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Abstract

We consider a fault-tolerant generalization of the classical uncapacitated facility location problem,
where each client j has a requirement that rj distinct facilities serve it, instead of just one. We give a
2.076-approximation algorithm for this problem using LP rounding, which is currently the best known
performance guarantee. Our algorithm exploits primal and dual complementary slackness conditions and
is based on clustered randomized rounding. A technical difficulty that we overcome is the presence of
terms with negative coefficients in the dual objective function, which makes it difficult to bound the cost
in terms of the dual variables. For the case where all requirements are the same, we give a primal-dual
1.52-approximation algorithm.

We also consider a fault-tolerant version of the k-median problem. In the metric k-median problem,
we are given n points in a metric space. We must select k of these to be centers, and then assign each input
point j to the selected center that is closest to it. In the fault-tolerant version we want j to be assigned to
rj distinct centers. The goal is to select the k centers so as to minimize the sum of the assignment costs.
The primal-dual algorithm for fault-tolerant facility location with uniform requirements also yields a
4-approximation algorithm for the fault-tolerant k-median problem for this case. This the first constant-
factor approximation algorithm for the uniform requirements case.

1 Introduction

Facility location is a classical problem that has been widely studied in the field of Operations Research (see,
e.g., the text of Mirchandani and Francis [18]). In its simplest version, the uncapacitated facility location
(UFL) problem, we are given a set of facilities F and a set of clients D. Each facility i has an opening cost
fi, and assigning client j to facility i incurs a cost equal to the distance cij between i and j. We want to
open a subset of the facilities in F and assign the clients to open facilities so as to minimize the sum of the
facility opening costs and the client assignment costs. We consider the case where the distances cij form a
metric, that is, they are symmetric and satisfy the triangle inequality.

In many settings it is essential to provide safeguards against failures by designing fault-tolerant solutions.
For example, in a distributed network we want to place caches and assign data requests to caches so as to
be resistant against caches becoming unavailable due to node or link failures, and a common solution is
to replicate data items across caches and build some resilience in the network. This motivates the fault-
tolerant facility location (FTFL) problem, wherein each client j has a requirement rj and has to be assigned
to rj distinct facilities, instead of just one. Multiple facilities provide a backup against failures; if the
facility closest to a client fails, the other facilities assigned to it could be used to serve it. To give a more
concrete example demonstrating this, consider a setting where facilities (which could represent caches) fail
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independently with probability p, and each client j must be guaranteed that it will be served by a (functional)
facility with probability at least qj . Then, this quality-of-service requirement translates precisely to the
constraint that each client j be assigned to rj = dlog(1− qj)/ log pe distinct facilities.

A more precise statement of the problem is as follows: we are given a set of facilities F and a set of
clients D, and each client j has a requirement rj ≥ 1. Each facility i has, as usual, an opening cost of fi.
In any feasible solution, we must assign every client j to rj distinct open facilities. The assignment cost or
service cost incurred for j is the sum of the distances from j to these rj facilities. The objective is to open
a subset of the facilities, and assign each client j to rj distinct open facilities, so as to minimize the total
facility opening and client assignment costs. This problem is a generalization of the uncapacitated facility
location problem, which is the setting where rj = 1 for each client j ∈ D.

Our main result is a 2.076-approximation algorithm for fault-tolerant facility location. This is currently
the best known guarantee, improving upon the guarantee of 2.408 due to Guha et al. [7]. If all require-
ments are equal, we give a 1.52-approximation algorithm by building upon the algorithm of [10, 16], which
matches the current best guarantee for uncapacitated facility location (i.e., the unit requirement case). The
previous best approximation guarantee for FTFL with uniform requirements was 1.861 [15]. We also con-
sider the fault-tolerant version of the k-median problem where in addition, a bound k is specified on the
number of facilities that may be opened. We consider the case where all requirements are equal and give a
4-approximation algorithm for this case.

Related Work. The past several years have given rise to a variety of techniques for the design and analysis
of approximation algorithms for the metric uncapacitated facility location problem. The first constant-factor
approximation algorithm for this problem was due to Shmoys, Tardos and Aardal [19] who gave a 3.16-
approximation algorithm, using the filtering technique of Lin and Vitter [14] to round the optimal solution
of a linear program. After an improvement by Guha and Khuller [6], Chudak and Shmoys [5] gave an LP
rounding based

(
1 + 2

e

)
-approximation algorithm. They used information about the structure of optimal

primal and dual solutions, and combined randomized rounding and the decomposition results of [19] to get
a variant that might be called clustered randomized rounding. Sviridenko [20] improved the ratio to 1.58.
Jain and Vazirani [12] gave a combinatorial primal-dual 3-approximation algorithm where the LP is used
only in the analysis. Mettu and Plaxton [17] gave a variant of this algorithm (which is not explicitly a primal-
dual algorithm) that achieves the same approximation ratio but runs in linear time. Local search algorithms
were first analyzed by Korupolu, Plaxton and Rajaraman [13] and later improved by [3, 2]. Jain, Mahdian,
Markakis, Saberi and Vazirani [9] gave a greedy algorithm and showed using a dual-fitting analysis that it
has an approximation ratio of 1.61. This was improved by Mahdian, Ye and Zhang [16] to 1.52, which is
the best known guarantee.

Charikar, Guha, Tardos and Shmoys [4] gave the first constant-factor algorithm for the k-median prob-
lem based on LP rounding. This was improved in a series of papers [12, 3, 9, 2] to (3 + ε) [2].

The fault-tolerant facility location (FTFL) problem was first studied by Jain and Vazirani [11] who gave
a primal-dual algorithm achieving a performance guarantee that is logarithmic in the largest requirement.
Our algorithm is based on LP rounding. We consider the following LP and its dual.

min
∑

i

fiyi +
∑

j

∑
i

cijxij (FTFL-P)

s.t.
∑

i

xij ≥ rj ∀j
xij ≤ yi ∀i, j
yi ≤ 1 ∀i

xij , yi ≥ 0 ∀i, j.

max
∑

j

rjαj −
∑

i

zi (FTFL-D)

s.t. αj ≤ βij + cij ∀i, j∑
j

βij ≤ fi + zi ∀i (1)

αj , βij , zi ≥ 0 ∀i, j.
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Variable yi indicates if facility i is open, and xij indicates if client j is assigned to facility i. An integer so-
lution to the LP corresponds exactly to a solution to our problem. Guha, Meyerson and Munagala [7] round
the primal LP above using filtering and the decomposition technique of [19] to get a 3.16-approximation.
They also show that a subsequent greedy local improvement post-processing step reduces the approximation
ratio to 2.408. They actually consider a more general version of FTFL, where the service cost of a client
j is a weighted sum of its distances to the rj facilities to which it is assigned, where the weights are part
of the input. Unless otherwise stated, we use fault-tolerant facility location to denote the unweighted (or
unit-weighted) version of the problem.

In the case where all clients have the same requirement, i.e., rj = r, better results are known. Mahdian
et al. [15] showed that their 1.861-approximation algorithm for UFL can be extended to give an algorithm
for FTFL with a guarantee of 1.861. Independent of our work, Jain et al. [9] gave a 1.61-approximation
algorithm based on their 1.61-approximation algorithm for UFL.

Our Techniques. Our algorithm is also based on LP rounding but does not use filtering. Instead it is based
on the clustered randomized rounding technique of Chudak and Shmoys [5]. Our rounding algorithm ex-
ploits the optimality properties of the fractional solution by using the complementary slackness conditions to
bound the cost of the solution in terms of both the primal and dual optimal solutions. One difficulty in using
LP duality to prove an approximation ratio, is the presence of −

∑
i zi in the dual objective function. As a

result, bounding the cost in terms of
∑

j rjαj is not enough to prove an approximation guarantee. In general,
this is not an easy problem to tackle; for example, this problem also crops up in designing approximation
algorithms for the k-median problem, and consequently the only known LP rounding algorithm [4] uses just
the optimal primal LP solution. However for FTFL, complementary slackness allows us to, in effect, get rid
of the negative zis by a single pruning phase; since zi > 0 =⇒ yi = 1, we can open all such i and charge
the opening cost to the LP.

Our algorithm also clusters facilities around certain demand points, called cluster centers, and opens at
least one facility in each cluster. We do this clustering carefully, in a way that ensures that each demand j
has at least rj open clusters “near” it; the facilities opened from these clusters are used as backup facilities to
serve demand j. Each facility i is opened with probability proportional to yi. The randomization step allows
us to reduce the service cost, since now for any client j and any set S of facilities that fractionally serve j
such that the facility weight

∑
i∈S xij is “large” (i.e., at least some constant), there is a constant probability

that a facility i from S is opened.
Various difficulties arise in trying to extend the algorithm of [5] to the fault-tolerant setting. To ensure

feasibility, we need to open different facilities in different clusters. Also, we want a cluster to (ideally) have
a fractional facility weight of 1, so that the cost of opening a facility in this cluster can be charged to the
LP cost for opening a facility from this cluster. A small facility weight could force us to incur a huge cost
(relative to the LP) in opening a facility within the cluster, whereas if a cluster has a facility weight of more
than 1 and we open only one facility from the cluster, then we might end up opening less facilities than
necessary to satisfy the requirement of each client. However, unlike UFL, once we require clusters to be
disjoint we cannot expect a cluster to have a facility weight of exactly 1, because we will not in general be
able to partition the facilities fractionally serving a client into disjoint sets with each set having a facility
weight of 1. We tackle this problem by introducing another pruning phase before clustering where we
open all facilities i with “large” yi, so that in the clustering step we now only consider facilities that have
“small” yi. In the clustering step, this allows us to pack a substantial facility weight within a cluster without
exceeding the limit of 1.

To analyze the algorithm, we view a demand j with requirement rj as being composed of rj copies
which have to be connected to distinct facilities. We allot each copy a set of facilities from among those that
fractionally serve j, that is, a subset of {i : xij > 0}, and a unique backup facility. A copy may only be
assigned to a facility allotted to it, or to its backup facility. Again, to argue feasibility, we have to ensure that
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a facility is allotted to at most one copy, and we would like to allot each copy a facility weight of one, but
it may not be possible to simultaneously satisfy both requirements. However because of the pruning phase
one can allot a substantial facility weight to each copy, due to which one can upper bound the probability of
the event that no facility in the allotted set of the copy is open. This results in an approximation ratio of 2.25.
To do better, we distribute facilities more evenly among the copies . We use the so-called pipage rounding
technique of Ageev and Sviridenko [1] to essentially derandomize a hypothetical randomized process in
which each copy gets an equal allotment of facility weight. This yields a 2.076-approximation algorithm.

