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Abstract installing facilities to serve a set of clients; one is initially

given only a probability distribution on the demands of the
Stochastic optimization problems attempt to model un- clients (in addition to deterministic data for the facility and
certainty in the data by assuming that (part of) the input is assignment costs) on which to base initial (first stage) deci-
specified in terms of a probability distribution. We consider sions, but then one can extend (in a second stage) the solu-
the well-studied paradigm of 2-stage models with recourse: tion once the actual input is realized according to this dis-
first, given only distributional information about (some of) tribution, where these recourse costs may be different (and
the data one commits on initial actions, and then once the typically more expensive) than the original ones. Much of
actual data is realized (according to the distribution), fur- the textbook of Birge and Louveaux [1] is devoted to mod-
ther (recourse) actions can be taken. We give the first ap-els and algorithms for this class of problems.
proximation algorithms for 2-stage discrete stochastic op- e shall initially focus on the following stochastic gen-
timization problems with recourse for which the underly- eralization of the set cover problem: we are given a fam-
ing random data is given by a “black box” and no restric- jly of setsSs, ..., .S,, over a ground sdt/, where each set
tions are placed on the costs in the two stages, based ons has ana priori weight wk, and ana posteriori weight
an FPRAS for the LP relaxation of the stochastic problem ! associated with it. In the first stage, one selects some of
(which has exponentially many variables and constraints). these sets, incurring each associated weightthen a sub-
Among the range of applications we consider are stochas-set A C U is drawn according to a specified distribution,
tic versions of the set cover, vertex cover, facility location, and then additional sets may be selected (incurring their sec-
multicut (on trees), and multicommodity flow problems.  ond stage weights) so as to ensure thas contained in the
union of the selected sets (in both stages). The aim is to min-
imize the expected cost of the solution. Note that an explicit
representation of a feasible solution would require specify-
ing an exponential amount of information (since there are
The study of stochastic optimization problems dates 211 possible choices for), and so it will be necessary to
back to the 1950’s and the work of Dantzig [3] (among oth- 9iV& more compact, algorithmic representations.
ers) and attempts to model uncertainty in the data by assum- An important issue left ambiguous in the description
ing that (part of) the input is specified in terms of a proba- above is the way in which the probability distribution is
bility distribution, rather than by deterministic data given SPecified; several approaches have recently been consid-
in advance. Stochastic optimization techniques and mod-ered in papers that address related 2-stage stochastic opti-
els have become an important paradigm in a wide range ofMization problems. Dye, Stougie, and Tomasgard [4], and
application areas, including transportation models, logis- [ater, Ravi and Sinha [14] assume that there are only a
tics, financial instruments, and network design. Stochas-Polynomial number of scenarios, i.e., choices forthat
tic models are often computationally quite difficult, both Occur with positive probability. Independently, Immorlica,
from a practical perspective, as well as from the view- Karger, Minkoff, and Mirrokni [10] consider both this as-
point of complexity theory; even extremely specialized SUmption, as well as the model where each element occurs
(sub)problems may bg P-hard [6]. with its own independent prot_)ablhty, and in so d(_)mg they
We shall focus on an important subclass of stochastic op-€nlarge the space of scenarios to be exponentially large.
timization problems2-stage problems with recourddany This is done with the rather severe restriction of assum-
applications come under this setting, such as the problem of"g that thecosts in the two stages are proportionétat
is, there is a parametersuch thatwl = \wl for each set
«  Afull version is available at www.cs.cornell.edu/“swamy/stochopt.ps - GUPta, Rl, Ravi, and Sinha [9] also require this assump-
1  Dept. of Computer Science, Cornell University, Ithaca, NY 14853. Re- tion, but give a more general way to specify the distribution,
search supported partially by NSF grant CCR-9912422. which we shall call thédlack-box modelthey assume that
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the algorithm may make use of samples that are drawn ac-soid containing this intersection. At a feasible point, the hy-
cording to the distribution of scenarios. perplane is computed by computing the subgradient of the
. . objective function at the center of the current ellipsoid. We
Our Res# Its.. we acflllt_av?hth(ta)lbelftbqualltlzs ;)f a(ljl o;)tth.ese introduce a notion of approximate subgradients that is suf-
approaches. we work in the black-box model and obtain re- g ; 1, yield the same convergence of the algorithm. Fur-
sults in set_tlngs where the costs in the two stages need no hermore, we show that this approximate subgradient can
be %ropcirglonal,t_anld the secpnd-sT_age c_ostilmay deen be computed in randomized polynomial time using samples
per\wN onh N [:r?rtlcu. ar scenlano re}a(ljzetals n [. t']). ¢ from the distribution (obtained from a black box). Finally,
inst € show tha ,trg]jlven ? class of ( et()alrmlmsflc) Sﬁ. (;lover the ellipsoid algorithm outputs the iterate with the best ob-
Instances (e.g.,' € Verlex cover pro em), for which we jective function value. However, evaluating the objective
have_ap-apprommatlc_)n guarant_ee with respect to the nat- function value at a given point for our class of stochas-
u[ft‘l !mear p:jogrgmmmg relaxat|on,_ wet_can, Ifor i?]y Of tic programs may be# P-hard; nonetheless, approximate
obtain a ran omlzedz;_) + _e)—appr_oxma lon algorithm for subgradient information is sufficient to efficiently compute
the stochastic generalization. This generalizes and improves, point of cost close to the cost of the minimum-cost it-

upon performance guarantees of [9]. erate (without, however, computing these costs). Note that

N (t)L:r resfult hals 'EW(t)hprmtmps' c;)_mpotnents. Flrsglwe ShOW ¢4 the rounding algorithm, one only needs the convex pro-
at it we tformuiate the stochastic set cover problem as angram’s (near-)optimal solution to compute a solution to the

