Names:	SOLUTIONS	2

IDs:

1. Texas Hold'em Poker: Each player receives 2 cards from a standard deck (4 suits x 13 ranks=52 cards). Then 5 cards are dealt which are shared by all the players. Each player tries to make the best 5-card hand they can from the 7 available cards.

A "straight" is 5 cards in a row, not necessarily of the same suit. E.g. 6, 7, 8, 9, 10.

a. Suppose you have 7 and 9, and the first three shared cards are 2, 6, 10. What is the probability you get a straight once the remaining 2 shared cards are dealt?

We just meed an 8 on either of the next 2 cords
$$(8, J \circ r) = 5, 8 \circ g$$
 contained in that event)

So $P(8 \circ n) = P(n \circ r) + P(n \circ r) = P(n \circ r$

b. Suppose you have 7 and 9, and the first three shared cards are 2, 6, 8. What is the probability you get a straight once the remaining 2 shared cards are dealt?

So P(5 or 10 next) + P(not 5 or 10 next, 5 or 10 last)
=
$$\frac{8}{47}$$
 + $\frac{39}{47}$ × $\frac{8}{46}$ = 0.315

Alternatively,
$$1 - P(no 5's = 10's) = 1 - \frac{\binom{39}{2}}{\binom{47}{2}} = 0.315$$

c. Suppose you have 7 and 9, and the first three shared cards are 2, 5, K. What is the probability you get a straight once the remaining 2 shared cards are dealt?

We need a 6 and an 8, in either order
$$P(6,8) + P(8,6) = \frac{4}{47} \times \frac{4}{46} + \frac{4}{47} \times \frac{4}{46} = 0.015$$

Note: it actually doesn't matter how many players there are! Each of the 52-5 = 47 rards you can't see is equally likely to come up next.

- 2. Dependence of Events: Suppose an event E makes another event F more likely to occur, i.e. P(F|E) > P(F). (For example, if the weather forecast predicts rain, you are more likely to bring an umbrella to school.) Is it always the case that F occurring makes E more likely to occur, i.e. is P(E|F) > P(E)? Does dependence act in both directions?
 - a. What is your intuition about the statement: if P(F|E) > P(F), then P(E|F) > P(E)

There's no wrong answer to this, but I always found that confusing. Why would you bringing an umbrella make it more likely to rain?

Now let's investigate with some examples. For each experiment below, write down the state space S, the sets E and F, calculate P(E), P(F), P(EF), P(E|F), and P(F|E), and determine if the statement holds.

b. When rolling a fair 6-sided die, let E = "roll is even" and F = "roll is >3"

$$E = \{2,4,6\} \quad F = \{4,5,6\} \quad \text{so } EF = \{4,6\} \\ S = \{1,2,3,4,5,6\} \quad \text{so } P(E) = \frac{3}{6} \quad P(F) = \frac{3}{6} \quad P(EF) = \frac{2}{6} \\ P(E|F) = \frac{2/6}{3/6} = \frac{2}{3} \quad P(E) \quad \text{so both events make} \\ P(F|E) = \frac{2/6}{3/6} = \frac{2}{3} \quad P(F) \quad \text{each other more likely}$$

c. When flipping 4 fair coins, let E = "at least 3 Heads" and F = "all flips the same"

$$E = \{HHHH, HHHT, HHTH, HTHH, THHH\} F = \{HHHH, TTTT\}$$

$$S \text{ has 16 elements. } EF = \{HHHH\} S_{0} P(E) = \frac{5}{16} P(F) = \frac{7}{16} P(EF) = \frac{1}{16}$$

$$P(E|F) = \frac{1}{16} = \frac{1}{2} > P(E)$$

$$S_{0} \text{ both events make}$$

$$P(F|E) = \frac{1}{16} = \frac{1}{5} > P(F)$$
each other more likely

d. Let's return to the umbrella and rain example. Say you check the weather forecast every day and always bring an umbrella if it predicts rain, which it does 20% of the time. The forecast is wrong 10% of the time. If E = "it rains" and F = "you bring an umbrella" then check the statement as above. Does this match your

intuition in part a?

$$P(E) = P(rain \text{ forecast } \land \text{ correct}) + P(\text{no rain forecast } \land \text{ in correct})$$

$$= 0.2 \times 0.9 + 0.8 \times 0.1 = 0.26$$

$$P(F) = 0.2 \text{ since you bring when forecast} P(EF) = 0.2 \times 0.9 = 0.18$$

$$P(E|F) = \frac{0.18}{0.2} = 0.9 > P(E)$$

$$P(E|F) = \frac{0.18}{0.26} = 0.69 > P(F)$$
The events make each other more likely here too which doesn't match!

Can you prove the statement?

e. Can you prove the statement?

If
$$P(F|E) > P(F)$$
 then $\frac{P(EF)}{P(E)} > P(F)$ by defin of $P(F|E)$

so $P(EF) > P(F)P(E)$ mult by $P(E)$

so $\frac{P(EF)}{P(F)} > P(E)$ provided $P(F) \neq 0$

i.e. $P(E|F) > P(E)$

Dependent events do always influence each other in the same way (making more or less likely.)

Names: SOLUTIONS

IDs:

- 1. On each turn, you roll a fair 6-sided die. You collect the puzzle piece matching the number you rolled, if it has not been collected yet.
 - a. What is the expected number of turns it takes to get all 6 pieces (in any order)?

Let
$$X_i$$
 represent the time to get the i^{th} piece X_i $N \in \{6, i+1\}$ so $E[X_i] = \frac{6}{6-i+1}$. $X = \sum_{i=1}^{n} X_i$ $E[X] = E[X_i] + E[X_2] + \cdots + E[X_6]$ $= 1 + \frac{6}{5} + \frac{6}{3} + \frac{6}{2} + 6 = 14.7$

b. What is the variance of the number of turns?