For the uniform-requirement case, we improve the approximation guarantee of 1.861 [15] to 1.52 by
building upon the algorithm of Jain, Mahdian and Saberi [10]. The algorithm is analyzed using the dual
fitting approach and we arrive at the same factor LP as in [10]; thus we obtain the same performance guaran-
tees. Combined with a greedy improvement heuristic and the analysis in [16], we get a 1.52-approximation
algorithm. Using a Lagrangian relaxation technique introduced in [12] for the k-median version of UFL, we
get a 4-approximation algorithm for the fault-tolerant k-median problem with uniform requirements.

2 A simple 4-approximation algorithm

We first give a simple 4-approximation algorithm for the fault-tolerant facility location problem. The algo-
rithm does not use filtering but exploits the complementary slackness conditions to bound the cost of the
solution in terms of both the primal and dual optimal solutions.

Let (x, y) and (α, β, z) be the optimal primal and dual solutions respectively and OPT be the common
optimal value. The primal slackness conditions are: xij > 0 =⇒ αj = βij + cij , yi > 0 =⇒

∑
j βij =

fi + zi. The dual slackness conditions are: αj > 0 =⇒
∑

i xij = rj , βij > 0 =⇒ xij = yi,
and zi > 0 =⇒ yi = 1. We may assume without loss of generality for each client j, αj > 0 so that∑

i xij = rj . Furthermore, for every client j there is at most one facility i such that 0 < xij < yi, and that
this is the farthest facility serving j, because one can always “shift” the assignment of j to facilities nearer
to j and ensure that this property holds.

Like the Chudak-Shmoys (CS) algorithm for UFL [5], the algorithm is based on the observation that the
optimal solution is α-close, that is, xij > 0 =⇒ cij ≤ αj . However one additional difficulty encountered
in using LP duality to prove an approximation ratio, which does not arise in the case of UFL, is the presence
of the −

∑
i zi term in the dual objective function. As a result, bounding the cost in terms of

∑
j rjαj is not

enough to prove an approximation guarantee. However additional structure in the primal and dual solutions
resulting from complementary slackness allows us to circumvent this difficulty; since zi > 0 =⇒ yi = 1,
we can open all such facilities i and charge the opening cost to the LP.

Throughout, we will view a client j with requirement rj as consisting of rj copies, each of which needs
to be connected to a distinct facility. We use j(c) to denote the cth copy of j. We use the terms client and
demand interchangeably, and also assignment cost and service cost interchangeably. The algorithm consists
of two phases.

Phase 1. First we open all facilities with yi = 1. Let L1 be the set of facilities opened. For every client j,
if xij > 0 and yi = 1, we connect a copy of j to i. Notice that at most one copy of j is connected to any
such facility. Let Lj = {i ∈ L1 : xij > 0} and nj = |Lj | be the number of copies of j connected in this
phase. Note that nj ≤ rj . The following lemma bounds the cost for this phase.

Lemma 2.1 The cost of phase 1 is
∑

j njαj −
∑

i zi.

4



j

r′j = 2

k

r′k = 4

ci”j ≤ αj for every facility i” ∈M
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i

Figure 2.1: One iteration of the clustering step in Phase 2. j is the cluster center; 2 copies of j, k, and 1 copy
of ` get connected in this iteration; j and ` are removed from S after this iteration.

Proof : Each i with zi > 0 is in L1 and for any i ∈ L1 all clients j with xij > 0 are connected to it. Since
xij > 0 =⇒ αj = cij + βij , for any i ∈ L1 we have,∑

j:xij>0

αj =
∑

j:xij>0

(cij + βij) =
∑

j:xij>0

cij +
∑

j

βij =
∑

j:xij>0

cij + fi + zi.

The second equality follows since βij > 0 =⇒ xij = yi = 1 > 0. Since nj = |{i ∈ L1 : xij > 0}|, the
lemma follows by summing over all i ∈ L1.

Phase 2. This is a simple clustering step. Let r′j = rj −nj be the residual requirement of j. Let Fj = {i :
yi < 1, xij > 0} be the set of facilities not in L1 that fractionally serve j in (x, y). Let S = {j : r′j ≥ 1}.
We will maintain the invariant

∑
i∈Fj

yi ≥ r′j for all j ∈ S. We iteratively do the following until S = ∅.

S1. Choose j ∈ S with minimum αj as a cluster center.

S2. Order the facilities in Fj by increasing facility cost. We pick M ⊆ Fj starting from the first facility
in Fj so that

∑
i′∈M yi′ ≥ r′j . If

∑
i′∈M yi′ > r′j , we replace the last facility i in M (that is, i is

the facility furthest from j) by two “clones” of i, called i1 and i2. Set yi1 = r′j −
∑

i′∈M\{i} yi′ ,
yi2 = yi − yi1 . For each client k (including j) with xik > 0 we set xi1k, xi2k arbitrarily maintaining
that xi1k + xi2k = xik, xi1k ≤ yi1 , xi2k ≤ yi2 . We include i1 in M , so now

∑
i′∈M yi′ = r′j .

S3. Open the r′j cheapest facilities in M . For each client k (including j) with Fk ∩M 6= ∅, we connect
min(r′k, r

′
j) copies of k to these open facilities, and set r′k = r′k−min(r′k, r

′
j), Fk = Fk\M . Facilities

in M and client j now effectively disappear from the input.

Figure 2.1 shows one iteration of steps S1–S3. Step S2 is valid since we maintain the invariant
∑

i∈Fk
yi ≥

r′k for all k ∈ S. This is clearly true initially, and in any iteration, for any k with Fk ∩M 6= ∅ and which lies
in S after the iteration, we remove a facility weight of at most r′j from Fk and r′k decreases by exactly r′j .

We first argue that the algorithm returns a feasible solution. In Phase 1, distinct copies get connected to
distinct facilities, and no facility with yi = 1 ever gets used in Phase 2. In Phase 2, we ensure that at most
one clone of a facility i is opened. This holds because whenever i ∈M is replaced by clones, its first clone
is not opened in step S3: since i is included partially in M it must be the most expensive facility in M and
because

∑
i′∈M\{i} yi′ > r′j − yi > r′j − 1 there are at least r′j facilities in M \ {i} that are cheaper than i;
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hence the clone of i included in M (the first clone) is not opened in step S3. Since only the second clone can
be opened (whenever a facility is split into clones), at most one clone of a facility is opened. It follows that
a client j uses a facility i at most once. Thus we get a feasible solution where each copy j(c) is connected to
a distinct facility. We now bound the cost of the solution obtained.

Lemma 2.2 The facility opening cost in Phase 2 is at most
∑

i fiyi.

Proof : Facilities are only opened in step S2 of Phase 2 where we pick a set of facilities M such that∑
i∈M yi = r′j and open the r′j cheapest facilities in M . The cost of opening the cheapest facilities is at

most r′j ·(average cost) =
∑

i∈M fiyi. Also the facilities in M are not reused.

Lemma 2.3 Let k(c) be a copy of k connected to facility i in Phase 2. Then, cik ≤ 3αk.

Proof : Let M ⊆ Fj be the set of facilities picked in Step S2 such that i ∈ M . Let i′ be some facility in
Fk ∩M which is non-empty (see Fig. 2.1). Then, cik ≤ ci′k + ci′j + cij ≤ αk + 2αj . The lemma now
follows since αj ≤ αk because j was chosen as the cluster center and not k (which is in S).

Theorem 2.4 The above algorithm delivers a solution of cost at most 4 ·OPT .

Proof : The facility cost in Phase 2 is at most
∑

i fiyi ≤ OPT =
∑

j r′jαj +
(∑

j njαj −
∑

i zi

)
.

The service cost of j is the service cost for the nj copies connected in Phase 1 added to the service cost
for the r′j copies connected in Phase 2. Each copy of j connected in Phase 2 incurs a service cost of at
most 3αj . So the total cost is bounded by (cost of Phase 1)+(facility cost in Phase 2)+(service cost for r′j
copies in Phase 2) ≤

(∑
j njαj −

∑
i zi

)
+

∑
i fiyi + 3

∑
j r′jαj ≤ 2

(∑
j njαj −

∑
i zi

)
+ 4

∑
j r′jαj ≤

4
(∑

j rjαj −
∑

i zi

)
= 4 ·OPT .

3 A better “randomized” algorithm: an overview

We now show that the performance guarantee can be improved substantially by using randomization along
with clustering. At a high level, the algorithm proceeds as follows. First we run Phase 1 as above, except
that we connect a copy of j to i only if xij = 1. The main source of improvement is due to the fact that
we open every other facility i with probability proportional to yi. This helps to reduce the service cost since
now for every client j and copy j(c) there is a significant probability that a (distinct) facility with xij > 0 is
open. The algorithm is thus in the spirit of the CS algorithm [5], which also uses randomization to reduce
the service cost incurred. However, several obstacles have to be overcome to extend the approach to the
fault-tolerant setting and prove a good approximation guarantee.

We again cluster facilities around demand points, but now each cluster that we create contains a (frac-
tional) facility weight close to 1, and we open at least one facility in the cluster by a randomized process.
We will ensure that each demand j has rj clusters “near” it, so the facilities opened in these clusters, called
backup facilities, can be used to serve j without blowing up the service cost by much. This is done by
introducing a notion of backup requirement, which is initialized to rj . Whenever we create a cluster we
decrement the backup requirement of all demands j that share a facility with the cluster created. The facility
opened in this cluster (which is chosen randomly) serves as a backup facility for each such client j. As long
as the backup requirement of j is at least 1, it is a candidate for being chosen as a cluster center; thus at the
end, j will share facilities with rj clusters and these provide rj nearby backup facilities.

The randomization step however causes various technical difficulties. To argue feasibility, we need to
open different facilities in different clusters. Also, ideally, we would like each cluster to contain a facility
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weight of exactly 1. If the facility weight is too small, then we incur a huge cost relative to the LP in
opening a facility from the cluster; if the weight is more than 1, then we are using up a fractional facility
weight of more than 1 while opening only a single facility, so we might not open enough facilities to satisfy
the requirement of a client. In a deterministic setting, like in the 4-approximation algorithm above, we
know precisely which facility(ies) is(are) opened within a cluster, and can therefore afford to split facilities
across clusters, without sacrificing feasibility, to ensure that a cluster contains the “right” amount of facility
weight. Guha et al. [7] also deterministically decide which facility to open within a cluster, possibly splitting
a facility across clusters, and thereby extend the UFL algorithm of Shmoys et al. [19] relatively easily to the
fault-tolerant setting.

