
A Hitchhiker's Guide to\Fractal-Based" Function Approximationand Image CompressionEdward R. VrscayDepartment of Applied MathematicsUniversity of WaterlooWaterloo, Ontario, Canada N2L 3G1e-mail: ervrscay@links.uwaterloo.caWaterloo Fractal Compression Project Website: http://links.uwaterloo.caThis is a slightly expanded version of two articles which appeared in the February and August 1995issues of the UW Faculty of Mathematics Alumni newpaper, Math Ties.Part IIn 1981, a paper by a mathematician named John Hutchinson showed how systems ofcontraction maps on suitable spaces (e.g. mappings on [0,1] and [0; 1]2 which map pointscloser to each other) could be used to generate self-similar \fractal" sets. In 1984, MichaelBarnsley and coworkers at Georgia Tech independently came upon this idea and developedit from a more probabilistic viewpoint, calling such systems \Iterated Function Systems"(IFS). (I should mention that I was fortunate enough to be visiting Georgia Tech as anNSERC Postdoctoral Fellow during the \formative years of IFS", 1984-86, which accountsfor my own interest in the subject.) In a series of papers, the Georgia Tech workers exploredsome methods of using IFS to approximate sets, measures and, eventually, images. Indeed,the use of IFS as a possible method of image compression has received much publicity. I shalltry to outline below why people are interested in this application as well as some promisingresults - both theoretical as well as computational - obtained recently at Waterloo. Onlythe major points will be sketched, but I hope to show that with a little e�ort, you, too,can generate fractal sets and perhaps even compress images with the comfort and privacyof your own PC/workstation. Part I is devoted to the basic ideas of IFS. It is necessary toknow these basics in order to understand how IFS-type methods for function approximationand image compression could be developed. These latter developments, the subject of PartII, were the result of an ongoing collaboration with Prof. B. Forte, formerly a member ofthe Applied Mathematics Department, and now a Professor of Mathematics (Analysis) atthe University of Verona in Italy. (Many Math grads may remember Bruno for his serviceover many years as coach of the Waterloo Putnam teams, as well as being a former Chair ofthe Applied Math Department. He is currently an Adjunct Professor in our Department.)A Natural Sciences and Engineering Research Council of Canada (NSERC) CollaborativeProject Grant for 1994-97 has made possible an even richer collaboration with Prof. C.Tricot, Ecole Polytechnique, U. de Montr�eal and Dr. J. L�evy-V�ehel of INRIA, France.1



One aspect of dynamical systems theory involves the iteration of mappings on a suitablespace X . Given a mapping f : X ! X , pick a \seed" point x0 2 X and construct thesequence of points xn+1 = f(xn); n = 0; 1; :::. Then examine the behaviour of the points xnas n!1. Do they approach a limiting point, a limiting set, a cycle of points, etc.? More-over, does the behaviour depend on the seed point x0? When f is nonlinear, the sequencefxng can exhibit chaotic behaviour, a phenomenon which has received much attention andpublicity over the past ten years. (Exercise: Let f(x) = 4x(1 � x) and investigate thebehaviour of the xn for various x0.)In contrast, IFS generally employ contractive maps over a complete metric space (X; d).(X is typically [0; 1] or [0; 1]2, with d being the Euclidean metric.) A map f : X ! Xis contractive if there exists a constant c 2 [0; 1) such that d(f(x); f(y)) � cd(x; y) for allx; y 2 X . The constant c is known as the contraction factor of f . Banach's celebratedContraction Mapping Theorem guarantees the existence of a unique \�xed point" x 2 Xsuch that f(x) = x. Moreover, this �xed point is \attractive": For any x0 2 X , and theiteration procedure de�ned above, d(xn; x)! 0 as n!1. From a dynamical systems view-point, the dynamics associated with iterated contraction mappings is rather trivial since allpoints x in our space X are attracted to �x. As well, the contraction maps used in practicalapplications are typically a�ne (e.g. shears and rotations followed by translations). Theiteration dynamics associated with a�ne maps - including those transformations we saw inhigh school - is not as interesting as that for nonlinear maps. However, when we considera system of contractive and possibly a�ne maps acting in a \parallel" fashion - the essenceof IFS - the resulting behaviour is quite remarkable, as we show below.Suppose we let X = [0; 1] with d the usual Euclidean metric. Consider the followingtwo contraction maps on (X; d):1. f1(x) = 13x. Its �xed point is x = 0. It is easy to see that if x0 2 [0; 1], then x1 = x0=3,x2 = x1=3 = x0=9. In general, xn = x0=3n. Clearly, xn ! 0 as n!1. Rather trivialdynamics, n'est-ce pas?2. f2(x) = 13x + 23 . Then x = 1. Trivial dynamics as well, with xn ! 1 as n ! 1 forany x0 2 [0; 1].It is instructive to examine the action of each of the above maps on the interval [0,1]. Todo this, let us de�ne the following associated set-valued mappings: For i 2 f1; 2g and anysubset S � [0; 1], we denote f̂i(S) = ffi(x)jx 2 Sg. For example, f̂1([0; 1]) = [0; 13 ]. In otherwords, f̂1 \shrinks" the interval [0,1] to [0; 13 ]. Likewise, f̂2([0; 1]) = [23 ; 1]. Furthermoref̂�21 ([0; 1]) = f̂1(f̂1([0; 1]) = [0; 19 ], etc..Now de�ne the following set-valued IFS mapping f̂ whose action is de�ned as follows:For any subset S � [0; 1], let f̂(S) � f1(S) [ f2(S): (1)2