Since Xi's are independent

$$Var(X) = Var(X_1) + \cdots + Var(X_6)$$

$$= 0 + \frac{1/6}{(5/6)^2} + \frac{2/6}{(4/6)^2} + \frac{3/6}{(3/6)^2} + \frac{4/6}{(5/6)^2} + \frac{5/6}{(5/6)^2}$$

$$= 38.99$$

c. If you have to get the pieces in order (1 - 6), what is the expected value and variance of the number of turns?

Now each piece takes a
$$Geo(\frac{1}{6})$$
 amount of time $E[X] = 6 \times 6 = 36$

$$Var(X) = 6 \times \frac{5/6}{(\frac{7}{6})^2} = 180$$

d. Repeat a, b, and c if it is an n-piece puzzle and you roll a fair n-sided die.

a.
$$1 + \frac{n}{n-1} + \frac{n}{n-2} + \cdots + \frac{n}{2} + n = n\left(\frac{1}{n} + \frac{1}{n-1} + \cdots + \frac{1}{2} + 1\right)$$
b. $\frac{1}{n} + \frac{2}{n} + \frac{2}{n} + \cdots + \frac{n-2}{n-2} + \frac{n-1}{n-2} + \cdots + \frac{n-2}{n-2} + \frac{n-1}{n-2} + \cdots + \frac{n-2}{n-2} + \frac{n-1}{n-2}$

$$= n\left(\frac{1}{n-1}\right)^{2} + \frac{2}{(n-2)^{2}} + \cdots + \frac{n-2}{2^{2}} + \frac{n-1}{1^{2}}$$
c. n^{2} for mean

C.
$$n^2$$
 for mean $(n-1)n^2 = n^3 - n^2$ for voriance

- 2. Suppose bacteria are distributed randomly and uniformly through a body of water, with an average concentration of 0.2 bacteria per cubic centimetre (cc) of water.
 - a. What is the probability that a water sample of 10 cc has at least 2 bacteria?

Let
$$X = \#$$
 bacteria in $10cc$ $X \sim Poi(0.2 \times 10) = Poi(2)$
 $P(X = 2) = 1 - P(X = 0) - P(X = 1)$
 $= 1 - \frac{e^{-2}2^{\circ}}{\circ!} - \frac{e^{-2}2^{\circ}}{1!}$
 $= 0.594$

b. Suppose 10 independent samples of 10 cc are taken. What is the probability that 6 of the samples have at least 2 bacteria?

let
$$Y = \#$$
 of samples with $\frac{32}{50}$ bacteria $Y \sim Bin(10, 0.594)$
 $P(Y = 6) = \binom{10}{6} 0.594^{6} 0.406^{4}$
 $= 0.251$

c. Samples of 10 cc are tested until 6 with at least 2 bacteria are found. What is the probability that exactly 10 samples in total are required?

probability that exactly 10 samples in total are required?
Let
$$Z = \#$$
 of samples to get 6 with ≥ 2 Sactina $Z \sim NB(6, 0.59)^2$
 $P(Z = 10) = \binom{9}{5} 0.594^6 0.406^4$
 $= 0.150$

d. Why is the answer for c) greater than/less than/equal to the answer for b)? Explain logically in one sentence.

The probability in c) is smaller because here the 10th sample must have >2 bacteria, whereas in b) it could be anything. Since there are fewer valid orderings, the probability is lower.

e. For a different body of water, you know that the probability that a 10 cc sample has no bacteria is 0.3. What is λ , the average concentration of bacteria per cc, for this body of water?

Let
$$W = \#$$
 of bacteria in locc $W \sim Poi(10\lambda)$
We know $P(W = 0) = e^{-10\lambda}$
and we are told $P(W = 0) = 0.3$
Equating and solving, $\lambda = \frac{-\ln(0.3)}{10} = 0.1204$

Names: SOLUTIONS

IDs:

1. This will give you some practice with the Multinomial Distribution. Roll the (biased) die 10 times and write the numbers you get in the boxes below:

2 3 3 2 2 1 1 1 2 2

How many 1's: _____ How many 2's: _____ How many 3's: _____

- a. What is the probability of observing your number of 1's, 2's, and 3's in 10 rolls? We know $P_1 = \frac{2}{6} = \frac{1}{3}$ $P_2 = \frac{3}{6} = \frac{1}{2}$ and $P_3 = \frac{1}{6}$ $P_4 = \frac{1}{6}$ $P_4 = \frac{1}{6}$ $P_5 = \frac{1}{6}$ $P_6 =$
- b. Write down a general expression for the probability of observing x 1's, y 2's, and 10 x y 3's in 10 rolls. Remember to include the ranges of x and y.

 $P(x,y,10-x-y) = \frac{10!}{x!y!(10-x-y)!} (\frac{1}{3})^{x} (\frac{1}{2})^{y} (\frac{1}{6})^{10-x-y}$ for $0 \le x \le 10$, $0 \le y \le 10$, $x+y \le 10$

c. What is the probability of observing your number of 1's in 10 rolls?

 $P_{x}(3) = {10 \choose 3} {1 \choose 3}^{3} {2 \choose 3}^{7} = 0.2601$ since we don't core the exact # of 2's 43's, just 7 total

d. Take your general expression in (b) and sum it over all possible values of y (note: possible values of y depend on the value of x) to obtain the probability of observing x 1's in 10 rolls. Remember to include the range of x.

e. What is the probability of observing your number of (combined) 1's and 2's in 10 rolls?

$$P_{X+Y}(8) = {10 \choose 8} {1 \over 3} + {1 \choose 2}^8 {1 \choose 6}^2 = 0.2907$$
since we just want 8 1's + 2's total, don't core how many of each

f. Take your general expression in (b) and use it to obtain the probability of observing z (combined) 1's and 2's in 10 rolls. Include the range of z. Hint: Use the result P(Z=z) = P(X=0, Y=z) + P(X=1, Y=z-1) + ... + P(X=z, Y=0), or equivalently in summation form, $P(Z=z) = \sum P(X=x, Y=z-x)$ for x=0 to z.

