3.3. Suppose that we can learn, with probability
1 − 1

ω
, the constituents of an isotropic ζ-wide k-mixture

source on [n] to within transportation distance ε using N1(n; ζ, ω, ε),
N2(n; ζ, ω, ε), and N2k−1(n; ζ, ω, ε) 1-, 2-, and (2k − 1)-
snapshots respectively. Then, we can learn, with probability
1−O

(
1
ω

)
, the constituents of an arbitrary ζ-wide k-mixture

source (w,P ) on [n] to within transportation distance 2ε us-
ing O

(
lnω
σ3 ·n lnn

)
+6ωN1

(
n
σ
, ζ

2
, ω, ε

)
, 6ωN2

(
n
σ
, ζ

2
, ω, ε

)
, and

6ωN2k−1

(
n
σ
, ζ

2
, ω, ε

)
1-, 2-, and (2k − 1)-snapshots respec-

tively, where σ = εζ2

32kwmin
.

Proof. Given (w,P ), we first compute an estimate r̃
satisfying (2), where µ = 2 + lnω, using O

(
lnω
σ3 · n lnn

)
1-

snapshots. We assume in the sequel that (2) holds. Consider



the following modification of the mixture constituents. We
eliminate items i such that r̃i <

2σ
n

. Each remaining item i
is “split” into ni = bnr̃i/σc items, and the probability of i is
split equally among its copies. The mixture weights are un-
changed. From (2), we have that ri <

4σ
n

if i is eliminated.
So the total weight of eliminated items is at most 4σ. Let
n′ =

∑
i:r̃i≥2σ/n ni ≤

n
σ

be the number of new items. Let

P̂ = (p̂1, . . . , p̂k) denote the modified mixture constituents,
and r̂ denote the distribution of the modified 1-snapshots.
We prove below that the modified mixture (w, P̂ ) is isotropic
and ζ/2-wide.

We use the algorithm for isotropic mixture sources to learn
(w, P̂ ) within transportation distance ε, using the following

procedure to sample m-snapshots from (w, P̂ ). We obtain an
m-snapshot from (w,P ). We eliminate this snapshot if it in-
cludes an eliminated item; otherwise, each item i in the snap-
shot is replaced by one of its ni copies, chosen uniformly at
random (and independently of previous such choices). From
the inferred modified mixture source, we can obtain an esti-
mate of the original mixture source by aggregating, for each
inferred mixture constituent, the probabilities of the items
that we split, and setting the probability of each eliminated
item to 0. This degrades the quality of the solution by the
weight of the eliminated items, which is at most an additive
4σ ≤ ε term in the transportation distance.

The probability that an m-snapshot from (w,P ) survives
is at least (1 − 4σ)m ≥ 1

2
for m ≤ 2k − 1. Therefore,

with probability at least 1 − 1
3ω

, we need at most 6ωN m-

snapshots from (w,P ) to obtain N m-snapshots from (w, P̂ ).
(If we violate this bound, we declare failure.) Thus, we use
at most the stated number of 1-, 2-, and (2k− 1)-snapshots
from (w,P ) and succeed with probability 1−O

(
1
ω

)
.

We conclude by showing that (w, P̂ ) is isotropic and ζ/2-
wide. Let S = {i ∈ [n] : r̃i < 2σ/n} denote the set of
eliminated items. Recall that r̃ satisfies (2). So we have 31

32
≤

r̃i
ri
≤ 33

32
for every non-eliminated item. We use i`, where

` = 1, . . . , ni, to denote a new item obtained by splitting
item i. Define ni = 0 if i is eliminated.

The number n′ of new items is at most n
σ

and at least∑
i/∈S

2
3
· nr̃i
σ
≥ 2

3
· n
σ
· (1 − 2σ) ≥ 5n

8σ
. Let K =

∑
i/∈S ri ≥

1− 4σ ≥ 7/8. For every new item i`, we have r̂i` ≥
ri

nr̃i/σ
≥

32σ
33n
≥ 1

2n′ and r̂i` ≤ 1
K
· 3

2
· ri
nr̃i/σ

≤ 384σ
217n

≤ 2
n′ . Thus, (w, P̂ )

is isotropic.
Now consider the width of (w, P̂ ). For t = 1, . . . , k, define

p′t ∈ Rn to be the vector where p′ti = 0 if i ∈ S, and
p′ti = pti otherwise. For any distinct t, t′ ∈ [k], we have

‖p̂t − p̂t
′
‖2 ≥ ‖p̂

t−p̂t
′
‖1√

n′
and

‖p̂t − p̂t
′
‖1 =

‖p′t − p′t
′
‖1

K
≥ ‖pt − pt

′
‖1 −

∑
i∈S

max{pti, pt
′
i }

≥ ζ − n · 4σ

wminn
≥ ζ/2.

Let Â =
∑k
t=1 wt(p̂

t− r̂)(p̂t− r̂)†, which is an n′×n′ matrix.
We need to prove that the smallest non-zero eigenvalue of

Â is at least ζ2

4
· ‖r̂‖∞. It will be convenient to define the

following matrices. Let B ∈ R([n]\S)×([n]\S) be the matrix
defined by setting Bi,j = Ai,j for all i, j /∈ S. Define A′ to
be the n × n matrix obtained by padding B with 0s: set
A′i,j = Ai,j = Bi,j if i, j /∈ S, and equal to 0 otherwise. It

is easy to see that the non-zero eigenvalues of A′ coincide

with the non-zero eigenvalues of B. Define X ∈ Rn
′×([n]\S)

as follows. Letting {i`}i/∈S,`=1,...,ni index the rows of X,
we set Xi`,j = 1

Kni
if j = i, and 0 otherwise. Notice that

Â = XBX†. To see this, it is convenient to define a padded

version Y ∈ Rn
′×[n] of X by setting Yi`,j = Xi`,j if j /∈ S

and 0 otherwise. Then, we have p̂t = Y pt for all t ∈ [k], and

hence, Â = Y AY † = XBX†.
Note that rank(A′) ≤ rank(A) = k′. Consider A − A′.

Suppose i ∈ S, so pti ≤ 4σ
wminn

for all t ∈ [k]. Then,

|(A−A′)i,j | = |Ai,j | = |Mi,j −Ri,j | ≤ max
{ k∑
t=1

wtp
t
ip
t
j , rirj

}
≤ 4σ

wminn
· rj ≤

4σ

wminn
· ‖r‖∞.

Hence, ‖A−A′‖op ≤ ‖A−A′‖F ≤ 8σ
wmin
·‖r‖∞. By Lemma 2.1,

this implies that

λk′(B) = λk′(A
′) ≥ λk′(A)− ‖A−A′‖op

≥
(
ζ2 − 8σ

wmin

)
‖r‖∞ ≥

ζ2

2
· ‖r‖∞.

We now argue that λk′(XBX
†) ≥ λk′(B)/(maxi ni). By the

Courant-Fischer theorem (see, e.g., Theorem 4.2.11 in [30]),

this is equivalent to showing that there exist vectors y1, . . . , yk
′
∈

Rn
′
, such that for every unit vector v ∈ Span(y1, . . . , yk

′
),

we have v†(XBX†)v ≥ λk′ (B)

maxi ni
. We know that there are

vectors u1, . . . , uk
′
∈ R[n]\S such that zBz† ≥ λk′(B)‖z‖2

for every z ∈ Span(u1, . . . , uk
′
). Set yti` = uti for every

copy i` of item i ∈ [n] \ S, and every t ∈ [k′]. Con-

sider any v ∈ Span(y1, . . . , yk
′
). We have that z = X†v ∈

Span(u1, . . . , uk
′
), and since vi` = zi for every copy i` of

item i ∈ [n] \ S we have that ‖v‖22 ≤ (maxi ni)‖z‖22. There-
fore, if v is a unit vector, we have v†XBX†v = z†Bz ≥
λk′(B)‖z‖22 ≥

λk′ (B)

maxi ni
.

Putting everything together, we have that λk′(Â) ≥ ζ2‖r‖∞
2 maxi ni

.

Note that ‖r‖∞ ≥ 32
33
‖r̃‖∞ and ‖r̃‖∞

maxi ni
≥ σ

n
≥ 217

384
‖r̂‖∞. So

the smallest non-zero eigenvalue of Â is λk′(Â) ≥ ζ2

4
‖r̂‖∞.

Algorithm overview. Our algorithm for learning an
isotropic k-mixture source on [n] takes three parameters:
ζ ≤ 1 such that (w,P ) is ζ-wide, ω ∈ N, which controls the
success probability of the algorithm, and δ ∈ (0, 1), which
controls the statistical distance between the constituents of
the learnt model and the constituents of the correct model.
For convenience, we assume that δ is sufficiently small. The
output of the algorithm is a k-mixture source (w̃, P̃ ) such
that with probability 1 − O

(
1
ω

)
, ‖w − w̃‖∞ and ‖pt − p̃t‖1

for all t ∈ [k] tend to 0 as δ → 0 (see Theorem 4.1).
The algorithm (see Algorithm 1) consists of three stages.

First, we reduce the dimensionality of the problem from n
to k′ using only 1- and 2-snapshots. By Lemma 3.2, we
have an estimate r̃ that is component-wise close to r. Thus,
R̃ = r̃r̃† is close in operator norm to R. So we focus on
learning the column space of A for which we employ spectral
techniques. Leveraging Theorem 2.3, we argue (Lemma 4.2)
that by using O(n ln6 n) 2-snapshots, one can compute (with

high probability) a good enough estimate M̃ ofM , and hence

obtain a PSD matrix Ã such that ‖A− Ã‖op is small.



The remaining task is to learn the projection of P on the
affine space r̃ + Span(Ã), and the mixture weights, which

then yields the desired k-mixture source (w̃, P̃ ). We divide
this into two steps. We choose a random orthonormal ba-
sis {b1, . . . , bk′} of Span(Ã). For each bj , we consider the
projected k-mixture source (w, πbj (P )) on R. In Section 5,
we devise a procedure to learn the corresponding k-spike
distribution (w,E[πbj (P )]) using (2k − 1)-snapshots from
(w, πbj (P )) (which we can obtain using (2k − 1)-snapshots
from (w,P )). Applying this procedure (see Lemma 4.7), we
obtain weights w̃j1, . . . , w̃

j
k and k (distinct) values αj1, . . . , α

j
k

such that each true spike (wt, b
†
jp
t) maps to a distinct in-

ferred spike (w̃j
σj(t)

, αj
σj(t)

).

Finally, we match up σj and σk′ for all j ∈ [k′−1] to obtain

k points in r̃ + Span(Ã) that are close to the projection of

P on r̃ + Span(Ã). For every j ∈ [k′ − 1], we generate a
random unit “test vector” zj in Span(bj , bk′) and learn the

projections {z†jp
t}t∈[k]. Since (w,P ) is ζ-wide, results about

random projections and the guarantees obtained from our

k-spike learning procedure imply that z†j (α
j
t1
bj + αk

′
t2bk′) is

close to some value in {z†jp
t}t∈[k] iff there is some t such

that αjt1 and αk
′
t2 are close respectively to b†jpt and b†k′p

t

(Lemma 4.8). Thus, we can use the learned projections of

{z†jp
t}t∈[k] to match up {αjt}t∈[k] and {αk

′
t }t∈[k].

Algorithm 1. Input: an isotropic ζ-wide k-mixture source
(w,P ) on [n], and parameters ω > 1 and δ > 0.