In other words, the mapping f̂ represents a kind of parallel action of the maps f̂1 and f̂2.If we denote I0 = [0; 1], then I1 = f̂(I0) = [0; 13] [ [23 ; 1];I2 = f̂(I1) = [0; 19] [ [29 ; 13] [ [23 ; 79] [ [89 ; 1]:The repeated application of our IFS mapping f̂ , illustrated in Figure 1, mimics the \middle-thirds dissection procedure" on [0,1] which is used to construct the classical ternary Cantorset C. One might then conjecture that the In \tend to" C as n!1. In fact, Hutchinsonshowed that the IFS mapping f̂ is a contraction mapping on an appropriate complete metricspace. (The space is H(X), the set of all nonempty compact subsets of X . The metric h iscalled the Hausdor� metric. The sets In are elements of H(X).) Banach's theorem is thenapplicable: The �xed point or attractor of the IFS mapping f̂ is the Cantor set C:C = f̂(C) = f̂1(C) [ f̂2(C): (2)Eq. (2) expresses the fact that C is a union of two smaller copies of itself, as shown inFigure 1. This is an example of \self-tiling" or \self-similarity", a property which is oftenexhibited by \fractal" sets. (Note that C 2 H(X).)
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 Figure 1: Repeated action of the 2-map IFS on [0,1] which performs \middle-thirds dissection".C is the ternary Cantor set on [0,1].In general, for a system of N contraction maps f = ff1; f2; :::; fNg (with contractionfactors ci < 1) on a complete metric space (X; d), the associated IFS operator will have theform f̂(S) = N[i=1 f̂i(S): (3)3



The IFS mapping f̂ is contractive (with contraction factor c = max1�i�Nfcig) and possessesa �xed point \attractor" A which satis�es the property A = f̂(A) orA = N[i=1 f̂i(A): (4)(Exercise: Now add a third map to the 2-map IFS given above, namely f3(x) = 13x + 13 .What is the attractor of this 3-map IFS?)In two dimensions, e.g. X = [0; 1]2, consider the IFS formed by the following threea�ne mapsf1(x; y) = (12x; 12y); f2(x; y) = (12x+ 12 ; 12y); f3(x; y) = (12x+ 14 ; 12y + 14p3):(All maps have contraction factor 12 and their �xed points xi lie on the vertices of an equilat-eral triangle - an exercise for the reader.) The resulting attractor, the so-called \Sierpinskigasket" is shown in Figure 2(a). The subset of the attractor enclosed in the lower leftthird triangle is f1(A), etc.. There is a lot of room for variation in two dimensions and theresults can be fascinating. For example, Figure 2(b), Barnsley's famous \spleenwort fern",is the attractor of a four-map a�ne IFS in the plane. (Exercise: See if you can deter-mine the four maps or at least a set of maps which produce a fernlike object as an attractor.)Along with the creation of these fern-type attractors in 1984 came the idea of usingIFS to approximate other shapes and �gures occuring in nature and, ultimately, images ingeneral. The IFS was seen to be a possible method of data compression. A high-resolutionpicture of a shaded fern normally requires on the order of one megabyte of computer mem-ory for storage. Current compression methods might be able to cut this number by a factorof ten or so. However, as an attractor of a four map IFS with probabilities, this fern maybe described totally in terms of only 28 IFS parameters! This is a staggering amount ofdata compression. Not only are the storage requirements reduced but you can also sendthis small amount of data quickly over communications lines to others who could then\decompress" it and reconstruct the fern by simply iterating the IFS mapping f̂ . In fact,this led to some rather sensationalistic early claims of compression factors of the order oftens of thousands that could be achieved using \fractal-based" image representation. (Thecompression factors achieved by IFS-methods, such as those shown in Part II, are currentlyon the order of 10 or 20 to 1.)However, not all objects in nature - in fact, very few - exhibit the special self-similarity ofthe spleenwort fern. Nevertheless, as a starting point there remains the interesting generalproblem to determine to determine how well sets and images can be approximated by theattractors of IFS. We pose the so-called inverse problem for geometric approximation withIFS as follows: 4



Figure 2(a): Sierpinski gasket.
