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1 Sufficiency, Completeness and Unbiased Estimation
In statistics, we often represent our data, in many cases a sample of size n from some
population as a random vector X = (X1, . . . ,Xn). The model, can be written in the
form {fθ(x); θ ∈ Ω} where Ω is the parameter space or set of permissible values of
the parameter and fθ(x) is the probability density function. A statistic, T (X), is a
function of the data which does not depend on the unknown parameter θ. Although a
statistic, T (X), is not a function of θ, its distribution can depend on θ. An estimator
is a statistic considered for the purpose of estimating a given parameter. One of our
objectives is to find a “good” estimator of the parameter θ, in some sense of the word
“good”. How do we ensure that a statistic T (X) is estimating the correct parameter
and not consistently too large or too small, and that as much variability as possible has
been removed? The problem of estimating the correct parameter is often dealt with by
requiring that the estimator be unbiased.

We will denote an expected value under the assumed parameter value θ by Eθ(.).
Thus, in the continuous case

Eθ[h(X)] =

Z ∞
−∞

h(x)fθ(x)dx,

and in the discrete case
Eθ[h(X)] =

X
all x

h(x)fθ(x),

provided the integral/sum converges absolutely. In the discrete case, fθ(x) = Pθ[X =
x], the probability function of X under this parameter value θ.

Definition

A statistic T (X) is an unbiased estimator of θ if Eθ[T (X)] = θ for all θ ∈ Ω.
For example suppose that Xi are independent, each with the Poisson distribution

with parameter θ, i = 1, ..., n. Notice that the statistic

T =
2

n(n+ 1)

nX
i=1

Xi

is such that

Eθ(T ) =
2

n(n+ 1)

nX
i=1

EθXi =
2

n(n+ 1)

nX
i=1

θ

= θ

and so T is an unbiased estimator of θ. This means that it is centered in the correct
place, but does not mean it is a best estimator in any sense.

In Decision Theory, in order to determine whether a given estimator or statistic
T (X) does well for estimating θ we consider a loss function or distance function be-
tween the estimator and the true value. Call this δ(θ, T (X)). Then this is averaged
over all possible values of the data to obtain the risk:

Risk = Eθ{δ(θ, T (X))}.
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A good estimator is one with little risk, a bad estimator is one whose risk is high.
One particular risk function is called mean squared error (M.S.E.) and corresponds to
δ(θ, T (X)) = [T (X) − θ]2. The mean squared error has a useful decomposition into
two components the variance of the estimator and the square of its bias:

MSE(θ, T ) = Eθ{[T (X)− θ]2} = varθ(T (X)) + [EθT (X)− θ]2

For example, if X has a Normal(θ, 1) distribution, the mean squared error of T1 =
X is 1 for all θ because the bias Eθ{T (X)} − θ is zero. On the other hand the
estimator T2 = X/2 has bias EθT (X) − θ = θ

2 and variance 1
4 so the mean squared

error is 1
4(1 + θ2). Obviously T2 has smaller mean squared error provided that θ is

around 0 (more precisely provided θ2 < 3), but for θ large, T1 is preferable. Of these
two estimators, only T1 is unbiased.

In general, in fact, there is usually no one estimator which outperforms all other
estimators at all values of the parameter if we use mean squared error as our basis for
comparison. In order to achieve an optimal estimator, it is unfortunately necessary to
restrict ourselves to a specific class of estimators and select the best within the class.
Of course, the best within this class will only be as good as the class itself (best in
a class of one is not much of a recommendation), and therefore we must ensure that
restricting ourselves to this class is not unduly restrictive. The class of all estimators
is usually too large to obtain a meaningful solution. One common restriction is to the
class of all unbiased estimators.

Definition

An estimator T (X) is said to be a uniformly minimum variance unbiased estimator
(U.M.V.U.E.) of the parameter θ if

(i) it is an unbiased estimator of θ and
(ii) among all unbiased estimators of θ it has the smallest mean squared error and

therefore the smallest variance.
A sufficient statistic is one that, from a certain perspective, contains all the nec-

essary information for making inferences (e.g. estimating the parameter with a point
estimator or confidence interval, conducting a test of a hypothesized value) about the
unknown parameters in a given model. It is important to remember that a statistic is
sufficient for inference on a specific parameter. It does not necessary contain all rel-
evant information in the data for other inferences. For example if you wished to test
whether the family of distributions is an adequate fit to the data ( a goodness of fit
test) the sufficient statistic for the parameter in the model does not contain the relevant
information.

Suppose the data is in a vector X and T = T (X) is a sufficient statistic for θ.
The intuitive basis for sufficiency is that if the conditional distribution of X given
T (X) does not depend on θ, then X provides no additional value in addition to T for
estimating θ. The assumption is that random variables carry information on a statistical
parameter θ only insofar as their distributions (or conditional distributions) change with
the value of the parameter and that since, given T (X) we can randomly generate at
random values for the X without knowledge of the parameter and with the correct
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distribution, these randomly generated values cannot carry additional information. All
of this, of course, assumes that the model is correct and θ is the only unknown. The
distribution of X given a sufficient statistic T will often have value for other purposes,
such as measuring the variability of the estimator or testing the validity of the model.

Definition

A statistic T (X) is sufficient for a statistical model {fθ(x); θ ∈ Ω} if the distribution
of the data (X1, . . . ,Xn) given T (X) = t does not depend on the unknown parameter
θ.

The use of a sufficient statistic is formalized in the The Sufficiency Principle, which
states that if T (X) is a sufficient statistic for a model {fθ(x); θ ∈ Ω} and x1, x2 are
two different possible observations that have identical values of the sufficient statistic:

T (x1) = T (x2),

then whatever inference we would draw from observing x1 we should draw exactly the
same inference from x2.

Sufficient statistics are not unique. For example if the sample mean X̄ = 1
n(X1+

X2+...+Xn) is a sufficient statistic, then any other statistic, that allows us to obtain X̄
is also sufficient. This will include all one-to-one functions of X̄ (these are essentially
equivalent) like X̄3 and all statistics T (X) for which we can write X̄ = g(T ) for some,
possibly many-to-one function g. One result which is normally used to verify whether
a given statistic is sufficient is the Factorization Criterion for Sufficiency: Suppose
X = (X1, . . . ,Xn) has probability density function {fθ(x); θ ∈ Ω} and T (X) is a
statistic. Then T (X) is a sufficient statistic for {fθ(x); θ ∈ Ω} if and only if there exist
two non–negative functions g(.) and h(.) so that we can factor the probability density
function fθ(x) = g(T (x); θ)h(x), for all x. This factorization into two pieces, one
which involves both the statistic T and the unknown parameter θ, and the other which
may be a constant or depend on x but does not depend on the unknown parameter,
need only hold on a set A of possible values of X which carries the full probability.
That is for some set A with Pθ(X ∈ A) = 1, for all θ ∈ Ω, we require

fθ(x) = g(T (x); θ)h(x), for all x ∈ A, θ ∈ Ω

Definition

A statistic T (X) is a minimal sufficient statistic for {fθ(x); θ ∈ Ω} if it is sufficient
and if for any other sufficient statistic U(X), there exists a function g(.) such that
T (X) = g(U(X)).

This definition says in effect that a minimal sufficient statistic can be recovered
from any other sufficient statistic. A statistic T (X) implicitly partitions the sample
space into events of the form [T (X) = x] for varying x, and if T (X) is minimal
sufficient, it induces the coarsest possible partition (i.e. the largest possible sets) in
the sample space among all sufficient statistics. This partition is called the minimal
sufficient partition.
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The property of completeness is one which is useful for determining the uniqueness
of estimators and verifying in some cases that a minimal sufficient reduction has been
found. It bears no relation to the notion of a complete market in Finance, or the mathe-
matical notion of a complete metric space. Let (X1, . . . ,Xn) denote the observations
from a distribution with probability density function {fθ(x); θ ∈ Ω}. Suppose T (X) is
a statistic and u(T ), a function of T , is an unbiased estimator of θ so that Eθ[u(T )] = θ
for all θ ∈ Ω. Under what circumstances is this the only unbiased estimator which is
a function of T ? To answer this question, suppose u1(T ) and u2(T ) are both unbiased
estimators of θ and consider the difference h(T ) = u1(T ) − u2(T ). Since u1(T ) and
u2(T ) are both unbiased estimators of the parameter θ, we have Eθ[h(T )] = 0 for all
θ ∈ Ω. Now if the only function h(T ) which satisfies Eθ[h(T )] = 0 for all θ ∈ Ω
is the zero function h(t) = 0, then the two unbiased estimators must be identical. A
statistic T with this property is said to be complete. Technically it is not the statistic
that is complete, but the family of distributions of T in the model {fθ(x); θ ∈ Ω}.

Definition

The statistic T (X) is complete if

Eθ[h(T (X))] = 0, for all θ ∈ Ω
for any function h implies

Pθ[h(T (X)) = 0] = 1 for all θ ∈ Ω.
For example, let (X1, . . . ,Xn) be a random sample from the Normal(θ, 1) distrib-

ution. Consider T (X) = (X1,
Pn

i=1Xi). Then T is sufficient for {fθ(x); θ ∈ Ω} but
is not complete. It is easy to see that it is not complete, because the function

h(T ) = X1 − 1
n

nX
i=1

Xi

is a function of T which has zero expectation for all values of θ, and yet the function
is not identically zero. The fact that the statistic (X1,

Pn
i=1Xi) is sufficient but not

complete is a hint that further reduction is possible, that it is not minimal sufficient. In
fact in this case, as we will show a little later, taking only the second component of T,
namely

Pn
i=1Xi provides a minimal sufficient, complete statistic.

Theorem B1

If T (X) is a complete and sufficient statistic for the model {fθ(x); θ ∈ Ω}, then T (X)
is a minimal sufficient statistic for the model.