Output: a k-mixture source (w̃, P̃ ) on [n] that is “close” to (w,P ).

Define T = 3ωk4, H = 4
w2

minζ
√
n

and L = ζ
64ω1.5k4

√
n

. We

assume that δ ≤ w3
minζ

4

229ω5k16
. Let κ = κ(2 + lnω) be given by

Theorem 2.3; we assume κ ≥ 1 for convenience. Define c =
6400κ2

w2
minδ

2 · ln
(

1
δ

)
. We assume that w2

min ≥
240κ ln2.5 n√

n
.

A1. Dimension reduction.

A1.1 Use Lemma 3.2 with µ = 2 + lnω and σ = δ
48

to

compute an estimate r̃ of r. Set R̃ = r̃r̃†.

A1.2 Independent of all other random variables, choose a
Poisson random variable N2 with expectation E[N2] =
cn ln6 n. Choose N2 independent 2-snapshots and con-
struct a symmetric n × n matrix M̃ as follows: set
M̃i,i = frequency of the 2-snapshot (i, i) in the sample

for all i ∈ [n], and M̃i,j = M̃j,i = half the combined
frequency of 2-snapshots (i, j) and (j, i) in the sample,
for all i, j ∈ [n], i 6= j.

A1.3 Compute the spectral decomposition M̃−R̃ =
∑n
i=1 λiviv

†
i ,

where λ1 ≥ . . . ≥ λn.

A1.4 Set Ã =
∑
i:λi≥ζ2/2n λiviv

†
i . Note that Ã is PSD.

A2. Learning projections of (w,P ) on random vectors in

Span(Ã).

A2.1 Pick an orthonormal basisB = {b1, . . . , bk′} for Span(Ã)
uniformly at random.

A2.2 Set (w̃j , αj)← Learn
(
bj , δ,

1
6ωk

)
for all j = 1, . . . , k′.

A3. Combining the projections to obtain (w̃, P̃ ).

A3.1 Pick θ ∈ [0, 2π] uniformly at random.

A3.2 For each j = 1, . . . , k′ − 1, we do the following.

– Let zj = bj cos θ + bk′ sin θ.

– Set (ŵj , α̂j)← Learn
(
zj , δ,

1
6ωk

)
.

– For each t1, t2 ∈ [k], if there exists t ∈ [k] such that∣∣(αjt1bj + αk
′
t2
bk′ )
†zj − α̂jt

∣∣ ≤ (
√

2 + 1)L/(2 + 5T )

then set %j(t2) = t1.

A3.3 Define %k
′
(t) = t for all t ∈ [k].

A3.4 For every t ∈ [k]: set w̃t =
(∑k′

j=1 w̃
j

%j(t)

)
/k′, p̂t =

r̃+
∑k′

j=1

(
αj
%j(t)
−b†j r̃

)
bj , and p̃t = arg minx∈∆n−1 ‖x−

p̂t‖1, which can be computed by solving an LP. Return(
w̃, P̃ = (p̃1, . . . , p̃k)

)
.

Algorithm Learn(v, ς, ε)

Input: a unit vector v ∈ Span(Ã), and parameters ς > 0, ε > 0.
We assume that (a) |v†(p− q)| ≥ L for all distinct p, q ∈ P ; and

(b) 1024kς < wminL
16H

.

Output: a k-spike distribution
(
w̄, (γ1, . . . , γk)

)
close to (w,E[πv(P )]).

L1. Solve the following convex program:

min ‖x‖∞ s.t. v†x ≥ 1−
4δ

ζ2
, ‖x‖22 ≤ 1 (Qv)

to obtain x∗; set a = x∗

‖x∗‖2
. We prove in Lemma 4.4 that

‖a‖∞ ≤ H and |a†(p− q)| ≥ L
2

for all p, q ∈ P, p 6= q.

L2. Let s = ς4k. Apply the procedure in Section 5 leading to
Theorem 5.1 for

(
w, πa/2H(P )

)
to infer a k-spike distribution

(w̄, β) that, with probability at least 1 − ε, is within trans-

portation distance O
(
sΩ(1/k)

)
from

(
w,E[πa/2H(P )]

)
. This

uses a sample of (2k−1)-snapshots of size 3k24ks−4k ln(4k/ε).

L3. For every t ∈ [k], set γt = (2Hβt)(a†v). Return (w̄, γ).

Remark 1. We cannot compute the spectral decomposition in
step A1.3 exactly, or solve (Qv) exactly in step L1, since the
output may be irrational. However, one can obtain a decomposi-

tion such that ‖M̃ − R̃ −
∑n
i=1 λiviv

†
i ‖op = O

(
δ
n

)
and compute

a 2-approximate solution to (Qv) in polytime, and this suffices:
slightly modifying the constants H and c makes the entire anal-
ysis go through. We have chosen the presentation above to keep
exposition simple.

4. ANALYSIS

Theorem 4.1. Algorithm 1 uses O
(

lnω
δ3
·n lnn

)
1-snapshots,

O
( ln2 ω ln(1/δ)

δ2w2
min

·n ln6 n
)

2-snapshots, and O
(
k24k

δ16k
2 ·ln(24ωk2)

)
(2k− 1)-snapshots, and computes a k-mixture source (w̃, P̃ )
on [n] such that with probability 1 − O

(
1
ω

)
, there is a per-

mutation σ : [k] 7→ [k] such that for all t = 1, . . . , k,

|wt−w̃σ(t)| = O
(δω1.5k5

w2
minζ

2

)
and ‖pt−p̃σ(t)‖1 = O

( √kδ
w1.5

minζ

)
.

Hence, Tran(w,P ; w̃, P̃ ) = O
( √kδ
w1.5

minζ

)
. The running time

is polynomial in the sample size.

The roadmap of the proof is as follows. By Lemma 3.2,
with probability at least 1− 1

ωn2 ,
(
1− δ

48

)
ri ≤ r̃i ≤

(
1+ δ

48

)
ri

for all i ∈ [n]. We assume that this holds in the sequel. In

Lemma 4.2, we prove that the matrix Ã computed after step
A1 is a good estimate of A. In Lemma 4.3, we derive some
properties of the column space of A. Lemma 4.4 then uses
these properties to show that algorithm Learn returns a good
approximation to (w,E[πv(P )]). Claim 4.5 and Lemma 4.6
prove that the projections of the mixture constituents on
the bjs and the zjs are well-separated. Combining this with
Lemma 4.4, we prove in Lemma 4.7 that with suitably large
probability, every true spike (wt, b

†
jp
t) maps to a distinct

nearby inferred spike on every bj , j ∈ [k′], and similarly



every true spike (wt, z
†
jp
t) maps to a distinct nearby inferred

spike on every zj , j ∈ [k′ − 1]. Lemma 4.8 shows that one
can then match up the spikes on the different bjs. This yields
k points in Span(Ã) that are close to the projection of P on

Span(Ã). Finally, we argue that this can be mapped to a

k-mixture source (w̃, P̃ ) that is close to (w,P ).

Lemma 4.2. With probability at least 1− 1
nω

, the matrix

Ã computed after step A1 satisfies rank(Ã) = k′ = rank(A)

and ‖A− Ã‖op ≤ δ
n

.

Proof. Recall that k′ = rank(A). Let B = M̃ − R̃ =∑n
i=1 λiviv

†
i , where λ1 ≥ . . . ≥ λn. We prove below that

with probability at least 1− 1
nω

, we have ‖M − M̃‖op ≤ δ
4n

and ‖R− R̃‖op ≤ δ
4n

. This implies that ‖A−B‖op ≤ ‖M −
M̃‖op + ‖R − R̃‖op ≤ δ

2n
. Hence, by Lemma 2.1, it follows

that by the ζ-wide assumption, λk′ ≥ ζ2

n
− δ

2n
≥ 3ζ2

4n
, and

|λi| ≤ δ
2n
≤ ζ2

4n
for all i > k′. Thus, we include exactly k′

eigenvectors when defining Ã, so rank(Ã) = k′. Since Ã is
the closest rank-k′ approximation in operator norm to B, we
have ‖A−Ã‖op ≤ ‖A−B‖op+‖B−Ã‖op ≤ 2‖A−B‖op ≤ δ

n
.

It is easy to see that |R̃i,j−Ri,j | ≤ 3σri,j , where σ = δ/48,

and so ‖R−R̃‖op ≤ ‖R−R̃‖F ≤ δ
4n

. Bounding ‖M−M̃‖op is
more challenging. We carefully define a matrix whose entries
are independent random variables with bounded variance,
and then apply Theorem 2.3.

Note that Mi,j ≤ min
{

2
n
, 4
wminn

2

}
due to isotropy. Let

K = 4 ln(1/δ)
δ

and K′ = 5 ln(1/δ)
δ

. Let D = N2 ·
(
M̃ −M

)
.

Let X`
i,i = 1 if the `-th snapshot is (i, i), for i ∈ [n], and

for i, j ∈ [n], i 6= j, let X`
i,j = X`

j,i = 1
2

if the `-th 2-

snapshot is (i, j) or (j, i), and 0 otherwise. Let Y `i,j = X`
i,j−

Mi,j = X`
i,j − E[X`

i,j ]; so Di,j =
∑N2
`=1 Y

`
i,j for all i, j ∈ [n].

We have σ2(n2) := Var[Di,j |N2 = n2] = n2 Var[X1
i,j ] ≤

n2 E[(X1
i,j)

2] ≤ n2Mi,j . For n2 ≤ 2cn ln6 n, we have σ2(n2) ≤
8c ln6 n
w2

minn
≤ lnn ln(1/δ)

δ2
(since w4

min ≥ 57600κ2 ln5 n
n

). So by Bern-

stein’s inequality (Lemma A.2),

Pr[|Di,j | > K lnn|N2 = n2] ≤ 2 exp
(
− K2 ln2 n

2
(
σ2(n2) +K lnn/3

))
≤ 2 max

{
exp
(
−K

2 ln2 n
4σ2(n2)

)
, exp

(
− 3K lnn

4

)}
≤ 2δ

n3
.

Since Pr[N2 > 2c ln6 n] ≤ n−3, we can say that with prob-
ability at least 1 − 2n−2, we have |Di,j | ≤ K lnn for every
i, j ∈ [n] and N2 ≤ 2c ln6 n.

Define a matrix D′ by putting, for every i, j ∈ [n], D′i,j =
sign(Di,j)·min

{
|Di,j |,K lnn

}
. PutD′′ = D′−E[D′]. Clearly,

E[D′′i,j ] = 0 for every i, j ∈ [n]. We prove below that∣∣E[D′i,j ]
∣∣ ≤ 3δc ln6 n

n2 ≤ lnn ln(1/δ)
δ

; therefore, |D′′i,j | ≤ K′ lnn.
The entries of D are independent random variables as N2 is
a Poisson random variable; hence, the entries of D′′ are also
independent random variables. Also Var[D′′i,j ] ≤ Var[Di,j ]
since censoring a random variable to an interval can only
reduce the variance. Note that Di,j =

∑N2
`=1 Y

`
i,j follows the

compound Poisson distribution. So we have

Var[Di,j ] = E[N2] · E[(Y 1
i,j)

2] = E[N2] ·Var[X1
i,j ]

≤ E[N2]Mi,j ≤
4c ln6 n

w2
min · n

≤ ĉ2K′2 ln6 n

n

where ĉ = max
{

2
√
c

wminK
′ , κ

2
}

. Thus, by Theorem 2.3, the

constant κ = κ(2 + lnω) > 0 is such that with probability
at least 1− 1

n2ω

‖D′′‖op ≤ 2 · ĉK
′ ln3 n√
n

·
√
n+ κ

√
K′ lnn · ĉK

′ ln3 n√
n

· 4
√
n · lnn

≤
(
2K′ĉ+ κK′

√
ĉ
)

ln3 n. (3)

We have Pr
[
N2 ≥ 1

2
E[N2]

]
≥ 1 − n−2, Thus, with prob-

ability at least 1 − 1
nω

, we have that N2 ≥ 1
2

E[N2], D′ =
D, and ‖D′′‖op is bounded by (3). We show below that
2‖E[D′]‖op/E[N2] ≤ 6δn−2 ≤ δ/20n. One can verify that

4K′ĉ/c ≤ δ/10 and 2κK′
√
ĉ/c ≤ δ/10. Therefore, with

probability at least 1 − 1
nω

, we have that ‖M − M̃‖op =
1
N2
· ‖D‖op ≤ 2

E[N2]
· (‖D′′‖op + ‖E[D′]‖op) ≤ δ

4n
.