Figure 2(b): Spleenwort fern.Given a \target" set S, can one �nd an IFS f whose attractor A approximatesto some desired degree of accuracy in an appropriate metric \D" (for example,the Hausdor� metric h)?From an important corollary of Banach's Contraction Mapping Theorem, often referred toas the \Collage Theorem", the inverse problem may be restated as follows:Given a target S and an � > 0, can one �nd an IFS f such that D(S; f̂(S)) < �?The term f̂(S), which from Eq. (3) is the union of shrunken copies of S, is known as the\collage" of S. The term D(S; f̂(S)) is referred to as the \collage distance". The smallerthe collage distance, i.e. the closer f̂(S) is to S, the better we can \tile" S with contractedcopies of itself. (In the case that S is the attractor of an N -map IFS f, then, by Eq. (4),the collage distance is zero.) The basic idea is illustrated in Figure 3(a) . A leaf is viewedas an approximate union of shrunken copies of itself. Each smaller copy is obtained by anappropriate contractive IFS map fi. If we restrict ourselves to a�ne IFS maps in the plane,i.e. fi(x) = Ax+ b, then the coe�cients of the matrix A and the column vector b can be5



determined by just determining where any three points of the original leaf are mapped to ineach shrunken copy. The Collage Theorem then states that the attractor A of the resultingIFS lies close to the target leaf S. The attractor A of the IFS constructed from Figure 3(a)is shown in Figure 3(b). (The interested reader might wish to return to the spleenwort fernand determine the four IFS maps required to obtain a successful collage. Hint: One of themaps is responsible for the stem.)
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3Figure 3(a): Approximating a leaf as a \collage", i.e. a union of shrunken copies of itself.
Figure 3(b): The attractor A of the four-map IFS obtained from a \collage" of the type in Figure3(a).In general, the determination of optimal IFS maps by looking for approximate geometricself-similarities in a set is a very di�cult problem with no simple solutions, especially if onewishes to automate the process. Fortunately, we can proceed by another route by realizingthat there is much more to a picture than just geometric shapes. There is also shading. Forexample, a real fern has veins which may be darker than the outer extremeties of the fronds.Thus it is more natural to think of a picture as de�ning a function: At each point or pixel(x; y) in a photograph or a computer display (represented, for convenience, by the region6



X = [0; 1]2) there is an associated grey level u(x; y), which may assume a �nite nonnegativevalue. (In practical applications, i.e. digitized images, each pixel can assume one of only a�nite number of discrete values.) In the next (and last!) instalment of this article, I shallshow how an IFS-type approach can be set up for functions. It will involve a \collaging" ofthe graphs of functions, leading to an e�ective method of approximating and compressingimages.Before closing, many of you may be thinking that the IFS iteration procedure outlinedabove represents a rather tedious way of generating pictures of attractors, since you mustkeep track of many points during each iteration. It is possible to generate IFS attractors byfollowing only one point in an iteration procedure called the \chaos game". Briey, supposeyou have an N -map IFS f = ff1; f2; :::; fNg on X = [0; 1] or [0; 1]2. Now take any pointx0 2 X . Pick a number i1 from the set f1; 2; :::; Ng randomly and let x1 = fi1(x0). Nowcontinue this procedure: For n = 1; 2; ::: let xn+1 = fin(xn), where each index in is chosenrandomly from f1; 2; :::;Ng. Plot the points xn for n � 50. These points will appear toperform a random walk on the attractor A of f. As more and more points are plotted, theresulting picture will provide a better representation of A. (There is an intimate relationbetween this Markov process and what is called an invariant measure which is supportedon the attractor A.)References: A very readable account of these \early IFS" methods is: M.F. Barnsleyand A. Sloan, \A better way to compress images," BYTE Magazine, January issue, pp.215-223 (1988). For a more detailed treatment, see M.F. Barnsley, \Fractals Everywhere",Academic Press (1988). Part IIIn the previous exciting episode, I introduced the idea of Iterated Function Systems(IFS) and what they can do geometrically. (Now go and get your previous edition of MathTies because I'm not going to review everything here!) Instead of looking at the action of asinglemapping f : X ! X , where X is some suitable (complete metric) space, e.g. [0,1], weconsider a set of maps f = ff1; f2; :::; fNg These maps are then considered to act in union,like a \parallel machine". Mathematically, associated with the IFS f is an operator f̂ whoseaction on a subset S � X is given byf̂(S) = N[i=1 f̂i(S): (5)If each of the maps fi : X ! X is contractive, then the IFS operator f̂ is contractive (inHausdor� metric, but let's not worry about that here). From Banach, there must exist aunique attractor set A which satis�es the �xed point equationA = N[i=1 f̂i(A): (6)7



(Recall the Cantor set C on [0,1] as the attractor of a 2-map IFS.) The next, and mostchallenging, step is the inverse problem:Given a \target" set S (e.g. a black-and-white shape of a leaf) can one �nd aset of contraction maps fi; 1 � i � N , hence an N -map IFS, whose attractor Ais close to S in some metric D?Figures 3(a) and 3(b) in Part I showed the idea of �nding an IFS by tiling, or makinga collage of, a leaf with smaller copies of itself. In general, however, such a determinationof optimal IFS maps is quite di�cult, especially if one would like to accomplish this on acomputer without direct human intervention. Part I was concluded with the comment thatwe can regard a picture as being more than merely geometric shapes. There is also shading.As such, it is more natural to think of a picture as de�ning a function: At each point or pixel(x; y) in a photograph, there is an associated \grey level" u(x; y) which assumes a �niteand nonnegative value. (Here, (x; y) 2 X = [0; 1]2, for convenience.) For example, considerFigure 4, a standard test case in image processing studies named \Lena". The image isa 512� 512 pixel array. Each pixel assumes one of 256 shades of grey (0 = white, 255 =black). From the point of view of continuous real variables (x; y), the image is representedas a piecewise constant function u(x; y). If the grey level value of each pixel is interpreted asa value in the z direction, then the graph of the image function z = u(x; y) is a surface inR3.
Figure 4: The target image \Lena", a 512� 512 pixel array, 8 bits (256 grey-level values) perpixel.Our goal is to set up an IFS-type approach to work with functions u : X ! R+ insteadof sets. Before writing any mathematics, let us illustrate schematically what can be done.For ease of presentation, we consider for the moment only one-dimensional images, i.e.positive real-valued functions u(x) where x 2 [0; 1]. An example is sketched in Figure 5(a).Suppose our IFS is composed of only two contractive maps f1, f2. Each of these functions8



fi will map the \base space" X = [0; 1] to a subinterval f̂i(X) contained in X . Let's choosef1(x) = 0:6x; f2(x) = 0:6x+ 0:4: (7)For reasons which will become clear below, it is important that f̂1(X) and f̂2(X) are not dis-joint - they will have to overlap with each other, even if the overlap occurs only at one point.The �rst step in our IFS procedure is to make two copies of the graph of u(x) whichare distorted to �t on the subsets f̂1(X) = [0; 0:6] and f̂2(X) = [0:4; 1] by \shrinking" andtranslating the graph in the x-direction. This is illustrated in Figure 5(b). Mathematically,the two \component" curves a1(x) and a2(x) in Figure 5(b) are given bya1(x) = u(f�11 (x)) x 2 f̂1(X); a2(x) = u(f�12 (x)) x 2 f̂2(X); (8)(Exercise: Check this and understand it since it is important for the ideas that follow!)We're not �nished, however, since some additional exibility in modifying these curveswould be desirable. Suppose that are allowed to modify the y (or grey level) values of eachcomponent function ai(x). For example, let us1. multiply all values a1(x) by 0.5 and add 0.5,2. multiply all values a2(x) by 0.75.The modi�ed component functions, denoted as