$$P_{Z}(Z) = \sum_{X=0}^{2} P(X, Z-X, 10-X-(Z-X))$$
 simplifies to $10-Z$

$$= \sum_{X=0}^{2} \frac{10!}{X!(Z-X)!(10-Z)!} (\frac{1}{3})^{X} (\frac{1}{2})^{Z-X} (\frac{1}{6})^{10-Z}$$

$$= \frac{10!}{(10-Z)!} (\frac{1}{6})^{10-Z} \sum_{X=0}^{2} \frac{1}{X!(Z-X)!} (\frac{1}{3})^{X} (\frac{1}{2})^{Z-X}$$
 (taking out stiff that doesn't depend on X)
$$= (\frac{10}{2}) (\frac{1}{6})^{10-Z} \sum_{X=0}^{2} (\frac{Z}{X}) (\frac{1}{3})^{X} (\frac{1}{2})^{Z-X}$$
 (multiplying inside and dividing outside by Z!)
$$= (\frac{10}{2}) (\frac{1}{6})^{10-Z} (\frac{Z}{6})^{Z}$$
 for $0 \le Z \le 10$ (binomical theorem)

g. Suppose you are told that the 10 rolls will have your number of 1's. What is the probability (given this information) of observing your number of 2's in those 10 rolls? Hint: this is a conditional probability and you already have both the numerator and denominator in previous parts.

$$P(52'5|31'5) = \frac{P(3,5,2)}{P\times(3)} = \frac{0.0810}{0.2601} = 0.3114$$

since if we want 31's and 52's, we must also have 23's

h. Determine a general expression (and simplify it) for the probability of observing y 2's in 10 rolls, given that there are x 1's in those 10 rolls. Include the range of y.

$$\frac{p(x,y,10-x-y)}{p_{x}(x)} = \frac{\frac{10^{\frac{1}{2}}}{\frac{x^{\frac{1}{2}(10-x-y)}{1}}{\frac{10^{\frac{1}{2}}}{\frac{10^{\frac{1}2}}{\frac{10^{\frac{1}2}}}{\frac{10^{\frac{1}2}}{\frac{10^{\frac{1}2}}{\frac{10^{\frac{1}2}}}{\frac{10^{\frac{1}2}}{\frac{10^{\frac{1}2}}{\frac{10^{\frac{1}2}}}{\frac{10^{\frac{1}2}}{\frac{10^{\frac{1}2}}}{\frac{10^{\frac{1}2}}{\frac{10^{\frac{1}2}}}{\frac{10^{\frac{1}2}}}{\frac{10^{\frac$$

What do you notice about the resulting distributions in d, f, and h?

what do you notice about the resulting distributions in d, 1, and 1?

They are all Binomial rys! (d) is Bin(10, Pi)

(f) is Bin(10, Pi+P2)

(W) is Bin(10-x,
$$\frac{P^2}{1-P_1}$$
)

This makes logical sense because in (d) we can think of $S="1"$ and $F="not 1"$, in (f) we can think of $S="1"$ and $F="not 1"$, and in (h) we can think of $S="2$ given not 1" and $F="3$ given not 1" on the $10-x$ remaining rolls.

STAT 334 Fall 2017 Tutorial 4 and build a gene at

Names: SOLUTIONS

IDs:

This tutorial will give you some practice with joint transformations, step by step.

1. Step 1: Find (graph) the support of U and V, for the joint transformation of X and Y

a. 0 < x < y < 2; U = Y - X, V = Y

b. 0 < x < 1, 0 < y < 1; U = X + Y, V = X - Y

c. $1 < x < \infty$, $1 < y < \infty$; U = XY, V = X

2. Step 2: Determine the inverse transformation to get X and Y as functions of U and V

a.
$$X = V - U$$

$$Y = V$$
 (given)

$$Y = \frac{\sqrt{-\sqrt{2}}}{2}$$

$$Y = \bigcup_{V}$$

$$Y = \frac{U}{V}$$
 (since $\frac{U}{V} = \frac{XY}{X} = Y$)

3. Step 3: Find the determinant of the Jacobian matrix to divide by for the joint pdf

recall

a.
$$J = \begin{bmatrix} -1 & 1 \\ 0 & 1 \end{bmatrix}$$

so $\left| \det(J) \right| = \left| -1 \times 1 - 1 \times 0 \right| = \left| -1 \times 1 - 1 \times 0 \right|$
 $V = Y$

$$U = X + Y$$

 $V = X - Y$

Step 1: Find (graph) the support of U and V, for the joint transformation of X and Y

b.
$$J = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \quad \text{so} \quad |\det(J)| = |-|x| - |x| = |-2| = 2$$

$$V = X - Y$$

$$V = XY$$

4. Step 4: put all of them together to find the joint pdf of U and V, given f(x,y)

a.
$$f(x,y) = 0.75x^2$$

$$g(u,v) = f(v-u, v) \times \frac{1}{1}$$

= 0.75 $(v-u)^2$ for $0 < u < v < 2$

b.
$$f(x,y) = 1$$

$$g(u,v) = f\left(\frac{u+v}{2}, \frac{u-v}{2}\right) \times \frac{1}{2}$$

$$= \frac{1}{2} \quad (\text{uniform on the diamond shape})$$

c.
$$f(x,y) = \lambda^2 (xy)^{-\lambda+1}$$

$$g(u,v) = f(\sqrt{\frac{u}{v}}) \times \frac{1}{v}$$

$$= \lambda^{2} (\sqrt{\frac{u}{v}})^{-\lambda+1} \times \frac{1}{v}$$

$$= \lambda^{2} u^{-\lambda+1} v^{-1}$$
for $|\langle v \rangle \langle u \rangle \rangle = \lambda^{2} u^{-\lambda+1} v^{-1}$

Names: SOLUTIONS		
	0 1	/ \
IDs:		(3)090 -

This tutorial will give you some practice with conditional expectation and double averaging.

- 1. Let X = your group number divided by 2 (round up). Let Y = your shoe size in US sizes.
 - a. Calculate E[Y|X=x] where x is the value for your group. Note: you will need to combine your information with another group to obtain this number.

b. Calculate P(X=x) where x is the value for your group. Note: you will need the total number of people in the class for this so wait until everyone arrives. Send a representative to report these numbers (a) and (b) to Diana.

c. Given the information on the board, which is the distribution of the random variable E[Y|X], calculate E[Y].