With randomization however, any of the facilities in a cluster might get opened. Therefore we cannot
now split facilities across clusters, and require that the clusters be disjoint. But unlike UFL, once we require
clusters to be disjoint, we cannot ensure that a cluster has a facility weight of exactly 1. For example,
consider a client j with rj = 2 served by three facilities i, i′ and i′′ with xij = xi′j = xi′′j = yi = yi′ =
yi′′ = 2

3 ; a cluster centered at j consisting of unsplit facilities cannot have a facility weight of exactly 1.
We tackle this problem by introducing an intermediate Phase 2 (before the clustering step), where we open
all facilities i for which yi is “large”; that is, yi is at least some threshold γ, and we connect a copy of j
to i if xij ≥ γ. We now work with only the remaining set of facilities and the residual requirements, and
perform the clustering step above. Clearly, we incur a loss of a factor of at most γ due to Phase 2. But
importantly since each (remaining) yi < γ, we can now create disjoint clusters and ensure that a cluster
contains a facility weight between 1− γ and 1. Finally, we open every facility i, be it a cluster facility or a
non-cluster facility, with probability proportional to yi.

To analyze the cost of the solution, we fix a particular way of assigning each copy (that is unassigned
after Phases 1 and 2) to an open facility, and bound the service cost for every copy separately. For each
demand j, we allot each such copy j(c) a set of preferred facilities P

(
j(c)

)
, which is a subset of the facilities

that fractionally serve the unassigned copies, and a distinct backup facility b(j(c)), which is a facility opened
from a cluster near j. We assign j(c) to the nearest facility open in P

(
j(c)

)
(if there is one) and otherwise

to the backup facility b(j(c)). Again, to argue feasibility we require that the preferred sets for the different
copies are disjoint. Ideally, we would like to allot a disjoint set of facilities with facility weight 1 to each
preferred set, but we face the same difficulty as in forming clusters — it might not be possible to divide up
the facilities among the different copies so that each copy gets a set with facility weight 1. However, Phase
2 ensures that one can allot each set P

(
j(c)

)
a facility weight of at least 1 − γ, which gives a reasonable

upper bound on the probability that no facility in P
(
j(c)

)
is open. Combining these various components, we

already obtain an algorithm with a much better approximation ratio, about 2.2, but we can do even better.

3.1 Pipage Rounding

The final improvement comes by exploiting the pipage rounding technique of Ageev and Sviridenko [1],
which was applied in the context of uncapacitated facility location by Sviridenko [20]. Suppose that we
distribute the facilities serving the unassigned copies of j among the preferred sets and allot each preferred
set a facility weight of 1, perhaps by splitting facilities. A facility i could now lie in multiple preferred sets
P

(
j(c)

)
; let zij(c) be the extent to which facility i is allotted to P

(
j(c)

)
, so

∑
c zij(c) = xij . Although the

preferred sets are no longer disjoint, we can still use the above scheme of opening facilities and assigning
copies to facilities as follows: we will make facility i available (for use) to exactly one copy c and with
probability zij(c)/xij . So for copy j(c) to be assigned to facility i, it must be that i is open, i is available
to copy c, and no facility in P

(
j(c)

)
that is nearer to j is available to copy c. So in expectation, each copy

j(c) has a facility weight of 1 available to it, and it seems plausible that one should be able to show that
the probability that no facility in the preferred set is available is small, and thereby bound the expected
service cost of the copy. However, there is some dependence between the randomness involved in making

7



a facility available to a copy, and in opening the facility, which makes it difficult to prove a good bound on
the expected service cost of a copy.

Nevertheless, we will pretend that we have a hypothetical randomized process with various desired
properties, write an expression for the expected cost incurred under this randomized process, and bound
this cost. More precisely, we will construct an expression cost(y1, y2, . . . , yn) that is a function of the yi

variables, where n = |F|, satisfying the following properties:

P1. When the yi values are set to the values given by the LP optimal solution, we have cost(y1, . . . , yn) ≤
c ·OPT for an appropriate constant c that we will specify later.

P2. For any integer solution satisfying certain properties, if we consider the corresponding {0, 1}-setting
of the yi values, cost(y1, . . . , yn) gives an upper bound on the total cost of the integer solution.

P3. cost(.) has some nice concavity properties (we will make this precise later).

Using property P3, we will argue that given any initial fractional setting of the yi values, we can obtain a
{0, 1}-solution ỹ satisfying certain properties, such that cost(ỹ1, . . . , ỹn) ≤ cost(y1, . . . , yn). So if we set
the yi values to the values given by the LP optimal solution to begin with, then properties P1 and P2 show
that we obtain an integer solution of cost at most c · OPT , thereby getting a c-approximation algorithm.
Thus we actually get a deterministic algorithm1 with an approximation guarantee of 2.076.

As mentioned earlier, we will obtain expression cost(.) by imagining that we have a randomized process
with certain desired properties, and writing out the expected cost incurred under this process. We emphasize
that this is for intuitive purposes only — such a randomized process may not exist, and even if it exists, we
might not know how to implement such a randomized process.

4 Algorithm details

The algorithm runs in 3 phases, which are described in detail below. The entire algorithm is also summarized
in Figure 4.3. Let γ < 1

2 be a parameter whose value we will fix later.

Phase 1. This is very similar to Phase 1 of the simple 4-approximation algorithm. Let L1 = {i : yi = 1}.
We open all facilities in L1. For every client j, if xij = yi = 1, we connect a copy of j to i. Let nj be the
number of copies of j so connected, and let r′j = rj − nj be the residual requirement of j.

Phase 2. Open each facility i (in F \ L1) with yi ≥ γ. Let L2 be the set of facilities opened. For a client
j, we now define Lj = {i : γ ≤ xij < 1}. Clearly Lj ⊆ L1 ∪ L2. Connect min(|Lj |, r′j) copies of j to
distinct facilities in Lj . This incurs the loss of a factor of 1

γ compared to the LP. We ensure that for each j,
no facility i with xij ≥ γ is used after this phase. Let r′′j = max(r′j − |Lj |, 0) be the residual requirement
of j. Note that

∑
i:xij<γ xij ≥ r′′j since if r′′j > 0, then r′′j = r′j − |Lj | and r′j =

∑
i:xij<1 xij .

Phase 3. We introduce some notation first. Let Fj denote the set of facilities {i : 0 < xij < γ} sorted in
order of increasing cij . We define the facility weight of a set of facilities S to be facwt

(
S, j

)
=

∑
i∈S xij .

We know that facwt
(
Fj , j

)
≥ r′′j ; we assume without loss of generality that facwt

(
Fj , j

)
is exactly r′′j .

(If not, we may simply take a subset of Fj starting from the first facility and proceeding in order until
facwt

(
Fj , j

)
= r′′j , where the last facility may only be partially included in Fj .)

1This is why randomized appears in quotes in the title of this section.
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)
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copy of client
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r′′j = 3, back(j) = 1, aj = 3
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back(j) and back(k) are decremented, so j, k are
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(
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clients j, k are in S

sets P
(
j(1)

)
, P

(
j(2)

)
(and P

(
k(1)

)
) have

Figure 4.2: An iteration of the clustering step in Phase 3.

Clustering. Define the backup requirement back(j) = r′′j . For each client j, let aj initialized to 1
denote the current ‘active’ copy of j, and let Nj , initialized to Fj , be the current set of unclustered
facilities in Fj ordered by increasing cij value. We will maintain the invariant facwt

(
Nj , j

)
≥ back(j)

(see Lemma 5.1) for every j. Let S = {j : back(j) ≥ 1} be the set of candidate cluster centers.
While S 6= ∅ we repeatedly do the following.

C1. For each j ∈ S, let Cj(aj) denote the average distance from j to the first l facilities (considered
in sorted order) i1, . . . , il in Nj that gather a net xij-weight of 1 (this makes sense because
facwt

(
Nj , j

)
≥ back(j) ≥ 1) where the last facility il may be included partially, that is, to an

extent x such that
∑

p<l xipj + x = 1, 0 < x ≤ xilj . So Cj(aj) =
∑

p<l cipjxipj + ciljx.

C2. Choose j ∈ S with minimum Cj(aj) as a cluster center. Form a cluster M ⊆ Nj consisting of
the first m facilities i1, . . . , im in Nj such that facwt

(
{i1, . . . , im}, j

)
≥ 1 − γ. Note that here

we do not split any facility (see Fig. 4.2).

C3. For each k (including j) such that Nk ∩M 6= ∅, decrease back(k) by 1. Initialize P
(
k(ak)

)
←

Fk ∩M = Nk ∩M (since facilities in M are previously unclustered) and set ak ← ak + 1,
Nk ← Nk \M (see Fig. 4.2). For each such k, we call M the backup cluster of copy k(ak).

Pipage Rounding. For every client j, we augment the preferred sets P
(
j(c)

)
, c = 1, . . . , r′′j , so that

each P
(
j(c)

)
gets a facility weight of exactly 1. We do this by distributing the facilities remaining in

Nj (i.e., the unclustered facilities in Fj) arbitrarily among these r′′j sets, splitting facilities across sets
if necessary. By this we mean that if zij(c) ≥ 0 denotes the amount of facility i allotted to copy c, then∑

i zij(c) = 1 for every copy c,
∑

c zij(c) = xij for every facility i, and if i ∈ Fj \Nj was allotted to
P

(
j(c)

)
in the clustering step, then zij(c) = xij and zij(c′) = 0 for every other copy c′ (see Fig. 4.4).

Such a distribution of facilities is always possible since facwt
(
Fj , j

)
= r′′j . The preferred set of copy

j(c) is the set of facilities for which zij(c) > 0: P
(
j(c)

)
= {i : zij(c) > 0}. Let {x̂ij , ŷi, ẑij(c)}

denote respectively {xij , yi, zij(c)}/(1 − γ). Now imagine that we have a randomized process with
the following properties.
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(a) Each facility i /∈ (L1 ∪ L2) (so yi < γ) is opened independently with probability ŷi. Note that
ŷi < 1, since yi < γ ≤ 1− γ.