b1(x) and b2(x), respectively, are shown inFigure 5(c). What we have just done can be written asb1(x) = �1(a1(x)) = �1(u(f�11 (x))) x 2 f̂1(X);b2(x) = �2(a2(x)) = �2(u(f�12 (x))) x 2 f̂2(X); (9)where �1(y) = 0:5y + 0:5; �2(y) = 0:75y; y 2 R+: (10)The �i are known as grey-level maps: They map (nonnegative) grey-level values to grey-level values.We now use the component functions bi in Figure 5(c) to construct a new function v(x).How do we do this? Well, there is no problem to de�ne v(x) at values of x 2 [0; 1] which liein only one of the two subsets f̂i(X). For example, x1 = 0:25 lies only in f̂1(X). As such,we de�ne v(x1) = b1(x) = �1(u(f�11 (x))). The same is true for x2 = 0:75, which lies onlyin f̂2(X). We de�ne v(x2) = b2(x) = �2(u(f�12 (x))).Now what about points that lie in both f̂1(X) and f̂2(X), for example x3 = 0:5? Thereare two possible components that we may use to de�ne our resulting function v(x3), namely9
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b1(x3) and b2(x3). How do we suitably choose or combine these values to produce a resultingfunction v(x) for x in this region of overlap?To make a long story short, this is a rather complicated mathematical issue and hasbeen a subject of ongoing research, in particular at Waterloo. There are many possibili-ties of combining these values, including (1) adding them, (2) taking the maximum or (3)taking some weighted sum, for example, the average. In what follows, we consider the�rst case, i.e. we simply add the values. The resulting function v(x) is sketched in Figure6(a). The observant reader may now be able to guess why we demanded that the subsetsf̂1([0; 1]) and f̂2([0; 1]) overlap, touching at least at one point. If they didn't, then the unionf̂1(X) [ f̂2(X) would have \holes", i.e. points x 2 [0; 1] at which no component functionsai(x), hence bi(x), would be de�ned. (Remember the Cantor set?) Since want our IFSprocedure to map functions on X to functions on X , the resulting function v(x) must bede�ned for all x 2 X .The 2-map IFS f = ff1; f2g, fi : X ! X , along with associated grey-level maps� = f�1; �2g, �i : R+ ! R+, is referred to as an Iterated Function System with Grey-LevelMaps (IFSM), (f ;�). What we did above was to associate with this IFSM an operator Twhich acts on a function u (Figure 5(a)) to produce a new function v = Tu (Figure 6(a)).Mathematically, the action of this operator may be written as follows: For any x 2 X ,v(x) = (Tu)(x) = NXi=10�i(u(f�1i (x))): (11)The prime on the summation signi�es that for each x 2 X we sum over only those i 2 f1; 2gfor which a \preimage" f�1i (x) exists. (Because of the \no holes" condition, it guaranteedthat for each x 2 X , there exists at least one such i value.) For x 2 [0; 0:4), i can be only 1.Likewise, for x 2 (0:6; 1], i = 2. For x 2 [0:4; 0:6], i can assume both values 1 and 2. Theextension to a general N -map IFSM is straightforward.There is nothing preventing us from applying the T operator to the function v, so let w =Tv = T (Tu). Again, we take the graph of v and \shrink" it to form two copies, etc.. Theresult is shown in Figure 6(b). As T is applied repeatedly, we produce a sequence of functionswhich converges to a function �u in an appropriate space, called L1(X)). (This is the spaceof functions f : X ! R for which k f k1� RX jf(x)jdx < 1. In this space, the distancebetween two functions u; v 2 L1(X) is given by the norm k u � v k1� RX ju(x)� v(x)jdx.)The function �u is sketched in Figure 6(c). (Because it has so many jumps, it is better viewedas a histogram plot.)In general, under suitable conditions on the IFS maps fi and the grey-level maps �i,the operator T associated with an IFSM (w;�) is contractive in L1(X). Therefore, fromthe Banach Contraction Mapping Theorem, it possesses a unique \�xed point" function11
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Figure 6(a): The resulting \fractal transform" function v(x) = (Tu)(x) obtained from thecomponent functions of Figure 5(c).
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Figure 6(b): The function w(x) = T (Tu)(x) = (T �2u)(x): the result of two applications of thefractal transform operator T .