The converse to the above theorem is not true. Let (X1, . . . ,Xn) be a random
sample from the continuous uniform distribution on the interval (θ − 1, θ + 1). This
distribution has probability density function

fθ(x) =
1

2
for θ − 1 < x < θ + 1
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Then using the factorization criterion above, the joint probability density function for
a sample of n independent observations from this density is

fθ(x1, ..., xn) =
1

2n
if θ − 1 < x(1) < x(n) < θ + 1, and zero otherwise,

=
1

2n
I(θ − 1 < x(1))I(θ + 1 > x(n))

where I(θ − 1 < x(1)) is one or zero as the inequality holds or does not hold and
x(1), x(n) are the smallest and the largest values in the sample (x1, x2, ..., xn). Obvi-
ously fθ(x1, ..., xn) can be written as a function g(T (x); θ)where T (X) = (X(1),X(n))
and so T (X) is sufficient. Moreover it is not difficult to show that no further reduction
(for example to X(1) alone) is possible or we can not longer provide such a factoriza-
tion, so T (X) us minimal sufficient. Nevertheless, if T (X) = (X(1),X(n)) and the
function h is defined by

h(T ) =
X(n) −X(1)

2
− n− 1

n+ 1
,

(clearly a non-zero function) then Eθ[h(T )] = 0 for all θ ∈ Ω and therefore T (X) is
not a complete statistic.

Theorem B2

For any random variables X and Y ,

Eθ(X) = Eθ[Eθ(X|Y )]

and
varθ(X) = Eθ[varθ(X|Y )] + varθ[Eθ(X|Y )]

In much of what follows, we wish to be able to estimate a general function of the un-

known parameter like τ(θ) instead of the parameter θ itself. We have already seen that
if T (X) is a complete statistic, then there is at most one function of T (X) that pro-
vides an unbiased estimator of any function of a given τ(θ). In fact if we can find such
a function, g(T (X)), then it automatically has minimum variance among all possible
unbiased estimators of τ(θ) that are based on the same data.

Theorem B3

If T (X) is a complete sufficient statistic for the model {fθ(x); θ ∈ Ω} andEθ[g(T (X))] =
τ(θ), then g(T (X)) is the U.M.V.U.E. of τ(θ).

When we have a complete sufficient statistic, and we are able to find an unbiased
estimator, even a bad one, of τ(θ), then there is a simple recipe for determining the
U.M.V.U.E. of τ(θ).
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Theorem B4

If T (X) is a complete sufficient statistic for the model {fθ(x); θ ∈ Ω} and U(X) is
any unbiased estimator of τ(θ), then E(U |T ) is the U.M.V.U.E. of τ(θ).

Note that we did not subscript the conditional expectation E(U |T ) with θ because
whenever T is a sufficient statistic, the conditional distribution of U(X) given T does
not depend on the underlying value of the parameter θ.

Definition

Suppose X = (X1, . . . ,Xp) has a (joint) probability density function of the form

fθ(x) = C(θ) exp{
kX

j=1

qj(θ)Tj(x)} h(x) (1)

for functions qj(θ), Tj(x), h(x), C(θ). Then we say that the density is a member of
the exponential family of densities. We call (T1(X), . . . , Tk(X)) the natural sufficient
statistic.

A member of the exponential family could be re-expressed in different ways and
so the natural sufficient statistic is not unique. For example we may multiply a given
Tj by a constant and divide the corresponding qj by the same constant, resulting in the
same probability density function fθ(x). Various other conditions need to be applied
as well, for example to insure that the Tj(x) are all essentially different functions of
the data. One of the important properties of the exponential family is its closure under
repeated independent sampling. In general if Xi, i = 1, ..., n are independent iden-
tically distributed with an exponential family distribution then their joint distribution
(X1, ...,Xn) is also an exponential family distribution.

Theorem B5
Let (X1, . . . ,Xn) be a random sample from the distribution with probability density
function given by (1). Then (X1, . . . ,Xn) also has an exponential family form, with
joint probability density function

fθ(x1, . . . xn) = Cn(θ) exp{
kX

j=1

qj(θ)[
nX
i=1

Tj(xi)]}
nY
i=1

h(xi).

In other words, C is replaced by Cn and Tj(x) by
nP
i=1

Tj(xi). The natural sufficient

statistic is Ã
nX
i=1

T1(Xi), . . . ,
nX
i=1

Tk(Xi)

!
.
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It is usual to reparameterize equation (1) by replacing qj(θ) by a new parameter ηj .
This results in a more efficient representation, the canonical form of the exponential
family density:

fη(x) = C(η) exp{
kX

j=1

ηjTj(x)} h(x).

The natural parameter space in this form is the set of all values of η for which the
above function is integrable; that is

{η;
Z ∞
−∞

fη(x)dx <∞}.

We would like this parameter space to be large enough to allow intervals for each of
the components of the vector η and so we will later need to assume that the natural
parameter space contains a k−dimensional rectangle.

If the statistic satisfies a linear constraint, for example,
Pk

j=1 Tj(X) = 0 with
probability one, then the number of terms k could be reduced and a more efficient rep-
resentation of the probability density function is possible. Similarly if the parameters
ηj satisfy a linear relationship, they are not all statistically meaningful because one of
the parameters is obtainable from the others. These are all situations that we would
handle by reducing the model to a more efficient and non-redundant form. So in the
remaining, we will generally assume such a reduction has already been made and that
the exponential family representation is minimal in the sense that neither the ηj nor the
Tj satisfy any linear constraints.

Definition
We will say that X has a regular exponential family distribution if it is in canoni-
cal form, is of full rank in the sense that neither the Tj nor the ηj satisfy any linear
constraints permitting a reduction in the value of k, and the natural parameter space
contains a k−dimensional rectangle.

By Theorem B5, if Xi has a regular exponential family distribution then X =
(X1, . . . ,Xn) also has a regular exponential family distribution.

The main advantage identifying a distribution as a member of the regular exponen-
tial family is that it allows to to quickly identify the minimal sufficient statistic and
conclude that it is complete.

Theorem B6
If X has a regular exponential family distribution then (T1(X), . . . , Tk(X)) is a com-
plete sufficient statistic.

7



Example

Let (X1,X2, ...Xn) be independent observations all from the normal N(µ, σ2) dis-
tribution. Notice that with the parameter

θ = (µ, σ2)

we can write the probability density function of each Xi as a constant C = C(µ, σ2)

fθ(x) = C exp{−(x− µ)2

2σ2
} = C exp{ µ

σ2
x− 1

2σ2
x2}

so the natural parameters are η1 =
µ
σ2 and η2 = − 1

2σ2 and the natural suffi-
cient statistic is (X,X2). For a sample of size n from this density we have the
same natural parameters, and, by the above theorem, a complete sufficient statistic
is (
Pn

i=1Xi,
Pn

i=1X
2
i ). For example if you wished to find a U.M.V.U.E. of any func-

tion of η1, η2 , for example the parameter η1 = µ/σ2, we need only find some function
of the compete sufficient statistic which has the correct expected value. For exam-
ple, in this case, with the sample mean X = 1

n

Pn
i=1Xi and the sample variance

S2 = 1
n−1

Pn
i=1(Xi −X)2, it is not difficult to show that

E

µ
X

S2

¶
=

n− 1
n− 3

µ

σ2

and so, provided n > 3,
n− 3
n− 1

X

S2

is an unbiased estimator and a function of the complete sufficient statistic so it is
the desired U.M.V.U.E. Suppose one of the parameters, say σ2 is assumed known.
Then the normal distribution is still in the regular exponential family, since it has a
representation

fθ(x) = C(µ, σ) exp{ µ
σ2

x}h(x)
with the function h completely known. In this case, for a sample of size n from this
distribution, the statistic

Pn
i=1Xi is complete sufficient for µ and so any function of

it, say X which is an unbiased estimator of µ is automatically U.M.V.U.E.

The Table below gives various members of the regular exponential family and the
corresponding complete sufficient statistic.
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Members of the Regular Exponential Family Complete Sufficient Statistic
Poisson (θ)

Pn
i=1Xi

Binomial (n, θ)
Pn

i=1Xi

Negative Binomial (k, θ)
Pn

i=1Xi

Geometric(θ)
Pn

i=1Xi

Normal
¡
µ, σ2

¢
if σ2 known

Pn
i=1Xi

Normal
¡
µ, σ2

¢
µ known

Pn
i=1 (Xi − µ)2

Normal
¡
µ, σ2

¢ ¡Pn
i=1Xi,

Pn
i=1X

2
i

¢
Gamma (α, β) (includes exponential) if α known

Pn
i=1Xi

Gamma (α, β) if β known
Qn

i=1Xi

Gamma (α, β) (
Pn

i=1Xi,
Qn

i=1Xi)

Differentiating under the Integral
For a regular exponential family, it is possible to differentiate under the integral, that
is,

∂m

∂ηmi

Z
C(η)exp{

kX
j=1

ηjTj(x)}h(x)dx =
Z

∂m

∂ηmi
C(η)exp{

kX
j=1

ηjTj(x)}h(x)dx

for any m = 1, 2, . . . and any η in the interior of the natural parameter space.
Let X = (X1, . . . ,Xn) denote observations from a distribution with probability

density function {fθ(x); θ ∈ Ω} and let U(X) be a statistic. The information on the
parameter θ is provided by the sensitivity of the distribution of a statistic to changes
in the parameter. For example, suppose a modest change in the parameter value leads
to a large change in the expected value of the distribution resulting in a large shift in
the data. Then the parameter can be estimated fairly precisely. On the other hand, if a
statistic U has no sensitivity at all in distribution to the parameter, then it would appear
to contain little information for point estimation of this parameter. A statistic of the
second kind is called an ancillary statistic.

Definition
U(X) is an ancillary statistic if its distribution does not depend on the unknown para-
meter θ.

