ERRATA

1. Page 14, line 3 of Theorem 1 should read

$$
E_{Q}\left(S_{1}^{j}\right)=(1+r) S_{0}^{j} \quad \text { for all } j=1, \ldots, N
$$

2. Page 16, equation (2.4) should read

$$
E_{Q}\left(S_{1}^{j}\right)=(1+r) S_{0}^{j}
$$

3. Page 76: Chapter 2, problem 17. (Note the sentence in bold face below is missing from this problem). Consider a defaultable bond which pays a fraction of its face value $F p$ on maturity in the event of default. Suppose the risk free interest rate continuously compounded is r so that $B_{s}=\exp (s r)$. Suppose also that a constant coupon $\$ d$ is paid at the end of every period $s=t+1, \ldots, T-1$.Assume that the risk-neutral probability of a default in the next unit of time is $1-e^{-k}$ and the probability of no default in this period is e^{-k} for some value of $k>0$. Then show that the value of this bond at time t is

$$
\begin{aligned}
P_{t} & =d \frac{\exp \{-(r+k)\}-\exp \{-(r+k)(T-t)\}}{1-\exp \{-(r+k)\}} \\
& +p F \exp \{-r(T-t)\}+(1-p) F \exp \{-(r+k)(T-t)\}
\end{aligned}
$$

4. page 78 , problem 17 (see solutions)
5. Page 149; (correction in bold) More generally for a CEV process satisfying

$$
\begin{equation*}
d X_{t}=k\left(b-X_{t}\right) d t+\sigma X_{t}^{\gamma / 2} d W_{t} \tag{3.34}
\end{equation*}
$$

a similar calculation shows that the stationary density is proportional to

$$
x^{-\gamma} \exp \left\{-\frac{2 k b}{\sigma^{2}} \frac{1}{x^{\gamma-1}(\gamma-1)}-\frac{k}{\sigma^{2}(\mathbf{2}-\gamma)} x^{\mathbf{2}-\gamma}\right\}, \text { for } \gamma>1, \gamma \neq \mathbf{2} .
$$

6. Page 161: Chapter 3, question 24 (bolded lettering should be added).:Suppose interest rates follow the constant elasticity of variance process of the form

$$
d r_{t}=k\left(b-r_{t}\right) \mathbf{d t}+\sigma\left|r_{t}\right|^{\gamma} d W_{t}
$$

7. page 188 , line 19 should read ",$K(t)$ is convex increasing (for a positive random variable),...."
8. Page 203: chapter 4, problem 1 (b) add phrase in bold: How large a sample size would I need, using antithetic and crude Monte Carlo, in order to estimate the above integral, correct to within 0.0001 , with probability at least 95% ?
9. Page 242: chapter 5 , question 1 should read

Suppose the values of d_{j} are equally spaced, that is if $d_{j}=j \Delta, j=$ $\ldots,-2,-1,0,1, \ldots, S_{0}=0, S_{T}=C$, and $u \geq 0$. Show that

$$
E[H \mid C=u]=u+\Delta \frac{P\left[C>u \text { and } \frac{C-u}{\Delta} \text { is even }\right]}{P[C=u]}
$$

Similarly, if $u<0$,

$$
E[H \mid C=u]=\Delta \frac{P\left[C>-u \text { and } \frac{C+u}{\Delta} \text { is even }\right]}{P[C=u]}
$$

10. Page 243, line 9 should read $\left\{(x, y) ; y<\exp \left(-x^{2} / 2\right)\right\}$
11. Page 363, Chapter 8, Question 7: (Note: $\ln \left(S_{T}\right)$ should replace S_{T} in book and the parameter $\sigma=0.2$ should be given)