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Figure 6(c): The \attractor" function �u = T �u of the two-map IFSM given in the text.12



�u 2 L1(X). This is precisely the case with the 2-map IFSM given above. Its attractor issketched in Figure 6(c). Note that from the �xed point property �u = T �u and Eq. (11), theattractor �u of an N -map IFSM satis�es the equation�u(x) = NXi=10�i(�u(f�1i (x))); : (12)In other words, the graph of �u satis�es a kind of \self-tiling" property: it may be written asa sum of distorted copies of itself.Before going on, let's consider the three-map IFSM composed of the following IFS mapsand associated grey-level maps:f1(x) = 13x; �1(y) = 12y;f2(x) = 13x+ 13 ; �2(y) = 12 ; (13)f3(x) = 13x+ 23 ; �3(y) = 12y + 12 ;Notice that f̂1(X) = [0; 13 ] and f̂2(X) = [13 ; 1] overlap only at one point, x = 13 . Like-wise, f̂2(X) and f̂3(X) overlap only at x = 23 . The �xed point attractor function �u of thisIFSM is sketched in Figure 7. It is known as the \Devil's Staircase" function. You can seethat the attractor satis�es a self-tiling property: If you shrink the graph in the x-directiononto the interval [0; 13 ] and shrink the in y-direction by 13 , you obtain one piece of it. Thesecond copy, on [13 ; 23 ], is obtained by squashing the graph to produce a constant. The thirdcopy, on [23 ; 1], is just a translation of the �rst copy by 23 in the x-direction and 12 in they-direction. (Note: The observant reader can complain that the function graphed in Figure6 is not the �xed point of the IFSM operator T as de�ned in Eq. (11): The value v(13)should be 32 and not 12 , since x = 13 is a point of overlap. In fact, this will also happen atx = 23 as well as an in�nity of points obtained by the action of the fi maps on x = 13 and 23 .What a mess! Well, not quite, since the function in Figure 7 and the true attractor di�eron a countable in�nity of points. Therefore, the the L1 distance between them is zero! Thetwo functions belong to the same equivalence class in L1([0; 1]).)Now we have an IFS-method of acting on functions. Along with a set of IFS maps fithere is a corresponding set of grey-level maps �i. Together, Under suitable conditions, thedetermine a unique attracting �xed point function �u which can be generated by iteratingoperator,T , de�ned in Eq. (11). As was the case with the \geometrical IFS" earlier, we arenaturally led to the following inverse problem for function (or image) approximation:Given a \target" function (or image) v and an � > 0, can we �nd an IFSM(f ;�) whose attractor �u approximates v to within �, i.e. satis�es the inequalityk v � �u k1< �? 13
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xFigure 7: The \Devil's staircase" function, the attractor of the three-map IFSM given in Eq. (13).For the same reason as in Part I, namely the \Collage Theorem" (an important corollary ofBanach's Contraction Mapping Theorem), the above inverse problem may be convenientlyposed as follows:Given a target function v and an � > 0, can we �nd an IFSM (f ;�) withassociated operator T , such that the \collage distance" satis�es k v�Tv k1< �?This basically asks the question, \How well can we `tile' the graph of v withdistorted copies of itself (subject to the operations given above)?"Now, you might comment, it looks like we're right back where we started. We have toexamine a graph for some kind of \self-tiling" symmetries, involving both geometry (the fi)as well as grey-levels (the �i), which sounds quite di�cult. The response is \Yes, in generalit is." However, it turns out that an enormous simpli�cation is achieved if we give up theidea of trying to �nd the best IFS maps fi. Instead, we choose to work with a �xed set ofIFS maps fi, 1 � i � N , and then �nd the \best" grey-level maps �i associated with thefi. Question: What are these \best" grey-level maps?Answer: They are the �i maps which will give the best \collage" or tiling ofthe function v with shrunken copies of itself using the �xed IFS maps, wi.To illustrate, consider the target function v = px. Suppose that we work with thefollowing two IFS maps on [0,1]: f1(x) = 12x and f2(x) = 12x+ 12 . Note that f̂1(X) = [0; 12 ]and f̂1(X) = [12 ; 1]. The two sets f̂(X) overlap only at x = 12 .(Note: It is very convenient to work with IFS maps for which the overlapping betweensubsets f̂i(X) is minimal, referred to as the \nonoverlapping" case. In fact, this is theusual practice in applications. The remainder of this discussion will be restricted to the14



