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Clustering is a ubiquitous problem that arises in many applications in different

fields such as data mining, image processing, machine learning, and bioinformatics.

Clustering problems have been extensively studied as optimization problems with

various objective functions in the Operations Research and Computer Science lit-

erature. We focus on a class of objective functions more commonly referred to as

facility location problems. These problems arise in a wide range of applications such

as, plant or warehouse location problems, cache placement problems, and network

design problems where the costs obey economies of scale.

In the simplest of these problems, the uncapacitated facility location (UFL) prob-

lem, we want to open facilities at some subset of a given set of locations and assign

each client in a given set D to an open facility so as to minimize the sum of the facility

opening costs and client assignment costs. This is a very well-studied problem; how-

ever it fails to address many of the requirements of real applications. In this thesis

we consider various problems that build upon UFL and capture additional issues that

arise in applications such as, uncertainties in the data, clients with different service

needs, and facilities with interconnectivity requirements. By focusing initially on fa-

cility location problems in these new models, we develop new algorithmic techniques

that will find application in a wide range of settings.

We consider a widely used paradigm in stochastic programming to model settings

where the underlying data, for example, the locations or demands of the clients, may

be uncertain: the 2-stage with recourse model that involves making some initial de-

cisions, observing additional information, and then augmenting the initial decisions,

if necessary, by taking recourse actions. We present a randomized polynomial time



algorithm that solves a large class of 2-stage stochastic linear programs (LPs) to

near-optimality with high probability. We exploit this tool to devise the first ap-

proximation algorithms for various 2-stage stochastic integer problems such as the

stochastic versions of the set cover, vertex cover, and facility location problems, when

the underlying random data is only given as a “black box” and no restrictions are

placed on the cost structure.

We introduce the facility location with service installation costs problem to model

applications involving clients with different service requirements. We abstract such

settings by insisting that a client may only be assigned to a facility if the service

requested by it has been installed at the facility (incurring a service installation

cost). The connected facility location problem captures settings where the open

facilities want to communicate with each other or with a central authority; we model

this by requiring that the open facilities be interconnected by a Steiner tree. We give

intuitive and efficient algorithms for both these problems. We use these algorithms to

obtain approximation algorithms for the k-median variants of these problems, where

in addition to all of the constraints of the problem, a bound of k is imposed on the

number of facilities that may be opened.
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Chapter 1

Introduction

Clustering is a ubiquitous problem that arises in many applications in different fields

such as data mining, image processing, machine learning, and bioinformatics. At a

high level, a clustering problem seeks to group members of the data set so that, un-

der some definition of similarity, similar members are grouped together and dissimilar

members are not grouped together. The widespread use of clustering as a fundamen-

tal data analysis tool stems from the fact that, grouping the data into manageable

chunks allows one to reason more effectively about the data; for example, one might

be able to infer trends and patterns from the data, make reasonable predictions about

unseen data, or simply manipulate the underlying data more efficiently. Clustering

problems have been extensively studied as optimization problems under various ob-

jective functions in the Operations Research and Computer Science literature. Many

of these optimization problems turn out to be computationally intractable, so a rea-

sonable approach is to settle for approximation algorithms, that is, algorithms that

run in polynomial time and always deliver provably near-optimal feasible solutions.

A ρ-approximation algorithm is a polynomial-time algorithm that always returns a

feasible solution with objective function value within a factor of ρ of the optimum; ρ

is called the approximation ratio or performance guarantee of the algorithm.

In this thesis we focus on a class of clustering problems more commonly referred to

as facility location problems, that arose originally in the context of warehouse location

2
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problems with the objective of locating warehouses and clustering the client locations

(points) around these warehouses (centers). In the simplest of these problems, the

uncapacitated facility location (UFL) problem, we are given a set of locations F at

which facilities may be opened, and a set of clients D that need to be serviced by

facilities. We want to open facilities at a subset of the locations in F and assign each

client in D to an open facility. Opening a facility incurs a location-dependent facility

opening cost, and assigning a client to an open facility incurs a client assignment cost

proportional to the distance between the facility and client locations, and the aim

is to minimize the sum of the facility opening costs and the client assignment costs.

Unless otherwise stated, we will always assume that the distances form a metric (this

is also sometimes referred to as metric UFL), that is, they are symmetric and satisfy

the triangle inequality.

The uncapacitated facility location problem is one of the most widely studied

problems in the Operations Research literature, and, in the past few years, has been

a subject of active research in the Computer Science literature as well. This problem

is rich in terms of both applications, and the algorithmic techniques it showcases.

Shmoys, Tardos & Aardal [71] gave the first constant-factor approximation algorithm

for this problem based on rounding a linear programming (LP) relaxation of this

problem, and a variety of approaches have been subsequently used to obtain very

effective approximation algorithms, such as the primal-dual method, local search

heuristics, and greedy algorithms. UFL finds use in a gamut of applications ranging

from classical applications such as modeling plant or warehouse location problems, to

more recent applications such as modeling data management problems dealing with

the placement of caches in a network, and its use as an important subroutine to solve

so-called buy-at-bulk network design problems that involve agglomeration of traffic

in the presence of costs that obey economies of scale, and various clustering problems

such as the classical k-median problem and hierarchical clustering problems.

However, in many respects, UFL remains a “toy” problem that is a rather sim-

ple abstraction of real applications capturing only the very basic ingredients of the
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problem. (In fact, the simplicity of this model is highlighted by the fact that it is

also referred to as the simple warehouse location problem in the Operations Research

literature.) The study of the uncapacitated facility location problem has served as a

useful first step towards attacking real problems, in that it has led to the develop-

ment of a wide variety of techniques, and now there is a need to build upon these and

devise new methods, or enhance existing techniques, to attack algorithmic problems

in models that better abstract real problems.

Motivated by this goal, in this thesis, we consider various models that build upon

UFL by incorporating additional issues that arise in applications such as, uncertainties

in the data, clients with different service needs, and facilities with interconnectivity

requirements. Our contributions are twofold: we devise techniques to tackle facility

location problems that arise in these new models that should also prove useful in

attacking problems outside of the domain of facility location problems, and in doing

so, we obtain insights on why some techniques work well on some problems and others

do not.

1.1 A Motivating Example

Consider the following caching/data management application, that we will use to

motivate many of the models and problems investigated in this thesis. We are given a

distributed network where the nodes may represent servers, workstations, individual

PCs. Some of these nodes have processes running on them that periodically issue

requests for data items that may be stored on other nodes of the network, and to

satisfy such a request we have to fetch the data item from such a remote node incurring

a certain latency of access. Further, the nodes in the network have some storage space,

that may vary across different nodes, that could be used to set up a cache and store

some of these data items so as to reduce the latency of data item requests. Setting

up a cache incurs a certain fixed cost, for example, because one may need to expunge

some data currently residing in the main memory to create the cache. The goal is to

decide where to set up caches and how to assign the data requests to the caches, so
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as to minimize the total cost of setting up the caches and the latency of accesses.

The above description of the problem fits nicely in the mold of the uncapacitated

facility location problem, and a first-cut approach might therefore be to model this

problem as a UFL instance where the facilities are caches, the clients correspond to

data requests, and the assignment cost of a client is the latency of access of the data

request. While the simplicity of this model is appealing, it fails to capture many of

the aspects of the above problem, some more glaring than others.

1.2 Models Considered in this Thesis

Facility Location with Services. In the caching application, each data request

is for a specific data item, and should therefore be assigned only to a cache that

contains that data item; however the UFL model ignores this data-specificity and

assumes that a data request can be assigned to any cache. Converting the UFL

solution into a feasible solution to our problem, by storing in a cache all the data

items corresponding to the requests that are assigned to it, might produce very cost-

ineffective sub-optimal solutions since there could be costs associated with storing

data items in a cache (in addition to the cache setup cost), e.g., the latency to

fetch data items initially from their remote locations, and the UFL model completely

ignores these costs. In particular, such a solution might require one to store every

data item in each cache, decidedly an overkill. We abstract settings such as the above

caching application, by introducing the facility location with service installation costs

problem, where we have a set of services (data items) in addition to clients and

facilities. Each client (data request) requires a specific service, and to satisfy a client,

we must assign it to an open facility (cache) at which that service has been installed

by paying a certain service installation cost, that is, in the above setting, a cache may

satisfy a data request only if it contains the requested data item, and there is a cost

incurred in storing a given data item.
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Stochastic Facility Location Problems. In UFL, one assumes that the client

demands are known precisely in advance. Often in real applications, there are un-

certainties in the data because the data corresponds to information that is revealed

only in the future, or it is very difficult to model the data very precisely, or there may

be some inherent fluctuation in the data due to noise, etc. One approach to dealing

with uncertainty that has been extensively studied under the paradigm of stochas-

tic optimization, is to assume that the uncertainty can be modeled by a probability

distribution. In the case of facility location, this means that instead of exact informa-

tion about the client demands, one is only given distributional information about the

demand, which could have been obtained through market surveys, customer profiles,

in the context of data management/caching applications from traces of data item

requests, or through any other possible means. Based on this (inexact) information

one has to decide which facilities to open; later, once we learn the actual demands,

one still has the opportunity to open additional facilities to handle extra demand if

necessary, but opening a facility at the “last minute” would typically incur a higher

cost as compared to the initial opening cost.

For example, in the caching application above, the network designer may decide on

an initial placement of items in caches by carefully taking into account the available

storage, the amount of extra storage space that has to be freed to set up caches to

store data items, and balancing the cost of doing so against the estimated demand

for data items. But later it may turn out that there is an unexpected increase in

the demand for some data items, and with the current placement, these data item

requests incur a large latency of access because the data items are stored in remote

caches. In an effort to improve performance, the designer may therefore choose to

set up a more “local” cache and/or store these data items in an existing local cache.

This would incur some overhead, since one may have to create some storage space by

relocating the data items and the associated data requests that are currently using

this storage, which results in an increased cost to set up a cache and/or store items

in a cache.
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These considerations motivate the 2-stage stochastic versions of UFL and the

facility location with service installation costs problem, that lie in the genre of 2-

stage stochastic optimization with recourse problems: first, one must commit on some

initial (first-stage) decisions given only distributional information about (some of) the

data, and then once the actual data is realized (according to the distribution), further

(recourse) actions can be taken (second-stage), and the goal is to minimize the total

cost of the first-stage decisions and the expected cost of the second-stage decisions.

We study this general class of problems in Part II, and use the algorithm developed

therein for solving a fractional relaxation of these problems, to design algorithms for

some 2-stage stochastic facility location problems in Chapter 4 and Section 5.6 of

Part III.

Facilities with Communication Requirements. The above model forms a good

abstraction of the caching problem if there are only read-requests. Write-requests add

a degree of complication, because in order to maintain consistency of data, one has

to ensure that a write-request on an item updates all copies of the item. Thus, to

handle write-requests, it is necessary for the caches that contain the same data item

to be able to communicate with each other or with a common central authority. One

way to model this, is to insist that the caches be interconnected via a Steiner tree,

which could serve as a multicast tree used to update all copies of a data object upon

a write on that object (this model was actually proposed by [48]). This motivates

the connected facility location problem, where we capture settings in which the open

facilities want to communicate with each other or with a central authority, by insisting

that the open facilities be interconnected by a Steiner tree. This problem arises in

diverse settings. It deals with the design of a two-layered solution where the demand

points are first clustered around hubs and the hubs are then interconnected; this kind

of clustering problem is used as a building block in the so-called buy-at-bulk network

design problems, where one wants to design a multi-layered solution and the costs in

the different layers obey economies of scale, so one seeks to agglomerate data at each
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layer before moving to the next layer.

k-Median Problems. In many settings there may be a bound imposed on the

number of facilities that may be opened, in place of, or in addition to, the facility

costs. For example, the facility opening cost might consist of a long-term running cost

and a short-term opening cost, and we may want to minimize the long-term running

costs of the facilities and the client assignment costs, subject to a budget constraint

on the short-term costs. If the short-term costs of the facilities are comparable to each

other, then this translates to a cardinality bound on the number of facilities that may

be opened. This gives rise to the k-median version of the facility location problem,

where in addition to all the constraints of the original facility location problem, there

is an extra constraint that limits the number of facilities that may be opened to at

most k. k-median problems also arise as natural clustering problems. For example,

the k-median version of UFL with no facility opening costs and where one may open

a facility at any location is the classical k-median clustering problem: given a set of

points (clients) in a metric space, we want to choose k of these as medians (facili-

ties) and assign each point to a median so as to minimize the sum of the distances

from each point to its assigned median. Viewed from this perspective, the k-median

version of the facility location with service installation costs problem captures a clus-

tering objective where points representing data objects with multiple attributes can

be assigned to multiple clusters. We are given points in a metric space with each

point being described by a set of attributes (services); we have to choose k points

as medians, allot each median a set of attributes, and assign each attribute of each

point to a median to which that attribute is allotted; the quality of the clustering

is measured by the total number of allotted attributes and the sum of the distances

from each point-attribute to its assigned median.
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1.3 A Primer on Linear Programming and Approximation

Algorithms

In order to describe our results in a more meaningful way, we give some background

on linear programming and its use in the design and analysis of approximation algo-

rithms.

Over the past several years there has been a tremendous advancement in our

understanding of general principles for the design and analysis of approximation al-

gorithms for NP-hard problems. One technique that has proved to be quite successful

in the design of approximation algorithms is that of expressing a relaxation of the

discrete optimization problem as a linear program (LP), and either explicitly solv-

ing the relaxation and converting the optimal LP solution to a feasible solution to

the original problem, or using the relaxation only implicitly to guide the design and

analysis of the algorithm. In many cases, the discrete optimization problem can be

formulated as a polynomial size integer program with a linear objective function and

linear constraints (other than the constraints that force the variables to take on inte-

ger values), and a simple way of obtaining such a relaxation is to drop the integrality

constraints and replace them by weaker constraints, such as just non-negativity con-

straints. Dropping the integrality constraints this way gives a linear programming

relaxation for the original problem, and since one has only relaxed the constraints,

the optimal value of this linear program provides a lower bound (in case of a mini-

mization problem) on the optimal value of the integer program which is equal to the

value of the optimal solution to the original problem.

Algorithms that explicitly solve the LP relaxation are often called LP-rounding

algorithms because they are based on “rounding” the (possibly) fractional LP solution

to an integer solution. The best known examples of algorithms where the LP relax-

ation is used only implicitly are algorithms based on the so-called primal-dual schema,

that are often called primal-dual algorithms. These algorithms exploit the fact that

any primal minimization linear program, has a corresponding dual maximization lin-
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ear program such that the value of any feasible solution to the dual problem is a

lower bound on the value of the optimal primal LP solution, a fact known as weak

duality, and hence on the value of the optimal solution to the original problem. The

basic mechanism of the primal-dual method involves constructing simultaneously an

(integer) primal solution and a feasible dual solution, and then arguing that the cost

of the primal solution constructed is within some factor ρ of the value of the dual

solution constructed; consequently, one obtains a ρ-approximation algorithm. Thus,

in a primal-dual algorithm, the LP is not explicitly solved but is only used as an aid

in algorithm design and analysis.

1.4 Our Contributions

1.4.1 Stochastic Optimization

Solving 2-stage stochastic linear programs. Stochastic optimization problems

attempt to model uncertainty in the data by assuming that (part of) the input is

specified in terms of a probability distribution, rather than by deterministic data given

in advance. In Part II, we study an important subclass of stochastic optimization

problems, namely 2-stage stochastic problems with recourse: given only a probability

distribution about (some of) the data, one has to commit to some first-stage decisions,

but then once the actual input is realized according to this distribution, one can

extend the solution in the second stage by taking some recourse actions, where these

recourse costs might be different (and typically greater) than the original ones. Two-

stage stochastic problems with recourse are often computationally quite difficult, both

from a practical perspective, and from the point of view of complexity theory. This

is mainly due to the fact that the distribution might assign a non-zero probability to

an exponential number of scenarios, leading to a considerable increase in the problem

complexity, a phenomenon often phrased as “the curse of dimensionality.”

In Chapter 3, we give an algorithm to solve a large class of 2-stage stochastic

linear programs to near-optimality. We present a randomized algorithm that, with
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high probability, returns a solution of objective function value at most (1 + ε) times

the optimum, where ε can be set arbitrarily close to 0, in time that is polynomial in

the input size and 1
ε
. Thus, we obtain a fully polynomial randomized approximation

scheme (FPRAS) for a rich class of 2-stage stochastic linear programs. Two-stage

stochastic linear programs have been extensively studied in the Operations Research

literature, in particular, in the stochastic programming literature; to the best of

our knowledge however, this is the first result that demonstrates the polynomial-time

solvability of (a class of) 2-stage stochastic LPs. The algorithm works for both discrete

and continuous distributions, and functions in the so-called “black-box” model, where

one is given only a black box that one can use to draw independent samples from

the underlying probability distribution. Thus, the algorithm we present does not

require any assumptions about the probability distribution (or the cost structure of

the input).

Our result should be viewed as indicative of the fact that, contrary to conventional

wisdom, an exponential number of scenarios is not an insurmountable impediment to

the design of efficient algorithms for these problems. (For example, in [12], this

commonly held view was used as a motivation for considering so-called “robust” ver-

sions of deterministic optimization problems, as opposed to their stochastic versions.)

Whereas a naive LP formulation of a 2-stage problem might involve an exponential

number of both variables and constraints due to the exponential number of scenarios

to consider, we show that one can still approximately solve this linear program by

working with an equivalent (but compact) convex programming formulation whose

variables are just the first-stage decision variables, and show that the ellipsoid algo-

rithm can be adapted to yield such a scheme1. In doing so, a significant difficulty

that we must overcome is that even evaluating the objective function of this convex

program may be #P-hard, in general.

We believe that our study of 2-stage stochastic linear programs is an important

1Thus when we say “solving the 2-stage stochastic linear program,” we mean to say that we are
solving the equivalent convex program. Throughout this thesis, we use the phrase with this intended
meaning.
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step that could lead to both better computational procedures to solve 2-stage stochas-

tic LPs, as well as algorithms with provable guarantees for more general stochastic

optimization models such as multi-stage problems or chance-constrained problems

(the book by Birge & Louveaux [13] contains a discussion of these and some other

alternate models).

Approximation algorithms for 2-stage stochastic problems. Many applica-

tions involving uncertain data can be abstracted by the 2-stage recourse model, such

as for example, the problem of installing facilities to serve a set of clients, that is, the

2-stage stochastic UFL problem; given only a probability distribution on the set of

clients that need to be served, one must decide where to open facilities initially, but

then later, once the actual input is realized according to the distribution, one may

choose to open additional facilities incurring recourse costs.

The ability to solve 2-stage stochastic linear programs to near-optimality provides

us with a powerful and versatile tool that we exploit to design approximation algo-

rithms for 2-stage stochastic integer optimization problems in a manner analogous to

the way in which linear programming has been (very successfully) exploited to design

and analyze approximation algorithms for deterministic integer optimization prob-

lems. A 2-stage integer optimization problem can be formulated as a 2-stage stochas-

tic integer program (IP), and by relaxing the integrality constraints one obtains a

2-stage stochastic linear program. Using our algorithm to solve 2-stage stochastic

linear programs, one can obtain a near-optimal solution to the 2-stage stochastic LP;

the next step is to round this solution to get an integer solution without blowing up

the objective function value by much.

We sketch a general framework for rounding this (near-) optimal solution, that

proceeds by “decoupling” stage I and the different stage II scenarios, which then

allows one to lift existing algorithms and guarantees for the deterministic optimization

problem to the stochastic setting and thereby obtain an approximation algorithm for

the 2-stage stochastic optimization problem. Thus in some sense, we give a way to
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“reduce” the stochastic optimization problem to its deterministic counterpart, that

allows one to use the machinery developed for the deterministic problem to attack

the stochastic problem. We illustrate this methodology by applying it to the 2-stage

stochastic set-cover and uncapacitated facility location problems in Chapter 4. The

rounding procedure for the stochastic UFL problem forms the basis for rounding the

other 2-stage facility location problems that we consider in Section 4.4 and Section 5.6.

The results in Chapters 3 and 4 were obtained in joint work with David Shmoys [69].

1.4.2 Deterministic Facility Location Problems

In Chapter 5, we consider the facility location with service installation costs problem

that abstracts the caching application mentioned earlier. We give a constant-factor

approximation algorithm for this problem based on the primal-dual schema, under a

certain assumption on the service installation costs: we assume that the locations in

F can be sorted, so that if i comes before i′ in this ordering, then for every service,

the cost of installing the service at i is at most the cost if installing that service at i′.

This assumption is general enough to capture settings where the service installation

cost may depend only on the location, or only on the service. In the latter special

case, we also give an algorithm based on rounding an LP formulation of the problem

that attains a better approximation ratio. The results in this chapter, except for the

work in Section 5.6 where we look at the 2-stage stochastic version of the problem,

were jointly obtained with David Shmoys and Retsef Levi [70].

Chapter 6 focuses on the connected facility location problem which abstracts

settings where the open facilities want to communicate with each other or with a

common central authority. We model this by requiring that the open facilities be

interconnected via a Steiner tree, and the cost incurred is the sum of the facility

opening costs, client assignment costs, and the length of the tree scaled by an input

parameter M ≥ 1. The parameter M represents the higher cost of interconnecting

the facilities, e.g., connecting the core nodes in a telecommunication network via high

bandwidth links. A special case of this problem, called the rent-or-buy problem arises
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if facilities can be opened at any location and there are no facility opening costs.

We give primal-dual algorithms for these problems that attain approximation ratios

of 8.55 for connected facility location, and 4.55 for the rent-or-buy problem. Our

algorithms integrate the primal-dual approaches for the facility location and Steiner

tree problems, yet are simple and intuitive, and easy to analyze; the previous best

guarantees were obtained by rounding the optimal solution to an LP relaxation, and

were not combinatorial. The results here are from [75] and represent joint work with

Amit Kumar.

Finally, in Chapter 7 we consider the k-median clustering variants of the above

problems, where in addition to facility costs, we impose a bound of k on the number of

facilities that may be opened. We show that the primal-dual algorithms developed for

the facility location with service installation costs, and the connected facility location

problems are versatile, and can be used to obtain approximation algorithms for the

k-median variants of the respective problems as well.

1.5 Related Work

In this section we describe some previous work on the uncapacitated facility location

problem and stochastic optimization, to place our contributions in context. We con-

fine ourselves to a high level overview; a more detailed review of work related to the

contents of a chapter appears at the beginning of each chapter.

1.5.1 Uncapacitated Facility Location

The uncapacitated facility location (UFL) problem is one of the few problems that

showcases all the well-known algorithmic techniques in approximation algorithms de-

sign, such as LP rounding, primal-dual algorithms, local search heuristics and greedy

methods. It is also a shining example of the power and versatility of linear program-

ming based methods in the design of approximation algorithms. There is a great deal

of literature on UFL that considers the problem from perspectives such as proba-
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bilistic analysis of average case performance, polyhedral characterizations, empirical

investigation of heuristics, which we do not mention here; see [58] for an extensive

survey of work on UFL. We limit ourselves to a review of the literature that deals

with the design of approximation algorithms for UFL.

The non-metric case of UFL, that is, where the distances need not be symmetric

and need not satisfy the triangle inequality, is known to be as hard as the set-cover

problem. Combined with the results of Raz & Safra [64] and Feige [25], this shows

that for some constant c < 1, non-metric UFL cannot be approximated to within a

factor better than c ln |D| unless P=NP [64], or to a factor better than ln |D| unless NP

⊆ DTIME[nO(log log n)] [25]. Complementing this, Hochbaum [38] gave an O(ln |D|)-

approximation algorithm, and Lin & Vitter [54] gave another O(ln |D|)-approximation

algorithm based on LP rounding using their filtering technique.

Much of the work on approximating UFL has therefore concentrated on the metric

version of UFL. The metric version of UFL is also NP-hard. Shmoys, Tardos &

Aardal [71] gave the first constant-factor approximation algorithm for this problem.

They gave a 3.16-approximation algorithm for UFL; in contrast, Guha & Khuller [29]

showed that one cannot get a constant-factor better than 1.463 in polynomial time

unless P=NP. The work of [71] led to a flurry of activity on UFL in the Computer

Science literature, that has resulted in the development of a variety of techniques for

approximating UFL. We build upon some of these techniques in several ways to tackle

the algorithmic problems that arise in the enhanced models that we consider. The

techniques that have been developed can be broadly classified into three categories.

LP-rounding algorithms. The 3.16-approximation algorithm of [71] is based on

rounding a classical LP relaxation of this problem due to Balinski [9] using an elegant

filtering technique due to Lin & Vitter [54]. After an improvement due to Guha &

Khuller [29], Chudak & Shmoys [18] further strengthened the LP rounding approach,

and improved the ratio to
(
1 + 2

e

)
by exploiting the structure in the optimal primal

and dual solutions resulting from complementary slackness. Their algorithm combines
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randomized rounding [59] and the decomposition technique of [71] to get a variant

that might be called clustered randomized rounding. More recently Sviridenko [73]

gave a 1.58-approximation algorithm by combining some of the above ideas with the

so-called pipage rounding technique [1].

Primal-dual algorithms and greedy dual-fitting based algorithms. Jain &

Vazirani [41] gave an elegant primal-dual 3-approximation algorithm for UFL, where

the LP is used only in the analysis, and also showed that this primal-dual framework

can be extended to devise algorithms for some other variants of UFL. Very recently,

Jain, Mahdian, Markakis, Saberi & Vazirani [40] gave a set-cover style greedy algo-

rithm for UFL, that can also be viewed as a primal-dual algorithm, with a performance

guarantee of 1.61. Their algorithm constructs simultaneously a primal solution and a

dual solution, and the analysis uses the dual LP to lower bound the cost of the optimal

solution, so in these respects the algorithm and its analysis fall into the primal-dual

schema. An aspect in which it differs from the usual primal-dual setup, is that the

algorithm does not construct a feasible dual solution, but instead ensures that the

cost of the primal solution is equal to the value of the constructed dual. The perfor-

mance guarantee hinges on showing that the infeasibility in the dual is bounded by

a small factor ρ ≥ 1, that is, showing that the dual variables can be scaled down by

a factor ρ to obtain a feasible dual solution, and thus proving that the algorithm is a

ρ-approximation algorithm. This style of algorithm design and analysis is sometimes

called the dual fitting approach.

The current best algorithm for UFL is a 1.52-approximation algorithm due to

Mahdian, Ye & Zhang [56], that combines the Jain et al. algorithm with a greedy

local improvement step due to Guha & Khuller [29].

Local search heuristics. Another technique that has been successfully used for

UFL is local search. Korupolu, Plaxton & Rajaraman [47] gave a simple local search

procedure and showed that the cost of any locally optimal solution is within a factor

of 5 of the globally optimal solution. Subsequently, Charikar & Guha [15], and later
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Arya, Garg, Khandekar, Meyerson, Munagala & Pandit [7] gave more sophisticated

local search heuristics that improved the approximation ratio to 3.

1.5.2 Stochastic Optimization

The field of stochastic optimization, also called stochastic programming, has its roots

way back in the 1950s in the work of Dantzig [21] and Beale [11], and has since

grown into a tremendous field with applications in a variety of areas, such as logistics,

transportation models, inventory planning, financial instruments, and network design.

The 2-stage with recourse model is a well-studied paradigm in stochastic optimization,

but relatively little is known about polynomial-time algorithms for 2-stage problems

that deliver provably near-optimal solutions to the 2-stage stochastic integer or linear

program. There is an abundance of literature that deals with computational aspects

of solving 2-stage stochastic linear programs, and in some cases provides theoretical

asymptotic guarantees. One approach taken is to sample a certain number of times

from the distribution on scenarios, approximate the probability of a scenario by its

frequency, and solve the 2-stage problem for this approximate distribution. While

there are some results that prove asymptotic convergence to the optimal solution in

the limit as the number of samples goes to infinity, fewer results are known about the

rate of convergence to a near-optimal solution and the sample size required to obtain

a near-optimal solution. The work that seems to come closest in this respect is a

paper by Kleywegt, Shapiro & Homem-De-Mello [46] (see also Shapiro [67]), which

proves a bound on the sample size that depends on the variance of a certain quantity

(calculated using the scenario distribution) that might not vary polynomially with

the input size. To the best of our knowledge our result showing the polynomial time

convergence of our algorithm to a near-optimal solution is new, and gives the first

FPRAS for a large class of 2-stage stochastic linear programs.

The area of worst-case performance analysis of approximation algorithms for 2-

stage stochastic integer programming problems is an even less explored area. The

first such approximation result for discrete 2-stage problems with recourse appears
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to be due to Dye, Stougie & Tomasgard [22], who consider a resource provisioning

problem in the setting where the uncertainty in the data is limited to a polynomial

number of scenarios. Subsequently, a sequence of three papers in the Computer

Science literature — Ravi & Sinha [61]; Immorlica, Karger, Minkoff & Mirrokni [39];

and Gupta, Pál, Ravi & Sinha [35] — have considered 2-stage stochastic versions of

some other (integer) combinatorial optimization problems. All three papers consider

models where there are restrictions imposed, either limiting the class of probability

distributions, or on the cost structure of the two stages.

Thus, our work leads to the first approximation algorithms for various discrete

2-stage stochastic problems such as the stochastic versions of the set cover, vertex

cover, and facility location problems (and some variants), and the other problems

considered in Shmoys & Swamy [69]. Our framework of first writing the LP relaxation

of the 2-stage stochastic problem, then solving this LP using the algorithm for 2-stage

stochastic linear programming, and then rounding the near-optimal solution obtained

using known algorithms for the deterministic problem, appears to be quite general

and should find applications in devising approximation algorithms for various other

2-stage optimization problems as well.

1.6 Guide for Reading this Thesis

Chapter 2 is devoted to uncapacitated facility location and is a prerequisite for all

of Part III of this Thesis. It describes three algorithms for uncapacitated facility

location; in subsequent chapters in Part III, we either use these algorithms directly as

black boxes, or incorporate ideas from these algorithms to design efficient solutions to

our problems. We encourage even the reader who is familiar with the uncapacitated

facility location problem to skim through this chapter to become familiar with some

basic notation and conventions that are followed in the rest of the Thesis. Part II

consists only of Chapter 3 and can be read independently of Chapter 2. The chapters

in Part III are mostly independent of each other with the exception of Section 5.6 that

uses ideas from the rounding algorithm for stochastic uncapacitated facility location



19

described in Chapter 4, and Chapter 7 where we devise algorithms for the k-median

versions of the facility location problems considered earlier by building upon the

primal-dual algorithms developed in Chapters 2, 5 and 6. Finally, Chapter 4 and

Section 5.6 use the main result of Chapter 3 (Theorem 3.5.4), but are otherwise

independent of Chapter 3.



Chapter 2

Uncapacitated Facility Location

In this chapter we focus on the classical uncapacitated facility location (UFL) problem

and describe three algorithms for this problem — the primal-dual algorithm due to

Jain & Vazirani [41], an algorithm of Chudak & Shmoys [18] based on LP rounding,

and a hybrid LP rounding algorithm that combines the filtering-based algorithm of

Shmoys, Tardos & Aardal [71] and the Chudak-Shmoys rounding procedure. These

algorithms introduce several ideas that we build on and adapt in subsequent chapters

in Part III to devise algorithms for various facility location problems that arise in

enhanced models and generalize UFL. This chapter therefore serves as a prerequisite

for all the chapters in Part III of this thesis.

These algorithms rely on a natural linear programming formulation of UFL and

the Jain-Vazirani (JV) and Chudak-Shmoys (CS) algorithms also use the dual of this

linear program. The JV algorithm uses these linear programs only in the analysis

and not in the specification of the algorithm, whereas the CS algorithm is based

on first solving the linear program, and then rounding the optimal solution to get

a near-optimal integer solution. We first describe the JV algorithm in Section 2.2,

and then in Section 2.3 the LP rounding algorithm given by Chudak & Shmoys.

In Section 2.4, we describe the hybrid algorithm. This algorithm has two useful

properties. First, the algorithm rounds any primal fractional solution to an integer

solution incurring a constant factor blowup in the cost, and second, the rounding

20
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Table 2.1: Dependence between sections of this chapter and portions of the thesis.

Section Prerequisite for

2.1 Part III

2.2 Section 5.4, Chapter 6, Section 7.2

2.3 Sections 2.4, 5.5

2.4 Chapter 4, Section 5.6

procedure does not depend on the actual client demands. We exploit these properties

in Chapter 4 and Section 5.6 to devise algorithms for some stochastic facility location

problems. Table 2.1 shows the dependence between sections of this chapter and

different portions of the thesis.

2.1 Problem Definition and an LP Relaxation

In the uncapacitated facility location problem, given a set of candidate locations F

at which facilities may be opened and a set of clients D that need to be assigned to

facilities, we want to open facilities at some subset of the locations in F and assign

each client to an open facility. Opening a facility at location i incurs a facility opening

cost of fi, and assigning a client at location j to a facility at location i incurs an

assignment cost equal to the distance cij, and the goal is to minimize the total facility

opening and client assignment costs. In certain settings a client at location j may

have some demand or weight dj, and the cost of assigning it to a facility at location

i is given by the weighted distance djcij. Throughout this thesis, we consider the

setting where the distances cij form a metric, that is, they are symmetric and satisfy

the triangle inequality. In the sequel we will use the term “facility i” (respectively

“client j”) to denote a facility at location i (respectively client at location j). We use

the terms assignment cost and service cost, and the terms client and demand (which

refers to a client j along with its weight dj) interchangeably.

We can formulate UFL as a mathematical program involving two types of decision
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variables, xij and yi, where i indexes the facilities in F and j indexes the clients in

D. Variable yi indicates if facility i is open, and xij indicates if client j is assigned to

facility i.

min
∑

i

fiyi+
∑

j

dj

∑
i

cijxij (UFL-P)

s.t.
∑

i

xij ≥ 1 for all j, (1)

xij ≤ yi for all i, j, (2)

xij, yi ≥ 0 for all i, j.

Constraints (1) state that each client has to be assigned to a facility, and (2) ensure

that if a client is assigned to facility i, then facility i is open. If we require that the

xij and yi variables take on {0, 1} values, then we get an exact formulation of UFL.

Dropping the integrality constraints gives us a linear program which one can solve

efficiently to get an optimal fractional solution. The dual of the above linear program

is the following maximization problem.

max
∑

j

αj (UFL-D)

s.t. αj ≤ djcij + βij for all i, j, (3)∑
j

βij ≤ fi for all i, (4)

αj, βij ≥ 0 for all i, j.

The dual can be motivated as follows. The dual problem gives a way of obtaining a

lower bound on the value of (UFL-P). We interpret αj as the amount that j is willing

to spend to get itself assigned to a facility. Suppose first that there are no facility

opening costs, that is, fi = 0 for each i. Then each client simply gets assigned to

the facility closest to it, and we obtain a lower bound of
∑

j dj mini cij. This bound

is also trivially valid even if the facility costs are non-negative, but we can get a

much better lower bound. Suppose that each facility i decides to divide up its cost

fi among the different clients charging an amount βij from client j to “use” facility
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i. So to get assigned to i, client j must now pay both the assignment cost djcij and

this additional cost βij, or a net amount of djcij +βij. With this cost-sharing scheme,

the facility costs are now again effectively zero, and so each client j pays an amount

αj = mini(djcij + βij), as encoded by constraint (3). Since any such cost-sharing

scheme gives a lower bound, to obtain the best lower bound, we want to maximize

over all valid cost sharings, which is precisely the dual maximization program.

For simplicity, we will assume from now on that each client has unit demand, i.e.,

dj = 1 for all j. We can reduce the arbitrary demand case to the unit demand case

as follows. Assuming rational demands dj (irrational demands can be approximated

to an arbitrary precision by rational demands), first we rescale so that each dj is an

integer (the facility cost fi also gets rescaled). Now for every client j with integer

demand dj, we create dj clients co-located at location j, each having unit demand.

Any solution to the modified instance yields a solution to the original instance with the

same cost (ignoring the scaling factor) and vice versa. However, this reduction makes

the algorithm run in only pseudo-polynomial time. Nevertheless, we can simulate this

reduction by always treating the dj co-located copies identically. This requires only

cosmetic changes to the algorithms and the analyses presented.

2.1.1 Complementary Slackness

Let (x, y) and (α, β) be the optimal primal and dual solutions, respectively. Using

linear programming theory, we get, as a useful consequence of optimality, that these

solutions satisfy the following complementary slackness conditions.

Primal Slackness Conditions

yi > 0 =⇒
∑

j

βij = fi

xij > 0 =⇒ αj = cij + βij

Dual Slackness Conditions

αj > 0 =⇒
∑

i

xij = 1

βij > 0 =⇒ xij = yi

Our earlier interpretation of the dual program gives some insight about why these

conditions should hold at optimality. For example, the primal slackness conditions
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state that (i) if a facility i is open at all, then the payments it receives from the clients

should be able to recover its facility opening cost, i.e.,
∑

ij βij = fi, and (ii) if a client

j is using a facility i, then it has to pay the full (net) amount charged for using facility

i, i.e., the payment αj should be cij + βij. The complementary slackness conditions

can be used to show that (x, y) and (α, β) have the same value. This fact is true for

any pair of primal and dual linear programs, and is known as strong duality in linear

programming theory.

Strong Duality For any pair of primal and dual linear programs, the optimal primal

value is equal to the optimal dual value1.

As a corollary we obtain the following.

Weak Duality The value of any feasible solution to the dual of a minimization

linear program is a lower bound on the optimal value of the minimization program.

2.2 The Jain-Vazirani Algorithm

Jain & Vazirani [41] gave an elegant algorithm for UFL based on the primal-dual

schema. The basic mechanism involves constructing simultaneously a feasible dual

solution and an (integer) primal solution. In almost all applications of the schema

to date, this is done by a dual ascent algorithm and so all dual variables are only in-

creased throughout the execution of the algorithm. The analysis shows that the cost

of the primal solution so obtained is within a factor ρ of the value of the dual solu-

tion. Consequently, by weak duality, we get that the algorithm is a ρ-approximation

algorithm.

