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Chapter 1

Introduction

In thinking upon what to talk to you about, I declded om some idess from my own echool days
that first fired up my mathematical interest, and made me realise that I wanted to becoms a
Mathematiclan. The material for my talk to you on 18 Jume 1897 Is selected from these Notes, but
I thought that youn would like to have & record of the mathematical details and additional examples
that time constraints prevented me from discussing. If T have interested you, you will be able to
read these notes at your leisure, and perhaps work through some of the problems. The material
is elementary in that 1t uses no more that simple properties of determinants. However s quite
sophisticated in the use of geomeirical ideas. Indeed, the Notes are a discussion of ideas, rather
than a dose of formulee; the technical manipulations are simple.

# The first question that you should ask, ls whether a kmowledge of Plane Projective Geometry
1a going to help you do things that would be very much barder In the traditional Euwclidean
Geomelry that you see at school. To help you answer this question, I have selected some
problems that are blisteringly hard by traditional means, but easier by the methods of pro-
jective peometry. However, you should judge for vourselves: try the problems by the methods
you know, and see how far you get.

The problems come from scholarship examinations for admission to Cambridge University In
England, and from Parts [ and 11 of the Cambridge Mathematical Tripos (& tripos is & three-legged
#tool on which candidates for the degree sat during an oral examination: this 16 no longer practised,

although the term remsing in usel). The final degree depends on the candidste’s performance In
Part I1. I have also incloded the classlcsl theorem of Pappus, and the theorem of Pascal for you to

prove ag & test of your understanding of this material.
1 hope that yon enjoy the material as much a8 I did when 1 first saw it, more or less at your

age.

Perhaps I should let you know a llttle of what 1 do. My research deals with discrete structure
and Its snalysls through combinstorial means and through slgebrale and analytkc techniques, with
" applications to a variety of questions in topology, the theory of functions and to mathemstical
physlcs. Such things are only seen st the university Jevel

1.1 The problem of parallelism in Euclidean geometry

I am golng to assume that vou are familiar with slementary Euclidean geometry of the plane. Tf
O is the origln of & rectangular coordinate system Ozxy, and P = (a,b), then the length of OP I&
v'ﬂ5+3!hjﬁthl.inru‘Thum In this geometry, & pair of lines may either be parallel or may



intersect as you know. This distinction is present in the algebra as well. For example, the lines

®+2y = 1 and 2+ 2y = 2 are parallel, and the usual attempt to solve them glves 0 = 1. Thia s

:;:nmuhm}r.mditmnhnthemmpﬂmthnthyhdumlumhFaln. so there is no
tiomn.

The objection to the traditional view is that paraliel lines need special treatment, and additional
theorems are needed to deduce facts about them. All of this leads to s large accurmulation of detailed
case analysls. 'What we now aim to do s to legislate that all lines In the plane Intersect, so that
proofs can be made more uniform, and shorter.

1.2 Projective Geometry
Tha ruls that we sat up are
» two points define a unique Nne;
# two line define & unigue point;
» there are four points, no throe of which are collinear.

Notice that the second rule does not hold for Euclidean geometry, for two lines may be parallel,
with no point of intersection. The last rule ensures that the gaametry is nontrivial.

1.3 The Triangle of Reference and the Unit Point

‘We implement these rules by what 1s at first & sleight of hand, but in fact has profound consequences
on our thinking. We simply Introduce another variable z, and rewrite the above equations as
x4 2y =z and 2+ 2y = 22, thereby making ench homogensous of degree one. Thus z = 0. Thelr
solations is (—2d, 4, 0), for any value of d. But two lines meet in & unique point, 50 we declare that
in projective geometry that (a, b,c) and (ka, kb, kc) are the same point

We now have a new geometry to explore. In place of & reclangular coordinate system, we have
apparently three lines = = 0, y = 0 and z = 0 that must nof meet In a ingle paint. This 18 called
the Triangle of Reference. To recover the point in Euclidean geometry that corresponds to the
point (g, b, c) in projective geometry, we normalise the third coordinate to 1, to get (a/e, bfe, 1) if
¢ 0, and then declare that (a/e, b/c) is the corresponding point in Euclidean geometry.