So
$$E[Y] = E[E[Y|X]] = \sum_{x=1}^{9} E[Y|X=x]P(X=x)$$

2. Let $X = your$ age (integer part only). Let $Y = your$ heart rate.

a. Find the other people who are the same age as you and calculate $E[Y|X=x]$

b. Calculate P(X=x) for your age x. Send a representative to report these numbers (a) and (b) to Diana.

c. Go back to your original groups and find the distribution of the random variable E[Y|X] by filling in the chart below:

x (1 ≤ Y) Y villidad	19	20	21	22	23	24	25
value E[Y X=x]	76	75.88	82.5	76.875	60	o oa)	
probability the rv $E[Y X]$ takes the value $E[Y X=x]$	0.041667	0.5	0,270933	0.166667	0.020833	v 05	

d. Calcuate E[Y]

$$E[Y] = E[E[Y|X]]$$
 which is the prob.
$$= \sum_{x=19}^{23} E[Y|X=x] P(X=x)$$
 that $E(X|X)$ equals $E[Y|X=x]$

$$= 77.5$$
 this is also the number you would get if you averaged all the heart rates in the class.

This tutorial will give you some practice with Markov chains and transition matrices, and how we can classify the states.

1. Markov Chain 1

a. Write down the transition probability matrix P for this chain.

b. Can you ever get from state 1 to state 3? Can you ever get from state 3 to state 1?

c. Imagine you are in state 4. How many steps can it take to return to state 4?

d. Do you think it is more likely for the chain to be in any particular state at a random future time? Why or why not?

2. Markov Chain 2

a. Write down the transition probability matrix **P** for this chain.

b. Can you ever get from state 1 to state 3? Can you ever get from state 3 to state 1?

- c. In what way(s) do states 3 and 4 behave differently from states 1, 2, and 5? (There are at least 3 ways, get as many as you can think of)

 once in 3 or 4, stock there forever (can get out of 1,2,5)

 ono randomness in 3 or 4, go to other state for sure

 3 and 4 can only be returned to in an even number of steps
 whereas 1,2,5 can have any number > 2 steps to return

 opossible to never return to 1,2,5 but guaranteed to return to 3,4.
 - d. Imagine you are in state 4. How many steps can it take to return to state 4?

 any even number {2, 4, 6, ...}
- e. Do you think it is more likely for the chain to be in any particular state at a random future time? Why or why not?

 Yes. Once the chain enters state 3 it will go back and forth between 3 and 4 forever, so more likely to be in 3 and 4 vs 1,2,5.
 - 3. Markov Chain 3
 - a. Write down the transition probability matrix **P** for this chain.

- b. Can you ever get from state 1 to state 3? Can you ever get from state 3 to state 1?

 Yes (through 2)

 Yes (through 5)
- c. Imagine you are in state 4. How many steps can it take to return to state 4? any number other than 1 $\{2, 3, 4, 5, ...\}$
- d. Do you think it is more likely for the chain to be in any particular state at a random future time? Why or why not?

 Yes. All states go to 5 and there are no other states the chain can get "stock" in , so 5 is more likely than other states.

Group:

STAT 334 Fall 2017 Tutorial 7

Names: Xuer Xiao

Xinggi Zhai Yungi Zhno

Devika Kabe

Lu Qi (20601974) Jun Hong Lin Leyao Wang 20606920

This tutorial will give you some concept review and practice questions for Test 1 on Thursday.

On this side of the page, summarize the most important results from Lectures 1-3 (Sept 7,12,14)

On the other side of the page is a question relating to that material. Everyone in the group must be comfortable explaining both sides of the sheet.

Indepedence: P(ANB)=P(A).P(B)

Murrally exclusive: P(A) B)= @ P(A)B)=P(A)+P(B)

andrival pool: P(AIB) = P(A)B)

Baye's rule: P(AIB) = P(BA) P(B)

P(B)

P(E) = P(EF) + P(EF).

Discrete distributions:

O Bernoulli distribution

distribution Brainial

down butin Poissur

Geometric / Negative Brionial distribution

P(E) = E P(EAI) = & P(Ai) P(E | Ai)

distributions:

a wiform distribution

@ expenentell

3 nomal assimbusion

Gamma distribution $f(x) = \frac{x^{\omega-1}e^{-2x}x^{\omega}}{\Gamma(\omega)}$ trick: $\int_{0}^{\infty} \frac{x^{\omega-1}e^{-2x}x^{\omega}}{\Gamma(\omega)} dx = 1$ => (NO) = 500 x 0-1 e-2 dr.

Transformation of a random variable: (=h(x)

M 1: (cdf) a find the range of I

find cumulative density for for and sub X to 1

use the coff of x to evaluate

differentiate odf & get the polf

Mz: (pdf - only for 1-1 transformations f(y)= f(g(y)).19'(y))

where q(y) is the suverse of h(x)

- 1. A call center has 5 phone lines which are independent of each other. For each line, calls arrive at the center following a Poisson process at a rate of 10 calls per hour. There is a red light for each line, and if there have been more than 2 calls in the past 10 minutes on this line, the red light will flash.
 - a. For any phone line, find the probability that the red light is flashing.

$$P(x>2) = 1 - P(x=1) - P(x=0) - P(x=0)$$

$$= 1 - \frac{e^{-\frac{2}{3}\frac{x}{3}!}}{1!} - \frac{e^{-\frac{2}{3}(\frac{x}{3})^2}}{2!} - \frac{e^{-\frac{x}{3}(\frac{x}{3})^2}}{0!}$$

$$= 0.23,$$

b. What is the probability that at least two phone lines have the red light flashing?