(exponentilally large) integgr program and s.,ollve its .Iinear stochastic integer optimization problem.
programming (LP) relaxation, then a surprisingly simple ) ) o
rounding approach suffices to prove the guarantee claimed Our algorithm returns &l + ¢)-optimal solution in time
above. The essence of our approach is that the relaxatiofPounded by a polynomial in the input sizgje, and the
indicates for each element either that it is at least half cov- Maximumratio A between the second- and first-stage costs,
ered in the first stage, or else it must be at least half cov-and suggests that contrary to conventional wisdom, an ex-
ered ineachscenario in which it occurs in the second stage. Ponential number of scenarios ot an insurmountable
We have decoupled the two stages (and indeed each of th&mpediment to the design of efficient algorithms for these
scenarios for the second stage), and can apply the determirRroblems.
istic result to each separately. Thus, the fact that we lose a It is useful to compare our result with some work in the
factor of 2 is exactly tied into the fact that we are consider- stochastic programming literature on the sample average
ing a 2-stage problem. Note that we need to examine onlyapproximation (SAA) method for solving stochastic pro-
the first-stage variables to decouple the two stages, and nograms, where one samples from the distribution on sce-
the entire (exponentially large) LP solution. In fact, this de- narios and then solves an approximate problem, estimat-
composition can be applied to a number of stochastic inte-ing the probability of a scenario by its frequency. Kleywegt,
ger optimization problems. Furthermore, if we consider the Shapiro, and Homem-De-Mello [11] prove a bound on the
case when there are only a polynomial number of scenar-sample size required to obtain a near-optimal solution (with
ios, then this rounding approach is sufficient to yield strong high probability) that is polynomial in the dimension, but
performance guarantees for a wide range of applications. depends on the variance of a certain quantity (calculated us-
Second, and this is the more technically difficult part of ing the scenario distribution) that need not be polynomially
the paper, we give a fully polynomial randomized approxi- bounded. Whereas the running time of our algorithm de-
mation scheme for solving a broad class of 2-stage stochaspends on the paramet&r it does not depend on the under-
tic LPs, in spite of the fact that this may BeP-hard. (The lying probability distribution. The algorithm of [9] also has
LP has an exponential number of both variables and con-the same dependence #nin fact, this dependence onis
straints.) We believe that this is a tool of independent inter- unavoidable; we show that a performance guarantpeef
est, in particular, in the stochastic programming literature, quiresQ2(\/p) samples. The dependence;]ois also neces-
and will find application in the design of approximation al- sary in light of the knownr# P-hardness results. To the best
gorithms for other stochastic integer optimization problems. of our knowledge, this is the first result to show that (a broad
We approximately solve this linear program by work- class of) 2-stage stochastic LPs can be solved in time poly-
ing with an equivalent (but compact) convex programming nomial in the input size), and%. Itis also useful to contrast
formulation, and show that the ellipsoid algorithm can be our work with that of Dyer, Kannan, and Stougie [5], who
adapted to yield such a scheme. In the ellipsoid algorithm focus on computing an estimate for the objective function
for convex programming, the algorithm generates a se-value at a given point (for a maximization problem) by sam-
guence of ellipsoids, starting with an ellipsoid that contains pling from the distribution sufficiently many times. But this
the entire feasible region; in each iteration, a hyperplane isyields a running time that is only polynomial in the maxi-
generated that is intersected with the current ellipsoid, andmum value attained byany scenario, and does not yield a
the next ellipsoid generated is the minimum-volume ellip- polynomial approximation scheme for our setting.



The first worst-case analysis of approximation algo- explicitly use the quantities, in the algorithm.Through-
rithms for 2-stage stochastic integer programming problemsout, we useA to index the scenarios.
appears to be due to Dye et al. [4], who give a constant per- Each sefS has two weights associated with it: apriori
formance guarantee for a resource provisioning problemweightwY, and ama posterioriweightw. We may choose
(a maximization problem) in the polynomial scenarios set- a set either in stage | paying a pricewf, or in stage Il af-
ting based on rounding an LP. Ravi and Sinha [14], and in- ter the scenariod C U occurs paying a price abY, so
dependently Immorlica et al. [10], and subsequently Guptathat A is contained in the union of the sets selected (in both
et al. [9] consider various 2-stage problems including ap- stages). The goal is to minimize the sum of the stage | cost
plications that follow from our general settings. We now and the expectation over all scenarib®f the stage Il cost
contrast our results in these applications with previous re-of scenarioA. The two-stage problem can be formulated as

sults. an integer program with the following linear relaxation.
For the vertex cover problem, our technique yields a

(4 + €)-approximation algorithm in the black-box distri- min ngffs +ZPAngA,S (SSC-P1)

bution model. In contrast, [9] give an 8-approximation al- s A,S

gorithm in the black-box model with proportional costs, st Y ws+ Y ras>=1  VAecAd (1)

and [14] give a guarantee of 2 in the polynomial scenarios S:e€sS S:e€S

setting. We also give extensions to multi-covering general- 25,74, >0 VA, S.

izations of the set cover problem. For the stochastic unca- o . )

pacitated facility location problem, we give(&225 + ¢)- Variablex g indicates whether sétis chosen in stage |, and

approximation algorithm, whereas [9] give a guarantee of 74,5 is 1 ifand only if setS'is chosen in scenarid in stage
8.45 in the black-box model with proportional costs, and !l- Constraint (1) says that in every scenadpevery ele-
[14] give a guarantee of 8 in the polynomial scenarios set- men'F in that scenario has to be coverec_i by a set chosen ei-
ting. Our approach yields constant-factor performance guar-ther in stage I or in stage II. 40, 1}-solution, corresponds
antees for several facility location variants, including facil- €xactly to a solution to our problem. The following theo-
ity location with penalties, or soft capacities, or service in- '€M forms the basis _Of our methodology for tackling vari-
stallation costs. As in [14], our results also extend to the 0US 2-Stage stochastic optimization problems. Q€M de-
case with scenario-dependent second-stage costs. note the optimal value of (SSC-P1).

