
Min-Max Theorems for Packing and Covering
Odd (u, v)-trails?

Sharat Ibrahimpur?? and Chaitanya Swamy??

Combinatorics and Optimization, Univ. Waterloo, Waterloo, ON N2L 3G1.
{sharat.ibrahimpur,cswamy}@uwaterloo.ca

Abstract. We investigate the problem of packing and covering odd
(u, v)-trails in a graph. A (u, v)-trail is a (u, v)-walk that is allowed to
have repeated vertices but no repeated edges. We call a trail odd if the
number of edges in the trail is odd. Let ν(u, v) denote the maximum
number of edge-disjoint odd (u, v)-trails, and τ(u, v) denote the mini-
mum size of an edge-set that intersects every odd (u, v)-trail.
We prove that τ(u, v) ≤ 2ν(u, v) + 1. Our result is tight—there are ex-
amples showing that τ(u, v) = 2ν(u, v) + 1—and substantially improves
upon the bound of 8 obtained in [5] for τ(u, v)/ν(u, v). Our proof also
yields a polynomial-time algorithm for finding a cover and a collection
of trails satisfying the above bounds.
Our proof is simple and has two main ingredients. We show that (loosely
speaking) the problem can be reduced to the problem of packing and
covering odd ({u, v}, {u, v})-trails losing a factor of 2 (either in the num-
ber of trails found, or the size of the cover). Complementing this, we
show that the odd-({u, v}, {u, v})-trail packing and covering problems
can be tackled by exploiting a powerful min-max result of [2] for packing
vertex-disjoint nonzero A-paths in group-labeled graphs.

1 Introduction

Min-max theorems are a classical and central theme in combinatorics and combi-
natorial optimization, with many such results arising from the study of packing
and covering problems. For instance, Menger’s theorem [10] gives a tight min-max
relationship for packing and covering edge-disjoint (or internally vertex-disjoint)
(u, v)-paths: the maximum number of edge-disjoint (or internally vertex-disjoint)
(u, v)-paths (i.e., packing number) is equal to the minimum number of edges
(or vertices) needed to cover all u-v paths (i.e., covering number); the cel-
ebrated max-flow min-cut theorem generalizes this result to arbitrary edge-
capacitated graphs. Another well-known example is the Lucchesi-Younger theo-
rem [8], which shows that the maximum number of edge-disjoint directed cuts
equals the minimum-size of an arc-set that intersects every directed cut.

Motivated by Menger’s theorem, it is natural to ask whether similar (tight
or approximate) min-max theorems hold for other variants of path-packing and
path-covering problems. Questions of this flavor have attracted a great deal of
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attention. Perhaps the most prominent results known of this type are Mader’s
min-max theorems for packing vertex-disjoint S-paths [9, 12], which generalize
both the Tutte-Berge formula and Menger’s theorem, and a further far-reaching
generalization of this due to Chudnovsky et al. [2] regarding packing vertex-
disjoint non-zero A-paths in group-labeled graphs.

We consider a different variant of the (u, v)-path packing and covering prob-
lems, wherein we impose parity constraints on the paths. Such constraints natu-
rally arise in the study of multicommodity-flow problem, which can be phrased
in terms of packing odd circuits in a signed graph, and consequently, such
odd-circuit packing and covering problems have been widely investigated (see,
e.g., [13], Chapter 75). Focusing on (u, v)-paths, a natural variant that arises
involves packing and covering odd (u, v)-paths, where a (u, v)-path is odd if it
contains an odd number of edges. However, there are simple examples [5] showing
an unbounded gap between the packing and covering numbers in this setting.

In light of this, following [5], we investigate the min-max relationship for
packing and covering odd (u, v)-trails. An odd (u, v)-trail is a (u, v)-walk with
no repeated edges and an odd number of edges. Churchley et al. [5] seem to have
been the first to consider this problem. They showed that the (worst-case) ratio
between the covering and packing numbers for odd (u, v)-trails is at most 8—
which is in stark contrast with the setting of odd (u, v) paths, where the ratio is
unbounded—and at least 2, so there is no tight min-max theorem like Menger’s
theorem. They also motivate the study of odd (u, v)-trails from the perspective
of studying totally-odd immersions. In particular, determining if a graph G has
k edge-disjoint odd (u, v)-trails is equivalent to deciding if the 2-vertex graph
with k parallel edges has a totally-odd immersion into G.