Finally, we bound ‖E[D′]‖op. We have ‖E[D′]‖op ≤ ‖E[D′]‖F ≤
n ·maxi,j

∣∣E[D′i,j ]
∣∣. Let µ = cn ln6 n = E[N2]. Fix any i, j.

We have
∣∣E[D′i,j ]

∣∣ =
∣∣E[D′i,j − Di,j ]

∣∣ ≤ E
[
|D′i,j − Di,j |

]
.

For any n2 ≤ 2 ln(1/δ)µ, we have Var[Di,j |N2 = n2] ≤
n2Mi,j ≤ 8c ln(1/δ) ln6 n

w2
minn

. So by Bernstein’s inequality, we

have that Pr[|Di,j | > K lnn|N2 ≤ 2 ln(1/δ)µ] < 2δn−3.
Also, |D′i,j −Di,j | ≤ N2 always. Therefore,

E
[
|D′i,j −Di,j |

∣∣N2 = n2

]
≤

{
2δn−3n2 if n2 ≤ 2 ln

(
1
δ

)
µ;

n2 otherwise

and E
[
|D′i,j − Di,j |

]
≤ µ − Pr[N2 ≤ 2 ln(1/δ)µ] E[N2|N2 ≤

2 ln(1/δ)µ](1− 2δn−3). Since N2 is Poisson distributed, we
have

Pr[N2 ≤ 2 ln(1/δ)µ] E[N2|N2 ≤ 2 ln(1/δ)µ]

=

b2 ln(1/δ)µc∑
`=0

` · µ
`e−µ

`!

= µ

b2 ln(1/δ)µc−1∑
`=0

µ`e−µ

`!

≥ µPr[N2 ≤ ln(1/δ)µ] ≥ µ(1− δn−3).

Thus, E
[
|D′i,j − Di,j |

]
≤ µ − µ(1 − δn−3)(1 − 2δn−3) ≤

3δn−3µ, and 2‖E[D′]‖op/E[N2] ≤ 6δn−2.

We assume in the sequel that the high-probability event
stated in Lemma 4.2 happens. Thus, Lemma 2.2 implies

that ‖ΠA −ΠÃ‖op ≤ 2
√
δ

ζ
.

Lemma 4.3. For every unit vector b ∈ Span(A), ‖b‖∞ ≤
2

w2
minζ

√
n

.

Proof. Recall that A =
∑k
t=1 wt(p

t−r)(pt−r)†, and the
smallest non-zero eigenvalue of A is at least ζ2/n. Note that
Span(A) = Span{p1 − r, . . . , pk − r}. Let Z = conv(P ). If
r+ b ∈ Z, then ‖r+ b‖∞ ≤ 2

wminn
, r+ b ≥ 0, and ‖r‖∞ ≤ 2

n

imply that ‖b‖∞ ≤ 2
wminn

. Otherwise, let the line segment

[r, r + b] intersect the boundary of Z at some point b′. We

show that ‖r−b′‖22 ≥
ζ2w2

min
n

. The lemma then follows since

b = (b′ − r)/‖b′ − r‖2 and so ‖b‖∞ = ‖b′−r‖∞
‖b′−r‖2

≤ 2
w2

minζ
√
n

.

Let S be a facet of Z such that b′ ∈ S, r /∈ S (note that
r is in the strict interior of P ). Since Z ⊆ Span(A), one can



find a unit vector v ∈ Span(A) such that S is exactly the
set of points that minimize v†x over x ∈ Z. Let dL = v†r−
minx∈Z v

†x = v†(r − b′). We lower bound ‖r − b′‖2 by dL.
Note that dL > 0. Clearly, v†(pt − r) ≥ −dL for all t ∈ [k].

Projecting P onto v, we have that (a)
∑k
t=1 wtv

†(pt − r) =

0; and (b) vTAv =
∑k
t=1 wt

(
v†(pt − r)

)2 ≥ ζ2

n
since v ∈

Span(A) and (w,P ) is ζ-wide. Let WL =
∑
t:v†(pt−r)≤0 wt,

let WR = 1 −WL ≥ wmin, and let dR = maxt{v†(pt − r)}.
Then, 0 =

∑k
t=1 wtv

†(pt − r) ≥ WL(−dL) + wmindR, so

dR ≤ dL · WL
wmin

, Also ζ2

n
≤
∑k
t=1 wt

(
v†(pt − r)

)2 ≤ WL ·

d2
L + WR · d2

R ≤ WL · d2
L + WR · d2

L ·
W2
L

w2
min
≤ d2L

w2
min

. So,

d2
L ≥

ζ2w2
min
n

.

Lemma 4.4. If the assumptions stated in Algorithm Learn
are satisfied, then: (i) the vector a computed in Learn sat-
isfies ‖a‖∞ ≤ H, and |a†(p−q)| ≥ L/2 for every two mixture
constituents p, q ∈ P ;
(ii) with probability at least 1− ε, the output (w̄, γ) of Learn
satisfies the following: there is a permutation σ : [k] 7→ [k]
such that for all t = 1, . . . , k,

|wt − w̄σ(t)| = O
( ςω1.5k5

w2
minζ

2

)
, and

|v†pt − γσ(t)| ≤
2048kHς

wmin
+

8
√

2δ

wminζ
√
n
≤ 2048kHς

wmin
+

L

8T
.

Proof. We have v†ΠA(v) = 1 − ‖v − ΠA(v)‖22 = 1 −
‖(ΠÃ − ΠA)v‖22 ≥ 1 − 4δ

ζ2
. Thus, ΠA(v) is feasible to (Qv),

and since ‖ΠA(v)‖2 ≤ 1, by Lemma 4.3, the optimal solution
x∗ to (Qv) satisfies ‖x∗‖∞ ≤ 2‖ΠA(v)‖∞ ≤ H/2. Also
‖x∗‖22 ≥ v†x∗ ≥ 1 − 4δ

ζ2
≥ 1

4
, so ‖a‖∞ ≤ H. Note that

‖v − a‖22 = 2(1 − v†a) ≤ 2(1 − v†x∗) ≤ 8δ
ζ2

. It follows that

for any two mixture constituents p, q, we have

|a†(p− q)| ≥ |v†(p− q)| − |(v − a)†(p− q)|

≥ |v†(p− q)| − 2
√

2δ

ζ
‖p− q‖2

≥ |v†(p− q)| − 8
√

2δ

wminζ
√
n
≥ |v†(p− q)| − L

2
≥ L

2
.

This proves part (i). For part (ii), we note that any two
spikes in the k-spike mixture

(
w,E[πa/2H(P )]

)
are sepa-

rated by a distance of at least L/4H. Since s < L/4H,
Theorem 5.1 guarantees that with a sample of (2k − 1)-
snapshots of size 3k24ks−4k log(4k/ε), with probability at
least 1 − ε, the learned k-spike distribution (w̄, β) satis-

fies Tran
(
w,E[πa/2H(P )]; w̄, β

)
≤ 1024ks1/(4k) = 1024kς <

Lwmin
8H

. Notice that this implies that there is a permutation
σ : [k] 7→ [k] such that ∀t = 1, . . . , k:

|(a/2H)†pt − βσ(t)| ≤
1024kς

wmin
<

L

8H
, (4)

|wt − w̄σ(t)| = O
( kς

L/8H

)
= O

( ςω1.5k5

w2
minζ

2

)
.

Fix some t ∈ [k]. Let t′ = σ(t). From (4), we know
that |a†pt − 2H · βt′ | = 2048kHς

wmin
. We bound |v†pt − a†pt|

and |2Hβt′ − γt′ |, which together with the above will com-
plete the proof of the lemma. We have |(v − a)†pt| ≤ ‖v −
a‖2‖pt‖2 ≤ 4

√
2δ

wminζ
√
n

. Since γt′ = (2Hβt′)a
†v and |βt′ | ≤ 1

2
,

we have |2Hβt′ − γt′ | ≤ H·4δ
ζ2
≤ 16δ

w2
minζ

3
√
n

. It follows that

|v†pt − γt′ | ≤ 2048kHς
wmin

+ 8
√

2δ
wminζ

√
n
≤ 2048kHς

wmin
+ L

8T
.

Claim 4.5. Let Z be a random unit vector in Span(Ã)

and v ∈ Span(Ã). Pr
[
|Z†v| < ‖v‖2

32ω1.5k4

]
< 1

3ωk′k2 .

Proof. One way of choosing the random unit vector Z
is as follows. Fix an orthonormal basis {u1, . . . , uk′} for

Span(Ã). We choose independent N(0, 1) random variables

Xi for i ∈ [k′]. Define C =
∑k′

i=1 Xiui and set Z = C/‖C‖2.

Set a1 = π
32ω2k′2k4 and a2 = 2 + 4 ln(12ωk′k2)

k′ ≤ 96ωk.

Note that C†v/‖v‖2 is distributed as N(0, 1). Therefore,

Pr
[
|C†v| ≤ ‖v‖2

√
a1

]
≤
√

2a1
π
≤ 1

4ωk′k2 . Also, ‖C‖22 =∑k′

i=1 X
2
i follows the χ2

k′ distribution. So

Pr[‖C‖22 > a2k
′] <

(
a2e

1−a2
)k′/2

< exp
(

(1− a2/2)k′/2
)
<

1

12ωk′k2
.

Observe that
√

a1
a2k′

≥ 1
32ω1.5k4

. So if the “bad” event stated

in the lemma happens, then |C†v| ≤ ‖v‖2
√
a1 or ‖C‖22 ≥

a2k
′ happens; the probability of this is at most 1

3ωk′k2 .

Lemma 4.6. With probability at least 1 − 1
3ω

, for every

pair p, q ∈ P , we have (i) |b†j(p − q)| ≥ L for every j ∈ [k′]

and (ii) |z†j (p− q)| ≥ L for every j ∈ [k′ − 1].

Proof. Define p̃ = ΠÃ(p) for a mixture constituent p.

Clearly, for any v ∈ Span(Ã), v†p̃ = v†p. Recall that ‖ΠA−
ΠÃ| ≤

2
√
δ

ζ
. So for every p, q ∈ P , ‖p̃ − q̃‖22 ≥ ‖p − q‖22 −

‖(ΠA −ΠÃ)(p− q)‖22 ≥ ‖p− q‖2/4; hence, ‖p̃− q̃‖2 ≥ ζ
2
√
n

.