(b) Within each cluster M , at least one facility is opened.

(c) For any client j, at most one of its copies gets to use a facility, and copy c gets to use facility
i ∈ P

(
j(c)

)
with probability ẑij(c).

As we mentioned earlier, this reference to an imaginary randomized process is for intuitive purposes
only. In particular, notice that no randomized process can satisfy properties (a) and (b) simultaneously.
The rounding is performed in two steps.

Local Per-Client Rounding. We first ensure that for every client j, every facility i is allotted to
exactly one preferred set; so after this step we will have ẑij(c) equal to either 0 or x̂ij for every i. Fix
a client j. Motivated by the above hypothetical randomized process, we write an expression S loc

j (c)
for the service cost of each copy j(c). Suppose j(c) is the center of a cluster M , so M ⊆ P

(
j(c)

)
.

Let M = {i1, . . . , im} with ci1j ≤ . . . ≤ cimj , and let dl = cilj . One of the facilities in M is
guaranteed to be open, and we assign j(c) to the nearest such facility. In Lemma 5.1, we show that
yi = xij = zij(c) for each facility i in M , so we can write

S loc
j (c) = ŷi1d1 + (1− ŷi1)ŷi2d2 + · · ·+ (1− ŷi1)(1− ŷi2) . . . (1− ŷim−1)dm. (2)

To avoid clutter, we have not explicitly indicated the functional dependence of S loc
j (c) on the variables

ŷi1 , . . . , ŷim .

If j(c) is not a cluster center, let P
(
j(c)

)
= {i1, . . . , im} ordered by increasing distance from j, and

let dl = cilj . Let M be the backup cluster of j(c), and let M \ P
(
j(c)

)
= {b1, . . . , bq}, again ordered

by increasing cij value. Denote cblj by cl for l = 1, . . . , q. To keep notation simple, let ẑil denote
ẑilj(c). We define

S loc
j (c) = ẑi1d1 + (1− ẑi1)ẑi2d2 + · · ·+ (1− ẑi1)(1− ẑi2) . . . (1− ẑim−1)ẑimdm

+ (1− ẑi1) . . . (1− ẑim)
(
ŷb1c1 + · · ·+ (1− ŷb1) . . . (1− ŷbq−1)cq

)
. (3)

The rationale behind the expression is the same as earlier: we assign j(c) to the nearest open facility
in P

(
j(c)

)
and if no such facility is open (in which case, some facility in M \ P

(
j(c)

)
must be open),

to the nearest facility opened from cluster M .

Now for each j, we round the ẑij(c) values without increasing
∑

c S loc
j (c), so that at the end we get

an unsplittable allotment of facilities in Fj to copies; that is, for every i ∈ Fj there will be exactly
one copy c with ẑij(c) > 0 (and hence equal to x̂ij).

Observe that the expression S loc
j (c) is linear in each variable ẑij(c). (This is also true when j(c) is a

cluster center and i is not part of the cluster centered at j(c).) Suppose 0 < ẑij(c) < x̂ij for some
copy c. There must be some other copy c′ such that 0 < ẑij(c′) < x̂ij . So if we consider changing
ẑij(c) by +ε and ẑij(c′) by −ε, where ε is either −ẑij(c) or +ẑij(c′), then since S loc

j (c) and S loc
j (c′)

are linear in ẑij(c) and ẑij(c′) respectively, we can always make one of these local moves without
increasing

∑
c S loc

j (c). In fact, notice that the values of S loc
j (c′′) for copies c′′ 6= c, c′, and that of

S loc
k (c) for any copy k(c) where k 6= j, remain unchanged. Thus we decrease the number of zij(.)

values that lie in the interval (0, xij). Continuing in this way we get that at the end there is exactly
one copy c with ẑij(c) = x̂ij > 0; for every other copy c′ we have ẑij(c′) = 0. We repeat this for
every facility i ∈ Fj , and for every client j, to get an unsplittable allotment for each client. Figure 4.4
shows a possible outcome of this process. Note that the ŷi values are not changed in this step.
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[(x, y) is an optimal solution to (FTFL-P). γ < 1
2 is a parameter.]

Phase 1. Let L1 = {i : yi = 1}. Open all the facilities in L1. For each client j and each i such that xij = yi = 1,
connect a copy of j to i. Let nj = |{i : xij = 1}| and let r′j = rj − nj .

Phase 2. Let L2 = {i : γ ≤ yi < 1}. Open all the facilities in L2. For a client j, define Lj = {i : γ ≤ xij < 1}.
Connect min(|Lj |, r′j) copies of j to distinct facilities in Lj . Let r′′j = max(r′j − |Lj |, 0) be the residual requirement
of j. (Note that

∑
i:xij<γ xij ≥ r′′j .)

Phase 3. For every j, let Fj denote the facilities {i : 0 < xij < γ} ordered by increasing cij value. Define the facility
weight of a set of facilities S by facwt

(
S, j

)
=

∑
i∈S xij . We may assume that facwt

(
Fj , j

)
is exactly r′′j .

Clustering. For each client j, initialize back(j)← r′′j and aj ← 1; back(j) denotes the backup requirement of
j, and aj denotes the current ‘active’ copy of j. Let Nj ← Fj be the current set of unclustered facilities in Fj

(ordered by increasing cij value). Let S = {j : back(j) ≥ 1} be the set of candidate cluster centers.
While S 6= ∅:
C1. For each j ∈ S, define Cj(aj) as follows. Let i1, . . . , il be the first l facilities (in the sorted order) in Nj

such that
∑

p<l xipj < 1 ≤
∑

p≤l xipj . Define Cj(aj) =
∑

p<l cipjxipj + cilj(1−
∑

p<l xipj).
C2. Choose j ∈ S with minimum Cj(aj) as a cluster center. Form cluster M ⊆ Nj consisting of the first m

facilities i1, . . . , im in Nj such that facwt
(
{i1, . . . , im}, j

)
≥ 1− γ (see Fig. 4.2).

C3. For each k (including j) such that Nk ∩M 6= ∅, initialize P
(
k(ak)

)
← Fk ∩M = Nk ∩M . Update

back(k) ← back(k)− 1, ak ← ak + 1, and Nk ← Nk \M (see Fig. 4.2). We call M the backup cluster
of copy k(ak).

Pipage Rounding. For every client j, distribute the facilities remaining in Nj arbitrarily among the preferred
sets P

(
j(c)

)
, for c = 1, . . . , r′′j copies, splitting facilities across sets if necessary, so that each preferred set gets

a facility weight of exactly 1. More precisely, compute an assignment {zij(c)}i,c (see Fig. 4.4) such that

(i) zij(c) ≥ 0 and
∑

i zij(c) = 1 for every copy c,

(ii)
∑

c zij(c) = xij for every facility i, and

(iii) if i ∈ Fj \Nj was allotted to P
(
j(c)

)
in the clustering step, then zij(c) = xij ,

and set P
(
j(c)

)
= {i : zij(c) > 0}. Let {x̂ij , ŷi, ẑij(c)} denote respectively {xij , yi, zij(c)}/(1− γ).

Local Per-Client Rounding. For every client j, copy c, let S loc
j (c) be as defined by (2) if j(c) is a cluster-center,

and as defined by (3) otherwise. For every i and copies c, c′ such that 0 < zij(c), zij(c′) < xij , perturb zij(c)
by +ε and zij(c′) by −ε, where ε is either −zij(c) or zij(c′), so that

∑
c S loc

j (c) does not increase. Repeat this
until zij(c) ∈ {0, xij} for every i, j, c. Update the sets P

(
j(c)

)
accordingly.

Global Rounding. Define Sglb
j (c) = S loc

j (c) if j(c) is a cluster-center, and by (4) otherwise. Define
T (ŷ1, . . . , ŷn) =

∑
i:yi<γ fiŷi, and cost(ŷ1, . . . , ŷn) = T (ŷ1, . . . , ŷn) +

∑
j,c Sglb

j (c).
Define hi,i′(ε) = cost(ŷ1, . . . , ŷi−1, ŷi + ε, ŷi+1, . . . , ŷi′−1, ŷi′ − ε, ŷi′+1, . . . , ŷn).

While there exists a cluster M with no fully-open facility do the following: pick indices i, i′ such that ŷi, ŷi′ ∈
(0, 1). Let θ1 = min(ŷi, 1 − ŷi′) and θ2 = min(1 − ŷi, ŷi′). Compute ε∗ ∈ [−θ1, θ2] such that hi,i′(ε∗) =
minε∈[θ1,θ2] hi,i′(ε) and update ŷi ← ŷi + ε∗, ŷi′ ← ŷi′ − ε∗.
For each remaining fractional ŷi, round ŷi to 0 or 1, whichever decreases the value of cost(.).

For each copy j(c), c = 1, . . . , r′′j , if j(c) is a cluster center assign it to the nearest facility opened from that
cluster; otherwise assign j(c) to the nearest open facility in P

(
j(c)

)
if one is open, and to the nearest open facility

from its backup cluster otherwise.

Figure 4.3: Summary of the “randomized” algorithm for FTFL.
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i
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Figure 4.4: Local-Per-Client Rounding

Global Rounding. Now we round the ŷi variables to 0-1 values. Each facility i with yi < γ is
opened with probability ŷi, so we can write the facility cost as T (ŷ1, ŷ2, . . . , ŷn) =

∑
i:yi<γ fiŷi,

where n = |F|. The service cost of a copy j(c) is given by the expression S loc
j (c) at the end of the

local rounding step. For a cluster center j(c), we set Sglb
j (c) = S loc

j (c). For a non-cluster-center copy
j(c) we modify the expression for S loc

j (c) slightly. Let P
(
j(c)

)
consist of the facilities {i1, . . . , im}

after the previous step, ordered by increasing distance from j. Recall that P
(
j(c)

)
only contains

facilities for which ẑij(c) > 0. So for any il ∈ P
(
j(c)

)
we have ẑilj(c) = x̂ilj and this is equal to

ŷil for all but at most one facility. Therefore, the value of S loc
j (c) depends only on the ŷil values and

perhaps one x̂ilj value; we would like to get an expression for the service cost of j(c) that depends
only on the ŷil values. So we modify the expression for S loc

j (c) as follows: we substitute x̂ilj with

ŷil , wherever it occurs. We use Sglb
j (c) to denote the new expression. More precisely, let M be the

backup cluster of j(c) with M \ P
(
j(c)

)
= {b1, . . . , bq} sorted by increasing cij value, let dl denote

cilj for l = 1, . . . ,m, and cl denote cblj for l = 1, . . . , q. We define

Sglb
j (c) = ŷi1jd1 + (1− ŷi1)ŷi2d2 + · · ·+ (1− ŷi1)(1− ŷi2) . . . (1− ŷim−1)ŷimdm

+ (1− ŷi1) . . . (1− ŷim)
(
ŷb1c1 + · · ·+ (1− ŷb1) . . . (1− ŷbq−1)cq

)
. (4)

We show in Lemma 5.7 that this modification does not increase the cost, that is, Sglb
j (c) ≤ S loc

j (c).
The total cost is therefore given by,

cost(ŷ1, . . . , ŷn) = T (ŷ1, . . . , ŷn) +
∑
j,c

Sglb
j (c).

