
Stochastic Optimization is (almost) as Easy as Deterministic Optimization∗

David B. Shmoys†

shmoys@cs.cornell.edu
Chaitanya Swamy†

swamy@cs.cornell.edu

Abstract

Stochastic optimization problems attempt to model un-
certainty in the data by assuming that (part of) the input is
specified in terms of a probability distribution. We consider
the well-studied paradigm of 2-stage models with recourse:
first, given only distributional information about (some of)
the data one commits on initial actions, and then once the
actual data is realized (according to the distribution), fur-
ther (recourse) actions can be taken. We give the first ap-
proximation algorithms for 2-stage discrete stochastic op-
timization problems with recourse for which the underly-
ing random data is given by a “black box” and no restric-
tions are placed on the costs in the two stages, based on
an FPRAS for the LP relaxation of the stochastic problem
(which has exponentially many variables and constraints).
Among the range of applications we consider are stochas-
tic versions of the set cover, vertex cover, facility location,
multicut (on trees), and multicommodity flow problems.

1. Introduction

The study of stochastic optimization problems dates
back to the 1950’s and the work of Dantzig [3] (among oth-
ers) and attempts to model uncertainty in the data by assum-
ing that (part of) the input is specified in terms of a proba-
bility distribution, rather than by deterministic data given
in advance. Stochastic optimization techniques and mod-
els have become an important paradigm in a wide range of
application areas, including transportation models, logis-
tics, financial instruments, and network design. Stochas-
tic models are often computationally quite difficult, both
from a practical perspective, as well as from the view-
point of complexity theory; even extremely specialized
(sub)problems may be#P -hard [6].

We shall focus on an important subclass of stochastic op-
timization problems:2-stage problems with recourse. Many
applications come under this setting, such as the problem of

∗ A full version is available at www.cs.cornell.edu/ ˜swamy/stochopt.ps
† Dept. of Computer Science, Cornell University, Ithaca, NY 14853. Re-

search supported partially by NSF grant CCR-9912422.

installing facilities to serve a set of clients; one is initially
given only a probability distribution on the demands of the
clients (in addition to deterministic data for the facility and
assignment costs) on which to base initial (first stage) deci-
sions, but then one can extend (in a second stage) the solu-
tion once the actual input is realized according to this dis-
tribution, where these recourse costs may be different (and
typically more expensive) than the original ones. Much of
the textbook of Birge and Louveaux [1] is devoted to mod-
els and algorithms for this class of problems.

We shall initially focus on the following stochastic gen-
eralization of the set cover problem: we are given a fam-
ily of setsS1, . . . , Sm over a ground setU , where each set
S has ana priori weight wI

S , and ana posteriori weight
wII

S associated with it. In the first stage, one selects some of
these sets, incurring each associated weightwI

S , then a sub-
setA ⊆ U is drawn according to a specified distribution,
and then additional sets may be selected (incurring their sec-
ond stage weights) so as to ensure thatA is contained in the
union of the selected sets (in both stages). The aim is to min-
imize the expected cost of the solution. Note that an explicit
representation of a feasible solution would require specify-
ing an exponential amount of information (since there are
2|U | possible choices forA), and so it will be necessary to
give more compact, algorithmic representations.

An important issue left ambiguous in the description
above is the way in which the probability distribution is
specified; several approaches have recently been consid-
ered in papers that address related 2-stage stochastic opti-
mization problems. Dye, Stougie, and Tomasgard [4], and
later, Ravi and Sinha [14] assume that there are only a
polynomial number of scenarios, i.e., choices forA, that
occur with positive probability. Independently, Immorlica,
Karger, Minkoff, and Mirrokni [10] consider both this as-
sumption, as well as the model where each element occurs
with its own independent probability, and in so doing they
enlarge the space of scenarios to be exponentially large.
This is done with the rather severe restriction of assum-
ing that thecosts in the two stages are proportional, that
is, there is a parameterλ such thatwII

S = λwI
S for each set

S. Gupta, Ṕal, Ravi, and Sinha [9] also require this assump-
tion, but give a more general way to specify the distribution,
which we shall call theblack-box model: they assume that

the algorithm may make use of samples that are drawn ac-
cording to the distribution of scenarios.

Our Results. We achieve the best qualities of all of these
approaches: we work in the black-box model and obtain re-
sults in settings where the costs in the two stages need not
be proportional, and the second-stage costs may evende-
pend on the particular scenario realized(as in [14]).

We show that, given a class of (deterministic) set cover
instances (e.g., the vertex cover problem), for which we
have aρ-approximation guarantee with respect to the nat-
ural linear programming relaxation, we can, for anyε > 0,
obtain a randomized(2ρ + ε)-approximation algorithm for
the stochastic generalization. This generalizes and improves
upon performance guarantees of [9].

Our result has two principal components. First, we show
that if we formulate the stochastic set cover problem as an
(exponentially large) integer program and solve its linear
programming (LP) relaxation, then a surprisingly simple
rounding approach suffices to prove the guarantee claimed
above. The essence of our approach is that the relaxation
indicates for each element either that it is at least half cov-
ered in the first stage, or else it must be at least half cov-
ered ineachscenario in which it occurs in the second stage.
We have decoupled the two stages (and indeed each of the
scenarios for the second stage), and can apply the determin-
istic result to each separately. Thus, the fact that we lose a
factor of 2 is exactly tied into the fact that we are consider-
ing a 2-stage problem. Note that we need to examine only
the first-stage variables to decouple the two stages, and not
the entire (exponentially large) LP solution. In fact, this de-
composition can be applied to a number of stochastic inte-
ger optimization problems. Furthermore, if we consider the
case when there are only a polynomial number of scenar-
ios, then this rounding approach is sufficient to yield strong
performance guarantees for a wide range of applications.

Second, and this is the more technically difficult part of
the paper, we give a fully polynomial randomized approxi-
mation scheme for solving a broad class of 2-stage stochas-
tic LPs, in spite of the fact that this may be#P -hard. (The
LP has an exponential number of both variables and con-
straints.) We believe that this is a tool of independent inter-
est, in particular, in the stochastic programming literature,
and will find application in the design of approximation al-
gorithms for other stochastic integer optimization problems.

We approximately solve this linear program by work-
ing with an equivalent (but compact) convex programming
formulation, and show that the ellipsoid algorithm can be
adapted to yield such a scheme. In the ellipsoid algorithm
for convex programming, the algorithm generates a se-
quence of ellipsoids, starting with an ellipsoid that contains
the entire feasible region; in each iteration, a hyperplane is
generated that is intersected with the current ellipsoid, and
the next ellipsoid generated is the minimum-volume ellip-

soid containing this intersection. At a feasible point, the hy-
perplane is computed by computing the subgradient of the
objective function at the center of the current ellipsoid. We
introduce a notion of approximate subgradients that is suf-
ficient to yield the same convergence of the algorithm. Fur-
thermore, we show that this approximate subgradient can
be computed in randomized polynomial time using samples
from the distribution (obtained from a black box). Finally,
the ellipsoid algorithm outputs the iterate with the best ob-
jective function value. However, evaluating the objective
function value at a given point for our class of stochas-
tic programs may be#P -hard; nonetheless, approximate
subgradient information is sufficient to efficiently compute
a point of cost close to the cost of the minimum-cost it-
erate (without, however, computing these costs). Note that
for the rounding algorithm, one only needs the convex pro-
gram’s (near-)optimal solution to compute a solution to the
stochastic integer optimization problem.