The JV algorithm for UFL works in two steps. Step 1 is a dual ascent process

where we simultaneously build a dual solution and a primal feasible solution. Recall

that each client j has a dual variable αj that can be interpreted intuitively as the

amount that j is willing to pay, and the dual problem seeks to maximize the total

payment from all clients. The dual ascent process increases each dual variable αj

1Here we are assuming that the primal and dual programs are feasible.
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uniformly. All other variables react to this change trying to maintain feasibility or

complementary slackness. Once αj becomes equal to cij for some facility i, we start

increasing βij and start paying toward the facility opening cost of i. When the total

contribution to i from the various clients equals fi, we declare i to be tentatively

open, and freeze all the (unfrozen) clients that have already reached i (i.e., αj ≥ cij)

or reach i at a later point, that is, we do not raise their dual variables any further.

Intuitively, we think of these clients as being served by this tentatively open facility

(but this facility might get closed in Step 2). The process ends when all clients are

frozen, with every client being assigned to a tentatively open facility. At this point a

client could be contributing toward multiple tentatively open facilities and the primal

solution might be very expensive. In Step 2 we remedy this by carefully picking

a subset of the tentatively open facilities to open, and thus extract a near-optimal

primal solution. The analysis shows that if the facility i that caused a client j to

freeze in Step 1 is not opened, then there is a “nearby” open facility i′ to which j can

be assigned.

We now describe the algorithm more precisely. There is a notion of time, t. We

start with t = 0 and all dual variables set to 0. As time increases we raise each dual

variable αj at unit rate until one of the following events happens (if several events

happen simultaneously, consider them in any order):

1. At some time t, for some client j and facility i, we have αj = t equal to cij, so

(3) holds with equality. If facility i is not tentatively open, we start increasing

βij at the same rate as αj, so we maintain that βij = αj − cij and ensure that

constraint (3) is satisfied (with equality). If i is tentatively open, we freeze

demand j.

2. A facility gets paid for, that is,
∑

j βij = fi. We tentatively open facility i and

freeze all (unfrozen) clients j that have reached i, that is, for which αj ≥ cij.

We only raise the αj and βij for unfrozen clients j. Frozen demands do not participate

in any events. We continue this process until all demands become frozen. Let (α, β)
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denote the final dual solution obtained by the above process.

Now we decide which of the tentatively open facilities to open. We say that two

facilities i and i′ are dependent if there is some client j such that both βij, βi′j > 0.

Call a set of facilities independent if no two facilities in the set are dependent. We

select a maximal independent subset of tentatively open facilities and open these.

Now we simply assign each client to the nearest open facility. Note that we do not

specify how to pick the independent set — the analysis will show that any maximal

independent set suffices. We use this property in Chapter 5.

Analysis. Let OPT denote the common optimal value of (UFL-P) and (UFL-D).

Let F ′ be the set of open facilities, and D′ be the set of demands that pay for the

facilities in F ′; that is, D′ = {j : ∃i ∈ F ′ s.t. βij > 0}. Observe that by our

independent set construction, for each demand j ∈ D′, there is exactly one facility

i in F ′ such that βij > 0. Define ti to be the time at which facility i was declared

tentatively open. Let i(j) denote the facility to which client j is assigned. We will

show that the cost of the solution returned is at most 3
∑

j αj ≤ 3 ·OPT . In fact, we

will prove a stronger guarantee that shows that 3
∑

i∈F ′ fi +
∑

j ci(j)j ≤ 3
∑

j αj. This

stronger guarantee will be useful when we consider k-median problems in Chapter 7.

The following fact is evident from the construction of the algorithm.

Fact 2.2.1 If βij > 0, then αj ≤ ti and cij = αj − βij.

Theorem 2.2.2 The solution returned by the JV algorithm satisfies

3
∑
i∈F ′

fi +
∑

j

ci(j)j ≤ 3
∑

j

αj ≤ 3 ·OPT .

Proof : For each facility in F ′, we have fi =
∑

j βij =
∑

j∈D′ βij, since i was

tentatively opened. Summing over all i in F ′, we get that the facility opening cost

is bounded by
∑

i∈F ′
∑

j∈D′ βij =
∑

j∈D′ βo(j)j where o(j), j ∈ D′, denotes the unique

facility in F ′ for which βij > 0.

We bound the service cost of a client j by showing that there always is an open

facility at most a certain distance away, implying that the nearest open facility can
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only be closer. If j ∈ D′, then o(j) is open and co(j)j = αj − βo(j)j by Fact 2.2.1.

Now consider j /∈ D′. Let i be the facility that caused j to freeze. So we have

ti ≤ αj. If i ∈ F ′, then it is open and cij ≤ αj. Otherwise since we pick a maximal

independent set, i must be dependent with some facility i′ ∈ F ′ via some client k.

So we have βik, βi′k > 0. Then, i′ is open, and repeatedly applying Fact 2.2.1 we get

that cik, ci′k < αk and αk ≤ min(ti, ti′) ≤ αj. Hence, ci′j < 3αj.

The service cost ci(j)j is therefore at most αj − βo(j)j (which is non-negative) if

j ∈ D′ and at most 3αj otherwise. Now we can bound 3
∑

i∈F ′ fi +
∑

j ci(j)j by∑
j∈D′

(
3βo(j)j + αj − βo(j)j

)
+

∑
j /∈D′

3αj ≤ 3
∑

j

αj ≤ 3 ·OPT .

Remark 2.2.3 With demands dj, the only change to the algorithm and its analysis is

that we replace αj and βij by αj/dj and βij/dj respectively, where raising
{
αj, βij

}
/dj

at unit rate means that we increase
{
αj, βij

}
at rate dj.

2.3 The Chudak-Shmoys Algorithm

We now describe the LP rounding algorithm of Chudak & Shmoys [18] which achieves

an approximation ratio of
(
1 + 2

e

)
. Let (x, y) and (α, β) be the optimal primal and

dual solutions. Recall that OPT is the common optimal value. Conceptually, one

can view the CS algorithm as a combination of the decomposition technique due

to Shmoys, Tardos & Aardal [71] (STA) and the randomized rounding technique

of Raghavan & Thompson [59]. Before delving into the CS algorithm, we briefly

discuss a few key ideas from the STA algorithm. Shmoys, Tardos & Aardal defined

the following notion of a g-close solution: a solution (x̂, ŷ) is g-close if for every j,

x̂ij > 0 =⇒ cij ≤ gj. A central component of the STA algorithm is a procedure

to transform any g-close fractional solution (x̂, ŷ) to a 3g-close integer solution (x̃, ỹ)

with facility cost
∑

i fiỹi at most
∑

i fiŷi. Thus the total cost of this integer solution

is at most,
∑

i fiŷi +
∑

j 3gj.
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Chudak & Shmoys build upon this in two ways. First, they observed that the

optimal solution (x, y) is α-close due to complementary slackness. So running the STA

rounding procedure on (x, y) produces a solution of cost at most
∑

i fiyi +
∑

j 3αj ≤

4 · OPT (by strong duality), giving a 4-approximation algorithm. Second, and more

significantly, they use randomization to select which facilities to open, and by doing

so, obtain a randomized procedure that shows that any g-close fractional solution

(x̂, ŷ) can be transformed to an integer solution (x̃, ỹ) with expected facility cost at

most
∑

i fiŷi, and expected assignment cost at most
∑

j,i cijx̂ij + 2
e

∑
j gj. Running

this procedure on the optimal solution (x, y) (which is α-close), we get an integer

solution of total expected cost at most
(
1 + 2

e

)
·OPT .

For convenience, we now work with the optimal solution (x, y) which is α-close,

although the algorithm and analysis apply more generally to any g-close fractional

solution. Assume for now that for every i and j, if xij > 0 then xij = yi. Let

Fj = {i : xij > 0}. The CS algorithm proceeds by first dividing the fractionally

open facilities into disjoint clusters. Each cluster is centered around some client j,

and consists of the facilities in Fj; so the cluster contains a fractional facility weight

equal to 1, that is,
∑

i∈Fj
yi = 1. We create these clusters in such a way that each

non-cluster-center client is “near” some cluster center, that acts as a representative

of the client. We will open each facility i with probability yi, and so the expected

facility opening cost is bounded by
∑

i fiyi. Each non-cluster facility i is opened

independently with probability yi. The facilities within a cluster are opened in a

dependent fashion so that exactly one facility is opened from the cluster. The facility

opened in a cluster serves as a backup facility for all clients that have this cluster

center as their representative. We assign each client to the nearest open facility. To

analyze the total assignment cost incurred, we consider a suboptimal way of assigning

a client j to an open facility, and bound the cost incurred under this assignment. We

assign j to the nearest facility open among the facilities in Fj, if some such facility is

open, and otherwise to its backup facility. Due to randomization, one can argue that

the latter event happens with a small probability and thereby show that the service
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cost incurred is at most
∑

j,i cijxij + 2
e

∑
j αj.

The algorithm details are as follows. First, we ensure that the fractional solution

(x, y) has the property that for every i, j, xij > 0 =⇒ xij = yi. This property is

called completeness in [18]. If (x, y) is not complete, we will obtain an equivalent

instance, and a complete solution (x̂, ŷ) for this instance with the same cost as (x, y).

Let i be a facility such that for some j, 0 < xij < yi. Let 0 < v1 < v2 < · · · < vk

be the distinct non-zero values in {xij}j∈D. Note that yi = vk otherwise we could

decrease yi to get a solution of lower cost. Let v0 = 0. We replace facility i by k

“clones” i1, . . . , ik and set ŷil = vl− vl−1. For any j, if xij = vl > 0, we set x̂imj = ŷim

for m ≤ l, and x̂imj = 0 for m > l. Clearly, (x̂, ŷ) is a feasible complete solution

for the new instance with the same cost as (x, y). Furthermore, any solution to the

new instance gives a solution to the original instance of no greater cost. To avoid

cumbersome notation, we therefore simply assume that (x, y) is a complete solution.

Let C̄j =
∑

i cijxij be the cost incurred by the LP solution to assign client j.

A1. Let S be a list of clients ordered by increasing C̄j + αj value. We repeatedly

do the following: pick the first client in S, that is, the client with smallest

C̄j + αj value among all clients in S, and form a cluster around it consisting of

all the facilities in Fj. We then remove from S every client (including j) that is

served by some facility in Fj, make j the representative of each such client, and

continue with the remaining list of clients until S becomes empty. Let D be

the set of cluster centers, and σ(k) ∈ D denote the representative of a client k.

We call the facilities within clusters, central facilities and the facilities outside

clusters, non-central facilities.

A2. Within each cluster Fj, j ∈ D, we open exactly one facility, choosing facility i

with probability yi. This facility is called the backup facility for every client k

with σ(k) = j.

A3. Each non-central facility is opened independently with probability yi.

A4. We assign each client to the nearest open facility.
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2.3.1 Analysis

To bound the assignment cost, consider the following way of assigning a client j to an

open facility: assign j to the nearest open facility in Fj; if no facility in Fj is opened,

assign j to its backup facility (opened from Fσ(j)). Let Xj be the random variable

denoting the assignment cost of j under this scheme. Let Zj be the event that no

facility in Fj is open.

Lemma 2.3.1 For any client j ∈ D, we have E
[
Xj

]
= C̄j.

Proof : Recall that xij > 0 implies that xij = yi. If j ∈ D, then exactly one of

the facilities in Fj is open, facility i being open with probability yi. So E
[
Xj

]
=∑

i cijxij = C̄j.

Lemma 2.3.2 For any client j /∈ D, E
[
Xj|Zj

]
≤ 2αj + C̄j.

Proof : Let k = σ(j) ∈ D. Let A = Fj ∩ Fk 6= ∅. For any facility i ∈ A we have

cij ≤ αj and for any facility i ∈ Fk, we have cik ≤ αk due to complementary slackness.

Event Zj implies that j is assigned to its backup facility in Fk, so conditioned on Zj,

Xj is equal to cIj where I is the (random) backup facility opened from Fk. If there

is some facility i ∈ A such that cik ≤ C̄k, then we have a deterministic bound of

Xj ≤ αj + C̄k + αk. Otherwise, since the unconditional expectation E
[
Xk

]
is at

most C̄k (Lemma 2.3.1), by conditioning on Zj, we are only removing weight from

facilities that have a larger cik value than the average. So the conditional expectation

E
[
Xk|Zj

]
≤ C̄k and it follows that E

[
Xj|Zj

]
≤ cjk + E

[
Xk|Zj

]
≤ αj + αk + C̄k. So

in either case we have that E
[
Xj|Zj

]
≤ αj + αk + C̄k ≤ 2αj + C̄j, where the last

inequality follows since we consider clients in increasing order of αj + C̄j and k was

picked before j.

We will need the following lemma to bound the assignment cost.

Lemma 2.3.3 Let d1 ≤ d2 ≤ · · · ≤ dm and 0 ≤ pn ≤ 1 for n = 1, . . . ,m. Then,
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p1d1 + (1− p1)p2d2 + · · ·+ (1− p1)(1− p2) . . . (1− pm−1)pmdm

≤
∑

n≤m pndn∑
n≤m pn

(
1−

∏
n≤m

(1− pn)
)
.

Proof : The proof here is from [73] (see [18] for an alternate proof) and uses

the Chebyshev Integral Inequality (see [36]) which states the following. Let g, h be

functions from the interval [a, b) to R+ where g is monotonically non-increasing and

h is monotonically non-decreasing. Then,∫ b

a

g(x)h(x)dx ≤
(∫ b

a
g(x)dx

)(∫ b

a
h(x)dx

)
b− a

.

Now take g(x) and h(x) to be functions defined on the interval
[
0, P =

∑
n≤m pn

)
with g(x) = Πi−1

n=1(1 − pn) and h(x) = di over the interval
[∑i−1

n=1 pn,
∑i

n=1 pn

)
for

i = 1, . . . ,m. This gives,

p1d1 + (1− p1)p2d2 + · · ·+ (1− p1)(1− p2) . . . (1− pm−1)pmdm

=

∫ P

0

g(x)h(x)dx ≤
(∫ P

0
g(x)dx

)(∫ P

0
h(x)dx

)
P

=

∑
n≤m pndn∑

n≤m pn

(
1−

∏
n≤m

(1−pn)
)
.

Lemma 2.3.4 For any client j, we have E
[
Xj

]
≤ C̄j + 2

e
αj.

Proof : This is true for a client j ∈ D by Lemma 2.3.1. Consider j /∈ D. Recall

that if xij > 0 then xij = yi. For every non-central facility i ∈ Fj, let Ei be the

event that i is opened. Let pi = Pr[Ei] = yi and di = cij. For every cluster center

k ∈ D′ such that Sk = Fj ∩ Fk 6= ∅, let Ek denote the event that a facility in Sk is

open. Let pk = Pr[Ek] =
∑

i∈Sk
yi and define dk =

(∑
i∈Sk

cijxij

)
/
(∑

i∈Sk
xij

)
which

is the expected distance between j and the facility opened from Sk conditioned on

event Ek. Let the events be ordered so that d1 ≤ d2 ≤ · · · ≤ dm, where m is the total

number of events. We will bound E
[
Xj

]
by considering a suboptimal way of assigning

j to an open facility in Fj (if one exists). Instead of assigning j to the nearest open

facility in Fj, we will assign it to the open “facility” with smallest di, where when we
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say that a “facility” of type Sk, k ∈ D is open, we mean that some facility i ∈ Sk is

open, and assigning j to facility Sk means that we assign it to the open facility in

Sk. Observe that the events Ei are all independent and Zj =
⋂m

n=1 Ēn. Therefore,

p = Pr[Zj] =
∏m

n=1(1− pn) ≤ e−
P

n pn = e−1. So,

E
[
Xj

]
≤ p1d1 + (1− p1)p2d2 + · · ·+ (1− p1) . . . (1− pm−1)pmdm + p · E

[
Xj|Zj

]
≤

∑
n≤m pndn∑

n≤m pn

(1− p) + p · (2αj + C̄j) (Lemma 2.3.2, Lemma 2.3.3)

= (1− p)C̄j + p · (2αj + C̄j) ≤ C̄j + 2
e
· αj.

Remark 2.3.5 The bounds stated in Lemma 2.3.2 and 2.3.4 hold for any g-close

solution with αj replaced by gj, if we modify the criterion for selecting a cluster center

in step A1 so that the new cluster center chosen is the client with the smallest C̄j +gj

value among all clients in S.

Theorem 2.3.6 The expected cost of the solution returned is at most
(
1+ 2

e

)
·OPT.

Proof : The expected facility cost incurred is at most
∑

i fiyi, since each facility

is opened with probability yi. By Lemma 2.3.4, the total service cost is at most∑
j,i cijxij + 2

e

∑
j αj. Adding the two, we see that the total cost incurred is at most(

1 + 2
e

)
·OPT , since

∑
j αj = OPT .

Remark 2.3.7 Again, as in the JV algorithm, to handle arbitrary demands dj, we

just need to replace αj with αj/dj. Of course, the assignment cost incurred is now

given by
∑

j djXj.

2.4 The Primal Rounding Algorithm

We now describe an algorithm that takes as input any feasible fractional solution

(x, y) and returns an integer solution (x̃, ỹ) of cost at most a constant factor times
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the cost of (x, y). A useful property of this rounding algorithm is that neither the

algorithm nor the performance guarantee depend on the actual client demands dj.

This will prove useful in Chapter 4 and Section 5.6 when we design approximation

algorithms for the stochastic versions of some facility location problems.

Observe that neither of the two algorithms described earlier have this “demand-

obliviousness” property. In the JV algorithm, to handle arbitrary demands we raise

the variable αj at rate dj. In general, since the demands appear in the dual con-

straints, it seems necessary that in a primal-dual algorithm one would need to know

the actual demands in order to construct a good feasible dual solution. The perfor-

mance guarantee of the CS algorithm, since it uses complementary slackness, relies

critically on the fact that we have an optimal solution to start with, and getting

an optimal fractional solution requires knowledge of the demands. The STA algo-

rithm [71] does have this property, and by incorporating ideas from both the STA

algorithm and the CS algorithm we design an algorithm with a better approximation

guarantee.

The algorithm is as follows. Let Fj = {i : xij > 0}. Note that the fractional

assignment xij depends only on the yi values, that is, the fractionally open facilities,

and not on the demand dj. We may assume that (x, y) is a complete solution, i.e.,

xij = 0 or xij = yi for every i and j, if necessary by cloning facilities as in the CS

algorithm. Let C̄j =
∑

i cijxij be the cost incurred in the fractional solution to assign

one unit of j’s demand. Let 0 < γ < 1 be a parameter and r = 1
γ
. The algorithm

essentially involves getting a g-close solution where gj is bounded in terms of C̄j,

and running the CS algorithm on this solution, but the analysis is different and more

refined.

Sort the facilities in Fj by increasing cij value. Let i′ be the first facility in this

ordering such that the xij weight of facilities in Fj up to and including i′ (in this

ordering) is at least γ, that is,
∑

i:i=i′, or comes before i′ xij ≥ γ. Define Rj(γ) = ci′j and

C̄j(γ) as the xij-weighted average distance to the set of facilities in Fj considered in

sorted order, that gathers an xij weight of exactly γ. So the last facility i′ may be
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included partially and we have C̄j(γ) =
(∑

i<i′ cijxij + ci′j(γ −
∑

i<i′ xij)
)
/γ. Note

that C̄j(1) = C̄j. Let Nj ⊆ Fj be the facilities up to and including i′ in the sorted

order.

To simplify the description we assume that each yi ≤ γ and for any j,
∑

i∈Nj
yi is

exactly γ. If some yi > γ, then we can create at most d1/γe clones of i and set yil ≤ γ

for each clone il so that
∑

clones il
yil = yi (setting the variables xilj accordingly).

Similarly, if
∑

i∈Nj
yi > γ, we can split i′ (the last facility in Nj) into two copies i′1

and i′2 and set yi′2
=

∑
i∈Nj

yi−γ, yi′1
= yi′−yi′2

(and the other variables accordingly).

We include only i′1 in Nj thus ensuring that
∑

i∈Nj
yi = γ. The cost of the fractional

solution remains unchanged by these transformations and a solution to the modified

instance translates in the obvious way to a solution to the original instance of no

greater cost. Hence, C̄j(γ) =
(∑

i∈Nj
cijxij

)
/γ.

Now consider the fractional solution (x̂, ŷ), where x̂ij = xij/γ for i ∈ Nj and

0 otherwise, and ŷi = yi/γ. We run the CS algorithm on this instance using the

following modified rule for selecting a cluster center in step A1: we now pick the

client j with smallest Rj(γ) = maxi:x̂ij>0 cij value to be a cluster center.

2.4.1 Analysis

Note that (x̂, ŷ) is a Rj(γ)-close solution, and
∑

i cijx̂ij = C̄j(γ). We prove a tighter

bound on the assignment cost than that implied by Lemma 2.3.4 (when applied to

the instance (x̂, ŷ) with the modified cluster-selection criterion). Consider assigning j

to the nearest open facility in Fj, and if no such facility is open, to its backup facility

in Nσ(j). Let Xj be the random variable denoting the distance between j and the

facility to which it is assigned under this scheme, and Zj be the event that no facility

in Fj is open. Recall that r = 1
γ
.

Lemma 2.4.1 For any client j, we have,

E
[
Xj

]
≤

(
1 + e−r · 2 + γ

1− γ

)
C̄j.
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Proof : The proof is as in Lemma 2.3.4. We can decompose event Zj into the

intersection of various independent events Ei and for each of these events we define

pi = Pr[Ei] and di as in Lemma 2.3.4. Let k = σ(j) be the representative client

j. Observe that Xj is deterministically bounded by Rj(γ) + 2Rk(γ) ≤ 3Rj(γ), since

Nj ∩ Nk 6= ∅ and some facility from Nk is always opened. Thus, we can trivially

bound the conditional distance E
[
Xj|Zj

]
by 3Rj(γ). Also p = Pr[Zj] is at most

e
−

P
i∈Fj

ryi = e−r, and
(∑

n pndn

)
/
(∑

n pn

)
= C̄j. So as in Lemma 2.3.4, we obtain

that

E
[
Xj

]
≤ (1− p)C̄j + p · 3Rj(γ) ≤ (1− p)C̄j + p · 3

1− γ
C̄j,

where the last inequality follows since Rj(γ) ≤ C̄j

1−γ
. Since p ≤ e−r, E

[
Xj

]
is at most(

1 + e−r · 2+γ
1−γ

)
C̄j.

Theorem 2.4.2 Consider any demands dj ≥ 0. Let C =
∑

j djC̄j and F =
∑

i fiyi.

For any parameter γ, 0 ≤ γ ≤ 1, the above algorithm produces an integer solu-

tion (x̃, ỹ) with expected facility cost at most r · F and expected assignment cost

E
[∑

j,i djcijx̃ij

]
at most

(
1 + e−r · 2+γ

1−γ

)
· C, where r = 1

γ
. Thus with γ = 1

1.858
,

we get a solution of total cost at most 1.858(F + C).

Proof : Each facility i is opened with probability r · yi, so the facility cost is

bounded by r ·F . The expected service cost is at most
∑

j djE
[
Xj

]
which is at most(

1 + e−r · 2+γ
1−γ

)
· C by Lemma 2.4.1. The theorem follows.

Remark 2.4.3 In particular with demands dj ∈ {0, 1}, this shows that we can choose

which facilities to open, without knowing the actual client set that we have to serve!

The theorem shows that for any client set S, the total cost of the integer solution ỹ

is within a constant factor of the cost of the fractional solution where clients in S are

assigned (fractionally) to the fractionally open facilities in y.
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Stochastic Linear Programming
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Chapter 3

An Algorithm to Solve 2-Stage

Stochastic Linear Programs

3.1 Introduction

Stochastic optimization problems have been studied since the work of Dantzig [21]

and Beale [11] in the 1950s, and attempt to model uncertainty in the data by assum-

ing that (part of) the input is specified in terms of a probability distribution, rather

than by deterministic data given in advance. Since the work of Dantzig, stochastic

optimization, also referred to as stochastic programming, has grown into a tremen-

dous field with a vast literature including various textbooks [13, 42], surveys and

collected papers [72, 79, 66] and repositories on the web [20, 78]. Stochastic opti-

mization techniques and models have become an important paradigm in a wide range

of application areas, including transportation models, logistics, financial instruments,

and network design.

In this chapter we focus on an important and widely used model in stochastic

programming: the 2-stage recourse model, where one makes decisions in two steps.

First, given only distributional information about (some of) the data, one commits

on initial (first-stage) actions, and then once the actual data is realized, according

to the distribution, further recourse actions can be taken, so that one can augment

37
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the earlier solution to satisfy the revealed requirements, if necessary. Typically the

recourse actions entail making decisions in rapid reaction to the observed scenario,

that is, at the “last minute,” and are therefore costlier than decisions made ahead

of time. Thus there is a natural trade-off between committing in advance without

having precise information and paying a low cost, and waiting to observe the scenario

that materializes and then making decisions having complete information but paying

a higher price, and this reflects the need for careful planning in deciding the initial

actions, that is, the first-stage decisions. The class of 2-stage recourse problems finds

a wide variety of applications, and has been extensively studied in the stochastic

optimization literature. For example, much of the textbook of Birge & Louveaux [13]

is devoted to applications and algorithms for this class of problems.

Consider, as an illustrative example, the following inventory management problem

that might form one cog of a supply-chain logistics problem, where one has to decide

on inventory levels given only estimates or likelihood information about the demand

that one has to satisfy. Here the uncertainty in the demand might be due to a

combination of several factors such as market forces, inflation, state of the economy,

uncertainty propagating from other parts of the supply-chain. Having decided initially

on certain inventory levels, one gets to observe the actual demand requirement, and

then one has the opportunity to adjust the inventory levels accordingly, at the expense

of a recourse cost. If there is excess demand, then one can raise inventory levels to

satisfy the extra demand, but since the extra demand has to be satisfied in a timely

manner (not to lose out on possible sales and profits) this requires (re-) positioning

the inventory at a short notice, that is, at a smaller turnaround time, and typically

incurs a higher cost. Conversely, if there is less demand, then one may either choose

to store the inventory and incur a certain holding cost, or in a supply chain one might

be able to sell the surplus inventory at a lower price to the previous supplier(s), and

incur a loss. The inventory management problem fits nicely in the 2-stage recourse

model. The aim here is to obtain a good set of initial (first-stage) decisions, that is,

come up with an effective plan in the face of uncertain data.
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As another example, picture a network designer who has to allocate bandwidth on

network links without knowing the exact traffic requirements of the end-users. He has

the flexibility to install some bandwidth initially, and once the traffic requirements

become known, or better understood, the recourse might consist of increasing capacity

on some of the links. Here again, there is a trade-off between decisions made in the

first stage or in the second stage. The network designer may be able to arrange cheap

long-term contracts for capacity purchased ahead of time (without knowing exactly

how much capacity to purchase), whereas he may need to purchase capacity at the

last minute in a more expensive “spot market.”

To capture the above problems, we formalize the 2-stage recourse model as follows:

we are given a probability distribution on input instances A, and we construct a

solution in two stages. In the first-stage, we may choose some elements to construct

an anticipatory part of the solution, x, and incur a cost c(x), then the problem

instance, or scenario, say A, is revealed, and in the second stage, we may augment

the first stage decisions by choosing some more elements yA (if necessary) incurring a

certain cost f(x, yA). The goal is to decide which elements to choose in stage I, that

is, the vector x, so as to minimize c(x) + EA

[
f(x, yA)

]
, that is, the sum of the stage I

cost and the expected stage II cost, where the expectation is taken over all possible

scenarios according to the given probability distribution.

3.1.1 Summary of Results

In this chapter, we describe an algorithm to solve a rich class of 2-stage stochastic

linear programs to near-optimality. We present an algorithm that returns a solution of

objective function value within (1 + ε) of the optimum, where ε can be set arbitrarily

close to 0, in running time that is polynomial in the input size, 1
ε
, and in the ratio of the

second stage and first stage costs, thus obtaining a fully polynomial time randomized

approximation scheme (FPRAS) for a large class of 2-stage stochastic linear programs.

The algorithm works for both discrete and continuous distributions, and does not

require any assumptions about the probability distribution (or the cost structure of
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the input); all we require is a “black box” that one can use to draw independent

samples from the distribution. This result is based upon formulating the stochastic

linear program, which in general has both an exponential number of variables and an

exponential number of constraints, as an equivalent, compact convex program, and

then adapting the ellipsoid method to return a near-optimal solution. In doing so,

a significant difficulty that we must overcome is that even evaluating the objective

function of this convex program at a given point may be quite difficult and #P-

hard [24] in general, due to the exponential number of scenarios that one may have

to consider.

The ability to solve stochastic linear programs to near-optimality provides one

with a powerful and versatile tool to design approximation algorithms for 2-stage

stochastic integer optimization problems, in much the same way that linear program-

ming has proved to be immensely useful in the design and analysis of approximation

algorithms for deterministic integer optimization problems. Given a 2-stage stochas-

tic integer problem one can consider a linear relaxation of the problem obtained by

dropping the integrality constraints. We will show in subsequent chapters that one

can convert a fractional near-optimal solution to this 2-stage stochastic linear program

to an integer solution using approximation algorithms for the deterministic version of

the problem at the expense of a small constant-factor blowup in the objective func-

tion value, and thus obtain an approximation algorithm for the 2-stage stochastic

integer problem. We exploit this tool in Chapter 4 and Section 5.6 to devise the first

approximation algorithms for the stochastic uncapacitated facility location (SUFL)

problem and some of its variants, without placing any restrictions on the underlying

probability distribution or the cost structure of the input.

This chapter is structured as follows. In Section 3.2 we consider a stochastic

generalization of the deterministic set cover problem which is used to illustrate the

algorithm and its analysis in Section 3.4. In Section 3.5 we generalize the arguments

to show that the algorithm can be used to solve a larger class of stochastic linear

programs. The running time of our algorithm depends on the ratio of the stage II
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and stage I costs; in Section 3.6, we show that this dependence is unavoidable in the

black-box model.

3.1.2 Related Work

Two-stage stochastic programs, both linear and integer programs, have been exten-

sively studied in the Operations Research literature, but not much is known about

algorithms that deliver solutions that are provably good approximations to the op-

timum stochastic linear or integer program objective value in polynomial time. We

first discuss work relating to 2-stage stochastic linear programming, and then briefly

review work related to approximation results for 2-stage stochastic integer programs,

which is discussed in more detail in Section 4.1.2 in the context of the stochastic

uncapacitated facility location problem.

Two-stage stochastic linear programs are often computationally quite difficult,

both from the point of view of complexity theory, and from a practical perspective,

mainly due to the fact that there may be an exponential number of scenarios, and

the problem complexity increases considerably as the number of scenarios increases,

a phenomenon often phrased as “the curse of dimensionality.” Dyer & Stougie [24]

showed that even evaluating the objective function, which includes the expectation

over stage II scenarios, at a given point may be #P-hard.

There is a large body of literature that deals with computational aspects of solving

2-stage stochastic linear programs, and providing theoretical asymptotic guarantees

where possible, and we only sample a few key ideas here. One approach used is to

enumerate all possible scenarios and express the problem as a (huge) linear program

(LP), and then exploit the fact that this LP has a great deal of structure to devise

specialized heuristics for solving the LP; for example, the L-shaped structure of the

coefficient matrix has given rise to the so called L-shaped method (see for exam-

ple, [13]). However, even this additional structure might not be enough to offset the

computational burden of having to deal with an exponential number of scenarios. An

alternative approach taken is to sample a certain number of times from the distri-
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bution on scenarios, approximate the probability of a scenario by its frequency, and

solve the 2-stage problem for this approximate distribution (that has support of size

at most the number of samples). There are several variants of this basic method,

depending on whether the approximate probability distribution is used to approxi-

mate the function value or some other quantity such as optimality cuts or gradients,

the type of sampling procedure used, whether sampling is performed only initially or

repeatedly, in the latter case whether the number of samples is kept fixed or varied.

The textbook by Birge & Louveaux [13] gives an account of these methods as well

as the non-sampling-based methods mentioned earlier. While there are some results

that prove asymptotic convergence to the optimal solution in the limit as the number

of samples goes to infinity, and it has been reported that some of these algorithms

converge quickly [55, 77], fewer results are known about the rate of convergence to

a near-optimal solution and the sample size required to obtain a near-optimal so-

lution (with high probability). The work that seems to most closely deal with the

issue of bounding the number of required samples, is a paper by Kleywegt, Shapiro &

Homem-De-Mello [46] (see also Shapiro [67]). They give a bound that is polynomial

in the dimension, but depends on the variance of a certain quantity (calculated using

the scenario distribution) that might not vary polynomially with the input size.

The algorithm we present incorporates some of the above ideas and builds upon

them. We show that a randomized polynomial algorithm that samples from the prob-

ability distribution (which is treated as a black box) can compute an approximate

subgradient (appropriately defined), and that this approximate subgradient informa-

tion can be leveraged within the framework of the ellipsoid algorithm to guarantee

convergence to a (1 + ε)-optimal solution in polynomial running time. Thus, this

gives a theoretical justification for the effectiveness of repeated sampling as a tool to

tackle such problems and obtain good convergence results. The running time of our

algorithm, and hence the number of samples used, is polynomial in the input size, 1
ε

and the maximum ratio λ between the stage II and stage I costs, but does not depend

on the underlying distribution. We show that this dependence on λ is unavoidable,
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and that a performance guarantee of ρ requires Ω(λ/ρ) samples. The dependence on

1
ε

is also unavoidable in light of the #P-hardness results. Also related is the work of

Dyer, Kannan, and Stougie [23], who focus on computing an estimate for the objec-

tive function value at a given point (though for a maximization version), by sampling

from the distribution sufficiently many times. But this yields a running time that is

polynomial only in the maximum value attained by any scenario. Furthermore, their

guarantee does not yield a fully polynomial approximation scheme for 2-stage linear

programs. In contrast, we focus on approximating the subgradient at a given point,

and show that the variation in the subgradient vector components is more controlled

and depends only on the ratio λ; consequently our running time depends only on λ.

The first worst-case analysis of approximation algorithms for 2-stage stochastic

integer programming problems with recourse appears to be due to Dye, Stougie &

Tomasgard in 1999 [22], who consider a resource provisioning problem where there are

only a polynomial number of scenarios and give a constant performance guarantee

based on an LP rounding algorithm. One important issue left ambiguous in the

description of the 2-stage recourse model above is the way in which the probability

distribution is specified, and several approaches have recently been considered in

papers that address related 2-stage stochastic integer optimization problems. Dye et

al. [22], and Ravi and Sinha [61] assume that there are only a polynomial number

of scenarios, i.e., choices for A that occur with positive probability; we will refer

to this model as the polynomial scenario model. Independently, Immorlica, Karger,

Minkoff, and Mirrokni [39] consider both this model, and the model where each

element is assumed to occur with its own independent probability; for example, in

the inventory management application, this means that the demand for each product

is independently set and has no effect on the demands for other products. We denote

this model the independent-activation model. By looking at distributions generated

this way, Immorlica et al. enlarge the space of scenarios to be exponentially large.

This is done with the rather severe restriction of assuming that the costs in the two

stages are proportional, that is, there is a uniform inflation parameter λ that blows
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up the cost incurred in making any decision, in any stage II scenario, by a factor of

λ compared to the cost incurred in making that decision in stage I. We call this the

proportional-costs model. In the inventory example, this would imply that the cost

to set up a warehouse in stage II (at the last minute) in scenario A is λ times the

cost to set it up in stage I, and this parameter λ is the same for every warehouse,

and every scenario A. Gupta, Pál, Ravi, and Sinha [35] also require this assumption,

but give a more general way to specify the probability distribution, which we shall

call the black-box model: they assume that the algorithm may make use of samples

that are drawn according to the distribution of scenarios. Ravi and Sinha [61], and

independently Immorlica et al. [39], and subsequently Gupta et al. [35] consider

2-stage stochastic versions of some combinatorial optimization problems, and give

approximation algorithms in the models mentioned above which restrict either the

probability distribution, or the cost structure (or both).

3.2 An Illustrative Problem

We shall initially focus on a stochastic generalization of the ordinary set cover prob-

lem to illustrate our technique for solving 2-stage stochastic linear programs. In

Section 3.5, we show that the technique can be used to solve a rich class of 2-stage

programs to near-optimality.

The deterministic weighted set cover problem (SC) is the following: given a uni-

verse U of elements e1, . . . , en and a collection of subsets of U , S1, . . . , Sm with set

Si having weight wi, we want to choose a minimum weight collection of sets so that

every element ej, j = 1, . . . , n, is included in some chosen set. The problem can be

formulated as an integer program and the integrality constraints can be relaxed to

yield the following linear program:

min
∑

S

wSxS subject to
∑

S:e∈S

xS ≥ 1 for all e; xS ≥ 0 for all S. (SC-P)

In the two-stage stochastic generalization of the problem, abbreviated SSC, the ele-

ments to be covered are not known in advance. There is a probability distribution
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over scenarios, and each scenario specifies the actual set of elements A ⊆ U to be

covered. For our purposes, a scenario is just some subset of the elements A ⊆ U . We

will assume without loss of generality that the set of all possible scenarios is the power

set 2U (including the empty set ∅), and use pA to denote the probability of scenario

A. Note that pA could be 0, implying that scenario A never actually materializes.

We point out that the quantities pA are never explicitly used by the algorithm. We

define them only for ease of exposition and to aid us in the analysis. Throughout we

will use A to index the scenarios.

Each set Si has two costs associated with it, an a priori weight wI
i , and an a

posteriori weight wII
i . In the first stage, one selects some of these sets, incurring a

cost of wI
S for choosing set S, and then a scenario A ⊆ U is drawn according to a

specified distribution, and then additional sets may be selected incurring their second

stage weights so as to ensure that A is contained in the union of the sets selected

both in stage I and in stage II. The aim is to minimize the expected total cost of the

solution, that is, the sum of the cost incurred in stage I and the expected stage II

cost of a scenario, where the expectation is taken over all scenarios A.

The 2-stage problem can also be formulated as an integer program and the inte-

grality constraints can be relaxed to yield a linear program. We have a variable xS

for each set S indicating whether set S is chosen in stage I, and variables rA,S for

each set S and scenario A, indicating if set S is chosen in scenario A.

min
∑

S

wI
SxS +

∑
A,S

pAwII
S rA,S (SSC-P1)

s.t.
∑

S:e∈S

xS +
∑

S:e∈S

rA,S ≥ 1 for all A, e ∈ A, (1)

xS, rA,S ≥ 0 for all A, S.