Our results. We prove a tight bound on the ratio of the covering and packing
numbers for odd (u, v)-trails, which also substantially improves the bound of 8
shown in [5] for this covering-vs-packing ratio.1 Let ν(u, v) and τ(u, v) denote
respectively the packing and covering numbers for odd (u, v)-trails. Our main
result (Theorem 3.1) establishes that τ(u, v) ≤ 2ν(u, v) + 1. Furthermore, we
obtain in polynomial time a certificate establishing that τ(u, v) ≤ 2ν(u, v) +
1. This is because we show that, for any integer k ≥ 0, we can compute in
polynomial time, a collection of k edge-disjoint odd (u, v)-trails, or an odd-
(u, v)-trail cover of size at most 2k−1. As mentioned earlier, there are examples
showing τ(u, v) = 2ν(u, v) + 1 (see Fig. 1), so our result settles the question of
obtaining worst-case bounds for the τ(u, v)/ν(u, v) ratio.

Notably, our proof is also simple, and noticeably simpler than (and different
from) the one in [5]. We remark that the proof in [5] constructs covers of a certain
form; in the full version, we prove a lower bound showing that such covers cannot
yield a bound better than 3 on the covering-vs-packing ratio.

Our techniques. We focus on showing that for any k, we can obtain either k
edge-disjoint odd (u, v)-trails or a cover of size at most 2k−1. This follows from
two other auxiliary results which are potentially of independent interest.

1 This bound was later improved to 5 [4, 3, 7]. We build upon some of the ideas in [7].
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Our key insight is that one can decouple the requirements of parity and u-v
connectivity when constructing odd (u, v)-trails. More precisely, we show that
if we have a collection of k edge-disjoint odd ({u, v}, {u, v})-trails, that is, odd
trails that start and end at a vertex of {u, v}, and the u-v edge connectivity,
denoted λ(u, v), is at least 2k, then we can obtain k edge-disjoint odd (u, v)-
trails (Theorem 3.3). Notice that if λ(u, v) < 2k, then a min u-v cut yields a
cover of the desired size. So the upshot of Theorem 3.3 is that it reduces our
task to the relaxed problem of finding k edge-disjoint odd ({u, v}, {u, v})-trails.
The proof of Theorem 3.3 relies on elementary arguments (see Section 4). We
show that given a fixed collection of 2k edge-disjoint (u, v)-paths, we can always
modify our collection of edge-disjoint trails so as to make progress by decreasing
the number of contacts that the paths make with the trails and/or by increasing
the number of odd (u, v) trails in the collection. Repeating this process a small
number of times thus yields the k edge-disjoint odd (u, v)-trails.

Complementing Theorem 3.3 we prove that we can either obtain k edge-
disjoint ({u, v}, {u, v})-trails, or find an odd-({u, v}, {u, v})-trail cover (which is
also an odd-(u, v)-trail cover) of size at most 2k − 2 (Theorem 3.2). This proof
relies on a powerful result of [2] about packing and covering nonzero A-paths in
group-labeled graphs (see Section 5, which defines these concepts precisely). The
idea here is that [2] show that one can obtain either k vertex-disjoint nonzero
A-paths or a set of at most 2k − 2 vertices intersecting all nonzero A-paths,
and this can be done in polytime [1, 6]. This is the same type of result that we
seek, except that we care about edge-disjoint trails, as opposed to vertex-disjoint
paths. However, by moving to a suitable gadget graph where we replace each ver-
tex by a clique, we can encode trails as paths, and edge-disjointness is captured
by vertex-disjointness. Applying the result in [2] then yields Theorem 3.2.

Related work. Churchley et al. [5] initiated the study of min-max theorems
for packing and covering odd (u, v)-trails. They cite the question of totally-
odd immersions as motivation for their work. We say that a graph H has an
immersion [11] into another graph G, if one can map VH bijectively to some
U ⊆ V (G), and EH to edge-disjoint trails connecting the corresponding vertices
in U . (As noted by [5], trails are more natural objects than paths in the context
of reversing an edge-splitting-off operation, as this, in general, creates trails.) An
immersion is strong if the trails do not internally meet U , and weak otherwise.
An immersion is called totally odd if all trails are of odd length.

In an interesting contrast to the unbounded gap between the covering and
packing numbers for odd (u, v)-paths, [14] showed that the covering number is
at most twice the fractional packing number (which is the optimal value of the
natural odd-(u, v)-path-packing LP).