Our algorithm returns a(1 + ε)-optimal solution in time
bounded by a polynomial in the input size,1/ε, and the
maximumratio λ between the second- and first-stage costs,
and suggests that contrary to conventional wisdom, an ex-
ponential number of scenarios isnot an insurmountable
impediment to the design of efficient algorithms for these
problems.

It is useful to compare our result with some work in the
stochastic programming literature on the sample average
approximation (SAA) method for solving stochastic pro-
grams, where one samples from the distribution on sce-
narios and then solves an approximate problem, estimat-
ing the probability of a scenario by its frequency. Kleywegt,
Shapiro, and Homem-De-Mello [11] prove a bound on the
sample size required to obtain a near-optimal solution (with
high probability) that is polynomial in the dimension, but
depends on the variance of a certain quantity (calculated us-
ing the scenario distribution) that need not be polynomially
bounded. Whereas the running time of our algorithm de-
pends on the parameterλ, it does not depend on the under-
lying probability distribution. The algorithm of [9] also has
the same dependence onλ. In fact, this dependence onλ is
unavoidable; we show that a performance guarantee ofρ re-
quiresΩ(λ/ρ) samples. The dependence on1

ε is also neces-
sary in light of the known#P -hardness results. To the best
of our knowledge, this is the first result to show that (a broad
class of) 2-stage stochastic LPs can be solved in time poly-
nomial in the input size,λ, and1

ε . It is also useful to contrast
our work with that of Dyer, Kannan, and Stougie [5], who
focus on computing an estimate for the objective function
value at a given point (for a maximization problem) by sam-
pling from the distribution sufficiently many times. But this
yields a running time that is only polynomial in the maxi-
mum valueattained byany scenario, and does not yield a
polynomial approximation scheme for our setting.

The first worst-case analysis of approximation algo-
rithms for 2-stage stochastic integer programming problems
appears to be due to Dye et al. [4], who give a constant per-
formance guarantee for a resource provisioning problem
(a maximization problem) in the polynomial scenarios set-
ting based on rounding an LP. Ravi and Sinha [14], and in-
dependently Immorlica et al. [10], and subsequently Gupta
et al. [9] consider various 2-stage problems including ap-
plications that follow from our general settings. We now
contrast our results in these applications with previous re-
sults.

For the vertex cover problem, our technique yields a
(4 + ε)-approximation algorithm in the black-box distri-
bution model. In contrast, [9] give an 8-approximation al-
gorithm in the black-box model with proportional costs,
and [14] give a guarantee of 2 in the polynomial scenarios
setting. We also give extensions to multi-covering general-
izations of the set cover problem. For the stochastic unca-
pacitated facility location problem, we give a(3.225 + ε)-
approximation algorithm, whereas [9] give a guarantee of
8.45 in the black-box model with proportional costs, and
[14] give a guarantee of 8 in the polynomial scenarios set-
ting. Our approach yields constant-factor performance guar-
antees for several facility location variants, including facil-
ity location with penalties, or soft capacities, or service in-
stallation costs. As in [14], our results also extend to the
case with scenario-dependent second-stage costs.

2. A motivating example: stochastic set cover

The deterministic weighted set-cover problem (DSC) is
the following: given a universeU of n elements and a fam-
ily S of m subsets ofU , with setS ∈ S having weightwS ,
we want to choose a minimum-weight collection of sets so
that each elemente is contained in some chosen set. We can
express the problem as an integer program and relax the in-
tegrality constraints to get a linear program.

min
∑
S

wSxS s.t.
∑

S:e∈S

xS ≥ 1 ∀e, xS ≥ 0 ∀S. (P)

Let OPTDet denote the optimal value of (P). It is well
known [2] that “the greedy algorithm” returns a solution of
weight at mostlnn ·OPTDet .

In the 2-stage stochastic generalization of this problem,
abbreviatedSSC, the elements to be covered are not known
in advance. There is a probability distribution overscenar-
ios, and each scenario specifies the actual subset of elements
to be covered. For our purposes, a scenario is just a subset
of elementsA ⊆ U . We will assume that the set of all possi-
ble scenarios is just the power set2U (including the empty
set∅). We usepA to denote the probability of scenarioA
(pA could be 0, if scenarioA never occurs).We will never

explicitly use the quantitiespA in the algorithm.Through-
out, we useA to index the scenarios.

Each setS has two weights associated with it: ana priori
weightwI

S , and ana posterioriweightwII
S . We may choose

a set either in stage I paying a price ofwI
S , or in stage II af-

ter the scenarioA ⊆ U occurs paying a price ofwII
S , so

thatA is contained in the union of the sets selected (in both
stages). The goal is to minimize the sum of the stage I cost
and the expectation over all scenariosA of the stage II cost
of scenarioA. The two-stage problem can be formulated as
an integer program with the following linear relaxation.

min
∑
S

wI
SxS +

∑
A,S

pAwII
S rA,S (SSC-P1)

s.t.
∑

S:e∈S

xS +
∑

S:e∈S

rA,S ≥ 1 ∀A, e ∈ A (1)

xS , rA,S ≥ 0 ∀A,S.

VariablexS indicates whether setS is chosen in stage I, and
rA,S is 1 if and only if setS is chosen in scenarioA in stage
II. Constraint (1) says that in every scenarioA, every ele-
ment in that scenario has to be covered by a set chosen ei-
ther in stage I or in stage II. A{0, 1}-solution, corresponds
exactly to a solution to our problem. The following theo-
rem forms the basis of our methodology for tackling vari-
ous 2-stage stochastic optimization problems. LetOPT de-
note the optimal value of (SSC-P1).

Theorem 2.1 Suppose that we have a procedure that for
every instance ofDSC produces a solution of cost at most
ρ · OPTDet . Then, one can convert any solution(x, r)
to (SSC-P1)to an integer solution losing a factor of at
most2ρ. Thus, an optimal solution to(SSC-P2)gives a2ρ-
approximation algorithm.

Proof : Let h(.) be the objective function. We will argue
that we can obtain an integer solution(x̃, r̃) of cost at most
2ρ · h(x, r). Observe the following simple fact: an element
e is either covered to an extent of at least1

2 in the first stage
by the variablesxS , or it is covered to an extent of at least
1
2 by the variablesrA,S in every scenarioA containinge.
Let E = {e :

∑
S:e∈S xS ≥ 1

2}. Then(2x) is a fractional
set cover solution for the instance with universe setE and
so, one can obtain an integer set coverx̃ for this instance
of cost at mostρ ·

∑
S 2wI

SxS . Similarly, for any scenario
A, (2rA) is a fractional set cover for the elements inA \
E, since for each such elemente, we have

∑
S:e∈S rA,S ≥

1
2 . Therefore, one can cover these elements at a cost of at
mostρ ·

∑
S wII

S rA,S . So if we outputx̃ as the first-stage
decisions, we get a solution of cost at most2ρ · h(x, r).