nonoverlapping case, so you can forget all of the earlier headaches involving \overlapping"and combining of fractal components.)We wish to �nd the best �i maps, i.e. those that make k v�Tv k1 small. Roughly speaking,we would like that v(x) � (Tv)(x); x 2 X; (14)or at least for as many x 2 X as possible. Recall from our earlier discussion that the �rststep in the action of the T operator is to produce copies of v which are \shrunk" in thex-direction onto the subsets f̂i(X). These copies, ai(x) = v(f�1i (x)), i = 1; 2, are shownin Figure 8(a) along with the target v(x) for reference. The �nal action is to modify thesefunctions ai(x) to produce functions bi(x) which are to be as close as possible to the piecesof the original target function v which sit on the subsets f̂i(X). Recall that this is the roleof the grey-level maps �i since bi(x) = �i(ai(x)) for all x 2 f̂i(X). Ideally, we would likegrey-level maps that give the resultv(x) � bi(x) = �i(v(f�1i (x))); x 2 f̂i(X): (15)Thus if, for all x 2 f̂i(X), we plot v(x) vs. v(f�1i (x)), then we have an idea of what the map�i should look like. Figure 8(b) shows these plots for the two subsets f̂i(X), i = 1; 2. Inthis particular example, the exact form of the grey level maps can be derived: �1(t) = 1p2 tand �2(t) = 1p2pt2 + 1. I leave this as an exercise for the interested reader.In general, however, the functional form of the �i grey level maps will not be known.In fact, such plots will generally produce quite scattered sets of points, often with several�(t) values for a single t value. The goal is then to �nd the \best" grey level curves whichpass through these data points. But that sounds like least squares, doesn't it? In mostsuch \fractal transform" applications, only a straight line �t of the form �i(t) = �it + �iis assumed. For the functions in Figure 8(b), the \best" a�ne grey level maps associatedwith the two IFS maps given above are:�1(t) = 1p2 t;�2(t) � 0:35216t+ 0:62717: (16)The attractor of this 2-map IFSM, shown in Figure 8(c), is a very good approximationto the target function v(x) = px.In principle, if more IFS maps wi and associated grey level maps �i are added, albeit ina careful manner, then a better accuracy can be achieved. (Prof. Forte and I have shownthis theoretically, subject to conditions on the IFS maps as well as the grey-level maps.)15
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The primary goal of IFS-based methods of image compression, however, is not necessarilyto provide approximations of arbitary accuracy, but rather to provide approximations ofacceptable accuracy \to the discerning eye" with as few parameters as possible. As well,it is desirable to be able to compute the IFS parameters in a reasonable amount of time.A signi�cant improvement, which follows a method introduced in 1989 by A. Jacquin, aPh.D. student of Barnsley (now at Bell Labs), lies in the method of \local" IFS. Ratherthan attempting to express a set or an image as a union of copies of itself, the local IFSMmethod seeks to express it as a union of copies of subsets of itself. It seems reasonable tolook for more local self-similarities in a function or image as opposed to global propertiesassumed by the traditional IFS approach. (For anyone interested, try to approximate thefunction v(x) = sin(�(x)) on [0; 1] using the two-map IFS in the px example above. Youwill see the problems in �tting the grey-level maps. It is much better to split the graph intotwo halves, i.e. one on [0; 12 ] and the other on [12 ; 1].)Let us now return to \real" two-dimensional images, in particular, \Lena" in Figure4(a). Suppose that we perform a Jacquin-type method on this 512� 512 pixel target imageas follows. Divide the image into nonoverlapping square blocks 16 pixels wide and 16 pixelshigh. There are 322 = 1024 of these square blocks which we shall call the \parent blocks",Ij . Now divide each of these blocks into 4 smaller blocks, .i.e. blocks which are 8 pixels by8 pixels square. There are 642 = 4096 of these \child blocks", Jk. There are eight possiblecontractive IFS-type maps, f (l)j;k ; 1 � l � 8, from a given parent block Ij to a given childblock Jk (4 rotations, 4 mirror inversions).It now remains to choose, for each child block Jk a parent block Ij(k) (note the depen-dence on k, and an IFS map f l(k)k;j(k). Once this choice is made (a number of approachesare shown below), optimal a�ne grey level map �k(t) = �k(t) + �k as was done for theone-dimensional case above, i.e. the map which prodces the best least squares �t of thesubimage on the parent block onto the subimage on the child block. When this is donefor all child blocks, we have a \code" for the target image: in this case, a set of numbers(j(k); �k; �k); 1 � k � 4096 which de�ne a unique contractive operator T associated withthe local IFSM. Starting with any \seed image", even a totally black or white screen, wemay iterate this operator T to generate the attractor function �u of the IFSM which, hope-fully, will be a reasonable approximation to the target image. In the results presented below,the \L1 error" of the approximation �u to the target image v is simply the distance k v��u k1.(An embarrassing disclaimer: I actually performed these calculations a couple of years agousing completely unoptimized FORTRAN programs. Since then, my students - and oth-ers - have written much better routines in C which have reduce the computational timeby factors of up to 100. The relative computational costs of the various methods are stillpreserved, however.) 17



Figure 9(a): Approximation to \Lena" using Method 1.