The notions of odd paths and trails can be generalized and abstracted in
two ways. The first involves signed graphs [15], and there are various results
on packing odd circuits in signed graphs, which are closely related to multicom-
modity flows (see [13], Chapter 75). The second involves group-labeled graphs, for
which [2, 1] present strong min-max theorems for packing and covering vertex-
disjoint nonzero A-paths.
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2 Preliminaries and notation

Let G = (V,E) be an undirected graph. For X ⊆ V , we use E(X) to denote the
set of edges having both endpoints in X and δ(X) to denote set of edges with
exactly one endpoint in X. For disjoint X,Y ⊆ V , we use E(X,Y ) to denote
the set of edges with one end in X and one end in Y .

A (p, q)-walk is a sequence (x0, e1, x1, e2, x2, . . . , er, xr), where x0, . . . , xr ∈ V
with x0 = p, xr = q, and ei is an edge with ends xi−1, xi for all i = 1, . . . , r. The
vertices x1, . . . , xr−1 are called the internal vertices of this walk. We say that
such a (p, q)-walk is a:
– (p, q)-path, if either r > 0 and all the xis are distinct (so p 6= q), or r = 0,

which we call a trivial path;
– (p, q)-trail if all the eis are distinct (we could have p = q).

Thus, a (p, q)-trail is a (p, q)-walk that is allowed to have repeated vertices but no
repeated edges. Given vertex-sets A,B ⊆ V , we say that a trail is an (A,B)-trail
to denote that it is a (p, q)-trail for some p ∈ A, q ∈ B. A (p, q)-trail is called
odd (respectively, even) if it has an odd (respectively, even) number of edges.

Definition 2.1. Let G = (V,E) be a graph, and u, v ∈ V (we could have u = v).
(a) The packing number for odd (u, v)-trails, denoted ν(u, v;G), is the maximum

number of edge-disjoint odd (u, v)-trails in G.
(b) We call a subset of edges C an odd (u, v)-trail cover of G if it intersects

every odd (u, v)-trail in G. The covering number for odd (u, v)-trails, denoted
τ(u, v;G), is the minimum size of an odd (u, v)-trail cover of G.

We drop the argument G when it is clear from the context.

For any two distinct vertices x, y of G, we denote the size of a minimum
(x, y)-cut in G by λ(x, y;G), and drop G when it is clear from the context. By
the max-flow min-cut (or Menger’s) theorem, λ(x, y;G) is also the maximum
number of edge-disjoint (x, y)-paths in G.

3 Main results and proof overview

Our main result is the following tight approximate min-max theorem relating
the packing and covering numbers for odd (u, v) trails.

Theorem 3.1. Let G = (V,E) be an undirected graph, and u, v ∈ V . For any
nonnegative integer k, we can obtain in polynomial time, either:

1. k edge-disjoint odd (u, v)-trails in G, or

2. an odd (u, v)-trail cover of G of size at most 2k − 1.

Hence, we have τ(u, v;G) ≤ 2 · ν(u, v;G) + 1.

Theorem 3.1 is tight (this was communicated to us by [3]), as can be seen
from Fig. 1. The theorem follows readily from the following two results.
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Fig. 1. Graph with ν(u, v) = k, τ(u, v) = 2k + 1.

Theorem 3.2. Let G = (V,E) be an undirected graph and s ∈ V . For any
nonnegative integer k, we can obtain in polynomial time:

1. k edge-disjoint odd (s, s)-trails in G, or

2. an odd (s, s)-trail cover of G of size at most 2k − 2.

Theorem 3.3. Let G = (V,E) be an undirected graph, and u, v ∈ V with u 6= v.

Let T̂ be a collection of edge-disjoint odd ({u, v}, {u, v})-trails in G. If λ(u, v) ≥
2 · |T̂ |, then we can obtain in polytime |T̂ | edge-disjoint odd (u, v)-trails in G.