Corollary 2.2 If the integrality gap of(P) is ρ, then the in-
tegrality gap of(SSC-P1)is at most2ρ.

Theorem 2.1 shows that if we could solve (SSC-P1), then
we could get a2 ln n-approximation algorithm forSSC.
In particular, when there are only a polynomial number
of scenarios with non-zero probability, we obtain a2 ln n-
approximation algorithm. In general, however, it seems dif-
ficult to find an optimal solution to (SSC-P1) in its present
form, since it has both an exponential number of variables
and an exponential number of constraints; even writing out
an optimal solution might take exponential space. Observe
that in the proof of Theorem 2.1, we needed to examine
only the stage I variablesxS of the fractional solution,
in order to round it to an integer solution. This is impor-
tant, because if the rounding algorithm required informa-
tion about each stage II scenarioA, that is, an exponen-
tial amount of information (as in [14]), then one wouldnot
get a polynomial-time algorithm even if one could “solve”
(SSC-P1) efficiently. In contrast, Theorem 2.1 shows that if
we could somehow compactly express (SSC-P1), and solve
the resulting program efficiently and find an (near-) opti-
mal (fractional)first-stage vectorx, then one can obtain a
2ρ-approximation algorithm. This motivates the following
formulation with only the stage I variablesxS .

min
∑
S

wI
SxS + f(x) s.t. 0 ≤ xS ≤ 1 ∀S, (SSC-P2)

where f(x) =
∑

A⊆U pAfA(x), and fA(x) =
min

{∑
S wII

S rA,S :
∑

S:e∈S rA,S ≥ 1 −
∑

S:e∈S xS ∀e ∈
A; rA,S ≥ 0 ∀S

}
. It is straightforward to show that

(SSC-P2) and (SSC-P1) are equivalent programs, and that
the objective function of the latter is convex.

3. Solving the convex program

We now leverage the fact that the objective function of
(SSC-P2) is convex, and show that the ellipsoid method can
be adapted to find a near-optimal solution to (SSC-P2) in
polynomial time,despite the fact that evaluatingf(x), and
hence the objective function, may in general be #P-hard.
Section 4 generalizes the arguments to show that the algo-
rithm can be applied to a broad class of 2-stage programs.

The ellipsoid method starts by containing the feasible re-
gion within a ball; in each iteration, a new ellipsoid is gener-
ated by finding the minimum-volume ellipsoid that contains
the intersection of the current one with a specific half-space
defined by a hyperplane. If the current ellipsoid center is in-
feasible, then one uses an inequality violated by it; other-
wise, one uses anobjective function cut, to eliminate points
whose objective function value is no better than the cur-
rent center. Continuing in this way, using the fact that the
volume of the successive ellipsoids decreases by a signifi-
cant factor, one can show that after a certain number of iter-
ations, the feasible point generated with the best objective
function value is a near-optimal solution.

The above description makes clear that the inability
to evaluatef(x) is an obstacle to applying the ellipsoid
method in this case. LetP = P0 denote the polytope{
x ∈ Rm : 0 ≤ xS ≤ 1 for all S

}
, and leth(x) be

the (convex) objective functionwI · x + f(x). If the cur-
rent iteratexi is feasible, that one could add the constraint
h(x) ≤ h(xi) while maintaining the convexity of the fea-
sible region. But then, in subsequent iterations, one would
need to check if the current iterate is feasible, and generate
a separating hyperplane if not. Without the ability to evalu-
ate (or even estimate) the objective function value, this ap-
pears to pose a formidable difficulty. An alternative possi-
bility is to use cuts generated by asubgradient, which es-
sentially plays the role of the gradient when the function
is not differentiable. We say thatd is a subgradient of a
function g : Rm 7→ R at the pointu if the inequality
g(v)− g(u) ≥ d · (v − u) holds for everyv ∈ Rm.

Note that the subgradient at a given point need not be
unique. Ifdi is the subgradient at pointxi, we can add the
subgradient cutdi · (x − xi) ≤ 0 and proceed with the
(smaller) polytopePi+1 = Pi ∩ {x : di · (x − xi) ≤ 0}.
Unfortunately, even computing the subgradient at a pointx
seems hard to do in polynomial time for the objective func-
tions that arise in stochastic programs. To circumvent this
obstacle, we define the notion of anapproximate subgradi-
entwhich is crucial to the working of our algorithm.

Definition 3.1 We say that̂d is an(ω,D)-subgradient of a
functiong : Rm 7→ R at the pointu ∈ D if for everyv ∈ D
we have,g(v)− g(u) ≥ d̂ · (v − u)− ωg(u).

The algorithm only uses(ω,P)-subgradients which we
denote asω-subgradients from now on. We show that one
can compute with high probability anω-subgradient ofh(.)
at any pointx, by sampling from the black box on scenar-
ios. At a feasible pointxi, we compute anω-subgradient̂di

and add the inequalitŷdi · (x−xi) ≤ 0 to chop off a region
of Pi and get the polytopePi+1. Continuing this way we
obtain a polynomial number of pointsx0, x1, . . . , xk such
thatxi ∈ Pi ⊆ Pi−1 for eachi, and the volume of the el-
lipsoid centered atxk containingPk (and hence ofPk) is
“small” (this is made precise later). Now if the functionh(.)
has bounded variation on nearby points, then one can show
thatmini h(xi) is close to the optimal valueh(x∗) with high
probability. Since we approximate the subgradient atx, our
running time depends only on the variation in the subgradi-
ent vector components, which we show is bounded by the
maximumratio of the stage II and stage I costs.

A final hurdle is that, since we cannot computeh(x), we
will not be able to determine the pointx̄ = arg mini h(xi).
Nonetheless, by using approximate subgradients we will
find a pointx̄ in the convex hull ofx0, . . . , xk at which the
objective function value is close tomini h(xi). At the heart
of this procedure is a subroutine that given two pointsy1, y2

returns a pointy on the line segment joiningy1 andy2 such
thath(y) is close tomin(h(y1), h(y2)). We findy by per-
forming a bisection search, using the subgradient to infer
which direction to move along the line segment. By repeat-
edly calling the above subroutine with̄x (initialized tox0)
andxi, i = 1, . . . , k, each time updatinḡx to the point re-
turned by the subroutine, at the end we get a pointx̄ such
thath(x̄) is close tomini h(xi).

Algorithm details. Let OPT = min{h(x) : x ∈ P} de-
note the optimal solution value. We give the algorithm for
an arbitrary convex functionh(.) and an arbitrary (rational)
polytopeP (the feasible region is bounded). Let‖u‖ de-

note the`2 norm ofu, i.e.,
(∑m

i=1 u2
i

) 1
2 . Given a function

g : Rm 7→ R, we say thatg hasLipschitz constant(at most)
K if |g(v)− g(u)| ≤ K‖v − u‖ for all u, v ∈ Rm.