Notice that the zj vectors are also random unit vectors in
Span(Ã). Applying Claim 4.5 to each event involving one
of the {bj}j∈[k′], {zj}j∈[k′−1] random unit vectors, and one

of the
(
k
2

)
vectors ‖p̃ − q̃‖ for p̃, q̃ ∈ ΠÃ(P ), and taking the

union bound over the at most k′k2 such events completes
the proof.

Lemma 4.7. With probability at least 1− 2
3ω

, the k-spike
distributions obtained in steps A2 and A3 satisfy:
(i) For every j ∈ [k′], there is a permutation σj : [k] 7→ [k]
such that for all t ∈ [k],

|wt − w̃jσj(t)| = O
(δω1.5k5

w2
minζ

2

)
,

|b†jp
t − αj

σj(t)
| = O

( √
δ

w1.5
minζ
√
n

)
and is at most

L

2 + 5T
.

Hence, |αjt1 − αjt2 | ≥ L − 2L
2+5T

= L
1+0.4/T

for all distinct

t1, t2 ∈ [k].
(ii) For every j ∈ [k′−1], for every t ∈ [k], there is a distinct
t′ such that

|wt − ŵjt′ | = O
(δω1.5k5

w2
minζ

2

)
,

|z†jp
t − α̂jt′ | = O

( √
δ

w1.5
minζ
√
n

)
and is at most

L

2 + 5T
.

Proof. Assume that the event stated in Lemma 4.6 hap-
pens. Then the inputs to Learn in steps A2 and A3 are



“valid”, i.e., satisfy the assumptions stated in Algorithm
Learn. Plug in ς = δ and ε = 1

6ωk
in Lemma 4.4. Tak-

ing the union bound over all the bjs and the zjs, we obtain
that the probability that Learn fails on some input, when all
the bjs and zjs are valid is at most 1

3ω
. The lemma follows

from Lemma 4.4 by noting that 2048kHδ
wmin

= O
( √

δ
w1.5
minζ

√
n

)
and is at most L

24T
, and L/24T + L/8T ≤ L/(2 + 5T ).

Lemma 4.8. With probability at least 1− 1
ω

, for every j =

1, . . . , k′ − 1 %j is a well-defined function and %j(σk
′
(t)) =

σj(t) for every t ∈ [k].

Proof. Assume that the events in Lemmas 4.6 and 4.7
occur. Fix j ∈ [k′−1]. We call a point αjt1bj+αk

′
t2bk′ a grid-j

point. Call this grid point “genuine” if there exists t ∈ [k]

such that σj(t) = t1 and σk
′
(t) = t2, and “fake” otherwise.

The distance between any two grid-j points is at least L/(1+
0.4/T ) (by Lemma 4.7). So the probability there is a pair of
genuine and fake grid-j points whose projections on zj are
less than L/(T + 0.4) away is at most k3 · 2

π
arcsin

(
1
T

)
≤

k3 · 2
π
· 6

5T
≤ 1

3ωk
. Therefore, with probability at least 1−ω,

the events in Lemma 4.6 and Lemma 4.7 happen, and for
all j ∈ [k′ − 1], every pair of genuine and fake grid-j points
project to points on zj that are at least L/(T + 0.4) apart.
We condition on this in the sequel.

Now fix j ∈ [k′−1] and consider any pair t1, t2 ∈ [k]2. Let

g be the grid-j point bjα
j
t1

+bk′α
k′
t2 We show that %j(t2) = t1

iff g is a genuine grid-j point. If g is genuine, let t be such

that σj(t) = t1, σ
k′(t) = t2. Let p′ be the projection of pt on

Span(bj , bk′). By Lemma 4.7, we have that ‖p′−g‖2 ≤
√

2L
2+5T

.

Also, there exists t′ ∈ [k] such that |α̂jt′ − z†jp
t| ≤ L

2+5T
.

Since z†jp
′ = z†jp

t, this implies that |z†jg − α̂jt′ | ≤ |α̂
j
t′ −

z†jp
t|+ |z†j (p

′ − g)| ≤ (
√

2+1)L
2+5T

and so %j(t2) = t1.

Now suppose g is fake but |z†jg−α̂
j
t′ | ≤ (

√
2+1)L/(2+5T )

for some t′ ∈ [k]. Let t ∈ [k] be such that |α̂jt′−z
†
jp
t| ≤ L

2+5T
.

Let g′ be the genuine grid point bjα
j

σj(t)
+ bk′α

k′

σk
′
(t)

. So

|z†jg
′ − α̂jt′ | ≤ (

√
2 + 1)L/(2 + 5T ), and hence |z†j (g − g

′)| ≤
2(
√

2+1)L
2+5T

< L
0.4+T

which is a contradiction.

Proof of Theorem 4.1. We condition on the fact that
all the “good” events stated in Lemmas 3.2, 4.2, 4.6, 4.7, and
4.8 happen. The probability of success is thus 1 − O

(
1
ω

)
.

The sample-size bounds follow from the description of the

algorithm. For notational simplicity, let σk
′

be the identity

permutation, i.e., σk
′
(t) = t for all t ∈ [k]. So by Lemma 4.8,

we have %j(t) = σj(t) for every j ∈ [k′ − 1] and t ∈ k.

For t = 1, 2, . . . , k, define p̄t = r̃ +
∑k′

j=1 b
†
j(p

t − r̃)bj =

r̃ + ΠÃ(pt − r̃). Fix t ∈ [k]. Then

‖pt − p̃t‖1 ≤ ‖pt − p̂t‖1 + ‖p̂t − p̃t‖1
≤ 2‖pt − p̂t‖1 ≤ 2

(
‖pt − p̄t‖1 + ‖p̄t − p̂t‖1

)
.

We have

‖pt − p̄t‖2 =
∥∥∥r − r̃ + (pt − r)−

k′∑
j=1

b†j(p
t − r̃)bj

∥∥∥
2

=
∥∥r − r̃ + ΠÃ(r̃ − r) + (pt − r)−ΠÃ(pt − r)

∥∥
2

≤ 2 · ‖r − r̃‖2 + ·‖ΠA −ΠÃ‖op · ‖pt − r‖2

≤ δ

12
√
n

+
8
√

2δ

wminζ
√
n
.

Also ‖p̄t− p̂t‖2 ≤
∥∥∥ k′∑
j=1

(
b†jp

t−αj
σj(t)

)
bj

∥∥∥
2

= O
( √

kδ

w1.5
minζ
√
n

)
where the last equality follows from Lemma 4.7. Thus, ‖pt−
p̃t‖1 = O

( √
kδ

w1.5
minζ

)
. Also, we have |wt − w̃t| = O

(
δω1.5k5

w2
minζ

2

)
by

Lemma 4.7. Finally, note that Tran(w,P ; w̃, P̃ ) is at most

1

2

( k∑
t=1

min{wt, w̃t}max
t
‖pt − p̃t‖1 + ‖w − w̃‖1 max

t6=t′
‖pt − p̃t

′
‖1
)

≤ 1

2

( k∑
t=1

min{wt, w̃t}max
t
‖pt − p̃t‖1

+ ‖w − w̃‖1
(
max
t 6=t′
‖pt − pt

′
‖1 + max

t
‖pt − p̃t‖1

))
≤ max

t
‖pt − p̃t‖1 + ‖w − w̃‖1 ·

2

wmin
= O

( √kδ
w1.5

minζ

)
.

The running time is dominated by the time required to com-
pute the spectral decomposition in step A1.3, the calls to
Learn in steps A2.2 and A3.2, and the time to compute
p̃t in step A3.4. The other steps are clearly polytime. As
noted in Remark 1, it suffices to compute a decomposition
such that ‖M̃ − R̃ −

∑n
i=1 λiviv

†
i ‖ = O

(
δ
n

)
; this takes time

poly
(
n, ln(n/δ)

)
. The LP used in step A3.4 is of polynomial

size, and hence can be solved in polytime. Procedure Learn
requires solving (Qv); again, an approximate solution suf-
fices and can be computed in polytime. Theorem 5.1 proves
that the one-dimensional learning problem can be solved in
polytime; hence, Learn takes polytime.

5. THE ONE-DIMENSIONAL PROBLEM:
LEARNING MIXTURE SOURCES ON [0,1]

In this section, we supply the key subroutine called upon
in step L2 of Algorithm Learn, which will complete the de-
scription of Algorithm 1. We are given a k-mixture source(
w, πx(P )

)
on
[
− 1

2
, 1

2

]
. (Recall that Learn invokes the pro-

cedure for the mixture
(
w, πa/2H(P )

)
where ‖a‖∞ ≤ H.) It

is clear that we cannot in general reconstruct this mixture
source with an aperture size that is independent of n, let
alone aperture 2k − 1. However, our goal is somewhat dif-
ferent and more modest. We seek to reconstruct the k-spike
distribution

(
w,E[πx(P )]

)
, and we show that this can be

achieved with aperture 2k − 1 (which is the smallest aper-
ture at which this is information-theoretically possible).

It is easy to obtain a (2k − 1)-snapshot from (w, πx(P ))
given a (2k − 1)-snapshot from (w,P ) by simply replacing
each item i ∈ [n] that appears in the snapshot by xi. We
will assume in the sequel that every constituent πx(pt) is
supported on [0, 1], which is simply a translation by 1

2
.



To simplify notation, we use θ =
(
ϑ, (q1, . . . , qk)

)
to de-

note the k-mixture source on [0, 1], and
(
ϑ, α = (α1, . . . , αk)

)
to denote the corresponding k-spike distribution, where αi ∈
[0, 1] is the expectation of qi for all i ∈ [k]. We equivalently
view (ϑ, α) as a k-mixture source

(
ϑ, (f1, . . . , fk)

)
on {0, 1}:

each f i is a “coin” whose bias is f i1 = αi. In Section 5.1,
we describe how to learn such a binary mixture source from
its (2k − 1)-snapshots (see Algorithm 2 and Theorem 5.3).
Thus, if we can obtain (2k − 1)-snapshots from the binary
source

(
ϑ, (f1, . . . , fk)

)
(although our input is θ) then The-

orem 5.3 would yield the the desired result. We show that
this is indeed possible, and hence, obtain the following result
(whose proof appears at the end of Section 5.1).

Theorem 5.1. Let θ =
(
ϑ, (q1, . . . , qk)

)
be a k-mixture

source on [0, 1], and (ϑ, α) be the corresponding k-spike dis-
tribution. Let τ = minj 6=j′ |αj − αj′ |. For any s < τ and

ψ > 0, using 3k24ks−4k ln(4k/ψ) (2k − 1)-snapshots from
source θ, one can compute in polytime a k-spike distribution
(ϑ̃, α̃) on [0, 1] such that Tran(ϑ, α; ϑ̃, α̃) ≤ 1024ks1/(4k) with
probability at least 1− ψ.

5.1 Learning a binary k-mixture source
Recall that

(
ϑ, (f1, . . . , fk)

)
denotes the binary k-mixture

source, and αi = f i1 is the bias of the i-th “coin”. We can
collect from each (2k − 1)-snapshot a random variable 0 ≤
X ≤ 2k − 1 denoting the number of times the outcome “1”
occurs in the snapshot. Thus,

Pr[X = i] =

(
2k − 1

i

)
k∑
j=1

ϑjα
i
j(1− αj)2k−1−i.