Proof of Theorem 3.1. If u = v, then Theorem 3.2 yields the desired statement.
So suppose u 6= v. We may assume that λ(u, v) ≥ 2k, since otherwise a minimum
(u, v)-cut in G is an odd (u, v)-trail cover of the required size. Let Euv be the uv

edge(s) in G (which could be ∅). Let Ĝ be obtained from G−Euv by identifying

u and v into a new vertex s. (Note that Ĝ has no loops.) Any odd (u, v)-trail in

G − Euv maps to an odd (s, s)-trail in Ĝ. We apply Theorem 3.2 to Ĝ, s, k′ =
k− |Euv|. If this returns an odd-(s, s)-trail cover C of size at most 2k′ − 2, then
C ∪ Euv is an odd-(u, v)-trail cover for G of size at most 2k − 2. If we obtain a

collection of k′ edge-disjoint odd (s, s)-trails in Ĝ, then these together with Euv

yield k edge-disjoint odd ({u, v}, {u, v})-trails in G. Theorem 3.3 then yields the
required k edge-disjoint odd (u, v)-trails. Polytime computability follows from
the polytime computability in Theorems 3.2 and 3.3. ut

Theorem 3.3 is our chief technical insight, which facilitates the decoupling of
the parity and u-v connectivity requirements of odd (u, v)-trails, thereby driving
the entire proof. (It can be seen as a refinement of Theorem 5.1 in [7].) While
Theorem 3.2 returns ({u, v}, {u, v})-trails with the right parity, Theorem 3.3
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supplies the missing ingredient needed to convert these into (u, v)-trails (of the
same parity). We give an overview of the proofs of Theorems 3.2 and 3.3 below
before delving into the details in the subsequent sections. We remark that both
Theorem 3.2 and Theorem 3.3 are tight as well; we show this in the full version.

The proof of Theorem 3.3 relies on elementary arguments and proceeds as fol-
lows (see Section 4). Let P be a collection of 2 · |T̂ | edge-disjoint (u, v)-paths. We

provide a simple, efficient procedure to iteratively modify T̂ (whilst maintaining

|T̂ | edge-disjoint odd ({u, v}, {u, v})-trails) and eventually obtain |T̂ | odd (u, v)-
trails. Let P0 ⊆ P be the collection of paths of P that are edge-disjoint from
trails in T̂ . First, we identify the trivial case where |P0| is sufficiently large. If

so, these paths and T̂ directly yield odd (u, v)-trails as follows: odd-length paths
in P0 are already odd (u, v)-trails, and even-length paths in P0 can be combined
with odd (u, u)- and odd (v, v)- trails to obtain odd (u, v)-trails.

The paths in P \ P0, all share at least one edge with some trail in T̂ . Each
path is a sequence of edges from u to v. If the first edge that a path P ∈ P
shares with a trail in T̂ lies on a (v, v)-trail T , then it is easy to use parts of P

and T to obtain an odd (u, v)-trail that is edge-disjoint from all other trails in T̂ ,
and thereby make progress by increasing the number of odd (u, v)-trails in the
collection. A similar conclusion holds if the last edge that a path shares with a
trail in T̂ lies on a (u, u)-trail. If neither of the above cases apply, then the paths

in P \P0 are in a sense highly tangled (which we formalize later) with trails in T̂ .

We then infer that P \P0 and T̂ must satisfy some simple structural properties,

and leverage this to carefully modify the collection T̂ (while preserving edge-

disjointness) so that the new set of trails are “less tangled” with P than T̂ , and
thereby make progress. Continuing this procedure a polynomial number of times
yields the desired collection of |T̂ | edge-disjoint odd (u, v)-trails.

The proof of Theorem 3.2 relies on the key observation that we can cast our
problem as the problem of packing and covering nonzero A-paths in a group-
labeled graph (H,Γ ) [2] for a suitable choice of A,H, and Γ (see Section 5). In
the latter problem, (1) H denotes an oriented graph whose arcs are labeled with
elements of a group Γ , and (2) a non-zero A-path is a path in the undirected
version of H whose ends lie in A, whose Γ -length, which is the sum of ±γes
(suitably defined) for arcs in P , is non-zero. Chudnovsky et al. [2] show that
either there are k vertex-disjoint non-zero A-paths, or there is a vertex-set of
size at most 2k− 2 intersecting every non-zero A-path (Theorem 1.1 in [2]). We
show that applying their result to a suitable “gadget graph” H (essentially the
line graph of G), yields Theorem 3.2 (see Section 5). Polytime computability
follows because a subsequent paper [1] gave a polytime algorithm for finding a
maximum-size collection of vertex-disjoint non-zero A-paths, and it is implicit in
their proof that this also yields a suitable vertex-covering of non-zero A-paths [6].