Let the objective functionh : Rm 7→ R have Lipschitz
constantK. We assume thatx ≥ 000 is a defining inequal-
ity of P. We also assume that the polytopeP is contained
in the ball B(000, R) = {x : ‖x‖ ≤ R}, and contains a
ball of radiusr such thatlnR andln

(
1
r

)
are polynomially

bounded. (It is trivial to obtain such values ofR andr for
all the optimization problems considered; Lemmas 6.2.4–
6.2.6 in [8] show that one can always get suchR andr.) Set

V = min(1, r) and defineλ = max
(
1,maxS

wII
S

wI
S

)
.

The bulk of the work is performed by a procedureFind-
Opt (see Fig. 1).FindOpt takes two parametersγ andε and
returns a feasible solution̄x such thath(x̄) ≤ OPT/(1 −
γ)+ε, whereγ ≤ 1

2 without loss of generality, in time poly-
nomial in m and ln

(
KRm

V ε

)
, assuming that one can com-

puteω-subgradients for a sufficiently smallω. This is the
main procedure that uses the ellipsoid method and the no-
tion of ω-subgradients to get close to an optimal solution
as discussed earlier. To convert this to a purely multiplica-
tive guarantee, in procedureConvOpt we first sample a cer-
tain number of times from the distribution on scenarios and
determine with high probability that either,x = 000 is an opti-
mal solution to (SSC-P2) and return this solution, or obtain
a lower bound onOPT and then callFindOpt settingγ and
ε appropriately. By using procedureConvOpt to bootstrap
FindOpt, we may assumeFindOpt executes only ifOPT is
“large”, and thus setγ andε so thatFindOpt returns a solu-
tion of cost at most(1 + κ) ·OPT .

By our earlier discussion, one can chooseR andV so
that ln

(
R
V

)
is polynomial in the input size. In the analysis

we show that for the stochastic set cover problem one can
computeω-subgradients (with a sufficiently high probabil-
ity), and bound the Lipschitz constantK, so that the entire
procedure runs in polynomial time. In Section 4 we gener-
alize these arguments to argue thatω-subgradients can be
a computed for a large class of 2-stage programs, so that
FindOpt andConvOpt can be used to find a(1 + κ)-optimal
solution in polynomial time.

ConvOpt (κ, δ) [Returns a point x̄ such that h(x̄) ≤
(1 + κ) ·OPT with high probability. Assumeδ ≤ 1

2
.]

C1. Defineλ = max
(
1, maxS wII

S /wI
S

)
. SampleM = λ ln

(
1
δ

)
times from the distribution on scenarios. LetX = number of
times a non-null scenario occurs.

C2. If X = 0, returnx = 000 as an optimal solution.
C3. Otherwise (with high probability),OPT ≥ %/λ, where% =

δ
ln(1/δ)

. Setε = κ%/(2λ), γ = κ/3. ReturnFindOpt (γ,ε).

FindOpt (γ, ε) [Returns a point x̄ such that h(x̄) ≤
OPT/(1− γ) + ε. Assumeγ ≤ 1

2
.]

O1. Setk ← 0, y0 ← 000, N ← 2m2 ln
(

16KR2

V ε

)
, n ←

N log
(

8NKR
ε

)
, andω ← γ/2n. Let E0 ← B(000, R) and

P0 ← P.
O2. Fori = 0, . . . , N do the following.

[We maintain the invariant thatEi is an ellipsoid cen-
tered atyi containing the current polytopePk.]

a) If yi ∈ Pk, setxk ← yi. Let d̂k be anω-subgradient
of h(.) at xk. Let H denote the half space{x ∈ Rm :
d̂k · (x − xk) ≤ 0}. SetPk+1 ← Pk ∩ H andk ←
k + 1.

b) If yi /∈ Pk, let a · x ≤ b be a violated inequality, that
is, a · yi > b, whereasa · x ≤ b for all x ∈ Pk. Let H
be the half space{x ∈ Rm : a · (x− yi) ≤ 0}.

c) SetEi+1 to be the ellipsoid of minimum volume con-
taining the half-ellipsoidEi ∩H.

O3. Let k ← k − 1. We now have a collection of points
x0, . . . , xk such that eachxl ∈ Pl ⊆ Pl−1. Return
FindMin(ω; x0, . . . , xk).

FindMin (ω; x0, . . . , xk)
M1. Setρ← ε/4k, x̄← x0, N ′ ← log

(
8kKR

ε

)
.

M2. For i = 1, . . . , k do the following.
[We maintain the invariant thath(x̄) ≤

(
mini−1

l=0 h(xl) +

(i− 1)ρ
)
/(1− ω)(i−1)N′

.]

a) We use binary search to findy on thex̄− xi line seg-
ment with value close tomin(h(x̄), h(xi)). Initialize
y1 ← x̄, y2 ← xi.

b) Forj = 1, . . . , N ′ do the following.
[We maintain thath(y1) ≤ h(x̄)/(1−ω)j−1, h(y2) ≤
h(xi)/(1− ω)j−1.]

– Lety ← y1+y2
2

. Compute anω-subgradient̂d of

h at the pointy. If d̂ · (y1−y2) = 0, then exit the
loop. Otherwise exactly one of̂d · (y1 − y) and
d̂ · (y2 − y) is positive.

– If d̂ · (y1 − y) > 0, sety1 ← y, else sety2 ← y.

c) Setx̄← y.

M3. Returnx̄.

Figure 1. The convex optimization algorithm.

3.1. Analysis

We first analyze procedureFindOpt. The following facts
are well known (see, e.g., [8]).

Fact 3.2 The volume of the ballB(u, D) = {x ∈ Rm :
‖x− u‖ ≤ D} whereu ∈ Rm, D ≥ 0 is Dmvol(B(000, 1)).

Fact 3.3 Let E ⊆ Rm be an ellipsoid andH ⊆ Rm be
a half space passing through the center ofE. There is a
unique ellipsoidE′ of minimum volume containing the half-
ellipsoidE ∩H and vol(E′)

vol(E) ≤ e−1/(2m).

Lemma 3.4 The pointsx0, . . . , xk generated byFindOpt
satisfymink

i=0 h(xi) ≤
(
OPT + ε

4

)
/(1− ω).

Proof : Let x∗ be an optimal solution. If̂dl · (x∗ − xl) ≥ 0
for somel, thenh(xl) ≤ h(x∗)/(1 − ω) sinced̂l is anω-
subgradient atxl. Otherwise using a volume reduction ar-
gument, one can show that there must be a pointy lying on
some hyperplanêdl ·(x−xl) = 0 such that‖y−x∗‖ ≤ ε

4K ,
soh(xl) ≤ h(y)/(1− ω) ≤

(
h(x∗) + ε

4

)
/(1− ω).

Lemma 3.5 ProcedureFindMin returns a point̄x such that
h(x̄) ≤

(
mink

i=0 h(xi) + ε
4

)
/(1− ω)kN ′

.

Proof : The proof follows from the invariant stated in step
M2 with i = k + 1. The inner “Forj=. . . ” loop returns a
point y such thath(y) ≤ min(h(x̄), h(xi))/(1 − ω)N ′

+
ρ. So if the invariant holds at the start of iterationi, setting
x̄ ← y in step M2c) at the end of iterationi ensures that it
holds at the beginning of iterationi + 1.