Our objective is to use these statistics to reconstruct, in
transportation distance (see Section 2.2), the binary source
(i.e., the mixture weights and the k biases). Now consider
the equivalent k-spike distribution (ϑ, α). The i-th moment,
and (what we call) the i-th normalized binomial moment
(NBM) of this distribution are respectively

gi(ϑ, α) =

k∑
j=1

ϑjα
i
j , νi(ϑ, α) =

k∑
j=1

ϑjα
i
j(1− αj)2k−1−i

Up to the factors
(

2k−1
i

)
the NBMs are precisely the statis-

tics of the random variable X and so our objective in this
section can be restated as: use the empirical NBMs to re-
construct the k-spike distribution (ϑ, α).

Let g(ϑ, α) =
(
gi(ϑ, α)

)2k−1

i=0
and ν(ϑ, α) =

(
νi(ϑ, α)

)2k−1

i=0
denote the row-vectors of the first 2k−1 moments and NBMs
respectively of (ϑ, α). For an integer b > 0 and a vector β =
(β1, . . . , β`), let Ab(β) be the `× b matrix (Ab(β))ij = (1−
βi)

b−1−jβji (with 1 ≤ i ≤ ` and 0 ≤ j ≤ b−1). Analogously,

let Vb(β) be the `× b “Vandermonde” matrix (Vb(β))ij = βji
(with 1 ≤ i ≤ ` and 0 ≤ j ≤ b − 1). Let Pas be the
2k × 2k lower-triangular “Pascal triangle” matrix with non-
zero entries Pasij =

(
2k−1−j
i−j

)
for 0 ≤ j ≤ 2k − 1 and j ≤

i ≤ 2k − 1. Then V2k(α) = A2k(α)Pas, ν(ϑ, α) = ϑA2k(α),
and g(ϑ, α) = ϑV2k(α) = ν(ϑ, α)Pas.

In our algorithm it is convenient to use the empirical or-
dinary moments, but what we obtain are actually the em-
pirical NBMs, so we need the following lemma.

Lemma 5.2. ‖Pas‖op ≤ 4k/
√

3.

Proof. The non-zero entries in column j of Pas are
(
m
`

)
for ` = 0, . . . ,m = 2k − 1 − j. Therefore, ‖Pas‖op ≤
‖Pas‖F =

√∑2k−1
m=0

∑m
`=0

(
m
`

)2
. Since

∑m
i=0

(
m
i

)2
=
(

2m
m

)
≤

22m, we have ‖Pas‖F ≤
√∑2k−1

m=0 22m.

Our algorithm uses two input parameters τ and ξ as in-
put, and the empirical NBM vector ν̃, which we convert to
an empirical moment vector g̃ by multiplying by Pas. Since
we infer (in the sampling limit) the locations of the k spikes
exactly, there is a singularity in the process when spikes co-
incide. So we assume a minimum separation between spikes:
τ = minj 6=j′ |αj−αj′ |. (It is of course possible to simply run
a doubling search for sufficiently small τ , but the required
accuracy in the moments, and hence sample size, does in-
crease as τ decreases.) We also assume a bound ξ on the
accuracy of our empirical statistics. (When we utilize Theo-
rem 5.3 to obtain Theorem 5.1, ξ is a consequence, and not
an input parameter). We require that

‖ν̃ − ν(ϑ, α)‖2 ≤ ξ4−k
√

3, ξ ≤ τ2k (5)

Theorem 5.3. There is a polytime algorithm that receives
as input τ, ξ, an empirical NBM vector ν̃ ∈ R2k satisfying
(5), and outputs a k-spike distribution (ϑ̃, α̃) on [0, 1] such

that Tran(ϑ, α; ϑ̃, α̃) ≤ O(ξΩ(1/k2)).

We first show the information-theoretic feasibility of The-
orem 5.3: the transportation distance between two proba-
bility measures on [0, 1] is upper bounded by (a moderately-
growing function of) the Euclidean distance between their
moment maps. (To use Lemma 5.4 to prove Theorem 5.3,

we have to also show how to compute ϑ̃ and α̃ from g̃ such
that ‖g̃−g(ϑ̃, α̃)‖2, and hence, ‖g(ϑ, α)−g(ϑ̃, α̃)‖2 is small.)

Lemma 5.4. For any two (at most) k-spike distributions

(ϑ, α) (ϑ̃, α̃) on [0, 1],

‖g(ϑ, α)−g(ϑ̃, α̃)‖2 ≥
1

(2k − 1)4k28k−5
·
(

Tran(ϑ, α; ϑ̃, α̃)
)4k−2

.

Lemma 5.4 can be geometrically interpreted as follows.
The point g(ϑ, α) is in the convex hull of the moment curve
and is therefore, by Caratheodory’s theorem, expressible as a
convex combination of 2k points on the curve. However, this
point is special in that it belongs to the collection of points
expressible as a convex combination of merely k points of
the curve. Lemma 5.4 shows that g(ϑ, α) is in fact uniquely
expressible in this way, and that moreover this combination
is stable: any nearby point in this collection can only be
expressed as a very similar convex combination. We utilize
the following lemma, which can be understood as a global
curvature property of the moment curve; we defer its proof
to the end of this section. We prove a partial converse of
Lemma 5.4 in Section 6, and hence obtain a sample-size
lower bound that is exponential in k. The moment curve
plays a central role in convex and polyhedral geometry [8],
but as far as we know Lemmas 5.4 and 5.5 are new, and may
be of independent interest.

Lemma 5.5. Let 0 ≤ β1 < . . . < βκ+1 ≤ 1, ` ∈ [κ], and
s = β`+1 − β`. Let γ(x) =

∑κ
i=0 γix

i be a real polynomial
of degree κ evaluating to 1 at the points β1, . . . , β` and eval-
uating to 0 at the points β`+1, . . . , βκ+1. Then

∑κ
i=0 γ

2
i ≤

κ224κ−1s−2κ.



Proof of Lemma 5.4. Denote {α1, . . . , αk}∪{α̃1, . . . , α̃k}
by α = {α1, . . . , αK} where α1 < . . . < αK . Define ϑi =∑
j:αj=αi

ϑj −
∑
j:α̃j=αi

ϑ̃j for i ∈ [K]. Let ϑ ∈ RK be the

row vector (ϑ1, . . . , ϑK). Let η = Tran(ϑ, α; ϑ̃, α̃). So we
need to show that ‖ϑV2k(α)‖2 ≥ 1

(2k−1)4k28k−5 · η4k−2. It

suffices to show that ‖ϑVK(α)‖2 ≥ 1
(K−1)2K24K−5 · η2K−2.

There is an 1 ≤ ` < K such that
∣∣∑`

i=1 ϑi
∣∣ · (α`+1 − α`) ≥

η/(K−1). Let δ =
∑`
i=1 ϑi; without loss of generality δ ≥ 0,

and note that δ ≤ 1. Let s = α`+1 − α`, so (K − 1)δs ≥ η.
Denote row i of a matrix Z by Zi∗ and column j by Z∗j . We
lower bound ‖ϑVK(α)‖2, by considering its minimum value

under the constraints
∑`
i=1 ϑi = δ and

∑K
i=1 ϑi = 0.

A vector y† = ϑVK(α) minimizing ‖y‖2 must be orthog-
onal to VK(α)i∗ − VK(α)i′∗ if 1 ≤ i < i′ ≤ ` or if ` + 1 ≤
i < i′ ≤ K. This means that there are scalars c and d
such that VK(α)y = c(

∑`
j=1 ej) + d(

∑K
j=`+1 ej), where vec-

tor ej ∈ RK has a 1 in the j-th position and 0 everywhere

else. Therefore, y = cγ + dγ′, where γ =
∑`
j=1(VK(α)−1)∗j

and γ′ =
∑K
j=`+1(VK(α)−1)∗j . At the same time

δ =
∑̀
i=1

ϑi = ϑVK(α)γ = y†γ = c‖γ‖22 + dγ′†γ

−δ =

K∑
i=`+1

ϑi = ϑVK(α)γ′ = y†γ′ = cγ†γ′ + d‖γ′‖22

and hence, ‖y‖22 = y · (cγ + dγ′) = (c− d)δ. Solving for c, d
gives

c− d =
δ‖γ + γ′‖22

‖γ‖22 · ‖γ′‖22 − (γ† · γ′)2
.

First we examine the numerator of c − d. Like any com-
bination of the columns of VK(α)−1, γ + γ′ is the list of
coefficients of a polynomial of degree K − 1, in the basis
1, x, . . . , xK−1. By definition, γ + γ′ =

∑
j(VK(α)−1)∗j ,

which is to say that for every i, VK(α)i∗ · (γ + γ′) = 1.
So the polynomial γ + γ′ evaluates to 1 at every αi. It can
therefore only be the constant polynomial 1; this means that
(γ + γ′)i = 1 if i = 0, and (γ + γ′)i = 0 otherwise. Thus
‖γ + γ′‖22 = 1.

Next we examine the denominator, which we upper bound
by ‖γ‖22 · ‖γ′‖22. When interpreted as a polynomial, γ takes
the value 1 on a nonempty set of points α1, . . . , α` sepa-
rated by the positive distance s = α`+1 − α` from another
nonempty set of points α`+1, . . . , αK upon which it takes
the value 0. Observe that if the polynomial was required
to change value by a large amount within a short interval,
it would have to have large coefficients. A converse to this
is the inequality stated in Lemma 5.5. Using this to bound
‖γ‖22 and ‖γ′‖22, and since δs ≥ η/(K − 1), we obtain that

‖y‖22 = (c− d)δ ≥ δ2

‖γ‖22 · ‖γ′‖22
≥ δ2

((K − 1)224K−5s−2K+2)2

≥ η4K−4

(K − 1)4K28K−10
.

We now define the algorithm promised by Theorem 5.3.
To give some intuition, suppose first that we are given the
true moment vector g(ϑ, α) = ϑV2k(α). Observe that there
is a common vector λ = (λ0, . . . , λk)† of length k+1 that is a
dependency among every k+ 1 adjacent columns of V2k(α).

In other words, letting Λ = Λ(λ) denote the 2k × k matrix
with Λij = λi−j (for 0 ≤ i < 2k, 0 ≤ j < k and with the un-
derstanding λ` = 0 for ` /∈ {0, . . . , k}), V2k(α)Λ = 0. Thus
g(ϑ, α)Λ = ϑV2k(α)Λ = 0. Overtly this is a system of 2k
equations to determine λ. But we eliminate the redundancy
in Λ by forming the k×(k+1) matrix G = G(g(ϑ, α)) defined
by Gij = g(ϑ, α)i+j for i = 0, . . . , k − 1 and j = 0, . . . , k,
and then solve the system of linear equations Gλ = 0 to
obtain λ. This system does not have a unique solution, so
in the sequel λ will denote a solution with λk = 1. For each
i = 1, . . . , k, we have

(
V2k(α)Λ

)
i,1

=
∑k
`=0 λ`αi

` = 0. This

implies that we can obtain the αi values by computing the
roots of the polynomial Pλ(x) :=

∑k
`=0 λ`x

`. Once we have
the αi’s, we can compute ϑ by solving the linear system
yV2k(α) = g(ϑ, α) for y.

Of course, we are actually given g̃ rather than the true
vector g(ϑ, α). So we need to control the error in estimating
first α and then ϑ. The learning algorithm is as follows.