Ancillary statistics are, in a sense, orthogonal or perpendicular to minimal sufficient
statistics and are analogous to the residuals in a multiple regression, while the complete
sufficient statistics are analogous to the estimators of the regression coefficients. It is
well-known that the residuals are uncorrelated with the estimators of the regression
coefficients (and independent in the case of normal errors). However, the “irrelevance”
of the ancillary statistic seems to be limited to the case when it is not part of the minimal
(preferably complete) sufficient statistic as the following example illustrates.
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Example
Suppose a fair coin is tossed to determine a random variable N = 1 with probability
1/2 and N = 100 otherwise. We then observe a Binomial random variable X with
parameters (N, θ). Then the minimal sufficient statistic is (X,N) but N is an ancillary
statistic since its distribution does not depend on the unknown parameter θ. Is N
completely irrelevant to inference about θ? If you reported to your boss an estimator of
θ such as X/N without telling him or her the value of N, how long would you expect
to keep your job? Clearly any sensible inference about θ should include information
about the precision of the estimator, and this inevitably requires knowing the value of
N. Although the distribution of N does not depend on the unknown parameter θ so
that N is ancillary, it carries important information about precision. The following
theorem allows us to use the properties of completeness and ancillarity to prove the
independence of two statistics without finding their joint distribution.

Basu’s Theorem B7
Consider X with probability density function {fθ(x); θ ∈ Ω}. Let T (X) be a complete
sufficient statistic. Then T (X) is independent of every ancillary statistic U(X).

Example
Assume Xt represents the market price of a given asset such as a portfolio of stocks
at time t and x0 is the value of the portfolio at the beginning of a given time period
(assume that the analysis is conditional on x0 so that x0 is fixed and known). The
process Xt is assumed to be a Brownian motion and so the distribution of Xt for any
fixed time t is Normal(x0+µt, σ2t) for 0 < t ≤ 1. Suppose that for a period of length
1, we record both the period high max{0≤t≤1}Xt and the close X1. Define random
variables M = max{t≤1}Xt−x0 and Y = X1−x0. Then the joint probability density
function of (M,Y ) can be shown to be

fθ(m, y) =
2(2m− y)√

2πσ3
exp{[2µy − µ2 − (2m− y)2]/(2σ2)}

−∞ < y < m, m > 0, θ = (µ, σ2).

It is not hard to show that this is a member of the regular exponential family of
distributions with both parameters assumed unknown. If one parameter is known, for
example, σ2, it is again a regular exponential family distribution with k = 1. Con-
sequently, if we record independent pairs of observations (Mi, Yi), i = 1, . . . n on
the portfolio for a total of n distinct time periods (and if we assume no change in the
parameters), then the statistic

Y =
1

n

nX
i=1

Yi

is a complete sufficient statistic for the drift parameter µ. Since it is also an unbiased
estimator of µ, it is the U.M.V.U.E. of µ. By Basu’s theorem it will be independent of
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any ancillary statistic, i.e. any statistic whose distribution does not depend on the para-
meter µ. One such statistic is Z =

P
iMi(Mi − Yi), which is therefore independent

of Y .

2 Maximum Likelihood Estimation
Suppose we have observed n independent discrete random variables all with probability
density function

Pθ(X = x) = fθ(x)

where the scalar parameter θ is unknown. Suppose our observations are x1, . . . , xn.
Then the probability of the observed data is:

nY
i=1

Pθ(X = xi) =
nY
i=1

fθ(xi).

When the observations have been substituted, this becomes a function of the parame-
ter only, referred to as the likelihood function and denoted L(θ). Its natural logarithm
is usually denoted (θ) = ln(L(θ)). Now in the absence of any other information,
it seems logical that we should estimate the parameter θ using a value most compati-
ble with the data. For example we might choose the value maximizing the likelihood
function L(θ) or equivalently maximizing (θ). We call such a maximizer the maxi-
mum likelihood (M.L.) estimate provided it exists and satisfies any restrictions placed
on the parameter. We denote it by θ̂. Obviously, it is a function of the data, that is,
θ̂ = θ̂(x). The corresponding estimator is θ̂ = θ̂(X). In practice we are usually sat-
isfied with a local maximum of the likelihood function provided that it is reasonable,
partly because the global maximization problem is often quite difficult, partly because
the global maximum is not always better than a local maximum near a preliminary
estimator that is known to be consistent.. In the case of a twice differentiable log likeli-
hood function on an open interval, this local maximum is usually found by solving the
equation S(θ) = 0 for a solution θ̂, where S(θ) = 0(θ) is called the score function.
The equation S(θ) = 0 is called the (maximum) likelihood equation or score equation.
To verify a local maximum we compute the second derivative 00(θ̂) and show that it
is negative, or alternatively show I(θ̂) = − 00(θ̂) > 0. The function I(θ) = − 00(θ)
is called the information function. In a sense to be investigated later, I(θ̂) = − 00(θ̂),
the observed information, indicates how much information about a parameter is avail-
able in a given experiment. The larger the value, the more curved is the log likelihood
function and the easier it is to find the maximum.

Although we view the likelihood, log likelihood, score and information functions as
functions of θ they are, of course, also functions of the observed data x = (x1, ..., xn).
When it is important to emphasize the dependence on the data x we will write L(θ;x),
S(θ;x), etc. Also when we wish to determine the sampling properties of these func-
tions as functions of the random variable X = (X1, ...,Xn) we will write L(θ;X),
S(θ;X), etc.
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Definition
The Fisher or expected information (function) is the expected value of the information
function J(θ) = Eθ[I(θ;X)].

Likelihoods for Continuous Models
Suppose a random variable X has a continuous probability density function fθ(x) with
parameter θ. We will often observe only the value of X rounded to some degree of pre-
cision (say 1 decimal place) in which case the actual observation is a discrete random
variable. For example, suppose we observe X correct to one decimal place. Then

P (we observe 1.1) =
Z 1.15

1.05

fθ(x)dx ≈ (0.1)fθ(1.1)

assuming the function fθ(x) is quite smooth over the interval. More generally, if we
observe X rounded to the nearest ∆ (assumed small) then the likelihood of the obser-
vation is approximately ∆fθ(observation). Since the precision ∆ of the observation
does not depend on the parameter, then maximizing the discrete likelihood of the ob-
servation is essentially equivalent to maximizing the the probability density function
fθ(observation) over the parameter. This partially justifies the use of the probability
density function in the continuous case as the likelihood function.

Similarly, if we observed n independent values x1, . . . , xn of a continuous random
variable, we would maximize the likelihood L(θ) =

Qn
i=1 fθ(xi) (or more commonly

its logarithm) to obtain the maximum likelihood estimator of θ.
The relative likelihood function R(θ), defined as R(θ) = L(θ)/L(θ̂), is the ratio

of the likelihood to its maximum value and takes on values between 0 and 1. It is used
to rank possible parameter values according to their plausibility in light of the data. If
R(θ1) = 0.1, say, then θ1 is rather an implausible parameter value because the data
are ten times more likely when θ = θ̂ than they are when θ = θ1. The set of θ-values
for which R(θ) ≥ p is called a 100p% likelihood region for θ.When the parameter θ is
one-dimensional, and θ0 is its true value,

−2 logR(θ0;X)
converges in distribution as the sample size n → ∞ to a chi-squared distribution with
1 degree of freedom. More generally, the numbers of degrees of freedom of the lim-
iting chi-squared distribution is the dimension of the parameter θ. We can use this to
construct a confidence interval for the unknown value of the parameter. For example if
b is chosen to be the 0.95 quantile of the chi-squared(1) distribution (b = 3.84), then

{θ : −2 logR(θ;x) < b} = {θ : R(θ;x) > e−b/2}
≈ {θ : R(θ;x) > 0.15}

so a 15% likelihood interval is an approximate 95% confidence interval for θ. This
seems to indicate that the confidence interval tolerates a considerable difference in
the likelihood. The likelihood at a parameter value must differ from the maximum
likelihood by a factor of more than 6 before it is excluded by a 95% confidence interval
or rejected by a test with level of significance 5%.
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Properties of the Score and Information
Consider a continuous model with a family of probability density functions {fθ(x); θ ∈
Ω}. Suppose all of the densities are supported on a common set {x : fθ(x) > 0} = A.
Then Z

A

fθ(x)dx = 1

and therefore Z
A

∂

∂θ
fθ(x)dx =

∂

∂θ

Z
A

fθ(x)dx = 0

provided that the integral can be interchanged with the derivative. Models that permit
this interchange, and calculation of the Fisher information, are called regular models.

Regular Models
Consider a statistical model {fθ(x); θ ∈ Ω} with each density supported by a common
set A. Suppose Ω is an open interval in the real line and fθ(x) > 0 for all θ ∈ Ω and
x ∈ A. Suppose in addition

1. ln[fθ(x)] is a continuous, three times differentiable function of θ for all x ∈ A.

2. ∂k

∂θk

R
A
fθ(x)dx =

R
A

∂k

∂θk
fθ(x)dx, k = 1, 2

3. |∂3 ln fθ(x)∂θ3 | < M(x) for some function M(x) satisfying supθ Eθ[M(X)] <∞.

4. 0 < Eθ{[S(θ;X)]2} <∞.

Then we call this a regular family of distributions or a regular model. Similarly, if
these conditions hold with X a discrete random variable and the integrals replaced by
sums, the family is also called regular. Conditions like these permitting the interchange
of expected values and derivative are sometimes referred to as the Cramer conditions.
In general, they are used to justify passage of a derivative under an integral.

Theorem B8
If (X1, . . . ,Xn) is a random sample from a regular model {fθ(x); θ Ω} then

Eθ[S(θ;X)] = 0

and
varθ[S(θ;X)] = Eθ{[S(θ;X)]2} = Eθ[I(θ;X)] = J(θ).
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The Multiparameter Case
The case of several parameters is exactly analogous to the scalar parameter case. Sup-
pose θ = (θ1, . . . , θk)

0
. In this case the “parameter” can be thought of as a column

vector of k scalar parameters. The score function S(θ) is a k−dimensional column
vector whose ith component is the derivative of (θ) with respect to the ith compo-
nent of θ, that is,

S(θ) = [
∂

∂θ1
(θ), . . . ,

∂

∂θk
(θ)]

0
.

The observed information function I(θ) is a k × k matrix whose (i, j) element is
− ∂2

∂θi∂θj
(θ)

I(θ) = [Iij(θ)]k×k = [− ∂2

∂θi∂θj
(θ)]k×k, i, j = 1, . . . , k.

The Fisher information is a k × k matrix whose components are component-wise ex-
pectations of the information matrix, that is

Jij(θ) = Eθ[Iij(θ;X)], i, j = 1, . . . , k.