This device allows us to pass freely between Euclidean geometry and projective geometry, and
to use the latter to prove resulls about the former, and In fact to derive Euclidean Interpretations
of theorems In projective geometry.

The points of the triangle of reference have coordinates (1,0, 0),(0,1,0), (0,0,1) since they le
at the intersections of y=0,2=0and z=0,z2=0and a2 = 0,y =0

Of course, this makes a mess of computing length; it can be dooe but it 1s part of & longer story.
In fact, we seldom nead the concept of length.

Finally, to fix the coordinate system, we select a polnt that Is not o the triangle of reference
to be the unit point (1,1,1).

Notice that parallel lines meet st & poimt whose s-coordinate is zero (see the above exampla).
Thus parallel lines are recognised as those lines in the projective plane that meet on 2 = 0, which
we therafore call the line af infinity.



{0,1.9)

Figure 1.1: A Triangle of Reference, and the unit point

1.4 Review of some familiar results

I am going to assume that you are familiar with 2 x 2 and 3 x 3 determinants and their caloulation.
Below are some results that are known to you In the case when all of the z's are set equal to 1,
8o we are back in the Euclidean plane. T have simply restatod them for the projective plane.
1} The line through the poinis (2o, po, 20) snd (21,30, 21) Is

Ty oz
T o o
;oI

1a) The point of intersection of the lines Ly: = hx+my+msz = 0and Ly = lgz+may+maz =0
Is the polnt

e 0,

Iy my m

PR {myng — mang, —({lina — lany), lyma — lamy).

Irla"l-I-:I=I

I will use A to mean fndersect & good deal, to save tma.
2) The points (21,31, 21), (T3.42, 22) end (3, ys, 23) are collinesr (Mie on the same line) if

I W &
Ta a2 I
T3 i I3

= (.

2a) The lines l1z +muy+mz =0, iz + may 4+ naz = 0 and laz+ may + naz = 0 are concurrent
{mest at & single point) if

I[lﬂ.]ﬂ-]_
Is mg m
la ma ng

These results will be used very many times, s0 I will not refer to them explicltly when they are
used, If you see & determinant, and cannot work out what 1t s dolng, check back in this sectlon

for instant enlightenment.

0,




Chapter 2

The Theorem of Pappus

We now come to the first application of these ideas. It is quite easy because, surprisingly, in this
geometry we do not have to do very much In this cass.

2.1 The theorem

Theorem 2.1 Let A, B,C be points on one line and let P Q, R be points on another line. Let
F=BRAQC G =ARAPC and H = AQ A PB. Then F,G, H are collinear.

Proof: Select the two lines 10 be x = { and y = 0. Select an arbitrary line, different from this in
the disgram, to be the loe 2 = 0. This completes the selection of the Triangle of Reference. The
coordinates of the six points are a8 shown in Figure 2.1, where a,b,¢,p, ¢, r are arbitrary numbers.
Now AQ 18 the line gx + ay — z = 0. Then BP & the ling pr + by — 2 = 0. Then

H=AQJ*.BP=E: ; :: N={—-—ﬂ+i}.¢—h—ﬂ#+aﬂ'}'

Similarly we can get G and F. Then

H —-a4+b g=p —ap+by
G |=|—a+e r—p —ap+er =D
F =btec r=g =bgitor

by rowy +=+ rowy — rowy + rows. Thus F, &, H are collinear, and the result follows, |

{Of course, this theorem holds in the Euclidean plane, by our transformation from the projective
plane to the Evclidean plane. Check that you belleve it by drawing some pletures with & straight
edge.

Now Is the time for you to try to prove this theorem by standard methods In Euclidean geometry.

It is poesible but, by comparison, the proof is excrucisting.