Theorem 2.1 Suppose that we have a procedure that for
2. A motivating example: stochastic set cover every instance obsc produces a solution of cost at most
p - OPTpe. Then, one can convert any solutidm, r)
The deterministic weighted set-cover problebsC) is to (SSC-P1)to an integer solution losing a factor of at
the following: given a univers& of n elements and a fam-  most2p. Thus, an optimal solution {8SC-P2)gives a2p-
ily S of m subsets o/, with setS € S having weightwg, approximation algorithm.
we want to choose a minimum-weight collection of sets so
that each elementis contained in some chosen set. We can pigof - et h(.) be the objective function. We will argue
express the problem as an integer program and relax the inthat we can obtain an integer solutioi #) of cost at most
tegrality constraints to get a linear program. 2p - h(z, ). Observe the following simple fact: an element
e is either covered to an extent of at Ieé;jn the first stage
min Zwsxs s.t. Z rg>1Ve, z5>0VS. (P) by the variables:g, or it is covered to an extent of at least
s S:e€S 1 by the variables, s in every scenariod containinge.
Let E = {e: Y g.cs®s = 3}. Then(2z) is a fractional
set cover solution for the instance with universe Bednd
S0, one can obtain an integer set co¥efior this instance
of cost at mosp - Y 5 2wizs. Similarly, for any scenario

e o4 (a1 i a aconal et coer o the lements
: E, since for each such elementwe haved .. .q7a,5 >

in advance. There is a probability distribution oeeenar- 1. Therefore, one can cover these elements at a cost of at

|tos,band (\e/a(r:hdscFenrarlorspercmes the actur?l fiut?sgt o{ elemsn?()stp g wlras. So if we outputz as the first-stage
0 be covered. or Our purposes, a SCenario IS JUst a sUbSq isions, we get a solution of cost at mpgt h(x,r). W

of elementsA C U. We will assume that the set of all possi-
ble scenarios is just the power £t (including the empty
set()). We usep 4 to denote the probability of scenarid Corollary 2.2 If the integrality gap of(P)is p, then the in-
(pa could be 0, if scenarial never occurs)We will never  tegrality gap of (SSC-P1)s at most2p.

Let OPTp.; denote the optimal value of (P). It is well
known [2] that “the greedy algorithm” returns a solution of
weight at mosinn - OPTpe;.



Theorem 2.1 shows that if we could solve (SSC-P1),then The above description makes clear that the inability

we could get a2 ln n-approximation algorithm foiSSC. to evaluatef(x) is an obstacle to applying the ellipsoid
In particular, when there are only a polynomial humber method in this case. LeP = P, denote the polytope
of scenarios with non-zero probability, we obtair & n- {x e R™ : 0 < zg < 1forall S}, and leth(x) be

approximation algorithm. In general, however, it seems dif- the (convex) objective function! - 2 + f(z). If the cur-
ficult to find an optimal solution to (SSC-P1) in its present rent iteratex; is feasible, that one could add the constraint
form, since it has both an exponential number of variables h(z) < h(z;) while maintaining the convexity of the fea-
and an exponential number of constraints; even writing out sible region. But then, in subsequent iterations, one would
an optimal solution might take exponential space. Observeneed to check if the current iterate is feasible, and generate
that in the proof of Theorem 2.1, we needed to examine a separating hyperplane if not. Without the ability to evalu-
only the stage | variables s of the fractional solution, ate (or even estimate) the objective function value, this ap-
in order to round it to an integer solution. This is impor- pears to pose a formidable difficulty. An alternative possi-
tant, because if the rounding algorithm required informa- bility is to use cuts generated bysabgradientwhich es-
tion about each stage Il scenari that is, an exponen- sentially plays the role of the gradient when the function
tial amount of information (as in [14]), then one wourdt is not differentiable. We say that is a subgradient of a
get a polynomial-time algorithm even if one could “solve” functiong : R™ +— R at the pointu if the inequality
(SSC-P1) efficiently. In contrast, Theorem 2.1 shows that if g(v) — g(u) > d - (v — w) holds for everyp € R™.
we could somehow compactly express (SSC-P1), and solve Note that the subgradient at a given point need not be
the resulting program efficiently and find an (near-) opti- unique. Ifd; is the subgradient at point;, we can add the
mal (fractional)first-stage vector:, then one can obtain a subgradient cutd; - (x — z;) < 0 and proceed with the
2p-approximation algorithm. This motivates the following (smaller) polytopeP; 1 = P; N {z : d; - (x — z;) < 0}.
formulation with only the stage | variables. Unfortunately, even computing the subgradient at a point
seems hard to do in polynomial time for the objective func-
min Zwlsxs + f(z) st.0<zs <1 VS, (SSC-P2) tions that arise in stochastic programs. To circumvent this
S obstacle, we define the notion of approximate subgradi-

where f(z) = Y acppafal®), and fa(w) = entwhich is crucial to the working of our algorithm.

: II . _ ~
m.ln{Zs WgTA,S * Zs;ee_s ra.s 21 =) gees@s Ve € Definition 3.1 We say thatl is an (w, D)-subgradient of a
A ras =20 VS}' It is strmghtforward to show that functiong : R™ — R at the pointu € D if for everyv € D
(SSC-P2) and (SSC-P1) are equivalent programs, and tha\g\,e haveg(v) — g(u) > d. (v — u) — wg(u)