Algorithm 2. Input: parameters ξ, τ and empirical moments
g̃ such that ‖g̃ − g(ϑ, α)‖2 ≤ ξ.
Output: a k-spike distribution (ϑ̃, α̃)

B1. Solve the minimization problem:
minimize ‖x‖1 s.t. ‖G(g̃)x‖1 ≤ 2kkξ, xk = 1 (P)

which can be encoded as a linear program and hence solved

in polytime, to obtain a solution λ̃. Observe that since G(g̃)
has k + 1 columns and k rows, there is always a feasible
solution.

B2. Let ᾱ1, . . . , ᾱk be the (possibly complex) roots of the polyno-

mial Pλ̃. Thus, we have V2k(ᾱ)Λ(λ̃) = 0. We map the roots

to values in [0, 1] as follows. Let ε = 4
τ

(2kξ)1/k. First we

compute α̂1, . . . , α̂k such that |α̂i − ᾱi| ≤ ε for all i, in time

poly
(
log( 1

ε
)
)
, using Pan’s algorithm [38, Theorem 1.1]2. We

now set α̃i = max{0,min{Re(α̂i), 1}}.
B3. Finally, we set ϑ̃ to be the row-vector y that minimizes

‖yV2k(α̃) − g̃‖22 subject to ‖y‖1 = 1, y ≥ 0. Note that this
is a convex quadratic program that can be solved exactly in
polytime [17].

We now analyze Algorithm 2 and justify Theorem 5.3.
Recall that τ = minj 6=j′ |αj − αj′ |. We need the following
lemma, whose proof appears at the end of this section.

Lemma 5.6. The weights ϑ̃ satisfy ‖ϑ̃V2k(α̃)−g̃‖2 ≤ ‖g(ϑ, α)−
g̃‖2 + (8k)5/2

τ
· (2kξ)1/k.

Proof of Theorem 5.3. We call Algorithm 2 with g̃ =
ν̃Pas. By Lemma 5.2, we obtain that ‖g̃ − g(ϑ, α)‖2 ≤ ξ,

and by Lemma 5.6, we have that ‖g(ϑ, α) − ϑ̃V2k(α̃)‖2 ≤
2‖g(ϑ, α)−g̃‖2+ 8

τ
·(8k)3/2

(
2kξ
)1/k

. Coupled with Lemma 5.4

and since ξ ≤ τ2k, we obtain that Tran(ϑ, α; ϑ̃, α̃) is at most[
(2k − 1)4k28k−5‖g(ϑ, α)− g(ϑ̃, α̃)‖2

] 1
4k−2

≤

[
(2k − 1)4k28k−5

(
2ξ +

(8k)
5
2

τ

(
2kξ
) 1
k

)] 1
4k−2

≤
[
(2k − 1)4k28k−5

(
2ξ + (8k)5/2(2k√ξ)1/2k)] 1

4k−2

≤ 1024 · kξ
1

8k2 .
2The theorem requires that the complex roots lie within the unit
circle and that the coefficient of the highest-degree term is 1; but
the discussion following it in [38] shows that this is essentially
without loss of generality.



Proof of Theorem 5.1. We convert θ to the correspond-
ing binary source

(
ϑ, (f1, . . . , fk)

)
by randomized rounding.

Given a (2k − 1)-snapshot z = (z1, . . . , z2k−1) ∈ [0, 1]2k−1

from θ, we obtain a (2k−1)-snapshot from the binary source
as follows. We choose 2k−1 independent values a1, . . . , a2k−1

uniformly at random from [0, 1] and set Xi = 1 if zi ≥ ai
and 0 otherwise for all i ∈ [2k − 1]. Note that if qj is
the constituent generating the (2k − 1)-snapshot z, then
Pr[Xi = 1|qj ] = E[Xi|qj ] = αj , and so X1, . . . , X2k−1 is
a random (2k − 1)-snapshot from the above binary source.

Now we apply Theorem 5.3, setting ξ = s2k. Let ν̃
be the empirical NBM-vector obtained from the (2k − 1)-

snapshots of the above binary source (i.e., ν̃i =
(

2k−1
i

)−1·
(frequency with which the (2k − 1)-snapshot has exactly i
1s)). The stated sample size ensures, via a Chernoff bound,

that Pr
[
|ν̃i − ν(ϑ, α)i| ≥ ξ4−k√

6k

]
< ψ

2k
for all i = 0, . . . , 2k −

1. Hence, with probability at least 1 − ψ, we have ‖ν̃ −
ν(ϑ, α)‖2 ≤

√
2k · ‖ν̃ − ν(ϑ, α)‖∞ ≤ ξ4−k/

√
3.

Proof of Lemma 5.5. There are two easy cases to dis-
miss before we reach the more subtle part of this lemma.
The first easy case is ` = 1. In this case γ is a single La-

grange interpolant: γ(x) =
∏κ+1
j=2

x−βj
β1−βj

. For 0 ≤ i ≤ κ let

eκi (β2, . . . , βκ+1) be the i’th elementary symmetric mean,

eκi (β2, . . . , βκ+1) =
1(
κ
i

) ∑
S⊆{2,...,κ+1}:|S|=i

∏
j∈S

βj

and observe that for all i, 0 ≤ eκi (β2, . . . , βκ+1) ≤ 1. Now

γ(x) =
(κ+1∏
j=2

1

β1 − βj

) κ∑
i=0

(−1)κ−i
(
κ

i

)
eκκ−i(β2, . . . , βκ+1)xi

So
∑κ
i=0 γ

2
i =

(∏κ+1
j=2

1
β1−βj

)2∑κ
i=0

((
κ
i

)
eκi (β2, . . . , βκ+1)

)2 ≤
s−2κ∑κ

i=0

(
κ
i

)2
=
(

2κ
κ

)
s−2κ.

The second easy case is ` = κ; this is almost as simple.
Merely note that the above argument applies to the poly-
nomial 1− γ, so that we have only to allow for the possible
increase of |γ0| by 1. Hence

∑κ
i=0 γ

2
i ≤ 4

(
2κ
κ

)
s−2κ.

We now consider the less trivial case of 1 < ` < κ. The
difficulty here is that the Lagrange interpolants of γ may
have very large coefficients, particularly if among β1, . . . , β`
or among β`+1, . . . , βκ+1 there are closely spaced roots, as
well there may be. We must show that these large coeffi-
cients cancel out in γ.

The trick is to examine not γ but ∂γ/∂x. The roots of
the derivative interlace the two sets on which γ is constant,
which is to say, with β′1 ≤ . . . ≤ β′κ−1 denoting the roots
of ∂γ/∂x, that for j < `, βj ≤ β′j ≤ βj+1, and for j ≥ `,
βj+1 ≤ β′j ≤ βj+2. In particular, none of the roots fall in
the interval (β`, β`+1). For some constant C we can write
∂γ/∂x = C

∏κ−1
j=0 (x − β′j) (with sign(C) = (−1)1+κ−`).

Observe that
∫ β`+1

β`

∂γ
∂x

(x) dx = −1. So (−1)1+κ−`/C =∫ β`+1

β`
(−1)κ−`

∏κ−1
j=0 (x− β′j) dx. Observe that if for any j <

`, β′j is increased, or if for any j ≥ `, β′j is decreased, then the

integral decreases. So (−1)1+κ−`/C ≥
∫ β`+1

β`
(−1)κ−`(x −

β`)
`−1(x− β`+1)κ−` dx. This is a definite integral that can

be evaluated in closed form:∫ β`+1

β`

(−1)κ−`(x− β`)`−1(x− β`+1)κ−` dx

= (β`+1 − β`)κ(`− 1)!(κ− `)!/κ! .

Hence, (−1)1+κ−`C ≤ κ!
sκ(`−1)!(κ−`)! . The sum of squares of

coefficients of ∂γ
∂x

is C2∑κ−1
i=0

(
κ−1
i

)2
(eκ−1
i (β′1, . . . , β

′
κ−1))2 ≤

C2
(

2κ−2
κ−1

)
. Integration only decreases the magnitude of the

coefficients, so the same bound applies to γ, with the ex-
ception of the constant coefficient. The constant coefficient
can be bounded by the fact that γ has a root in (0, 1), and
that in that interval the derivative is bounded in magnitude
by C

∑κ−1
i=0

(
κ−1
i

)
= C · 2κ. So |γ0| ≤ C · 2κ. Consequently,∑κ

i=0 γ
2
i is at most

C2

[(
2κ− 2

κ− 1

)
+ 22κ

]
≤
(

2κ−2
κ−1

)
+ 22κ

s2κ
·
(

κ!

(`− 1)!(κ− `)!

)2

≤ 5κ222κ−2

s2κ
·

(
κ− 1

`− 1

)2

≤ 5κ224κ−4

s2κ
,

which completes the proof of the lemma.

Proof of Lemma 5.6.
Recall that G = G(g(ϑ, α)) is the k× (k+ 1) matrix defined
by Gij = g(ϑ, α)i+j for i = 0, . . . , k − 1 and j = 0, . . . , k; λ
is such that Gλ = 0 and λk = 1; Λ = Λ(λ) is the 2k × k
matrix with Λij = λi−j (for 0 ≤ i < 2k, 0 ≤ j < k
with the understanding λ` = 0 for ` /∈ {0, . . . , k}; and

Pλ(x) is the polynomial
∑k
`=0 λ`x

`. We use Vk, V2k, to

denote Vk(α), V2k(α) respectively, and Ṽk, Ṽ2k, G̃, Λ̃ to de-

note Vk(α̃), V2k(α̃), G(g̃),Λ(λ̃) respectively. We abbreviate
g(ϑ, α) to g.

Lemma 5.7. If ‖g̃ − g‖2 ≤ ξ, then ‖Gλ̃‖1 ≤ 2k+1kξ.

Proof. First, observe that G̃λ = Gλ+ (G̃−G)λ = (G̃−
G)λ. Also ‖λ‖2 ≤ ‖λ‖1 =

∏k
i=1(1 + αi) ≤ 2k. The last

two inequalities follows since Pλ(x) =
∏k
i=1(x − αi), and

Pλ(−1) = (−1)k‖λ‖1. So for any i = 1, . . . , k,
∣∣(G − G̃)i ·

λ
∣∣ ≤ ‖λ‖2‖Gi − G̃i‖2 ≤ 2kξ. Thus, λ is a feasible solution

to (P), which implies that ‖λ̃‖1 ≤ 2k. We have ‖Gλ̃‖1 ≤
‖G̃λ̃‖1 + ‖(G − G̃)λ̃‖1 ≤ 2kkξ + ‖(G − G̃)λ̃‖1. For any

i = 1, . . . , k,
∣∣(G − G̃)i · λ̃

∣∣ ≤ ‖Gi − G̃i‖2‖λ̃‖2 ≤ 2kξ, so

‖Gλ̃‖1 ≤ 2k+1kξ.

Lemma 5.8. For every αi, i = 1, . . . , k, there exists a
σ(i) ∈ {1, . . . , k} such that ϑi|αi − α̃σ(i)| ≤ 8

τ
(2kξ)1/k.

Proof. Since ‖Gλ̃‖2 ≤ 2k+1kξ (by Lemma 5.7), we have

equivalently that the ‖.‖2 norm of gΛ̃ = ϑV2kΛ̃ is at most

2k+1kξ. We may write ϑV2kΛ̃ as

ϑV2kΛ̃ = ϑ


Pλ̃(α1) α1Pλ̃(α1) · · · αk−1

1 Pλ̃(α1)

Pλ̃(α2) α2Pλ̃(α2) · · · αk−1
2 Pλ̃(α2)

...
...

. . .
...