Constraint (1) says that in every scenario A, every element in that scenario has to be

covered by a set chosen either in stage I or in stage II. An integer ({0, 1}) solution cor-

responds exactly to a solution to our problem, and relaxing the integrality constraints

gives a linear program. Notice however, that this LP has both an exponential number
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of variables and an exponential number of constraints, and in general, obtaining an

optimal solution to (SSC-P1) in its present form seems difficult, since even writing

out an optimal solution may take exponential space (and time). However, in order

to round a fractional solution to (SSC-P1) to an integer solution, and thus determine

which sets to pick in stage I, it turns out, as we will show later in Section 4.3.1, that

one only needs to examine only the stage I variables xS in the fractional solution.

This motivates the following compact formulation, equivalent to (SSC-P1), where we

only have the stage I variables xS.

min
∑

S

wI
SxS+ f(x) subject to 0 ≤ xS ≤ 1 for all S, (SSC-P2)

where f(x) =
∑
A⊆U

pAfA(x),

and fA(x) = min
∑

S

wII
S rA,S

s.t.
∑

S:e∈S

rA,S ≥ 1−
∑

S:e∈S

xS for all e ∈ A, (2)

rA,S ≥ 0 for all S.

It is easy to see that any feasible solution to (SSC-P2) maps to a feasible solution

(perhaps many solutions) to (SSC-P1) of the same value. Conversely, any solution

to (SSC-P1) maps to a solution to (SSC-P2) of no greater value, and hence the the

formulations (SSC-P2) and (SSC-P1) are equivalent, in the sense that they have the

same optimal value.

Lemma 3.2.1 The function f(x) in (SSC-P2) is convex.

Proof : It suffices to show that fA(x) is convex for each A ⊆ U . Consider any two

points x1, x2 and let x = λx1 +(1−λ)x2. Let r
(1)
A and r

(2)
A be the optimal solutions to

the minimization problem for scenario A at x1, x2 respectively. Then λr
(1)
A +(1−λ)r

(2)
A

is a feasible solution for the scenario A minimization problem at point x, and has value

λfA(x1) + (1− λ)fA(x2). Therefore fA(x) ≤ λfA(x1) + (1− λ)fA(x2).
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3.3 Solving the Convex Program: Algorithm Overview

We now leverage the fact that the objective function of (SSC-P2) is convex to adapt

a technique from convex optimization, namely the ellipsoid method, and show that

one can find a near-optimal solution to (SSC-P2) in polynomial time. In doing so,

a significant difficulty that we need to overcome however, is the fact that evaluating

f(x), and hence the objective function, may in general be #P-hard. Section 3.5 gen-

eralizes the arguments to show that the algorithm can be applied to a more general

class of 2-stage stochastic programs.

The ellipsoid method starts by containing the feasible region within a ball and

generates a sequence of ellipsoids, each of successively smaller volume. In each itera-

tion, one examines the center of the current ellipsoid and obtains a specific half-space

defined by a hyperplane passing through the current ellipsoid center. If the current

ellipsoid center is infeasible, then one uses a violated inequality as the hyperplane,

otherwise, one uses an objective function cut, to eliminate (some or all) feasible points

whose objective function value is no better than the current center, and thus make

progress. A new ellipsoid is then generated by finding the minimum-volume ellipsoid

containing the half-ellipsoid obtained by the intersection of the current one with this

half-space. Continuing in this way, using the fact that the volume of the successive

ellipsoids decreases by a significant factor, one can show that after a certain number

of iterations, the feasible point generated with the best objective function value is a

near-optimal solution.

The above description makes clear that the inability to evaluate f(x) is an obstacle

to applying the ellipsoid method in this case. Let P = P0 denote the polytope{
x ∈ Rm : 0 ≤ xS ≤ 1 for all S

}
, and let h(x) be the (convex) objective function

wI · x + f(x). If one finds that the current iterate xi is feasible, that one could add

the constraint h(x) ≤ h(xi) while maintaining the convexity of the feasible region1.

But then, in subsequent iterations, one would need to check if the current iterate is

1Note that if h(x) were a linear function of x, i.e., h(x) = c · x, then this is precisely an objective
function cut, c · x ≤ c · xi.
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feasible, and generate a separating hyperplane if not. Without the ability to evaluate

(or even estimate) the objective function value, we cannot even decide whether the

current point is feasible (or even almost-feasible), and finding a separating hyperplane

appears to pose a formidable difficulty. An alternative possibility is to use cuts

generated by a subgradient, which essentially plays the role of the gradient when the

function is not differentiable.

Definition 3.3.1 Let g : Rm 7→ R be a function. We say that d is a subgradient of g

at the point u if the inequality g(v)− g(u) ≥ d · (v − u) holds for every v ∈ Rm.

Note that the subgradient at a given point need not be unique. It is known

(see [14]) that if a function is convex then it has a subgradient at every point. If di

is the subgradient at point xi, one can add the subgradient cut di · (x − xi) ≤ 0 and

proceed with the (smaller) polytope Pi+1 = Pi∩{x : di · (x−xi) ≤ 0}. Unfortunately,

even computing the subgradient at a point x seems hard to do in polynomial time for

the objective functions that arise in stochastic programs. To circumvent this obstacle,

we define the following notion of an approximate subgradient which is crucial to the

working of our algorithm.

Definition 3.3.2 We say that d̂ is a (ω,D)-approximate subgradient (or simply a

(ω,D)-subgradient) of a function g : Rm 7→ R at the point u ∈ D if for every v ∈ D,

we have g(v)− g(u) ≥ d̂ · (v − u)− ωg(u).

We will only use (ω,P)-approximate subgradients in the algorithm, which we ab-

breviate and denote as ω-subgradients from now on. We show that one can compute,

with high probability, a ω-subgradient of h(.) at any point x, by sampling from the

black box on scenarios. Since we approximate the subgradient at x and not the func-

tion value f(x), the running time of our algorithm does not depend on the maximum

value of the function fA(x) over scenarios A and (feasible) points x, in contrast to [23].

Instead, as we show later, the variation in the subgradient vector components is more

controlled and depends only the maximum ratio of the stage II and stage I costs, and

consequently our running time depends only on this ratio.
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At a feasible point xi, we compute a ω-subgradient d̂i and add the inequality

d̂i · (x − xi) ≤ 0 to chop off a region of Pi and get the polytope Pi+1. Since we use

an approximate subgradient to generate the cut, we might be discarding points from

Pi with objective value better than the current function value h(xi). But for each

point y in Pi+1 \Pi, we can show that h(y) ≥ (1−ω)h(xi), so the function value at a

discarded point is not much better off than the current function value. Continuing this

way we obtain a polynomial number of points x0, x1, . . . , xk such that xi ∈ Pi ⊆ Pi−1

for each i, and the volume of the ellipsoid centered at xk containing Pk (and hence of

Pk) is “small” (we will make this precise later). Now if the function h(.) has bounded

variation on nearby points, then one can show that mini h(xi) is close to the optimal

value h(x∗) with high probability.

Yet another difficulty remains however. Since we cannot compute h(x) we will not

be able to determine the iterate xi with the best objective function value. Nonetheless,

here again we exploit approximate subgradient information to compute a point x̄ in

the convex hull of x0, . . . , xk, at which the objective function function value is close to

mini h(xi) (without, however, computing these values). At the heart of this procedure

is a subroutine that given two points y1, y2, returns a point y on the line segment

joining y1 and y2 such that h(y) is close to min(h(y1), h(y2)). We find such a point

y by performing a bisection search, using the subgradient to infer which direction

to move along the line segment joining y1 and y2. By repeatedly calling the above

subroutine with x̄ (initialized to x0) and xi for i = 1, . . . , k and each time updating x̄

to the point returned by the subroutine, at the end we get a point x̄ such that h(x̄)

is close to mini h(xi).

3.4 Algorithm Details

Let OPT = min{h(x) : x ∈ P} denote the optimal solution value. We describe the

algorithm for an arbitrary convex function h(x) and an arbitrary (rational) polytope

P (so the feasible region is bounded). We use ‖u‖ to denote the `2 norm of u, i.e.,(∑m
i=1 u2

i

) 1
2 . The following definition makes precise the notion of bounded variation.
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Definition 3.4.1 (Lipschitz Condition) Given a function g : Rm 7→ R, we say

that g has Lipschitz constant (at most) K if |g(v)−g(u)| ≤ K‖v−u‖ for all u, v ∈ Rm.

Let the objective function h : Rm 7→ R have Lipschitz constant K. We assume

that x ≥ 000 is a defining inequality of P . Let B(000, R) = {x : ‖x‖ ≤ R} be a

ball containing the polytope P . Such an R is easy to obtain: in all the stochastic

optimization problems we will consider, one can put a trivial upper bound x ≤ U

(we also have x ≥ 000) on the stage I decision vector x and can therefore set R = ‖U‖

(it suffices to show that x∗ ≤ U where x∗ is an optimal solution, since one can then

optimize over the polytope P ′ = P ∩ {x : x ≤ U}). Otherwise, we can set R = 24m2L

where L is the maximum row size of the constraint matrix defining the polytope P

(see [27], Lemmas 6.2.4, 6.2.5). For simplicity we assume that P is full-dimensional

and therefore contains a ball of radius at least r ≥ 2−7m3L ([27], Lemma 6.2.6).

Again, this is true for all the problems considered and one can get much better lower

bounds on r. Moreover, one can always perturb the polytope slightly to make it

full-dimensional, and hence this assumption is not really required. Set V = min(1, r).

For ease of understanding, we divide the algorithm description and its analysis into

two parts. The bulk of the work is performed by procedure FindOpt. FindOpt takes two

parameters γ and ε and returns a feasible solution x̄ such that h(x̄) ≤ OPT/(1−γ)+ε,

where γ ≤ 1
2

without loss of generality, in time polynomial in the dimension m, and

ln
(

KRm
V ε

)
assuming that one can compute ω-subgradients for a sufficiently small ω.

This is the main procedure that uses the ellipsoid method and the notion of ω-

subgradients to get close to an optimal solution as discussed earlier. We describe

this procedure in Section 3.4.1 and prove the above guarantee on the quality of the

solution returned and the running time.

By our earlier discussion, one can always choose R and V so that ln
(

R
V

)
is poly-

nomial in the input size. In Section 3.4.2 we show that for the stochastic set cover

problem given by the formulation (SSC-P2), one can compute ω-subgradients (with a

sufficiently high probability), and can set the parameter K, so that the entire proce-

dure runs in polynomial time, and delivers a solution of cost at most OPT/(1−γ)+ ε
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with high probability. To convert this to a purely multiplicative guarantee we use

a procedure ConvOpt to bootstrap algorithm FindOpt. In procedure ConvOpt we first

sample a certain number of times from the distribution on scenarios, and use the

samples to determine with high probability that either, x = 000 is an optimal solution

and return this solution, or obtain a lower bound on OPT and then call FindOpt,

with an appropriate setting of the parameters γ and ε. Wrapping FindOpt within this

initial sampling procedure allows us to assume that FindOpt executes only if OPT is

“large,” and therefore set γ and ε so that FindOpt returns a solution of cost at most

(1 + κ) · OPT . We describe this procedure ConvOpt in Section 3.4.2, and prove that

it returns a (1 + κ)-optimal solution with high probability.

In Section 3.5 we generalize the arguments of Section 3.4.2 to show that ω-

subgradients can be computed for a large class of 2-stage stochastic programs, and

therefore, procedures FindOpt and ConvOpt can be used to find a (1 + κ)-optimal

solution.

3.4.1 The Generic Algorithm using ω-Subgradients

We now describe algorithm FindOpt. The algorithm without procedure FindMin is

an adaptation of ellipsoid-based algorithms for convex optimization that have been

studied in the mathematical programming literature. Procedure FindMin is responsible

for finding a feasible point of cost comparable to mini h(xi) using ω-subgradients.

FindOpt(γ, ε)

[Returns a point x̄ such that h(x̄) ≤ OPT/(1− γ) + ε. Assume γ ≤ 1
2
.]

O1. Set k ← 0, y0 ← 000, N ← 2m2 ln
(

16KR2

V ε

)
, n ← N log

(
8NKR

ε

)
, and ω ← γ/2n.

Let E0 ← B(000, R) and P0 ← P.

O2. For i = 0, . . . , N do the following.

[We maintain the invariant that Ei is an ellipsoid centered at yi containing the

current polytope Pk.]

a) If yi ∈ Pk, set xk ← yi. Let d̂k be a ω-subgradient of h(.) at xk. Let H
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denote the half space {x ∈ Rm : d̂k · (x − xk) ≤ 0}. Set Pk+1 ← Pk ∩ H

and k ← k + 1.

b) If yi /∈ Pk, let a · x ≤ b be a violated inequality, that is, a · yi > b, whereas

a ·x ≤ b for all x ∈ Pk. Let H be the half space {x ∈ Rm : a · (x−yi) ≤ 0}.

c) Set Ei+1 to be the ellipsoid of minimum volume containing the half-ellipsoid

Ei ∩H.

O3. Let k ← k − 1. We now have a collection of points x0, . . . , xk such that each

xl ∈ Pl ⊆ Pl−1. Return FindMin(ω; x0, . . . , xk).

Clearly we maintain the invariant stated in the algorithm. Before describing

procedure FindMin we show that mink
i=0 h(xi) is close to OPT . We will need the

following well-known facts (see for example [27]).

Fact 3.4.2 The volume of the ball B(u, D) = {x ∈ Rm : ‖x − u‖ ≤ D} where

u ∈ Rm, D ≥ 0 is DmVm where Vm is the volume of the unit ball B(000, 1) in Rm.

Fact 3.4.3 Let E ⊆ Rm be an ellipsoid and H ⊆ Rm be a half space passing through

the center of E. Then there is a unique ellipsoid E ′ of minimum volume containing

the half-ellipsoid E ∩H and volE′

volE
≤ e−1/(2m).

Fact 3.4.4 Let T : Rm 7→ Rm be an affine transformation with T (x) = Qx+ t, where

det Q 6= 0. Then for any set S ⊆ Rm we have vol(T (S)) = | det Q|vol(S).

Lemma 3.4.5 The points x0, . . . , xk generated by FindOpt satisfy mink
i=0 h(xi) ≤(

OPT + ε
4

)
/(1− ω).

Proof : Let x∗ be an optimal solution. If d̂l · (x∗ − xl) ≥ 0 for some l, then h(xl) ≤

h(x∗)/(1− ω) since d̂l is a ω-subgradient at xl. Otherwise let r = ε
8KR

. Consider the

affine transformation T defined by T (x) = rIm(x− x∗) + x∗ = rx + (1− r)x∗ where

Im is the m × m identity matrix, and let W = T (P), so W is a shrunken version

of P “centered” around x∗. Observe the following facts: (1) W ⊆ P because P is

convex, and any point y = T (x) ∈ W is a convex combination of x ∈ P and x∗ ∈ P ,
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so y ∈ P ; (2) vol(W ) = rmvol(P) ≥ (rV )mvol(B(000, 1)) using Facts 3.4.4 and 3.4.3

and since P contains a ball of radius V by assumption; and (3) for any y = Tx ∈ W ,

‖y − x∗‖ = r‖x− x∗‖ ≤ ε
4K

since x, x∗ ∈ B(000, R), so h(y) ≤ h(x∗) + ε
4

since h(.) has

Lipschitz constant K. Since vol(Ei+1)
vol(Ei)

≤ e−1/(2m) for every i, and the volume of the

ball E0 = B(000, R) is Rmvol
(
B(000, 1)

)
, plugging things together we obtain

vol(Pk) ≤ vol(EN) ≤ e−N/(2m) vol(E0) =
(

rV
2

)m

vol(B(000, 1)) < vol(W ),

so there must be a point y ∈ W that lies on a boundary of Pk generated by a

hyperplane d̂l · (x − xl) = 0. This implies that h(xl) ≤ h(y)/(1 − ω) ≤
(
h(x∗) +

ε
4

)
/(1− ω).

FindMin(ω; x0, . . . , xk)

M1. Set ρ← ε/4k, x̄← x0, N ′ ← log
(

8kKR
ε

)
.

M2. For i = 1, . . . , k do the following.

[We maintain the invariant that h(x̄) ≤
(
mini−1

l=0 h(xl)+(i−1)ρ
)
/(1−ω)(i−1)N ′

.]

a) We use binary search to find y on the x̄− xi line segment with value close

to min(h(x̄), h(xi)). Initialize y1 ← x̄, y2 ← xi.

b) For j = 1, . . . , N ′ do the following.

[We maintain that h(y1) ≤ h(x̄)/(1− ω)j−1, h(y2) ≤ h(xi)/(1− ω)j−1.]

– Let y ← y1+y2

2
. Compute a ω-subgradient d̂ of h at the point y. If

d̂ ·(y1−y2) = 0, then exit the loop. Otherwise exactly one of d̂ ·(y1−y)

and d̂ · (y2 − y) is positive.

– If d̂ · (y1 − y) > 0, set y1 ← y, else set y2 ← y.

c) Set x̄← y.

M3. Return x̄.

Lemma 3.4.6 Procedure FindMin returns a point x̄ such that h(x̄) ≤
(
mink

i=0 h(xi)+

ε
4

)
/(1− ω)kN ′

.
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Proof : The proof follows from the invariant stated in step M2 with i = k + 1, so

we show the invariant. The invariant clearly holds when i = 1. Suppose the invariant

holds at the beginning of iteration i. If we show that the inner “For j=. . . ” loop

returns a point y such that h(y) ≤ min(h(x̄), h(xi))/(1− ω)N ′
+ ρ, then after we set

x̄ ← y in step M2c) at the end of iteration i, we get that h(x̄) ≤ (mini
l=0 h(xl) +

iρ)/(1− ω)iN ′
, so the invariant is satisfied at the beginning of iteration i + 1.

To prove the claim about the inner loop, first notice that if at any point we have

d̂ · (y1− y2) = 0, then since y1, y2 and y all lie on the x̄−xi line segment, we also have

d̂·(x̄−y) = d̂·(xi−y) = 0. This implies that h(y) ≤ min(h(x̄), h(xi))/(1−ω) and in this

case the claim holds. So assume that this is not the case. We will show by induction

that h(y1) ≤ h(x̄)/(1 − ω)j−1 and h(y2) ≤ h(xi)/(1 − ω)j−1 at the start of the jth

iteration of the inner loop. This is true at the beginning of the inner loop when j = 1.

Suppose that this is true for iterations 1, . . . , j−1. So we have, h(y1) ≤ h(x̄)/(1−ω)j−2

and h(y2) ≤ h(xi)/(1−ω)j−2 at the start of the (j− 1)th iteration. In iteration j− 1,

we set y = y1+y2

2
and either d̂ · (y1 − y) > 0 or d̂ · (y2 − y) > 0. In the former case,

we have h(y) ≤ h(y1)/(1 − ω) ≤ h(x̄)/(1 − ω)j−1 and we update y1 ← y; similarly,

in the latter case we have h(y) ≤ h(xi)/(1 − ω)j−1 and we update y2 ← y. So

in either case, at the beginning of the jth iteration we maintain the invariant that

h(y1) ≤ h(x̄)/(1−ω)j−1 and h(y2) ≤ h(xi)/(1−ω)j−1, and by induction the invariant

holds through all iterations. After iteration N ′ finishes, we have ‖y−y1‖, ‖y−y2‖ both

at most ‖x̄−xi‖
2N′ ≤ ρ/K, since x̄ and xi both lie in P ⊆ B(000, R) and hence ‖x̄−xi‖ ≤ 2R,

which implies that h(y) ≤ min(h(y1), h(y2)) + ρ ≤ min(h(x̄), h(xi))/(1 − ω)N ′
+ ρ.

This proves the claim about the inner loop on j, and hence the lemma.

Theorem 3.4.7 Algorithm FindOpt returns a feasible point x̄ satisfying h(x̄) ≤ OPT/(1−

γ)+ε in time poly
(
m, ln(KRm

V ε
)
)
·T (ω), where T (ω) denotes the time taken to compute

an ω-subgradient and ω = Θ
(
γ/ poly(m, ln(KRm

V ε
))

)
.

Proof : By Lemmas 3.4.5 and 3.4.6, we get that h(x̄) ≤
(
OPT + ε

2

)
/(1− ω)kN ′+1.

Since kN ′ ≤ N log
(

8NKR
ε

)
= n and ω = γ/2n, we have (1− ω)kN ′+1 ≥ (1− ω)n+1 ≥
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(1− γ) ≥ 1
2

(since we assumed γ ≤ 1
2
) which proves the performance guarantee, and

shows that ω = Θ
(
γ/ poly(m, ln(KRm

V ε
))

)
. The running time is O

(
(N +n)T (ω)

)
which

is O
(
T (ω) ·m2 ln2(KRm

V ε
)
)
.

3.4.2 Computing ω-Subgradients and Fixing Parameters

We now focus on the stochastic set cover problem given by the formulation (SSC-P2)

and show that the FindOpt can be used to obtain a (1 + κ)-optimal solution. Define

λ = max
(
1, maxS

wII
S

wI
S

)
. The procedure for computing ω-subgradients and its analysis

proceeds as follows. In Lemma 3.4.8 we show that to compute a ω-subgradient of

h(.) at any point x, it suffices to find a vector d̂ that component-wise approximates

a subgradient at x to within a certain additive accuracy. Next, in Lemma 3.4.9

we show that at any point x, there is a “nice” subgradient d with components

dS ∈ [−wII
S , wI

S]. This will give us a bound on the Lipschitz constant K, and will

show that since the components dS lie in a range bounded multiplicatively by λ,

poly
(
m, λ, 1

ω

)
samples suffice to compute an estimate d̂ that component-wise ap-

proximates the subgradient d to within the desired accuracy with high probability,

and thus obtain a ω-subgradient with high probability (Corollary 3.4.12). Using

this procedure to compute ω-subgradients in procedure FindOpt, and by setting a

small enough error probability in the ω-subgradient computations, one obtains a

point x̄, such that, h(x̄) ≤ OPT/(1 − γ) + ε with probability at least 1 − δ in time

poly
(
input size, λ, 1

γ
, ln(1

δ
)
)
. This is shown in Lemma 3.4.13.

Lastly, we describe procedure ConvOpt where we sample initially to determine a

lower bound on OPT before calling FindOpt. We show (Lemma 3.4.14) that the sam-

pling in ConvOpt (correctly) determines, with probability at least 1−δ, either that x =

000 is an optimal solution, or that OPT ≥ %/λ for a suitable %. Thus by setting γ and ε

appropriately (in the call to FindOpt), we get that ConvOpt finds a solution x̄ of most

(1+κ)·OPT with probability at least 1−2δ in time poly
(
input size, λ, 1

κ
, ln(1

δ
)
)
. The-

orem 3.4.15 puts together these various components and proves the above statement.

Recall that the objective function is h(x) = wI ·x+f(x) where f(x) =
∑

A⊆U pAfA(x),
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and

fA(x) = min
{∑

S

wII
S rA,S :

∑
S:e∈S

rA,S ≥ 1−
∑

S:e∈S

xS ∀e ∈ A; rA,S ≥ 0 ∀S
}

.

By taking the dual, we can write fA(x) = max
{∑

e(1 −
∑

S:e∈S xS)zA,e : zA ∈ QA

}
where QA is the polytope{

ze :
∑
e∈S

ze ≤ wII
S for all S; ze = 0 for all e /∈ A; ze ≥ 0 for all e

}
.

The dual should only have variables zA,e for e ∈ A, however it is convenient to write

it in this equivalent form.

Lemma 3.4.8 Let d be a subgradient of h(.) at the point x ∈ P, and suppose d̂ is a

vector such that dS − ωwI
S ≤ d̂S ≤ dS for all S. Then d̂ is a ω-subgradient of h(.) at

x.

Proof : Let y be any point in P . Since the polytope P has x ≥ 000 as a defining

constraint, it follows that xS, yS ≥ 0 for all S. We have h(y) − h(x) ≥ d · (y − x) =

d̂ · (y− x) + (d− d̂) · (y− x), so we need to lower bound the second term by −ωh(x).

Since dS − d̂S ≥ 0 and yS ≥ 0 for every S, (d − d̂) · (y − x) ≥ −(d − d̂) · x. Now

dS − d̂S ≤ ωwI
S and xS ≥ 0 for every S, so −(d − d̂) · x ≥ −

∑
S ωwI

SxS ≥ −ωh(x)

(since f(x) ≥ 0 always). So (d− d̂) · (y − x) ≥ −ωh(x), completing the proof.

Lemma 3.4.9 Consider any point x ∈ Rm, and let z∗A be an optimal dual solution

for the scenario A minimization problem with x as the stage I decision vector. The

vector d with components dS = wI
S −

∑
A pA

∑
e∈S z∗A,e is a subgradient at x, and

‖d‖ ≤ λ‖wI‖.

Proof : Let y be any point in Rm. We have to show that h(y)− h(x) ≥ d · (y − x).

We know that fA(x) =
∑

e(1 −
∑

S:e∈S xS)z∗A,e for every scenario A. Also, since

z∗A ∈ QA, at point y,we have fA(y) ≥
∑

e(1−
∑

S:e∈S yS)z∗A,e for every scenario A. So

h(y) ≥ wI
S · y +

∑
A⊆U pA

(∑
e(1−

∑
S:e∈S yS)z∗A,e

)
. The last term can be rewritten as∑

A⊆U,e

pAz∗A,e −
∑
A⊆U

pA

∑
e

∑
S:e∈S

ySz∗A,e =
∑

A⊆U,e

pAz∗A,e −
∑
A⊆U

pA

∑
S

yS

(∑
e∈S

z∗A,e

)
,
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therefore we get that h(y) ≥
∑

S yS

(
wI

S −
∑

A⊆U pA

∑
e∈S z∗A,e

)
+

∑
A⊆U,e pAz∗A,e. We

can express h(x) in a similar way with an equality instead of the inequality, replacing

yS with xS. Subtracting the two terms, we get that h(y) − h(x) ≥
∑

S(yS − xS)dS

where dS = wI
S −

∑
A⊆U pA

∑
e∈S z∗A,e. To bound ‖d‖, since z∗A,e ≥ 0 for all A, e,

we have dS ≤ wI
S. Also, observe that wI

S − wII
S ≤ dS, since

∑
e∈S z∗A,e ≤ wII

S for

every scenario A, and
∑

A⊆U pA = 1, because some scenario has to materialize (recall

that we include the empty set also as a scenario). Therefore |dS| ≤ λwI
S, and hence

‖d‖ ≤ λ‖wI‖.

Claim 3.4.10 Suppose ‖d(x)‖ ≤ K for every x, where d(x) is a subgradient of h(.)

at point x. Then h(.) has Lipschitz constant (at most) K.

Proof : Consider any two points u, v ∈ Rm and let d, d′ denote the subgradients at

u, v respectively, with ‖d‖, ‖d′‖ ≤ K. We have

h(v)− h(u) ≥ d · (v − u) ≥ −‖d‖ ‖v − u‖ ≥ −K‖v − u‖,

and similarly h(u)− h(v) ≥ −‖d′‖ ‖u− v‖ ≥ −K‖u− v‖.

Claim 3.4.10 and Lemma 3.4.9 show that we can set the Lipschitz constant K

to λ‖wI‖. Note that ln K is polynomially bounded. Observe also, that although we

have already argued that ln
(

R
V

)
is polynomially bounded, for the stochastic set cover

problem, since the polytope P is just the unit cube, we can set R =
√

m and V = 0.5,

and get a much improved bound. We next state a sampling lemma that we will use

to show that at any point x, we can compute a ω-subgradient of h(.) with probability

at least 1− δ, using O
(

λ2

ω2 ln(m
δ
)
)

samples.

Lemma 3.4.11 Let X ∈ [−a, b] be a random variable, a, b > 0, computed by sampling

from a probability distribution π. Let µ = E
[
X

]
and α = max(1, a/b). Then for any

c > 0, by taking 100α2

3c2
ln

(
1
δ

)
independent samples from π, one can compute an estimate

Y such that µ− 2c · b ≤ Y ≤ µ with probability at least 1− δ.



58

Proof : Let q = max(a, b). The variance of X is σ2 = E
[
X2

]
− µ2 ≤ q2. We

divide the samples into s1 = 20
3

ln
(

1
δ

)
groups, each group containing s2 = 5α2/c2

samples. Let Xij be the value of X computed from the jth sample of group i, i =

1, . . . , s1, j = 1, . . . , s2. Let Yi be the average of the Xij values. We set Y =

median(Y1, . . . , Ys1) − c · b. The variables Xij are iid with mean µ and variance σ2.

So we have E
[
Yi

]
= µ and Var

[
Yi

]
= σ2/s2. By Chebyshev’s inequality, we get

Pr[|Yi − µ| > c · b] ≤ σ2

s2(cb)2
≤ α2

s2c2
≤ 1

5
. Let Zi = 1 if |Yi − µ| > c · b, and 0 otherwise,

and Z =
∑s1

i=1 Zi. Then E
[
Z

]
≤ s1/5 and the variables Zi are independent. If Y > µ

or Y < µ − 2c · b, then at least s1/2 variables Zi must be set to 1. Therefore by

Chernoff bounds we have Pr
[
Y /∈ [µ− 2c · b, µ]

]
≤ exp(−3s1

20
) ≤ δ.

Corollary 3.4.12 At any point x ∈ P, one can compute a ω-subgradient with proba-

bility at least 1−δ using at most 400λ2

3ω2 ln
(

m
δ

)
independent samples from the probability

distribution on scenarios.

Proof : The proof is an easy corollary of Lemmas 3.4.9, 3.4.8 and 3.4.11. We

use the sampling process described in Lemma 3.4.11. Each time we sample and

get a scenario A, we compute the quantities XS = wI
S −

∑
e∈S z∗A,e where z∗A is an

optimal dual solution for scenario A, with x as the first-stage vector. The proof now

follows from Lemma 3.4.9, Lemma 3.4.11 with error probability δ/m and c = ω/2,

and Lemma 3.4.8. Observe that if dS = E
[
XS

]
then dS = wI

S −
∑

A pA

∑
e∈S z∗A,e,

so the vector d with components dS is a subgradient at x by Lemma 3.4.9. Since

XS ∈ [−wII
S , wI

S] for each S, using Lemma 3.4.11 with error probability δ/m and

c = ω/2, we can estimate the expectation E
[
XS

]
= dS by d̂S using the claimed

number of samples, so that for each S individually, we have dS − ωwI
S ≤ d̂S ≤ dS

with probability at least 1− δ/m. So the error probability over all sets S is at most

δ, that is, Pr[∀S, dS −ωwI
S ≤ d̂S ≤ dS] ≥ 1− δ. So if d̂ = {d̂S} is the resulting vector

of estimates then by Lemma 3.4.8 d̂ is a ω-subgradient at x with probability at least

1− δ.

We can plug in the time required to compute a ω-subgradient (with a sufficiently
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small error probability) in Theorem 3.4.7 to get the following.

Lemma 3.4.13 Using the above procedure for computing ω-subgradients, algorithm

FindOpt finds a feasible solution x̄ such that h(x̄) ≤ OPT/(1− γ) + ε with probability

at least 1− δ in time poly
(
input size, 1

γ
, ln(1

ε
), ln(1

δ
)
)
.

Proof : Theorem 3.4.7 gives the performance guarantee and accounts for the time

taken excluding the time taken to compute ω-subgradients. We need to show that with

high probability every vector the algorithm computes is a ω-subgradient for ω = γ/2n

where n = N log
(

8NKR
ε

)
, N = 2m2 ln

(
16KR2

V ε

)
. The total number of times we need to

compute a ω-subgradient is at most N +n. Setting the error probability to δ/(N +n),

and ω = γ/2n in Corollary 3.4.12, we get that O
(

λ2n2

γ2 ln(m(N+n)
δ

)
)

samples suffice to

ensure that each individual vector computed is a ω-subgradient with probability at

least 1−1/((N +n)δ). So the overall error probability over all ω-subgradient compu-

tations is at most δ. The time taken is O
(
(N +n)(time to compute a ω-subgradient)

)
which is O

(
n3λ2(ln N + ln(1

δ
))/γ2

)
, hence polynomial in the input size, 1

γ
, ln

(
1
ε

)
and

ln
(

1
δ

)
.

Now we describe procedure ConvOpt that bootstraps FindOpt, and summarize the

entire algorithm below.

ConvOpt(κ, δ)

[Returns x̄ such that h(x̄) ≤ (1 + κ) ·OPT with high probability. Assume δ ≤ 1
2
.]

C1. Sample M = λ ln
(

1
δ

)
times from the distribution on scenarios. Let X denote

the number of times that a non-null scenario occurs.

C2. If X = 0, return x = 000 as an optimal solution.

C3. Otherwise (with probability at least 1− δ), OPT ≥ %/λ, where % = δ
ln(1/δ)

. Set

ε = κ%/(2λ), γ = κ/3. Return FindOpt (γ,ε).

We make the very mild assumption that in a non-null scenario, the cost of any

solution is at least 1, that is, wI · x + fA(x) ≥ 1, at any point x, for every scenario

A 6= ∅. Note that with integer costs, this is simply saying that in any non-null
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scenario, we incur a non-zero total cost. (The constant 1 may be replaced by any

constant c by adjusting the number of samples required by ConvOpt accordingly.)

Lemma 3.4.14 By drawing M = λ ln
(

1
δ

)
samples, with probability at least 1 − δ,

ConvOpt (correctly) determines that OPT ≥ %/λ where % = δ
ln(1/δ)

, or that x = 000 is

an optimal solution.

Proof : Note that % ≤ 1 since δ ≤ 1
2
. Since in every non-null scenario, we incur a

cost of at least 1, OPT ≥ q, where q =
∑

A⊆U,A 6=∅ pA is the probability of occurrence

of a non-null scenario. Let r = Pr[X = 0] = (1−q)M . So r ≤ e−qM and r ≥ 1−qM . If

q ≥ ln
(

1
δ

)
/M , then Pr[X = 0] ≤ δ. So with probability at least 1− δ we will say that

OPT ≥ %/λ which is true since OPT ≥ q ≥ 1
λ
. If q ≤ δ/M , then Pr[X = 0] ≥ 1− δ.

We return x = 000 as an optimal solution with probability at least 1−δ which is indeed

an optimal solution, because q ≤ 1
λ

implies that it is always at least as good to defer

to stage II since the expected stage II cost of a set S is at most q · wII
S ≤ wI

S. If

δ/M < q < ln
(

1
δ

)
/M , then we always return a correct answer since it is both true

that x = 000 is an optimal solution, and that OPT ≥ q ≥ %/λ.

Combining Lemma 3.4.13 and Lemma 3.4.14 gives the following theorem.

Theorem 3.4.15 Procedure ConvOpt computes a feasible solution to (SSC-P2) of cost

at most (1 + κ) ·OPT with probability at least 1− 2δ in time polynomial in the input

size, 1
κ
, and ln

(
1
δ

)
.

Proof : By Lemma 3.4.14, we know that if ConvOpt calls FindOpt then, with

probability at least 1 − δ, we have OPT ≥ %/λ where % = δ
ln(1/δ)

. The performance

guarantee and the time bound now follow from Lemma 3.4.13. Since FindOpt may err

with probability at most δ, the net error probability is at most 2δ.
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3.5 A General Class of Solvable Stochastic Programs

We show that algorithm ConvOpt can be used to solve the following broad class of

2-stage stochastic programs.

min wI · x + f(x) subject to x ≥ 000, x ∈ P ⊆ Rm, (Stoc-P)

where f(x) =
∑
A∈A

pAfA(x), and (3)

fA(x) = min wA · rA + qA · sA

s.t. BAsA ≥ hA (4)

DAsA + TArA ≥ jA − TAx (5)

rA, sA ≥ 0, rA ∈ Rm, sA ∈ Rn.

Here A denotes the set of all possible scenarios, and P is the feasible region polytope.

We require that (a) TA ≥ 000 for every scenario A, and (b) at every feasible point

x ∈ P , f(x) ≥ 0 and that the primal and dual problems corresponding to fA(x) are

feasible. A sufficient condition for (b) is to insist that 0 ≤ fA(x) < +∞ at every

point x ∈ P and scenario A ∈ A.

Remark 3.5.1 We can relax condition (a) somewhat and solve a more general class

of programs, for example, programs with upper bounds on the second-stage decisions

rA under certain conditions (where the matrix TA has negative entries). Such upper

bounds are useful in problems with capacity constraints, such as the stochastic multi-

commodity flow problem considered in [69] for which the resulting 2-stage stochastic

program can be solved using algorithm ConvOpt. The class of programs captured by

formulation (Stoc-P) suffices for the applications considered in this thesis.

The essential property of this class of programs is that in any scenario A, the

same matrix TA acts upon both the recourse vector rA and the stage I vector x,

implying that the stage I actions and the stage II actions play the same role. All

of the stochastic optimization problems we will consider can be expressed as convex
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programs in the above form, and as we argue below, one can therefore obtain a near-

optimal fractional solution for each of these problems in polynomial time. Observe

that this class of stochastic programs is rich enough to model stochastic problems

where the stage II recourse costs may depend on the scenario that materializes. For

example in the stochastic set cover problem, this means that we could have stage

II costs wA
S depending on the scenario A. To prevent an exponential blowup in

the input, we consider an oracle model where an oracle supplied with scenario A

reveals the scenario-dependent data
(
wA, qA, hA, jA, BA, DA, TA

)
; procedure ConvOpt

will only need to query this oracle a polynomial number of times.

Let h(.) denote the objective function. First we state the basic fact that the

objective function of (Stoc-P) is convex. The proof of this is very similar to the proof

of Lemma 3.2.1.

Lemma 3.5.2 The objective function of (Stoc-P) is convex.

Define λ = max
(
1, maxA∈A,S

wA
S

wI
S

)
. We assume that the algorithm knows the value

of λ. To extend the analysis in Section 3.4.2 and argue that one can compute a

near-optimal solution using procedure ConvOpt, we need to show the following three

things: (1) one can compute a ω-subgradient in polynomial time, (2) the Lipschitz

constant K can be set so that ln K is polynomially bounded, and (3) one can detect

with high probability that OPT is large. The third requirement is easily handled by

Lemma 3.4.14. Under the mild assumption that every “non-null” scenario A ∈ A

incurs a cost of at least 1, Lemma 3.4.14 holds, and shows that by sampling λ ln
(

1
δ

)
times one can determine with high probability, that either OPT ≥ δ

ln(1/δ)λ
, or that

x = 000 is an optimal solution. So we may assume as before that if FindOpt gets called,

then OPT ≥ δ
ln(1/δ)λ

with probability at least 1− δ.