the objective function of the latter is convex.
The algorithm only usetv, P)-subgradients which we
3. Solving the convex program denote asv-subgradients from now on. We show that one
can compute with high probability am-subgradient ofi(.)
We now leverage the fact that the objective function of at any pointz, by sampling from the black box on scenar-
(SSC-P2) is convex, and show that the ellipsoid method canios. At a feasible point:;, we compute aw-subgradientfi
be adapted to find a near-optimal solution to (SSC-P2) in and add the inequalit&- - (x — x;) < 0to chop off a region
polynomial time despite the fact that evaluatinf(z), and of P; and get the polytop@®;, ;. Continuing this way we
hence the objective function, may in general be #P-hard obtain a polynomial number of points, 1, ...,z such
Section 4 generalizes the arguments to show that the algothatx; € P; C P;_; for eachi, and the volume of the el-
rithm can be applied to a broad class of 2-stage programs. lipsoid centered at;, containingP; (and hence ofP) is
The ellipsoid method starts by containing the feasible re- “small” (this is made precise later). Now if the functibg.)
gion within a ball; in each iteration, a new ellipsoid is gener- has bounded variation on nearby points, then one can show
ated by finding the minimum-volume ellipsoid that contains thatmin; h(z;) is close to the optimal valug(xz*) with high
the intersection of the current one with a specific half-space probability. Since we approximate the subgradient,atur
defined by a hyperplane. If the current ellipsoid center is in- running time depends only on the variation in the subgradi-
feasible, then one uses an inequality violated by it; other- ent vector components, which we show is bounded by the
wise, one uses apbjective function cyto eliminate points  maximumratio of the stage Il and stage | costs.
whose objective function value is no better than the cur- A final hurdle is that, since we cannot compiie:), we
rent center. Continuing in this way, using the fact that the will not be able to determine the poit= arg min; h(x;).
volume of the successive ellipsoids decreases by a signifi-Nonetheless, by using approximate subgradients we will
cant factor, one can show that after a certain number of iter-find a pointz in the convex hull ofry, . . . , z;, at which the
ations, the feasible point generated with the best objectiveobjective function value is close tain; h(z;). At the heart
function value is a near-optimal solution. of this procedure is a subroutine that given two pointg,



returns a poiny on the line segment joining, andy, such
thath(y) is close tomin(h(y1), h(y2)). We findy by per-

which direction to move along the line segment. By repeat-
edly calling the above subroutine with(initialized to x()
andz;,i = 1,...,k, each time updating to the point re-
turned by the subroutine, at the end we get a poistich
thath(z) is close tomin; h(x;).

Algorithm details. Let OPT = min{h(z) : x € P} de-

ConvOpt (k, )

(1 + k) - OPT with high probability. Assumé < 1.]
forming a bisection search, using the subgradient to infer ~; pefine —

[Returns a pointz such thath(z) <

= max(1, maxs ws/ws) SampIeM Aln(3)
times from the distribution on scenarios. L¢t= number of
times a non-null scenario occurs.

C2. If X =0, returnz = 0 as an optimal solution.

Cs. Otherwise (with high probabilitypPT > o/X, wherep =

Sete = kp/(2)), v = k/3. ReturnFindOpt (v,e).

note the optimal solution value. We give the algorithm for OPT /(1 — ) + €. Assumey < 1]

an arbitrary convex functioh(.) and an arbitrary (rational)
polytopeP (the feasible region is bounded) Leét| de-

note thel, norm ofu, i.e., (37, u? ) Given a function
g : R™ — R, we say thay hasLipschitz constanfat most)
K if |g(v) — g(u)] < K|lv — ul| forall u,v € R™.

Let the objective functiork : R™ — R have Lipschitz
constantK’. We assume that > 0 is a defining inequal-
ity of P. We also assume that the polytopes contained
in the ball B(O,R) = {x : |jz| < R} and contains a
ball of radiusr such thatin & andIn (1) are polynomially
bounded. (It is trivial to obtain such values Bfandr for
all the optimization problems considered; Lemmas 6.2.4—
6.2.6 in [8] show that one can always get suthndr.) Set
V = min(1,r) and define\ = max (1, maxg %)

The bulk of the work is performed by a procedtriad-
Opt (see Fig. 1)FindOpt takes two parametersande and
returns a feasible solutiah such thath(z) < OPT /(1 —
v)+e¢, wherey < 1 without loss of generality, in time poly-
nomial inm andln(KR'”

Ve
pute w-subgradients for a sufficiently small. This is the

main procedure that uses the ellipsoid method and the no-

tion of w-subgradients to get close to an optimal solution
as discussed earlier. To convert this to a purely multiplica-
tive guarantee, in procedu@mnvOpt we first sample a cer-
tain number of times from the distribution on scenarios and
determine with high probability that either,= 0 is an opti-
mal solution to (SSC-P2) and return this solution, or obtain
a lower bound orOPT and then calFindOpt settingy and
€ appropriately. By using proceduf@nvOpt to bootstrap
FindOpt, we may assumeindOpt executes only ifOPT is
“large”, and thus set ande so thatrFindOpt returns a solu-
tion of cost at most1 + x) - OPT.

By our earlier discussion, one can chodgeand V' so

thatIn(£) is polynomial in the input size. In the analysis

we show that for the stochastic set cover problem one can

computew-subgradients (with a sufficiently high probabil-
ity), and bound the Lipschitz constaft, so that the entire
procedure runs in polynomial time. In Section 4 we gener-

), assuming that one can com- M1. Setp « ¢/4k, T « o, N’ « log(
M2. Fori=1,.

1n<1/<s>

FindOpt (7y,€)  [Returns a pointa‘: such thath(z) <

Ol Setk — 0, yo «— 0, N — 2m?In(LEEY) ,
Nlog(SNGKR) andw <« v/2n. Let Ey — B(0,R) and
Po — P.

02. Fori =0,..., N do the following.

[We maintain the invariant thaE; is an ellipsoid cen-
tered aty; containing the current polytoge;..]

a) Ify; € Py, setzy, — y;. Letdy, be anw-subgradient
of h(.) atxy. Let H denote the half spader € R™ :
dk . (CL‘ — .Z‘k) < 0}. SethH «— PN H andk «
k+ 1.

b) If y; ¢ Py, leta -z < b be a violated inequality, that
is,a-y; > b,whereast-x < bforallz € Px. LetH
be the half spacéxz € R™ : a - (z — y;) < 0}.

c) SetF;+1 to be the ellipsoid of minimum volume con-
taining the half-ellipsoidZ; N H.