2.2 Mutatis mutandis

In the proof of Pappus’ Theorem 1 computed H = AQ A BP, and then ssserted that ¥ and & can
be obtained in a similar way. Let us see how to got G = AR A CP from H without any work. The
sacret, 1s Lo note that if @ 18 replaced by R and B is replaced by C, then H is changed into G. Thus
the coordinates of Jf are transformed loto the coordinates of G by replacing ¢ by r and b by c



P (1.0.9)

Figure 2.1: Pappus' Theorem

Thuas H = (~a+ b, ¢ — p, —ap+ b} is transformed into G = (—a 4 ¢, r = p, —ap + cr). This greatly
shortens the work by removing repetitive steps. I will summarise this process by ssying that G and
F are obtained from H mulatis mutandis (literally, the changeable symbols having been changed).

2.3 A homogeneous coordinate system

Now that you have seen one problem treated In detail, the following obeervation will be clearer. We
are looking st questions in plane projective geometry by means of & homogeneous system of coordi-
notes. This is comparable to Jooking at problems in Fuclidean geometry by means of rectangular
Carterian coordinales



Chapter 3

Two Problems

This chapter works through two problems lovolving lines and points, and they are rather harder.
Read the statements of the problems and try them yourselves, before resding the solution.

3.1 Problem I (Cambridge Scholarship Examination)
The next problem & & more extensive exercise of this new approach.

Problem 3.1 ABC is o triangle. D is on BC, E is on CA, and F is on ABF auch that AD,
BE, CF are concurrenl. | is an grditrgry line Let FEAl= P, FDAl =0, DEAl=R. Let
APABC = P, BQAAC = @ and CRA AB = R, Prove that the points P, Q' and ' are
collinear.

Froof: [ will concentrate on F’, and then derive @ and B’ mutatisr mufondis. Wae can therefore
get swsy with drawing only the portion of the diagram that involves the construction of the point
F

m.n.t::\ -

Figure 3.1: Construction of P for Problem I



Select ABC as the Trisngle of Reference. Select the polot of concurrence of AD, BE,CF as
the unit point. Then the coordinates of D, E, F are as indicated In Figure 3.1. For example, to
obtain D, note that the line through A and the unit point 1s

80 § = z = 0. This intersects the line BC (i.e. = = 0) at the polnt (0,1, 1}, so this ls D.
Moreover, the line EF is

Thia is —x 4+ ¢+ 2 =0. Than
m n
1

1

humapnl 4

i-l{m-n,—f—ﬂ,!+m],
80 AF Is the line ({ +m)y + (I +n)z = 0. Thus
0 i4+m I4n
Pi=APABC = 5B 0 = (0,I+n,~I-m).

Then @ and R’ are obtalned mulatis mulsndis, so

P 0 [4+n =l-m
{|=|-m-n 0 I+m |=0
4 m+n =l-n 1]

by rowy +— rowy -+ rows + rows. Thus the polnts P, @, ¥ are collinear. |

You will now have some idea of the flavour of these methods. Since we can seloct any three
noneoncurvent [mes a8 the triangle of reference, and then select eny point not on the friangle of
reference as the unit polot, we can certalnly adapt the coordinste system mare easily to fit problems.

3.2 Problem II (Mathematical Tripos, Part IT)

This problem concerns trisngles that are in perspective. We say that the triangles A F2% are in
perspective if PULQV, RW are concurrent. The intersection 18 called thnpﬁﬁufmwm
trisngles are stacked on top of each other to call attention to the lines that are to be concurrent:
the are obtalned from the three columns of this arrangement.

Problem 3.2 The triongles A 2T h#mphumhmnuﬂmﬂﬁcwﬂ EFp ore din
perapective, mﬁuﬂam.ﬁ,ﬂgmhm

Prool: Solect ABC sa the Trangle of Reference and the unil poind as the polot of perspoctivity
of the triangles ABC and DEF. Then the coordinates of I}, E, F' are as shown in Figure 3.2, where
a, b, ¢ are arbltrary real numbers.