The fact that one can compute ω-subgradients efficiently, and the bound on the

Lipschitz constant, will both follow from an argument along the same lines as that in

Section 3.4.2. We show that at any point, there is a subgradient with a nice structure,

which will give a bound on the Lipschitz constant, and show that by approximating
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this subgradient component-wise, one can obtain a ω-subgradient. The following

lemma shows that there is a subgradient whose components lie in a range bounded

multiplicatively by λ. Combined with Lemma 3.4.11, this will allow us to compute

an ω-subgradient with high probability by repeated sampling.

Lemma 3.5.3 Consider any point x ∈ Rm, and let (u∗A, z∗A) be an optimal dual solu-

tion for scenario A with x as the stage I decision vector, where z∗A is the dual multiplier

corresponding to inequalities (5). Then, (i) the vector d = wI −
∑

A pA(TA)Tz∗A is a

subgradient at x, (ii) ‖d‖ ≤ λ‖wI‖ and (iii) if d̂ is a vector such that d−ωwI ≤ d̂ ≤ d,

then d̂ is a ω-subgradient at x.

Proof : By taking the dual, we can write fA(x) = hA · u∗A + (jA − TAx) · z∗A. For

any other point y, (u∗A, z∗A) is a feasible dual solution for scenario A, given the stage

I decision vector y. So fA(y) ≥ hA · u∗A + (jA − TAy) · z∗A and we have

h(y) ≥ wI · y +
∑

A

pA(hA · u∗A + jA · z∗A − yT(TA)Tz∗A). (6)

As yT(TA)Tz∗A is a scalar, we can replace it by its transpose
(
(TA)Tz∗A

)T
y =

(
(TA)Tz∗A

)
·

y. Substituting this in (6) and combining the terms with y, we get that h(y) ≥

(wI −
∑

A pA(TA)Tz∗A) · y +
∑

A pA(hA · u∗A + jA · z∗A). We can write a similar ex-

pression for h(x) with equality instead of the inequality. Subtracting, we get that

h(y) − h(x) ≥ d · (y − x) where d = wI −
∑

A pA(TA)Tz∗A. This shows that d is a

subgradient at x.

For every scenario A ∈ A we have z∗A ≥ 000, so d ≤ wI since TA ≥ 000. Observe

that the dual of the scenario A (primal) optimization problem has the constraint

(TA)TzA ≤ wA. Since z∗A is a feasible dual solution, we have (TA)Tz∗A ≤ wA ≤ λwI,

and since
∑

A pA = 1, this shows that, d ≥ wI−λwI. So we get that ‖d‖ ≤ λ‖wI‖. Now

by Claim 3.4.10 (which holds regardless of the function h(.)), one can set K = λ‖wI‖,

so that ln K is polynomially bounded.

Finally to show part (iii), we proceed exactly as in Lemma 3.4.8. h(y) − h(x) ≥
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d · (y − x) = d̂ · (y − x) + (d− d̂) · (y − x). Since x, y ≥ 000, we have

(d− d̂) · (y − x) ≥ −(d− d̂) · x ≥ −ωwI · x ≥ −ωh(x),

where the last inequality follows since f(x) ≥ 0.

So as before, using Lemma 3.4.11, one can compute a ω-subgradient at any

point x using O
(

λ2

ω2 ln(m
δ
)
)

samples. Putting the various components together, as

in Lemma 3.4.13 and Theorem 3.4.15, we get the following theorem.

Theorem 3.5.4 Procedure ConvOpt can be used to obtain a feasible solution to (Stoc-P)

of objective function value at most (1 + κ) · OPT with probability at least 1 − 2δ, in

time polynomial in the input size, 1
κ
, and ln

(
1
δ

)
.

3.5.1 2-Stage Programs with a Continuous Distribution

We now consider the class of 2-stage programs specified by (Stoc-P) where the sec-

ond stage “scenario” is specified by a parameter ξ that is continuously distributed

with probability density function p(ξ). So the objective function is h(x) = wI ·

x + Eξ

[
f(x, ξ)

]
, where Eξ

[
f(x, ξ)

]
=

∫
p(ξ)f(x, ξ) dξ and f(x, ξ) is the cost of sce-

nario ξ as determined by the minimization problem in (Stoc-P) with parameters(
w(ξ), q(ξ), h(ξ), j(ξ), B(ξ), D(ξ), T (ξ)

)
. As before we assume that at every feasible

point x and scenario ξ, (a) T (ξ) ≥ 000, (b)
∫

p(ξ)f(x, ξ) dξ ≥ 0, and that the primal

and dual problems corresponding to f(x, ξ) are feasible.

We can show that procedure ConvOpt can be used to obtain a (1 + κ)-optimal

solution to this class of 2-stage programs with continuously distributed second-stage

parameters. As argued previously, this will follow if we can show that one can compute

ω-subgradients in polynomial time, bound the Lipschitz constant K suitably, and

obtain a lower bound on OPT . Define λ = max
(
1, supξ,S

w(ξ)S

wI
S

)
. Again, we assume

that the algorithm knows the value of λ. The statement and proof of Lemma 3.5.3

extend easily to the continuous setting by substituting each occurrence of
∑

A pA(. . .)

by
∫

dξ p(ξ)(. . .). So at any point x, if
(
u∗(ξ), z∗(ξ)

)
is an optimal solution for the dual
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problem corresponding to f(x, ξ) with z∗(ξ) being the dual multipliers for inequalities

(5), then d = wI −
∫

dξ p(ξ)T (ξ)Tz∗(ξ) is a subgradient at x.

Parts (ii) and (iii) of Lemma 3.5.3 hold as is, and one thus obtains a bound on the

Lipschitz constant, and the fact that ω-subgradients can be computed by sampling.

Finally, under the assumption that wI · x + f(x, ξ) ≥ 1 for every (x, ξ), we can detect

that OPT is large using Lemma 3.4.14.

Theorem 3.5.5 Procedure ConvOpt can compute a feasible solution to (Stoc-P) with

a continuous distribution, of value at most (1 + κ) ·OPT in polynomial time.

3.6 A Lower Bound on the Number of Samples Required

Notice that the running time of the algorithm (as also that of Gupta et al. [35]) de-

pends on the parameter λ, the maximum ratio between the costs in the two stages.

We argue that in the black box model, this dependence on λ is unavoidable; we will

show that a performance guarantee of c for our discrete applications requires Ω(λ/c)

samples. In contrast, in [69] it is shown that if one is given a slightly more powerful

black box and a limited amount of information about the probability distribution,

then this dependence can be avoided for a subclass of the stochastic programs dis-

cussed in Section 3.5 that includes stochastic covering problems such as the stochastic

set cover problem.

The lower bound is attained on a rather simple instance of SSC with a single set

and a single element, which is perhaps suggestive of the inherent hardness of stochastic

combinatorial optimization problems. A variety of combinatorial optimization prob-

lems can be viewed as set covering problems, perhaps with additional constraints,

and the lower bound also holds for these problems. The SSC instance has universe

U = {e} and just one set S = U , where wI
S = 1, wII

S = λ. Let p denote the probability

that scenario {e} occurs (which is unknown by the algorithm that samples from the

distribution on scenarios). The only decision here is whether to buy set S in stage I or

to defer buying the set to stage II. We formalize the computation of an algorithm on
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this instance as follows. Let AN denote an algorithm that draws exactly N samples.

Algorithm AN does the following: it draws N samples, computes the number of times

that scenario {e} occurs (which is a random variable), and depending on this value

decides either to pick set S in stage I or wait until stage II. Let O∗ denote the value

of the integer optimum solution.

Theorem 3.6.1 If AN returns a solution of cost at most c · O∗ with probability at

least 1 − δ where 1 ≤ c < λ
2
, then it must be that N ≥

(
λ ln(1

δ
− 1)

)
/2c. The bound

holds even if AN returns only a fractional solution of cost at most c · O∗.

Proof : Let X be a random variable that denotes the number of times scenario {e}

occurs in the N samples. If X = 0, then AN must choose to defer to stage II, that

is return the integer solution x = 0, with probability at least 1 − δ (the algorithm

may flip a coin to decide). Otherwise, with p = 0, and hence, O∗ = 0, AN will

pick (a non-zero fraction of) set S in stage I with probability at least δ, and thus

incur a non-zero cost, that is, a cost greater than c · O∗ with probability at least

δ. Choose any ε > 0 such that c ≤ λ/
(
2(1 + ε)

)
and consider any ε′ > 0 where

ε′ ≤ ε. Set p = (1 + ε′)c/λ ≤ 1
2

and define N0(ε
′) =

(
λ ln(1

δ
− 1)

)
/
(
2(1 + ε′)c

)
. Let

r = Pr[X = 0] = (1 − p)N > e−2pN (since p ≤ 1
2
). The optimal solution is to pick S

in stage I, and incur a cost of 1. But if N < N0(ε
′), then r > e−2pN0(ε′) = δ

1−δ
, so with

probability at least (1−δ)r > δ, AN will choose the solution x = 0 and incur a cost of

(1 + ε′)c > c · O∗. Therefore for AN to satisfy the required performance guarantee we

must have N ≥ N0(ε
′) for every ε′ ∈ (0, ε] which implies that N ≥

(
λ ln(1

δ
− 1)

)
/2c.

Corollary 3.6.2 If algorithm AN returns a (fractional) solution of expected cost at

most c · O∗ where 1 ≤ c < λ
6
, then it must be that N ≥ (λ ln 2)/6c.

Proof : By Markov’s inequality, AN returns a solution of cost at most 3c · O∗ with

probability at least 2
3
. The claim now follows from Theorem 3.6.1.
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Stochastic and Deterministic

Applications
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Chapter 4

Stochastic Uncapacitated Facility

Location

4.1 Introduction

This chapter focuses on the 2-stage stochastic uncapacitated facility location (SUFL)

problem and gives a constant-factor approximation algorithm for this problem.

In the deterministic uncapacitated facility location (UFL) problem, one assumes

that the client demands and their locations are precisely known in advance, and

we want to choose a subset of the locations at which to open facilities and assign

clients to facilities, so as to minimize the sum of the facility opening costs and the

client assignment costs. In many settings, some of the data, such as the demand or

location of clients, may be uncertain or inexactly specified. For example, there may be

several macro-economic factors influencing demand, such as the state of the economy,

competition, technology, customer purchasing power etc., all of which may lead to

uncertainty in the demand. But while one might not have exact information, one may

still have some distributional information, such as the probability distribution on the

demands of the clients (in addition to deterministic data for facility and assignment

costs), on which to base initial (first-stage) decisions regarding which facilities to open.

Once the actual input (the client demands) is realized according to the distribution,
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one has the opportunity to extend (in the second stage) the initial solution, incurring

a certain recourse cost, where the recourse costs could depend on the scenario that

materializes, and are usually greater than the original costs.

This motivates the 2-stage stochastic uncapacitated facility location problem: one

may choose some facilities to open initially given only distributional information about

the demand that needs to be served; then once we get to know the actual demands,

one may choose to open some additional facilities, and the cost incurred in opening a

facility in the second stage might be different, and higher, than the initial (first-stage)

opening cost of the facility. For example, consider a classical UFL application, where

facilities are warehouses that need to be set up to serve retail stores or customers.

The demand from the customers might not be exactly known, but one may estimate

from market surveys or simulation models, the likelihood of demands turning up, and

may choose to set up some warehouses initially in anticipation of the demand. Once

we know the actual demands, we have the option of setting up more warehouses (or

raising inventory levels), but setting up a warehouse (or raising inventory levels) at the

last minute to take care of excess demand might involve deploying various resources

with a much smaller turnaround or lead time, and would thus incur a higher cost.

Formally, in the 2-stage stochastic uncapacitated facility location (SUFL) prob-

lem, we are given a set of facilities F , a set of clients D, and a probability distribution

over the demands of the clients, i.e., we have a probability distribution on tuples

(d1, . . . , d|D|) where dj ∈ {0, 1, . . . , D}, and D is some known upper bound on the

demand. We can open some facilities in stage I, incurring a cost of f I
i for opening

facility i, then the actual scenario A with demands dA
j is revealed, and we may choose

to open some more facilities in stage II, paying fA
i for each facility i that we open.

The stage II cost incurred for scenario A is the total cost of opening the additional

facilities in that scenario and the cost of assigning the clients (with non-zero demand)

to open facilities. The aim is to minimize the total expected cost, that is, the sum of

the stage I cost and the expected stage II cost, where the expectation is taken over

all scenarios A according to the scenario distribution.
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4.1.1 Summary of Results

We give a (3.378 + ε)-approximation algorithm for SUFL, where ε can be made ar-

bitrarily small, whose running time is polynomial in the size of the input and in 1
ε
.

This result holds without any restrictions on the first- and second-stage facility costs,

and in the black-box model, that is, where one can merely sample scenarios according

to the distribution on scenarios, but no direct information about the distributions is

given.

There are two principal components that lead to this result. First, we formulate

the stochastic problem as a compact convex programming problem (SUFL-P) that

belongs to the class of stochastic programs discussed in Section 3.5, and therefore by

Theorem 3.5.4, one can obtain a near optimal solution in polynomial time. Next, we

show that, given an algorithm for deterministic UFL with certain properties, one can

round this fractional solution and thus decide which facilities to open in stage I, losing

only a small factor in the cost. We use the primal-rounding algorithm described in

Section 2.4 to get a (3.378 + ε)-approximation algorithm. This also proves a bound

on the integrality gap of the convex programming formulation, i.e., the ratio between

the optimal integer and fractional solution values. We show that this bound can be

improved to 3.04 (by an existence argument that does not yield a 3.04-approximation

algorithm).

We show that the rounding procedure can be adapted to yield approximation

algorithms for the stochastic versions of some other facility location problems as well.

In Section 4.4 we consider a stochastic version of the uncapacitated facility location

problem with penalties, where one has the option of not satisfying the demand of a

client in a scenario by incurring a certain penalty (which may be scenario-dependent).

Building upon the earlier result, we obtain a (4.378 + ε)-approximation algorithm for

this problem. In a subsequent chapter, we use a variant of the rounding method

to give an approximation algorithm for the stochastic facility location problem with

service installation costs (Section 5.6).
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4.1.2 Related Work

The 2-stage stochastic uncapacitated facility location problem falls into the 2-stage

stochastic optimization with recourse model discussed in Chapter 3. The textbook of

Birge and Louveaux [13] deals extensively with models and algorithms for this class

of location problems. Although stochastic optimization problems, and in particular,

2-stage problems with recourse, have been well studied, it is only recently that they

have been considered from the perspective of designing approximation algorithms

with provable worst-case guarantees. Stougie & van der Vlerk [72], in their survey

on approximations for stochastic integer programming that focuses mostly on 2-stage

stochastic programs, mention the work of Dye, Stougie & Tomasgard [22] on a resource

provisioning problem as the first example (and the only known example at the time of

writing of that survey) of worst-case analysis of approximation algorithms for discrete

2-stage stochastic problems with recourse. The computer science community has

very recently become interested in approximation algorithms for 2-stage stochastic

problems. We mention briefly the models that have been considered, all of which

entail restricting either the class of probability distributions, or the costs incurred in

the two stages, and then talk about specific results that have been obtained in these

models.

As discussed in Section 3.1.2, three ways of specifying the probability distribution

on scenarios have been considered: (1) the polynomial-scenario model, where one

assumes that there are only a polynomial number of scenarios that occur with posi-

tive probability, and these are explicitly enumerated; (2) the independent-activation

model, where each element (client) is activated independently with a certain (known)

probability; and (3) the black-box model, where nothing is assumed of the probabil-

ity distribution other than the ability to draw independent samples from it. Some of

the previous work has focused on the proportional-costs model, where one imposes

the rather severe restriction that the weights in the two stages are proportional. For

example, in SUFL, this implies, that the cost of any facility i in every scenario A is

λ · f I
i for some parameter λ.
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Ravi and Sinha [61] consider SUFL in the polynomial-scenario model and give an

LP rounding based 8-approximation algorithm, that can handle scenario-dependent

facility opening and client assignment costs, where the assignment cost in scenario

A is cA
ij = γAcij for all i, j. Their rounding algorithm needs to know the optimal

fractional solution for each stage II scenario which renders it unsuitable when there

are exponentially many scenarios. In contrast our rounding scheme generates an

integer solution, that is, decides which facilities to open in stage I, using only the

stage I fractional solution. Thus, in conjunction with the algorithm in Section 3.4 that

returns a near-optimal (stage I) solution to a fractional relaxation of the problem, this

yields a polynomial time algorithm for SUFL. In the black-box model, Gupta et al. [35]

gave an 8.45-approximation algorithm under the proportional-costs assumption, i.e.,

fA
i = λf I

i for each i ∈ F and each scenario A. They also gave an improved algorithm

with a performance guarantee of 6 when they focused on the independent-activation

model. Previously these were the best known guarantees; no approximation algorithm

was known for SUFL in the black-box model and with arbitrary, scenario-dependent

costs.

We also briefly sketch some related work on approximation algorithms design for

a few other combinatorial optimization problems in the 2-stage stochastic framework

(with restrictions on the probability distribution or on the costs). The approximation

result of [22] is obtained in the polynomial-scenario model. Ravi & Sinha [61] consider

stochastic versions of some other problems such as vertex cover, set cover, and Steiner

tree, in the polynomial-scenario model. Independently, Immorlica, Karger, Minkoff,

and Mirrokni [39] considered some of these problems, in both the polynomial-scenario

model, and also in the independent-activation model introduced by them, but here

they restrict attention to the proportional-costs setting. Gupta et al. [35] also rely

on the proportional-costs assumption, but do not make any assumptions about the

distribution; that is, they consider problems in the black-box model and give approx-

imation algorithms for the stochastic versions of the vertex cover, Steiner tree and

uncapacitated facility location problems.
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The results in this chapter are from Shmoys & Swamy [69] who present the first

approximation algorithms for some of the above problems, and others, in the black-

box model with no restrictions on the costs, and gives a general technique for lifting

guarantees that can be proved in the deterministic case to the stochastic setting.

Among the problems considered are stochastic versions of set cover, vertex cover,

facility location and some variants of it, multicommodity flow, and the multicut

problem on trees.

4.2 The 2-Stage Stochastic Program

One can consider the following convex programming relaxation for SUFL. We use i

to index the facilities in F and j to index the clients in D. Let A denote the set of all

possible scenarios. Throughout we will use A to index the scenarios, and pA (which

could be 0) to denote the probability of scenario A.

min
∑

i

f I
i yi+ g(y) subject to 0 ≤ yi ≤ 1 for all i, (SUFL-P)

where g(y) =
∑
A∈A

pAgA(y),

and gA(y) = min
∑

i

fA
i yA,i +

∑
j

dA
j

∑
i

cijxA,ij

s.t.
∑

i

xA,ij ≥ 1 for all j such that dA
j > 0,

xA,ij ≤ yi + yA,i for all i, j,

xA,ij, yA,i ≥ 0 for all i, j.

Here yi indicates if facility i is opened in stage I and yA,i indicates if facility i is

opened in scenario A in stage II. The variables xA,ij are the usual assignment variables

indicating whether client j is assigned to facility i in scenario A. The minimization

problem for a scenario A determines the cost, gA(y), incurred for scenario A and

has constraints that enforce that each client j with positive demand dA
j has to be

assigned to a facility that is opened either in stage I or in scenario A. The term g(y)

is therefore the expected second-stage cost. Observe that (SUFL-P) lies in the class
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of 2-stage stochastic programs handled by Theorem 3.5.4, and therefore one can use

the algorithm described in Section 3.4 to obtain a solution y of cost at most (1 + ε)

times the optimal in time polynomial in the size of the input and 1
ε
.

4.3 The Main Theorem

We prove the following theorem in this section. Let ρUFL denote the integrality gap

of UFL which is at most 1.52 [56].

Theorem 4.3.1 There is a (3.378 + ε)-approximation algorithm for SUFL based on

rounding a (near-)optimal solution to (SUFL-P). Moreover, the integrality gap of

(SUFL-P) is at most 2ρUFL ≈ 3.04. These results hold even when the second-stage

assignment costs cij are scenario-dependent with cA
ij = σAcij.

4.3.1 The 2-Stage Stochastic Set Cover Problem Revisited

Before we proceed to prove Theorem 4.3.1, we explain the basic rounding idea by

considering the 2-stage stochastic set cover problem (SSC) and its formulation given

by (SSC-P2) in Section 3.2. Recall that in this problem, we are given a universe of

elements U = {e1, . . . , en}, a collection of subsets S1, . . . , Sm ⊆ U , and a probability

distribution over subsets of U that determines which subset of elements has to be

covered. We want to decide which sets to select in stage I so as to minimize the cost

of picking sets in stage I and the expected cost of choosing sets in a stage II scenario.

Each set has an a priori weight wI
S and an a posteriori weight wA

S that may depend

on the scenario A that materializes. Formulation (SSC-P2) seeks to

minimize
∑

S

wI
SxS +

∑
A⊆U

pAfA(x) subject to 0 ≤ xS ≤ 1 for all S,

where fA(x) is given by

fA(x) = min
{∑

S

wA
S rA,S :

∑
S:e∈S

rA,S ≥ 1−
∑

S:e∈S

xS ∀e ∈ A; rA,S ≥ 0 ∀S
}

.
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The following theorem forms the basis of our methodology for tackling various

2-stage stochastic optimization problems. Let OPTDet denote the optimal value of

the LP relaxation (SC-P) for the deterministic set cover problem (Section 3.2), and

OPT denote the optimal value of (SSC-P2).

Theorem 4.3.2 Suppose that we have a procedure that for every instance of the

deterministic set cover problem, produces a solution of cost at most ρ ·OPTDet . Then,

one can convert any (fractional) solution x to (SSC-P2) to an integer solution losing

a factor of at most 2ρ. Thus, a (1+ ε)-optimal solution to (SSC-P2) gives a (2ρ+ ε)-

approximation algorithm.

Proof : Let rA denote an optimal solution to the scenario A minimization problem

given the first stage vector x, so fA(x) =
∑

S wA
S rA,S. Let h(.) denote the objective

function. We will argue that one can obtain an integer solution x̃, that is, the sets to

pick in stage I, of cost no more than 2ρ · h(x). Observe the following simple fact: an

element e is either covered to an extent of at least 1
2

in the first stage by the variables

xS, or it is covered to an extent of at least 1
2

by the variables rA,S in every scenario A

containing e. Let E = {e :
∑

S xS ≥ 1
2
}. Then (2x) is a fractional set cover solution

for the instance with universe E and so, using the ρ-approximation algorithm, one

can obtain an integer set cover x̃ for this instance of cost at most ρ ·
∑

S 2wI
SxS.

Similarly for any scenario A, (2rA) is a fractional set cover for the elements in A \E,

since for each such element e we have
∑

S:e∈S rA,S ≥ 1
2
. Therefore one can cover these

elements by a set cover of cost at most ρ ·
∑

S 2wA
S rA,S. So if we output x̃ as the first

stage decisions, we incur a net cost of at most 2ρ · h(x).

The proof shows that one can use the fractional solution to “decouple” the two

stages (and indeed each of the scenarios for the second stage), and apply the deter-

ministic result to each separately. Thus, the fact that we lose a factor of 2 (off of

the deterministic guarantee) is exactly tied into the fact that we are considering a

2-stage problem. A similar decomposition can be applied to a number of other dis-

crete stochastic optimization problems, as we show in Section 4.3.2 and in Section 5.6.
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Furthermore, if we consider the case in which there are only a polynomial number

of scenarios, then this rounding approach yields strong performance guarantees for a

wide range of applications.

4.3.2 Proof of Theorem 4.3.1

For notational simplicity, we shall assume that the demands dA
j in any scenario A are

either 0 or 1, that is, a scenario A is now just a subset of the clients D that need to

be assigned to facilities, and one can write a more compact formulation that only has

variables xA,ij and constraints corresponding to clients j in A. The analysis extends

in a straightforward way to the setting where we have arbitrary demands.

We first show that the integrality gap of (SUFL-P) is at most 2ρUFL. The proof is

similar to the proof of Theorem 4.3.2. Let y be an optimal solution to (SUFL-P) and

(xA, yA) be the optimal solution for scenario A given the first-stage decision vector y.

Let OPT be the optimal solution value. We will show that we can decouple the first-

stage and second-stage decisions, so that one can get an integer solution by separately

solving a UFL problem for stage I and a UFL problem for each stage II scenario. Fix

a scenario A and a client j ∈ A. We write xA,ij = xI
A,ij + xII

A,ij where xI
A,ij ≤ yi and

xII
A,ij ≤ yA,i. Since xA,ij ≤ yi+yA,i we can always split xA,ij in the above way. Observe

that j must be assigned to an extent of at least 1
2

either by the assignment {xI
A,ij} or

by the assignment {xII
A,ij}, that is either

∑
i x

I
A,ij ≥ 1

2
or

∑
i x

II
A,ij ≥ 1

2
. In the former

case, we will assign j to a facility opened in stage I, and in the latter case we will

assign j to a facility opened in stage II.

More precisely, for any client j, consider the set of scenarios Sj = {A ⊆ D :∑
i x

I
A,ij ≥ 1

2
}. For our stage I decisions, we shall construct a feasible fractional

solution for a UFL instance in which the facility costs are f I
i , the assignment costs are

cij, and each client j has a demand equal to
∑

A∈Sj
pA; we then round this fractional

solution to an integer solution using known algorithms for UFL.

In fact, we first construct a feasible solution in which there is a client (j, A) for

each scenario A ∈ Sj, with demand pA, and then coalesce these scenario-dependent
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clients into one. Consider (j, A) such that A ∈ Sj. We can obtain a feasible solu-

tion by setting x̂A,ij = min
(
1, 2xI

A,ij

)
and ŷi = min

(
1, 2yi

)
for each i ∈ F . (Note

that a client may be assigned to an extent greater than 1.) However, the frac-

tional facility variables do not depend on the scenario and given the fractional fa-

cility variables, we can re-optimize the fractional assignment for each client j: sort

the facilities i in non-decreasing order of the assignment cost cij, and reset x̂A,ij

to ŷi until the total assignment made is equal to 1 (where for the last facility i′

to which j is assigned, we set x̂A,i′j to the value needed to make the total as-

signment exactly 1). But this new fractional assignment is completely determined

by the ŷi values and does not depend on A, and so we can now view all of these

clients (j, A) as one client j with demand
∑

A∈Sj
pA. The facility cost of this frac-

tional solution is 2
∑

i f
I
i yi, and the assignment cost is no more than the one for the

scenario-dependent clients, 2
∑

i,j

∑
A∈Sj

pAcijx
I
A,ij ≤ 2

∑
i,j

∑
A∈Sj

pAcijxA,ij. Using

the fact that the integrality gap of UFL is ρUFL, given this UFL instance with a

fractional solution (x̂, ŷ), we can now obtain an integer solution (x̃, ỹ) of cost at most

2ρUFL

(∑
i f

I
i yi +

∑
i,j

∑
A∈Sj

pAcijxA,ij

)
; this determines the set of facilities to open

in stage I, and for each client j takes care of the scenarios in Sj.

In any scenario A, each client j ∈ A such that A ∈ Sj is assigned to the stage I

facility given by the assignment x̃. To assign the remaining clients, we solve a UFL

instance with client set {j ∈ A : A /∈ Sj}. Since A /∈ Sj, we have that
∑

i x
II
A,ij ≥ 1

2
,

and hence if we reset x̂A,ij = min
(
1, 2xII

A,ij

)
, ŷA,i = min

(
1, 2yA,i

)
for each i ∈ F , we get

a feasible solution for this set of clients. Again, we can get an integer solution of cost

at most 2ρUFL

(∑
i f

A
i yA,i +

∑
i,j∈A:A/∈Sj

cijxA,ij

)
. This solution tells us which facilities

to open in scenario A and how to assign the clients j in A with A /∈ Sj. Hence, the

overall cost of the solution with first-stage facilities ỹ is at most 2ρUFL ·OPT , which

implies that the integrality gap is at most 2ρUFL.

To obtain the approximation algorithm, we first obtain a near-optimal solution

y in polynomial time. The difficulty in converting the proof of the integrality gap

into a rounding algorithm is that the algorithm that shows that ρUFL ≤ 1.52 due
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to [56] requires knowledge of the client demands, whereas we do not know the demand∑
A∈Sj

pA of a client j, and might not be able to even estimate it by sampling, since

the probability pA could be extremely small. We therefore need an approximation

algorithm for UFL that works without explicit knowledge of the client demands. The

primal-rounding algorithm described in Section 2.4 has this property; the algorithm

converts any fractional solution to an integer solution increasing the cost by a factor

of at most 1.858 (with γ = 1/1.858).

We use this algorithm to obtain the approximation algorithm. We modify the

definition of Sj slightly, so as to balance the contribution from stages I and II. Let

θ = 1.858
1.858+1.52

. Let Sj = {A ⊆ D :
∑

i x
I
A,ij ≥ θ}. So now we have a fractional

solution in which we set ŷi = min(1, yi/θ), and using the re-optimization procedure

described earlier, we can find the optimal fractional assignment x̂ corresponding to

the ŷi values. We round this using the algorithm of Section 2.4 to get a solution

(x̃, ỹ) of cost at most 1.858
θ
·
(∑

i f
I
i yi +

∑
i,j

∑
A∈Sj

pAcijxA,ij

)
. This determines the

facilities to open in stage I. In any scenario A, each client j ∈ A such that A ∈ Sj

is taken care of by a stage I facility. Next, we determine which facilities to open in

scenario A and how to assign the remaining clients in A by constructing a feasible

fractional solution for a deterministic subproblem with client set {j ∈ A : A /∈ Sj}

and “rounding” this solution. We set ŷA,i = min
(
1, yA,i/(1 − θ)

)
and for each client

j ∈ A such that A /∈ Sj, set x̂A,ij = min
(
1, xII

A,ij/(1 − θ)
)
. We “round” this solution

using the algorithm of Mahdian et al. [56] (which is not an LP rounding algorithm)

since the issue of the demands does not apply to this stage, to get an integer solution

of cost at most 1.52
1−θ
·
(∑

i f
A
i yA,i +

∑
i,j∈A:A/∈Sj

cijxA,ij

)
. So the total cost incurred if

we open the facilities given by ỹ in stage I is at most 3.378 ·OPT .

Remark 4.3.3 The only change with arbitrary demands dA
j , and/or scenario-dependent

assignment costs cA
ij = γAcij, is that in the feasible fractional solution we exhibit

to bound the cost of the stage I decisions, each client j now has demand equal to∑
A∈Sj

pAdA
j γA, and in the fractional solution constructed for a stage II scenario A,

each client j ∈ A such that A /∈ Sj has demand dA
j γA.
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Remark 4.3.4 It is possible to prove an integrality gap of at most 3 by adapting

the primal-dual algorithm of Jain & Vazirani (Section 2.2). But this requires explicit

knowledge of the probability of every scenario pA, and it seems difficult to convert

the proof to obtain a polynomial-time algorithm.

4.4 An Extension

We consider an extension of SUFL where in any scenario, there is an option of not sat-

isfying the demand of a client by incurring a certain penalty (which may be scenario-

dependent). The deterministic version of this problem where the demands are known

in advance was introduced by Charikar, Khuller, Mount & Narsimhan [17] under the

name of facility location with penalties. A rounding approach similar to the above

procedure yields a (4.378 + ε)-approximation algorithm for this problem.

Let `A
j ≥ 0 denote the penalty incurred for not assigning client j in a scenario

A. It is reasonable to assume that if client j has zero demand to be assigned in a

scenario, then one does not incur any penalty for not assigning (the zero demand

of) the client, i.e., if dA
j = 0 then `A

j = 0. The relaxation of this problem has extra

variables vA,j that indicate whether we incur the penalty for client j in scenario A.

The minimization problem for scenario A is now given by

gA(y) = min
∑

i

fA
i yA,i +

∑
j

dA
j

∑
i

cijxA,ij +
∑

j

`A
j vA,j

s.t.
∑

i

xA,ij + vA,j ≥ 1 for all j, (1)

xA,ij ≤ yi + yA,i for all i, j,

xA,ij, vA,j, yA,i ≥ 0 for all i, j.

Constraint (1) says that we either assign a client to a facility, or we incur the

penalty for that client. The resulting stochastic program can be solved to obtain a

(1 + ε)-optimal solution using the algorithm of Section 3. For simplicity we again

focus on the case where the demands dA
j are 0-1 values.
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We first show that the integrality gap of the formulation is at most 2ρUFL + 1.

Let y be an optimal solution. The rounding procedure is very similar to the earlier

rounding procedure. Let (xA, yA, vA) denote the optimal solution for scenario A given

the first stage vector y. We again write xA,ij = xI
A,ij + xII

A,ij where xI
A,ij ≤ yi and

xII
A,ij ≤ yA,i. Let θ = ρUFL

2ρUFL+1
. Note that either

∑
i x

I
A,ij ≥ θ or

∑
i x

II
A,ij ≥ θ or

vA,j ≥ 1
2ρUFL+1

. Define Sj = {A ⊆ D :
∑

i x
I
A,ij ≥ θ}. To decide which facilities to

open in stage I, we consider a UFL instance where client j has demand
∑

A∈Sj
pA and

a feasible fractional solution (x̂, ŷ) for this instance, where ŷi = min(1, yi/θ), and x̂ij is

set so as to re-optimize the fractional assignment for client j given this setting of the

ŷi variables. We round this solution to get an integer solution (x̃, ỹ) of cost at most

ρUFL

θ
·
(∑

i f
I
i yi +

∑
i,j

∑
A∈Sj

pAcijxA,ij

)
; this determines the set of facilities to open

in stage I. In any scenario A, each client j ∈ A such that A ∈ Sj is assigned to the

stage I facility given by the assignment x̃. For each remaining client j ∈ A, we have

either
∑

i x
II
A,ij ≥ θ or vA,j ≥ 1

2ρUFL+1
. In the latter case, we simply incur the penalty

for j. So the total penalty incurred is bounded by (2ρUFL + 1)
∑

j∈A:A/∈Sj
vA,j`

A
j . To

assign the remaining clients, we solve a UFL instance with client set DA = {j ∈ A :

A /∈ Sj, vA,j < 1
2ρUFL+1

}. If we set x̂A,ij = min(1, xII
A,ij/θ) and ŷA,i = min(1, yA,i/θ)

for each i ∈ F , we get a feasible fractional solution for this UFL instance. So we

can get an integer solution of cost at most ρUFL

θ
·
(∑

i f
A
i yA,i +

∑
i,j∈A:A/∈Sj

cijxA,ij

)
.

This solution tells us which facilities to open in scenario A and how to assign the

clients in DA. The overall cost of the solution with first-stage facilities ỹ is at most

(2ρUFL + 1) ·OPT , showing that the integrality gap is at most 2ρUFL + 1.

To get an approximation algorithm, we obtain a
(
1 + ε

5

)
-optimal solution y, and

then round the solution. In the rounding procedure, as we did earlier, we use the

primal-rounding algorithm from Section 2.4 to determine the first stage facilities. We

now set θ = 1.858
1.858+1.52+1

. The set Sj consists of scenarios {A ⊆ D :
∑

i x
I
A,ij ≥ θ}.

The stage I facilities ỹ are determined by using the primal-rounding algorithm which

rounds a fractional solution increasing the cost by a factor of at most 1.858. In a

stage II scenario A, we incur the penalty for a client j ∈ A such that A /∈ Sj, if
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vA,j ≥ 1
1.858+1.52+1

. For the remaining clients in A we solve a UFL instance as above.

Doing the routine calculations, we get that the cost of the solution with first-stage

facilities ỹ is at most (4.378 + ε) ·OPT .

Theorem 4.4.1 There is a (4.378+ε)-approximation algorithm for SUFL with penal-

ties.



Chapter 5

Facility Location with Service

Installation Costs

5.1 Introduction

Consider a classical application of the uncapacitated facility location problem (UFL),

the warehouse or plant location problem, where facilities are warehouses and the

clients are retail stores or customers that request different types of items. Typically

in UFL, it is assumed that a client may be assigned to any facility; translated to

the warehouse location problem, this means that any warehouse may service any

customer. However, this is usually not true; a warehouse might only have supplies of

specific items, and hence, to satisfy a customer we need to assign it to a warehouse that

holds inventory of the item requested by the customer. To model such settings where

clients request specific services and have to be assigned to facilities that can provide

the requested services, we introduce the facility location with service installation costs

(FLSIC) problem.

In addition to a set of facilities F , and a set of clients or demands D, we also have

a set of services S. Each client j in D requests a specific service g(j) ∈ S. To satisfy

client j we have to assign it to an open facility on which service g(j) is installed.

Further, if we install service l at an open facility i, we incur a service installation cost

82



83

of f l
i . This is in addition to the usual facility cost fi that we incur to open facility i.

We want to open a set of facilities, install services at the open facilities, and assign

each client j to an open facility i such that service g(j) is installed at i. The cost of

a solution is the sum of the facility opening costs, the service installation costs and

the client assignment costs, and the goal is to find a solution with minimum total

cost. This problem is a generalization of UFL, since with just one service type the

problem reduces to UFL. In the warehouse location problem, the service installation

cost corresponds to the initial cost of setting up the warehouse to store the particular

kind of inventory. The notion of service-dependent fixed costs is also used in inventory

problems where there is a joint setup cost to start a new order and an item-dependent

fixed cost to order a specific item, so that one needs to coordinate the placement of

item orders; see [4] for a survey.

This problem can also be used to model a caching application. We are given a

network of locations. The facilities correspond to caches that may be built at certain

locations, and the clients are processes sitting at nodes of the network requesting data

items. Each process requests a specific data item and must be assigned to a cache

that stores the requested data item. A data item can therefore be viewed as a service.

The cost of accessing the item is proportional to the distance between the process site

and the cache location. There is a (location-dependent) cost associated with building

a cache and a (location- and item-dependent) cost for storing a data item in a cache

at a particular location. The goal is to decide where to locate caches and the set of

data items to store in each cache, and assign each process to a cache containing its

requested data item, so as to minimize the total cost. Observe that this is precisely

the facility location problem with service installation costs.