03. Letk «— k — 1. We now have a collection of points

To,...,xr such that eache; € P, C P_1. Return
FindMin(w; zo, . .., zk).
FindMin (w3 o, . . .y Tk)
SkKR)_

, k do the following.
[we maintain the invariant that(z) <
(i = 1)p) /(1 —w) =DV ]
a) We use binary search to figdon thez — z; line seg-
ment with value close tein(h(Z), h(z;)). Initialize
Y1 < T, Y2 < Ts.
b) Forj =1,..., N’ do the following.
[We maintain thab(y:) < h(Z)/(1—w)? ™1, h(y) <
h(z:)/(1 - w)’™1]
— Lety «— % Compute arzw-subgradienti of
h at the pointy. If d- (y1 —y2) = 0, then exit the
loop. Otherwise exactly one af- (y; — y) and
d- (y2 — y) is positive.
— Ifd-(y1 —y) > 0, sety, — y, else sety — y.
C) Setz «— y.

(miny=g (1) +

M3. Returnz.

Figure 1. The convex optimization algorithm.

alize these arguments to argue thasubgradients can be 3.1. Analysis
a computed for a large class of 2-stage programs, so that

FindOpt andConvOpt can be used to find @ + «)-optimal
solution in polynomial time.

We first analyze proceduréndOpt. The following facts
are well known (see, e.g., [8]).



Fact 3.2 The volume of the balB(u,D) = {z € R™ :
|z —u|]| < D} whereu € R™, D > 0is D™vol(B(0,1)).

Fact 3.3 Let £ C R™ be an ellipsoid andd C R™ be
a half space passing through the centerfof There is a
unique ellipsoidt’ of minimum volume containing the half-

ellipsoid E N H and Vv‘j)'l((’gf < e~ l/@m),

Lemma 3.4 The pointszy, ...,z generated byFindOpt
satisfymin?_ h(z;) < (OPT + £)/(1 — w).

Proof: Letz* be an optimal solution. g, - (x*—2) >0
for somel, thenh(z;) < h(z*)/(1 — w) sinced; is anw-
subgradient at;. Otherwise using a volume reduction ar-
gument, one can show that there must be a pplying on
some hyperplané, - ( —z;) = 0 such that|y —z*| < %

soh(z) < h(y)/(1—w) < (h(z*) + ) /(1 —w).  m

Lemma 3.5 ProcedureFindMin returns a pointz such that
h(z) < (minf_g h(z;) + £) /(1 — w)FN

Proof : The proof follows from the invariant stated in step
M2 with ¢ = k + 1. The inner “Forj=...” loop returns a
point y such thath(y) < min(h(z), h(z;))/(1 — W)V +

p. So if the invariant holds at the start of iteratigrsetting

Z « y in step M2c) at the end of iteratianensures that it
holds at the beginning of iteratian+ 1. [ ]

Theorem 3.6 AlgorithmFindOpt returns a feasible point
satisfyingh(z) < OPT/(1 —v) + € in time O(T (w) -
m?In*(£Em)), whereT'(w) is the time taken to compute

anw-subgradient and = © (y/m? In*(£Em)).

Now we show thatConvOpt works correctly with high
probability. We make the very mild assumption that for an
optimal solutionz*, in any scenariol # (), the total cost of
scenariod is at least 1, thatisp! - 2* + fa(z*) > 1.

Lemma 3.7 ConvOpt determines with probability at least
1-94,thatOPT > §, or thatz = 0 is an optimal solution.

Proof : Note thatp < 1 sinced < % Since in every
non-null scenario, we incur a cost of at leastIPT > q,
whereq = ZACUA#Q p4 is the probability of occurrence
of a non-null scenario. Let = Pr[X = 0] = (1 — ¢)M.
Sor < e ™ andr > 1 — M. If ¢ > In(5)/M, then
Pr[X = 0] < 4. So with probability at least — § we will
say thatOPT > o/ which is true sinc®)PT > ¢ > % If
q <6/M,thenPr[X =0] > 1— 4. Wereturnz =0 as an
optimal solution with probability at leagt— § which is in-
deed an optimal solution, becauge< % implies that it

is always at least as good to defer to stage Il since the ex-
pected stage Il cost of a sétis at mostg - wY < wk. If
§/M < q <In(})/M, then we always return a correct an-
swer since it is both true that = 0 is an optimal solution,
and thatOPT > g > o/ . [ |

We now focus on showing that the algorithm re-
turns a (1 + k)-optimal solution to (SSC-P2) with
probability at leastl — § in polynomial time. Recall
that our objective function isi(z) = ' -z + f(x)
where f(z) Yacupafa(z) and fa(z)
min{ZS wgrA:S : ZS:&GS TA,8 2 1—- ZS:eGSxS Ve €
A; ras > 0VS}. By taking the dual, we can write
faz) = max{3.(1 = Yg.es¥s)2ae : 2a € Qa}
whereQy = {z € RVl : 3, oz < wY forall S;
ze = Oforalle ¢ A; =z > 0}. (Here we include vari-
ablesz, for e ¢ A in the dual for convenience.) Recall

I1
that A = max(1, maxgs =+ ). We show that for the func-
S

tion h(.), one can efficiently compute-subgradients, and
bound the Lipschitz constaiif. This follows from 3 facts.

1. Any vectord that component-wise approximates a sub-
gradient atx to within a certain accuracy is an-
subgradient at (Lemma 3.8).

2. At any pointz there is a “nice” subgradient with
componentds € [—wy, wk] (Lemma 3.9). This gives
a bound on the Lipschitz constafit

3. Since the componeni; lie in a range bounded mul-
tiplicatively by A, poly(m, A, =) samples suffice to
compute an estimaté that component-wise approx-
imates the subgradient with high probability (Corol-
lary 3.11), and thus obtain amsubgradient.