Theorem 3.6 AlgorithmFindOpt returns a feasible point̄x
satisfyingh(x̄) ≤ OPT/(1 − γ) + ε in time O

(
T (ω) ·

m2 ln2(KRm
V ε)

)
, whereT (ω) is the time taken to compute

anω-subgradient andω = Θ
(
γ/m2 ln2(KRm

V ε)
)
.

Now we show thatConvOpt works correctly with high
probability. We make the very mild assumption that for an
optimal solutionx∗, in any scenarioA 6= ∅, the total cost of
scenarioA is at least 1, that is,wI · x∗ + fA(x∗) ≥ 1.

Lemma 3.7 ConvOpt determines with probability at least
1− δ, thatOPT ≥ %

λ , or thatx = 000 is an optimal solution.

Proof : Note that% ≤ 1 sinceδ ≤ 1
2 . Since in every

non-null scenario, we incur a cost of at least 1,OPT ≥ q,
whereq =

∑
A⊆U,A6=∅ pA is the probability of occurrence

of a non-null scenario. Letr = Pr[X = 0] = (1 − q)M .
So r ≤ e−qM andr ≥ 1 − qM . If q ≥ ln

(
1
δ

)
/M , then

Pr[X = 0] ≤ δ. So with probability at least1 − δ we will
say thatOPT ≥ %/λ which is true sinceOPT ≥ q ≥ 1

λ . If
q ≤ δ/M , thenPr[X = 0] ≥ 1− δ. We returnx = 000 as an
optimal solution with probability at least1− δ which is in-
deed an optimal solution, becauseq ≤ 1

λ implies that it

is always at least as good to defer to stage II since the ex-
pected stage II cost of a setS is at mostq · wII

S ≤ wI
S . If

δ/M < q < ln
(

1
δ

)
/M , then we always return a correct an-

swer since it is both true thatx = 000 is an optimal solution,
and thatOPT ≥ q ≥ %/λ.

We now focus on showing that the algorithm re-
turns a (1 + κ)-optimal solution to (SSC-P2) with
probability at least1 − δ in polynomial time. Recall
that our objective function ish(x) = ωI · x + f(x)
where f(x) =

∑
A⊆U pAfA(x) and fA(x) =

min
{∑

S wII
S rA,S :

∑
S:e∈S rA,S ≥ 1 −

∑
S:e∈S xS ∀e ∈

A; rA,S ≥ 0 ∀S
}

. By taking the dual, we can write
fA(x) = max

{∑
e(1 −

∑
S:e∈S xS)zA,e : zA ∈ QA

}
whereQA =

{
z ∈ R|U | :

∑
e∈A∩S ze ≤ wII

S for all S;
ze = 0 for all e /∈ A; z ≥ 000

}
. (Here we include vari-

ablesze for e /∈ A in the dual for convenience.) Recall

that λ = max
(
1,maxS

wII
S

wI
S

)
. We show that for the func-

tion h(.), one can efficiently computeω-subgradients, and
bound the Lipschitz constantK. This follows from 3 facts.

1. Any vectord̂ that component-wise approximates a sub-
gradient atx to within a certain accuracy is anω-
subgradient atx (Lemma 3.8).

2. At any pointx there is a “nice” subgradientd with
componentsdS ∈ [−wII

S , wI
S] (Lemma 3.9). This gives

a bound on the Lipschitz constantK.

3. Since the componentsdS lie in a range bounded mul-
tiplicatively by λ, poly

(
m,λ, 1

w

)
samples suffice to

compute an estimatêd that component-wise approx-
imates the subgradient with high probability (Corol-
lary 3.11), and thus obtain anω-subgradient.

Using the above procedure to computeω-subgradients (with
a small enough error probability) in procedureFindOpt,
and putting the various pieces together, we show in The-
orem 3.12 thatConvOpt returns a point̄x such thath(x̄) ≤
(1 + κ) · OPT with probability at least1 − 2δ in time
poly

(
input size, λ, 1

κ , ln(1
δ)

)
.

Lemma 3.8 Letd be a subgradient ofh(.) at the pointx ∈
P, and supposêd is a vector such thatdS − ωwI

S ≤ d̂S ≤
dS for all S. Thend̂ is anω-subgradient ofh(.) at x.

Proof : Let y ∈ P. We haveh(y)− h(x) ≥ d · (y − x) =
d̂ · (y − x) + (d− d̂) · (y − x). Since0 ≤ dS − d̂S ≤ ωwI

S

andxS , yS ≥ 0 for everyS we have,(d − d̂) · (y − x) ≥
−(d− d̂) · x ≥ −

∑
S ωwI

SxS ≥ −ωh(x).

Lemma 3.9 Letx ∈ Rm, and letz∗A be an optimal dual so-
lution for scenarioA with x as the stage I vector. The vector
d with componentsdS = wI

S−
∑

A pA

∑
e∈S z∗A,e is a sub-

gradient atx, and‖d‖ ≤ λ‖wI‖.

Proof : Let y ∈ Rm. We have to show thath(y)− h(x) ≥
d · (y − x). The dual solutionz∗A ∈ QA provides a lower
bound onfA(y) for every scenarioA, using which one ob-
tains thath(y)− h(x) ≥

∑
S dS(yS − xS). To bound‖d‖,

observe thatwI
S − wII

S ≤ dS ≤ wI
S , since for everyA,

z∗A,e ≥ 0 ∀e,
∑

e∈S z∗A,e ≤ wII
S , and

∑
A⊆U pA = 1. So

|dS | ≤ λwI
S , and hence‖d‖ ≤ λ‖wI‖.

Since at any pointx there is a subgradientd(x) with
‖d(x)‖ ≤ λ‖wI‖, the definition of a subgradient implies
thatK ≤ λ‖wI‖ so thatlnK is polynomially bounded.

Using standard Chebyshev and Chernoff bounds one can
show the following.

Lemma 3.10 Let X ∈ [−a, b] be a random variable,
a, b > 0, computed by sampling from a distributionπ. Let
µ = E

[
X

]
andα = max(1, a/b). Then for anyc > 0, by

taking 100α2

3c2 ln
(

1
δ

)
independent samples fromπ, one can

compute an estimatêX such thatµ − 2cb ≤ X̂ ≤ µ with
probability at least1− δ.

Corollary 3.11 At any pointx ∈ P, one can compute an
ω-subgradient with probability at least1− δ using at most
400λ2

3ω2 ln
(

m
δ

)
independent samples from the probability dis-

tribution on scenarios.

Theorem 3.12 Using the above sampling method to com-
puteω-subgradients,ConvOpt computes a feasible solution
to (SSC-P2)of cost at most(1 + κ) · OPT with probabil-
ity at least1− 2δ, in timepoly

(
input size, λ, 1

κ , ln(1
δ)

)
.

Proof : By Lemma 3.7, we know that ifConvOpt callsFind-
Opt then with probability at least1− δ we haveOPT ≥ %

λ .
We compute aω-subgradient at mostN + n times where
n = N log

(
8NKR

ε

)
, N = 2m2 ln

(
16KR2

V ε

)
. With ω = γ

2n

and error probability δ
N+n in Corollary 3.11, we get that

T (ω) = O
(

λ2n2

γ2 ln(m(N+n)
δ)

)
samples ensure that each

individual vector computed is anω-subgradient with prob-
ability at least1 − 1

(N+n)δ . So the net error probability of
FindOpt is at mostδ, and the error probability ofConvOpt is
at most2δ. Theorem 3.6 shows the performance guarantee,
and the time taken isO

(
(N + n)T (ω)

)
= O

(
n3λ2(lnN +

ln(1
δ))/γ2

)
, which ispoly

(
input size, λ, 1

κ , ln(1
δ)

)
.