5.1.1 Summary of Results

The main result of this chapter is a primal-dual 6-approximation algorithm for the

problem under the assumption that the facilities can be sorted so that if i comes

before i′ in the ordering, then the cost of installing any service at i is no more than
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the cost of installing that service at i′, i.e., for every service type l, f l
i ≤ f l

i′ . This

is reasonable in many settings; for example, one might expect the inventory setup

cost of a warehouse in New York city to be less than the inventory setup cost in a

remote town like Ithaca, regardless of the kind of inventory. As special cases, this

includes the cases where the service installation cost f l
i depends only on the location

i, or only on the service type l. For this latter special case, we give an LP rounding

algorithm that attains a much improved approximation ratio of 2.391. The algorithm

combines both clustered randomized rounding [18] and the filtering based technique

of [54, 71]. It uses the bounds obtained by complementary slackness and filtering

in conjunction to bound the assignment cost, and thus get a better performance

guarantee than that obtained by using either of the two approaches separately. With

arbitrary service installation costs, we show that the problem becomes as hard as the

set-cover problem.

In Section 5.6 we consider a stochastic version of the problem that fits in the

2-stage recourse model discussed in Chapters 3 and 4, and devise an approximation

algorithm for this problem when the service installation cost depends only on the

service type (but could vary across the different scenarios).

Building upon these results, in Chapter 7 we consider the k-median version of the

problem where we require that at most k facilities be opened. We use our primal-dual

algorithm to give a constant-factor approximation for this problem when the service

installation cost depends only on the service type. This algorithm is presented in

Section 7.5.

5.1.2 Related Work

The work that is most closely related to our problem is a paper by Baev & Rajara-

man [8] which looks at a variant of the caching application above, called the data

placement problem. Here caches have a fixed capacity and are already built at cer-

tain locations. The goal is to find a placement of data items to caches that respects

the cache capacities and minimizes the sum of the access costs and the cost of storing
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data items. Baev & Rajaraman gave a 20.5-approximation algorithm and the ratio

has been recently improved to 10 [74]. Ravi & Sinha [63] consider a similar model

under the name of multicommodity facility location, where they model the service

installation cost at facility i by an arbitrary set function si : S 7→ R+, and require

that the function value be explicitly given for each subset of services making the in-

put exponentially large. Since this problem contains, as a special case, FLSIC with

arbitrary service installation costs (where the input can be concisely specified), it is

set-cover hard, and [63] complements this with a O(log |S|)-approximation algorithm.

Also related is work on a class of inventory problems called joint replenishment prob-

lems (see [4] for a survey). In the basic setting, there is a time line and demands for

items specified at various points of time, and one has to determine the times at which

to place orders and decide which items to order at these times, so that all demand

can be met by orders that are placed at earlier points of time. Placing an order for

a subset of items incurs both an item-dependent fixed cost, and a joint ordering cost

to start a new order that is independent of the items ordered, and there is a cost

incurred to hold inventory for demands that may occur later. This is an instance

of FLSIC where the candidate facility locations are points on the time line and the

services correspond to items. The holding cost can be charged against the demand

for which the inventory is held, and translates into a client assignment cost. This

problem deals with an asymmetric metric (the directed line metric), however it is

also more specialized than FLSIC in that it considers one specific metric, and this

additional structure was exploited in [53] to give a 2-approximation algorithm for this

problem recently.

5.2 Hardness with Arbitrary Service Installation Costs

We show that FLSIC with arbitrary service installation costs is at least as hard as the

set cover problem. Intuitively, the reason is that, by making the service installation

cost f l
i = ∞ (i.e., a suitably high value), we can encode the constraint that a client

j requesting service l cannot be assigned to i.
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In the set cover problem we have a ground set of elements U = {e1, e2, . . . en}, and

a collection of subsets of U , S1, . . . Sm, and we want to choose as few sets as possible

so that every element ej is included in some chosen set (a minimum set cover). Given

such an instance, we create the following instance of our problem: the sets correspond

to facilities and the elements becomes the clients. All the facilities and clients are

co-located at the same point, that is, cij = 0 for all i, j (or very small, say ε). Each

client ej requests a distinct service j. The facility opening costs are all set to 1, and

the service installation cost f l
i is 0 if element el ∈ Si and ∞ otherwise. Now we have

the following correspondence: a set cover of size k yields an FLSIC solution of cost

k and vice versa, hence the problem is set-cover hard. Combined with the result of

Raz & Safra [64], this shows there is some absolute constant c < 1, such that for

any ε > 0, no polynomial time algorithm with a ratio of (c − ε) ln |D| exists for this

problem in the general case unless P=NP, while the result of Feige [25] shows that

there is no polynomial-time algorithm for this problem with a ratio of (1 − ε) ln |D|

unless NP ⊆ DTIME[nO(log log n)].

5.3 A Linear Program

We formulate the problem as an integer program and relax the integrality constraints

to get a linear program. We use i to index the facilities in F , j to index the clients in

D and l to index the services in S. As done previously, we will assume for simplicity

that each client j has unit demand. The analysis extends in a straightforward way to

the case where clients have arbitrary demands, and all of the results carry over.

min
∑

i

fiyi+
∑

i

∑
l

f l
iy

l
i +

∑
j

∑
i

cijxij (FLS-P)

s.t.
∑

i

xij ≥ 1 for all j,

xij ≤ y
g(j)
i for all i, j,

xij ≤ yi for all i, j,

xij, yi, y
l
i ≥ 0 for all i, j, l.
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Variable yi indicates if facility i is open, yl
i indicates if service type l is installed at i,

and xij indicates if client j is connected to facility i. The first constraint states that

each client must be assigned to a facility, the second and the third constraints say

that if client j is assigned to facility i, then service g(j) must be installed on i and i

must be open. An integral solution corresponds exactly to a solution to our problem.

Let Gl be the set of clients requesting service l. The dual program is

max
∑

j

αj (FLS-D)

s.t. αj ≤ cij + βij + θij for all i, j, (1)∑
j∈Gl

θij ≤ f l
i for all i, l,

∑
j

βij ≤ fi for all i, (2)

αj, βij, θij ≥ 0 for all i, j.

We can interpret αj as the budget that j is willing to spend to get itself assigned

to an open facility. Constraint (1) says that a part of this goes towards paying for the

assignment cost cij. The rest gets divided into a payment for the service installation

cost θij, and a payment for the facility opening cost βij.

5.4 The Primal-Dual Algorithm

We consider instances of the problem where there is an ordering on the facilities in

F such that if i comes before i′ in this ordering then for every service type l, f l
i ≤ f l

i′ .

This is equivalent to saying that for any two locations i, i′, the service installation

cost vectors
(
f l

i

)T

l=1...|S| and
(
f l

i′

)T

l=1...|S|, are comparable (under the usual ≤ relation

on vectors). Let O denote this total ordering on the facilities. We say that i ≺ i′ if i

comes before i′ in the ordering O.

The algorithm is strongly motivated by the primal-dual algorithm of Jain and

Vazirani (JV) for UFL (see Section 2.2). If there were no facility opening costs we

could decouple the problem into several UFL instances, one for each service type, and



88

run the JV algorithm on each instance separately. With facility opening costs, this

approach fares badly since we may end up opening a lot of facilities and incur a huge

facility opening cost. The JV algorithm relies on the fact (as do other algorithms

for UFL) that a client j can be moved from a facility i to another nearby facility i′

without increasing its assignment cost by much, and leaving the facility opening cost

unchanged. However in our case, reassigning j to i′ may now require us to install

service g(j) on i′ causing us to pay the installation cost f
g(j)
i′ which could be large.

The hard part is to find a way to reassign clients to nearby facilities while ensuring

that we do not pay too much to install services at the new locations. With arbitrary

service installation costs such a reassignment need not be possible since we can encode

the constraint that a client may only be assigned to a specific set of facilities, making

the problem set-cover hard.

5.4.1 The Dual Ascent Procedure

As in the JV algorithm, there is a notion of time around which the algorithm is

specified. We start at time t = 0. All dual variables are initialized to 0, each demand

j is said to be unfrozen, and all facilities are closed. As time increases, we tentatively

install services at facilities, tentatively open facilities, and freeze demand points. For

every demand j, we increase the dual variable αj at unit rate, and for any facility i, we

first increase the θij variable and then the βij variable. We say that demand j is tight

with facility i, or has reached i, if αj ≥ cij. We continue to increase αj until j becomes

tight with a tentatively open facility on which the service it requests is tentatively

installed, at which point we freeze demand point j. The primal-dual process ends

when all clients are frozen. At this point, a demand point may be paying for opening

multiple facilities and installing services at multiple facilities, so we have a cleanup

step, to decide which tentatively open facilities to finally open and and what services

to install at each open facility. The cleanup phase is somewhat involved since we

have to simultaneously ensure that (1) we can pay for opening facilities and installing

services and, (2) if a client j has to be reassigned, there is a nearby open facility on
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which service g(j) is installed. We show that we can achieve properties (1) and (2)

if we consider the tentatively open facilities in a particular order and greedily pick

a maximal subset that satisfies certain properties (analogous to an independent set

in the JV algorithm). This gives us a 6-approximation algorithm. A key property

that we exploit is the fact that in the JV algorithm, one can choose any maximal

independent set of tentatively open facilities for opening.

We next describe the algorithm in detail. At time t = 0 we start increasing the αj

variables at unit rate, so for any unfrozen demand j, αj is always equal to the time

t. We increase the αj of each demand j until one of the following events happens (if

several events happen simultaneously, consider them in any order):

1. Suppose that demand j becomes tight with facility i. If service g(j) is not

tentatively installed at i, then we start increasing θij at the same rate as αj.

If service g(j) is tentatively installed, but i is not tentatively open, we instead

increase βij at the same rate as αj, i.e., if αj = t, then θij remains 0, but

βij = t − cij. Otherwise, that is, if service g(j) is tentatively installed and i is

tentatively open, we freeze client j (and no longer increase αj).

2. Suppose that for a facility i and a service type l, we have
∑

j∈Gl
θij = f l

i . In

this case, we tentatively install service l at i. If i is also tentatively open, then

we freeze each demand j ∈ Gl that is tight with i. If i is not yet tentatively

open, then for each demand j ∈ Gl that is tight with i, we no longer increase

θij, but instead start increasing βij at the same rate as αj.

3. Suppose that for a facility i,
∑

j βij = fi: in this case, we tentatively open i.

For each demand j, we do not increase βij from now on. If demand j is tight

with i and service g(j) is tentatively installed at i, we freeze j.

We only raise the αj, βij, θij of unfrozen demands. Frozen demands do not partic-

ipate in any events. We continue this process until all demands become frozen. Let

(α, β, θ) denote the final dual solution obtained by the above process. Observe that if
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i is the facility that caused j to freeze, then service g(j) must be tentatively installed

at i and i must be tentatively open.

5.4.2 Opening Facilities, Installing Services, and Assigning

Demands

We now specify which facilities to open, how to install services on facilities, and

how to assign demands to facilities. Our goal is to ensure that a client pays for (a)

opening at most one open facility, and (b) installing service on at most one open

facility. Correspondingly we will have two cleanup phases. The first phase will open

facilities so as to ensure property (a). A guiding principle used to choose between

two conflicting facilities i and i′ (conflicting in the sense that opening both would

violate (a) or (b)), is that if we prefer i′ to i, then we should be able to relocate, if

necessary, every service installed at i to i′ without paying any extra service installation

cost, that is, we want every service l installed at i to satisfy f l
i′ ≤ f l

i . The ordering O

on facilities comes in handy here. We consider facilities in the order given by O and

greedily choose a maximal non-conflicting set. This guarantees that if facility i is not

chosen then there is some conflicting facility i′ that was picked before it (so it must

be that i′ ≺ i); in particular this implies that f l
i′ ≤ f l

i for every service l.

In the second phase, for each service l we pick a non-conflicting set of facilities to

install service l. However it could be that a facility i we pick was not chosen in the

Phase 1, and hence is not open. But in this case we know that there must be an open

facility i′ due to which i was not opened in Phase 1, and we can install service l on

this facility i′ instead. Our rule for choosing facilities in Phase 1 ensures that the cost

of installing service l at i′ is bounded by the installation cost at i — this is exactly

why we wanted Phase 1 to guarantee this property. The final algorithm is a bit more

involved. The two cleanup steps are interlinked because we want to guarantee that

a demand j does not pay for both opening a facility i, and installing service g(j) at

some other facility i′. This will allow us to give a stronger performance guarantee

that is crucially used in the k-median variant of the problem discussed in Section 7.5.
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We define four kinds of dependence between facilities. Say that the ordered pair

(i, i′) is,

(1) ff-dependent (f for facility) if there is a demand j such that βij, βi′j > 0.

(2) sf-l dependent (s for service) if there exists j ∈ Gl such that θij, βi′j > 0.

(3) ss-l dependent if there exists j ∈ Gl such that θij, θi′j > 0.

(4) fs-l dependent if there exists j ∈ Gl such that βij, θi′j > 0.

Let F be the set of tentatively open facilities, and let Fl ⊆ F be the set of

tentatively open facilities on which service l is tentatively installed. For facility i ∈ F ,

let ti be the time at which i became tentatively open. If i ∈ Fl, let til be the time at

which service l was tentatively installed at i. Initially for each facility i ∈ F , let Si

be the set of services that are tentatively installed at i.

P1. We first pick a set F ′ ⊆ F of facilities to open, and for each i ∈ F ′ a set Ti ⊆ Si

of services to install at facility i. Initialize F ′ = ∅ and Ti = ∅ for all i. We

consider facilities in F in the order given by O. While F 6= ∅,

1. Let i ∈ F be the currently considered facility. Remove i from F , set

F ′ ← F ′ ∪ {i}, Ti = Si.

2. For each i′ ∈ F we do the following.

a) If (i, i′) is ff-dependent or ∃l ∈ Ti such that (i, i′) is sf-l dependent or

∃l ∈ Si′ such that (i, i′) is fs-l dependent and ti′l < ti′ , set F ← F−{i′}.

Call i the neighbor of i′ and denote it by nbr(i′). Otherwise,

b) For every l ∈ Si′ , if (i, i′) is fs-l dependent (so ti′l ≥ ti′) or l ∈ Ti and

(i, i′) is ss-l dependent, set Si′ ← Si′ − {l}.

We open the facilities in F ′. For each i ∈ F ′ install all the services in Ti at i.

P2. We now install services at some more facilities. Consider service type l. Let Al

be the facilities in F ′ at which service l is installed (i.e., i such that l ∈ Ti).

Note that Al ⊆ F ′ ∩ Fl. Let Bl = Fl − F ′. We remove from Bl every facility
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i′ for which there is some facility i ∈ F ′ such that (1) (i, i′) is fs-l dependent,

or (2) i ∈ Al and (i, i′) is ss-l dependent. We say that a set of facilities is ss-l

independent if no pair (i, i′) of facilities from the set is ss-l dependent. We pick

a maximal ss-l independent subset F ′
l ⊆ Bl. Initially set F ′

l = ∅. We consider

facilities in Bl in increasing order of ti and add facility i to F ′
l if F ′

l ∪{i} remains

ss-l independent. For every i ∈ F ′
l we install service l on the nearest facility

i′ ∈ F ′ such that i′ ≺ i.

P3. Each client j is assigned to the nearest open facility at which service g(j) is

installed.

5.4.3 Analysis

We now bound the performance of our algorithm. The following lemma just says

what it means for a demand j to get frozen.

Lemma 5.4.1 Let i be the facility that causes a demand j to freeze. Then, i is

tentatively open, service g(j) is tentatively installed at i, and αj = max(cij, ti, tig(j)).

We start by bounding the cost incurred in opening facilities and installing services.

Let D′ be the subset of demands {j : ∃i ∈ F ′ s.t. βij > 0}. By the construction of

F ′, we know that for each demand j there is at most one i ∈ F ′ such that βij > 0;

for j ∈ D′ let o(j) denote this unique facility in F ′.

Lemma 5.4.2 The cost of opening facilities is
∑

j∈D′ βo(j)j. The cost of installing

services is at most
∑

j∈D′ θo(j)j +
∑

j /∈D′ αj.

Proof : For each facility i that is tentatively opened, we have fi =
∑

j∈D βij.

If i is in F ′ then βij is positive only for j ∈ D′ with o(j) = i. So
∑

i∈F ′ fi =∑
i∈F ′

∑
j∈D′:o(j)=i βij =

∑
j∈D′ βo(j)j.

A service l is tentatively installed at facility i only when f l
i =

∑
j∈Gl

θij. Consider

service l. Consider a demand j in Gl. We claim that there is at most one facility

i ∈ Al ∪F ′
l for which θij > 0 and further that if j ∈ D′ then i = o(j) may be the only
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such facility. Since F ′
l is an ss-l independent subset, θij is positive for at most one

facility in F ′
l . If θij > 0 for some facility i ∈ F ′

l , then it must be that θi′j = 0 for every

i′ ∈ Al and βi′′j = 0 for every i′′ ∈ F ′, otherwise i would be not be included in Bl and

we have F ′
l ⊆ Bl. In particular, this shows that if j ∈ D′ then θij = 0 for all i ∈ F ′

l .

Now suppose θij > 0 for some i ∈ Al. Then we must have θi′j = 0 for all other

i′ ∈ Al, otherwise we get a contradiction. Since service l is installed on both i and

i′, l ∈ Si ∩ Si′ throughout step P1. If i was considered before i′, since (i, i′) is ss-l

dependent we would have removed l from Si′ ; if i′ is considered earlier then we would

not have l ∈ Si, obtaining a contradiction. A similar reasoning shows that if θij > 0

for i ∈ Al, then βi′j = 0 for every facility i′ 6= i in F ′.

For each i ∈ Al ∪ F ′
l , we install service l either at i or at a facility i′ such that

f l
i′ ≤ f l

i . So the cost of installing service l is at most
∑

i∈Al∪F ′
l
f l

i =
∑

j∈Gl

∑
i∈Al∪F ′

l
θij

which by the above claim is upper bounded by
∑

j∈Gl∩D′ θo(j)j+
∑

j∈Gl\D′ αj. Summing

over all services l, gives the lemma.

We next bound the assignment cost incurred by the solution computed. The

following facts, which follow directly from the construction of the algorithm, will be

useful in this analysis.

Fact 5.4.3 Suppose that βik is positive. Then cik ≤ αk − βik and αk ≤ ti.

Fact 5.4.4 Suppose that θik is positive. Then cik ≤ αk − θik and cik < tig(k). If

βik = 0 then αk ≤ tig(k).

We use these to derive the following bounds.

Claim 5.4.5 Let i, i′ ∈ Fl be such that (i, i′) (and hence (i′, i)) is ss-l dependent due

to demand k ∈ Gl. Then cii′ < 2 max(til, ti′l) and both cik and ci′k are strictly less

then αk.

Proof : From the dependence of i and i′, it follows that θik and θi′k are positive.

Applying Fact 5.4.4 for both of these, and using the triangle inequality, we get that

cii′ < 2 max(til, ti′l), cik < αk and ci′k < αk.
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Claim 5.4.6 Let i /∈ F ′ and i′ = nbr(i) ∈ F ′. Then ci′i < 2ti.

Proof : By the definition of nbr(.) in step 2a), we have that (i′, i) is either (1)

ff-dependent, or (2) sf-l dependent for some l ∈ Si′ , or (3) fs-l dependent for some

l ∈ Si with til < ti. In either case there is some demand j such that max(βi′j, θi′j) > 0

and either βij > 0 in cases (1) and (2) or, if cases (1) and (2) do not apply and case

(3) applies, βij = 0, θij > 0, tig(j) < ti and βi′j > 0. Using Facts 5.4.3 and 5.4.4 we

get that cij < αj ≤ ti and ci′j < αj, implying that ci′i < 2ti.

Claim 5.4.7 Suppose i ∈ (F ′ ∩ Fl) \ Al with til < ti. Then there is a facility i′ ∈ Al

such that ci′i < 2til.

Proof : Since l ∈ Si at the beginning of step P1, there is some i′ ∈ F ′ due to

which service l was removed from Si in step 2b). Either (i′, i) is fs-l dependent and

til ≥ ti or l ∈ Ti′ and (i′, i) is ss-l dependent. The former case cannot happen since

til < ti. In the latter case i′ lies in Al. Let k ∈ Gl be a demand such that θik, θi′k

are positive. It must be that βik = 0 otherwise (i′, i) would be sf-l dependent and

we would have removed i from F in step 2a). So by Fact 5.4.4, αk ≤ til and by

Claim 5.4.5 cik, ci′k < αk showing that ci′i < 2til.

We are now ready to bound the assignment cost incurred. We will show that for

any demand j there always exists some open facility with service g(j) installed that

is no further from j than the claimed bound, implying that the closest one, to which

j is assigned, is no further away.

Lemma 5.4.8 If j ∈ D′, the assignment cost of j is at most 3(αj − βo(j)j).

Proof : Consider j ∈ D′ with g(j) = l. Let i = o(j) ∈ F ′. By Fact 5.4.3,

cij ≤ αj−βij. If i ∈ Al, then service l is installed at i. Otherwise i lies in (F ′∩Fl)\Al

and since βij > 0, til ≤ αj − βij < ti (by Fact 5.4.3). Applying Claim 5.4.7, ∃i′ ∈ Al

such that ci′i < 2til. So service l is installed at i′ and ci′j < 3(αj − βij).
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Figure 5.2: The 5-hop cases encountered in Lemma 5.4.9.

Lemma 5.4.9 If j /∈ D′, the assignment cost incurred for j is at most 5αj.

Proof : Let j /∈ D′ with g(j) = l. Let i be the facility that caused j to freeze, and

so αj = max(cij, ti, til). There are 4 cases depending on which of the 4 sets i lies in:



96

Al, F
′
l , (F

′ ∩ Fl) \ Al or Fl \ (F ′ ∪ F ′
l ).

If i ∈ Al then service l is installed at i, and cij ≤ αj. If i ∈ F ′
l then service l is

installed in step P2, at a facility no further away from i than i′ = nbr(i) since i′ ≺ i

and i′ ∈ F ′. So the assignment cost is bounded by cij +ci′i. By Claim 5.4.6, ci′i < 2ti,

and hence cij + ci′i < 3αj (Fig. 5.1a).

Suppose i ∈ F ′\Al. Then there is some i′ ∈ F ′ due to which service l was removed

from Si in step 2b). If l ∈ Ti′ and (i′, i) is ss-l dependent due to a demand k ∈ Gl,

then service l is installed at i′ (see Fig. 5.1b). Applying Claim 5.4.5 we get that ci′k

and cik are both less then αk ≤ max(ti, til) ≤ αj, so ci′j < 3αj. In the case where

til ≥ ti and (i′, i) is fs-l dependent due to demand k ∈ Gl, we have k ∈ D′, and

hence i′ = o(k), since βi′k > 0 (see Fig. 5.2a). Also αk ≤ αj as above and therefore

ckj < 2αj. By Lemma 5.4.8, k is assigned to a facility i′′ (so service l is installed at

i′′) with ci′′k < 3αk, so ci′′j < 5αj. See Figure 5.2a.

Next suppose that i /∈ F ′ ∪ F ′
l . Since i ∈ Fl \ F ′ there is some facility i′ such

that either (1) i′ ∈ F ′ and (i′, i) is fs-l dependent, or (2) i′ ∈ Al and (i′, i) is ss-l

dependent, or (3) i′ ∈ F ′
l , (i′, i) is ss-l dependent and ti′ ≤ ti. In either case let

k ∈ Gl be a demand due to which (i′, i) is fs-l- or ss-l-dependent. Since θik > 0,

αk ≤ max(ti, til) ≤ αj, so ckj < 2αj. In case (1), k ∈ D′ and by Lemma 5.4.8, k is

assigned to a facility i′′ with ci′′k < 3αk =⇒ ci′′j < 5αj (Fig. 5.2a). In case (2),

service l is installed at i′ and applying Claim 5.4.5, ci′k < αk which implies ci′j < 3αj

(Fig. 5.1b). Finally in case (3), service l is installed on a facility at least as close to

i′ as i′′ = nbr(i′). Since ci′′i′ < 2ti′ (Claim 5.4.6), and ci′j < 3αj as in case (2), we get

that ci′j + ci′i′′ < 5αj (Fig. 5.2b).

Theorem 5.4.10 Let O, I, C denote respectively the facility opening, service in-

stallation, and client assignment cost of the solution returned. Then 6O + I + C ≤

6
∑

j αj ≤ 6 ·OPT.

Proof : Follows from Lemmas 5.4.2, 5.4.8 and 5.4.9 and since for j ∈ D′, αj =

co(j)j + βo(j)j + θo(j)j.
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For the case where the service installation cost depends only on the service type,

that is, f l
i = f l, any ordering can serve as the ordering O. Therefore, to install

services in step P2 of the algorithm, for every i ∈ F ′
l , we can simply install service l

at the nearest facility i′ ∈ F ′ (since every i′ ≺ i). This gives us the following stronger

guarantee.

Corollary 5.4.11 If f l
i = f l, the algorithm above returns a solution of cost (O, I, C)

such that 5O + I + C ≤ 5
∑

j αj ≤ 5 ·OPT.

Proof : Observe that the worst case for the analysis above occurs when a demand j

has to “pay” αj towards the cost of installing services and also incurs an assignment

cost of 5αj; in all other cases j is charged an amount of at most 5αj (since now a

client j ∈ D′ has to pay only 5βo(j)j).

We will show that for any demand j, if there is some facility i ∈ Ag(j) ∪F ′
g(j) such

that θij > 0, then the assignment cost incurred for j is at most 5αj−θij. Let C be the

set of all such demands, i.e., C = {j : ∃i ∈ Ag(j)∪F ′
g(j) such that θij > 0}; for j ∈ C let

s(j) denote this unique facility. The proof of Lemma 5.4.2 is easily modified to show

that O =
∑

j∈D′ βo(j)j, and I ≤
∑

j∈C θs(j)j. Note that as argued in Lemma 5.4.2,

it must be the case that if j ∈ D′ ∩ C, then s(j) = o(j). Using Lemmas 5.4.8

and 5.4.9, the quantity 5O+I+C is therefore bounded by
∑

j∈D′ 5βo(j)j+
∑

j∈C θs(j)j+∑
j∈D′ 3(αj − βo(j)j) +

∑
j∈C\D′(5αj − θs(j)j) +

∑
j /∈D′∪C 5αj ≤ 5

∑
j αj.

Consider j ∈ C with g(j) = l and let i′ = s(j). If i′ ∈ Al, then the assignment

cost is at most ci′j ≤ αj − θi′j. If i′ ∈ F ′
l , let i be the facility that caused j to freeze;

we have cii′ ≤ 2αj − θi′j. If i ∈ F ′, then service l is installed on a facility at most cii′

distance away from i′, so the assignment cost is at most ci′j + cii′ ≤ 3αj − 2θi′j. If

i /∈ F ′, then nbr(i) ∈ F ′ and ci,nbr(i) ≤ 2ti ≤ 2αj. So the assignment cost is at most

ci′j + ci′i + ci,nbr(i) ≤ 5αj − 2θi′j.
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5.5 An Improved Algorithm when f l
i = f l

We use LP rounding to obtain an algorithm with an improved approximation guar-

antee for the case where the service installation cost f l
i depends only on the service l

and not on the location i. The algorithm is along the lines of the primal rounding al-

gorithm described in Section 2.4. We use randomized rounding along with the bound

due to complementary slackness as in the Chudak-Shmoys algorithm (Section 2.3), in

conjunction with the bound obtained by filtering [54, 71], to bound the assignment

costs. This gives a better performance guarantee than that obtained by using either

of the two bounds separately. Sviridenko [73] used a similar idea to improve the

approximation ratio for UFL from
(
1 + 2

e

)
to 1.58.

Let (x, y) and (α, β, θ) be the optimal solutions to (FLS-P) and (FLS-D), respec-

tively. We may assume that each yl
i ≤ yi since one can always set yl

i = min(yl
i, yi) and

get a feasible solution of no greater cost. We may further assume, by making clones

of facilities if necessary as in the CS algorithm, that the optimal solution is complete,

that is, for every i, j and l, xij = 0 or xij = y
g(j)
i and yl

i = 0 or yl
i = yi. We will round

(x, y) to an integer solution losing a factor of at most 2.391.

Suppose that in the optimal solution it so happened that for every facility i and

service l, there is at most one client j ∈ Gl such that xij > 0. We call a solution with

this property a separable solution. Then one can view (x, y) as essentially a fractional

solution to a UFL instance with distances c′ij = cij + f
g(j)
i (which satisfy the triangle

inequality1 since the service installation cost depends only on the service). Observe

the important fact that because (x, y) is separable, the cost of this UFL solution is

at most OPT (in fact, the costs are exactly equal due to completeness). Further, an

integer solution to the UFL instance yields a solution to the FLSIC instance of no

greater cost. So now we simply have to round this UFL solution to an integer solution

while losing only a small factor.

The algorithm is based roughly on the above idea. For each service type l, we

1c′
ij ≤ c′

i′j + c′
i′k + c′

ik: the triangle inequality takes this form because the metric is the shortest
path metric on the complete bipartite graph on F ∪ D.
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group the facilities on which service l is installed into disjoint clusters. Each cluster

is centered around a client in Gl and consists of the facilities serving the client; every

non-center client in Gl is assigned to a “nearby” center which, in some sense, acts

as a representative for all of the clients assigned to it. The instance comprising only

the cluster centers has a separable solution induced by (x, y). We now round this

solution using a modification of the CS algorithm that incorporates filtering. A point

worth emphasizing is that we do not actually reduce the original FLSIC instance

to a UFL instance on the cluster centers and solve this as a black box. Instead the

algorithm performs this reduction only implicitly, whereas the analysis is more refined

and relies on the fact that the service installation cost f l
i is a function of only l to get

good bounds.

We define some notation first. Let Fj = {i : xij > 0}. Let 0 < γ < 1 be a

parameter that we will set later and r = 1
γ
. Sort the facilities in Fj by increasing cij

value. Let i′ be the first facility in this ordering such that the xij weight of facilities in

Fj that come before i′ (including i′) is at least γ, that is,
∑

i:i=i′ or i comes before i′ xij ≥ γ.

Let Nj ⊆ Fj consist of the facilities in Fj up to and including i′ in this sorted order.

As in Section 2.4, we may assume, by splitting and cloning facilities if necessary,

that each yi ≤ γ and for any j,
∑

i∈Nj
yi is exactly γ. Define Rj(γ) = ci′j and let

C̄j =
∑

i cijxij denote the cost incurred by the LP solution to assign client j.

R1. For every service type l, we consider the clients in Gl and cluster the facilities

on which service l is installed around some cluster centers. Pick j ∈ Gl with

smallest 2αj + Rj(γ) + C̄j value and form a cluster around j consisting of the

facilities in Fj. We assign every client k ∈ Gl (including j) that is served

(fractionally) by some facility in the cluster created (i.e., Fj) to j, and remove

it from Gl (see Fig 5.3a). Recurse on the remaining set of clients until no client

in Gl is left. This gives a set of cluster centers Dl for each service l. For a client

k /∈ Dl let σ(k) denote the cluster center in Dl to which it is assigned.

R2. Let D =
⋃

l Dl. We cannot open a facility in every cluster since different clusters

could share the same fractional facility weight (yi) if the cluster centers request
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Figure 5.3: (a) An iteration of step R1. (b) Picking a maximal independent set in
step R2.

different services. Say that j, k ∈ D are dependent if Nj ∩ Nk 6= ∅. Note that

this can only happen if j and k request different services. Consider clients in

D in increasing order of Rj(γ) + C̄j and greedily pick a maximal independent

subset D′. We denote the facilities in Nj for clients j ∈ D′ as central facilities,

and the rest as non-central facilities. For every client k ∈ D \D′, there is some

j ∈ D′ that was picked before k such that j and k are dependent. Call j the

neighbor of k and denote it by nbr(k) (see Fig. 5.3b). For convenience, we set

nbr(j) = j.

R3. For every client j ∈ D′ we randomly open exactly one facility in Nj by choosing

facility i with probability yi/
∑

i∈Nj
yi = r · yi. We denote this facility as the

backup facility for every client k with nbr(k) = j.

R4. Independent of step R3, each non-central facility i is opened independently with

probability r · yi.

R5. For any facility i, be it a central or a non-central facility, if i is opened (in R3 or
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R4), we install on it all services that are installed on it in the fractional solution,

i.e., all l such that yl
i > 0.

R6. For every client j ∈ D \D′, if no facility from Fj is open, we install service g(j)

on its backup facility, i.e., the facility opened in R3 from Nnbr(j).

R7. We assign client j to the nearest open facility at which service g(j) is installed.

5.5.1 Analysis

Let Zj denote the event that no facility in Fj is open, and Z̄j denote the comple-

mentary event that some facility in Fj is open. The following claim will be used

repeatedly.

Claim 5.5.1 For any client j, Pr[Zj] ≤ e−r.

Proof : If j ∈ D′ then Zj = ∅, since we always open a facility from Nj ⊆ Fj.

Otherwise, we can express Zj in terms of the following events. For every non-central

facility i ∈ Fj, let Ei be the event that i is opened in step R4 and pi = Pr[Ei] = r · yi.

For every cluster center k ∈ D′ such that Sk = Fj ∩Nk 6= ∅, let Ek be the event that

a facility in Sk is open after step R3. Let pk = Pr[Ek] =
P

i∈Sk
yiP

i∈Nk
yi

= r ·
∑

i∈Sk
yi. Let

m be the total number of events. Observe that the events Ei are all independent and

Zj =
⋂m

n=1 Ēn. Therefore, Pr[Zj] =
∏m

n=1(1− pn) ≤ e−
P

n pn = e−r.

Lemma 5.5.2 The expected facility opening cost is r ·
∑

i fiyi. The expected cost of

installing services is at most (r + e−r) ·
∑

i,l f
l
iy

l
i.

Proof : Each facility i is opened with probability r · yi. The expected cost of

installing services in step R5 is bounded by,∑
i

Pr[i is opened (in R3 or R4)]
∑

l:yl
i>0

f l
i =

∑
i

r · yi

∑
l:yl

i>0

f l
i = r ·

∑
i,l

f l
iy

l
i,

since yl
i > 0 =⇒ yl

i = yi by completeness.
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For a client j ∈ D \D′, the probability that none of the facilities in Fj is open is

Pr[Zj] ≤ e−r by Claim 5.5.1. So the expected cost of installing services in step R6 is

at most e−r
∑

j∈D\D′ f g(j) ≤ e−r
∑

i,l f
l
iy

l
i since

∑
i∈Fj

y
g(j)
i = 1 and any two clients j

and j′ in Dl must have Fj ∩ Fj′ = ∅.

To bound the assignment cost, we consider a provably worse way of assigning

clients to facilities and bound the cost incurred under this scheme. We assign client

j as follows. If j ∈ D′ we assign it to the facility opened from Nj. If j /∈ D′, we

assign j to the nearest open facility in Fj if some facility in Fj is open. Otherwise

if j ∈ D \ D′, we assign it to its backup facility; if j /∈ D, we assign it to the same

facility as k = σ(j), so it may be assigned either to a facility in Fk or, if no facility

from Fk is open, to the backup facility for k in Nnbr(k). Observe that service g(j) is

always installed on the facility to which j is assigned. Let Xj be the random variable

denoting the assignment cost of j under the above scheme. Recall the following lemma

from Section 2.3.

Lemma 2.3.3 Let d1 ≤ d2 ≤ . . . ≤ dm and 0 ≤ pn ≤ 1 for n = 1, . . . ,m. Then,

p1d1 + (1− p1)p2d2 + · · ·+ (1− p1)(1− p2) . . . (1− pm−1)pmdm

≤
∑

n≤m pndn∑
n≤m pn

(
1−

∏
n≤m

(1− pn)
)
.

Lemma 5.5.3 For any client j, E
[
Xj|Z̄j

]
≤ C̄j.

Proof : If j ∈ D′, then event Z̄j always occurs, so

E
[
Xj|Z̄j

]
= E

[
Xj

]
=

∑
i∈Nj

cijxij∑
i∈Nj

xij

≤ C̄j,

since every facility in Fj \Nj is farther from j than every facility in Nj.

So consider j /∈ D′. For a non-central facility i ∈ Fj, let pi and Ei be as defined

in Claim 5.5.1 and let di = cij. For every k ∈ D′ such that Sk = Fj ∩ Nk 6= ∅,

let pk, Ek be as defined in Lemma 5.5.2 and define dk =
∑

i∈Sk
cijyi/

∑
i∈Sk

yi, which
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is the expected distance between j and the facility opened from Sk conditioned on

event Ek. Let the distances be ordered so that d1 ≤ d2 ≤ . . . ≤ dm where m is the

total number of events. We will obtain an upper bound on E
[
Xj

]
by considering a

suboptimal way of assigning j to an open facility in Fj (if one exists). Instead of

assigning j to the nearest open facility in Fj, we will assign it to the open “facility”

with smallest di, where when we say that a “facility” of type Sk, k ∈ D′ is open, we

mean that some facility i ∈ Sk is open, and assigning j to facility Sk means that

we assign it to the open facility i in Sk. Let p = Pr[Zj]. Since the events Ei are

independent and yi = xij,

E
[
Xj

]
≤ p1d1 + (1− p1)p2d2 + · · ·+ (1− p1) . . . (1− pm−1)pmdm + p · E

[
Xj|Zj

]
≤

∑
n≤m pndn∑

n≤m pn

(1− p) + p · E
[
Xj|Zj

]
= Pr[Z̄j] · C̄j + Pr[Zj] · E

[
Xj|Zj

]
.

But we also know that Pr[Z̄j] · E
[
Xj|Z̄j

]
+ Pr[Zj] · E

[
Xj|Zj

]
= E

[
Xj

]
. Combining

this with the above inequality, we get that E
[
Xj|Z̄j

]
≤ C̄j.

Lemma 5.5.4 For a client j /∈ D′, we have E
[
Xj|Zj

]
≤ 3αj + Rj(γ) + C̄j.

Proof : First suppose that j is in D \ D′. Let k = nbr(j) and A = Fj ∩ Nk 6= ∅.

For any facility i ∈ A we have cij ≤ αj due to complementary slackness, since i ∈ Fj.