Using the above procedure to computsubgradients (with

a small enough error probability) in proceduredOpt,

and putting the various pieces together, we show in The-
orem 3.12 thaConvOpt returns a point such thati(z) <

(1 + k) - OPT with probability at leastl — 26 in time

poly(input size \, %, ln(%)) .

Lemma 3.8 Letd be a subgradient df(.) at the pointz €
P, and supposd is a vector such thafg — ww}s <dg <
ds for all S. Thend is anw-subgradient of,(.) at .

Proof : Lety € P. We haveh(y) — h(z) > d-(y—z) =
d-(y—z)+(d—d)-(y—z).Sinced < dg — dg < wwl
andzg,ys > 0 for everyS we have,(d — d) - (y — z) >
—(d—d) x> - qwwkrs > —wh(z). [

Lemma 3.9 Letz € R™, and letz; be an optimal dual so-
lution for scenarioA with x as the stage | vector. The vector
d with componentels = w§ —>_ 4 Pa Y cg %4, i @ sub-
gradient atz, and ||d|| < Aljw!]].



Proof : Lety € R™. We have to show that(y) — h(x) > fa(x) = min wAA' rat qi

d - (y — z). The dual solution”, € Q4 provides a lower st Bsa =>h 2
bound onf 4 (y) for every scenariod, using which one ob- DAy 4+ TAry >4 —T% 3)
tains thath(y) — h(z) > > ¢ ds(ys — xs). To bound||d]|, ra,54 >0, 74 €R™, 54 € R™.

observe thawl — wi < dg < w}, since for everyA,

Phe > 0Ve, Yeg2h, < wl, andY" .y pa = 1. So Here.A denotes the set of all possible scenarios. We require

that (a)74 > 0 for every scenariot, and (b) for every: €

lds| < dwg, and hencdld]] < Allw']. - P, f(x) > 0 and that the primal and dual problems corre-
Since at any point: there is a subgradieni(z) with sponding tof 4 (x) are feasible for every scenarit A suf-
|d(z)|] < AJw']|, the definition of a subgradient implies ficient condition for (b) is to insist that < fa(z) < +o0
that K < \||w!| so thatin K is polynomially bounded. at every pointz € P and scenaridd € A. We can re-
Using standard Chebyshev and Chernoff bounds one cartax condition (a) somewhat and solve a more general class
show the following. of programs that allow one to incorporate upper bounds,

in certain cases. Observe that this class of stochastic pro-

Lemma3.10Let X € [—a,b] be a random variable grams is rich enough to model stochastic problems with

a,b > 0, computed by sampling from a distributian Let ~ Scénario-dependent recourse (that is, stage 1) costs. All the
p = E[X] anda = max(1,a/b). Then for any > 0, by stochastic optimization problgms we consider can be ex-
pressed as convex programs in the above form, and one can
therefore obtain a near-optimal fractional solution for each
of these problems in polynomial time. To prevent an ex-
ponential blowup in the input, we consider a model where
an oracle supplied with scenarié reveals the scenario-
Corollary 3.11 At any pointz € P, one can compute an dependent datéau"‘,qA,hA, 'A,BA,DA,TA). The anal-
w-subgradient with probability at least—  using at most  ysjs in Section 3.1 can be extended to show that our al-
4002" In () independent samples from the probability dis- gorithm can compute a near-optimal solution to (Stoc-P).

tribution on scenarios. Let h(.) be the (convex) objective function. Define =
A

max (1, maxe 4,5 -+ ), which we assume is known to the
S

algorithm. The key property we require is the ability to
computew-subgradients. This will follow from Lemma 4.1
which shows that at any point there is a subgradient whose

taking 1 100“ In(}) independent samples from one can

compute an est|mat§’ such thaty — 2¢b < X < p with
probability at leastl — §.

Theorem 3.12 Using the above sampling method to com-
putew-subgradientsConvOpt computes a feasible solution
to (SSC-P2)of cost at mostl + ) - OPT with probabil—

. o X : 1

ity at leastl — 24, in imepoly (input sizeA, 1, In(5)). components have variation bounded bythis also bounds
the Lipschitz constant), and that one can obtainuan

Proof: By Lemma 3.7, we know that €onvOpt callsFind- subgradient by component-wise approximating this vector.

Opt then with probability at least — 6 we haveOPT > {.

We compute as-subgradient at mosV + n times where ~ Lemma4.1 Letz € P and (u%, %) be an optimal dual

n = Nlog(SNKR) N = 2m2 1n(16KR ) With w = L solution for scenariod with x as the stage | vector, where

and error probabllltyﬁ in Corollary 3.11, we get that 24 IS the dual multiplier corresponding to inequaliti¢3).
22 ) m(N ) The vectord = w' — >, pa(T4)T 27 is a subgradient at

T(w) = O(A (7)) samples ensure that each 4

3 I 7 1
individual vector computed is an-subgradient with prob- % With ldll < Allw']l. If d is a vector such thaf — ww” <
ability at leastl — z=55- So the net error probability of d < d, thend is anw-subgradient at:.

FindOpt is at mos®, and the error probability afonvOpt is

at most26. Theorem 3.6 shows the performance guarantee
and the time taken i® (N + n)T'(w)) = O( 3/\2(1nN—|—

In(3))/~?%), which ispoly (input size \, -, In(3)).

Theorem 4.2 We can obtain a feasible solution {Stoc-P)
'of cost at mostl + ) - OPT with probability at least — 24
in time polynomial in the input size,, andIn(%).

In addition, we can us€onvOpt to solve the class of
) programs (Stoc-P) where the second-stage is specified by a
4. A class of solvable stochastic programs continuous random variabtewith density functionp(¢).

We now show tha€onvOpt can be used to solve the fol- 5. Applications
lowing broad class of 2-stage stochastic programs.
) : . We give a number of applications for which we prove the
min  w -+ Z pafa(r) st x>0, zePCR™, first known performance guarantees in the black-box model
AcA (Stoc-P) without any restrictions on the costs in the two stages.