The definition of a regular family of distributions is similarly extended. For a regular
family of distributions

Eθ[S(θ;X)] = (0, . . . , 0)
0

and the covariance matrix of the score function varθ[S(θ;X)] is the Fisher information,
i.e.

Jij(θ) = Eθ[
∂

∂θi
(θ)

∂

∂θj
(θ)].

Maximum likelihood Estimation in the Exponential Family
Suppose X has a regular exponential family distribution of the form

fη(x) = C(η) exp{
kX

j=1

ηjTj(x)}h(x).

Then
Eη[Tj(X)] =

−∂ lnC(η)
∂ηj

for j = 1, . . . , k

and
Covη(Ti(X), Tj(X)) =

−∂2 lnC(η)
∂ηiδηj

for i, j = 1, . . . , k.

Therefore the maximum likelihood estimator of η based on a random sample (X1, ...,Xn)
from fη(x) is the solution to the k equations

Eη[Tj(X)] =
1

n

nX
i=1

Tj(xi) for j = 1, . . . , k.

The maximum likelihood estimators are obtained by setting the sample moments of the
natural sufficient statistic equal to their expected values and solving.

14



Finding Maximum likelihood estimates using Newton’s Method
Suppose that the maximum likelihood estimate θ̂ is determined by the likelihood equa-
tion

S(θ) = 0.

It frequently happens that an analytic solution for θ̂ cannot be obtained. If we begin
with an approximate value for the parameter, θ(0), we may update that value as follows:

θ(i+1) = θ(i) +
S(θ(i))

I(θ(i))
, i = 0, 1, 2, . . .

and provided that convergence of θ(i), i→∞ obtains, it converges to a solution to the
score equation above. In the multiparameter case, where S(θ) is a vector and J(θ) is a
matrix, then Newton’s method becomes:

θ(i+1) = θ(i) + I−1(θ(i))S(θ(i)), i = 0, 1, 2, . . .

In both of these, we can replace the information function by the Fisher information for
a similar algorithm..

Suppose we consider estimating a parameter τ(θ),where θ is a scalar, using an
unbiased estimator T (X). Is there any limit to how well an estimator like this can
behave? The answer for unbiased estimators is in the affirmative. A lower bound on
the variance is given by the information inequality.

Information Inequality
Suppose T (X) is an unbiased estimator of the parameter τ(θ) in a regular statistical
model {fθ(x); θ ∈ Ω}. Then

varθ(T ) ≥ [τ
0(θ)]2

J(θ)
. (2)

Equality holds if and only if fθ(x) is regular exponential family with natural sufficient
statistic T (X).

If equality holds in (2) then we call T (X) an efficient estimator of τ(θ). The
number on the right hand side of (2),

[τ 0(θ)]2

J(θ)

1. is called the Cramér-Rao lower bound (C.R.L.B.). We often express the effi-
ciency of an unbiased estimator using the ratio of (C.R.L.B.) to the variance of
the estimator. Large values of the efficiciency (i.e. near one) indicate that the
variance of the estimator is close to the lower bound.
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The special case of the information inequality that is of most interest is the unbi-
ased estimation of the parameter θ. The above inequality indicates that any unbiased
estimator T of θ has variance at least 1/J(θ). The lower bound is achieved only when
fθ(x) is regular exponential family with natural sufficient statistic T , so even in the ex-
ponential family, only certain parameters are such that we can find unbiased estimators
which achieve the C.R.L.B., namely those that are expressible as the expected value of
the natural sufficient statistics.

The Multiparameter Case
The right hand side in the information inequality generalizes naturally to the multiple
parameter case in which θ is a vector. For example if θ = (θ1, . . . , θk)0, then the Fisher
information J(θ) is a k × k matrix. If τ(θ) is any real-valued function of θ then its
derivative is a column vector

³
∂τ
∂θ1

, . . . , ∂τ
∂θk

´0
. Then if T (X) is any unbiased estimator

of τ(θ) in a regular model,

varθ(T ) ≥
µ
∂τ

∂θ1
, . . . ,

∂τ

∂θk

¶
[J(θ)]−1

µ
∂τ

∂θ1
, . . . ,

∂τ

∂θk

¶0
for all θ ∈ Ω.

Asymptotic Properties of maximum likelihood Estimators
One of the more successful attempts at justifying estimators and demonstrating some
form of optimality has been through large sample theory or the asymptotic behaviour
of estimators as the sample size n → ∞. One of the first properties one requires is
consistency of an estimator. This means that the estimator converges to the true value
of the parameter as the sample size (and hence the information) approaches infinity.

Definition
Consider a sequence of estimators Tn where the subscript n indicates that the estimator
has been obtained from data (X1, . . . ,Xn) with sample size n. Then the sequence is
said to be a consistent sequence of estimators of τ(θ) if Tn →p τ(θ) for all θ ∈ Ω.

It is worth a reminder at this point that probability density functions are used to
produce probabilities and are only unique up to a point. For example if two probability
density functions f(x) and g(x) were such that they produced the same probabilities,
or the same cumulative distribution function, for example,Z x

−∞
f(z)dz =

Z x

−∞
g(z)dz

for all x, then we would not consider them distinct probability densities, even though
f(x) and g(x) may differ at one or more values of x. Now when we parameterize a
given statistical model using θ as the parameter, it is natural to do so in such a way that
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different values of the parameter lead to distinct probability density functions. This
means, for example, that the cumulative distribution functions associated with these
densities are distinct. Without this assumption, made in the following theorem, it would
be impossible to accurately estimate the parameter since two different parameters could
lead to the same cumulative distribution function and hence exactly the same behaviour
of the observations.

Theorem B9
Suppose (X1, . . . ,Xn) is a random sample from a regular statistical model {fθ(x); θ ∈
Ω}. Assume the densities corresponding to different values of the parameters are dis-
tinct. Let S1(θ;Xi) =

∂
∂θ lnfθ(Xi). Then with probability tending to 1 as n→∞, the

likelihood equation
nX
i=1

S1(θ;Xi) = 0,

has a root θ̂n such that θ̂n converges in probability to θ0, the true value of the parameter,
as n→∞.

The likelihood equation above does not always have a unique root. The consistency
of the maximum likelihood estimator is one indication that it performs reasonably well.
However, it provides no reason to prefer it to some other consistent estimator. The
following result indicates that maximum likelihood estimators perform as well as any
reasonable estimator can, at least in the limit as n → ∞. Most of the proofs of these
asymptotic results can be found in Lehmann(1991).

Theorem B10
Suppose (X1, . . . ,Xn) is a random sample from a regular statistical model {fθ(x);
θ ∈ Ω}. Suppose θ̂n is a consistent root of the likelihood equation as in the theorem
above. Let J1(θ) = Eθ

n
−∂2
∂θ2 lnfθ(X)

o
, the Fisher information for a sample of size

one. Then √
n(θ̂n − θ0)→D Y ∼ N(0,

1

J1(θ0)
)

where θ0 is the true value of the parameter.

This result may also be written asp
nJ1(θ0)(θ̂n − θ0) =

p
J(θ0)(θ̂n − θ0)→D Z ∼ N(0, 1).

This theorem asserts that, at least under the regularity required, the maximum like-
lihood estimator is asymptotically unbiased. Moreover, the asymptotic variance of the
maximum likelihood estimator approaches the Cramér-Rao lower bound for unbiased
estimators. This justifies the comparison of the variance of an estimator Tn based on
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a sample of size n to the value [nJ1(θ0)]−1, which is the asymptotic variance of the
maximum likelihood estimator and also the Cramér-Rao lower bound.

It also follows that

√
n[τ(θ̂n)− τ(θ0)]→D W ∼ N(0,

[τ 0(θ0)]2

J1(θ0)
).

This indicates that the asymptotic variance of any function τ(θ̂n) of the maximum
likelihood estimator also achieves the Cramér-Rao lower bound.

Definition
Suppose Tn is asymptotically normal with mean θ0 and variance σ2T /n. The asymptotic
efficiency of Tn is defined to be [σ2TJ1(θ0)]−1. This is the ratio of the Cramér-Rao
lower bound to the variance of Tn and is typically less than one, close to one indicating
the asymptotic efficiency is close to that of the maximum likelihood estimator.

The Multiparameter Case
In the case θ = (θ1, . . . , θk)0, the score function is the vector of partial derivatives of
the log likelihood with respect to the components of θ. Therefore the likelihood equa-
tion is k equations in the k unknown parameters. Under similar regularity conditions
to the univariate case, the conclusion of Theorem B9 holds in this case, that is, the
components of θ̂n each converge in probability to the corresponding component of θ0.
Similarly, the asymptotic normality remains valid in this case with little modification.
Let J1(θ) be the Fisher information matrix for a sample of size one and assume it is a
non-singular matrix. Then

√
n(θ̂n − θ0)→D Y ∼ MVN(0, [J1(θ0)]−1)

where the multivariate normal distribution with k-dimensional mean vector µ and co-
variance matrix B (k × k) , denoted MVN(µ,B) has probability density function
defined onRk,

f(x) =
1

(2π)k/2|B|1/2 exp{−
1

2
(x− µ)0B−1(x− µ)}

It also follows that
√
n[τ(θ̂n)− τ(θ0)]→D W ∼ MVN(0, [D(θ0)]0[J1(θ0)]−1D(θ0))

where D(θ) =
³
∂τ
∂θ1

, . . . , ∂τ
∂θk

´0
. Once again the asymptotic variance-covariance ma-

trix is identical to the lower bound given by the multiparameter case of the Information
Inequality.

Joint confidence regions can be constructed based on one of the asymptotic results

(θ̂n − θ0)
tJ(θ̂n)(θ̂n − θ0)→D W ∼ χ2(k),
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(θ̂n − θ0)
tI(θ̂n)(θ̂n − θ0)→D W ∼ χ2(k)

or
Λn(X) = −2 lnR(θ0)→D W ∼ χ2(k).

Confidence intervals for a single parameter, say θi, can be based on the approximate
normality of

{[J−1(θ̂n)]ii}−1/2[(θ̂n)i − (θ0)i]
or

{[I−1(θ̂n)]ii}−1/2[(θ̂n)i − (θ0)i]
where (a)i is the ith entry in the vector a and [A−1]ii is the (i, i) entry in the matrix
A−1.