We remark that while the use of the packing-covering result in [2] yields quite
a compact proof of Theorem 3.2, it also makes the resulting proof somewhat
opaque since we apply the result in [2] to the gadget graph. However, it is
possible to translate the min-max theorem for packing vertex-disjoint nonzero
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A-paths proved in [2] to our setting and obtain the following more-accessible
min-max theorem for packing edge-disjoint odd (s, s)-trails (stated in terms of
G and not the gadget graph). In the full version, we prove that

ν(s, s;G) = min

(
|E(S) \ F |+

∑
H∈comp(G−S)

⌊
|E(S,H)|

2

⌋)

where the minimum is taken over all bipartite subgraphs (S, F ) of G such that
s ∈ S. (Notice that Theorem 3.2 follows easily from this min-max formula.)

4 Proof of Theorem 3.3: converting edge-disjoint odd
({u, v}, {u, v})-trails to edge-disjoint odd (u, v)-trails

Recall that T̂ is a collection of edge-disjoint odd ({u, v}, {u, v})-trails in G. We
denote the subset of odd (u, u)-trails, odd (v, v)-trails, and odd (u, v)-trails in

T̂ by T̂uu, T̂vv, and T̂uv, respectively. Let kuu(T̂ ) = |T̂uu|, kvv(T̂ ) = |T̂vv|, and

kuv(T̂ ) = |T̂uv|. To keep notation simple, we will drop the argument T̂ when its

clear from the context. Since we are given that λ(u, v) ≥ 2 · |T̂ |, we can obtain

a collection P of 2 · |T̂ | edge-disjoint (u, v)-paths in G. In the sequel, while we
will modify our collection of odd ({u, v}, {u, v})-trails, P stays fixed.

We now introduce the key notion of a contact between a trail T and a (u, v)-
path P . Suppose that P = (x0, e1, x1, . . . , er, xr) for some r ≥ 1.

Definition 4.1. A contact between P and T is a maximal subpath S of P con-
taining at least one edge such that S is also a subtrail of T i.e., for 0 ≤ i <
j ≤ r, we say that (xi, ei+1, xi+1, . . . , ej , xj) is a contact between P and T if
(xi, ei+1, xi+1, . . . , ej , xj) is a subtrail of T , but neither (xi−1, ei, xi, . . . ej , xj) (if
i > 0) nor (xi, ei+1, xi+1, . . . , xj , ej+1, xj+1) (if j < r) is a subtrail of T .

Define C(P, T ) =
∣∣∣{(i, j) : 0 ≤ i < j ≤ r, (xi, ei+1, xi+1, . . . , ej , xj)

is a contact between P and T
}∣∣∣

By definition, contacts between P and T are edge disjoint. For an edge-
disjoint collection T of trails, we use C(P, T ) to denote

∑
T∈T C(P, T ). So if

C(P, T ) = 0, then P is edge-disjoint from every trail in T . Otherwise, we use
the term first contact of P to refer to the contact arising from the first edge
that P shares with some trail in T (note that P is a (u, v)-walk so is a sequence
from u to v). Similarly, the last contact of P is the contact arising from the last
edge that P shares with some trail in T . If C(P, T ) = 1, then the first and last
contacts of P are the same. We further overload notation and use C(P, T ) to
denote

∑
P∈P C(P, T ) =

∑
P∈P,T∈T C(P, T ). We use C(P, T ) as a measure of

how “tangled” T is with P. The following lemma classifies five different cases
that arise for any pair of edge-disjoint collections of odd ({u, v}, {u, v})-trails
and (u, v)-paths.
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Lemma 4.2. Let T be a collection of edge-disjoint odd ({u, v}, {u, v})-trails in
G. If |P| ≥ 2 · |T |, then one of the following conditions holds.

(a) There are at least kuu(T ) + kvv(T ) paths in P that make no contact with
any trail in T .

(b) There exists a path P ∈ P that makes its first contact with a trail T ∈ Tvv.
(c) There exists a path P ∈ P that makes its last contact with a trail T ∈ Tuu.
(d) There exist three distinct paths P1, P2, P3 ∈ P which make their first contact

with a trail T ∈ Tuu ∪ Tuv.
(e) There exist three distinct paths P1, P2, P3 ∈ P which make their last contact

with a trail T ∈ Tuv ∪ Tvv.