Vertex cover. The stochastic vertex cover problem is a spe- andjj; the distances;; form a metric. The goal is to min-
cial case of the stochastic set cover problem where we wantmize the total facility opening costs and client assignment
to cover the edges of a graph by its vertices. The edge setosts. In the 2-stage stochastic uncapacitated facility loca-
A (i.e., scenario) to be covered is chosen from a probabil-tion (SUFL) problem, we are given a probability distribu-
ity distribution and is revealed only in stage Il; we may tion on the clients that are activated and need to be assigned
choose a vertex either in stage | paying a cost af!, or to facilities; a facility: may be opened in stage | or in stage
in stage Il at a cost ofv in scenarioA. The previous re- I, incurring a cost off! or f# in scenarioA, respectively.
sults for this problem were an 8-approximation algorithm  For the special case wherg® = \f!foreachi ¢
in the black-box model, and a 3-approximation algorithm F and each scenarigl, Gupta et al. [9] gave an 8.45-
in the setting where each edge is independently activated approximation algorithm in the black-box model, and a 6-
both for the case whem?! = \w! for eachv and scenario  approximation algorithm in the setting where each client is
A, due to Gupta et al. [9]; Ravi and Sinha [14] gave a guar- activated independently. Ravi and Sinha [14] gave an LP-
antee of 2 when there are only polynomially many scenar- rounding based 8-approximation algorithm for the polyno-
ios (but with scenario-dependent second-stage costs). mial scenarios setting that can handle scenario-dependent
Since the stochastic vertex cover problem is a specialfacility opening and client assignment costs, where the as-
case of the stochastic set cover problem, and the detersignment cost in scenarid is c4;; = v*¢;; foralli, j.
ministic vertex cover LP is known to have an integrality Their rounding algorithm needs to know the optimal frac-
gap of 2, by Corollary 2.2, we obtain, for ary > 0, tional solution foreach stage Il scenariavhich renders it
a (4 + ¢)-approximation algorithm for the stochastic ver- unsuitable when there are exponentially many scenarios.
sion with black-box distributions and scenario-dependent  We improve upon all of these results. We consider a con-
second-stage costs. This is the first approximation algorithmvex programming relaxation of the problem and give a dif-
in this more general model with black-box distributions. ferent rounding approach that decides which facilities to
open in stage | based amly the stage | fractional solu-
Theorem5.1For any ¢ > 0, there is a (4 + ¢)- tion. Combined with our algorithm to solve the convex pro-
approximation algorithm for the stochastic vertex cover gram, this yields a 3.225-approximation algorithm in the
problem with arbitrary probability distributions and black-box model with scenario-dependent costs. One can
scenario-dependent stage 1l costs. write the following convex program fa8UFL. We usei to

. . index the facilities inF and; to index the clients.
Using the results of Kolliopoulos & Young [12], we also ndex lities i/ g to Index !

get algorithms for general stochastic covering problems. | . Zf_ly_ + Z pagaly) st 0<y; <1 Vi

Minimum multicut on trees. In the deterministic mini- ACD (SUFL-P)
mum multicut problem on trees, we are given a tree with

costsw, on the edges, and pairs of vertices, #;). The where ga(y) = min > flyai + D cijzai

goal is to remove a minimum-cost set of edges so as to dis- i JEA

connect eaclis;, ¢;) pair. In the stochastic variant, the pairs s.t. ZxA,ij >1 Vj € A,

to be disconnected are revealed only in stage Il, and we can
choose either to “cut” an edge in stage | or in stage Il, pay-
ing a cost ofw! orw? in scenaricd, respectively. The mul-
ticut problem is an instance of the set-cover problem, where| gt pourL < 1.52 [13] denote the integrality gap GfUFL.
we want to cover eacfs;, t;) path. Using the algorithm of N

Garg, Vazirani, and Yannakakis [7] for the deterministic set- Theorem 5.3 There is a(3.225 + ¢)
ting, and applying Corollary 2.2, we get the following.

' Tai; <yi+yas VjeAl
TAuj,Yai >0 Vi€ A, i.

-approximation algo-
rithm for SUFL based on rounding a near-optimal solution
to (SUFL-P) Moreover, the integrality gap ofSUFL-P)
is at most2ppyp. < 3.04. These results hold even with
scenario-dependent assignment cegfs= v“c;;.

Theorem 5.2 For any e > 0, there is a (4 + e)-
approximation algorithm for the stochastic minimum multi-
cut problem on trees.

Facility location problems. In the deterministic uncapac- Proof: We first show that the integrality gap of (SUFL-P) is
itated facility location DUFL) problem, given a set of can- at most2ppyrL. The proof is along the lines of the proof of
didate facility locationsF, and a set of client®, we want Theorem 2.1. Ley be an optimal solution to (SUFL-P) and

to open facilities at a subset of the locationsAinand as-  (z4,y4) be the optimal solution for scenarié given the

sign each client to an open facility. Opening a facility at lo- first-stage decision vectgr Let OPT' be the optimal solu-
cations incurs a cost off;, and the cost of assigning client tion value. We will show that we can decouple the first-stage

Jj to facility ¢ is (proportional to) the distanag; betweeri and second-stage decisions, so that one can get an integer



solution by separately solving@UFL problem for stage |
and aDUFL problem for each stage Il scenario. Fix a sce-
nario A and a clientj € A. Let Fa; = {i : 24, > 0}.
We write z4,; = 24 ,; + 2% ,; wherez!, ,, < y; and

el i < yay. Sincera; < yi + ya, we can always split

x 4.5 in the above way. Observe thatnust be assigned to
an extent of at leas} either by the assignmert:!, .} or

by the assignmer{txﬂ{’ij}, that is, either}_, acféuj > s or
DT > 1. In the former case, we will assignto a fa-

cility opened in stage |, and in the latter case we will assign

j to a facility opened in stage .