We now convert the ŷi values to {0, 1}-values without increasing cost(ŷ1, . . . , ŷn). Observe that for
a {0, 1}-setting of the ŷi values, T (ŷ1, . . . , ŷn) is precisely the facility cost of the solution. Moreover,
as long as the {0, 1}-setting is such that each cluster contains an open facility, for each client j and
copy c, Sglb

j (c) is clearly an upper bound on the service cost of copy j(c). Hence
∑

c Sglb
j (c) is an

upper bound on the service cost of j. Therefore cost(.) gives an upper bound on the total cost of the
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solution, satisfying property P2 of pipage rounding (Section 3.1). For any two indices i < i′, define

hi,i′(ε) = cost(ŷ1, . . . , ŷi−1, ŷi + ε, ŷi+1, . . . , ŷi′−1, ŷi′ − ε, ŷi′+1, . . . , ŷn). (5)

In the analysis, we show that hi,i′(.) is concave in ε in the range [−θ1, θ2] where θ1 = min(ŷi, 1 −
ŷi′) and θ2 = min(1 − ŷi, ŷi′). So hi,i′(.) attains its minimum value (which is at most hi,i′(0) =
cost(ŷ1, . . . , ŷn)) at one of the end points ε∗ = −θ1 or ε∗ = θ2 and we can update ŷi ← ŷi + ε∗,
ŷi′ ← ŷi′ − ε∗ without increasing cost(.). This decreases the number of fractional ŷi values by one,
and by continuing in this way we eventually get an integer solution.

This is the basic scheme we employ but we choose the indices carefully so as to ensure that each
cluster will contain at least one (fully) open facility. As long as there is some cluster which does
not have a fully open facility, we do the following: choose such a cluster M , pick indices i and i′

corresponding to any two fractionally open facilities in M , and convert one of the ŷi, ŷi′ values to an
integer. Since

∑
i∈M yi ≥ 1 − γ =⇒

∑
i∈M ŷi ≥ 1 (this is true before we examine cluster M ,

and the sum
∑

i∈M ŷi does not change when we modify the ŷi values for facilities in M ), we will
eventually open some facility in M to an extent of 1. Also note that if M contains no fully open
facility, then there must be at least two fractionally open facilities in M . After taking care of all
clusters this way, we round the remaining ŷi values by picking any facility i such that 0 < ŷi < 1 and
rounding it to either 1 or 0, whichever decreases the value of cost(.). (Note that cost(.) is linear in
each variable ŷi.)

Remark 4.1 Once every cluster has a fully open facility, we can also do the following: consider the
randomized process that opens each facility i such that 0 < ŷi < 1 independently with probability ŷi.
The expected service cost of a copy j(c) (under this randomized process) is bounded by Sglb

j (c), so
this gives a randomized algorithm with the same performance guarantee.

5 Analysis

The analysis proceeds as follows. First, we prove some basic properties about the clustering step (Lemma 5.1).
Next, in Lemma 5.3, we show that every facility in a backup cluster of a client is close to the client.
Lemma 5.5 establishes some crucial properties about an expression of the form S loc

j (c) including the con-
cavity property that is exploited in the global rounding step. Using these properties, along with Lemma 5.3,
we bound the value of

∑
c S loc

j (c) for client j at the beginning of the local rounding step in Lemma 5.6 and
thus bound the total service cost for j. We also argue that going from the “local” expression S loc

j (c) to the

“global” expression Sglb
j (c) does not increase the cost (Lemma 5.7). Finally, Theorem 5.8 puts the various

pieces together and proves the bound on the approximation ratio.

Lemma 5.1 The following invariants are maintained during the clustering step in Phase 3.

(i) For any client k, back(k) ≤ facwt
(
Nk, k

)
,

(ii) Each client k has at least r′′k − back(k) clusters designated as backup clusters,

(iii) For every clustered facility i, if i is part of a cluster centered at some client k, then xik = yi.

Proof : The proof is by induction on the number of iterations. At the beginning of Phase 3, (i) holds,
and (ii) and (iii) hold vacuously. Suppose the lemma holds for all iterations up to the current iteration and
consider the current iteration. Let M be the cluster created in this iteration and let client j be the cluster
center. If there exists i ∈ M such that xij < yi, then it must be that i is the farthest facility serving j
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and so M = Nj . But then facwt
(
Nj \ {i}, j

)
< 1 − γ, and since xij < γ we have facwt

(
Nj , j

)
=

xij + facwt
(
Nj \ {i}, j

)
< 1 ≤ back(j), contradicting the induction hypothesis. So xij = yi for all i ∈M

and invariant (iii) is maintained. To show that (i) and (ii) hold, for any client k that is served by some facility
in M , facwt

(
Nk, k

)
decreases by at most facwt

(
M, j

)
≤ 1, while back(k) decreases by exactly 1. For each

such k we also designate M as a backup cluster of the current active copy k(ak), so the number of designated
backup clusters increases by 1. For any other client k′, back(k′), facwt

(
Nk′ , k

′) and the number of backup
clusters remain the same.

Since the clusters created are disjoint, Lemma 5.1 shows that at the end of clustering step, each copy
k(c) has a distinct backup cluster allocated to it. Recall that L1 is the set of facilities {i : yi = 1} and
L2 = {i : γ ≤ yi < 1}.

Corollary 5.2 (i) If i ∈ L1 ∪ L2, then i is not part of any cluster. (ii) For any client k and copy c, if M is
the backup cluster of k(c), then for every other copy c′, we always have P

(
k(c′)

)
∩M = ∅.

Proof : If i lies in L1 ∪ L2 and i is part of some cluster centered around a client j, then i ∈ Fj ; also
xij = yi ≥ γ by part (iii) of Lemma 5.1, which contradicts the definition of Fj .

P
(
k(c)

)
is initialized to Fk∩M in step C3, so no other preferred set P

(
k(c′)

)
can contain a facility from

M after the clustering step or after the distribution of facilities at the beginning of the rounding step. During
the pipage rounding step, no “new” facility is ever added to P

(
k(c′)

)
, where a new facility denotes a facility

i for which zik(c′) = 0 after the initial allotment.

Corollary 5.2 shows that no facility used by client j in Phases 1 and 2 is reused in Phase 3. In Phase 3,
copies of j are connected either to facilities in Fj or to cluster facilities, neither of which could have been
used in Phases 1 and 2.

Lemma 5.3 Let k(c) be any copy c of client k, and M be the backup cluster of this copy. Then, for any
facility i ∈M we have, cik ≤ αk + 2Ck(c)/γ.

Proof : Let j be the center of cluster M and aj be the active copy of j when M was created. Since
M is the backup cluster of copy k(c), we know that ak = c at this point. Let i′ be a facility in Fk ∩M
(which is non-empty). Since xi′k > 0 we have ci′k ≤ αk by complementary slackness. We will show that
maxi′′∈M ci′′j ≤ Cj(aj)/γ. This shows that

cik ≤ cij + ci′j + ci′k ≤ αk + 2Cj(aj)/γ ≤ αk + 2Ck(c)/γ,

where the last inequality follows since we chose j as the current cluster center and not k.
Let A ⊆ Nj be the set of facilities, considered in sorted order, that gather a net xij-weight of 1 (the last

facility may be partially included). Cj(aj) is the average distance to the facilities in A, and M ⊆ A consists
of the first m facilities (in sorted order) that gather an xij-weight of at least 1− γ. So if f is the last facility
in M with cfj = maxi′′∈M ci′′j , and B = (A \M) ∪ {f}, then Cj(aj) ≥ (

∑
i′′∈B xi′′j)(mini′′∈B ci′′j) ≥

γ · cfj .

Define C̄j =
∑

i∈Fj
cijxij . This is the cost that the LP pays to connect the r′′j copies of j.

Lemma 5.4 For any j, we have
∑r′′j

c=1 Cj(c) ≤ C̄j .

Proof : Consider the ordered (by increasing cij) set of facilities Fj . For any c, 1 ≤ c ≤ r′′j let A ⊆ Fj be
the set of facilities taken in order having an xij-weight of exactly c (the last facility may be chosen partially).
Define C̃j(c) as the average distance to the set of facilities in A having a facility weight of exactly 1, picked
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by starting from the last facility in A. Clearly C̃j(c) = max{average distance to S : S ⊆ A, facwt
(
S, j

)
=

1} and
∑

c C̃j(c) = C̄j . Consider any iteration when aj = c. At that point, facwt
(
Nj ∩A, j

)
≥ 1 since

prior to this point, whenever we remove some facility weight (of at most 1) from Nj ∩ A in an iteration we
also increment aj by 1, so in all we could have removed a facility weight of at most c− 1 from A. Cj(c) is
the average distance to the set of facilities in Nj , starting from the one closest to j, that has xij-weight 1, so
Cj(c) ≤ C̃j(c) which completes the proof.

Lemma 5.5 Let d1 ≤ . . . ≤ dm+1 and 0 ≤ pl ≤ 1 for l = 1, . . . ,m. Consider the following expression.

E(p1, . . . , pm) = p1d1 + (1− p1)p2d2 + · · ·+ (1− p1) . . . (1− pm−1)pmdm

+ (1− p1) . . . (1− pm)dm+1.
The following properties hold.