4. A class of solvable stochastic programs

We now show thatConvOpt can be used to solve the fol-
lowing broad class of 2-stage stochastic programs.

min wI · x +
∑
A∈A

pAfA(x) s.t. x ≥ 000, x ∈ P ⊆ Rm,

(Stoc-P)

fA(x) = min wA · rA + qA · sA

s.t. BAsA ≥ hA (2)

DAsA + TArA ≥ jA − TAx (3)
rA, sA ≥ 000, rA ∈ Rm, sA ∈ Rn.

HereA denotes the set of all possible scenarios. We require
that (a)TA ≥ 000 for every scenarioA, and (b) for everyx ∈
P, f(x) ≥ 0 and that the primal and dual problems corre-
sponding tofA(x) are feasible for every scenarioA. A suf-
ficient condition for (b) is to insist that0 ≤ fA(x) < +∞
at every pointx ∈ P and scenarioA ∈ A. We can re-
lax condition (a) somewhat and solve a more general class
of programs that allow one to incorporate upper bounds,
in certain cases. Observe that this class of stochastic pro-
grams is rich enough to model stochastic problems with
scenario-dependent recourse (that is, stage II) costs. All the
stochastic optimization problems we consider can be ex-
pressed as convex programs in the above form, and one can
therefore obtain a near-optimal fractional solution for each
of these problems in polynomial time. To prevent an ex-
ponential blowup in the input, we consider a model where
an oracle supplied with scenarioA reveals the scenario-
dependent data

(
wA, qA, hA, jA, BA, DA, TA

)
. The anal-

ysis in Section 3.1 can be extended to show that our al-
gorithm can compute a near-optimal solution to (Stoc-P).
Let h(.) be the (convex) objective function. Defineλ =
max

(
1,maxA∈A,S

wA
S

wI
S

)
, which we assume is known to the

algorithm. The key property we require is the ability to
computeω-subgradients. This will follow from Lemma 4.1
which shows that at any point there is a subgradient whose
components have variation bounded byλ (this also bounds
the Lipschitz constant), and that one can obtain anω-
subgradient by component-wise approximating this vector.

Lemma 4.1 Let x ∈ P and (u∗A, z∗A) be an optimal dual
solution for scenarioA with x as the stage I vector, where
z∗A is the dual multiplier corresponding to inequalities(3).
The vectord = wI −

∑
A pA(TA)Tz∗A is a subgradient at

x, with ‖d‖ ≤ λ‖wI‖. If d̂ is a vector such thatd− ωwI ≤
d̂ ≤ d, thend̂ is anω-subgradient atx.

Theorem 4.2 We can obtain a feasible solution to(Stoc-P)
of cost at most(1+κ)·OPT with probability at least1−2δ
in time polynomial in the input size,1κ , andln

(
1
δ

)
.

In addition, we can useConvOpt to solve the class of
programs (Stoc-P) where the second-stage is specified by a
continuous random variableξ with density functionp(ξ).

5. Applications

We give a number of applications for which we prove the
first known performance guarantees in the black-box model
without any restrictions on the costs in the two stages.

Vertex cover. The stochastic vertex cover problem is a spe-
cial case of the stochastic set cover problem where we want
to cover the edges of a graph by its vertices. The edge set
A (i.e., scenario) to be covered is chosen from a probabil-
ity distribution and is revealed only in stage II; we may
choose a vertexv either in stage I paying a cost ofwI

v, or
in stage II at a cost ofwA

v in scenarioA. The previous re-
sults for this problem were an 8-approximation algorithm
in the black-box model, and a 3-approximation algorithm
in the setting where each edge is independently activated,
both for the case whenwA

v = λwI
v for eachv and scenario

A, due to Gupta et al. [9]; Ravi and Sinha [14] gave a guar-
antee of 2 when there are only polynomially many scenar-
ios (but with scenario-dependent second-stage costs).

Since the stochastic vertex cover problem is a special
case of the stochastic set cover problem, and the deter-
ministic vertex cover LP is known to have an integrality
gap of 2, by Corollary 2.2, we obtain, for anyε > 0,
a (4 + ε)-approximation algorithm for the stochastic ver-
sion with black-box distributions and scenario-dependent
second-stage costs. This is the first approximation algorithm
in this more general model with black-box distributions.

Theorem 5.1 For any ε > 0, there is a (4 + ε)-
approximation algorithm for the stochastic vertex cover
problem with arbitrary probability distributions and
scenario-dependent stage II costs.

Using the results of Kolliopoulos & Young [12], we also
get algorithms for general stochastic covering problems.

Minimum multicut on trees. In the deterministic mini-
mum multicut problem on trees, we are given a tree with
costswe on the edges, and pairs of vertices(si, ti). The
goal is to remove a minimum-cost set of edges so as to dis-
connect each(si, ti) pair. In the stochastic variant, the pairs
to be disconnected are revealed only in stage II, and we can
choose either to “cut” an edge in stage I or in stage II, pay-
ing a cost ofwI

e or wA
e in scenarioA, respectively. The mul-

ticut problem is an instance of the set-cover problem, where
we want to cover each(si, ti) path. Using the algorithm of
Garg, Vazirani, and Yannakakis [7] for the deterministic set-
ting, and applying Corollary 2.2, we get the following.

Theorem 5.2 For any ε > 0, there is a (4 + ε)-
approximation algorithm for the stochastic minimum multi-
cut problem on trees.

Facility location problems. In the deterministic uncapac-
itated facility location (DUFL) problem, given a set of can-
didate facility locationsF , and a set of clientsD, we want
to open facilities at a subset of the locations inF , and as-
sign each client to an open facility. Opening a facility at lo-
cationi incurs a cost offi, and the cost of assigning client
j to facility i is (proportional to) the distancecij betweeni

andj; the distancescij form a metric. The goal is to min-
imize the total facility opening costs and client assignment
costs. In the 2-stage stochastic uncapacitated facility loca-
tion (SUFL) problem, we are given a probability distribu-
tion on the clients that are activated and need to be assigned
to facilities; a facilityi may be opened in stage I or in stage
II, incurring a cost off I

i or fA
i in scenarioA, respectively.

For the special case wherefA
i = λf I

i for eachi ∈
F and each scenarioA, Gupta et al. [9] gave an 8.45-
approximation algorithm in the black-box model, and a 6-
approximation algorithm in the setting where each client is
activated independently. Ravi and Sinha [14] gave an LP-
rounding based 8-approximation algorithm for the polyno-
mial scenarios setting that can handle scenario-dependent
facility opening and client assignment costs, where the as-
signment cost in scenarioA is cA,ij = γAcij for all i, j.
Their rounding algorithm needs to know the optimal frac-
tional solution foreach stage II scenariowhich renders it
unsuitable when there are exponentially many scenarios.