Proof. To keep notation simple, we drop the argument T in the proof. Suppose
that conclusion (a) does not hold. Then there are at at least 2 · |T |−(kuu +kvv−
1) = 2kuv + kuu + kvv + 1 paths in P that make at least one contact with some
trail in T . Let P ′ ⊆ P be this collection of paths. If either conclusions (b) or (c)
hold (for some P ∈ P ′), then we are done, so assume that this is not the case.
Then, every path P ∈ P ′ makes its first contact with a trail in Tuu ∪ Tuv and
its last contact with a trail in Tuv ∪ Tvv. Note that the number of first and last
contacts are both at least 2kuv + kuu + kvv + 1 > 2 ·min(kuv + kuu, kuv + kvv).
So if kuu ≤ kvv, then by the Pigeonhole principle, there are at least 3 paths
that make their first contact with some T ∈ Tuu ∪Tuv, i.e., conclusion (d) holds.
Similarly, if kvv ≤ kuu, then conclusion (e) holds. ut

We now leverage the above classification and show that in each of the above
five cases, we can make progress by “untangling” the trails (i.e., decreasing
C(P, T )) and/or increasing the number of odd (u, v)-trails in our collection.

Lemma 4.3. Let T be a collection of edge-disjoint odd ({u, v}, {u, v})-trails. If
|P| ≥ 2·|T |, we can obtain another collection T ′ of edge-disjoint odd ({u, v}, {u, v})-
trails such that at least one of the following holds.

(i) kuv(T ′) = |T |.
(ii) C(P, T ′) ≤ C(P, T ) and kuv(T ′) = kuv(T ) + 1.

(iii) C(P, T ′) ≤ C(P, T )− 1 and kuv(T ′) ≥ kuv(T )− 1.

Proof. If kuv(T ) = |T |, then (i) holds trivially by taking T ′ = T . So we may
assume that T contains some odd (u, u)- or odd (v, v)-trail. Observe that T and
P satisfy the conditions of Lemma 4.2, so at least one of the five conclusions of
Lemma 4.2 applies. We handle each case separately.

(a) At least kuu(T ) + kvv(T ) paths in P have zero contacts with T . Let P0 =
{P ∈ P : C(P, T ) = 0}. Consider some P ∈ P0. If P is odd, we can replace
an odd (u, u)- or odd (v, v)- trail in T with P . If P is even, then P can be
combined with an odd (u, u)- or odd (v, v)- trail to obtain an odd (u, v)-trail.
Since |P0| ≥ kuu(T ) + kvv(T ), we create kuu(T ) + kuv(T ) odd (u, v)-trails
this way, and this new collection T ′ satisfies (i).

(b) Some P ∈ P makes its first contact with an odd (v, v)-trail T ∈ T . Let
the first vertex in the first contact between P and T be x. Observe that x
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partitions the trail T into two subtrails S1 and S2. Since T is an odd trail,
exactly one of S1 and S2 is odd. We can now obtain an odd (u, v)-trail T ′

by traversing P from u to x, and then traversing S1 or S2, whichever yields
odd parity (see Fig. 2). Since P already made a contact with T , we have
C(P, T ′) ≤ C(P, T ), and C(Q,T ′) ≤ C(Q,T ) for any other path Q ∈ P. Thus,
taking T ′ = (T ∪ {T ′}) \ {T}, we have C(P, T ′) ≤ C(P, T ), and (ii) holds.

u
v

x T1 = u −→
P
x −−→

S1

v

T2 = u −→
P
x −−→

S2

vS1

S2

P

Fig. 2. Path P makes its first contact with an odd (v, v)-trail.

(c) Some P ∈ P makes its last contact with an odd (u, u)-trail T ∈ T . This is
completely symmetric to (b), so a similar strategy works and we satisfy (ii).

(d) Paths P1, P2, P3 ∈ P that make their first contact with an odd (u, {u, v})-
trail T ∈ T . Note that all contacts between paths in P and trails in T are
edge disjoint, since the paths in P are edge disjoint and the trails in T are
edge disjoint. For i = 1, 2, 3, let the first vertex in the first contact of Pi

(with T ) be xi. Let Qi denote the subpath of Pi between u and xi. Note
that T is a sequence of edges from u to some vertex in {u, v}. Without loss
of generality, assume that in T , the first contact of P1 appears before the
first contact of P2, which appears before the first contact of P3. The vertices
x1, x2, x3 partition the trail T into four subtrails S0, S1, S2, S3 (see Fig. 3).
For a trail X, we denote the reverse sequence of X by X. Now consider the
following trails (where + denotes concatenation):

T1 = S0 +Q1, T2 = Q1 + S1 +Q2, T3 = Q2 + S2 +Q3, T4 = Q3 + S3.