$$Y \sim Bm (6, 0.23)$$

$$P(Y > 2) = 1 - P(Y = 0) - P(Y = 1)$$

$$= 1 - (3) 0.23^{\circ} 0.77^{\circ} - (3) 0.23 \cdot 0.77^{\circ}$$

$$= 0.33.$$

c. Given that at least two phone lines have the red light flashing, what is the probability that all 5 are flashing?

$$P(Y=5|Y|=2) = \frac{P(Y=6)}{P(Y>2)} = \frac{(5) 0.33^{5}}{0.33}$$

1.	WW 1/18	7 Tutoria		
Names: Thing Wi 2069 Dany	i Nay	Xuan Qiv	, JEN	UNIFER YEH
Eric Zhong Yujip	Jiang	BOZHAO		0491554 42i Li
This tutorial will give you some concep		_		
On this side of the page, summarize the	most importa	nt results from I	Lectures <u>4–5</u>	(Sept 19, 21)
On the other side of the page is a question be comfortable explaining both sides of	the sheet.		•	
> X - Gam(x, N) then f(x) = xa	e->n/d	where T(x)	$=$ $\left(\frac{1}{2} \times \frac{1}{2} \right) = \left(\frac{1}{2} \times$	= xdx. = (x-1)
\Rightarrow X = Gam(x, λ) then $f(x) = \frac{x^{\alpha}}{\Rightarrow}$ Gammatrick: $\int_{0}^{\infty} f(x) . dx = 1 \Rightarrow 1$	Multipym 1	ooth [(a) =	(0 x d-1e-)	Jdx. Fa=1,2,3
> ×~E~p(x) >> E[X]= 1/2 >> V.	r(X) = 1			
> Relationship between Gram & Exp:	-17 x 00	n integer an	d·Xi~E)	(p()) than
> Relatinship between Gram & Exp: X = Z= X; ~ Gam (x, X).	$\Rightarrow F(x)$	$=\frac{\alpha}{\lambda}$	Var(X) = 0	2
Transformations of RV: Interested in	the distri	bution of a	function of	X, who es desont
Step 1 - Express the colf of Y, (sub in Y=h(x)) & isol	id the ray, Fy(y) = P late X - St	e (support of (YEy) in the ED 2: 112 to	nus of proils	s involuity
2) PDF Technique & Same as	CDF Tech	gre but st	ep 1 Fruid	iavere mansfor
step2: fr(y)=fx((q(y)).	1g'(g)).) - ·	,
> Moment Generatory function:	and a	ρ.	+ 1 0 1	
\Rightarrow $M_x(t) = E[e^{tx}] = \sum_{ab}$	Ix Exp(x)	on Je	$t^{x}f(x).dx$	•
	dignete	allx	ntiwns-	
≥ Mx(0)=1.	Joint C	مصطانات	•	
	PCXIM) = P(X=x,	, Y=y)	{ { } p(x,y) = 1
$\Rightarrow \mu_{x}(0) = E(x)$	margin	al pxlx)=	= PGM)	
$\Rightarrow \mu''_{X}(0) = E[X^{2}]$	۷ م. ۵ ۱	Y me indep.	= p(x,y)))= P*(x) P*(A) Ax
	V mo	,	· } ·	
* r {				
•				

Group: 2

2. Suppose X and Y are discrete random variables with joint pf p(x,y) given by:

X	Y 1	2	3		
1	1/12	1/3	(1/4)	7/3	Px(
2	1/4	0	1/12	1/3	P _v
	1/3	1/3	1/3	1	^ '

a. Fill in the marginal distributions of X and Y in the table above

b. Find the mgf of Y
$$M_{Y}(t) = E[e^{Yt}] = \sum_{\text{ally}} e^{Yt} P_{Y}(y) = \frac{1}{3}(e^{2t}) + \frac{1}{3}e^{2t} + \frac{1}{3}e^{3t}$$

$$= \frac{1}{3}(e^{2t} + e^{2t} + e^{3t})$$

c. Find the covariance of X and Y. Does this value make logical sense?

8 YT X V

Group: 3
STAT 334 Fall 2017 Tutorial 7
Names: Yohui Guo 20659449 Qiwen Wang 20633876 Pahihhiedbeck Yn Zhang (206)7216)
Denise your (2061570) Cliff him x100 znac (Alice) cao Chang Shi 20595804
This tutorial will give you some concept review and practice questions for Test 1 on Thursday.
On this side of the page, summarize the most important results from Lectures $6-7$ (Sept 26, 28)
On the other side of the page is a question relating to that material. Everyone in the group must be comfortable explaining both sides of the sheet.
Expectation in the Joint Case
- Definition: The expected value of g(x, y) is:
E[g(x,y)] = { \(\sum_{\text{ally}} \) \(\sum_{\text{ally}} \) \(\sum_{\text{oll } \text{x}} \) \(\sum_{\
$E[g(x,y)] = \begin{cases} \sum_{\text{onl } x \text{ all } y} g(x,y) + (x,y) \\ \int \int g(x,y) + (x,y) dy dy \end{cases}$ all x all y
Properties of expediation.
If g(x,4) is a linear Endion of X and Y. EIg(x,4)]= EIa+bx+cY] = a+bE[x]+cE[Y] If X and Y are independent, we have g(x,4)=h(x)j(4). E[g(x,4)]= E[h(x)]E[j(Y)].
ovariance and Correlation
$V(X,Y) = E[XY] - E[X]E[Y]$. $COYY(X,Y) = P = \frac{COV(X,Y)}{Var(X) Var(Y)}$ $-1 \le P \le 1$
oint MGFa (Varly) Trank)
$Mx_1,,x_k$ $(t_1,,t_k)=E[e^{t_1x_1}t_kx_k]=E[e^{t_1x_1}e^{t_2x_2}e^{t_kx_k}]$
Then independent, = $E[e^{t_iX_i}]$ $E[e^{t_kX_k}] = M_{X_i}(t_i)$ $M_{X_i}(t_k)$.
It we want mgt of XITXI, MXITXI (t) = E[et(XITXI)] = E[etxietxi]
Marginal: $Mx_1(t) = Mx_1,, x_k(t, 0, 0,, 0)$
ount part technique
Step 1: Find the support of U.V will depend on the support of X.Y and functions. Step 2: Find the inverse transformation
Step 3: Final the Jacobian matrix.
J= det 3/2 3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4 3/4
KVANDALIA MANDALIAN
g(u, v) = f(inverse of v, inverse of y) +
\mathcal{J}

$$\int_{X}^{\infty-1} e^{-\lambda x} dx = \frac{\int_{X}^{\infty} \int_{X}^{\infty} dx}{\lambda^{\infty}}$$