Also, for any facility i ∈ Nk, we have cik ≤ Rk(γ) by the definition of Rk(γ). Event

Zj implies that j is assigned to its backup facility in Nk, so conditioned on Zj, Xj

is at most cjk + Xk ≤ αj + c(A, k) + Xk where c(A, k) denotes mini∈A cik. If there

is some facility i ∈ A such that cik ≤ C̄k, then c(A, k) ≤ C̄k and we have a bound

of Xj ≤ αj + C̄k + Rk(γ). Otherwise, since the unconditional expectation E
[
Xk

]
is

at most C̄k, by conditioning on Zj, we are only removing weight from facilities that

have a larger cik value than the average. So the conditional expectation E
[
Xk|Zj

]
is at most C̄k and it follows that E

[
Xj|Zj

]
≤ αj + Rk(γ) + C̄k. In either case,

since Rk(γ) + C̄k ≤ Rj(γ) + C̄j as k was picked before j in step R2, we get that

E
[
Xj|Zj

]
≤ αj + Rj(γ) + C̄j.
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The argument for the case when j is not in D is similar. Let j′ = σ(j), so

Fj ∩Fj′ 6= ∅. Event Zj implies that j is assigned to the same facility as j′. If a facility

in Fj′ is open then we have a bound of Xj ≤ αj + 2αj′ . Otherwise, we are in event

Zj′ . Let k = nbr(j′). Clients j and j′ are assigned to the backup facility for j′ in Nk,

so we have E
[
Xj|Zj ∩ Zj′

]
≤ cjk + E

[
Xk|Zj ∩ Zj′

]
. Taking A = (Fj ∪ Fj′) ∩ Nk, we

get that E
[
Xj|Zj ∩ Zj′

]
is at most αj + 2αj′ + c(A, k) + E

[
Xk|Zj ∩ Zj′

]
which, by

reasoning exactly as above, we can bound by αj + 2αj′ + Rk(γ) + C̄k. So, in either

case, we obtain that E
[
Xj|Zj

]
≤ αj + 2αj′ + Rk(γ) + C̄k ≤ αj + 2αj′ + Rj′(γ) + C̄j′ .

Finally, since j′ = σ(j) we have that 2αj′ + Rj′(γ) + C̄j′ ≤ 2αj + Rj(γ) + C̄j by our

rule of picking cluster centers in step R1. So E
[
Xj|Zj

]
≤ 3αj + Rj(γ) + C̄j.

Theorem 5.5.5 The randomized algorithm returns a solution of expected cost at

most,
(
max

(
r + e−r, 1 + e−r

1−γ

)
+ 3e−r

)
·OPT, where r = 1/γ. Setting γ = 0.67674, we

get a solution of cost at most 2.391 ·OPT.

Proof : We have
∑

i fiyi +
∑

i,l f
l
iy

l
i +

∑
j C̄j = OPT =

∑
j αj. By Lemmas 5.5.3

and 5.5.4, we get that

E
[
Xj

]
≤ Pr[Z̄j] · C̄j + Pr[Zj] ·

(
3αj + Rj(γ) + C̄j

)
≤ C̄j + e−r

(
3αj +

C̄j

1− γ

)
where we use the fact that Pr[Zj] ≤ e−r (Claim 5.5.1) and Rj(γ) ≤ C̄j

1−γ
by Markov’s

inequality. Using Lemma 5.5.2, the theorem now follows.

5.6 The 2-Stage Stochastic FLSIC Problem

In this section we study the 2-stage stochastic facility location with service installation

costs problem. In this problem, we are given a set of facilities F , a set of clients D

and a set of services S. Each client j requests a specific service g(j) ∈ S. The set

of clients that have to be assigned is not known in advance but is specified by a

probability distribution; each scenario specifies a set of clients A ⊆ D that have to be
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assigned2. We may choose to open some facilities and install some services in stage

I. The cost that we pay in stage I is f I
i for opening facility i, and f I

i,l for installing

service l at (an open) facility i. Once we know the scenario A that materializes, we

may open some more facilities paying a cost of fA
i for opening facility i, and install

some services paying a cost of fA
i,l for installing service l at facility i (this service could

be installed at a facility opened either in stage I or in scenario A), and have to assign

each client j that is activated to a facility at which service g(j) is installed. The

objective is to decide which facilities to open and which services to install in stage I,

so as to minimize the sum of the stage I cost and the expectation over all scenarios

of the stage II cost.

We can write the following stochastic program for this problem. Variable yi de-

notes if facility i is opened in stage I, and variable yi,l denotes if service l is installed

at facility i in stage I. As usual, we use i to index the facilities, j to index the clients

and l to index the services in S.

min
∑

i

f I
i yi +

∑
i,l

f I
i,lyi,l + h(y) subject to 0 ≤ yi,l ≤ yi ≤ 1 for all i, l,

(SFLS-P)

where h(y) =
∑
A⊆D

pAhA(y),

and hA(y) = min
∑

i

fA
i yA,i +

∑
i,l

fA
i,lyA,i,l +

∑
j∈A

∑
i

cijxA,ij

s.t.
∑

i

xA,ij ≥ 1 for all j ∈ A,

xA,ij ≤ yi,g(j) + yA,i,g(j) for all i, j ∈ A, (3)

xA,ij ≤ yi + yA,i for all i, j ∈ A, (4)

xA,ij, yA,i, yA,i,l ≥ 0 for all i, j ∈ A, l.

In any given scenario A, we solve a minimization problem to decide which facilities

to open and services to install in that scenario, and how to assign the activated clients.

Variable yA,i indicates whether we open facility i in scenario A, yA,i,l indicates if service

2In general there may be arbitrary demands associated with the clients, but for simplicity, we
consider the 0-1 demand setting. So a client is either activated or not activated in a scenario.
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l is installed at facility i in scenario A, and xA,ij indicates if client j is assigned to

facility i. Constraints (3) and (4) state that a client that is activated in a scenario

must be assigned to a facility opened either in stage I or in that particular scenario,

and the service that it requires should be installed on that facility, again either in

stage I or in that scenario. In stage I, of course, we may only install a service l at a

facility i if we open that facility in stage I, which is captured by the constraint yi,l ≤ yi.

(SFLS-P) lies in the general class of 2-stage programs described in Section 3.5, and

using Theorem 3.5.4 one can therefore compute a near-optimal solution y to (SFLS-P)

in polynomial time.

5.6.1 Rounding the Near-Optimal Solution

We show that if the service installation cost depends only on the service type and

not on the location, both in stage I and in every stage II scenario, that is, f I
i,l = f I

l

and fA
i,l = fA

l , then one can round y using ideas from the rounding procedure of

Section 4.3.2 and get a 11.363-approximation algorithm.

The challenging aspect in the rounding is the “decoupling” of the first-stage and

second-stage decisions which turns out to be somewhat involved, as compared to the

rounding scheme in Section 4.3.2, because of the following artifact: it might be that

a client j in scenario A is “mostly” assigned to facilities opened in stage I by the

fractional solution, but the service g(j) required by the client is however “mostly”

installed only in scenario A. Our main theorem is the following.

Theorem 5.6.1 The fractional solution y can be rounded losing a factor of at most

11.363. This gives a (11.363 + ε)-approximation algorithm for the stochastic version

of facility location with service installation costs.

The following decomposition technique of Shmoys, Tardos & Aardal [71] will play

a useful role in our rounding procedure. Given a fractional UFL solution (x̂, ŷ) the

STA algorithm looks at a subset of the facilities serving each client j that are “close”

to j, and clusters these facilities around some centers. The clustering is performed
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essentially as in step A1 of the CS algorithm in Section 2.3 but using a different

cluster selection rule.

A Generic Decomposition Algorithm. The algorithm takes two parameters:

γ ∈ [0, 1] and a number w(j) ≥ 0 for each client j. Let C̄j =
∑

i cijx̂ij. For each

client j, order the facilities with x̂ij > 0 by increasing distance from j, and let Tj be

the minimal set of facilities considered in this order that gather an x̂ij-weight of at

least γ. Let i′ be the facility in Tj farthest from j, and let Rj(γ) denote ci′j. The

expression
∑

i cijx̂ij assigns an x̂ij-weight of at least 1 − γ to facilities that facilities

that are at least ci′j distance away from j, so we have C̄j ≥ (1− γ)Rj(γ).

Let L be the list of clients ordered by increasing C̄j/(1 − γ) + w(j) value. We

pick the first client in L, that is, the one with minimum C̄j/(1− γ)+w(j) value, and

create a cluster around it consisting of the facilities in Tj. Each client k such that

Tk ∩ Tj 6= ∅ is then removed from L, and we designate j as the representative of each

such client k and set σ(k) = j. For the cluster center j, we set σ(j) = j. We then

continue with the remaining list of clients until L becomes empty.

By construction, the clusters are disjoint and for each cluster Tj we have
∑

i∈Tj
yi ≥

γ. The following lemma will be used repeatedly.

Lemma 5.6.2 For any client k, we have cσ(k)k ≤ (C̄σ(k) + C̄k)/(1− γ).

Proof : Let j = σ(k). So, Tk ∩ Tj 6= ∅. Let i ∈ Tk ∩ Tj. Then cjk ≤ cij + cik ≤

Rj(γ) + Rk(γ) ≤ (C̄j + C̄k)/(1− γ).

Now fix a scenario A and a client j ∈ A. Let g(j) = l. We write xA,ij =

xI
A,ij+xII

A,ij+tA,ij where xI
A,ij = min(xA,ij, yi,l), xII

A,ij = min(xA,ij−xI
A,ij, yA,i,l, yA,i) and

tA,ij = xA,ij−xI
A,ij−xII

A,ij. Note that, 0 ≤ xI
A,ij ≤ yi,l ≤ yi, 0 ≤ xII

A,ij ≤ min(yA,i,l, yA,i)

and tA,ij ≥ 0. Moreover we have, xI
A,ij + tA,ij ≤ yi, and xII

A,ij + tA,ij ≤ yA,i,l. Observe

that j must be assigned to an extent of at least 1
3

by at least one of the assignments

{xI
A,ij}, {xII

A,ij}, or {tA,ij}. Intuitively, if j is assigned to an extent of at least 1
3

by the

assignment {xI
A,ij} then we can take care of j by assigning it to facilities opened and
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services installed in stage I; otherwise, if j is assigned to an extent of at least 1
3

by

the assignment {xII
A,ij} then we can take care of j by the facilities that we open and

services that we install in scenario A. It is the last case, where j is “mostly” assigned

due to {tA,ij} that is complicated. Here we need to open a facility in stage I to serve

j, but we will install the service required by j only in scenario A. Therefore, in this

case, we are only able to partially decouple the two stages.

Let Rj be the collection of scenarios {A ⊆ D :
∑

i x
I
A,ij ≥ 1

3
}, Tj = {A ⊆ D : A /∈

Rj,
∑

i x
II
A,ij ≥ 1

3
} and let Uj be the remaining collection of scenarios {A ⊆ D : j ∈

A and A /∈ (Rj ∪ Tj)}. Define ρ(γ) = 1 + e−1/γ · 2+γ
1−γ

.

Opening facilities in stage I. To decide which facilities to open in stage I, we will

ignore the different service requirements momentarily, and solve a UFL problem in

which the facility costs are f I
i and each client j has demand

∑
A∈Rj∪Uj

pA. We shall

construct a feasible fractional solution for this instance and use the primal-rounding

algorithm of Section 2.4, which does not require any knowledge of the client demands,

to round this fractional solution to an integer solution. First, consider each scenario

A ∈ Rj ∪Uj separately and create a client (j, A) for each such scenario with demand

pA. Since j is assigned to an extent of at least 1
3

by the assignment {xI
A,ij + tA,ij}, we

can obtain a feasible assignment x̂ (that assigns each client j to an extent of at least

1) by setting x̂A,ij = min
(
1, 3(xI

A,ij + tA,ij)
)

for each i ∈ F . Since xI
A,ij + tA,ij ≤ yi for

each facility i, we can set ŷi = min(1, 3yi), to get a feasible fractional solution (x̂, ŷ)

for the input with client set {(j, A) : j ∈ D, A ∈ Rj ∪Uj}. But given these fractional

ŷi values, one can re-optimize and get a fractional assignment x̂A,ij that minimizes∑
i pAcijx̂A,ij for each (j, A). Observe that this fractional assignment is independent

of the scenario A, so we can coalesce all the clients (j, A) for A ∈ Rj ∪ Uj into one

single client j with demand
∑

A∈Rj∪Uj
pA. If Ĉj denotes the re-optimized per-demand

assignment cost
∑

i cijx̂ij, then we have

Ĉj ≤ 3
∑

i

cij(x
I
A,ij + tA,ij) ≤ 3

∑
i

cijxA,ij for every scenario A ∈ Rj ∪ Uj (5)
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The fractional solution so constructed has facility cost at most 3
∑

i f
I
i yi and assign-

ment cost at most 3
∑

i,j

∑
A∈Rj∪Uj

pAcijxA,ij.

Let 0 < γ < 1 be a parameter that we will set later. We round (x̂, ŷ) using the

primal-rounding algorithm with parameter γ to get an integer solution (x̃, ỹ) of facility

cost at most 3
γ
·
∑

i f
I
i yi and assignment cost at most 3ρ(γ) ·

∑
i,j,A∈Rj∪Uj

pAcijxA,ij

(Theorem 2.4.2); this determines the set of facilities to open in stage I. Let i(j) denote

the open facility that is nearest to j. By Lemma 2.4.1, we also know that for every

client j, the expected distance E
[
ci(j)j

]
is at most ρ(γ) · Ĉj.

Installing services in stage I. Next we determine where to install services in

stage I. Fix a service l and consider the clients in Gl. Consider a UFL instance

with client set Gl, and F as the set of facilities. Each client j ∈ Gl has demand∑
A∈Rj

pA. We construct a feasible fractional solution (x′, y′) for this instance by

setting y′i = min(1, 3yi,l), which consequently also determines the assignment variables

x′ij. For any scenario A ∈ Rj, we have
∑

i x
I
A,ij ≥ 1

3
and xI

A,ij ≤ yi,l, therefore

arguing as before we get that the per-unit-demand assignment cost of j, given by

C ′
j =

∑
i cijx

′
ij, is at most 3

∑
i cijxA,ij. Also, since for every facility i ∈ F we have

that y′i ≤ ŷi (since yi,l ≤ yi), Ĉj, which was obtained by re-optimizing the assignment

distance with respect to the ŷi values, is at most C ′
j. Now we run the decomposition

algorithm described above with parameter γ and with w(j) = ci(j)j (which is a random

variable). Since the clusters are all disjoint and each cluster has a y′i-weight of at least

γ, we can afford to install service l for each cluster created. For every cluster center

j, we install service l on facility i = i(j), that is, we set ỹi,l = 1. This determines the

facilities at which we install service l in stage I. Doing this for every service l, tells

us where to install services in stage I. Note that since the service installation cost

does not depend on the location, we can pay for installing service l by the yi,l-weight

contained in the cluster around j. So, the cost for installing service l is at most

f I
l

∑
i y

′
i/γ = 3

γ
·
∑

i f
I
i,lyi,l and the total cost of installing services in stage I is at most

3
γ
·
∑

i,l f
I
i,lyi,l.
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Observe that for any client k ∈ Gl with j = σ(k), in any scenario A ∈ Rk,

there is an open facility i at which service l is installed at a distance of at most

cjk+ci(j)j ≤ (C ′
j+C ′

k)/(1−γ)+w(j) by Lemma 5.6.2, which in turn is at most 2C ′
k/(1−

γ) + w(k) because we picked j before k as a cluster center in our decomposition

procedure. So we can bound the expected per-unit-demand assignment cost of k

by
2C′

k

1−γ
+ E

[
ci(k)k

]
≤

(
2

1−γ
+ ρ(γ)

)
C ′

k. So in every scenario A ∈ Rk, we can assign

client k to facility i and the net cost we incur over all scenarios in Rk is bounded by(
6

1−γ
+ 3ρ(γ)

)(∑
i,A∈Rk

pAcikxA,ik

)
. This takes care of scenarios in Rk for each client

k.

Opening facilities, installing services in a stage II scenario. Consider a

scenario A. We will show that given the first stage decisions ỹ, one can assign the

clients in A without incurring a large cost. We have already taken care of each client j

such that A ∈ Rj by assigning it to a stage I facility at which service g(j) is installed

(in stage I). To assign the remaining clients we will again solve a UFL instance to

decide which facilities to open, and then use the decomposition algorithm to guide

the installation of services.

Consider the client set DA = {j ∈ A : A ∈ Tj}. To decide which facilities to

open, we will again ignore the service requirements. We solve a UFL problem with

client set DA, and F as the set of facilities where the cost of facility i is fA
i . We

can construct a feasible fractional solution (x̂A, ŷA) for this instance as follows: set

x̂A,ij = min(1, 3xII
A,ij) and ŷA,i = min(1, 3yA,i) for each i ∈ F . We round (x̂A, ŷA) using

the primal-rounding algorithm with parameter γ to get an integer solution (x̃A, ỹA)

such that∑
i

fA
i ỹA,i ≤ 3

γ
·
∑

i

fA
i yA,i and

∑
i,j∈DA

cijx̃A,ij ≤ 3ρ(γ) ·
∑

i,j∈DA

cijxA,ij. (6)

This determines which facilities to open in scenario A.

To decide where to install services we will again use the decomposition algorithm.

Let i(j) denote the facility nearest to j that is open, either in stage I or in scenario A.

Observe that for a client j ∈ DA we have ci(j)j ≤
∑

i cijx̃A,ij. For a client j ∈ A \DA
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such that A /∈ Rj we have A ∈ Uj; the distance ci(j)j is at most the distance to the

nearest stage I facility, therefore E
[
ci(j)j

]
≤ ρ(γ) · Ĉj, and (5) provides a bound on

Ĉj. For every service l, we consider the client set G′
l = {j ∈ Gl ∩ A : A /∈ Rj}. As

before, we construct a feasible solution (x′A, y′A) for this instance and feed this into

the decomposition algorithm to get a clustering. We set y′A,i = min(1, 3yA,i,l) and

x′A,ij = min
(
1, 3(xII

A,ij +tA,ij)
)

for each client j ∈ G′
l. Observe that this gives a feasible

UFL solution. We run the decomposition algorithm on (x′A, y′A) with parameters γ

and w(j) = ci(j)j to create a set of clusters. For each cluster centered around client

j, we install service l on facility i = i(j) (which is open), that is, we set ỹA,i,l = 1.

This tells us the facilities at which to install service l in scenario A. Repeating this

for every service type determines the services that we install in scenario A.

Bounding the cost for a scenario We now show that the cost incurred for sce-

nario A is bounded. For any service l, each cluster created by the decomposition

procedure contains a yA,i,l-weight of at least γ
3
, therefore the total cost of installing all

the services is bounded by 3
γ
·
∑

i,l f
A
i,lyA,i,l. To bound the assignment cost, consider a

client k ∈ A such that A /∈ Rk, with j = σ(k). We know that service l is installed at

a facility at a distance of at most cjk + ci(j)j. Therefore, arguing as we did earlier, we

can bound this distance 2
(∑

i cikx
′
A,ik

)
/(1 − γ) + ci(k)k, and for k ∈ A \ DA, we can

bound E
[
ci(k)k

]
by ρ(γ) · Ĉk. So the expected cost incurred for scenario A ignoring

the clients j ∈ A such that A ∈ Rj, is at most

∑
i

fA
i ỹA,i + 3

γ
·
∑
i,l

fA
i,lyA,i,l + 6

1−γ
·

∑
i,j∈A:A/∈Rj

cijxA,ij

+
∑

i,j∈DA

cijx̃A,ij + 3ρ(γ) ·
∑

i,j∈A:A∈Uj

cijxA,ij (7)

where we use (5) to bound Ĉj for clients j ∈ A such that A ∈ Uj. Substituting the

bounds from (6) in the above expression, and since the expected assignment cost of a

client j such that A ∈ Rj is at most
(

6
1−γ

+ 3ρ(γ)
) ∑

i cijxA,ij, the total cost incurred
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for scenario A is at most

3 max
(

1
γ
, 2

1−γ
+ ρ(γ)

)(∑
i

fA
i yA,i +

∑
i,l

fA
i,lyA,i,l +

∑
i,j∈A

cijxA,ij

)
.

Bounding the total cost. Adding the facility opening and service installation

costs incurred in stage I and the expected total cost incurred in the stage II scenarios,

we get that the overall cost is at most
(
3 max

(
1
γ
, 2

1−γ
+ ρ(γ)

)
+ ε

)
· OPT . Setting

γ = 0.2641 we get a ratio of at most 11.363 + ε.



Chapter 6

Connected Facility Location

6.1 Introduction

In this chapter we consider the connected facility location problem, that captures

settings where the open facilities want to communicate with each other, or with a

common central authority. For example, the facilities may represent caches in a

distributed network that need to be able to communicate with each other to en-

sure consistency of data. In such cases, one desires a two-layered solution, where

the demand points are first clustered around hubs (facilities) and the hubs are then

interconnected to allow them to communicate with one another.

We model such settings by requiring that the open facilities be interconnected via

a Steiner tree, i.e., a tree that connects all of the open facilities but may also include

other non-facility nodes. A Steiner tree is less restrictive than a spanning tree, yet

offers a simple and scalable network. This is the connected facility location (ConFL)

problem. More precisely, we are given a graph G = (V, E) with costs {ce} on the

edges, a set of facilities F ⊆ V , and a set of demand nodes or clients D ⊆ V . Client

j has dj units of demand and facility i has an opening cost of fi. We are also given

a parameter M ≥ 1. We want to open a set of facilities F , assign each demand to

an open facility, and connect the open facilities by a Steiner tree T . If cij denotes

the shortest path distance between nodes i and j in G (with respect to the costs

113
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ce), then assigning client j to facility i(j) incurs a cost equal to djci(j)j. The cost of

connecting facilities is simply the cost of the Steiner tree T scaled by a factor of M .

Our objective is to minimize the total cost which is the sum of the costs of opening

the facilities in F , the assignment costs of demands, and the cost of connecting the

open facilities, that is,
∑

i∈F fi +
∑

j∈D djci(j)j + M
∑

e∈T ce.

An application modeled nicely by the above framework is telecommunication net-

work design [5, 60]. A common model of a telecommunication network consists of a

central core and a set of endnodes. The core consists of a set of interconnected core

nodes which have switching capability. Each core node also incurs some switch cost.

Designing the network involves selecting a subset of core nodes, connecting the core

nodes to each other and routing traffic from the endnodes to the selected core nodes.

Here the clients are the endnodes of the network, and the facilities are the core nodes.

The opening cost of a facility corresponds to the switch cost of the corresponding core

node, while the parameter M reflects the more expensive cost of interconnecting the

core nodes with high bandwidth links.

The Rent-or-Buy Problem. A useful special case of connected facility location

arises if we allow a facility to be opened at any location and set all facility opening

costs to 0, i.e., F = V and fi = 0 for all i. This is known as the rent-or-buy problem.

The cryptic name can be explained as follows. Suppose we guess a facility v, denoted

as the sink, that is opened by the optimal solution. Since we can open facilities

anywhere without incurring any cost, we will open facilities exactly at those locations

where at least M clients are gathered and pay a cost of M per unit length to connect

this open facility to the sink. This gives an alternate way to view the problem. We

want to route demand from the clients to the sink by constructing a tree that connects

the clients to v and installing sufficient capacity on the tree edges. We can either rent

capacity on an edge by paying a cost per unit length proportional to the amount

of capacity rented (which will equal the demand routed along the edge), or pay a

one-time fixed cost of M (per unit length) and buy unlimited capacity. The objective
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is to find a tree with minimum cost.

6.1.1 Summary of Results

Our main results are a primal-dual 4.55-approximation algorithm for the rent-or-

buy problem and an 8.55-approximation algorithm for the connected facility location

problem. We present these algorithms in Section 6.4 and Section 6.5 respectively. In

Section 6.6 we extend the algorithms to handle an edge-capacitated generalization

of the problem. We now require clients to be connected to facilities via cables of

capacity u that have a fixed cost σ per unit length. Multiple cables may be laid

along an edge if necessary to route the demand along the edge. We give a constant-

factor approximation algorithm for this generalization. In a subsequent chapter, we

consider a variant of ConFL where we require that a feasible solution open at most

k facilities. We show in Section 7.4 how to use the algorithm of Section 6.5 to obtain

a constant-factor approximation algorithm for this problem.

6.1.2 Related Work

Connected Facility Location arises as a natural problem in various important appli-

cations. Krick, Räcke & Westermann [48] arrive at the problem by considering a data

management/caching application. We have a set of users issuing read and write re-

quests for data objects. Each object has to be stored in a memory module by paying

a certain storage cost — an object may be replicated and stored in multiple locations.

Given a placement of objects, a read request for an object issued at node j is served

by the nearest location, i(j), that has a copy of the object; a write request however

needs to update all copies of the object. Krick et al. show that with a small loss in

performance, this can be modeled by a single multicast tree connecting all locations

that hold a copy of the object. A write request at j first sends a message to i(j)

which then initiates the update of all copies via the multicast tree. The goal is to find

a placement of objects to memory modules that minimizes the sum of the storage,

read and write request costs. This is exactly the connected facility location problem
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where the clients are the nodes issuing read/write requests, the facilities correspond

to memory modules and the facility cost is the associated storage cost. The demand

of a client is the number of requests issued by the node and the scaling parameter M

corresponds to the total number of write requests for an object. Here the connectivity

requirement is imposed by the need to maintain consistency of data.

Krick et al. gave a combinatorial constant-factor approximation algorithm for

this problem with a large constant guarantee of the order of several hundred. Ravi &

Selman [60] consider a closely related problem called the traveling purchaser problem,

where the open facilities have to be connected by a cycle instead of a tree. They obtain

a constant-factor guarantee by rounding the optimal solution to an exponential size

LP using the ellipsoid method, which makes the algorithm very inefficient. Gupta,

Kleinberg, Kumar, Rastogi & Yener [32] gave an algorithm with an approximation

guarantee of 10.66 for ConFL and 9.001 for the rent-or-buy problem. Their algorithm

is also based on rounding an exponential size LP as in [60]. Previously these were the

best known guarantees. Subsequent to the publication [75] of the results presented in

this chapter, Gupta, Kumar and Roughgarden [34] gave randomized approximation

algorithms with ratios of 10.1 for ConFL and 3.55 the rent-or-buy problem.

The special case of ConFL in which M = 1 has been more widely studied in the

computer science and operations research communities. Labbé, Laporte, Mart́ın &

González [51] gave a branch and bound procedure to exactly solve the cycle variant of

the problem. Kim, Lowe, Tamir & Ward [45] gave a dynamic programming algorithm

for the problem on a tree. Lee, Chiu & Ryan [52] considered the setting where the

open facilities have to be connected by a spanning tree and gave a branch and bound

algorithm. Khuller & Zhu [44] obtain a 5-approximation algorithm for this variant.

The rent-or-buy problem is an interesting special case that crops up in diverse

scenarios. It abstracts a setting in which demand points need to be clustered around

centers and the centers also have to be connected. Karger & Minkoff [43] introduced

the maybecast problem which is a probabilistic version of the Steiner tree problem.

Each terminal j is activated independently with probability pj, and the goal is to find
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a Steiner tree connecting each terminal to the root v such that the expected cost of the

subtree on the activated terminals is minimized. Gupta et. al. [32] arrived at the rent-

or-buy problem by considering the problem of provisioning a virtual private network

(VPN) where each VPN endpoint specifies only an upper bound on the amount of

incoming and outgoing traffic. In both cases, it is shown that there is an optimal or

near-optimal solution in which the demand points are clustered around hubs using

shortest paths, and the hubs are connected to the root by a Steiner tree. Thus, both

these problems reduce to the rent-or-buy problem. Karger & Minkoff [43] gave a

combinatorial algorithm with a constant approximation ratio of around 20. Kumar,

Rastogi, Silbershatz & Yener [50] implemented a heuristic for the problem and used

it to construct VPN trees. They report that the algorithm outperforms standard

heuristics over a wide range of parameter values, but do not give any worst-case

performance guarantees.

The single-sink buy-at-bulk problem is a generalization of the rent-or-buy problem

where one seeks a minimum-cost way of routing all demand to the sink by installing

capacity on the edges, and the per-unit length capacity installation cost is a con-

cave, increasing function of the capacity. Guha, Meyerson and Munagala [30] gave

a constant-factor approximation algorithm for this problem. The constant was im-

proved by Talwar [76] and subsequently by Gupta, Kumar & Roughgarden [34] to

73.

An orthogonal extension of the rent-or-buy problem is the multicommodity rent-

or-buy problem where instead of a common sink, there are multiple commodities

represented by source-sink pairs and the goal is to install capacity on the edges so

that one can simultaneously route the traffic between the source and sink of every

commodity. As in the single sink case, we may either rent or buy capacity on the

edges. Kumar, Gupta & Roughgarden [49] gave the first constant-factor approxima-

tion algorithm for the multicommodity rent-or-buy problem. Very recently, Gupta,

Kumar, Pál & Roughgarden [33] gave an algorithm with an improved ratio of 12.
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6.2 A Linear Programming Relaxation

In what follows, i will be used to index facilities, j to index the clients and e to index

the edges in G. We use the terms client and demand point interchangeably.

We assume that we know one facility v that is opened and hence belongs to the

Steiner tree constructed by the optimal solution (since we can try all |F| different

possibilities for v). We can now write the following integer program (IP) for ConFL.

min
∑

i

fiyi +
∑

j

dj

∑
i

cijxij + M
∑

e

ceze (IP)

s.t.
∑

i

xij ≥ 1 for all j,

xij ≤ yi for all i, j,

yv = 1∑
i∈S

xij ≤
∑

e∈δ(S)

ze for all S ⊆ V, v /∈ S, j ∈ D, (1)

xij, yi, ze ∈ {0, 1} for all i, j, e. (2)

Here yi indicates if facility i is open, xij indicates if client j is connected to facility i and

ze indicates if edge e is included in the Steiner tree. The first and second constraints

say that each client must be assigned to an open facility, and constraint (1) encodes

the requirement that the open facilities should be connected to v. Consider any set

S ⊆ V that does not contain v. If there is some client j that is getting served by

some (open) facility in S, then to connect this facility to the root there must be some

outgoing edge from this set S that is included in the Steiner tree, and this is enforced

by (1). Relaxing the integrality constraints (2) to xij, yi, ze ≥ 0 gives us a linear

program (LP). For simplicity, in the sequel we assume that all demands dj are equal

to 1. We show how to get rid of this assumption in Section 6.7. The quantity O∗ will

always denote the cost of an optimal integer solution, i.e., the value of the integer

program (IP). We use OPT to denote the value of the optimal solution to the linear

program (LP) which may be obtained by a fractional solution.
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6.3 The High Level Idea

Let us first give some intuition. Observe that connected facility location has elements

of both the facility location problem and the Steiner tree problem. Without the

connectivity requirement, the problem is just uncapacitated facility location, and if

we know which facilities to open then we can simply assign each demand to the closest

open facility and connect the open facilities by a Steiner tree.

Consider first the naive algorithm where we decide which facilities to open using a

good algorithm for uncapacitated facility location, and then connect the open facilities

by a Steiner tree. However, this fails immediately. For example, in the rent-or-buy

problem, we would just open a facility at each demand point, and so connecting

the open facilities might incur a huge cost. Thus there is an implicit cost (besides

the facility opening cost) associated with opening a facility due to the connectivity

requirement: once we open a facility, we have to connect it to the other open facilities

by buying edges at a cost of M per unit length. Since the rental cost is less than the

buying cost when there are fewer than M demand points, it seems reasonable, at least

in the rent-or-buy problem where we can open a facility anywhere without incurring

any cost, to open a facility only if there are at least M demand points using that

facility. This is exactly what we do. Our strategy will be to open facilities and assign

clients to facilities paying a small cost relative to the optimal cost, ensuring that we

cluster at least M demand points around each open facility, and then connect the

open facilities. We make the above intuition precise in Lemma 6.4.1 and show that

indeed the added clustering requirement allows us to bound the cost of connecting

the facilities relative to the optimal cost and the assignment cost incurred by our

algorithm.

The algorithm consists of a facility location phase and a Steiner phase. The ConFL

dual program can be interpreted as consisting of a part resembling the dual of the

facility location problem and a part corresponding to the dual of the Steiner tree

problem. In the facility location phase, we open facilities and assign clients to facili-

ties satisfying the demand lower bound of M ; in the Steiner phase, we simply connect
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the open facilities by a Steiner tree. In the facility location phase, we simultaneously

construct an integer primal solution and a feasible dual solution and are able to meet

the demand lower bound by charging some of the cost incurred to the Steiner tree

portion of the dual solution. Thus we exploit the fact that any ConFL solution also

needs to connect the facilities it opens. This is the key point where we depart from

previous approaches [43, 31], in which the clustering requirement is only approxi-

mately satisfied using a bicriteria approximation algorithm for the Lower Bounded

Facility Location (LBFL) problem, which is a facility location problem where each

open facility is required to serve a certain threshold number of clients. The disad-

vantage of this approach is that the LBFL instance is solved by a black box that (a)

makes no use of the fact that the need to cluster demand points is imposed by the

connectivity requirement, and (b) gives an inferior performance guarantee because it

is only able to approximately meet the clustering requirement.

6.4 The Rent-or-Buy Problem

We first consider the rent-or-buy case where a facility can be opened at any vertex of

V and all facility opening costs are 0, i.e., F = V and fi = 0 for all i.

The linear program (LP) now simplifies to:

min
∑

j

∑
i

cijxij + M
∑

e

ceze (RB-P)

s.t.
∑

i

xij ≥ 1 for all j,

∑
i∈S

xij ≤
∑

e∈δ(S)

ze for all S ⊆ V, v /∈ S, j ∈ D,

xij, ze ≥ 0 for all i, j, e.

The dual of this linear program is:



121

max
∑

j

αj (RB-D)

s.t. αj ≤ cij +
∑

S⊆V :i∈S
v/∈S

θS,j for all i 6= v, j ∈ D, (3)

αj ≤ cvj for all j, (4)∑
j

∑
S⊆V :e∈δ(S)

v/∈S

θS,j ≤Mce for all e, (5)

αj, θS,j ≥ 0 for all j, S.

Intuitively, αj is the payment that demand j is willing to make towards construct-

ing a feasible primal solution. Constraint (3) says that a part of the payment αj goes

towards assigning j to a facility i. The remaining part goes towards constructing the

part of the Steiner tree that joins i to v. The algorithm runs in two phases. First we

cluster demands in groups of M ; once we have this, we run the second phase where

we build the Steiner tree.

We begin with a simplifying assumption. We assume that a facility can be opened

anywhere along an edge. We collectively refer to vertices in V and internal points

on an edge as locations. We reserve the term facility for a vertex in F . We may

assume that for an edge e = (u, w), the value of ce is equal to cuw which is shortest

path distance from u to w (otherwise we may simply set ce = cuw without changing

any shortest path distances). We extend the metric c to a metric on locations by

considering e to be composed of infinitely many edges of infinitesimal length. So for

points p on an edge e, the distance cup varies continuously and monotonically from

0 to ce = cuw as we go from u to w, and cwp = ce − cup. For any other vertex

r 6= u, w, we set crp = min(cru + cup, crw + cwp). Finally for any two points p, q on

edges e1 = (u, w), e2 respectively, cpq = min(cuq + cup, cwq + cwp).

Phase 1: The Facility Location Phase

We build a (partial) integer primal solution and a feasible dual solution simultane-
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ously. The primal-dual process is conceptually quite simple: each demand j keeps

raising its dual variable, αj, till it gets assigned to a location at which M clients

are clustered. All other variables simply respond to this change trying to maintain

feasibility or complementary slackness.

We have a notion of time, t. Initially t = 0 and all dual variables are initialized

to 0. As time increases, we raise the dual variables αj at unit rate (i.e., αj = t at

time t). We shall also tentatively open some locations. At t = 0, v is tentatively open

and all other locations are closed. At some point of time, we say that demand j is

tight with a location i if αj ≥ cij. Let Sj be the set of vertices with which j is tight

at some point of time. When we raise αj, we also raise θSj ,j at the same rate. This

will ensure feasibility of constraints (3). So, it is enough to describe how to raise the

dual variables αj.

Clients can be in two states: frozen or unfrozen. When a client j gets frozen,

we stop raising its dual variable αj. So if client j is unfrozen at time t, αj = t.

After j is frozen, it does not become tight with any new location, i.e., a location

not in Sj. Initially, all clients are unfrozen. We start raising the αj of all demand

points at unit rate until one of the following events happens (if several events happen

simultaneously, consider them in any order):

1. j becomes tight with a tentatively open location i: j becomes frozen.

2. There is a closed location i with which at least M demand points are tight:

tentatively open i. All of the demand points tight with i become frozen.

We now raise the αj of unfrozen clients only. We continue this process until all

clients become frozen. Figure 6.1 shows a sample run of the algorithm with M = 2

and 5 demand points. Note that although there is a continuum of points along an

edge, to implement the above process we only need to know the time when the next

event will take place. This can be obtained by keeping track of, for every edge and

every demand point j, the portion of the edge that is tight with j.

Now we decide which locations to open. Let L be the set of tentatively open



123

v

i
2

1
t=0

3
l

5

4

v

i
2

1
t=1

3
l

5

4

(a) (b)

v

i

t=2
1

2

3
l

5

4

v

i

t=3
1

2

l

v = t = 35

5

4

3

(c) (d)

closed location

tentatively open location

unfrozen demand

frozen demand

Figure 6.1: A sample run with M = 2. (a) The initial state, (b) t = 1, (c) i becomes
tight with clients 1 and 2; i is tentatively opened and 1, 2 become frozen, (d) The
final solution. Demand point 3 reaches i and gets frozen; l becomes tight with clients
4 and 5 and is tentatively opened, causing clients 4 and 5 to freeze.

locations. We say that i, i′ ∈ L are dependent if there is demand point j which is

tight with both these locations. We say that a set of locations is independent if no

two locations in this set are dependent. We find a maximal independent set L′ of

locations in L as follows: arrange the locations in L in the order they were tentatively

opened. Consider the locations in this order and add a location to L′ if no dependent

location is already present in L′. We open the locations in L′. Observe that v ∈ L′.



124

less than

w

u

w

u

M

client

open location

vertex

Steiner edge

at least

w

u

w

u

M

(a) (b)

Figure 6.2: Moving intermediate facilities to vertices. (a) |Dw| ≤M , (b) |Dw| ≥M

We assign a demand point j to an open location as follows. If j is tight with some

i ∈ L′, assign j to i. Otherwise let i be the location in L that caused j to become

frozen. So j is tight with i. There must be some previously opened location i′ ∈ L′

such that i and i′ are dependent. We assign j to i′. Let σ(j) denote the location to

which j is assigned.

Phase 2: The Steiner Phase

First we augment the graph G to include edges incident on open non-vertex locations.

Let {i1, . . . , ik} be the open locations on edge e = (u, w) ordered by increasing distance

from u, with i1 6= u, ik 6= w. We add edges (u, i1), (i1, i2), . . . , (ik−1, ik), (ik, w) to G.