We improve upon all of these results. We consider a con-
vex programming relaxation of the problem and give a dif-
ferent rounding approach that decides which facilities to
open in stage I based ononly the stage I fractional solu-
tion. Combined with our algorithm to solve the convex pro-
gram, this yields a 3.225-approximation algorithm in the
black-box model with scenario-dependent costs. One can
write the following convex program forSUFL. We usei to
index the facilities inF andj to index the clients.

min
∑

i

f I
i yi +

∑
A⊆D

pAgA(y) s.t. 0 ≤ yi ≤ 1 ∀i,
(SUFL-P)

where gA(y) = min
∑

i

fA
i yA,i +

∑
j∈A,i

cij xA,ij

s.t.
∑

i

xA,ij ≥ 1 ∀j ∈ A,

xA,ij ≤ yi + yA,i ∀j ∈ A, i,

xA,ij , yA,i ≥ 0 ∀j ∈ A, i.

Let ρDUFL ≤ 1.52 [13] denote the integrality gap ofDUFL.

Theorem 5.3 There is a(3.225 + ε)-approximation algo-
rithm for SUFL based on rounding a near-optimal solution
to (SUFL-P). Moreover, the integrality gap of(SUFL-P)
is at most2ρDUFL ≤ 3.04. These results hold even with
scenario-dependent assignment costscA

ij = γAcij .

Proof : We first show that the integrality gap of (SUFL-P) is
at most2ρDUFL. The proof is along the lines of the proof of
Theorem 2.1. Lety be an optimal solution to (SUFL-P) and
(xA, yA) be the optimal solution for scenarioA given the
first-stage decision vectory. Let OPT be the optimal solu-
tion value. We will show that we can decouple the first-stage
and second-stage decisions, so that one can get an integer

solution by separately solving aDUFL problem for stage I
and aDUFL problem for each stage II scenario. Fix a sce-
narioA and a clientj ∈ A. Let FA,j = {i : xA,ij > 0}.
We write xA,ij = xI

A,ij + xII
A,ij wherexI

A,ij ≤ yi and
xII

A,ij ≤ yA,i. SincexA,ij ≤ yi + yA,i we can always split
xA,ij in the above way. Observe thatj must be assigned to
an extent of at least12 either by the assignment

{
xI

A,ij

}
or

by the assignment
{
xII

A,ij

}
, that is, either

∑
i xI

A,ij ≥ 1
2 or∑

i xII
A,ij ≥ 1

2 . In the former case, we will assignj to a fa-
cility opened in stage I, and in the latter case we will assign
j to a facility opened in stage II.

More precisely, for any clientj, consider the set of sce-
nariosSj = {A ⊆ D :

∑
i xI

A,ij ≥ 1
2}. For our stage

I decisions, we shall construct a feasible fractional solu-
tion for aDUFL instance in which the facility costs aref I

i ,
the assignment costs arecij , and each clientj has ade-
mand equal to

∑
A∈Sj

pA; we then round this frac-
tional solution to an integer solution using known al-
gorithms for DUFL. We first construct a feasible so-
lution in which there is a client(j, A) for each sce-
nario A ∈ Sj , with demandpA, and then coalesce these
scenario-dependent clients into one. Consider(j, A) such
that A ∈ Sj . We can obtain a feasible solution by set-
ting x̂A,ij = min

(
1, 2xI

A,ij

)
and ŷi = min

(
1, 2yi

)
for

eachi ∈ F . (Note that a client may be assigned to an ex-
tent greater than 1.) However, thêyi values do not depend
on the scenario and given thêyi values, we can re-optimize
the fractional assignment for each clientj: first reset
x̂A,ij = 0, then considering facilities in non-decreasing or-
der of cij , set x̂A,i′j = min

(
ŷi′ , 1 −

∑
i x̂A,ij

)
for each

i′. But this new fractional assignment is completely deter-
mined by theŷi values anddoes not depend onA, and so
we can now view all of these clients(j, A) as one client
j with demand

∑
A∈Sj

pA. The facility cost of this frac-

tional solution is at most2
∑

i f I
i yi, and the assignment cost

is no more than the one for the scenario-dependent clients,
2

∑
i,j

∑
A∈Sj

pAcijx
I
A,ij ≤ 2

∑
i,j

∑
A∈Sj

pAcijxA,ij .
Using the fact that the integrality gap ofDUFL is ρDUFL,
given thisDUFL instance with fractional solution(x̂, ŷ), we
can now obtain an integer solution(x̃, ỹ) of cost at most
2ρDUFL

(∑
i f I

i yi +
∑

i,j

∑
A∈Sj

pAcijxA,ij

)
; this deter-

mines the set of facilities to open in stage I, and for each
client j takes care of the scenarios inSj .

In any scenarioA, each clientj ∈ A such thatA ∈ Sj

is assigned to the stage I facility given by the assignment
x̃. To assign the remaining clients, we solve aDUFL in-
stance with client setDA = {j ∈ A : A /∈ Sj}. Since
A /∈ Sj , we have that

∑
i xII

A,ij ≥ 1
2 , and hence if we

resetx̂A,ij = min
(
1, 2xII

A,ij

)
, ŷA,i = min

(
1, 2yA,i

)
for

each i ∈ F , we get a feasible solution for this set of
clients. Again, we can get an integer solution of cost at
most2ρDUFL

(∑
i fA

i yA,i +
∑

i,j∈DA
cijxA,ij

)
. This solu-

tion tells us which facilities to open in scenarioA and how
to assign the clients inDA. Hence, the overall cost of the so-
lution with first-stage facilities̃y is at most2ρDUFL · OPT ,
implying that the integrality gap is at most2ρDUFL.

To obtain the approximation algorithm, we first obtain
a near-optimal solutiony in polynomial time. The diffi-
culty in converting the proof of the integrality gap into a
rounding algorithm is that the algorithm that shows that
ρDUFL ≤ 1.52 due to [13] requires knowledge of the client
demands, whereas we do not know the demand

∑
A∈Sj

pA

of a client j, and might not be able to even estimate it
by sampling, since the probabilitypA could be extremely
small. We therefore need an approximation algorithm for
DUFL that works without explicit knowledge of the client
demands. Swamy [15] (Section 2.4) gives an algorithm with
this property; the algorithm converts any fractional solution
to an integer solution based on just the fractional facility
variables, increasing the cost by a factor of at most 1.705.
We use this algorithm to obtain a 3.225-approximation al-
gorithm by modifying the definition ofSj slightly so as to
balance the contribution from stages I and II.

The analysis extends with minor notational changes to
the case where we have arbitrary scenario-dependent de-
mandsdA

j , and/or assignment costscA
ij = γAcij . Our ap-

proach yields the first constant-factor approximation algo-
rithms for other stochastic facility location problems, such
as facility location with penalties, or soft capacities, or ser-
vice installation costs. In each case, we solve the relaxation
of the stochastic integer program using the algorithm in Fig-
ure 1, and round the near-optimal solution by using a round-
ing algorithm for the deterministic problem in conjunction
with a variant of the rounding procedure detailed above.