Unidentifiability and Singular Information Matrices
Suppose we observe two independent random variables Y1, Y2 having normal distrib-
utions with the same variance σ2 and means θ1 + θ2, θ2 + θ3 respectively. In this
case, although the means depend on the parameter θ = (θ1, θ2, θ3), the value of this
vector parameter is unidentifiable in the sense that, for some pairs of distinct parameter
values, the probability density function of the observations are identical. For example
the parameter (1, 0, 1) leads to exactly the same joint distribution of Y1, Y2 as does
the parameter (0, 1, 0). In this case, we we might consider only the two parameters
(φ1, φ2) = (θ1 + θ2, θ2 + θ3) and anything derivable from this pair estimable, while
parameters such as θ2 that cannot be obtained as functions of φ1, φ2 are consequently
unidentifiable. The solution to the original identifiability problem is the reparametriza-
tion to the new parameter (φ1, φ2) in this case, and in general, unidentifiability usually
means one should seek a new, more parsimonious parametrization.

In the above example, compute the Fisher information matrix for the parameter
θ = (θ1, θ2, θ3). Notice that the Fisher information matrix is singular. This means that
if you were to attempt to compute the asymptotic variance of the maximum likelihood
estimator of θ by inverting the Fisher information matrix, the inversion would be im-
possible. Attempting to invert a singular matrix is like attempting to invert the number
0. It results in one or more components that you can consider to be infinite. Arguing
intuitively, the asymptotic variance of the maximum likelihood estimator of some of
the parameters is infinite. This is an indication that asymptotically, at least, some of
the parameters may not be identifiable. When parameters are unidentifiable, the Fisher
information matrix is generally singular. However, when J(θ) is singular for all values
of θ, this may or may not mean parameters are unidentifiable for finite sample sizes, but
it does usually mean one should take a careful look at the parameters with a possible
view to adopting another parametrization.

U.M.V.U.E.’s and maximum likelihood Estimators: A Comparison
Which of the two main types of estimators should we use? There is no general consen-
sus among statisticians.
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1. If we are estimating the expectation of a natural sufficient statistic Ti(X) in a
regular exponential family both maximum likelihood and unbiasedness consid-
erations lead to the use of Ti as an estimator.

2. When sample sizes are large U.M.V.U.E’s and maximum likelihood estimators
are essentially the same. In that case use is governed by ease of computation.
Unfortunately how large “large” needs to be is usually unknown. Some studies
have been carried out comparing the behaviour of U.M.V.U.E.’s and maximum
likelihood estimators for various small fixed sample sizes. The results are, as
might be expected, inconclusive.

3. maximum likelihood estimators exist “more frequently” and when they do they
are usually easier to compute than U.M.V.U.E.’s. This is essentially because of
the appealing invariance property of maximum likelihood estimators.

4. Simple examples are known for which maximum likelihood estimators behave
badly even for large samples. This is more often the case when there is a large
number of parameters, some of which, termed “nuisance parameters” are of no
direct interest, but complicate the estimation.

5. U.M.V.U.E.’s and maximum likelihood estimators are not necessarily robust. A
small change in the underlying distribution or the data could result in a large
change in the estimator.

3 Other Estimation Criteria

Best Linear Unbiased Estimators
The problem of finding best unbiased estimators is considerably simpler if we limit the
class in which we search. If we permit any function of the data, then we usually require
the heavy machinery of complete sufficiency to produce U.M.V.U.E.’s. However, the
situation is much simpler if we suggest some initial random variables and then require
that our estimator be a linear combination of these. Suppose, for example we have
random variables Y1, Y2, Y3 with E(Y1) = α+ θ, E(Y2) = α− θ, E(Y3) = θ where θ
is the parameter of interest and α is another parameter. What linear combinations of the
Yi’s provide an unbiased estimator of θ and among these possible linear combinations
which one has the smallest possible variance? To answer these questions, we need
to know the covariances Cov(Yi, Yj) (at least up to some scalar multiple). Suppose
Cov(Yi, Yj) = 0, i 6= j and var(Yj) = σ2. Let Y = (Y1, Y2, Y3)

0 and β = (α, θ)0.
We can write the model in a form reminiscent of linear regression as

Y = Xβ +

where

X =

⎡⎣ 1 1
1 −1
0 1

⎤⎦ ,
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= ( 1, 2, 3)
0 and the i’s are uncorrelated random variables with E( i) = 0 and

var( i) = σ2. Then the linear combination of the components of Y that has the smallest
variance among all unbiased estimators of β is given by the usual regression formula
β̃ = (α̃, θ̃)0 = (X 0X)−1X 0Y and θ̃ = 1

3(Y1 − Y2 + Y3) provides the best estimator
of θ in the sense of smallest variance. In other words, the linear combination of the
components of Y which has smallest variance among all unbiased estimators of a0β is
a0β̃ where a0 = (0, 1). In the above example, we may compute the Fisher information
matrix for the parameter θ = (θ1, θ2, θ3) as follows.

The log likelihood is

(θ) = − 1

2σ2
{(y1 − θ1 − θ2)

2 + (y2 − θ2 − θ3)
2}

and the Fisher information is the covariance matrix of the score vector

S(θ) =
1

σ2

⎛⎝ y1 − θ1 − θ2
y1 + y2 − θ1 − 2θ2 − θ3

y2 − θ2 − θ3

⎞⎠
and this is

J(θ) =
1

σ2

⎛⎝ 1 1 0
1 2 1
0 1 1

⎞⎠
Notice that J(θ) is, in this case, singular. If you were to attempt to compute the asymp-
totic variance of the maximum likleihood estimator of θ by inverting this information
matrix, the inversion is impossible. Attempting to invert a singular matrix is like at-
tempting the inverse of 0, , one or more components of the inverse can be taken to
be infinite, indicating that, asymptotically at least, one of more of the parameters is
unidentifiable.

More generally, we wish to consider a number n of possibly dependent random
variables Yi whose expectations may be related to a parameter θ. These may, for ex-
ample, be individual observations or a number of competing estimators constructed
from these observations. We assume Y = (Y1, ..., Yn)0 has expectation given by

E(Y ) = Xβ

where X is some n× k matrix having rank k and β = (β1, . . . , βk)
0 is a vector of un-

known parameters. As in multiple regression, the matrix X is known and non-random.
Suppose the covariance matrix of Y is σ2B with B a known non-singular matrix and
σ2 a possibly unknown scalar parameter. We wish to estimate a linear combination of
the components of β, say θ = a0β, where a is a known k-dimensional column vector.
We restrict our attention to unbiased estimators of θ.

Gauss-Markov Theorem B11
Theorem B11: Gauss-Markov Theorem
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Suppose Y is a random vector with mean and covariance matrix

E(Y ) = Xβ

cov(Yi, Yj) = σ2B

where matrices X and B are known and the parameters β and σ2 unknown. Suppose
we wish to estimate a linear combination θ = a0β of the components of β. Then among
all linear combinations of the components of Y which are unbiased estimators of the
parameter θ, the estimator

eθ = a0(X 0B−1X)−1X 0B−1Y

has the smallest variance.

Note that this result does not depend on any assumed normality of the components
of Y but only on the first and second moment behaviour, that is, the mean and the co-
variances. The special case when B is the identity matrix is the least squares estimator.

Estimating Equations
To find the maximum likelihood estimator, we usually solve the likelihood equation

nX
i=1

S1(θ;Xi) = 0. (3)

Note that the function on the left hand side is a function of both the observations and the
parameter. Such a function is called an estimating function. Most sensible estimators,
like the maximum likelihood estimator, can be described easily through an estimating
function. For example, if we know varθ(Xi) = θ for independent identically distrib-
uted Xi, then we can use the estimating function

ψ(θ,X) =
nX
i=1

(Xi − X̄)2 − (n− 1)θ (4)

to estimate the parameter θ, without any other knowledge of the distribution, its den-
sity, mean etc. The estimating function is set equal to 0 and solved for θ. The above
estimating function is an unbiased estimating function in the sense that

Eθ[ψ(θ,X)] = 0, for all θ. (5)

This allows us to conclude that the function is at least centered appropriately for the
estimation of the parameter θ. Now suppose that ψ is an unbiased estimating function
corresponding to a large sample. Often it can be written as the sum of independent
components, for example

ψ(θ,X) =
nX
i=1

ψi(θ,Xi). (6)
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Now suppose θ̂ is a root of the estimating equation

ψ(θ,X) = 0.

Then for θ sufficiently close to θ̂,

ψ(θ,X) = ψ(θ,X)− ψ(θ̂, X) ≈ (θ − θ̂)
∂

∂θ
ψ(θ,X). (7)

Uusing the Central Limit Theorem, assuming that θ is the true value of the parameter
and provided ψ is a sum as in (6), the left hand side of (7) is approximately nor-
mal with mean 0 and variance equal to varθ[ψ(θ,X)]. The term ∂

∂θψ(θ,X) is also
a sum of similar derivatives of the individual ψi. If a law of large numbers applies
to these terms, then when divided by n this sum will be asymptotically equivalent to
1
nEθ[∂ψ(X, θ)/∂θ]. It follows that the root θ̂ will have an approximate normal distri-
bution with mean θ and variance

varθ[ψ(θ,X)]

{Eθ[∂ψ(θ,X)/∂θ]}2 .

By analogy with the relation between asymptotic variance of the maximum likelihood
estimator and the Fisher information, we call the reciprocal of the above asymptotic
variance formula the Godambe information of the estimating function. This informa-
tion measure is

J(ψ, θ) =
{Eθ[∂ψ(θ,X)/∂θ]}2

varθ[ψ(θ,X)]
. (8)

Godambe(1960) proved the following result.

Theorem B12
Among all unbiased estimating functions satisfying the usual regularity conditions,
an estimating function which maximizes the Godambe information (8) is of the form
c(θ)S(θ;X) where c(θ) is non-random.