(i) E(.) ≤ (1− p)
(∑

l≤m pldl

)
/
(∑

l≤m pl

)
+ p · dm+1 where p =

∏
l≤m(1− pl),

(ii) E(.) is non-increasing in each variable pi,

(iii) Consider any two indices i < i′. Let ∆(ε) = E(. . . , pi+ε, . . . , pi′−ε, . . .) and θ1 = min(pi, 1−pi′),
θ2 = min(1− pi, pi′). Then ∆(.) is concave in [−θ1, θ2].

Proof : Part (i) was proved by Sviridenko [20] using the Chebyshev Integral Inequality (see [8]). We
include a proof for completeness. The Chebyshev Integral Inequality states the following. Let g1, g2 be
functions from the interval [a, b) to R+ where g1 is monotonically non-increasing and g2 is monotonically
non-decreasing. Then, ∫ b

a
g1(x)g2(x)dx ≤

(∫ b
a g1(x)dx

)(∫ b
a g2(x)dx

)
b− a

.

We will use this to bound the sum of the first m terms of E(.) by (1 − p)
(∑

l≤m pldl

)
/
(∑

l≤m pl

)
. Take

g1(x) and g2(x) to be functions defined on the interval
[
0, P =

∑
l≤m pl

)
with g1(x) = Πi−1

l=1(1 − pl) and
g2(x) = di over the interval

[∑i−1
l=1 pl,

∑i
l=1 pl

)
for i = 1, . . . ,m. This gives,

p1d1 + (1− p1)p2d2 + · · ·+ (1− p1)(1− p2) . . . (1− pm−1)pmdm

=
∫ P

0
g1(x)g2(x)dx ≤

(∫ P
0 g1(x)dx

)(∫ P
0 g2(x)dx

)
P

=

∑
l≤m pldl∑
l≤m pl

(
1−

∏
l≤m

(1− pl)
)
.

To show (ii), we write E(.) as A + (1− p1) . . . (1− pi−1)(pidi + (1− pi)D), where A = p1d1 + · · ·+
(1 − p1) . . . (1 − pi−2)pi−1di−1 and D = pi+1di+1 + · · · + (1 − pi+1) . . . (1 − pm)dm+1. Then, D ≥ di

since dl ≥ di for every l ≥ i+1 and pi+1 + · · ·+(1−pi+1) . . . (1−pm) = 1. Consequently, if we increase
pi, then E(.) decreases.

We prove (iii) by writing ∆(ε) = Aε2 + Bε + D and showing that A ≤ 0. Clearly ∆(ε) is quadratic in
ε since each term of E(.) is a polynomial function of ε of degree at most 2. The terms that contribute to the
coefficient A are the last m+2− i′ terms from (1− p1) . . . (1− pi) . . . (1− pi′−1)pi′di′ to (1− p1) . . . (1−
pm)dm+1. So

A = (1− p1) . . . (1− pi−1)(1− pi+1) . . . (1− pi′−1)(di′ −D)

where D = pi′+1di′+1 + · · ·+ (1− pi′+1) . . . (1− pm)dm+1. Again, since dl ≥ di′ for every l ≥ i′ + 1, we
have D ≥ di′ and hence A ≤ 0.

We can now bound
∑

c S loc
j (c) and thus bound the service cost incurred.
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Lemma 5.6 Consider any client j. At any point in the local rounding step, the quantity
∑

c S loc
j (c) is

bounded by C̄j

(
1 + e−1/(1−γ)( 2

γ − 1)
)

+ e−1/(1−γ) · r′′j αj .

Proof : Since
∑

c S loc
j (c) does not increase in the local rounding step as argued earlier, it suffices to

bound this quantity at the beginning of the local rounding step. Define Dj(c) as the zij(c)-weighted aver-
age distance from j to the facilities in P

(
j(c)

)
, i.e., Dj(c) =

∑
i∈P

(
j(c)

) zij(c)cij . Clearly
∑

c Dj(c) =∑
i∈Fj

cijxij = C̄j . We will show that for each copy c,

S loc
j (c) ≤

(
1− e−1/(1−γ)

)
Dj(c) + e−1/(1−γ)

(
αj + 2Cj(c)/γ

)
. (6)

Adding (6) over all copies c = 1, . . . , r′′j and using the fact that
∑r′′j

c=1 Cj(c) ≤ C̄j (Lemma 5.4), proves the
lemma.

So fix copy c. Consider first the case when j(c) is not a cluster center. The expression for S loc
j (c) is

given by (3). Recall that P
(
j(c)

)
= {i1, . . . , im}, ẑil denotes ẑilj(c) = zilj(c)/(1 − γ) and dl = cilj .

Then, (
∑

l≤m ẑildl)/(
∑

l≤m ẑil) = Dj(c). Let p =
∏

l≤m(1 − ẑil) ≤ e−
P

l≤m ẑil = e−1/(1−γ), since∑
l≤m zil = 1. In the last bracketed term in (3), each distance cl = cblj for l = 1, . . . , q is at most

αj + 2Cj(c)/γ by Lemma 5.3, so since ŷb1 + · · · + (1 − ŷb1) . . . (1 − ŷbq−1) = 1, we can upper bound
the coefficient of (1 − ẑi1) . . . (1 − ẑim) by αj + 2Cj(c)/γ. Substituting this upper bound, we get an
expression that has the form as E(.) in Lemma 5.5. So by part (i) of the lemma, we can bound S loc

j (c) by
(1−p)Dj(c)+p ·(αj +2Cj(c)/γ), which is at most the bound in (6), since p ≤ e−1/(1−γ) and Dj(c) ≤ αj .

If j(c) is the center of some cluster M , the expression for S loc
j (c) is given by (2) where M = {i1, . . . , im}

⊆ P
(
j(c)

)
. Let {im+1, . . . , iq} be the facilities in P

(
j(c)

)
\M ordered by increasing cij . Note that for every

l ≥ m + 1, since il was part of Nj when cluster M was created, it must be that dl ≥ dm. We compare
S loc

j (c) to the function

f(x) = ŷi1d1 + · · ·+ (1− ŷi1) . . . (1− ŷim−1)xdm+

(1− ŷi1) . . . (1− ŷim−1)(1− x)
(
ŷim+1dm+1 + · · ·+ (1− ŷim+1) . . . (1− ŷiq)αj

)
.

Let p =
∏

l≤q(1 − ŷil). We have, S loc
j (c) = f(1) ≤ f(ŷim) ≤ (1 − p)Dj(c) + p · αj which is at most the

bound in (6). The first inequality is due to the non-decreasing property from part (ii) of Lemma 5.5, and the
second inequality is from part (i) of the same lemma.

Lemma 5.7 For any copy j(c), at the beginning of the global rounding step, we have Sglb
j (c) ≤ S loc

j (c).

Proof : This is a simple corollary of part (ii) of Lemma 5.5. The only case in which Sglb
j (c) differs from

S loc
j (c) is when the expression for S loc

j (c) contains the term x̂ij . In this case, we obtain Sglb
j (c) from S loc

j (c)
by substituting x̂ij with ŷi ≥ x̂ij .

Concavity of the function hi,i′(.) defined by (5) now follows since: (1) each Sglb
j (c) is of the same form

as E(.) in Lemma 5.5; (2) the contribution of Sglb
j (c) to hi,i′(.) is Sglb

j (c)(. . . , ŷi + ε, . . . , ŷi′ − ε, . . .) and

this function of ε is either, constant if neither ŷi nor ŷi′ appear in the expression for Sglb
j (c) (see (3)), or linear

if exactly one of them appears, or concave (in the range of interest) if both appear as shown by part (iii) of
Lemma 5.5; and (3) the remaining part of cost(.) is T (ŷ1, . . . , ŷn) which is a linear function, therefore the
part of hi,i′(.) corresponding to T (. . . , ŷi + ε, . . . , ŷi′ − ε, . . .) is a linear function of ε. We can finally prove
the main theorem.
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Theorem 5.8 The algorithm above delivers a solution of expected cost at most, max
(

1
γ , 1

1−γ +e−1/(1−γ), 1+
2
γ · e

−1/(1−γ)
)
·OPT . Taking γ = 0.4819, we get a solution of cost at most 2.0753 ·OPT .

Proof : First, observe that we return a feasible solution. Copies connected in Phases 1 and 2 are connected
to distinct facilities, and by Corollary 5.2 no such facility is reused in Phase 3. In Phase 3, each copy has a
distinct backup cluster, and has a disjoint preferred set after the local rounding step, and each is connected
only to a facility opened from one of these two sets. So copies in Phase 3 are also assigned to distinct
facilities.

Since the global rounding step does not increase the cost, we can bound the cost incurred in Phase 3 by
the value of T (ŷ1, . . . , ŷn)+

∑
j,c Sglb

j (c) at the beginning of this step. The first term is
∑

i:yi<γ fiyi/(1−γ).
The second term is bounded by

∑
j,c S loc

j (c) (Lemma 5.7) which in turn is bounded by∑
j

(
C̄j

(
1 + e−1/(1−γ)( 2

γ − 1)
)

+ e−1/(1−γ) · r′′j αj

)
. (by Lemma 5.6)

We know that
∑

i:xij<γ ≥ r′′j for every client j, so using complementary slackness we get that
∑

j r′′j αj is
at most

∑
i:yi<γ fiyi +

∑
j

∑
i:xij<γ cijxij . So the total cost of Phase 3 is at most

1
1− γ

·
∑

i:yi<γ

fiyi +
(
1 + e−1/(1−γ)

(
2
γ − 1

)) ∑
j

∑
i:xij<γ

cijxij + e−1/(1−γ) ·
∑

j

r′′j αj

≤
( 1

1− γ
+ e−1/(1−γ)

) ∑
i:yi<γ

fiyi +
(
1 + 2

γ · e
−1/(1−γ)

) ∑
j

∑
i:xij<γ

cijxij . (7)

The total cost incurred in Phases 1 and 2 is at most, 1
γ ·

(∑
i:yi≥γ fiyi +

∑
j

∑
i:xij≥γ cijxij

)
since each

facility opened has yi ≥ γ and if a copy of j connected to facility i then xij ≥ γ. Combining this with (7),
we see that the total cost is bounded by max

(
1
γ , 1

1−γ + e−1/(1−γ), 1 + 2
γ · e

−1/(1−γ)
)
·OPT .

6 A 1.52-approximation algorithm for uniform requirements

We now show that a modification of the algorithm given by Jain, Mahdian and Saberi [10] gives an algo-
rithm for the uniform requirement fault-tolerant case with the same approximation ratio. Combined with a
greedy improvement step and the analysis of Mahdian, Ye and Zhang [16] this gives a 1.52-approximation
algorithm.