Multicommodity flow. We consider a stochastic version of
a multicommodity flow problem where have to buy capac-
ity to install on the edges so that one can concurrently ship
dA

i units of commodityi from its sourcesi to its sink ti
in each scenarioA. We can either purchase capacity on an
edgee in stage I paying costcI

e, or wait until the exact de-
mands are known and buy capacity at costcA

e in scenario
A in stage II; the total amount of capacity that we can in-
stall on an edge is limited byue. The goal is to minimize
the total (expected) cost of installing capacity. The stochas-
tic multicommodity flow problem can be formulated as fol-
lows: minimize

∑
e cI

exe +
∑

A∈A pAgA(x) (A is the set
of all scenarios) subject to0 ≤ xe ≤ ue for eache, and
gA(x) is the minimum value of

∑
e cA

e yA,e subject to the
constraints that for eachi, the total flow for(si, ti) is at least
dA

i , for each edgee, the total flow one is at mostxe + yA,e,
and also at mostue (this encodes thatxe + yA,e ≤ ue).

Immorlica et al. [10] considered the single-commodity
version of this problem and gave an algorithm based on
writing an LP that enumerates all scenarios, one for each

possible demand value, and solving the LP to compute the
optimal first-stage decisions. Consequently, their running
time depends on themaximum demandD that may be re-
alized. This approach suffers from the “curse of dimension-
ality” and does not work well in the multicommodity set-
ting, since even if the maximum demand is 1, there are still
an exponential number of scenarios to enumerate. Note that
there are no integrality constraints, that is, one can install
fractional amounts of capacity. We can solve the stochastic
multicommodity flow program using the algorithm in Fig-
ure 1. Whereas our running time depends onλ, the ratio of
stage II and stage I costs, it does not depend onD.

Theorem 5.4 For any ε > 0, the stochastic concur-
rent multicommodity flow problem can be approximated to
within a factor of(1 + ε) in polynomial time.

6. The dependence of the running time onλ

We have remarked previously that the running time of
our algorithm (and that of [9]) depends onλ, the maximum
ratio between costs in the two stages. We first argue that
in the black-box model, this is necessary, and then provide
stronger conditions on the way in which the distribution is
specified that allows this dependence to be avoided.

Consider an instance ofSSC with universeU = {e} and
just one setS = U , wherewI

S = 1, wII
S = λ. Let p de-

note the probability that scenario{e} occurs (which is un-
known to the algorithm). The only decision here is whether
to buy setS in stage I or to buy it in stage II. LetAN de-
note an algorithm that draws exactlyN samples. LetO∗

denote the value of theintegeroptimum solution. It is rela-
tively straightforward to prove the following result.

Theorem 6.1 If AN returns a (fractional) solution of cost
at mostc ·O∗ with probability at least1− δ where1 ≤ c <
λ
2 , then it must be thatN ≥

(
λ ln(1

δ − 1)
)
/2c. Hence, if

algorithmAN returns a solution of expected cost at mostc ·
O∗ where1 ≤ c < λ

6 , then it must be thatN ≥ (λ ln 2)/6c.

Suppose that for the stochastic set cover problem,wA
S =

wII
S for eachS, A and for every elemente, a) we know the

activation probabilitype, and b) we can sample scenarios
from {A ⊆ U : e ∈ A}, with the probability of generat-
ing A 3 e beingpA/pe. Note that if the elements are ac-
tivated independently (as considered in [10, 9]), then these
conditions are satisfied. More generally, consider the class
of problems given in Section 4 wherewA, qA, DA, TA do
not depend on the scenarioA andDA = D ≥ 000. Fix an in-
dexing of the rows ofT (andD); we require that for every
scenarioA, BA ≥ 000, andjA

e is either 0 orje. Suppose we
knowpe =

∑
A∈A:jA

e >0 pA, and can sample scenarios con-

ditioned on the fact thatjA
e > 0. Using this additional struc-

ture we obtain the following result.

Theorem 6.2 At any pointx ∈ P, anω-subgradient ofh(.)
can be computed with probability at least1−δ in time poly-
nomial in the input size,1ω , and ln

(
1
δ

)
. Thus,ConvOpt can

be implemented to run in time that does not depend onλ.

AcknowledgmentsWe thank Mike Todd and Shane Hen-
derson for useful discussions and very helpful suggestions.

References

[1] J. R. Birge and F. V. Louveaux.Introduction to Stochastic
Programming. Springer-Verlag, New York, 1997.

[2] V. Chvátal. A greedy heuristic for the set-covering problem.
Mathematics of Operations Research, 4:233–235, 1979.

[3] G. B. Dantzig. Linear programming under uncertainty.Man-
agement Science, 1:197–206, 1955.

[4] S. Dye, L. Stougie, and A. Tomasgard. The stochastic sin-
gle resource service-provision problem.Naval Research Lo-
gistics, 50(8):869–887, 2003. Also appeared as COSOR-
Memorandum 99-13, Dept. of Mathematics and Computer
Sc., Eindhoven, Tech. Univ., Eindhoven, 1999.

[5] M. Dyer, R. Kannan, and L. Stougie. A simple randomised
algorithm for convex optimisation. SPOR-Report 2002-05,
Dept. of Mathematics and Computer Science, Eindhoven
Technical University, Eindhoven, 2002.

[6] M. Dyer and L. Stougie. Computational complexity of
stochastic programming problems. SPOR-Report 2003-20,
Dept. of Mathematics and Computer Science, Eindhoven
Technical Univ., Eindhoven, 2003.

[7] N. Garg, V. Vazirani, and M. Yannakakis. Primal dual ap-
proximation algorithms for integral flow and multicut in
trees.Algorithmica, 18(1):3–20, 1997.

[8] M. Grötschel, L. Lov́asz, and A. Schrijver.Geometric Al-
gorithms and Combinatorial Optimization. Springer-Verlag,
New York, 1988.

[9] A. Gupta, M. Ṕal, R. Ravi, and A. Sinha. Boosted sam-
pling: approximation algorithms for stochastic optimization.
In Proceedings of 36th STOC, pages 417–426, 2004.

[10] N. Immorlica, D. Karger, M. Minkoff, and V. Mirrokni. On
the costs and benefits of procrastination: approximation algo-
rithms for stochastic combinatorial optimization problems.
In Proceedings of 15th SODA, pages 684–693, 2004.

[11] A. J. Kleywegt, A. Shapiro, and T. Homem-De-Mello. The
sample average approximation method for stochastic discrete
optimization.SIAM J. of Optimization, 12:479–502, 2001.

[12] S. Kolliopoulos and N. Young. Tight approximation results
for general covering integer programs. InProceedings of
42nd FOCS, pages 522–528, 2001.

[13] M. Mahdian, Y. Ye, and J. Zhang. Improved approximation
algorithms for metric facility location. InProceedings of 5th
APPROX, pages 229–242, 2002.

[14] R. Ravi and A. Sinha. Hedging uncertainty: approximation
algorithms for stochastic optimization problems. InProceed-
ings of 10th IPCO, pages 101–115, 2004.

[15] C. Swamy.Approximation Algorithms for Clustering Prob-
lems. Ph.D. thesis, Cornell University, Ithaca, NY, 2004.