Figure 3.2: Triengles ABC, DEF in perspactive for Problem 11

For A4S, AE Is the line —y+be = 0, BF i the line ex—2 = 0, and €D Is the llne z—ay = 0.
These trlangles are In perspective [[rom some palnt) so

0 -1 'k

e 0 =1|=0
1 —a 0
Thuos abe = 1.
Bor ARPS, AF Is the line cy— 2 = 0, BD is the line —+az = 0, and CE s the line br—y = 0.
0 ¢ =1
-1 0 o |==l4abe=0,
b =1 0

80 these trisngles are indeed in perspective (from some point). This solves the problem. |

10



Chapter 4

Conics

5o far [ have concentrated on llnes and polnts. | am now golng to conslder conlcs.

4.1 In Euclidean Geometry
In Euclidean geometry, & condc s a second degree corve and therefore bas the form
ax® 4+ by’ + e+ Shoy 4+ 29z + 2fy =0,

where a, b, e, f, g, h sre pumbers. Famillar examples are the circle, parabola, ellipse, hyperfiols and
line paér. For example, the aquation of a circle is

PP+ 2z +yt+e=0.
This simply states thst
(z+gF+ @+ te-g'~ =1,

8o the centre is (—g, —f) and the radius is +/5% + J2 — ¢, by Pythagoras’ Theorem (thst uses the
notion of dirtance).

4.2 In Projective Geometry

In Plane Projective geomeiry, the general aquation of & conle Is
§:=ar” + by’ + e2® + 2hoy + Jgrz 4 2fyz =0

The variable z has been introduced to make each term of degree two (homogeneous). For example,
the equatlon of a circle Is

= 4+ 4297 4 Afyr 4o =0,
obtainad by inseriing z into the Euclldean aquation in a homogeneons way. One consequence of this
1s startling. Tt 1s that the potats T = {1,4,0) and J = (1, =4, 0) lie on every cicle, where § = /=1.
These polnts are therefore called the circular points af infinily. This gives us a way of recognising
circles In projective geometry withoutl using the concept of distance.

11



4.3 Pencils of conics

Let 5 = 0 and 53 = 0 be two conles, and conslder 5: = AS) + uS;. Clearly, & ls homogeneous,
of degree 2, and is therefore & conle. Let Py be & polnt of Intersection of §; and Sy, Then at Py
we bave 5) = 0 and Sy = 050 § =0, 50 P is 5 point of 5. Let Py, Py, Py be the other polnts of
intersection of 5) and S;. Then these also lie on 5§ by the same argument. Thus S5 I8 & conle passing
through the four points of intersection of 5; and 5;. The set of all conics 5 ks called & pencil of
conlos generated by 5y and 5s.

4.4 The Second Fundamental Form of a conic

Now select 5y:= zz = 0 snd Sy:= °* = 0. This s certainly valid since these are homogeneous, of
degree 2. 5 Is o pair of lines. Sy s & palr of repested lines. They are degenerste conics called line
pasrs.

Figure 4.1: Selection of triangle of reference for & general conk:

The conics of the pencil generated by this choice of 5, and S5 are tangent to 2 = 0 and = 0 at
Z and st X, since at these points there are two identical points of intersection. Thus § = Arz 4 uy?.
Now let the unlt point be on §. Then A+ u=0,80 § =4 — z2.

The conclusion ls astounding. It ls that, If the THangle of Reference ls selocted as shown In
Flgure 4.1, then the general equation of & conic is simply 3* — £z = 0. Moreover, any point of the
conic has the form (1%, 1, 1), for some number t. This is called a parametrisation of the conle, and ¢
Is ealled the parometer of the point (2, ¢t,1) on 5. It & called the Second Fundamental Form for a
conkc,



Chapter 5

Involutions on Conics

I am going to introduce you to the idea of en involulions on ¢ conic through the following concrete
problam.

5.1 Problem III {Mathematical Tripos Part I)

The following problem involves two general conics in the plane. In the Euclidesn case, you would
expect the solution to degenerate Into a mese of symbole. In projective geometry something very
delicate can be done, which reduces the algebra to a few subtle stepa.