3. Suppose X and Y have joint pdf $f(x,y) = x^2ye^{-xy}$ for x>0, y>2a. Find $f_Y(y)$ and determine if the variables are independent

There are no functions which only contain x, that when multiplied with
$$\frac{1}{y}$$
, gives us $f(x,y)$ so they cannot be independent.

b. Find E[XY], using a gamma function to simplify your integration

E[XY]=
$$\int_{0}^{\infty} xy \left[x^{2}ye^{-xy}\right] dx dy$$

= $\int_{0}^{\infty} y^{2} \int_{0}^{\infty} xy \left[x^{2}ye^{-xy}\right] dx dy$

= $\int_{0}^{\infty} y^{2} \frac{E(4)}{y^{4}} dy$

= $\int_{0}^{\infty} y^{2} \frac{3!}{y^{4}} dy$

= $\int_{0}^{\infty} y^{2} \frac{3!}{y^{4}} dy$

= $\int_{0}^{\infty} \frac{6}{y^{2}} dy$

= $\int_{0}^{\infty} \frac{6}{y^{2}} dy$

= $\int_{0}^{\infty} \frac{6}{y^{2}} dy$

STAT 334 Fall 2 Names: flien Nguyen Wenzhong 20600
Maria vigo (ing ting He 206 (20526452) This tutorial will give you some concept review and the concept review and
On this side of the page, summarize the most impo
On the other side of the page is a question relating be comfortable explaining both sides of the sheet. October 1008 Conditional R.N.
La YIX= X La fixed x and Y takes on values in its conditional range (possible value of Y, knowing X = x) La random variable which has a conditional range, conditional pf / polf, conditional mean + variance, conditional maps
Conditional mean lexpectation E[YIX=X]= D all yin y P(y X) conditional range LP If X = Y are independent · P(y X)=P(y) E[YIX=X]= D all yin y(P(y))=E(Y) ronge
continuous case K joint polf and $f(x y) = \frac{f(x,y)}{f_y(y)}$ Emarginal polf

0P x

ation

ECECAIXIL ECAT

cond)

CAMBION COX (20606819) 017 Tutorial 7 Tran Song (20602452) Xingute Zhao Zhangung Xia 26/6/ Yorting Li 2060280 Transia Chu 20600262 nd practice questions for Test 1 on Thursday. ortant results from Lectures 8-9 (oct 3,5) to that material. Everyone in the group must Octote lec a E[YIX] is the random variable that takes the value E(YIX=X) exactly when X takes the value properties of conditional Expect-1) Linearity ELa+bY+cZ1X=N=a+bE[Y|X=X]+ CECZIX=X] 2) Independence E[g(Y) | X=xJ=E[g(Y)] 3) Double Averaging

- 4. Suppose X is the number of trials (with probability of Success p) to obtain a Success. A fair coin is then flipped until X heads occur, and the number of flips required is called Y.
 - a. Consider the conditional random variable Y|X=x
 - i. What distribution does it have?

ii. What is its conditional range?

iii. What is its conditional mean E[Y|X=x]?

b. What is E[Y|X]?

c. Find E[Y].

Group: 5	20632079 Yijing wang
Names: Zhaojia Liang Zhao, Yuqing Zikai Zhu	20618488 Sheng Jiang
This tutorial will give you some concept review and practice questions for Test	
On this side of the page, summarize the most important results from Lectures	
On the other side of the page is a question relating to that material. Everyone in be comfortable explaining both sides of the sheet.	the group must
1) computing probabilities of Conditioning: $P(A) = E[P(A X)] = \begin{cases} \begin{cases} \sum_{\alpha I \times X} P(A X=X) P(X=X) \\ \sum_{\alpha I \times X} P(A X=X) f_{X}(X) dX \end{cases}$ 2) compute Var by cond. Partition rule of	if x is discre
$Var(2) = E[2^2] - E[2]^2$. $Var(Y X=x) = E[Y^2 X=x] - E[Y X=x]^2$ us Law of total Var.	se same tricki How, my x to von yer all X.
E(S) = E(N) Var(X) + E(X) ² Var(N) H) Maf of compound R Ve	
Mgf of compound R.Vs. $M_s(\epsilon) = M_N \left(\ln \left(M_x(\epsilon) \right) \right) \text{from} \text{Ele}^{\epsilon s} =$	

- 5. Suppose $M \sim U(10,30)$. Errors occur according to a Poisson process with rate M errors per hour, and the number of errors observed in an hour is called X. Thus, $X|M=m \sim Poi(m)$
 - a. Find E[X].

$$E[X] = E[E(X|M]] \quad \text{since} \quad X|M=m \sim p \circ i(m)$$

$$= E[M] \quad \times |M| \sim p \circ i(M).$$

$$= 20. \quad = \sum E(X|M) = M.$$

$$M \sim U(10,30).$$

b. Find Var(X)

b. Find Var(X)
$$Voly(X) = E[Voly(X|M)] + Voly(E[X|M])$$

$$= E[M] + Voly(M)$$

$$= 20 + \frac{1}{12}(20)^{2}$$

$$= 20 + \frac{400}{12}$$

$$= 53.33$$

for each error, the cost to fix it has mean 5 and variance 9. c. Suppose Find the mean and variance of the total cost to fix all errors in an hour.