Observe that the disjoint union of edges in T1, T2, T3, and T4 has the same
parity as that of T , and hence at least one of the Tis is an odd trail; call this
trail T ′. Let T ′ = T ∪ {T ′} \ {T}. By construction, every Ti avoids at least
one of the (first) contacts made by P1, P2, or P3 (with T ). Also, for any other
path Q ∈ P\{P1, P2, P3}, we have C(Q,T ′) ≤ C(Q,T ). Therefore, C(P, T ′) ≤
C(P, T )−1. It could be that T was an odd (u, v)-trail, which is now replaced
by an odd (u, u)-trail, so kuv(T ′) ≥ kuv(T )− 1. So we satisfy (iii).

(e) Paths P1, P2, P3 ∈ P make their last contact with an odd ({u, v}, v)-trail in
T . This is symmetric to (d); the same approach works, so (iii) holds. ut

Theorem 3.3 now follows by simply applying Lemma 4.3 starting with the ini-
tial collection T 0 := T̂ until conclusion (i) of Lemma 4.3 applies. The T ′ returned
by this final application of Lemma 4.3 then satisfies the theorem statement.
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u v

x1
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x3
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u

T2 = u −−→
P1
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u

T3 = u −−→
P2

x2 −−→
S2

x3 −−→
P3

u

T4 = u −−→
P3

x3 −−→
S3

v

Fig. 3. Paths P1, P2, P3 make their first contact with an odd (u, v)-trail.

We now argue that this process terminates in at most 2 · |E(G)|+ |T̂ | steps,

which will conclude the proof. Let k = |T̂ |. Consider the following potential
function defined on a collection T of k edge-disjoint odd ({u, v}, {u, v})-trails:
φ(T ) := 2 ·C(P, T )−kuv(T ). Consider any iteration where we invoke Lemma 4.3
and move from a collection T to another collection T ′ with kuv(T ′) < k. Then,
either conclusion (ii) or (iii) of Lemma 4.3 applies, and it is easy to see that
Φ(T ′) ≤ φ(T ) − 1. Finally, we have −k ≤ Φ(T ) ≤ 2 · |E(G)| for all T since
0 ≤ C(P, T ) ≤ |E(G)| as the contacts between paths in P and trails in T are
edge-disjoint, so the process terminates in at most 2|E(G)|+ k steps.

5 Proof of Theorem 3.2

Our proof relies on two reductions both involving non-zero A-paths in a group-
labeled graph, which we now formally define. A group-labeled graph is a pair
(H,Γ ), where Γ is a group, and H = (N,E′) is an oriented graph (i.e., for any
u, v ∈ N , if (u, v) ∈ E′ then (v, u) /∈ E′) whose arcs are labeled with elements of
Γ . All addition (and subtraction) operations below are always with respect to the
group Γ . A path P in H is a sequence (x0, e1, x1, . . . , er, xr), where the xis are
distinct, and each ei has ends xi, xi+1 but could be oriented either way (i.e., as
(xi, xi+1) or (xi+1, xi)). (So upon removing arc directions, P yields a path in the
undirected version of H.) We say that P traverses ei in the direction (xi, xi+1).
The Γ -length (or simply length) of P , denoted γ(P ), is the sum of ±γes for
arcs in P , where we count +γe for e if P ’s traversal of e matches e’s orientation
and −γe otherwise. Given A ⊆ N , an A-path is a path (x0, e1, . . . , er, xr) where
r ≥ 1, and x0, xr ∈ A; finally, call an A-path P a nonzero A-path if γ(P ) 6= 0
(where 0 denotes the identity element for Γ ).

Chudnovsky et al. [2] proved the following theorem as a consequence of a min-
max formula they obtain for the maximum number of nonzero vertex-disjoint A-
paths. Subsequently, [1] devised a polytime algorithm to compute the maximum
number of vertex-disjoint A-paths. Their algorithm also implicitly computes the
quantities needed in (the minimization portion of) their min-max formula to
show the optimality of the collection of A-paths they return [6]; this in turn
easily yields the vertex-set mentioned in Theorem 5.1.
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Theorem 5.1 ([2, 1]). Let
(
H = (N,E′), Γ

)
be a group-labeled graph, and A ⊆

V . Then, for any integer k, one can obtain in polynomial time, either:

1. k vertex-disjoint nonzero A-paths, or

2. a set of at most 2k − 2 vertices that intersects every nonzero A-path.