We now build a Steiner tree with L′ as the set of terminals using a ρST -approximation

algorithm for the Steiner tree problem. It is a well known fact that a minimum cost

Steiner tree can be approximated to within a factor of 2 by a minimum spanning tree,

therefore we assume from now on that ρST ≤ 2.

The solution obtained may be infeasible since a non-vertex location may be opened

as a facility. Consider an edge e = (u, w) whose internal points contain open locations.

Let De be the set of demand points which are assigned to such locations. Let Du ⊆

De be the set of demand points that reach their assigned location on e via u, i.e.,

cσ(j)j = cuj + cσ(j)u for j ∈ Du; Dw is defined similarly. The Steiner tree T must
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contain at least one of u or w. If both u, w ∈ T , we assign clients in Du to u and

clients in Dw to w without increasing the cost. Suppose u ∈ T, w /∈ T . Let l be the

open location which is farthest from u (and hence, nearest to w) on e. We assign all

clients in Du to u. If |Dw| < M , we assign clients in Dw to u and remove edges in T

that lie along e (see Fig. 6.2a). This only decreases the cost, because considering the

net cost due to edge e, earlier the cost incurred was at least Mcul + |Dw|cwl > |Dw|cuw

to buy Steiner edges along e connecting location l to u, and to assign clients in Dw

to an open location on e, whereas now we pay a cost of |Dw|cuw to assign the clients

in Dw to u. If |Dw| ≥M , we reassign all clients in Dw to w and add all of e to T (see

Fig. 6.2b). It is easy to see that the total cost only decreases and that T remains a

Steiner tree on the open locations. Thus, we can shift all open locations to vertices

of G without increasing the total cost.

6.4.1 Analysis

Let C∗, S∗ denote the assignment cost and Steiner tree cost of an optimal (integer)

solution (that opens v). Recall that O∗ = C∗ + S∗ is the optimal cost. We will

sometimes abuse notation and use O∗ to also denote an optimal solution. We show

that the solution returned has cost at most (3 + ρST ) · O∗. Let
(
α(1), θ(1)

)
be the

value of the dual variables at the end of Phase 1. We start by making the intuition

of Section 6.3 precise.

Lemma 6.4.1 Let A be a set of locations. Let Dl be a set of clients associated

with each location l ∈ A such that |Dl| ≥ M and the sets Dl are all disjoint, i.e.,

Dl ∩ Dl′ = ∅ for l 6= l′. Then the cost of an optimal Steiner tree connecting the

locations in A is at most S∗ + C∗ +
∑

l∈A\{v}
∑

j∈Dl
cij.

Proof : We will show that the optimal tree can be extended to yield a Steiner

tree on the locations in A of cost no greater than the claimed cost, the optimal tree

spanning A can only cost less. Note that the optimal tree contains v. We obtain such

a tree by connecting each location l ∈ A\{v} to the optimal tree with cost S∗ via the
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Figure 6.3: Extending the optimal tree to a Steiner tree on the open locations.

shortest l− j− i∗(j) path for j ∈ Dl, where i∗(j) is the facility to which j is assigned

in O∗. (see Fig. 6.3). For any l ∈ A \ {v} the cost of adding the connecting edges is

at most M(length of the shortest l− j − i∗(j) path for j ∈ Dl) ≤
∑

j∈Dl
(ci∗(j)j + clj)

since |Dl| ≥M . Summing over all such locations l, the tree obtained has cost at most

S∗ + C∗ +
∑

l∈A\{v}
∑

j∈Dl
clj.

Observe that the set of open locations L′ is a set that with all the properties

stated in Lemma 6.4.1. Let D′ =
⋃

i∈L′\{v} Di. Recall that σ(j) is the location to

which j is assigned. Note that the algorithm assigns every demand point j ∈ Di

to i. Using the above lemma, the cost of the Steiner tree constructed on L′ by a

ρST -approximation algorithm is at most ρST · O∗ + 2
∑

j∈D′ cσ(j)j. We will show that

3
∑

j∈D′ cσ(j)j +
∑

j /∈D′ cσ(j)j ≤ 3 · O∗. Since the assignment cost incurred is
∑

j cσ(j)j,

we get that the total cost is at most (3 + ρST ) · O∗.

Lemma 6.4.2 The dual solution
(
α(1), θ(1)

)
is feasible.

Proof : It is easy to see that (3) is satisfied. Indeed, once j gets tight with i, αj

and
∑

S:i∈S,v /∈S θS,j are raised at the same rate. Similarly, (4) is satisfied.

Now consider an edge e = (u, w). Let l(j) be the contribution of j to the left

hand side of (5) for this edge, i.e., l(j) =
∑

S:e∈δ(S),v /∈S θ
(1)
S,j. Suppose cju ≤ cjw. So,

j becomes tight with u before it becomes tight with w. Consider a point p on the

edge (u, w) at distance x from u. If p were the last point on this edge with which j
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became tight (before it became frozen), then l(j) ≤ x. Define f(j, x) as 1 if j is tight

with p and j was not frozen at the time at which it became tight with p, otherwise

f(j, x) is 0. So, we can write l(j) ≤
∫ ce

0
f(j, x)dx. Interchanging the summation and

the integral in (5), we get∑
j

∑
S⊆V :e∈δ(S),v /∈S

θ
(1)
S,j ≤

∑
j

∫ ce

0

f(j, x)dx =

∫ ce

0

∑
j

f(j, x)dx

Now, we argue that for any x,
∑

j f(j, x) ≤ M . Otherwise, we have more than M

demand points that are tight with a point such that none of these demand points

are frozen — a contradiction. So
∫ ce

0

∑
j f(j, x)dx is at most Mce, which proves the

lemma.

Lemma 6.4.3 The assignment cost of client j is at most α
(1)
j if j ∈ D′, and at most

3α
(1)
j , otherwise.

Proof : If j ∈ D′, the claim clearly holds since j is tight with location σ(j) ∈ L′.

Otherwise let j be assigned to i. Let i′ be the tentatively open facility that caused

j to become frozen. It must be the case that i and i′ are dependent. So there is a

client k that is tight with both i and i′. Let ti′ be the time at which i′ was tentatively

opened. Define ti similarly. It is clear that α
(1)
j ≥ ti′ .

Now, cij ≤ cik + cki′ + ci′j ≤ 2α
(1)
k + α

(1)
j . Also, α

(1)
k ≤ ti′ . Otherwise, at time

t = α
(1)
k , k is tight with both i and i′. Suppose it becomes tight with i first (the other

case is analogous). If i is tentatively open at this time, then k will freeze and so it

will never become tight with i′. Therefore, i cannot be tentatively open at this time.

But then, k must freeze by the time i becomes tentatively open, i.e., α
(1)
k ≤ ti ≤ ti′ .

So, α
(1)
k ≤ ti′ ≤ α

(1)
j . This implies that cij ≤ 3α

(1)
j .

Taking ρST = 1.55 [65], we obtain the following.

Theorem 6.4.4 The algorithm produces a solution of cost at most 4.55 · O∗.

Proof : The connection cost is bounded by ρST · O∗ + 2
∑

j∈D′ cσ(j)j. Adding this

to the assignment cost
∑

j cσ(j)j and using Lemma 6.4.3 proves the result.
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Bounding the Integrality Gap

Instead of the 1.55-approximation algorithm, if we run the primal-dual Steiner tree

algorithm due to [2, 26] with ρST = 2 in Phase 2, we get a solution of cost at most

5 ·OPT . Recall that OPT is the cost of a (possibly) fractional optimum solution to

(RB-P). This shows that the integrality gap of this LP relaxation is at most 5.

We will simulate the algorithm of [2, 26] for the Steiner tree problem with root v

and terminal set L′ \ {v} by raising some dual variables in Phase 2. First, set αj = 0

for all j. We raise the αj value of clients in D′ only. The tree T that we construct

is empty to begin with. Initially, the minimal violated sets (MVS) are the singleton

sets {i} for i ∈ L′ − {v}. For a set S, define DS =
⋃

i∈S∩L′ Di. For each MVS S,

j ∈ DS, we raise αj at rate 1/|DS|. We also raise θS,j, at the same rate. This ensures

that
∑

j θS,j grows at rate 1 for any MVS S. Note that we are not ensuring feasibility

of constraints (3), (4).

We raise the dual variables till inequality (5) holds with equality for some edge

e; we say that edge e goes tight when this happens. We add e to T and update the

minimal violated sets. This process continues till there is no violated set, i.e., we

have only one component (so v is in this component). Now we consider edges of T in

the reverse order they were added and remove any redundant edges. This is our final

solution. Let
(
α(2), θ(2)

)
be the dual solution constructed by this process.

Lemma 6.4.5 cost(T ) ≤ 2 ·
∑

j∈D′ α
(2)
j .

Proof : At any point of time, define the variable θS, where S is a minimal violated

set, as
∑

j θS,j. Since θS grows at rate 1, Phase 2 simulates the primal-dual algorithm

for the rooted Steiner tree problem with v as the root. So, the cost of the tree is

bounded by 2 ·
∑

S θS (see [26, 2, 80]), where the sum is over all subsets of vertices

S. But
∑

S θS =
∑

j∈D′ α
(2)
j .

Lemma 6.4.6 For any client j and i 6= v, α
(2)
j ≤ cσ(j)j + cij +

∑
S⊆V :i∈S,v /∈S θ

(2)
S,j.

Further, α
(2)
j ≤ cσ(j)j + cvj.
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Proof : If j /∈ D′, α
(2)
j = θ

(2)
S,j = 0 and the inequalities above hold. So fix a demand

point j ∈ D′ and facility i, i 6= v. During the execution of Phase 2, let St be the

component to which j contributes at time t. Consider the earliest time t′ for which

i ∈ St′ . After this time, both the left hand side and right hand side of (3) increase at

the same rate, so we only need to bound the increase in αj by time t′. Let l = σ(j).

Since we are raising αj, it must be the case that j ∈ Dl and so, clj ≤ α
(1)
j . We

claim that t′ ≤ Mcli. This is true since St always contains l, and by time t = Mcli

all of the edges along the shortest path between l and i would have grown tight.

Since αj increases at a rate of at most 1/M , the increase in αj by time t′ is at most

Mcli

M
≤ clj + cij. This proves the first inequality. The second inequality holds because

we stop increasing αj once v lies in St.

Theorem 6.4.7 The above algorithm produces a solution of cost at most 5 ·OPT.

Proof : Define α′j = max(α
(2)
j − cσ(j)j, 0). It is clear that the θ

(2)
S,j values satisfy

(5), by the above lemma,
(
α′, θ(2)

)
is a feasible dual solution. By Lemma 6.4.5,

cost(T ) ≤ 2
∑

j α
(2)
j ≤ 2

∑
j α′j + 2

∑
j∈D′ cσ(j)j ≤ 2 ·OPT + 2

∑
j∈D′ α

(1)
j . Combining

this with the assignment cost and using Lemma 6.4.3, we see that the cost of our

solution is at most 5 ·OPT .

6.5 The General Case

We now consider the case where F need not be V and facility i has an opening cost

fi ≥ 0. Since facilities may only be opened at specific locations, it is possible that

an edge is used both to route demand from a client to a facility, and also as an edge

in the Steiner tree to connect facilities. We call the former type of edge a facility

location edge and the latter a Steiner edge. For convenience, we assume that fv = 0.

Clearly, this does not affect the approximation ratio of the algorithm. As usual, i

indexes the facilities in F and j indexes the clients in D. The primal and dual LPs
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are:

min
∑
i6=v

fiyi +
∑

j

∑
i

cijxij + M
∑

e

ceze (ConFL-P)

s.t.
∑

i

xij ≥ 1 for all j,

xij ≤ yi for all i 6= v, j ∈ D,

xvj ≤ 1∑
i∈S

xij ≤
∑

e∈δ(S)

ze for all S ⊆ V, v /∈ S, j ∈ D,

xij, yi, ze ≥ 0 for all i, j, e.

max
∑

j

αj −
∑

j

βvj (ConFL-D)

s.t. αj ≤ cij + βij +
∑

S⊆V :i∈S
v/∈S

θS,j for all i 6= v, j ∈ D, (6)

αj ≤ cvj + βvj for all j,∑
j

βij ≤ fi for all i 6= v, (7)

∑
j

∑
S⊆V :e∈δ(S)

v/∈S

θS,j ≤Mce for all e,

αj, βij, θS,j ≥ 0 for all i, j, S.

An Overview of the Modifications

The basic idea is similar: we still want to gather at least M clients at every facility

that we open so that the cost of connecting this facility to other open facilities by

Steiner edges can be amortized against the gathered demand. However, whereas

earlier where we could tentatively open any location with which M clients are tight,

we cannot do that here since the set of candidate facility locations F may be a very

small subset of V . Also, we need to pay a facility opening cost before we can open a

facility.
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Dl

Dl

Steiner edges

demand in
M

min
l

αj2
Djl

i

open facility
(terminal facility for )l

nearby terminal location

Figure 6.4: Steiner edges connecting an open facility to the “nearby” point where M
clients are gathered.

Consequently, we will not quite be able to meet the demand requirement of M

at every facility we open, but we will ensure that for every open facility, there are

M demand points gathered at a point “near” the facility (see Fig. 6.4). In Phase

1 of the algorithm, we will open facilities and assign each client to an open facility.

Additionally, for each open facility we will connect it to the point near it at which M

demand points are gathered using Steiner edges, and we will argue that we can pay

for the cost of buying this path by the combined dual of the gathered clients. These

components act as the terminals upon which the Steiner tree is constructed in Phase

2.

Phase 1: The Facility Location Phase

Most of the changes are in this phase. A location still refers to a vertex in V or a

point along an edge. We will only open facilities at locations in F ⊆ V . Initially all

dual variables are 0 and only facility v is tentatively open. We also declare location

v to be a terminal location. Recall that client j is said to be tight with location i if

αj ≥ cij. As in the previous section, we will grow each dual variable αj till j becomes

tight with a location, referred to as a terminal location, with which at least M clients

are tight. Once this happens however, we do not freeze j yet. Since we have to assign

client j to an open facility and also have to pay for opening facilities, we continue to

increase αj till j becomes tight with a tentatively open facility. While doing so, if j

becomes tight with a facility that is not yet open, then it starts contributing toward

the facility opening cost of this facility.
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To describe the primal-dual process in detail, we define a few additional concepts.

As before, a client can be frozen or unfrozen. Further, a client j could either be free

or be a slave. At t = 0, each client j is free and unfrozen. We say that client j is

bound to a location l if j is tight with l and was free when it became tight with l.

Define the weight of a location l as the number of clients that are bound to l. We say

that a facility i has been paid for if
∑

j βij = fi.

At any point in time, define Sj to be the set of vertices with which client j is

tight. When j becomes tight with a facility i, we have two options — we can raise βij

or we can raise θSj ,j. We raise θSj ,j at the same rate and continue this till j becomes

tight with a terminal location, that is, a location that has at least M clients bound

to it1. At this point we say that j becomes a slave — it is no longer free. Similarly,

when j becomes tight with a location l that is not a facility, we may or may not raise

θSj ,j (we have this option since constraint (6) applies only to facilities i). We first

increase θSj ,j until j becomes tight with a terminal location and is declared to be a

slave. After this point, we start raising βij for each facility i ∈ Sj, and do not raise

θSj ,j any more. More precisely, we raise the αj of every unfrozen client, be it free or

a slave, at unit rate until one of the following events happens:

1. The weight of some location l becomes at least M : declare l to be a terminal

location. If j is free and tight with l, it now becomes a slave. From this point

on we raise only βij for facilities i in Sj (there may be none if the current

αj < mini cij) as described above.

2. A free j becomes tight with a terminal location l: j becomes a slave. If l = v,

connect j to l and freeze j. Otherwise, we stop raising θSj ,j and raise βij for

facilities i in Sj.

3. A facility i gets paid for, i.e.,
∑

j βij = fi: tentatively open i. If an (unfrozen)

slave client j is tight with i, connect it to i and freeze j.

1The reverse — raising βij first until j gets connected to a facility and then increasing θSj ,j

also works — but we raise the dual variables in this fashion in order to prove a guarantee for the
connected k-median problem.
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4. A slave client j becomes tight with a tentatively open facility i: connect j to i,

freeze j.

We continue this process until all j become frozen. Frozen clients do not participate

in any new events. Note that every client j starts out as free and unfrozen, then

becomes a slave by becoming tight with a terminal location, and finally gets frozen

by getting connected to exactly one tentatively open facility. Let
(
α(1), β(1), θ(1)

)
be

the dual solution obtained. Clearly, β
(1)
vj = 0 for all j.

Let L be the set of all terminal locations. Let tl be the time at which l was declared

a terminal location. Let Dl be the set of clients bound to l. We associate a terminal

facility with each l ∈ L. Consider the client in Dl with smallest α
(1)
j value. We call

this the representative client of location l. Let i be the tentatively open facility to

which the representative client is connected. We denote i as the terminal facility

corresponding to l. Let the terminal facility corresponding to v be v itself. Let F be

the set of all terminal facilities. We will only open facilities from the set F .

We will pick a subset of terminal locations and open the terminal facilities corre-

sponding to these locations. For each location l that we pick, we will connect l to its

terminal facility i by buying Steiner edges along a shortest l − i path (see Fig. 6.4).

We choose the subset of terminal locations carefully so as to ensure that a client j

does not pay for opening or connecting more than one facility. Say that two facilities

i, i′ are dependent if either (1) there is a client j with both β
(1)
ij , β

(1)
i′j > 0, or (2) there

is a location l ∈ L and a client j such that i is the terminal facility corresponding

to l, j is in Dl, and β
(1)
i′j > 0. The second condition is added to ensure that j does

not pay for both opening i′ and for connecting i to l via Steiner edges. We also have

a notion of dependence between locations in L. We say that locations l and l′ in L

are dependent if either there is a demand point that is bound to both l and l′, or the

terminal facilities corresponding to l and l′ are dependent. Now we greedily select a

maximal independent set of locations by looking at locations in a particular order.

With each l ∈ L we associate a value φl. Let j be the representative client of l. Define

φl = max(α
(1)
j , tl), set φv = 0. We look at the locations in L in increasing order of
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φl, and select a maximal independent subset L′ of L as before. Let F ′ be the set of

terminal facilities corresponding to locations in L′. We open all the facilities in F ′.

Note that v ∈ F ′.

We associate a terminal location σ(j) with each demand point j. If j ∈ Dl where

l ∈ L′, set σ(j) = l. Note that σ(j) is well defined due to our independent set

construction. Otherwise let l be the location in L that caused j to become a slave.

There is a previously selected location l′ ∈ L′ such that l and l′ are dependent. Set

σ(j) = l′. Client j is assigned to a facility i(j) ∈ F ′ as follows: if there is a facility

i ∈ F ′ such that β
(1)
ij > 0, assign j to i. Otherwise assign j to the terminal facility

corresponding to σ(j).

Let D′ =
⋃

l∈L′−{v} Dl. We now form some components by adding edges connecting

each l in L′ to its terminal facility via a shortest path. Break any cycles by deleting

edges. Let T ′ be the set of edges added.

Phase 2: The Steiner Phase

This phase is similar to that of the previous section. G is augmented as before to

include edges incident on locations l ∈ L′. We construct a Steiner tree T ′′ connecting

all the components of T ′ using a ρST -approximation algorithm for the Steiner tree

problem, that is, we contract each component of T ′ and build a Steiner tree where the

terminals are the contracted components. We assume that ρST ≤ 2. Let T = T ′ ∪T ′′

denote the complete tree on the open facilities.

Remark 6.5.1 It is possible that the tree T contains an edge with a non-vertex

location as an end-point — this will happen if such a location is a leaf of the tree.

We delete such edges to get a new tree that only uses edges of the original graph.

6.5.1 Analysis

Let F ∗, C∗, S∗ denote respectively the facility cost, assignment cost and connection

cost of an optimal (integer) solution, O∗ = F ∗ + C∗ + S∗ denotes the optimal cost.
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Applying Lemma 6.4.1 with L′ as the set A, we obtain that the cost of an optimal

Steiner tree on L′ is at most O∗ +
∑

j∈D′ cσ(j)j. Clearly the cost of the optimal tree

on the components of T ′ is no more since each component of T ′ contains at least one

terminal location in L′. So the cost of tree T ′′ constructed in Phase 2 is at most

ρST · O∗ + 2
∑

j∈D′ cσ(j)j. In Lemma 6.5.6 we bound the sum of 2
∑

j∈D′ cσ(j)j and the

remaining cost of opening facilities, assigning clients, and buying the Steiner edges in

T ′ by 7 · O∗, showing that the total cost incurred is at most (7 + ρST ) · O∗.

The proof of the following lemma is very similar to the proof of Lemma 6.4.2.

Lemma 6.5.2
(
α(1), β(1), θ(1)

)
is a feasible dual solution.

Lemma 6.5.3 Let l be a terminal location and i be its corresponding terminal facility.

Then cil ≤ minj∈Dl
2(α

(1)
j − β

(1)
ij ) ≤ 2φl.

Proof : Let j be any client in Dl and k be the representative client of l, so k is

connected to i. Then, cil ≤ 2α
(1)
k ≤ 2φl. So if β

(1)
ij = 0, cil ≤ 2(α

(1)
j −β

(1)
ij ). Otherwise,

let tj be the time at which j became a slave. Note that α
(1)
j = max(tj, cij) + β

(1)
ij and

clj ≤ tj, so cil ≤ 2(α
(1)
j − β

(1)
ij ).

Lemma 6.5.4 Let l and l′ be dependent terminal locations with φl ≤ φl′. If i is the

terminal facility corresponding to l, cil′ ≤ 6φl′.

Proof : Let k be the representative client of location l. Let i′ be the terminal facility

for l′ and k′ be the representative client of l′. By Lemma 6.5.3, cil ≤ 2φl and ci′l′ ≤

2φl′ . Let ti and ti′ be the times at which i and i′ were tentatively opened respectively.

There are four cases to consider, depending on why l and l′ are dependent.

1. ∃j ∈ Dl ∩ Dl′ . Since j was free when it became tight with l and l′, clj, cl′j ≤

max(tl, tl′) ≤ max(φl, φl′) = φl′ . If we apply Lemma 6.5.3, we obtain that

cil′ ≤ cil + cll′ ≤ 4φl′ .

2. ∃j such that β
(1)
ij , β

(1)
i′j > 0. This implies that ci′j, cij ≤ α

(1)
j ≤ ti′ , ti. So cii′ ≤

2ti′ ≤ 2α
(1)
k′ ≤ 2φl′ , and cil′ ≤ 4φl′ .
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3. There is a terminal location r (which could be l), client j ∈ Dr such that i is the

terminal facility for r and β
(1)
i′j > 0. By the above argument, ci′j ≤ α

(1)
j ≤ ti′ ≤

φl′ , and cij ≤ cir +cjr ≤ 3α
(1)
j using Lemma 6.5.3. So cii′ ≤ 4φl′ =⇒ cil′ ≤ 6φl′ .

4. There is a terminal location r (which could be l′), client j ∈ Dr such that i′ is

the terminal facility for r and β
(1)
ij > 0. As above, cii′ ≤ 4φl =⇒ cil′ ≤ 6φl′ .

For an open facility i, define Ci as the set of demand points j for which β
(1)
ij > 0.

Let CF ′ = ∪i∈F ′Ci. Note that by our independent set construction, the sets Ci are

disjoint, and all clients in Ci are assigned to i. Recall that T ′ is the set of Steiner

edges added in Phase 1, and i(j) is the facility to which j is assigned.

Lemma 6.5.5 cost(T ′) ≤ 2
∑

j∈D′ α
(1)
j − 2

∑
j∈D′∩CF ′

β
(1)
i(j)j.

Proof : cost(T ′) ≤
∑

l∈L′ Mcill where il is the terminal facility corresponding to

l. Consider any terminal location l ∈ L′ with terminal facility i. By Lemma 6.5.3,

cil ≤ 2(α
(1)
j − β

(1)
ij ) for any j ∈ Dl. Since |Dl| ≥ M , Mcil ≤

∑
j∈Dl

2(α
(1)
j − β

(1)
ij ) =

2
∑

j∈Dl
α

(1)
j − 2

∑
j∈Dl∩CF ′

β
(1)
i(j)j since β

(1)
ij > 0 =⇒ j ∈ CF ′ and i(j) = i for j ∈ Dl

by our independent set construction. Summing over all l ∈ L′ proves the lemma.

Lemma 6.5.6 The solution obtained satisfies

7
∑
i∈F ′

fi +
∑

j

ci(j)j + cost(T ′) + 2
∑
j∈D′

cσ(j)j ≤ 7
∑

j

α
(1)
j .

Proof : We will charge each j an amount charge(j) such that

7
∑
i∈F ′

fi +
∑

j

ci(j)j + cost(T ′) + 2
∑
j∈D′

cσ(j)j ≤
∑

j

charge(j) ≤ 7
∑

j

α
(1)
j . (8)

Set charge(j) =



ci(j)j + 7β
(1)
i(j)j if j ∈ CF ′ −D′

ci(j)j + 7β
(1)
i(j)j + 2(α

(1)
j − β

(1)
i(j)j) + 2cσ(j)j if j ∈ CF ′ ∩D′

ci(j)j + 2α
(1)
j + 2cσ(j)j if j ∈ D′ − CF ′

ci(j)j if j /∈ D′ ∪ CF ′

.
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The first inequality in (8) follows from Lemma 6.5.5 and the fact that for each

i ∈ F ′, all j in Ci are assigned to i and
∑

j∈Ci
β

(1)
ij = fi. To prove the second

inequality, note that if j ∈ CF ′ then ci(j)j + β
(1)
i(j)j ≤ α

(1)
j . If j ∈ D′ then cσ(j)j ≤

tσ(j)j ≤ α
(1)
j − β

(1)
i(j)j as argued in Lemma 6.5.3. Also if j ∈ D′ \ CF ′ then ci(j)j ≤ 3α

(1)
j .

So if j ∈ D′ ∪ CF ′ , charge(j) ≤ 7α
(1)
j .

Consider j /∈ D′∪CF ′ . We show that ci(j)j ≤ 7α
(1)
j . Let l′ ∈ L−L′ be the location

that caused j to become a slave and let σ(j) = l ∈ L′. Clearly α
(1)
j ≥ tl′ and since

j ∈ Dl′ , α
(1)
j ≥ φl′ . Since σ(j) = l, l and l′ are dependent with φl ≤ φl′ , and i(j) is the

terminal facility corresponding to l. So by Lemma 6.5.4, ci(j)l′ ≤ 6φl′ . This implies

that ci(j)j ≤ 7α
(1)
j .

Putting the pieces together and taking ρST = 1.55, we get the following.

Theorem 6.5.7 Using the 1.55-approximation algorithm of [65], the algorithm above

produces a solution of cost at most 8.55 ·OPT.

Proof : The total cost incurred is
∑

i∈F ′ fi +
∑

j ci(j)j + cost(T ′) + cost(T ′′) and by

our earlier discussion, cost(T ′′) ≤ 2
∑

j∈D′ cσ(j)j + ρST · O∗. Using Lemma 6.5.6 now

proves the result.

Bounding the Integrality Gap

As in the previous section we can simulate the algorithm of [2, 26] with ρST = 2 in

Phase 2 to obtain a solution with cost at most 9 · OPT , thereby showing that the

integrality gap of (ConFL-P) is at most 9.

We initialize our tree T to T ′. As before, a minimal violated set (MVS) is a

minimal set S such that S ∩ L′ 6= ∅, v /∈ S and δ(S) ∩ T = ∅. Initially these are just

the components of T ′ not containing v. All dual variables are initially 0. We do not

raise any βij in this phase. We shall raise the αj value of clients in D′ only. For a set

S, define DS to be
⋃

l∈S∩L′ Dl. The rest of the procedure is identical to the procedure

described in the previous section. This yields the tree T = T ′ ∪ T ′′ connecting all the
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open facilities, where T ′′ denotes the set of Steiner edges added by this process. Let(
α(2), 0, θ(2)

)
be the dual solution constructed.

Theorem 6.5.8 The above algorithm produces a solution of cost at most 9 ·OPT.

Proof : As in Lemma 6.4.5, cost(T ′′) = 2
∑

j α
(2)
j , and by Lemma 6.4.6,

(
α′, 0, θ(2)

)
is a feasible dual solution where α′j = max(α

(2)
j − cσ(j)j, 0). So cost(T ′′) ≤ 2 ·OPT +

2
∑

j∈D′ cσ(j)j and cost(T ) ≤ 2 · OPT + 2
∑

j∈D′ cσ(j)j + cost(T ′). Adding this to∑
i∈F ′ fi +

∑
j ci(j)j and using Lemma 6.5.6, we get the claimed bound.

6.6 Generalization to Edge Capacities

We can extend our results to a capacitated generalization of connected facility location

where edges have capacities. Each edge has a length ce. We are given two kinds of

cables; one has a cost of σ per unit length and capacity u, the other has a cost of M

per unit length and infinite capacity. We wish to open facilities and lay a network

of cables so that clients are connected to open facilities using the first kind of cable.

Furthermore, we want the facilities to be connected to each other by a Steiner tree

using cables of the second type. We may install multiple copies of a cable along an

edge, if necessary, to handle the total demand through the edge. So routing d units of

demand through edge e now costs σd d
u
ece, whereas earlier the cost was simply d · ce.

Assuming integer demands, the uncapacitated problem considered earlier is a special

case obtained by setting u = 1, scaling edge costs by σ and M by 1
σ
. The facility

location aspect of this problem where we only have cables of the first type and do not

require that facilities be interconnected was considered in [62].

The rent-or-buy case with F = V, fi = 0 for all i now corresponds to a rent-or-buy

problem where we can either buy unlimited capacity on an edge paying a large fixed

cost of M per unit length, or rent capacity in steps of u units, paying a cost of σ per

unit length for every u units installed.

We assume σ ≤ M (since otherwise the optimal solution is just a Steiner tree

connecting the clients to v). We only consider the unit demand case. In the case
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of arbitrary demands, this approach yields somewhat worse guarantees. The details

may be found in [75]. We use a theorem of Hassin, Ravi & Selman [37] (see also [62])

stated in a slightly different form.

Theorem 6.6.1 Let Z be a Steiner tree on a set of terminals D rooted at v where

each edge has capacity u. Let wj be a weight associated with terminal j ∈ D. We can

clump the terminals into subtrees Z1, . . . , Zk so that,

(i) Each subtree except possibly Zk has exactly u terminals and Zk has at most

u terminals.

(ii) If we route flow along edges of Z from the u − 1 terminals in Zi to the

terminal in Zi with minimum weight for each i < k, and route flow from the

terminals in Zk to v, then we get a flow that respects edge capacities.

We can get a (ρConFL + ρST )-approximation algorithm for this problem by using

a ρConFL-approximation algorithm for ConFL and a ρST -approximation algorithm for

the Steiner tree problem.

C1. Obtain a ConFL instance by setting the edge costs to c′e = σce

u
and M ′ = Mu

σ
.

A solution to the original instance gives a solution to the ConFL instance of

no greater cost — the Steiner edges cost the same and the cost of routing d

units of demand through a facility location edge is d · σce

u
≤ σd d

u
ece. We solve

this relaxation approximately using the ρConFL-approximation algorithm. Let

i(j) be the facility to which j is assigned and T be the Steiner tree on the open

facilities.

C2. Obtain a Steiner tree instance by setting the edge costs to σce with the terminals

being the demand points and vertex v. This is a relaxation, since a solution

to the original instance connects all demand points to open facilities and all

open facilities to v with each edge costing at least σce, be it a facility location

edge or a Steiner tree edge (since M ≥ σ). We solve this Steiner tree instance

approximately. Let Z be the resulting tree.
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C3. Now we combine the two near-optimal solutions to get a feasible solution of cost

no greater than the sum of the costs of the two solutions. We use Theorem 6.6.1

with the tree Z and wj = c′i(j)j for demand point j. Let Z1, . . . , Zk be the

subtrees obtained. We first route demand in each subtree along edges of Z as

specified in the theorem. For each subtree Zi, i < k, the u units of demand

collected at the client j ∈ Zi for which c′i(j)j is minimum is then sent to facility

i(j) along the path from j to i(j).

The cost of routing demand along Z is at most the cost of Z in the Steiner tree

instance since each edge of Z carries at most u units of demand. Routing demand

along the path from j ∈ Zi to i(j) costs σci(j)j ≤
∑

k∈Zi

σci(k)k

u
=

∑
k∈Zi

c′i(k)k. The

only facilities we use are v and the facilities opened in the ConFL solution and these

are connected by the tree T which has the same cost in both the original instance and

the ConFL instance. So we get a feasible solution of cost at most (ρConFL+ρST )·OPT .

Taking ρST = 1.55 [65] and using Theorems 6.4.4 and 6.5.7 we obtain the following

theorem.

Theorem 6.6.2 There is a 10.1-approximation algorithm for Connected Facility Lo-

cation with edge capacities and unit demands. For the case F = V and fi =

0 for all i, there is a 6.1-approximation algorithm.

6.7 Extensions and Refinements

Arbitrary Demands. Suppose instead of unit demands, each client j has a demand

of dj ≥ 0. The results of Section 6.4 and Section 6.5 extend to this case. A simple way

to handle this is to make dj copies of client j. But this only gives a pseudo-polynomial

time algorithm. We can however simulate this reduction.

In Phase 1, we raise each αj at a rate of dj. The variables βij, θS,j responding to

the increase in αj, also increase at rate dj. We modify the definition of tightness to

reflect this by replacing αj with αj/dj, i.e., we say that j is tight with i if αj/dj ≥ cij.

Instead of the number of clients tight with a location l, we now consider the total
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demand that is tight with l, i.e.,
∑

j:αj≥djcij
dj, and in the general case we again

consider only clients j bound to l. In the general case, the representative client for a

terminal location l is now the client k bound to l with smallest α
(1)
j /dj value, and we

set φl = max
(
α

(1)
k /dk, tl

)
. To bound the integrality gap, when we raise dual variables

in Phase 2 we raise αj and θS,j at a rate of
djP

j∈DS
dj
≤ dj

M
so that θS increases at a

rate of 1. The analogues of lemmas proved in Sections 6.4 and 6.5 are easily shown

to be true and we get the same approximation ratios. The guarantees of Section 6.6,

however suffer slightly.

The case M = 1. We can get significantly better results for this case. In Phase 1,

we run the Jain-Vazirani primal-dual algorithm for uncapacitated facility location

described in Section 2.2. Note that we never raise any dual variables θ
(1)
S,j. Let(

α(1), β(1), 0
)

be the dual solution constructed. Let F ′ be the set of opened facilities,

i(j) be the facility to which j is assigned, and CF ′ be the set of clients j such that

β
(1)
ij > 0 for some facility i ∈ F ′. Recall that the Jain-Vazirani algorithm ensures that

for every client j there is at most one facility i ∈ F ′ such that β
(1)
ij > 0, and it assigns

all clients with β
(1)
ij > 0, i ∈ F ′ to i. Further, every client j /∈ CF ′ is assigned to an

open facility that is at most 3α
(1)
j distance away. For any i in F ′, fi =

∑
j∈CF ′ :i(j)=i β

(1)
ij

and if j ∈ CF ′ then ci(j)j + β
(1)
i(j)j = α

(1)
j .

For each i ∈ F ′ we identify a client j connected to i such that β
(1)
ij > 0. Call this

the primary demand point for i. We add edges on the path from i to j to the Steiner

tree and contract these edges to form a supernode wi. Also make v a supernode, if

it is not already included in some supernode. In Phase 2, a Steiner tree is built on

the supernodes using the primal-dual algorithm of [2, 26]. Only the primary demand

points pay for the Steiner tree by increasing their αj variables. Let
(
α(2), 0, θ(2)

)
be

the dual solution, and D′ ⊆ CF ′ be the set of primary demand points.

Theorem 6.7.1 The cost of the solution produced is at most 4 ·OPT.

Proof : By arguing as in Lemmas 6.4.5 and 6.4.6, we get that the cost of the tree

on the supernodes is at most 2
∑

j α
(2)
j and that

(
α(2), 0, θ(2)

)
is now a feasible dual
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solution. The total cost is bounded by
∑

i∈F ′ fi +
∑

j ci(j)j +
∑

j∈D′(ci(j)j + 2α
(2)
j ) ≤∑

j∈D′(2α
(1)
j +2α

(2)
j )+

∑
j /∈D′ ci(j)j. For j ∈ D′ and any i, 2α

(1)
j +2α

(2)
j ≤ 4cij +2β

(1)
ij +

2
∑

S⊆V :i∈S,v /∈S θ
(2)
S,j, and for j /∈ D′, ci(j)j ≤ 3α

(1)
j ≤ 3cij + 3β

(1)
ij for any i. So the cost

is at most 4 times the value of a dual feasible solution, hence at most 4 ·OPT .

This gives a 5.55-approximation algorithm for the edge capacitated version dis-

cussed in Section 6.6.

The Connected k-Median Problem. In Section 7.4 we consider a variant of

connected facility location where we impose the additional requirement that at most

k facilities may be opened. We use the primal-dual algorithm from Section 6.5 as

a black box to obtain a constant-factor approximation ratio for this problem. The

algorithm for the connected k-median problem can then be used as a subroutine to

obtain results for variants and special cases of the problem involving edge capacities,

unit/arbitrary demands, M = 1 vs. M > 1. The details may be found in [75].



Chapter 7

k-Median Problems

7.1 Introduction

In various facility location settings, in place of, or in addition to, the facility opening

costs, there may be a bound imposed on the number of facilities that may be opened.

For example, the actual facility cost might consist of a long-term running cost and a

short-term opening cost, and we want to minimize the total long-term running cost of

the facilities and the client assignment costs, subject to the constraint that the short-

term opening cost is within a certain budget. If the short-term costs of the different

facilities are more or less comparable, then this translates to a cardinality bound on

the number of facilities that may be opened. So we could model the problem by

setting the fixed cost of a facility to its long-term running cost, with the objective

being to minimize the sum of the facility opening costs and client assignment costs

subject to the additional constraint that at most k facilities are opened (i.e., the

short-term cost does not exceed a budget). Now suppose that there are no facility

opening costs in the above problem (but there still is a bound of k on the number of

facilities we may open) and facilities may be opened at any location, then the problem

may also be described as follows: given a set of points (clients) in a metric space, we

want to choose k of them as medians (facilities) and assign each point to a median so

as to minimize the total assignment cost, that is, the sum of the distances from each

143
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point to its assigned median. This is the classical k-median clustering problem. One

may view each median as creating a cluster around it consisting of all the points that

are nearest to it, and the goal is to find the k centers which yield the best clustering

of the point set (under the k-median objective function). To avoid confusion, unless

it is otherwise clear from the context, whenever we say “the k-median problem”, we

are referring to the k-median clustering problem where there are no facility opening

costs and facilities may be opened anywhere and we call the k-median version of UFL

where there may also be facility opening costs “the k-facility location problem”.