6.1 The Algorithm

The algorithm is based on the primal-dual method and analyzed using the dual fitting approach (see, e.g., [22],
chapter 13). We will simultaneously construct a primal and dual solution such that the cost of the primal
is exactly paid for by the dual variables. However the dual solution may be infeasible. We will bound the
infeasibility by a factor c, which becomes the approximation ratio of the algorithm.

Let rj = r be the requirement of each demand point. There is a notion of time t. We say that j is
active at time t if not all its copies have been connected, and inactive otherwise. If j is active we define
the active copy of j, aj initialized to 1, to be the first copy that is not yet connected. Each j has r dual
variables associated with it: α

(1)
j , . . . , α

(r)
j . Initially t = 0 and all dual variables are 0. All demands j are

active, and all facilities are closed. As time increases, we raise the dual variable, α
(c)
j , for the active copy
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c and open some facilities. Once copy c gets connected we stop raising α
(c)
j , so if j is inactive none of its

variables are raised. Let i(j(c)) denote the facility that copy j(c) is connected to. If j is inactive we define
lj to be maxc(distance between j and i(j(c))). At any time t, the contribution of j to a closed facility i is
max

(
α

(aj)
j − cij , 0

)
, if j is active and max(lj − cij , 0) otherwise.

We raise the variables α
(aj)
j of all active demands at unit rate until one of the following events happen:

1. The total contribution from all demands j to some closed facility i becomes equal to fi: we open i.
For each j with a positive contribution to i we assign a copy of j to i. After this j cannot take back
its contribution to i. If j is active, connect j(aj) to i; if aj = r, j becomes inactive, otherwise set
α

(aj+1)
j = α

(aj)
j and aj = aj + 1. Note that the contribution of j to other closed facilities remains

the same. If j is inactive, disconnect the copy c for which lj = ci(j(c))j and connect it to i. Clearly lj
does not increase.

2. An active j reaches an open facility i (i.e., α
(aj)
j = cij) and no copy of j is already connected to i:

connect j(aj) to i. If aj = r, j becomes inactive, otherwise set α
(aj+1)
j = α

(aj)
j and aj = aj + 1.

We now raise α
(aj)
j of only the active demands and continue until all demands become inactive.

6.2 Analysis

It is clear that the cost of the primal solution is
∑

j

∑
1≤c≤r α

(c)
j . We first define a dual solution (α, β, z)

using the α
(c)
j variables. Let αj = α

(r)
j = maxc α

(c)
j . Define θij = αj − α

(c)
j , if j(c) is connected to i and

j was active when it got connected to i, and 0 otherwise. In the former case we say that j(c) is primarily
connected to i. Let zi =

∑
j θij . Note that

∑
j rαj −

∑
i zi =

∑
j,c α

(c)
j , so the dual variables exactly pay

for the cost of the primal. We will show that for each i,
∑

j αj − zi ≤ γ(
∑

j cij + fi). Then we can define
βij = αj − γcij so that the solution (α, β, z) would be infeasible by a factor of at most γ, implying an
approximation ratio of γ. Further if we show that

∑
j∈S αj − zi ≤ γc

∑
j∈S cij + γffi for any i and any set

of clients S, then looking at each i opened (fractionally) in a solution and the set of clients {j : xij > 0}, and
adding the corresponding inequalities weighted by yi, we get that

∑
j rαj −

∑
i zi ≤ γfF ∗ + γcC

∗. Here
F ∗ and C∗ denote respectively the facility and connection cost of a fractional LP solution. (We need to be a
little careful here since we may have 0 < xij < yi for some i, j. But we can decompose the star consisting
of facility i and clients {j : xij > 0} into a collection of stars {T = (i,DT )}, and weigh the inequality
corresponding to star T by yT in such a way that

∑
T yT = yi and for each client j,

∑
T :j∈DT

yT = xij .)

Consider a star consisting of facility i and a set of k clients S = {j1, . . . , jk}. It suffices to bound the
ratio of

∑
j∈S(αj−θij) and (fi+

∑
j∈S cij). Let f = fi, dj = cij , and vj = αj−θij . Note that vj = α

(c)
j if

j(c) is primarily connected to f , and α
(r)
j otherwise. We number the demands 1 . . . k so that v1 ≤ . . . ≤ vk.

Consider the time t = vi − ε. At this time each demand j < i is either inactive or a copy j(c) is primarily
connected to f . Let rj,i = vj if j(c) is primarily connected to f and lj (at the time vi − ε) otherwise. Note
that rj,j+1 ≥ . . . ≥ rj,k.

We now write some inequalities involving the variables vj , dj , f, rj,i. Again consider time t = vi − ε.
At this time the contribution of j to i is max(rj,i − dj , 0) if j < i and max(t − dj , 0) if j ≥ i. Since the
total contribution to a facility never exceeds its facility cost, we have,∑

j<i

max(rj,i − dj , 0) +
∑
j≥i

max(vi − dj , 0) ≤ f for all i. (8)
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Now we use the triangle inequality. If f is open at time t = vi − ε then vi ≤ di. Otherwise every
demand j < i is inactive at time t (since j(c) it not primarily connected to f as f is not open), so j is already
connected to r facilities. By the definition of vi and t, i is still active at time t. So it is connected to less than
r facilities at time t, implying that there is some facility to which j is connected and i is not yet connected.
(This is where we use the fact that the requirements of all clients are equal.) The distance between this
facility and i is upper bounded by rj,i + di + dj and this must be at least t, otherwise the algorithm would
have connected i to this facility at a time earlier than t. So we have,

vi ≤ rj,i + di + dj for all i, j < i. (9)

Using the above inequalities we can write a mathematical program to bound the ratio of
∑

j∈S(αj−θij)
and (fi +

∑
j∈S cij). The variables vj , dj , f, rj,i obtained by running the algorithm form a feasible solution

to the optimization problem below which can be written as a linear program (LP), so the ratio is bounded by
the LP optimum value.

γk = max

∑
j≤k vj

f +
∑

j≤k dj
(LP)

such that v1 ≤ . . . ≤ vk

rj,j+1 ≥ . . . ≥ rj,k for all j

vi ≤ rj,i + di + dj for all i, j < i∑
j<i

max(rj,i − dj , 0) +
∑
j≥i

max(vi − dj , 0) ≤ f for all i

vj , dj , f, rj,i ≥ 0

This is the same as the so-called factor-revealing LP in [10], so all the results in [10] hold for this algorithm
too. In particular we have the following (Lemma 13, Theorem 4 in [10]).

Lemma 6.1 γk ≤ 1.61 for all k.

Theorem 6.2 The above algorithm is a 1.61-approximation algorithm for fault-tolerant facility location
with uniform requirements.

We say that an algorithm is a (γf , γc)-approximation algorithm if it returns a solution of cost at most
γfF ∗ +γcC

∗ where F ∗ and C∗ denote respectively the facility and connection cost of any (fractional) solu-
tion. Note that there could be more than one (γf , γc) pair for which the algorithm is a (γf , γc)-approximation
algorithm. Theorem 9 in [10] and Lemma 2 in [16] establish the following.

Theorem 6.3 Let γf ≥ 1. Define γ′k as max
P

j≤k vj−γf fP
j≤k dj

subject to the same set of constraints as (LP),

and γc = supk{γ′k}. The algorithm above is a (γf , γc)-approximation algorithm. In particular, for γf = 1,
γc ≤ 2 and for γf = 1.11, γc ≤ 1.78, so the above algorithm is a (1,2)- and a (1.11,1.78)-approximation
algorithm.

6.3 Scaling and greedy augmentation

It is possible to improve the performance of the above algorithm by using scaling and greedy augmenta-
tion [6, 3]. The combined algorithm is as follows :
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Algorithm FTUFL(δ)

1. Scale the facility costs by δ, i.e., set fi ← δfi.

2. Run the above primal-dual algorithm, called algorithm A, on the scaled instance.

3. Scale back the facility costs and perform greedy augmentation. Define the gain of a facility i, gain(i),
to be the reduction in total cost obtained by adding facility i to the current solution (if the total cost
does not decrease then gain(i) = 0). While there exists a facility with positive gain, choose the facility
i for which gain(i)

fi
is maximized and add it to the current solution.

The lemma below was proved in [6, 3], and in the context of fault-tolerant facility location in [7].

Lemma 6.4 Let F ∗ and C∗ be the facility and connection respectively of a (possibly fractional) solution
to the fault-tolerant facility location problem. Greedy augmentation when applied to a solution with initial
facility cost F and service cost C, produces a solution of cost at most F+F ∗ max

{
0, ln

(
C−C∗

F ∗

)}
+F ∗+C∗.

Lemma 6.4 implies the following :

Lemma 6.5 ([3, 16]) Let A be a (γf , γc)-approximation algorithm. The above procedure with parameter
δ ≥ 1, gives a (γf + ln δ, 1 + γc−1

δ )-approximation.

Taking δ = 1.504 in algorithm FTUFL and plugging (γf , γc) = (1.11, 1.78) we get a 1.52-approximation.

Theorem 6.6 There is a 1.52-approximation algorithm for fault-tolerant facility location with uniform re-
quirements.

7 The fault-tolerant k-median problem

We now consider the metric fault-tolerant k-median problem. In this variant we have the additional con-
straint that we may open at most k facilities. As in the fault-tolerant facility location version, the goal is
to connect each demand j to rj distinct open facilities and minimize the total cost of opening facilities
and assigning clients to facilities. We can write an LP for this problem that is very similar to the LP for
fault-tolerant UFL. The primal program (FTFL-P) has the additional constraint

∑
i yi ≤ k. This modifies

the objective function of the dual (FTFL-D) to max
∑

j rjαj −
∑

i zi − k∆, and constraint (1) changes to∑
j βij ≤ fi + zi +∆. Let (KP) and (KD) denote the primal and dual programs for fault-tolerant k-median,

and let OPT k be the value of an optimal LP solution. In this section we will use the primal-dual algorithm
of Section 6.1 to give a 4-approximation algorithm for the uniform requirement case, rj = r. We assume
r ≤ k otherwise there is no feasible solution.