Recall that G is the undirected graph in the theorem statement, and s ∈ V .
For a suitable choice of a group-labeled graph (H,Γ ), and a vertex-set A, we
show that: (a) vertex-disjoint nonzero A-paths in (H,Γ ) yield edge-disjoint odd
(s, s)-trails; and (b) a vertex-set covering all nonzero A-paths in (H,Γ ) yields an
odd (s, s)-trail cover of G. Combining this with Theorem 5.1 finishes the proof.

Since we are dealing with parity, it is natural to choose Γ = Z2 (so the
orientation of edges in H will not matter). To translate vertex-disjointness (and
vertex-cover) to edge-disjointness (and edge-cover), we essentially work with the
line graph of G, but slightly modify it to incorporate edge labels. We replace each
vertex x ∈ V with a clique of size degG(x), with each clique-node corresponding
to a distinct edge of G incident to x; we use [x] to denote this clique, both its
set of nodes and edges; the meaning will be clear from the context. For every
edge e = xy ∈ E, we create an edge between the clique nodes of [x] and [y]
corresponding to e. We arbitrarily orient the edges to obtain H. We give each
clique edge a label of 0, and give every other edge a label of 1. Finally, we let
A = [s]. The proof of the following lemma is straightforward.

Lemma 5.2. The following properties hold.

(a) Every A-path P in H maps to an (s, s)-trail T = π(P ) in G such that
γ(P ) = 1 iff T is an odd trail.

(b) If two A-paths P,Q are vertex disjoint then the (s, s)-trails π(P ) and π(Q)
are edge disjoint.

(c) Every (s, s)-trail T in G with at least one edge maps to an A-path P = σ(T )
in G such that: T is an odd trail iff γ(P ) = 1, and P contains a vertex x iff
T contains the corresponding edge of G.

To complete the proof of Theorem 3.2, we apply Theorem 5.1 to the nonzero
A-paths instance constructed above. If we obtain k vertex-disjoint nonzero A-
paths in H, then parts (a) and (b) of Lemma 5.2 imply that we can map these
to k edge-disjoint odd (s, s)-trails. Alternatively, if we obtain a set C of at most
2k− 2 vertices of H that intersect every nonzero A-path, then we obtain a cover
F for odd (s, s)-trails in G by taking the set of edges in G corresponding to the
vertices in C. To see why F is a cover, suppose that the graph G−F has an odd
(s, s)-trail. This then maps to a nonzero A-path P in H such that P ∩C = ∅ by
part (c) of Lemma 5.2, which yields a contradiction.

6 Extensions

Odd trails in signed graphs. A signed graph is a tuple
(
G = (V,E), Σ

)
, where G

is undirected and Σ ⊆ E. A set F of edges is now called odd if |F∩Σ| is odd. Our
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results extend to the more-general setting of packing and covering odd (u, v)-
trails in a signed graph. In particular, Theorems 3.1, 3.2 and 3.3 hold without
any changes. Theorem 3.2 follows simply because it utilizes Theorem 5.1, which
applies to the even more-general setting of group-labeled graphs. Theorem 3.3
holds because it uses basic parity arguments: if we simply replace parity with
parity with respect to Σ (i.e., instead of parity of F , we now consider parity of
|F ∩Σ|), then everything goes through. Finally, as before, combining the above
two results yields (the extension of) Theorem 3.1.

Odd (C,D)-trails. This is the generalization of the odd (u, v)-trails setting, where
we have disjoint sets C,D ⊆ V . Our results yield a factor-2 gap between the the
minimum number of edges needed to cover all odd (C,D)-trails and the maxi-
mum number of edge-disjoint odd (C,D)-trails. First, we utilize Theorem 5.1 to
prove a generalization of Theorem 3.2 showing that for any integer k ≥ 0, we can
either obtain k edge-disjoint odd (C∪D,C∪D)-trails, or an odd-(C∪D,C∪D)-
trail cover of size at most 2k − 2. Next, we observe that Theorem 3.3 can still
be applied in this more-general setting to show that if we have a collection T̂ of
k edge-disjoint odd (C ∪D,C ∪D)-trails, and (at least) 2k edge-disjoint (C,D)-
paths, then we can obtain k edge-disjoint odd (C,D)-trails.
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