$$E\{S\}$$

$$= \{\{S\}\}$$

$$= \{\{C\}\}$$

$$= \{\{C\}$$

$$= \{\{C\}\}$$

$$= \{\{C\}$$

$$= \{\{C\}\}$$

$$= \{\{C\}$$

$$= \{\{C\}\}$$

$$= \{\{C\}$$

$$=$$

Group: 6. Names: Xizule Zha Shuyu Meng Ze Yuay Xie Zemi ao Qin Bu, Yi 20626202 Ying Shu 2059907 and Liang Xue Feng 20574156 This tutorial will give you some concept review and practice questions for Test 1 on Thursday. On this side of the page, summarize the most important results from Lectures $\frac{\sqrt{k_0 + 1}}{k_0 + 1} = \frac{k_0 + 1}{k_0 + 1}$ On the other side of the page is a question relating to that material. Everyone in the group must be comfortable explaining both sides of the sheet. Stochastic process: sequence r.v index . time State space: value Xn's can take on Markov property. P(Xnt1=j | Xn=1, Xn-1=1n-1, ", Xo=10) P(Xnt1=) | Xn=i) = P (Xnt2=j | Xn+1=i) = Pis Transition probability $P = \begin{bmatrix} P_{11} & P_{12} & P_{1K} \end{bmatrix}$ property of tpm natrix (tpm) $P_{12} & P_{11} & P_{12} & P_{13} & P_{14} & P_{15} & P_{$ Chapman - Kolmo gorov Equations (CK) Pij (h) = p(xn=j/X0=i)

 $\frac{1}{n \text{ it fal probability rector: } \underline{\pi_o} = \sum_{i=1}^{n} (P(x_o=1)) P(x_o=2) \dots P(x_o=k)}{\underline{\pi_o} = \underline{\pi_o} P^n}$

- 6. Suppose the weather today depends on the weather yesterday in the following way:
 - If it was Rainy yesterday, it will be Rainy today with probability 0.5.
 - If it was Sunny yesterday, it will be Sunny today with probability 0.4.
 - If it was Cloudy yesterday, it will be Cloudy today with probability 0.2 all other transitions not mentioned are equally likely.
 - a. If the state space is $S = \{R, S, C\}$, write down the one-step transition matrix P

b. Suppose you can't remember for sure, but you think it either was Rainy or Cloudy yesterday (with equal probability). Find the distribution of the weather today.

$$\underline{\pi}_0 = \begin{bmatrix} 0.5 & 0 & 0.5 \end{bmatrix}$$

$$\underline{\pi}_1 = \begin{bmatrix} 0.5 & 0 & 0.5 \end{bmatrix} P = \begin{bmatrix} 0.45 & 0.325 & 0.225 \end{bmatrix}$$

c. Same situation as b, now find the probability the weather tomorrow is the same as today.

The same =
$$\pi \Lambda * P = \begin{bmatrix} P_{00} \\ O \\ P_{11} \\ P_{21} \end{bmatrix}$$

$$= \begin{bmatrix} 0.225 & 0.13 & 0.045 \end{bmatrix}$$

$$P(Same) = 0.225 + 0.137 & 0.045 = 0.4$$

Names: Solutions and to reduce a mile do

IDs:

This tutorial will give you some practice working with the properties of the Poisson process.

- 1. Suppose calls to 911 follow a Poisson process with an average of 5 calls per minute. Unfortunately, 20% of calls are for non-emergencies.
 - a. Discuss briefly whether you think the properties of stationary and independent increments would hold for this situation

stationary - probably not there would likely be more calls during the day when people are awake are awake there is a major disaster that many people call about

b. Interpret in one sentence what these probabilities represent, and calculate them:

i. P(N(1)=3) The probability of 3 calls in 1 minute $= e^{-5}5^3 = \boxed{0.140}$

- ii. P(N(4) = 12 | N(2) = 7) The probability of 12 calls in 4 minutes given there were 7 in the first 2 min. = P(N(4-N(2) = 5)) $= e^{-10}10^5 = 0.0378$
- iii. P(N(4) = 12 | N(2) = 7, N(1) = 2) The probability of 12 calls in 4 min given 7 in first 2 min, 2 of which sawe as ii. were in first min. can ignore past if you know present. (Markov property!)
- iv. P(N(1.5)=0|N(2)=1) The probability of no calls in first 1.5 minutes given 1 call by 2 min. $T_1|N(2)=1$ $\sim U(0,2)$
- v. $P(T_1 > 1/3)$ The probability the first call happens after $\frac{1}{3}$ min $T_1 \sim E \times p(1/5)$

 $T_1 \sim \text{Exp}(15)$ $P(T_1 > \frac{1}{3}) = 1 - F(\frac{1}{3}) = 1 - (1 - e^{-5 \times \frac{1}{3}}) = e^{-\frac{5}{3}} = 0.1889$

c. What do you think is the distribution of the number of **emergency** calls in the first 10 minutes?

Poi(5 × 0.80 × 10) = Poi(40) (we will prove this In the next class)

- 2. Diana's children, Naomi and Isaac, each wake up at night according to independent Poisson processes. Naomi wakes up an average of once every 8 hours, and Isaac wakes up an average of once every 4 hours. Each time either of them wakes up, Diana wakes up too.
 - a. Prove that the total number of times Diana wakes up follows a Poisson process as well, and determine the rate λ . Remember there are several different definitions of a Poisson process, so you can choose which one to use.