4 Bayesian Methods
There are two major schools of thought on the way in which statistical inference is
conducted, the frequentist and the Bayesian school. Typically, these schools differ
slightly on the actual methodology and the conclusions that are reached, but more
substantially on the philosophy underlying the treatment of parameters. So far we have
considered a parameter as an unknown constant underlying or indexing the probability
density function of the data. It is only the data, and statistics derived from the data that
are random.

The Bayesian begins with the assertion that the parameter θ obtains as the real-
ization of some larger random experiment. The parameter is assumed to have been
generated according to some distribution, the prior distribution π and the observations
then obtained from the corresponding probability density function fθ interpreted as
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the conditional probability density of the data given the value of θ. The prior distri-
bution π(θ) quantifies information about θ prior to any further data being gathered.
Sometimes π(θ) can be constructed on the basis of past data. For example, if a qual-
ity inspection program has been running for some time, the distribution of the number
of defectives in past batches can be used as the prior distribution for the number of
defectives in a future batch. The prior can also be chosen to incorporate subjective
information based on an expert’s experience and personal judgement. The purpose of
the data is then to adjust this distribution for θ in the light of the data, to result in the
posterior distribution for the parameter. Any conclusions about the plausible value of
the parameter are to be drawn from the posterior distribution. For a frequentist, state-
ments like P (1 < θ < 2) are meaningless; all randomness lies in the data and the
parameter is an unknown constant. Frequentists are careful to assure students that if an
observed 95% confidence interval for the parameter is 1 < θ < 2 this does not imply
P (1 < θ < 2) = 0.95. However, a Bayesian will happily quote such a probability,
usually conditionally on some observations, for example, P (1 < θ < 2|X) = 0.95. In
spite of some distance in the philosophy regarding the (random?) nature of statistical
parameters, the two paradigms tend to largely agree for large sample sizes because the
prior assumptions of the Bayesian tend to be a small contributor to the conclusion.

Posterior Distributions
Suppose the parameter is initially chosen at random according to the prior distribution
π(θ) and then given the value of the parameter the observations are independent iden-
tically distributed, each with conditional probability (density) function fθ(x). Then
the posterior distribution of the parameter is the conditional distribution of θ given the
data x = (x1, . . . , xn)

π(θ|x) = cπ(θ)
nY
i=1

fθ(xi) = cπ(θ)L(θ)

where c = 1/
R∞
−∞ π(θ)L(θ)dθ is independent of θ and L(θ) is the likelihood function.

Since Bayesian inference is based on the posterior distribution it depends only on the
data through the likelihood function.

Example
Suppose a coin is tossed n times with probability of heads θ. It is known from my
“very considerable previous experience with coins” that the prior probability of heads
is not always identically 1/2 but follows a BETA(10, 10) distribution. If the n tosses
result in x heads, we wish to find the posterior density function for θ. In this case the
prior distribution for the parameter θ is the Beta(10,10) distribution with probability
density function

π(θ) =
Γ(20)

Γ(10)Γ(10)
θ9(1− θ)9, 0 < θ < 1.
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The posterior distribution of θ is therefore proportional to

π(θ)fθ(x) =
Γ(20)

Γ(10)Γ(10)
θ9(1− θ)9

µ
n

x

¶
θx(1− θ)n−x

= Cθ9+x(1− θ)9+n−x, 0 < θ < 1

where the constantC may depend on x but dos not depend on θ. Therefore the posterior
distribution is also a Beta distribution but with parameters (10+x, 10+n−x). Notice
that the posterior mean is the expected value of this beta distribution and is

10 + x

10 + n− x

which, for n and x sufficiently large, is reasonably close to the usual estimator x/n.

Conjugate Prior Distributions
If a prior distribution has the property that the posterior distribution is in the same
family of distributions as the prior then the prior is called a conjugate prior.

Suppose (X1, . . . ,Xn) is a random sample from the exponential family

fθ(x) = C(θ) exp[q(θ)T (x)]h(x)

and θ is assumed to have the prior distribution with parameters a, b given by

π(θ) = k[C(θ)]a exp[bq(θ)] (9)

where
k =

1R∞
−∞[C(θ)]

a exp[bq(θ)]dθ
.

Then the posterior distribution of θ, given the data x = (x1, . . . , xn) is easily seen to
be given by

π(θ|x) = c[C(θ)]a+n exp{q(θ)[b+
nX
i=1

T (xi)]}

where
c =

1R∞
−∞[C(θ)]

a+n exp{q(θ)[b+Pn
i=1 T (xi)]}dθ

.

Notice that the posterior distribution is in the same family of distributions as (9) and
thus π(θ) is a conjugate prior. The value of the parameters of the posterior distribution
reflect the choice of parameters in the prior.

Example
To find the conjugate prior for θ =(α, β) for a random sample (X1, . . . ,Xn) from the
beta(α, β) distribution with probability density function

fθ(x) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1 , 0 < x < 1, for α, β > 0
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we begin by writing this in exponential family form,

fθ(x) =
Γ(α+ β)

Γ(α)Γ(β)
exp{(α− 1) lnx+ (β − 1) ln(1− x)}

Then the conjugate prior distribution is the joint probability density function π(α, β)
on (α, β) which is proportional to

π(α, β) ∝ { Γ(α+ β)

Γ(α)Γ(β)
}a exp{−b1(α− 1)− b2(β − 1)} (10)

for parameters a, b1, b2. The posterior distribution takes the same form as (10) but with
the parameters a, b1, b2 replaced by a+n,−b1+

Pn
i=1 ln(Xi),−b2+

Pn
i=1 ln(1−Xi).

Bayesians are sometimes criticised for allowing their subjective opinions (in this case
leading to the choice of the prior parameters a, b1, b2 influence the resulting inference
but notice that in this case, and more generally, as the sample size n grows, the value
of the parameters of the posterior distribution is mostly determined by the components
n,
Pn

i=1 ln(Xi),
Pn

i=1 ln(1−Xi) above which grow in n, eventually washing out the
influence of the choice of prior parameters.

Noninformative Prior Distributions
The choice of the prior distribution to be the conjugate prior is often motivated by
mathematical convenience. However, a Bayesian would also like the prior to accurately
represent the preliminary uncertainty about the plausible values of the parameter, and
this may not be easily translated into one of the conjugate prior distributions. Non-
informative priors are the usual way of representing ignorance about θ and they are
frequently used in practice. It can be argued that they are more objective than a sub-
jectively assessed prior distribution since the latter may contain personal bias as well
as background knowledge. Also, in some applications the amount of prior information
available is far less than the information contained in the data. In this case there seems
little point in worrying about a precise specification of the prior distribution.

In the coin tossing example above, we assumed a Beta(10,10) prior distribution for
the probability of heads. If were no reason to prefer one value of θ over any other then
a noninformative or ‘flat’ prior disribution for θ that could be used is the UNIF(0, 1)
distribution, also as it turns out a special case of the beta distribution. Ignorance may
not be bliss but for Bayesians it is most often uniformly distributed. For estimating the
mean θ of a N(θ, 1) distribution the possible values for θ are (−∞,∞). If we take the
prior distribution to be uniform on (−∞,∞), that is,

π(θ) = c, −∞ < θ <∞
then this is not a proper probability density sinceZ ∞

−∞
π(θ)dθ = c

Z ∞
−∞

dθ =∞ if c > 0.

Prior densities of this type are called improper priors. In this case we could consider
a sequence of prior distributions such as the UNIF(−M,M) which approximates this
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prior as M → ∞. Suppose we call such a prior density function πM . Then the
posterior distribution of the parameter is given by

π(θ|x) = cπM (θ)L(θ)

and it is easy to see that as M → ∞, this approaches a constant multiple of the like-
lihood function L(θ). For reasonably large sample size, L(θ) is often integrable and
can therefore be normalized to produce a proper posterior distribution, even though the
corresponding prior was improper. This Bayesian development provides an alternate
interpretation of the likelihood function. We can consider it as proportional to the pos-
terior distribution of the parameter when using a uniform improper prior on the whole
real line. The language is somewhat sloppy here since, as we have seen, the uniform
distribution on the whole real line really makes sense only through taking limits for
uniform distributions on finite intervals.

In the case of a scale parameter, which must take positive values such as the normal
variance, it is usual to express ignorance of the prior distribution of the parameter by
assuming that the logarithm of the parameter is uniform on the real line.

One possible difficulty with using nonformative prior distributions is the concern
whether the prior distribution should be uniform for θ itself or some function of θ, such
as θ2 or log(θ). The objective when we used a uniform prior for a probability was to
add no more information about the parameter around one possible value than around
some other, and so it makes sense to use a uniform prior for a parameter that essen-
tially has uniform information attached to it. For this reason, it is common to use a
uniform prior for τ = h(θ) where h(θ) is the function of θ whose Fisher information,
J∗(τ), is constant. This idea is due to Jeffreys and leads to a prior distribution which
is proportional to [J(θ)]1/2. Such a prior is referred to as a Jeffreys’ prior. The repara-
metrization which leads to a Jeffrey’s prior can be carried out as follows: suppose
{fθ(x); θ ∈ Ω} is a regular model and J1(θ) = Eθ

n
−∂2
∂θ2 log fθ(X)

o
is the Fisher

information for a single observation. Then if we choose an abitrary value for θ0 and
define the reparameterization

τ(θ) =

Z θ

θ0

p
J1(u)du (11)

Then in this case, the Fisher information for the parameter τ , J∗1 (τ), equals one for all
values of τ and so Jeffry’s prior corresponds to using a uniform prior distribution on
the values of τ. Since the asymptotic variance of the maximum likelihood estimator τ̂n
is equal to 1/n, which does not depend on τ, (11) is often called a variance stabilizing
transformation.

Bayes Point Estimators
One method of obtaining a point estimator of θ is to use the posterior distribution and
a suitable loss function.
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Theorem B13
The Bayes estimator of θ for squared error loss with respect to the prior π(θ) given
data X is the mean of the posterior distribution given by

θ̃ = θ̃(X) =

Z ∞
−∞

θπ(θ|X)dθ.

This estimator minimizes

E[(θ̃ − θ)2|X] =
Z ∞
−∞

½Z ∞
−∞

³
θ̃ − θ

´2
fθ(x)dx

¾
π(θ)dθ.