Pλ̃(αk) αkPλ̃(αk) · · · αk−1
k Pλ̃(αk)


which is equal to ϑ′Vk(α) where ϑ′ =

(
ϑ1Pλ̃(α1), · · · , ϑkPλ̃(αk)

)
.

Thus, we are given that ‖ϑ′Vk‖2 ≤ 2k+1kξ.



Let (γi)† =
(
arg miny∈Rk:yi=1 ‖yVk‖2

)
Vk. Then, we also

have ‖ϑ′Vk‖2 ≥ maxi |ϑ′i|‖γi‖2. Note that γi must be or-
thogonal to (Vk)j∗ for all j 6= i, and (Vk)i∗γ

i = ‖γi‖22. (Re-
call that Zi∗ denotes row i of a matrix Z.) Let Qi(x) =∑k−1
`=0 γ

i
`x
`. Then, Qi(x) = ‖γi‖22

∏
j 6=i

x−αj
αi−αj

. Also, since

the coefficients of Qi(x) have alternating signs, we have

|Qi(−1)| = ‖γi‖1 = ‖γi‖22
∏
j 6=i

1 + αj
|αi − αj |

.

Hence, ‖γi‖2 ≥
∏
j 6=i

|αi−αj |
1+αj

. So we obtain the lower bound

‖ϑ′Vk‖2 ≥ max
i

(
|ϑ′i| ·

∏
j 6=i

|αi − αj |
1 + αj

)

≥ max
i

(
ϑi
(τ

2

)k−1
k∏
j=1

|αi − ᾱj |
)

≥ max
i

(
ϑi
(τ

2

)k−1
k∏
j=1

|αi − Re(ᾱj)|
)
.

The last inequality follows since complex roots occur in con-
jugate pairs, so if ᾱ` = a + bi is complex, then there must
be some `′ such that ᾱ`′ = a− bi and therefore,∏

j

|αi − ᾱj | =
(
(αi − a)2 + b2

)
·
∏
j 6=`,`′

|αi − ᾱj |

≥ (αi − a)2 ·
∏
j 6=`,`′

|αi − ᾱj |.

Now, we claim that |αi −Re(ᾱj)| ≥
∣∣|αi − α̃j | − ε∣∣ for every

j. If both Re(ᾱj) and Re(α̂j) lie in [0, 1], or both of them
are less than 0, or both are greater than 1, then this follows
since |ᾱj − α̂j | ≤ ε and αi ∈ [0, 1]. If Re(ᾱj) /∈ [0, 1] but
Re(α̂j) ∈ [0, 1], or if Re(ᾱj) ∈ [0, 1] but Re(α̂j) /∈ [0, 1], then
this again follows since |ᾱj−α̂j | ≤ ε. Combining everything,
we get that

2k(2kξ) ≥ ‖ϑ′Vk‖2 ≥ max
i

(
ϑi
(τ

2

)k−1
k∏
j=1

∣∣|αi− α̃j |− ε∣∣).
This implies that for every i = 1, . . . , k, there exists σ(i) ∈
{1, . . . , k} such that ϑi|αi − α̃σ(i)| ≤ 4

τ
·
(
2kξ
)1/k

+ ε.

We can now wrap up the proof of Lemma 5.6. Let η =
8
τ
·
(
2kξ
)1/k

. We will bound ‖ϑ̃Ṽ2k − g̃‖2 by exhibiting a

solution y ∈ [0, 1]k, ‖y‖1 = 1 such that ‖yṼ2k − g̃‖2 ≤
‖g− g̃‖+k(8k)3/2η. Let σ be the function whose existence is
proved in Lemma 5.8. For j = 1, . . . , k, set yj =

∑
i:σ(i)=j ϑi

(if σ−1(j) = ∅, then yj = 0). We have ‖yṼ2k − g̃‖2 ≤
‖g− g̃‖2 +‖g−yṼ2k‖2. We expand g−yṼ2k = ϑV2k−yṼ2k =∑k
i=1 ϑi

(
(V2k)i∗ − (Ṽ2k)σ(i)∗

)
For every i,

ϑ2
i ‖(V2k)i∗−(Ṽ2k)σ(i)∗‖22 = ϑ2

i

2k−1∑
`=0

(α`i−α̃`σ(i))
2 ≤ ϑ2

i ·8k3 ·η2.

Therefore, ‖g − yṼ2k‖2 ≤ k(8k)3/2η.

6. LOWER BOUNDS
In this section, we prove sample-size and aperture lower

bounds that apply even to the setting where we have k-
mixture sources on {0, 1} (so n = 2). Recall that a k-mixture

source on {0, 1} may be equivalently viewed as a k-spike
distribution supported on [0, 1]; in the sequel, we therefore
focus on k-spike distributions. The separation of a k-spike
distribution (or the equivalent k-mixture source) is the min-
imum separation between its spikes. Theorem 6.2 proves
that 2k − 1 is the smallest aperture at which it becomes
possible to reconstruct a k-spike distribution. We empha-
size that this is an information-theoretic lower bound. We
show (Theorem 6.2) that there are two k-spike distributions
supported on [0, 1] having separation Ω

(
1
k

)
and transporta-

tion distance Ω
(

1
k

)
that yield exactly the same first 2k − 2

moments. Moreover, for any b ≥ 2k − 1, by adjusting the
constant in the Ω(.)s, one can ensure that the (2k − 1)-th,
. . . , b-th moments of these two k-spike distributions are ex-
ponentially close.

It follows immediately that even with infinite sample size
it is impossible to reconstruct a k-mixture source (with ar-
bitrarily small error) if we limit the aperture to 2k−2. Fur-
thermore, we leverage the exponential closeness of the mo-
ments to show that for any aperture b ≥ 2k− 1, there exists
τ = Ω

(
1
k

)
such that reconstructing a k-mixture source on

{0, 1} having separation τ to within transportation distance
τ
4

requires exponential in k sample size (Theorem 6.1). In
fact, since n = 2, this means that with arbitrary mixtures,
the exponential dependence of the sample size on k remains
even with aperture O(k logn), and more generally, even with
aperture O

(
k · κ(n)

)
for any function κ(.). (To place this

in perspective, observe that with separation τ = Ω
(

1
k

)
, if

we have Ω(k2 log k) aperture, then O(k3) samples suffice to
reconstruct the given mixture source to within transporta-
tion distance τ

4
. This is because with, with high proba-

bility, we will see every {0, 1} source or “coin” with weight
ϑi ≥ 1

τ2
, and we can estimate its bias within additive error,

say τ
8
, with probability 1 − 1

poly(k)
since we have Ω

(
log k
τ2

)
coin tosses available. The unseen coins contribute O(τ) to
the transportation distance, so we infer k-mixture source
within transportation distance τ

4
.)

Theorem 6.1. (i) With aperture 2k − 2, it is impossible
to reconstruct a k-mixture source having separation at least
1
2k

to within transportation distance 1
8k

even with infinite
sample size.
(ii) For any ψ ∈ (0, 1), and any constants cA ≥ 1, cE ≥ 0,
there exists τ = Ω

(
1
k

)
such that reconstructing a k-mixture

source having separation τ to within transportation distance
τ
4

with probability at least 1 − ψ using aperture cA(2k − 1)

requires Ω
(
3cEk ln( 1

ψ
)
)

samples.

Our approach for proving Theorem 6.1 is as follows. To
prove the existence of two suitable k-spike distributions (The-
orem 6.2), we fix some spike locations ensuring the required
separation and transportation-distance bounds, and search
for suitable probability weights to place on these locations
so as to obtain the desired closeness of moments for the two
k-spike distributions. Since moments are linear functions of
the weights (and the spike locations are fixed), this search
problem can be encoded as a minimization LP (P1). To
upper bound the optimum, we move to the dual LP (D1),
which can be interpreted as finding a polynomial satisfying
certain conditions on its coefficients and roots, to maximize
the variation between its values at certain spike locations.
We upper bound the variation possible by such a polyno-
mial using elementary properties of polynomials. Finally,



the closeness of moments of the two k-spike distributions ob-
tained this way implies that the distributions of b-snapshots
of these two distributions have exponentially small variation
distance (Lemma 6.3), and this yields the sample-size lower
bound in Theorem 6.1.

Theorem 6.2. Let b ≥ 2k− 1, and ρ ≥ 2. There are two
k-spike distributions (y, α) and (z, β) on [0, 1] with separa-
tion 2

(2k−1)ρ
and Tran(y, α; z, β) ≥ 1

(2k−1)ρ
such that g`(y, α) =

g`(z, β) for all ` = 0, . . . , 2k−2, and
∑b
`=2k−1

(
b
`

)
2`|g`(y, α)−

g`(z, β)| ≤ 4 · 3b

ρ2k−1 .

Proof. Let ε = 1
ρ
. We set αi = ε · 2(i−1)

2k−1
, and βi =

ε · 2i−1
2k−1

= αi + ε
2k−1

for all i = 1, . . . , k. Note that for any
mixture weights y1, . . . , yk, and z1, . . . , zk, the separation of
(y, α) and (z, β) is 2

(2k−1)ρ
and Tran(y, α; z, β) ≥ 1

(2k−1)ρ
.

We obtain y and z by solving the following linear program

(P1), whose optimal value we show is at most 4 · 3b

ρ2k−1 .

min
b∑

`=2k−1

(
b

`

)
2`λ` (P1)

s.t.

k∑
i=1

(
ziβ

`
i − yiα`i) = 0 ∀` = 0, . . . , 2k − 2 (6)

k∑
i=1

(
ziβ

`
i − yiα`i) ≤ λ` ∀` = 2k − 1, . . . , b (7)

k∑
i=1

(
yiα

`
i − ziβ`i ) ≤ λ` ∀` = 2k − 1, . . . , b (8)

k∑
i=1

yi = 1, yi, zi ≥ 0 ∀i = 1, . . . , k.

The dual of (P1) is the following linear program.

max c (D1)

s.t. c−
2k−2∑
`=0

γ`α
`
i −

b∑
`=2k−1

(γ` − θ`)α`i ≤ 0

∀i = 1, . . . , k

2k−2∑
`=0

γ`β
`
i +

b∑
`=2k−1

(γ` − θ`)β`i ≤ 0

∀i = 1, . . . , k

γ` + θ` ≤

(
b

`

)
2` ∀` = 2k − 1, . . . , b

γ`, θ` ≥ 0 ∀`.

The dual variable c corresponds to
∑
i yi = 1, variables γ`

for ` = 0, . . . , b correspond to (6) and (8), and variables θ` for
` = 2k−1, . . . , b correspond to (7). Given a feasible solution
to (D1), if we set γ′` = γ`−min{γ`, θ`}, θ′` = θ`−min{γ`, θ`}
for all ` = 2k − 1, . . . , b, then we obtain another feasible
solution to (D1), where γ′` + θ′` = |γ′` − θ′`| = |γ` − θ`|.
Thus, an optimal solution to (D1) can be interpreted as

a polynomial f(x) =
∑b
`=0 f`x

` satisfying |f`| ≤
(
b
`

)
2` for

all ` = 2k − 1, . . . , b, and f(αi) ≥ c > 0 ≥ f(βi) for all
i = 1, . . . , k (where c > 0 follows from Lemma 5.4).

Let c′ = 3b · ρ/(ρ−1)

ρ2k−1 ≤ 2 · 3b

ρ2k−1 . Suppose that c > 2c′.