Given an instance of fault-tolerant UFL with facility costs fi, suppose we set the facility costs to 2fi

and run the primal-dual algorithm to get a primal solution of cost (2F,C) with (unscaled) facility cost F ,
connection cost C and a possibly infeasible setting of the dual variables αj , zi. We have that 2F + C =∑

j αj−
∑

i zi, and by Theorem 6.3 we know that for γf = 1, γc ≤ 2, so for any facility i and set of demands
S,

∑
j αj−2fi−zi ≤ 2

∑
j∈S cij . So if we set (α′, z′) = (α/2, z/2) and β′ij = α′

j− cij , then (α′, β′, z′) is
a feasible dual solution and 2F + C ≤ 2(

∑
j α′

j −
∑

i z
′
i). In the sequel whenever we say that “we run the

primal-dual algorithm” we mean run this modified algorithm where we first scale the facility costs by a factor
of 2 and then run the original primal-dual algorithm. Also when we say that the algorithm returns a primal
solution of cost (F̂ , Ĉ) and dual solution (α̂, β̂, ẑ), F̂ is the original unscaled facility cost of the primal
solution, and (α̂, β̂, ẑ) is a feasible dual solution obtained as above so that 2F̂ + Ĉ ≤ 2(

∑
j α̂−

∑
i ẑi).
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Consider fixing ∆ and running the above algorithm with the facility costs modified to fi + ∆ (i.e.
we first scale (fi + ∆) by 2 and then run the original primal-dual algorithm). Suppose the algorithm
returns a primal solution (F,C) in which exactly k facilities are opened, and a dual solution (α, β, z).
So the primal solution is a feasible solution to (KP) and (α, β, z,∆) is a feasible solution to (KD). Also,
2(F + k∆) + C ≤ 2(

∑
j αj −

∑
i zi) =⇒ F + C ≤ 2(

∑
j αj −

∑
i zi − k∆) ≤ 2OPT k, so we have

a solution of cost at most 2OPT k. The basic idea then is to “guess” the right value of ∆ so that when the
facility costs are modified to fi + ∆, the algorithm ends up opening k facilities. This idea was first used by
Jain and Vazirani [12] for the (non-fault-tolerant, i.e., rj = 1) k-median problem. If at ∆ = 0, the algorithm
opens at most k facilities, then by the same reasoning as above we have a feasible solution of cost at most
2OPT k. So assume that we open more than k facilities at ∆ = 0. When ∆ is very large, say nr maxij cij ,
the algorithm will open just r facilities and connect all demands to these facilities. We can show that there is
a value ∆ = ∆0 such that depending on how we break ties between events in the primal-dual algorithm we
get two primal solutions, one opening k1 < k facilities and the other opening k1 > k facilities, and a single
dual solution. The two primal solutions can be found in polynomial time by performing a bisection search
in the interval [0, nr maxij cij ] and terminating the search when the length of the search interval becomes
less than 2(− poly(n)+L) where L = log(maxij cij). The proof of this is very similar to the proof in the
conference version of [12].

Let (α, β, z,∆0) be the common dual solution for the two primal solutions. The dual solution (α, β, z,∆0)
is used only in the analysis and not in the algorithm. Let (x1, y1) and (x2, y2) be the two solutions opening
k1 < k and k2 > k facilities with costs (F1, C1) and (F2, C2) respectively. A convex combination of these
two yields a fractional solution that is feasible to (KP) and opens exactly k facilities. Let a, b be such that
ak1 + bk2 = k, a + b = 1. Then,

2(aF1 + bF2) + (aC1 + bC2) ≤ 2
(∑

j

αj −
∑

i

zi − k∆
)
≤ 2 ·OPT k. (10)

We will round this solution losing a factor of 2. If a ≥ 1
2 we take the solution (x1, y1) which is feasible

and from (10) we get that F1 + C1 ≤ 4 · OPT k. Otherwise we open a subset of the facilities opened in
y2. We call a facility opened in y1 a “small” facility and a facility opened in y2 a “large” facility; a facility
opened in both is both small and large. We match each small facility with a large facility as follows. A small
facility that is also large is matched with itself. We consider the other small facilities in an arbitrary order,
and pair each small facility with the unpaired large facility closest to it. Note that exactly k1 large facilities
are matched this way. With probability a we open all the small facilities, and with probability b = 1− a we
open all the matched large facilities. We also select a random subset of k − k1 unmatched large facilities
and open all of these. Each client j is simply connected to the rj = r open facilities closest to it. Each large
facility is opened with probability b = k−k1

k2−k1
, therefore the total facility opening cost is at most aF1 + bF2.

Lemma 7.1 The total facility opening cost incurred in at most aF1 + bF2.

Lemma 7.2 The expected connection cost of a demand j is at most 2
∑

i cij(ax1,ij + bx2,ij).

Proof : We will prove the claimed bound by considering a suboptimal way of assigning j to r open
facilities (instead of connecting j to the r nearest open facilities), and bounding the connection cost of
j under this suboptimal assignment. Let Sj be the set of small facilities to which j is connected, i.e.,
Sj = {i : x1,ij = 1}. Similarly let Lj be the set of large facilities that serve j. Clearly |Sj | = |Lj | = r.
For each copy j(c) we define a set of facilities Tc, and j(c) will only be connected to a facility in Tc. First,
we arbitrarily assign each facility i ∈ Sj and the large facility i′ to which it is matched (which could be the
same as i), to a distinct set Tc. Observe the important fact that the sets Tc are disjoint since distinct facilities
in Sj are matched to distinct large facilities. Let m(Sj) denote the set of large facilities that are matched to
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facilities in Sj . Then |m(Sj)| = |Sj | = |Lj | =⇒ |m(Sj) \ Lj | = |Lj \m(Sj)|, so the number of sets
Tc that do not contain a facility from Lj after the first step, is equal to the number of unmatched facilities in
Lj . We assign a distinct unmatched facility of Lj to each set Tc which does not already contain a facility
from Lj . Note that the sets Tc remain disjoint; so if we connect each copy j(c) to a facility in Tc we will get
a feasible solution.

For convenience, if facility i ∈ Sj is matched with i′ we will consider i and i′ as two different facilities
even if i = i′. Let X be the service cost of j and X(c) be the service cost of j(c). Fix copy c. The set Tc

contains at least one small facility i1 ∈ Sj and one large facility i2 such that i1 is matched to i2. If these are
the only two facilities then it must be that i2 ∈ Lj . Exactly one of i1 and i2 is open; we assign j(c) to i1 or
i2 whichever is open. So E

[
X(c)

]
= aci1j + bci2j . Otherwise Tc contains a third facility i3 ∈ Lj such that

i3 is unmatched and i2 /∈ Lj . We assign j(c) to i3 if it is open, otherwise to i1 or i2 whichever is open. So
E

[
X(c)

]
= bci3j + a(aci1j + bci2j). Since i1 is matched with i2 and i3 is unmatched, it must be that i2 is

closer to i1 than i3. So, ci2j ≤ ci1j + ci1i2 ≤ ci1j + ci1i3 ≤ 2ci1j + ci3j . Therefore,

E
[
X(c)

]
≤ bci3j + a(aci1j + 2bci1j + bci3j) = a(1 + b)ci1j + b(1 + a)ci3j ≤ 2(aci1j + bci3j)

So for every copy c, if i, i′ ∈ Tc where i ∈ Sj and i′ ∈ Lj , we have E
[
X(c)

]
≤ 2(acij + bci′j) =

2(acijx1,ij + bci′jx2,i′j) since x1,ij = x2,i′j = 1. So summing over all copies c, since the set of all
facilities i is precisely Sj and the set of all facilities i′ is the set Lj , we get E

[
X

]
≤ 2(

∑
i∈Sj

acijx1,ij +∑
i∈Lj

bcijx2,ij) = 2
∑

i cij(ax1,ij + bx2,ij) where the last equality follows since if i /∈ Sj then x1,ij = 0,
and if i /∈ Lj then x2,ij = 0.

Theorem 7.3 The above algorithm returns a solution of expected cost at most 4 times the optimum for the
fault-tolerant k-median problem with uniform requirements.

Proof : By Lemma 7.2 the expected service cost of client j is at most 2
∑

i cij(ax1,ij + bx2,ij). Also
we have C1 =

∑
j,i cijx1,ij and C2 =

∑
j,i cijx2,ij . So summing over all j, we see that the expected total

service cost is at most 2(aC1+bC2). Combining this with Lemma 7.1, the expected total cost of the solution
returned is at most (aF1 + bF2) + 2(aC1 + bC2) ≤ 4 ·OPT k, from (10).
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[8] G. H. Hardy, J. E. Littlewood, and G. Pólya. Inequalities. Cambridge University Press, 1952.

[9] K. Jain, M. Mahdian, E. Markakis, A. Saberi, and V. Vazirani. Greedy facility location algorithms
analyzed using dual-fitting with factor-revealing LP. Journal of the ACM 50(6):795–824, 2003.

[10] K. Jain, M. Mahdian, and A. Saberi. A new greedy approach for facility location problems. In Pro-
ceedings of the 34th Annual ACM Symposium on Theory of Computing, pages 731–740, 2002.

[11] K. Jain and V.V. Vazirani. An approximation algorithm for the fault tolerant metric facility location
problem. Algorithmica, 38(3):433–439, 2003.

[12] K. Jain and V.V. Vazirani. Approximation algorithms for metric facility location and k-median prob-
lems using the primal-dual schema and Lagrangian relaxation. Journal of the ACM 48(2):274–296,
2001. Preliminary version in FOCS ’99.

[13] M. R. Korupolu, C. G. Plaxton, and R. Rajaraman. Analysis of a local search heuristic for facility
location problems. Journal of Algorithms, 37(1):146–188, 2000.

[14] J. H. Lin and J. S. Vitter. ε-approximations with minimum packing constraint violation. In Proceedings
of the 24th Annual ACM Symposium on Theory of Computing, pages 771–782, 1992.

[15] M. Mahdian, E. Markakis, A. Saberi, and V. Vazirani. A greedy facility location algorithm analyzed
using dual-fitting. In Proceedings of 4th APPROX, pages 127–137, 2001.

[16] M. Mahdian, Y. Ye, and J. Zhang. Approximation algorithms for metric facility location problems.
SIAM Journal on Computing, 36(2):411–432, 2006.

[17] R.R. Mettu and C.G. Plaxton. The online median problem. SIAM Journal on Computing, 32(3):816–
832, 2003.

[18] P. Mirchandani and R. Francis, eds. Discrete Location Theory. John Wiley and Sons, Inc., New York,
1990.
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