If
$$\{N(t)\}$$
 and $\{I(t)\}$ are Poisson processes, then $D(t) = N(t) + I(t)$ inherits the properties of stationary a independent increments and $D(0) = 0$. $\{N(t)\}$ has rate $\frac{1}{8}$ and $\{I(t)\}$ has rate $\frac{1}{4}$ so $N(t) \sim Poi(\frac{1}{8}t)$ and $I(t) \sim Poi(\frac{1}{4}t)$ so $D(t) \sim Poi(\frac{1}{8}t + \frac{1}{4}t) = Poi(\frac{3}{8}t)$ since the sum of indep. Poi rs is Poisson. So $\lambda = \frac{3}{8}$

b. Find probability that Diana wakes up at least once between 11:00 PM and 7:00 AM (8 hours)

$$X = D(8) \sim Poi(\frac{3}{8} \times 8) = Poi(3)$$

$$P(X \ge 1) = 1 - P(X = 0)$$

$$= 1 - \frac{e^{-3}3^{\circ}}{5!} = 0.9502$$

c. Find the probability that the second time Diana wakes up (after going to sleep at 11:00 PM) is after 3:00 AM but before 5:00 AM

We need
$$D(4) = 1$$
 and $D(6) \ge 2$ to both happen

so $P(P(4) = 1) P(D(6) - D(4) \ge 1)$
 $\left(\frac{e^{-1.5}(1.5)^{1}}{1.1}\right)\left(1 - \frac{e^{-0.75}(0.75)^{\circ}}{0.1}\right) = 0.1766$

d. If you know Diana has woken up 3 times between 11:00 PM and 7:00 AM (8 hours), what do you think is the distribution of the number of times she woke up between 11:00 PM and 3:00 AM (first 4 hours)?

Names:	Solutions		4	9					100
		1 -	 a -	1014	17		JI	10.	7

This tutorial will give you an introduction and motivation for Chapter 6: Brownian Motion

1. Consider the fair Random Walk, a Markov Chain with countably infinite state space and: Z(0) = 0

$$Z(t) = X_1 + X_2 + ... + X_t$$
 for integer t

$$X_{t} = \begin{cases} +1 \text{ with prob } \frac{1}{2} \\ -1 \text{ with prob } \frac{1}{2} \end{cases}$$

- a. Using a coin to generate random moves (Heads = +1, Tails = -1) and the sheet of graph paper provided, plot a sample path of Z(t) for t = 0 to 10.
- b. What are the mean and variance of Z(10)? (Hint: find the mean and variance of Xt and use the results for sums of independent variables)

$$E[X_{t}] = |x_{2}| + (-1)x_{2}| = 0$$

$$Var(X_{t}) = E[X_{t}^{2}] - 0^{2} = |x_{2}| + (-1)^{2}x_{2}| = 1$$

$$Z(10) = \sum_{t=1}^{2} X_{t} \quad so \quad E[Z(10)] = \sum_{t=1}^{2} E[X_{t}] = 0 \quad Var(Z(10)) = \sum_{t=1}^{2} Var(X_{t}) = 0$$
c. What is the probability that $Z(10)$ is strictly greater than 9?

If
$$Y = \#$$
 of up steps (heads), $Y \sim Bin(10, \frac{1}{2})$ since indep.
 $P(Z(10) > 9) = P(Y = 10) = {10 \choose 10} {10 \choose 2}^{10} {10 \choose 2}^{0} = \frac{1}{2^{10}} = 0.000977$

d. In general for this process, what are the mean and variance of
$$Z(t)$$
?
$$E[Z(t)] = \sum_{i=1}^{k} E[X_i] = 0$$

$$Var(Z(t)) = \sum_{i=1}^{k} Var(X_i) = t$$

- 2. Now consider the same Random Walk, but for t = 0.25, 0.5, 0.75, 1, ... (time steps Δt one quarter as long) and $X_t = +0.5$ or -0.5 (values half as large). This is still discrete time and discrete state space, just not integer-valued.
 - a. Again using a coin, plot a sample path of Z(t) for t = 0 to 10. You will need 40 coin flips. What do you notice about the way the graph looks compared to 1a?

b. What are the mean and variance of Z(10)? (Same hint, different X_t)

$$E[X_{t}] = 0.5 \times \frac{1}{2} + (-0.5) \times \frac{1}{2} = 0$$

$$Vor(X_{t}) = (0.5)^{2} \times \frac{1}{2} + (-0.5)^{2} \times \frac{1}{2} = 0.25$$

$$Z(10) = \sum_{t=1}^{2} X_{t} \text{ so } E[Z(10)] = 40 \times 0.25 = 0$$

$$Vor(Z(10)) = 40 \times 0.25 = 10$$

in
$$\sqrt{7,30^7}$$
 downs. C. How could you find the probability that $Z(10)$ is strictly greater than 9?

30 $\sqrt{5}$ $\sqrt{210^7}$ $\sqrt{210}$ $\sqrt{21$

The general for this process, what are the mean and variance of
$$Z(t)$$
?

$$E[Z(t)] = \sum_{i=1}^{4t} E[X_i] = 0$$

$$Var(Z(t)) = \sum_{i=1}^{4t} Var(X_i) = 4t \times 0.25^{\circ} = t = (0)$$

- 3. Imagine we continued shrinking the time steps Δt and the values of Xt (call them Δx) towards 0 in such a way that $(\Delta x)^2/\Delta t = 1$.
 - a. You do not need to graph it (we don't have time for an infinite number of coin flips!) but what do you think the graph of Z(t) would look like? What properties would it have? What kind of stochastic process would this be? (If you're not sure, try adding the first few values of Z(t) to your graph with $\Delta t = 1/16$ and $\Delta x = 1/4$.)

The graph would be come a continuous stochastic process with a continuous state space. The line would be extremely jagged (and kind of look like a stock price!) This is Brownian Motion!

b. What is the distribution of Z(10), including its mean and variance? (Hint: what happens when you add up a LARGE number of independent variables?) E[X_t] = 0 and Vor(X_i) = $(\Delta x)^2 \frac{1}{2} + (-\Delta x)^2 \frac{1}{2} = (\Delta x)$ $Z(10) = Z X_t$ so $E[Z(10)] = \frac{10}{4t} \times 0$, $Vor(Z(10)) = \frac{10}{4t} (\Delta x)^2$ And by the Control Limit Theorem, the sum = 10. approaches a Normal distribution. So $Z(10) \times N(0, 10)$.

c. How could you find the probability that Z(10) is strictly greater than 9?

$$P(Z(10) > 9) = P(Z(10) - 0) > \frac{9 - 0}{10}$$

$$= P(Z > 2.846)$$

$$= 1 - P(Z \le 2.846) \leftarrow look \cdot p \cdot in \cdot N(0,1)$$

$$= 0.00221$$

d. In general for this process, what is the distribution of Z(t)?