Problem 5.1 Let 5§ ond 5 be conics in the plane that have o common point A Let P be an
arbitrary fized point of the plane. A varioble line | through P sirikes § ot X ond Y. AX mests 5
at X', and AY mests 5° ot ¥'. Prove that XY passes through o fized point as [ varies.

Figure 5.1: Two general conles for Problem ITT

To work on this problem we neod another ides. It is simple, subtle and very effective. It Is
called homography.

13



5.2 Homography

We have just seen how to choose the Trange of Reference so that the polnts on & general conle §
can be parametrisad by (t7,£,1). This Is & consequence of the second fundamental form discussed
above. Suppose we have a one-lo-one function 4 that acts on real pumbers. Then 4 maps polots
on & to polnts on 5. We call o & one-to-ome correspondence.

Suppose now that, geometrically, ¥ involves only intersections between conics and lines and
polmta. Then  must be alpebroic. A one-to-one algebralc correspondence ie called & homography.
It must therefore have the form

ast+ s+ et +d=0,
where a, b, ¢, d are numbers, for then
t__h'-l-d __a+d
Ty T
In this
i #o) = -2+
as+¢’
B0 P(5) = 1.

The very special case 8 — £ = 0 means that the homography s ¥{s) = 2. This maps the polnt
P on the conle 5§ onto P, for every P, so we call this particular 4 trivial

5.3 Involution

Suppose now, that 4 has the additional property that if ¢{s) = ¢ then ¥(t) = s. This means that
Y{¥(s)) = &, for all 5. Such & ¢ is called an invclution

Think of an lovolution a8 a operation that, when applied twice, returns to the initial state.
Rotating through 180 degrees clockwise 15 & typical example.

The algebrale condition on the homography la easlly seen. Since o{s) = £ then

ba 4-d
as4¢'

80 ost + bs + ot + d = 0. Since (i) = o, then

_Rid
al +¢'

80 0st + o8 4 it 4 d = 0. Then, subtracting these two, we have (b — c)(s — 1) = 0. Now assume that
4 Is nontrivial Then a # ¢ for some (s, 1), so b = ¢, 50 the homography specialises to

ast 4+ e +i)+d=0.

=

5.4 Involutions on conics

Tha Tollowlng 18 & basle result about Involutions on conics.

Lomma 5.3 Let o be an involution on a sonic 5. If P,Q is o pair of points in fnvolution, then the
fine PQ passes through a fized point.

14



g

the unit point so that the points of the conic 5 are

Proof: Select the Thangle of Reference
P be {(#*,2,1) and let @ be the point t2,1,1). Now PQ 1

parametrised by (i%,1,1). Let the pal
the line

]

=1,

TLN
L -]
iy

80 (5 =t} = (8% — %)y 4+ st(s — )2 = 0. Thus PQ Is the line
z—=(s+ty+eiz=0

But P and @ are pairs in lovolution, so there are numbers a, b such that ast + Bs 4 1) + 1 = 0.
But this implies that (1,4, ~a) is a point on PQ. But this point is independent of P and € and is
thevefore fixed. The result lollows. |

5.5 Solution of Problem III

This solution to Problem IIT can now be presented very quickly with the aid of this new concept.
Consider the mapping ¥ that maps X’ to ¥ through the construction (see Figure 5.1)

X'AAS=X, PXAS=Y YAAS =Y
Then
1. ¢ is one-to-one;
2. 4 s algebrale (it involves only Intersections of palnts, lines and conbes);
3. ¢ s Involutory (do the construction twice).

Then by the involution lemma, X'F' passes through a fixed point. This completes the solution.

|
Note that we are now starting to use some sophisticated results in projective geometry.



Chapter 6

Pascal’s Theorem

6.1 The theorem

Theorem 8.1 Let A, B,C,A', B',C* be points on 6 conic 5. Let AB' AA'B=F, AC' A\A'C = E,
and BC' A B'C = D, Then D, E, F are collinear.