More precisely, for any clienf, consider the set of sce-
nariosS; = {A C D : ), SCIAM > 1}. For our stage

| decisions, we shall construct a feasible fractional solu-

tion for aDUFL instance in which the facility costs ag@,

the assignment costs aeg;, and each clienj has ade-
mand equal to }°, s pa; we then round this frac-
tional solution to an integer solution using known al-
gorithms for DUFL. We first construct a feasible so-
lution in which there is a client(j, A) for each sce-
nario A € S;, with demandp,4, and then coalesce these
scenario-dependent clients into one. Consigerl) such
that A € S;. We can obtain a feasible solution by set-
ting 24,5 = min(l,?:z:i"ij) andy; = min(1,2yi) for
eachi € F. (Note that a client may be assigned to an ex-
tent greater than 1.) However, tlje values do not depend
on the scenario and given tljevalues, we can re-optimize
the fractional assignment for each client first reset
%4, = 0, then considering facilities in non-decreasing or-
der of ¢;;, set@4 i, = min(gi,1 — >, &4,;) for each

/. But this new fractional assignment is completely deter-
mined by thej; values anddoes not depend oA, and so
we can now view all of these clientg, A) as one client

J with demand}_ , . 5. pa. The facility cost of this frac-

tional solution is atmost Y, fly;, and the assignment cost

is no more than the one for the scenario-dependent clients

23755 D aes, PACiTaq; < 2305 Y acs, PACHTAij-
Using the fact that the integrality gap OUFL is ppurL,
given thisDUFL instance with fractional solutiofi, ), we
can now obtain an integer solutidf, §) of cost at most

2PDUFL(Z¢ f,}yl + Zi,j ZAESj pACiij,ij); this deter-

mines the set of facilities to open in stage I, and for each

client j takes care of the scenarioss.

In any scenaric4, each clientj € A such thatd € S;

tion tells us which facilities to open in scenariband how
to assign the clients i 4. Hence, the overall cost of the so-
lution with first-stage facilitieg is at mosppygL - OPT,
implying that the integrality gap is at mo&ppyg, .

To obtain the approximation algorithm, we first obtain
a near-optimal solutiory in polynomial time. The diffi-
culty in converting the proof of the integrality gap into a
rounding algorithm is that the algorithm that shows that
pourL < 1.52 due to [13] requires knowledge of the client
demands, whereas we do not know the dem@pesj pA
of a clientj, and might not be able to even estimate it
by sampling, since the probability, could be extremely
small. We therefore need an approximation algorithm for
DUFL that works without explicit knowledge of the client
demands. Swamy [15] (Section 2.4) gives an algorithm with
this property; the algorithm converts any fractional solution
to an integer solution based on just the fractional facility
variables, increasing the cost by a factor of at most 1.705.
We use this algorithm to obtain a 3.225-approximation al-
gorithm by modifying the definition of; slightly so as to
balance the contribution from stages | and II. ]

The analysis extends with minor notational changes to
the case where we have arbitrary scenario-dependent de-
mandsd', and/or assignment costs = y¢;;. Our ap-
proach yields the first constant-factor approximation algo-
rithms for other stochastic facility location problems, such
as facility location with penalties, or soft capacities, or ser-
vice installation costs. In each case, we solve the relaxation
of the stochastic integer program using the algorithm in Fig-
ure 1, and round the near-optimal solution by using a round-
ing algorithm for the deterministic problem in conjunction
with a variant of the rounding procedure detailed above.

Multicommodity flow. We consider a stochastic version of
a multicommodity flow problem where have to buy capac-
ity to install on the edges so that one can concurrently ship
'd{‘ units of commaodity; from its sources; to its sinkt;

in each scenariol. We can either purchase capacity on an
edgee in stage | paying cost., or wait until the exact de-
mands are known and buy capacity at cgbtin scenario

A in stage Il; the total amount of capacity that we can in-
stall on an edge is limited by.. The goal is to minimize
the total (expected) cost of installing capacity. The stochas-
tic multicommodity flow problem can be formulated as fol-

lows: minimizeY", clae + > 4 4 Paga(z) (A s the set

is assigned to the stage | facility given by the assignmentof all scenarios) subject 0 < z. < wu, for eache, and

Z. To assign the remaining clients, we solveddFL in-
stance with clientseDy = {j € A : A ¢ S;}. Since
A ¢ S;, we have thafy, 2 ,; > 1, and hence if we
resettq;; = min(l,QxEJj), YA = min(l,QyA,j,) for
eachi € F, we get a feasible solution for this set of

ga(z) is the minimum value of"_ c2y4 . subject to the
constraints that for eaghthe total flow for(s;, ¢;) is at least
d#, for each edge, the total flow ore is at mostr,, + YA,er
and also at most. (this encodes that, + y4.. < ue).
Immorlica et al. [10] considered the single-commodity

clients. Again, we can get an integer solution of cost at version of this problem and gave an algorithm based on

Most2ppuyrL (ZZ fLAyA,i + Zi,jeDA CijCCAJ‘j). This solu-

writing an LP that enumerates all scenarios, one for each



possible demand value, and solving the LP to compute theTheorem 6.2 At any pointz € P, anw-subgradient of.(.)
optimal first-stage decisions. Consequently, their running can be computed with probability at ledst § in time poly-
time depends on theaximum demand that may be re-  nomial in the input sizef, andln(3}). Thus,ConvOpt can
alized. This approach suffers from the “curse of dimension- be implemented to run in time that does not depend.on

ality” and does not work well in the multicommodity set- i
ting, since even if the maximum demand is 1, there are still ACknowledgmentsWe thank Mike Todd and Shane Hen-

an exponential number of scenarios to enumerate. Note thafl€"Son for useful discussions and very helpful suggestions.

there are no integrality constraints, that is, one can install
fractional amounts of capacity. We can solve the stochasticReferences
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