Example
Suppose (X1, . . . ,Xn) is a random sample from the distribution with probability den-
sity function

fθ(x) = θxθ−1 0 < x < 1, for θ > 1.

Using a conjugate prior for θ find the Bayes estimator of θ for squared error loss.
We begin by identifying the conjugate prior distribution. Since

fθ(x) = θ exp{(θ − 1) lnx} 0 < x < 1, θ > 1.

the conjugate prior density is

π(θ) = kθa exp{bθ}, θ > 1

which is evidently a Gamma distribution restricted to the interval (1,∞) and if the
prior is to be proper, the parameters must be chosen such thatZ ∞

1

θa exp{bθ}dθ <∞

so b ≤ 0. Then the posterior distribution takes the same form as the prior but with a
replaced by a + n and b by b +

Pn
i=1 ln(Xi). The Bayes estimate of θ for squared

error loss is the mean of this posterior distribution, orR∞
1

θa+n+1 exp{(b+Pn
i=1 ln(Xi))θ}dθR∞

1
θa+n exp{(b+Pn

i=1 ln(Xi))θ}dθ

Bayesian Interval estimates
There remains, after many decades, a controversy between Bayesians and frequentists
about which approach to estimation is more suitable to the real world. The Bayesian has
advantages at least in the ease of interpretation of the results. For example, a Bayesian
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can use the posterior distribution given the data x = (x1, . . . , xn) to determine points
c1 = c1(x), c2 = c2(x) such thatZ c2

c1

π(θ|x)dθ = 0.95

and then give a Bayesian confidence interval (c1, c2) for the parameter. If this results
in the interval (2, 5) the Bayesian will state that (in a Bayesian model, subject to the
validity of the prior) the conditional probability given the data that the parameter falls in
the interval (2, 5) is 0.95. No such probability can be ascribed to a confidence interval
for frequentists, who see no randomness in the parameter to which this probability
statement is supposed to apply. Bayesian confidence regions are also called credible
regions in order to make clear the distinction between the interpretation of Bayesian
confidence regions and frequentist confidence regions.

Suppose π(θ|x) is the posterior distribution of θ given the data x = (x1, . . . , xn)
and A is a subset of Ω. If

P (θ ∈ A|x) =
Z
A

π(θ|x)dθ = p

then A is called a p credible region for θ. A credible region can be formed in many
ways. If (a, b) is an interval such that

P (θ < a|x) = 1− p

2
= P (θ > b|x)

then (a, b) is called a p equal-tailed credible region. A highest posterior density (H.P.D.)
credible region is constructed in a manner similar to likelihood regions. The p highest
posterior density. credible region is given by {θ : π(θ|x) > c} where c is chosen such
that

p =

Z
{θ:π(θ|x)>c}

π(θ|x)dθ.

A highest posterior density credible region is optimal in the sense that it is the shortest
p credible interval for a given value of p.

Example
Suppose (X1, . . . ,Xn) is a random sample from the N(µ, σ2) distribution where σ2 is
known and µ has the conjugate prior. Find the p = 0.95 H.P.D. credible region for µ.
Compare this to a 95% C.I. for µ.
Suppose the prior distribution for µ is N(µ0, σ20) so the prior density is given by

π(µ) = C1 exp{−(µ− µ0)
2

2σ20
}

29



and the posterior density by

π(µ|X) = C2 exp{−(µ− µ0)
2

2σ20
−

nX
i=1

(Xi − µ)2

2σ2
}

= C3 exp{−(µ− eµn)2
2eσ2n }

where the constants C1, C2 and C3 depend on X,σ, σ0 but not on µ and where

eµn = wX + (1− w)µ0

w =
nσ20

nσ20 + σ2
and

eσ2n = ( 1σ20 + n

σ2
)−1

Therefore the posterior distribution of µ is N(eµn, eσ2n). It follows that the 0.95 H.P.D.
credible region is of the form eµn ± 1.96eσn
Notice that as n → ∞, the weight w → 1 and so eµn is asymptotically equivalent to
the sample mean X. Similarly, as n → ∞, eσ2n is asymptotically equivalent to σ2/n.
This means that for large values of n, the H.P.D. region is close to the region

X ± 1.96 σ√
n

and the latter is the 95% confidence interval for µ based on the normal distribution of
the maximum likelihood estimator X.

Finally, although statisticians argue whether the Bayesian or the frequentist ap-
proach is better, there is really no one right way to do statistics. There is something
fundamentalist about the Bayesian paradigm, (though the Reverand Bayes was, as far
as we know, far from a fundamentalist) in that it places all objects, parameters and data,
in much the same context and treats them similarly. It is a coherent philosophy of sta-
tistics, and a Bayesian will vigorously argue that there is an inconsistency in regarding
some unknowns as random and others deterministic. There are certainly instances in
which a Bayesian approach seems more sensible– particularly for example if the pa-
rameter is a measurement on a possibly randomly chosen individual (say the expected
total annual claim of a client of an insurance company).

5 Hypothesis Tests
Statistical estimation usually concerns the estimation of the value of a parameter when
we know little about it except perhaps that it lies in a given parameter space, and when
we have no a priori reason to prefer one value of the parameter over another. If, how-
ever, we are asked to decide between two possible values of the parameter, the con-
sequences of one choice of the parameter value may be quite different from another
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choice. For example, if we believe Yi is normally distributed with mean α + βxi and
variance σ2 for some explanatory variables xi, then the value β = 0 means there is
no relation between Yi and xi. We need neither collect the values of xi nor build a
model around them. Thus the two choices β = 0 and β = 1 are quite different in their
consequences. This is often the case.

A hypothesis test involves a (usually natural) separation of the parameter space Ω
into two disjoint regions, Ω0 and Ω − Ω0. By the difference between the two sets we
mean those points in the former (Ω) that are not in the latter (Ω0). This partition of the
parameter space corresponds to testing the null hypothesis that the parameter is in Ω0.
We usually write this hypothesis in the form

H0 : θ ∈ Ω0.
The null hypothesis is usually the status quo. For example in a test of a new drug, the
null hypothesis would be that the drug had no effect, or no more of an effect than drugs
already on the market. The null hypothesis is only rejected if there is reasonably strong
evidence against it. The alternative hypothesis determines what departures from the
null hypothesis are anticipated. In this case, it might be simply

H1 : θ ∈ Ω− Ω0.
Since we do not know the true value of the parameter, we must base our decision on
the observed value of X . The hypothesis test is conducted by determining a partition
of the sample space into two sets, the critical or rejection region R and its complement
R̄ which is called the acceptance region. We declare that H0 is false (in favour of the
alternative) if we observe x ∈ R.

Definition
The power function of a test with critical region R is the function

β(θ) = Pθ(X ∈ R)

or the probability that the null hypothesis is rejected as a function of the parameter.

It is obviously desirable, in order to minimize the two types of possible errors in our
decision, for the power function β(θ) to be small for θ ∈ Ω0 but large otherwise. The
probability of rejecting the null hypothesis when it is true (type I error) is a particularly
important type of error which we attempt to minimize. This probability determines one
important measure of the performance of a test, the level of significance.

Definition

A test has level of significance α if β(θ) ≤ α for all θ ∈ Ω0.
The level of significance is simply an upper bound on the probability of a type

I error. There is no assurance that the upper bound is tight, that is, that equality is
achieved somewhere. The lowest such upper bound is often called the size of the test.
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Definition

The size of a test is equal to supθ∈Ω0 β(θ).

Uniformly Most Powerful Tests
Tests are often constructed by specifying the size of the test, which in turn determines
the probability of the type I error, and then attempting to minimize the probability that
the null hypothesis is accepted when it is false (type II error). Equivalently, we try and
maximize the power function of the test for θ ∈ Ω− Ω0.

Definition

A test with power function β(θ) is a uniformly most powerful (U.M.P.) test of size α
if, for all other tests of the same size α having power function β∗(θ), we have β(θ) ≥
β∗(θ) for all θ ∈ Ω− Ω0.

The word “uniformly” above refers to the fact that one function dominates another,
that is, β(θ) ≥ β∗(θ) uniformly for all θ ∈ Ω − Ω0. When the alternative Ω −
Ω0 consists of a single point {θ1} then the construction of a best test is particularly
easy. In this case, we may drop the word “uniformly” and refer to a “most powerful
test”. The construction of a best test, by this definition, is possible under rather special
circumstances. First, we often require a simple null hypothesis. This is the case when
Ω0 consists of a single point {θ0} and so we are testing the null hypothesisH0 : θ = θ0.

Neyman-Pearson Lemma B14

Let X have probability (density) function fθ(x), θ ∈ Ω. Consider testing a simple null
hypothesis H0 : θ = θ0 against a simple alternative H1 : θ = θ1. For a constant c,
suppose the critical region defined by

R = {x; fθ1(x)
fθ0(x)

> c}

corresponds to a test of size α. Then the test with this critical region is a most powerful
test of size α for testing H0 : θ = θ0 against H1 : θ = θ1.

Proof:
Consider another critical region R1 with the same size. Then

Pθ0(X ∈ R) = Pθ0(X ∈ R1) = α or
Z
R

fθ0(x)dx =

Z
R1

fθ0(x)dx.

ThereforeZ
R∩R̄1

fθ0(x)dx+

Z
R∩R1

fθ0(x)dx =

Z
R∩R1

fθ0(x)dx+

Z
R̄∩R1

fθ0(x)dx
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and Z
R∩R̄1

fθ0(x)dx =

Z
R̄∩R1

fθ0(x)dx. (12)

For x ∈ R ∩ R̄1,
fθ1(x)

fθ0(x)
> c or fθ1(x) > cfθ0(x)

and thus Z
R∩R̄1

fθ1(x)dx > c

Z
R∩R̄1

fθ0(x)dx. (13)

For x ∈ R̄ ∩R1, fθ1(x) ≤ cfθ0(x), and thus

−
Z
R̄∩R1

fθ1(x)dx ≥ −c
Z
R̄∩R1

fθ0(x)dx. (14)

Now

β(θ1) = Pθ1(X ∈ R) = Pθ1(X ∈ R ∩R1) + Pθ1(X ∈ R ∩ R̄1)
=

Z
R∩R1

fθ1(x)dx+

Z
R∩R̄1

fθ1(x)dx

and

β1(θ1) = Pθ1(X ∈ R1)

=

Z
R∩R1

fθ1(x)dx+

Z
R̄∩R1

fθ1(x)dx.