Observe that for any x ∈ [0, ε], by the Cauchy-Schwarz in-
equality and since the `2-norm is at most the `1 norm, we

have ∣∣∣ b∑
`=2k−1

f`x
`
∣∣∣ ≤ ( b∑

`=2k−1

|f`|
)( b∑

`=2k−1

x`
)

≤
b∑

`=2k−1

(
b

`

)
2` · ρ/(ρ− 1)

ρ2k−1
≤ c′.

(9)

Let h(x) =
∑2k−2
`=0 f`x

` − c/2. Then, due to (9), we have
f(x) − c/2 − c′ ≤ h(x) ≤ f(x) − c/2 + c′ for all x ∈ [0, ε],
so h(αi) > 0 > h(βi) for all i = 1, . . . , k. But then h(x) has
2k− 1 roots—one in every (αi, βi) and (βi, αi+1) interval—
which is impossible since h(x) is a polynomial of degree 2k−
2.

Given a k-spike distribution
(
ϑ, α = (α1, . . . , αk)

)
on [0, 1],

we abuse notation and denote the equivalent k-mixture source
on {0, 1} also by (ϑ, α); that is, θ = (ϑ, α) represents a mix-
ture of k “coins”, where coin i has bias αi and is chosen

with weight ϑi. Let g(ϑ, α) =
(
gi(ϑ, α)

)2k−1

i=0
. We use Dθ

(viewed as a vector in R{0,1}
2k−1

≥0 ) to denote the distribution

of (2k− 1)-snapshots induced by θ on {0, 1}2k−1. The total
variation distance dTV(Dy, Dz) between two such distribu-
tions is defined to be 1

2
‖Dy −Dz‖1.

Lemma 6.3. Let b ≥ 2k−1. Given two k-mixture sources
y = (y, α) and z = (z, β) on {0, 1} with identical first 2k−2

moments, we have dTV(Dy,b, Dz,b) = 1
2

∑b
`=2k−1

(
b
`

)
2`|g`(y, α)−

g`(z, β)|.
Proof. For any s ∈ {0, 1}b with i 1s, we have Dy,bs =

νi(y, α) and Dz,bs = νi(z, β). Therefore, dTV(Dy,b, Dz,b) =
1
2

∑b
i=0

(
b
i

)
|νi(y, α)− νi(z, β)|. Let B be the (b+ 1)× (b+ 1)

diagonal matrix with Bii =
(
b
i

)
for 0 ≤ i ≤ b. Then,(

b
i

)
νi(y, α) =

(
gb(y, α)Pas−1

b+1B
)
i
. Let ∆gb := gb(y, α) −

gb(z, β). So dTV(Dy,b, Dz,b) = 1
2
‖(∆gb)(Pas−1

b+1B)‖1. We

prove below that Pas−1
b+1 is the lower triangular matrix with

entries (Pas−1
b+1)ij = (−1)i−j

(
b−j
i−j

)
for 0 ≤ j ≤ i ≤ b (and

0 otherwise). Let Zi∗ denote row i of matrix Z. Since
(∆gb)i = 0 for i = 0, . . . , 2k−2, we have that dTV(Dy,b, Dz,v)
is at most

1

2

b∑
`=2k−1

|(∆gb)`| · ‖(Pas−1
b+1B)`,∗‖1

=
1

2

b∑
`=2k−1

|(∆gb)`|
∑̀
j=0

(
b− j
`− j

)(
b

j

)

=
1

2

b∑
`=2k−1

|(∆gb)`|

(
b

`

)∑̀
j=0

(
`

j

)

=
1

2

b∑
`=2k−1

|(∆gb)`|

(
b

`

)
2`.

To see the claim about Pas−1
b+1, let Q be the claimed inverse

matrix; so Qij = (−1)i−j
(
b−j
i−j

)
for 0 ≤ j ≤ i ≤ b. Then

(Pasb+1Q)ij = 0 for j > i, and is equal to
∑i
`=j

(
b−`
i−`

)
(−1)`−j

(
b−j
`−j

)
otherwise. The latter expression evaluates to(
b−j
i−j

)∑i
`=j(−1)`−j

(
i−j
`−j

)
=
(
b−j
i−j

)
(1 − 1)i−j , which is 0 if

i > j, and 1 if i = j.

Proof of Theorem 6.1. For part (i), take ρ = 2 and
b = 2k − 1. Consider the two k-mixture sources y = (y, α)



and z = (z, β) given by Theorem 6.2, which have separation
1

2k−1
and transportation distance 1

2(2k−1)
. For any b′ ≤ 2k−

2, the distributions Dy,b
′

and Dz,b
′

are identical and hence
indistinguishable even with infinitely many samples, but the
stated reconstruction task would allow us to do precisely
this.

For part (ii), set ρ = 3cE+cA , b = cA(2k − 1), and τ =
2

(2k−1)ρ
. Let y = (y, α) and z = (z, β) be as given by

Theorem 6.2 (for this b, ρ), which satisfy the required sep-
aration property. Suppose that we can perform the stated
reconstruction task using N b-snapshots. Then, we can dis-
tinguish between y and z with probability at least 1 −
ψ. But this probability is also upper bounded by

[
1 +

dTV

(
(Dy,b)N , (Dz,b)N

)]
/2, where (Dy,b)N and (Dz,b)N are

the N -fold products of Dy,b and Dz,b respectively. Thus,
dTV

(
(Dy,b)N , (Dz,b)N

)
≥ 1 − 2ψ. By Proposition 11 and

Lemma 12 in [7]

N ≥ 1

4dTV(Dy,b, Dz,b)
ln

(
1

1− (1− 2ψ)2

)
≥ ρ2k−1

8 · 3b ln
( 1

4ψ

)
= Ω

(
3cE(2k−1) ln

( 1

ψ

))
where the second inequality follows from Theorem 6.2 and
Lemma 6.3.
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APPENDIX
A. PROBABILITY BACKGROUND

We use the following large-deviation bounds in our anal-
ysis.

Lemma A.1 (Chernoff bound; Theorem 1.1 in [23]). Let
X1, . . . , XN be independent random variables with Xi ∈ [0, 1]
for all i, and µ =

(∑
i EXi

)
/N . Then, Pr

[∣∣ 1
N

∑
iXi−µ

∣∣ >
ε
]
≤ 2e−2ε2N .

Lemma A.2 (Bernstein’s inequality; Theorem 1.2 in [23]).
Let X1, . . . , XN be independent random variables with |Xi| ≤
b, E[Xi] = 0 for all i, and let σ2 =

∑
i Var[Xi]. Then,

Pr
[
| sumiXi| > t

]
≤ 2 exp

(
− t2

2(σ2+bt/3)

)
.

B. SAMPLE-SIZE DEPENDENCE OF [2, 3,
4] ON N FOR `1-RECONSTRUCTION

We view P = (p1, . . . , pk) as an n × k matrix. Recall

that r =
∑k
t=1 wtptp

†
t , A =

∑k
t=1 wt(p

t − r)(pt − r)†, and

M = rr† + A. Let wmax := maxt wt. We consider isotropic
k-mixture sources, which is justified by Lemma 3.3. So 1

2n
≤

ri ≤ 2
n

for all i ∈ [n]. Note that ‖r‖1, ‖r‖22, and ‖r‖∞ are

all Θ
(

1
n

)
. It will be convenient to split the width parameter

ζ into two parameters. Let (i) ζ1√
n

= minp,q∈P,p 6=q ‖p− q‖2;

and (ii) ζ2
2‖r‖∞ be the smallest non-zero eigenvalue of A.

Then, the width of (w,P ) is ζ = min{ζ1, ζ2}. We use σi(Z)
to denote the i-th largest singular value of a matrix Z. If
Z has rank `, its condition number is given by κ(Z) :=
σ1(Z)/σ`(Z). For a square matrix Z with real eigenvalues,
we use λi(Z) to denote the i-th largest eigenvalue of Z. Note
that if Z is an n × k matrix, then σi(Z)2 = λi(ZZ

†) =
λi(Z

†Z) for all i = 1, . . . , k. Also the singular values of ZZ†

coincide with its eigenvalues, and the same holds for Z†Z.
We now proceed to evaluate the sample-size dependence

of [2, 3, 4] on n for reconstructing the mixture constituents
within `1-distance ε. Since these papers use different pa-
rameters than we do, in order to obtain a meaningful com-
parison, we relate their bounds to our parameters ζ1, ζ2; we
keep track of the resulting dependence on n but ignore the
(polynomial) dependence on other quantities. We show that

the sample size needed is at least Ω
(
n4

ε2

)
, with the exception

of Algorithm B in [3], which needs Ω
(
n3

ε2

)
samples. As re-

quired by [2, 3, 4], we assume that P has full column rank.
It follows that M has rank k and A has rank k − 1. The
following inequality will be useful.

Proposition B.1. Let D = diag(d1, . . . , dk) where d1 ≥
d2 ≥ . . . ≥ dk > 0. Then λk(PDP †) ≥ dkλk(PP †) =
dkσk(P )2.

Comparison with [4]. The algorithm in [4] requires
also that P be ρ-separable. This means that for every t ∈ [k],

there is some i ∈ [n] such that pti ≥ ρ and pt
′
i = 0 for

all t′ 6= t. This has the following implications. For any

t, t′ ∈ [k], t 6= t′, we have ‖pt − pt
′
‖2 ≥

√
2ρ, so ζ1√

n
≥
√

2ρ.

We can write P †P = Y +Z, where Y is a PSD matrix, and
Z is a diagonal matrix whose diagonal entries are at least
ρ2. So λk(P †P ) = λk(PP †) ≥ ρ2. Therefore,

ζ2
2‖r‖∞ + ‖r‖22 = λk(A) + ‖r‖22 ≥ λk(M) ≥ wmin · ρ2

where the first inequality follows from Lemma 2.1, and the
second from Proposition B.1. It follows that ρ = O

(
1√
n

)
.

The bound in [4] to obtain `∞ error ε is (ignoring dependence
on other quantities) Ω

(
1

ε2ρ6

)
. So setting ε = ε

n
to guarantee

`1-error at most ε and plugging in the above upper bounds

on ρ, we obtain that the sample size is Ω
(
n5

ε2

)
.

Comparison with [2]. The sample size required by [2]
for the latent Dirichlet model for obtaining `2 error ε is
Ω
(

1
ε2σk(P )6

)
. Proposition B.1 yields λk(M) ≥ wmin ·σk(P )2

and as argued above, λk(M) ≤ λk(A) + ‖r‖22 = O
(

1
n

)
. So

σk(P )6 = O
(

1
n3

)
. Setting ε = ε√

n
for `1 error ε, this yields

a bound of Ω
(
n4

ε2

)
.



Comparison with [3]. Algorithm A in [3] requires
sample size Ω

(
1

σk(P )8σk(M)4ε2

)
to recover each pt to within

`2-distance εmaxp∈P ‖p‖2. Since maxp∈P ‖p‖2 ≤ 2
wmin

√
n

due to isotropy, we can set ε = εwmin
2

to obtain `1-error

ε. Since σk(P )2 and σk(M) = λk(M) are both O
(

1
n

)
, we

obtain a bound of Ω
(
n8

ε2

)
.

Algorithm B in [3] uses sample size Ω
(
κ(P )8/

( ζ21
n
·σk(M)2ε2

))
to recover each pt to within `2-distance εmaxp∈P ‖p‖2. Clearly
κ(P ) ≥ 1. Again, setting ε = εwmin

2
, this yields a sample

size of Ω
(
n3

ε2

)
for `1 error ε.