1 thought thet you would like to bave a problem to work on, so I am going to leave the proof
at you, after glving you o few hinta,

Figora 6.1: Pascal's Theorem

Prool: (hints) Select the Trangle of Reference and the unlt polot so that polots on the
conle are parametrised by (£2,4,1). Let 15,45, ta, 81, 83, 85 be the parameters of 4, B,C, A, B, C"
respectively. Show that AR & the line

®~ (t1 + sg)y +aoaz = 0,

and that
Fe= E 1 =(t; 4 #3) t192
1 =(ta+ey) tam |

16



Determine D and E mufatis mutendis, and show that the determinant

D

E
F

is equal to e,

This is quite a task, so check that you can set ¢; =0, so A I (0,0,1); and t3 = 1s0 B s (1,1, 1);
and 13 = oo, 80 C 18 (0,0,1). To deal with infinities, recall that (2,15, 1) and (1, 1/ts, 1/43) are the
same point, sioce one Is & multiple of the other. Put 1y = co In the second form of the polnt to get
{1,0,0}, as indlcated above. With these settings, which are made without loss of generality, you
will obtaln the determinant

=g 85 =8 =1=4g8; 483

=¥ ' | =1
—sy—8ysy 83 =8 =1
This can be computed easily, and found to be zero. This proves that the polots D, E, F are

oconcurrent. You can now Il in the detalls, and Justily each step. |
It i convenient to refer to the line I, E, F as the cross-azis of the trisngles A 25C.

Figure 6.2: Diagram for Problem TV

6.2 Problem IV (Cambridge Scholarship Examination)
The following is &n application of Pascal’s Theorem.
Problem 6.2 Let PP, QQF, AR’ be chords of o eonic 8, and suppose that these chords pass through

a point 0. Let X be any otherpoind on 8. Let L= QRAXF, M = RPAXQ and N = PQAXR.
Prove that L, M, N,O are collinear.

17



Prool: Consider the polnts P, Q, X and ', P, R on 5. Then, from Pascal's Theorem, the polnts
PP ANQY, QRAF X, PRAGQ X are collinear, on the cross-axis of ﬂéﬂ,‘; But these are preclsaly

the points, O, L, M respectively.
Now consider the points @, R, X and R, ', P on 5. Then, agaln from Pascal's theorem, the
points QQ AR'R, RPAQ'X, QP A R'X are collinear, on the crose-axis of A £ Bt these are

precleely the polnis O, M, N respectivaly.
We conclude therefore that L, M, N, O are collinear, since the two cross-axes have O, M in

common. |

6.3 Problem V
We conclude with another, perhape surprising, application of Pascal's Theorem.

Figure 6.3: Diagram for Problem V

Problem 8.3 Let A, B,C be poinis of a condc 5. Let the tangent fo 5 ad A meet BC at A', let
the tangent to 5§ ot B meet AC ot B' and let the tangent to 5 at C meset AB at C',. Prove that
A, B, C ore collineor.

Proof: Consider the cross-axis of AADC 1n which ench point is considered twice. By Pascal’s
Theorem, this contalns the polnts AA A BC, BB A AC, snd CC A AB. But AA, BB,CC dencte
the tangents o § at A, 5,C, respectively. The three points are Ident!fied therefore as A', B, ¥,
regpectively. The result now follows. |



Chapter 7

Poles and Polars

I am going to close these notes with & briel mention of two very important and powerful concepts,
namely, those of pole and polar.

Let 5 be a conic in the plane and let P be a point of the plane. There are two tangonts to
5 paseing through P, with two points of tangency. The line jolning these two points is called the
polar of P with respect to 5. If 7 1s on § then the polar is the tangent to 5 st P.

This definition does not Jook after the case when P is ingide the conic 5, s0 8 maore indirect defi-

nitlon Is used In practice. (It requires the introduction of the eross-rutio as a projective invariant!ll)
However, the one that T have just given is adequate for the present purpose.

Figure 7.1: Construction of the pole and polar

7.1 The reciprocity theorem

The next result ik important and s often used i constroctions.