Therefore, using (12), (13), and (14) we have

β(θ1)− β1(θ1) =

Z
R∩R̄1

fθ1(x)dx−
Z
R̄∩R1

fθ1(x)dx

≥ c

Z
R∩R̄1

fθ0(x)dx− c

Z
R̄∩R1

fθ0(x)dx

= c[

Z
R∩R̄1

fθ0(x)dx−
Z
R̄∩R1

fθ0(x)dx] = 0

and the test with critical region R is therefore the most powerful.

Example
Suppose we anticipate collecting daily returns from the past n days of a stock, (X1, . . . ,Xn)
assumed to be distributed according to a Normal(µ∆, σ2∆) distribution. Here ∆ is
the length of a day measured in years, ∆ ' 1/252 and µ, σ2 are the annual drift and
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volatility parameters. We wish to test whether the stock has zero or positive drift, so
we wish to test the hypothesis H0 : µ = 0 against the alternative H1 : µ > 0 at level
of significance α. We want the probability of the incorrect decision when the drift is
20% per year to be small, so let us choose it to be α as well, which means that when
µ = 0.2, the power of the test should be at least 1 − α. How large a sample must be
taken in order to insure this?

The test itself is easy to express. We reject the null hypothesis if
√
nX

σ∆1/2
> zα

where the value zα has been chosen so that P (Z > zα) = α when Z has a standard
normal distribution. The power of the test is the probability

P

∙ √
nX

σ∆1/2
> zα

¸
when the parameter µ1 = 0.2, and this is

P

∙√
n(X − µ1∆)

σ∆1/2
> zα −

√
nµ∆

σ∆1/2

¸
= P

∙
Z > zα −

√
nµ1∆

1/2

σ

¸
where Z has a standard normal distribution. Since we want the power to be 1−α, the
value

zα −
√
nµ1∆

1/2

σ

must be chosen to be −zα. Solving for the value of n,

zα −
√
nµ1∆

1/2

σ
= −zα

√
nµ1∆

1/2 = 2σzα

n =
4σ2z2α
µ21∆

Now if we try some reasonable values for the parameters, for example σ2 = 0.2,
∆ = 1/252, µ1 = 0.2, α = 0.05, then n ' 14, 000, which is about 55 years worth of
data, far larger a sample than we could hope to collect. This example shows that the
typical variabilities in the market are so large, compared with even fairly high rates of
return, that it is almost impossible to distinguish between theoretical rates of return of
0% and 20% per annum using a hypothesis test with daily data.

Relationship Betweeen Hypothesis Tests and C.I.’s

There is a close relationship between hypothesis tests and confidence intervals as the
following example illustrates. Suppose (X1, . . . ,Xn) is a random sample from the
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N(θ,1) distribution and we wish to test the hypothesis H0 : θ = θ0 against H1 : θ 6=
θ0. The critical region {x; |x̄ − θ0| > 1.96/

√
n} is a size α = 0.05 critical region

which has a corresponding acceptance region {x; |x̄− θ0| ≤ 1.96/√n}. Note that the
hypothesis H0 : θ = θ0 would not be rejected at the 0.05 level if |x̄− θ0| ≤ 1.96/

√
n

or equivalently
x̄− 1.96/√n < θ0 < x̄+ 1.96/

√
n

which is a 95% C.I. for θ.

Problem

Let (X1, . . . ,X5) be a random sample from the Gamma(2, θ) distribution. Show that

R =

(
x;

5X
i=1

xi < 4.7955θ0 or
5X

i=1

xi > 17.085θ0

)

is a size α = 0.05 critical region for testing H0 : θ = θ0. Show how this critical region
may be used to construct a 95% C.I. for θ.

Likelihood Ratio Tests
Consider a test of the hypothesis H0 : θ ∈ Ω0 against H1 : θ ∈ Ω − Ω0. We have
seen that for prescribed θ0 ∈ Ω0, θ1 ∈ Ω − Ω0, the most powerful test of the simple
null hypothesis H0 : θ = θ0 against a simple alternative H1 : θ = θ1 is based on the
likelihood ratio fθ1(x)/fθ0(x). By the Neyman-Pearson Lemma it has critical region

R = {x; fθ1(x)
fθ0(x)

> c}

whre c is a constant determined by the size of the test. When either the null or the
alternative hypothesis are composite (i.e. contain more than one point) and there is no
uniformly most powerful test, it seems reasonable to use a test with critical region R
for some choice of θ1, θ0. The likelihood ratio test does this with θ1 replaced by θ̂,
the maximum likelihood estimator over all possible values of the parameter, and θ0
replaced by the maximum likelihood estimator of the parameter when it is restricted to
Ω0. Thus, the likelihood ratio test has critical region R = {x;Λ(x) > c} where

Λ(x) =
supθ∈Ωfθ(x)
supθ∈Ω0fθ(x)

=
supθ∈ΩL(θ)
supθ∈Ω0L(θ)

and c is determined by the size of the test. In general, the distribution of the test statistic
Λ(X) may be difficult to find. Fortunately, however, the asymptotic distribution is
known under fairly general conditions. In a few cases, we can show that the likelihood
ratio test is equivalent to the use of a statistic with known distribution. However, in
many cases, we need to rely on the asymptotic chi-squared distribution of Theorem
4.4.6.
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Example
Let (X1, . . . ,Xn) be a random sample from the N(µ, σ2) distribution where µ and σ2

are unknown. Consider a test of

H0 : µ = 0, 0 < σ2 <∞

against the alternative
H1 : µ 6= 0, 0 < σ2 <∞.

We can show that the likelihood ratio test of H0 against H1 has critical region R =
{x;nx̄2/s2 > c}. Under H0 that the statistic T = nX̄2/S2 has a F(1, n− 1) distribu-
tion and we can thus find a size α = 0.05 test for n = 20.

Theorem B6
Suppose (X1, . . . ,Xn) is a random sample from a regular statistical model {fθ(x); θ ∈
Ω} with Ω an open set in k−dimensional Euclidean space. Consider a subset of Ω
defined by Ω0 = {θ(η); η ∈ open subset of q-dimensional Euclidean space }. Then the
likelihood ratio statistic defined by

Λn(X) =
supθ∈Ω

Qn
i fθ(Xi)

supθ∈Ω0
Qn

i fθ(Xi)
=

supθ∈ΩL(θ)
supθ∈Ω0L(θ)

is such that, under the hypothesis H0 : θ ∈ Ω0,

2 logΛn(X)→D W v χ2(k − q).

Note: The number of degrees of freedom is the difference between the number of pa-
rameters that need to be estimated in the general model, and the number of parameters
left to be estimated under the restrictions imposed by H0.

Significance Tests and p-values
We have seen that a test of hypothesis is a rule which allows us to decide whether to
accept the null hypothesis H0 or to reject it in favour of the alternative hypothesis H1

based on the observed data. In situations in which H1 is difficult to specify a test of
significance could be used. A (pure) test of significance is a procedure for measuring
the strength of the evidence provided by the observed data against H0. This method
usually involves looking at the distribution of a test statisitic or discrepancy measure
T under H0. The p-value or significance level for the test is the probability, computed
under H0, of observing a T value at least as extreme as the value observed. The smaller
the observed p-value, the stronger the evidence against H0. The difficulty with this
approach is how to find a statistic with ‘good properties’. The likelihood ratio statistic
provides a general test statistic which may be used.
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Score and Wald Tests
Score Test Score tests can be viewed as a more general class of tests of H0 : θ = θ0
against H1 : θ ∈ Ω − {θ0}. which tend to have considerable power provided that
the values of the parameter under the null and the alternative are close. If the usual
regularity conditions hold then under H0 : θ = θ0 we have

S(θ0;X)[J(θ0)]
−1/2 →D Z v N(0, 1).

and thus
R(θ0;X) = [S(θ0;X)]

2[J(θ0)]
−1 →D W v χ2(1).

For a vector θ = (θ1, . . . , θk)t we have

R(θ0;X) = [S(θ0;X)]
t[J(θ0)]

−1S(θ0;X)→D W v χ2(k).

The test based on R(θ0;X) is called a (Rao) score test. It has critical region

R = {x; R(θ0;x) > c}
where c is determined by the size of the test, that is, c satisfies P (W > c) = α where
W v χ2(k). The test based on R(θ0;X) is asymptotically equivalent to the likelihood
ratio test.

Wald Test

Suppose that θ̂ is the maximum likelihood estimator of θ over all θ ∈ Ω and we wish
to test H0 : θ = θ0 against H1 : θ ∈ Ω− {θ0}. If the usual regularity conditions hold
then under H0 : θ = θ0

W (θ0;X) = (θ̂ − θ0)
tJ(θ0)(θ̂ − θ0)→D W v χ2(k).

A test based on the test statistic W (θ0;X) is called a Wald test. It has critical region

R = {x; W (θ0;x) > c}
where c is determined by the size of the test. Both the score test and the Wald test
are asymptotically equivalent to the likelihood ratio test and the intuitive expanation
for these equivalences are quite simple. For large values of the sample size n, the
maximum likelihood estimator bθn is close to the true value of the parameter θ0 and
so the log likelihood can be approximated by the first two terms in the Taylor series
expansion of (θ) = logL(θ) about bθn, and so

2 log Λn(X) = 2{ (bθn)− (θ0)}
' 2{(bθn − θ0)

0S(bθn;X) + 1
2
(bθn − θ0)

0I(bθn)(bθn − θ0)}
' (bθn − θ0)

0J(θ0)(bθn − θ0)

since
S(bθn;X) = 0

and the observed information I(bθn) is asymptotically equivalent to the Fisher informa-
tion J(θ0). This verifies the equivalence of the likelihood ratio and the Wald test.
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