In this chapter we consider the k-median versions of some facility location prob-

lems considered earlier and devise constant-factor approximation algorithms for these

problems. The k-median version of a facility location problem Π is the problem where

in addition to the constraints of the problem Π, there is an added constraint that

specifies that at most k facilities may be opened.

The same high-level framework is used to obtain all these approximation guaran-

tees: we will use an algorithm devised for the facility location problem Π, and the

fact that this algorithm satisfies certain desired properties to obtain an approximation

algorithm for the k-median version of problem Π. To see the connection between a

facility location problem and its corresponding k-median version, consider the classi-

cal k-median clustering problem. Given an instance with a set N of points located

in a metric space, consider the UFL instance where each point is both a facility and

a client, i.e., F = D = N , and every facility has an opening cost of λ, but there is no

restriction on the number of facilities that may be opened. When λ = 0, any reason-

able solution to the UFL instance would open a facility at each point thus opening

|D| facilities; on the other extreme if λ is very large, then we would open just one

facility and assign every point to this facility. The variable λ is thus a Lagrangian

multiplier (or a dual variable) that penalizes the violation of the “hard” cardinality

constraint limiting the number of open facilities, and the uncapacitated facility lo-

cation problem with facility costs set to λ arises as the Lagrangian relaxation of the

k-median problem. It seems natural, that by adjusting the value of λ one should be
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able to get a solution, using an algorithm for UFL, that opens k facilities, and that

such a solution may be a good solution for the k-median problem. This idea, does in

fact work, and we exploit it to derive approximation algorithms for various k-median

problems.

7.1.1 Summary of Results

We illustrate the Lagrangian relaxation method described above by considering three

specific examples. Jain & Vazirani [41] introduced this technique and used it to obtain

an elegant 6-approximation algorithm for the k-facility location problem. We describe

their algorithm in Section 7.2. In Sections 7.4 and 7.5 we look at the k-median ver-

sions of the connected facility location problem (Chapter 6) and the facility location

problem with service installation costs (Chapter 5) respectively, and give constant-

factor approximation algorithms for these problems. Each of these algorithms, uses

as a subroutine, an algorithm that was devised for the corresponding facility location

problem. The algorithm for the k-median version of UFL due to Jain & Vazirani

uses the primal-dual 3-approximation algorithm described in Section 2.2. For the

connected k-median problem we use the algorithm developed in Section 6.5, and for

the k-median version of facility location with service installation costs, we use the

primal-dual algorithm from Section 5.4.

7.1.2 Related Work

Although the classical k-median problem has been extensively studied in various

disciplines as a clustering problem and various heuristics have been devised for it (e.g.,

the k-means algorithm), the first constant-factor approximation algorithm for this

problem was given relatively recently by Charikar, Guha, Tardos & Shmoys [16] based

on LP rounding. They also gave an algorithm for the k-facility location problem,

i.e., the k-median version of UFL where facilities may have opening costs. Jain &

Vazirani [41] gave a 6-approximation algorithm for the k-median problem based on

their primal-dual algorithm for UFL. This was subsequently improved to 4 [15, 40].
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All these results are LP-based results and also give upper bounds on the integrality

gap of the k-median LP. Most recently, Archer, Rajagopalan & Shmoys [6] showed

that the integrality gap of the k-median LP is at most 3, but their proof does not

yield a polynomial time algorithm. The guarantees proved in these papers also carry

over to the k-facility location problem. The current best approximation guarantee for

the k-median problem is (3 + ε) due to Arya, Garg, Khandekar, Meyerson, Munagala

& Pandit [7] and is obtained by a local search procedure. Their algorithm can be

adapted to get a slightly worse approximation guarantee for the k-facility location

problem. To the best of our knowledge, the connected k-median problem and the

k-median problem with service installation costs seem to be new problems that have

not been considered earlier in the literature.

7.2 The k-Facility Location Problem

We now describe the algorithm of Jain & Vazirani for the classical k-facility location

problem. The input to the problem is a set of facilities F and a set of clients D and

a number k, and a solution consists of opening at most k facilities and assigning each

client to an open facility. The goal is to minimize the total facility opening and client

assignment costs. As usual we will assume that clients have unit demand. The LP

relaxation of this problem and its dual are as follows:

min
∑

fiyi+
∑
j,i

cijxij (KFL-P)

s.t.
∑

i

xij ≥ 1 ∀j

xij ≤ yi ∀i, j∑
i

yi ≤ k (1)

xij, yi ≥ 0 ∀i, j.

max
∑

j

αj−kλ (KFL-D)

s.t. αj ≤ cij + βij ∀i, j∑
j

βij ≤ fi + λ ∀i (2)

αj, βij, λ ≥ 0 ∀i, j.

Constraint (1) limits the number of facilities opened to k. Let OPT k denote the

common optimal value.

Let us first give some intuition about the primal and the dual problems. The dual
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problem has a variable λ corresponding to constraint (1) that penalizes the violation

of this constraint. Suppose we drop constraint (1) from the primal and instead add

the penalty term λ(
∑

i yi − k) to the primal objective function, so that the primal

problem is to minimize
∑

i fiyi +
∑

j,i cijxij + λ(
∑

i yi − k) subject to the remaining

primal constraints above. But this is essentially a UFL instance (with an additional

−kλ term which is constant for a fixed λ) with the cost of each facility i set to fi +λ.

Further for any value of λ, the value of this minimization problem provides a lower

bound on OPT k, since any solution to (KFL-P) yields a feasible solution to this UFL

instance of no greater objective value (since
∑

i yi ≤ k). Therefore to get the best

lower bound we can take the maximum value of this minimization problem over all

values of λ, and this is precisely the dual problem (KFL-D). If we consider λ as fixed

in (KFL-D) and only maximize over the αj and βij variables, then (KFL-D) is simply

the dual problem for the UFL instance we obtained above with the facility costs set to

fi + λ (the extra −kλ term in the objective function corresponds to the −kλ term in

the UFL minimization objective), and therefore by maximizing over λ in (KFL-D) we

are aiming to get the best lower bound on the value of the primal program (KFL-P).

We use this connection with UFL in the following way. Suppose we fix the value

of λ, and run the JV primal-dual algorithm from Section 2.2 on the UFL instance

where the cost of each facility i is set to fi + λ. Let (x̃, ỹ) be the integer UFL primal

solution and (α, β) be the UFL dual solution constructed by the algorithm. Notice

that (α, β, λ) is a feasible solution to (KFL-D). Suppose in the primal solution,

exactly k facilities are opened. Then (x̃, ỹ) is a feasible integer solution to (KFL-P).

Furthermore, from the guarantee we proved in Theorem 2.2.2 for the JV algorithm,

we get that 3
∑

i(fi + λ)ỹi +
∑

j,i cijx̃ij ≤ 3
∑

j αj, or equivalently,

3
∑

i

fiỹi +
∑
j,i

cijx̃ij ≤ 3
(∑

j

αj − λ
∑

i

ỹi

)
= 3

(∑
j

αj − kλ
)
≤ 3 ·OPT k,

where the last inequality follows since (α, β, λ) is a feasible solution to (KFL-D). The

trick then is to guess the right value of λ so that when the facility costs are set to

fi + λ, the JV algorithm ends up opening k facilities.
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Recall that in the JV algorithm, we decide which subset of tentatively open fa-

cilities to open by picking a maximal independent set, and when we described the

algorithm in Section 2.2 we did not specify any particular way of picking the maximal

independent set. We now fix the way in which we pick the maximal independent set:

consider the tentatively open facilities in the order they were tentatively opened and

pick a maximal independent set greedily, that is, add facility i to the current inde-

pendent set if adding it preserves independence. Note that with this rule of picking

the maximal independent set, the primal solution we construct depends on the order

in which events happen in the dual ascent process, and hence on the way in which we

break ties between events that happen at the same time in the dual ascent process;

the dual solution constructed is however independent of the order in which ties are

broken.

Suppose the the JV algorithm opens at most k facilities when λ = 0. Then,

(α, β, 0) is a feasible solution to (KFL-D) of value
∑

j αj and the primal solution

obtained is a feasible k-facility location solution of cost at most 3
∑

j αj ≤ 3 ·OPT k.

So suppose that at λ = 0 the JV algorithm opens more than k facilities. When λ

is very large, say, λ = |D|maxij cij, the JV algorithm will open just one facility and

assign every client to this facility. It seems reasonable to expect that there is an

intermediate value of λ at which the JV algorithm opens exactly k facilities. If we

could find such a primal solution, then as shown above, that would give us a solution

of cost at most 3 ·OPT k. Unfortunately such a value of λ need not exist, that is, the

number of facilities opened by the JV algorithm need not decrease in a continuous

fashion as we increase λ from 0. However we will show that by doing a bisection

search in the range [0, |D|maxij cij] and stopping when the search interval becomes

sufficiently small, we can get in polynomial time two primal (integer) solutions, one

opening k1 < k facilities and the other opening k2 > k facilities, such that these two

distinct primal solutions correspond to a single value of λ, and may be obtained by

running the JV algorithm with that value of λ and breaking ties between events in

the dual ascent process appropriately.
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Assume for now that we have these two primal solutions (x1, y1) and (x2, y2)

opening k1 < k and k2 > k facilities respectively obtained at λ = λ0 and that (α, β)

is the common dual solution constructed by the JV algorithm. An important fact

worth pointing out is that we use the values α, β and λ0 only in the analysis, and

not in the algorithm. Let (F1, C1) and (F2, C2) denote respectively the cost of the

solutions (x1, y1) and (x2, y2) where Fi denotes the facility cost, and Ci denotes the

assignment cost. Then,

3(F1 + k1λ0) + C1 ≤ 3
∑

j

αj, and 3(F2 + k2λ0) + C2 ≤ 3
∑

j

αj.

A convex combination of these two solutions yields a fractional solution (x, y) that

opens exactly k facilities and in which every client is assigned to at most two facilities.

Let a and b be such that ak1 + bk2 = 1, a + b = 1. So,

3(aF1 + bF2) + (aC1 + bC2) ≤ 3
(∑

j

αj − kλ0

)
≤ 3 ·OPT k. (3)

We now round the fractional solution (x, y) using a rounding procedure described

in [41] to get an integer solution that opens at most k facilities losing a factor of at

most 2, and thus get a 6-approximation algorithm.

We call a facility opened in (x1, y1) a “small” facility, and a facility opened in

(x2, y2) a “large” facility. For each small facility we look at the large facility nearest

to it. Let N be this set of large facilities. If |N | < k1, then we arbitrarily add k1−|N |

large facilities (that are not already in N) to N . With probability a we open all the

small facilities and with probability 1 − a = b we open all the facilities in N . This

opens exactly k1 facilities. Next we randomly choose a set of k−k1 large facilities not

in N and open all of these. Note that each such facility is opened with probability

(k − k1)/(k2 − k1) = b. It is clear that we open exactly k facilities this way, and that

the expected facility cost is at most aF1 + bF2.

To bound the assignment cost, consider a demand j and let i1, i2 be the facilities

to which it is assigned in y1, y2 respectively. If i2 ∈ N , then exactly one of i1 and

i2 is open, and the expected assignment cost of j is aci1j + bci2j. Otherwise, let
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i3 be the facility nearest to i1 in y2, so i3 ∈ N and one of i1, i3 is opened. We

assign j to i2 if it is open and otherwise to i1 or i3, whichever is open. Since ci3j ≤

ci1j + ci1i3 ≤ ci1j + ci1i2 ≤ 2ci1j + ci2j the expected assignment cost is at most,

bci2j + a(aci1j + bci3j) ≤ bci2j + a
(
(1 + b)ci1j + bci2j

)
≤ max(1 + a, 1 + b)(aci1j + bci2j).

So the total assignment cost is at most 2(aC1 + bC2) and the expected total cost is

at most, (aF1 + bF2) + 2(aC1 + bC2) ≤ 6 ·OPT k using (3).

Theorem 7.2.1 The above algorithm is a 6-approximation algorithm for the k-Facility

Location problem.

7.2.1 Obtaining the Solutions (x1, y1) and (x2, y2)

We briefly describe how to obtain the two solutions (x1, y1) and (x2, y2) with the

required properties.

In the dual ascent process each pair (i, j) and facility i′ corresponds to an event;

the pair (i, j) corresponds to the event that at time t, αj = t = cij and the facility i′

corresponds to the event that at time t, i′ gets paid for, i.e.,
∑

k βi′k =
∑

k max(0, αk−

ci′k) = fi′ . Fix an ordering O of all such possible events, which will be used to break

ties in the dual ascent process of the JV algorithm. By this we mean that, if (i, j)

comes before facility i′ in the ordering O, and in the dual-ascent process if the events

corresponding to (i, j) and facility i′ both happen at time t, then we break ties in favor

of event (i, j) and say that event (i, j) happened before event i′. For a given value of

λ, let the sequence for λ denote the sequence of events that occur in the dual-ascent

process, listed in the order in which they happen. We say that λ is a critical point

if an infinitesimal change in λ results in a change in the sequence. We will argue

that (1) if λ0 is a critical point then both the sequence for λ0 and the sequence for

λ0 ± ε can be obtained at λ = λ0 depending on how we break ties between events,

and (2) two critical points are separated by at least c = 2−(poly(n)+L), where L is the

number of bits to represent the largest distance. Given these two facts, suppose we

terminate the bisection search when the search interval [λ2, λ1] satisfies λ1 − λ2 < c
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and (x1, y1), (x2, y2) be the primal solutions at λ1, λ2 respectively that open k1 < k

and k2 > k facilities respectively. By fact (2), we know that there is a single critical

point λ0 ∈ [λ1, λ2], and by fact (1) there is a way of breaking ties between events so

that we get both (x1, y1) and (x2, y2) as solutions at λ = λ0. These two solutions,

which can be found in polynomial time, satisfy all the required properties. Note that

we do not explicitly need to find the value of λ0 or the dual solution (α, β) at λ = λ0.

We now argue briefly that facts (1) and (2) hold. The details may be found in

the preliminary version of [41] (Section 3.2). To show fact (1) suppose that λ0 is a

critical point with associated sequence s and that an infinitesimal change results in

a different sequence s′. Then it suffices to note that breaking ties according to the

ordering O′ which lists s′ first followed by an arbitrary ordering of the events that do

not appear in s′, will result in the sequence s′ at λ = λ0. To show fact (2), suppose

that we get sequence s′ at λ = λ0 + ε (the argument is similar if s′ is obtained at

λ = λ0 − ε). Then we can write λ0 = inf{λ : λ gives sequence s′}. We will express

λ0 as the optimal solution to a polynomial size linear program, which will show that

we can write λ0 using at most log(1/c) = poly(n) + L bits. The linear program will

have variables t1, t2, . . . representing the times at which the events in s′ take place

with t1 ≤ t2 ≤ . . .. Since we know the entire sequence of events, we can express the

values of αj and βij at any time ti in terms of the variables t1, . . . , ti. For each ti, we

write three types of constraints which encode that (a) the event s′i corresponding to

ti in s′ must occur, (b) any event that comes before s′i in the ordering O, and after

s′i in sequence s′ has not yet occurred, and (c) the dual constraints are satisfied.

7.3 A General Framework

We sketch a generic framework along the above lines, that we will use to obtain ap-

proximation algorithms for the k-median versions of other facility location problems.

Let A be a primal-dual γ-approximation algorithm for a facility location problem Π.

We require that A has the stronger guarantee that it returns a solution with facility
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cost F such that,

γ · F + remaining primal cost ≤ γ · (dual solution value).

The k-median version of Π adds the constraint that at most k facilities be opened, to

the primal problem, and modifies the dual problem accordingly. As in the k-facility

location problem, for any value of λ, if we fix the facility costs to fi + λ, then any

feasible solution to the dual of the resulting Π-instance of value Dualλ gives a feasible

solution to the dual of the k-median version of Π of value Dualλ−kλ. So if we can find a

value of λ such that A opens exactly k facilities when run on the instance with facility

costs set to fi+λ, then, since γ ·(F +kλ)+remaining primal cost ≤ γ ·Dualλ, we get a

feasible solution to the k-median version, of cost at most γ · (Dualλ−kλ) ≤ γ ·OPT k.

The generic algorithm is as follows:

G1. If at λ = 0, algorithm A returns a solution that opens at most k facilities, then

we have a feasible k-median solution of cost at most γ · Dual0 ≤ γ ·OPT k.

G2. Otherwise, we do a bisection search between λ = 0 and λ = λmax to find two

primal solutions P1 and P2 such that P1 opens k1 < k facilities and P2 opens

k2 > k facilities, and both P1 and P2 may be obtained by running algorithm

A with λ set to a common value λ0 by breaking ties appropriately in the dual

ascent process.

G3. A convex combination of P1 and P2 yields a fractional primal solution that

opens exactly k facilities and is therefore a feasible k-median solution. The cost

of this solution is at most γ · (Dualλ0 − kλ0) ≤ γ ·OPT k.

G4. We now round this fractional solution to get an integer solution while losing

only a constant in the approximation guarantee. This gives an approximation

algorithm for the k-median version of problem Π.

Here, the value of λmax in step G2, and the rounding procedure in step G4 will

depend on the particular problem that we are considering.
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7.4 The Connected k-Median Problem

The Connected k-Median problem is the k-median version of the connected facility

location (ConFL) problem. Recall that in ConFL we have a set of facilities F , a set

of clients D, and a parameter M ≥ 1, and our objective is to open facilities, assign

each client to an open facility and connect the open facilities by a Steiner tree so

as to minimize the total cost of opening facilities, assigning clients and connecting

facilities. In the connected k-median problem we are allowed to open at most k

facilities. Again, we restrict our attention to unit demands dj = 1, but everything

carries over to arbitrary demands.

Since we initially guess an open facility v to formulate the LP relaxation of ConFL,

this adds the following inequality to the linear program (ConFL-P) for ConFL:∑
i6=v yi ≤ k − 1. This changes the objective function of the dual (ConFL-D) to

max
∑

j αj −
∑

j βvj − k′λ, where k′ = k − 1. Constraint (7) in the dual LP gets

replaced by
∑

j βij ≤ fi + λ. Let OPT k be the common optimal value of the con-

nected k-median primal and dual LPs. We use Phase 1 of the primal-dual algorithm

developed in Section 6.5 for ConFL, as algorithm A in the generic scheme outlined in

Section 7.3, and a ρST -approximation algorithm for the Steiner tree problem (where

ρST ≤ 2), to obtain a (14+ ρST )-approximation for the connected k-median problem.

Whenever we say “the ConFL algorithm” we mean Phase 1 of the algorithm given in

Section 6.5.

Let (F ∗, C∗, S∗) be the cost of an optimal integer connected k-median solution, so

OPT k ≤ O∗ = F ∗ + C∗ + S∗. Suppose we fix λ, modify the facility opening costs to

fi + λ for all i 6= v, and run the ConFL algorithm to get a (partial) primal solution

(x, y, z), and a dual solution
(
α(1), β(1), θ(1)

)
. Recall that the algorithm picks a subset

L′ of the terminal locations, and builds some components connecting each l ∈ L′ to its

terminal facility via Steiner edges. D′ is the set of clients that are bound to locations

in L′, and σ(j) denotes the terminal location in L′ associated with demand j. Let

(F, C, T ′) be the cost of the resulting (partial) primal solution, where F =
∑

i fiyi is

the unmodified facility cost, C is the assignment cost, and T ′ is the cost of the partial
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Steiner tree constructed on the open facilities. We will abuse notation and use F and

T ′ to also denote the set of open facilities and the partial Steiner tree on the open

facilities respectively. As argued in Section 6.5.1, the tree S∗ can be extended to yield

a Steiner tree on the components of T ′ of cost at most S∗ + C∗ +
∑

j∈D′ cσ(j)j. So the

total cost of building an approximate Steiner tree on the open facilities is at most,

T ′ + ρST

∑
j∈D′

cσ(j)j + ρST (S∗ + C∗). (4)

Suppose the solution (x, y, z) opens exactly k′ facilities, i.e.,
∑

i6=v yi = k′. Then,

since
(
α(1), β(1), θ(1), λ

)
is a feasible solution to the dual of the connected k-median

LP, using Lemma 6.5.6 we get that, 7(F + k′λ) + C + T ′ + 2
∑

j∈D′ cσ(j)j ≤ 7α
(1)
j =⇒

7F +C +T ′+2
∑

j∈D′ cσ(j)j ≤ 7
(∑

j α
(1)
j −k′λ

)
≤ 7 ·OPT k, so by (4) we get that the

total cost is at most (7 + ρST ) · O∗. We will always include the middle term in (4),

or something that upper bounds it, in the cost of our partial solution which only has

a partial tree on the open facilities. So if we show that the resulting cost is within

some factor of OPT k, then (4) shows that we can complete the Steiner tree on the

open facilities and losing only an additive factor of ρST · O∗. Using the framework

developed in Section 7.3, we will obtain a partial solution that opens k facilities,

and has net cost (where we include the additional term mentioned above) at most

14 · OPT k. This will give a (14 + ρST )-approximation algorithm for the connected

k-median problem.

If the algorithm opens at most k′ facilities when λ = 0, then the net cost (including

the term 2
∑

j∈D′ cσ(j)j) is at most 7
∑

j α
(1)
j ≤ 7 · OPT k since

(
α(1), β(1), θ(1), 0

)
is a

feasible connected k-median dual solution. So we get a solution of cost at most

(7 + ρST ) · O∗.

So suppose that at λ = 0 the algorithm opens more than k′ facilities. When

λ ≥ |D|maxj cvj, the algorithm will connect all demands to v and not open any other

facility. So, by doing a bisection search in this range, we can find in polynomial time

two (partial) primal solutions, one opening k1 < k′ facilities and the other opening

k2 > k′ facilities, such that both the solutions may be obtained by running the ConFL
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algorithm with a single value λ = λ0, depending on how we break ties between events

in the dual-ascent process.

Let (x1, y1, z1) and (x2, y2, z2) be the two solutions obtained at λ = λ0, and(
α(1), β(1), θ(1)

)
be the common dual solution. Let (F1, C1, T

′
1) and (F2, C2, T

′
2) denote

the cost of the solutions (x1, y1, z1) and (x2, y2, z2) respectively. A convex combination

of the two solutions yields a fractional solution (x, y, z) that opens exactly k′ facili-

ties. Let ak1 + bk2 = k′, a + b = 1. To avoid cumbersome notation, let A denote the

quantity 2
∑

j∈D′ cσ(j)j in the solution (x1, y1, z1) and let B denote the corresponding

quantity in (x2, y2, z2). Then,

7(aF1 + bF2) + (aC1 + bC2) + (aT ′
1 + bT ′

2) + aA + bB

≤ 7
(∑

j

α
(1)
j − k′λ

)
≤ 7 ·OPT k. (5)

We round (x, y, z) to get a solution that opens at most k facilities (including v) losing

a factor of at most 2.

If a ≥ 1
2

we take the solution (x1, y1, z1) and from (5) we get that F1+C1+T ′
1+A ≤

14 ·OPT k.

Otherwise we open a subset of the facilities opened by (x2, y2, z2) and get a solution

of assignment cost at most 2(aC1 + bC2). Call a facility opened in (x1, y1, z1) a small

facility and a facility opened in (x2, y2, z2) a large facility. For each small facility we

consider the large facility closest to it. Let N be this set of large facilities. If |N | < k1

we arbitrarily add large facilities to N till |N | = k1. We open all the facilities in N .

We also randomly pick a set of k′− k1 large facilities not in N , and open these. Note

that each such facility is opened with probability (k′ − k1)/(k2 − k1) = b. We also

add edges of T ′
2 corresponding to the open facilities.

For a demand j, let i1, i2 denote the small and large facilities to which it is assigned

respectively. Let i3 be the large facility nearest to i1. Note that i3 is always opened.

We assign j to i2 if it is open and to i3 otherwise. Since ci3j ≤ ci1j +ci1i3 ≤ ci1j +ci1i2 ≤

2ci1j + ci2j and a < b, the expected assignment cost is at most, bci2j + aci3j ≤

2(aci1j + bci2j). So the total assignment cost is at most 2(aC1 + bC2). From (5),
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F2 + 2(aC1 + bC2) + T ′
2 + B ≤ 14 ·OPT k.

Completing the Steiner tree on the open facilities costs an additional ρST (S∗+C∗)

factor, so the total cost is at most (14 + ρST ) · O∗.

Theorem 7.4.1 Taking ρST = 1.55, the above algorithm is a 15.55-approximation

algorithm for the Connected k-Median problem.

If we use the algorithm of [2, 26] with ρST = 2, then we also get a bound the

integrality gap.

Corollary 7.4.2 The integrality gap of the Connected k-Median linear program is at

most 16.

7.5 The k-Median Problem with Service Installation Costs

We now consider the k-median version of facility location with service installation

costs (FLSIC) introduced in Chapter 5. Recall that in this problem, we have a set

of facilities F , a set of clients D, and a set of services S. Each client requests a

specific service in S, and has to be assigned to an open facility on which that service

is installed. Incurring a service l on facility i incurs a service installation cost of

f l
i , and we have to decide which facilities to open, which services to install on each

open facility, and how to assign the clients to the open facilities, so as to minimize

the total facility opening, service installation and client assignment costs. In the

k-median version, at most k facilities may be opened.

The k-median version of FLSIC generalizes the k-facility location problem, where

there is only one service type, and also is interesting from a clustering perspective.

Most clustering objective functions insist that each data point be assigned to a single

cluster. In the classical k-median problem, each point has to be assigned to a single

median or center, and the cluster quality is measured by looking at the deviation or

distance of each data point from its assigned center. If the goal of such a clustering is

to get a good, compact representation of the data so as to infer trends and patterns
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in the data, then insisting that a data point be assigned to one cluster only, might

be too restrictive in some settings. For example, a customer transaction on an online

shopping site is a data object with multiple attributes. Each attribute could represent

a different category of items bought like books, clothing, electronics, etc., and a good

summary of the data should contain a clustering for each of these categories. So

an object would lie in multiple clusters — a books cluster based on the genre of

books bought, a clothing cluster specifying the type of clothes, and so on. The k-

median version of FLSIC where there are no facility opening costs and one can open

a facility at any location, can be used to model a clustering problem where a data

point may be assigned to multiple clusters: given some points with multiple attributes

(services) located in a metric space, we want to choose k of these as centers/medians,

allot attributes to each center paying a cost per attribute allotted, and assign each

attribute of every point to a center to which that attribute is allotted. The cost of

the clustering (inversely proportional to its quality) is the total number of attributes

allotted plus the sum of the distances from each point-attribute to its assigned center.

The k-median problem with service installation costs (KSIC) adds the constraint∑
i yi ≤ k to the linear program (FLS-P). The objective function of the dual (FLS-D)

gets modified to max
∑

j αj − kλ and constraint (2) changes to
∑

j βij ≤ fi + λ. Let

(KP) and (KD) be the modified primal and dual programs and OPT k be the common

optimal value. We use the primal-dual algorithm from Section 5.4 to approximate

KSIC to within a factor of 5(
√

13+1)
2

≈ 11.52 of the optimal when the installation cost

f l
i depends only on the service type l and not on i.

Again, following the outline in Section 7.3, we will try out different values of λ

and for each value of λ, run the primal-dual algorithm with the facility costs modified

to fi + λ. Suppose the algorithm returns a primal solution of cost (O, I, C) that

opens k facilities for some value of λ, and a dual solution (α, β, θ). Here O, I, C

denote respectively the facility opening cost with the original costs fi, the service

installation cost, and the client assignment cost. By a now familiar argument, using

Corollary 5.4.11, this shows that we have a solution of cost at most O + I + C <
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5O + I + C ≤ 5
(∑

j αj − kλ
)
≤ 5 · OPT k. By the same argument, if the algorithm

opens at most k facilities when λ = 0, then the cost of this solution is at most 5·OPT k.

Recall that the primal-dual algorithm in Section 5.4 requires an ordering O of

the facilities such that if i comes before i′ in this ordering then for any service l,

f l
i ≤ f l

i′ . Since the service cost f l
i does not depend on i, any ordering O can be used

to order the facilities. We will consider the ordering O where the tentatively opened

facilities come first in the order in which they were tentatively opened, followed by the

remaining facilities in an arbitrary order. Note that since O is specified by the order

in which events happen in the dual ascent process, the facilities that we open in step

II of the algorithm, and hence the primal solution constructed, depends on the order

in which events happen, and in particular, on how ties get broken between events that

happen at the same time. The dual solution constructed however, is independent of

the tie-breaking rule used as in the JV algorithm.

Suppose the algorithm opens more than k facilities at λ = 0. If λ ≥ |D|maxij cij +

|S|maxil f
l
i , the algorithm will open just one facility, install all services on that facility,

and assign all demands to it. We perform a bisection search to find two primal

solutions, one opening k1 < k facilities and the other opening k2 > k facilities, both

corresponding to a single dual solution obtained at λ = λ0. Let (x1, y1) and (x2, y2)

be these two primal solutions with costs (O1, I1, C1), (O2, I2, C2) respectively, and

(α, β, θ) be the common dual solution. Let (x, y) = a(x1, y1)+ b(x2, y2) be the convex

combination with a and b such that ak1 + bk2 = k, a + b = 1. We have

5(aO1 + bO2) + (aI1 + bI2) + (aC1 + bC2) ≤ 5
(∑

j

αj − kλ
)
≤ 5 ·OPT k. (6)

We show how to round (x, y). If a ≥
√

13−1
6

, then we take the solution (x1, y1)

incurring a cost of at most 5
a
·OPT k = 5(

√
13+1)
2

·OPT k.

Otherwise, we use a rounding procedure similar to the LP rounding algorithm.

Call a facility opened in (x1, y1) a small facility, and a facility opened in (x2, y2)

a large facility. For simplicity we assume that these two solutions do not share a

common open facility; we treat such a facility as two distinct facilities. For a demand
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j, let i1(j), i2(j) be the small and large facilities to which j is assigned, and Fj =

{i1(j), i2(j)}. We first form some clusters as in the algorithm in Section 5.5 but using

a different center selection rule. The algorithm is as follows.

K1. For every service type l, we consider the clients in Gl and cluster the facilities

on which service l is installed. Pick j ∈ Gl with smallest ci1(j)j + ci2(j)j value

and form a cluster around j consisting of the facilities in Fj. We make j the

representative of every client k ∈ Gl (including j) that is served (fractionally)

by some facility in Fj, remove each such client from Gl, and recurse on the

remaining set of clients until Gl becomes empty. This gives a set of cluster

centers Dl for each service l. For a client k /∈ Dl let σ(k) denote its representative

cluster center in Dl.

K2. Let D =
⋃

l Dl. We cannot open a facility in every cluster since different clusters

could share the same fractional facility weight (yi) if the cluster centers request

different services. Say that j, k ∈ D are dependent if Fj ∩ Fk 6= φ. Consider

clients in D in increasing order of ci1(j)j + ci2(j)j and greedily pick a maximal

independent subset D′. For every client k ∈ D \D′, there is some j ∈ D′ that

was picked before k such that j and k are dependent. Call j the neighbor of k

and denote it by nbr(k). For convenience, we set nbr(j) = j.

K3. We now match each small facility with a large facility. For each cluster centered

at j ∈ D′ we match i1(j) with i2(j). The remaining small facilities are matched

arbitrarily with distinct unmatched large facilities. With probability a we open

all the small facilities, and with probability b we open all the matched large

facilities. We open k1 facilities this way and ensure that each cluster centered

at j ∈ D′ contains an open facility.

K4. Next, we randomly choose a set of k − k1 unmatched large facilities and open

all of these. Note that each unmatched large facility is opened with probability

(k − k1)/(k2 − k1) = b.
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K5. For each open facility we install all services that are installed on it in the

fractional solution (x, y).

K6. For every j ∈ D \D′ if neither i1(j) nor i2(j) is opened, we install service g(j)

on the facility opened from Fnbr(j).

K7. Demand j is assigned to the nearest open facility at which service g(j) is in-

stalled.

7.5.1 Analysis

Lemma 7.5.1 The expected cost of opening facilities is at most aO1 + bO2. The

expected cost of installing services is at most (1 + ab)(aI1 + bI2).

Proof : Each small facility is opened with probability a, and each large facility is

opened with probability b, so the expected facility opening cost is aO1 + bO2. The

expected cost of installing services in step K5 is
∑

i Pr[i is opened ]
∑

l:yl
i>0 f l

i . Since

(x1, y1), (x2, y2) are integer solutions and we assume that no facility is opened in both

of these solutions, if yl
i > 0 then yl

i = yi, and if i is a small facility then yl
i = yi = a,

otherwise yl
i = yi = b. So the cost of installing facilities in step K5 is

a ·
∑
small

facility i

∑
l:yl

i>0

f l
i + b ·

∑
large

facility i

∑
l:yl

i>0

f l
i = aI1 + bI2.

In step K6, the probability that we install service g(j) due to client j, is the probability

that none of the facilities in Fj is open, which is at most ab (it is 0 if i2(j) is matched

and ab otherwise). So the expected cost of installing services in step K6 is at most

ab
∑

j∈D\D′ f g(j) ≤ ab(aI1 + bI2), since any two clients in Dl have disjoint clusters.

Lemma 7.5.2 The expected service cost of any client j is at most max(1 + 3a, 1 +

b)(aci1(j)j + bci2(j)j).

Proof : Let i = i1(j), i
′ = i2(j) and Cj = aci1(j)j + bci2(j)j. If i′ is a matched large

facility, exactly one of i and i′ is open and the service cost is bounded by Cj. This
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takes care of the case when j ∈ D′. Otherwise if i′ is not matched, there are 2 cases

to consider.

Case 1: j ∈ D \ D′. Let k = nbr(j) ∈ D′. Then Fj ∩ Fk = {i = i1(j) = i1(k)}.

Either i or i2(k) must be open; we assign j to i′ if it is open, otherwise to i if it

is open and otherwise to i2(k). Note that service g(j) is installed on the facility to

which j is assigned. The expected cost under this possibly suboptimal assignment is

bci′j + a(acij + bci2(k)j) which is at most

bci′j +a
(
acij + b(ci2(k)k + cik + cij)

)
≤ bci′j +a

(
cij + b(cij + ci′j)

)
≤ max(1+a, 1+ b)Cj,

where the first inequality follows since we picked k before j in step K2.

Case 2: j /∈ D. Let j′ = σ(j). If j′ ∈ D′, then as in Case 1, we can argue that

the assignment cost of j is at most max(1 + a, 1 + b)Cj since service g(j) = g(j′) is

installed on either i1(j
′) or i2(j

′), and ci1(j′)j′ + ci2(j′)j′ ≤ cij + ci′j. So let j′ ∈ D \D′

and k = nbr(j). We know that

ci1(k)k + ci2(k)k ≤ ci1(j′)j′ + ci2(j′)j′ ≤ cij + ci′j, (7)

where the first inequality follows since k = nbr(j′) and the second since j′ = σ(j).

Let A = Fj ∩ Fj′ 6= φ, and B = Fj′ ∩ Fk 6= φ. There are three sub-cases.

(a) A = {i}. We consider assigning j first to i′, then to i, then to facility i2(j
′), and

lastly if none of these facilities is open, to the open facility in Fk. The expected

cost is at most bci′j + a2cij + ab(pci2(j′)j + qd), where p = Pr[i2(j
′) is open|i, i′

are not open], q = 1 − p and d is the expected distance to the facility opened

from Fk conditioned on the event that i, i′ and i2(j
′) are not open. Note that p, q

and d will depend on whether i2(j
′) is matched or not. If i2(j

′) is matched, then

p = 1 and using (7), we can substitute ci2(j′)j ≤ cij +ci1(j′)j′+ci2(j′)j′ ≤ 2cij +ci′j.

If i2(j
′) is not matched, then we have B = {i = i1(j) = i1(k)}. We again

substitute for ci2(j′)j and bound d = ci2(k)j by cij + ci1(k)k + ci2(k)k ≤ 2cij + ci′j.

In either case, we get that the expected cost is bounded by max(1+ a, 1+ b)Cj.
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(b) A = {i′}. We assign j to i′ if it is open, otherwise to i if it is open, and otherwise

to the open facility i2(k) in Fk. Here we know that B = {i1(j′) = i1(k)} (since

i2(j
′) = i′ is not matched) and if i is not open, then facility i1(k) is not open.

The expected assignment cost is bci′j +a2cij +abci2(k)j. We can bound ci2(k)j by

ci′j + ci2(j′)j′ + ci1(j′)j′ + ci1(k)k + ci2(k)k ≤ 2cij + 3ci′j.

Substituting, we get that the expected cost is at most max(1 + 3a, 1 + b)Cj.

(c) A = {i, i′}. Then it must be that B = {i = i1(j
′) = i1(k)} since i′ is not

matched. We consider assigning j first to i′, then to i, and then to i2(k). The

cost is bounded is as above, except that we now have ci2(k)j ≤ 2cij + ci′j, so the

cost is at most max(1 + a, 1 + b)Cj.

So in every case, the assignment cost of j is bounded by max(1+3a, 1+b)(aci1(j)j +

bci2(j)j).

Theorem 7.5.3 There is an 11.52-approximation algorithm for the k-Median prob-

lem with Service Installation Costs.

Proof : If a ≥
√

13−1
6

, then we take solution (x1, y1) incurring a cost of at most

5
a
· OPT k = 5(

√
13+1)
2

· OPT k. Otherwise by Lemma 7.5.1 and Lemma 7.5.2, we get

that the expected total cost of the solution returned by the rounding procedure is at

most is at most (aO1 + bO2) + (1 + ab)(aI1 + bI2) + max(1 + 3a, 1 + b)(aC1 + bC2)

which is at most 5(
√

13+1)
2

· OPT k by (6) and since 0 ≤ a ≤
√

13−1
6

. Thus we get an

5(
√

13+1)
2

≈ 11.52-approximation algorithm.
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