Theorem 7.1 If the polar of P with respect to the condc 5 passes through the point Q, then the
polar of G with respect to 5 passes through P.

Proof: 'We select the Thiangle of Reference 5o that the conle ls parametrised by (12,1, 1). The line
Joining the points with parameters # and  is £ — (8 +2)y + stz = (. This has been proved earlier.
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Thus the tangent at & point with parameter u I8 ¥ — 2uy + w®z = 0. So see this pet w = 8 = ¢ for
double contact on § at the polnt with parsmeter u. Now this tangent 1s to pass through the polnt
P ={ab,¢). Then

6= 2bu + cu® = 0.

This Is & quadratic equation, with roots o and 8, which are parameters to the two points of contact
of tangents to 5 from F. From the theory of equations o+ 8 = 2b/c snd af = afc. The line joining
the polots with parameters & and § ks 2 — (a + )y + afzr = 0. But, this I8 oz — 2by + a2 = 0, by
substituting the expressions for & + # and a. This s therefore the equation of the pole of P.

I Q= (A, B,C) lies on this line then

el — 2B +al =0.
But the polar of Q 18 Cr — 2By + Az = 0, by the same argument, and P liss on this if
Ca-2Bb+Ac=0.

Bunt this 1a precisely the conditlon that @ lies on the polar of P. This completes the proof. |

Wa can use the Reciprocity Theorern to construct the polar of a point P inside 5. Draw any
two Hines o and b through P and construct the pole A of a and the pole B of b. Now the polar of A
18 @, that passes through P, so the polar of P passes through A by reclprocity. Simflarly, the polar
of P passes through B. Then the polar of P Is the line AB.

Figure 7:2: Construction of the polar of & point inside 2 conie

7.2 Problem VI (Cambridge Scholarship Examination)

The final problem I8 going to drew together all of the ideas thai have been developed In these
Notes.



FProblem 7.2 Tongenis are drown from o given point O to a given conic, mesting it af A and B.
A variable Ime | & drown through o given point © on AB, culting OA,OF al P, respeciively.
Prove that the locus of the point of intersection L of the other tangents from P and Q) ez [ veries)
ir & stroight line.

Prool:  'We sol up a cornespondence 1 between points on the conle. Glven A’ on 5, we construct
W(A") as follows. The tangent to 5 at A’ meets OA at P. Let PCAOB = . Let the other tangent
from Q to § touch § st B'. Then Jot ¢{A") = B',

Figure 7.3: Disgram for Problem VI

Now consider #.

= 1 is a one-to-one cornespondence on 5;

» 1 Is algebrale (B’ Is computed from A’ by intersections of polnts lines and conles);

e Y(B) = A,

Then ¢ is an Involution on § and, from the Involution lemma, we conclude that A"5' passes through
8 fixed point, T, say.

We now identify T". To do this we need compute other images of . Let X be a polnt of contact
of & tangent to 5 from €. By working through the construction, it is clear that ¥{X) = X. Thus
X, X are paired in the lnvolution, so T lles on X X, the tangent to § at X,

In addition, by working through the construction, it is clear that ${A) = B. Thus A, B are
paired in the Involutlon, to T lies on the line AB.

It follows from this that T is the point of intersection of the tangent to 5 at X and the line
AB. But this point 1s C. We heve therefore Identifled the fixed point T as C.

Now A'H' 1a the polar of I with respoct to 5. But A'B* passes through C, so the polar of L

passes through C. Then, by the Reciprocity Theorem, L lies on the polar of C. We conclude that
the locus of L (as | varies) is the polar of €. But this is & fixed line, and the result follows. |
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7.3 Closing comments

This compietes my brief introduction for you to the idess of plane projective geometry, Even In this
vory brief glimpee, you have bafore you evidence that some very elegant idess can grestly simplify
hard problems. In fact, throughout these Notes, it Is the idess that have domlnated, rsther then
the slgebraic manipulation, of which there has been lttle. What there has been, has been deft and

effective.