Figure 9(b): Approximation to \Lena" using Method 2.
Figure 9(c): Approximation to \Lena" using Method 3.18



Method 1: For each child block, Jk , �nd the \best" parent block Ij(k). This means thatfor each of the eight IFS transformations of the parent to the child, we �nd the optimalgrey-level map and then select the case which gives the best �t. For each child, we then per-form a search over all possible parents. This method requires over three hours of computertime to determine the optimal IFS approximation, shown in Figure 9(a). The L1 error ofthis approximation is 0.018.Method 2: If we eliminate the search of optimal parent blocks and choose, for example,the parent block \closest" to the child (in fact, the parent which contains the given child),the approximation in Figure 9(b) is obtained. The L1 error of this approximation is 0.029,somewhat higher than that of Fig. 4. The compression time was only 34 sec.. However,from a visual perspective, the approximation is not acceptable.Method 3: One possibility to reduce computer time without sacri�cing much error inapproximation is to use \place-dependent" grey-level maps. These maps necessarily involvean extra couple of parameters in the \collaging" of parent-child pairs, so the compressionfactor is lowered slightly. In Figure 9(c) we show the IFS approximation obtained with thismethod, using the same number of child and parent blocks as above but with no searchingfor optimal parent blocks. The L1 error of this approximation to \Lena" is 0.022, lyingslightly closer to the approximation of Method 1 than that of Method 2. This approxima-tion is more acceptable visually since the \blockiness" introduced by the IFS partitioningis less apparent. As well, the \compression time" is a mere 27 seconds. The compressionassociated with this IFSM is about 10 to 1. (Actually, this ratio can be improved to some-thing like 15 or 20 to 1 by means of e�cient coding of the IFS parameters, e.g. \entropycoding", but that's another story.) Not bad, but we're looking for even greater accuracyin possibly less time (the goal being a fraction of a second) and with the smallest possiblenumber of IFS parameters, i.e. an even higher compression ratio.Recently (in fact, since the time Part I appeared in print) there have been severalsigni�cant developments which show much promise in fractal image compression. Some ofthese include what can be called (if I may borrow terminology from Electrical Engineering)\IFS methods in the frequency domain". Briey, if we assume a more traditional expansionof our target image/function in terms of a set of orthonormal basis functions fqng1n=0, i.e.v(x) = 1Xn=0 cnqn(x); (17)then one can perform a kind of IFS compression on the expansion coe�cients cn. This turnsout to be quite natural if the qn(x) functions are wavelets.Finally, the compression of images is not the only practical application of this approxi-mation method that we intend to explore. Our goal is to use this technique in to study some19



of the more di�cult \boundary value" problems in applied mathematics, for example, (i) thevibration of fractured solids and (ii) the behaviour of water waves near an irregular coastline.ReferencesOriginal research papers:J. Hutchinson, Fractals and self-similarity, Indiana Univ. J. Math. 30, 713-747 (1981).M.F. Barnsley and S. Demko, Iterated function systems and the global construction of frac-tals, Proc. Roy. Soc. London A399, 243-275 (1985).A. Jacquin, Image coding based on a fractal theory of iterated contractive image transfor-mations, IEEE Trans. Image Proc. 1 18-30 (1992).Books:M.F. Barnsley, Fractals Everywhere, Academic Press, New York (1988).M.F. Barnsley and L.P. Hurd, Fractal Image Compression, A.K. Peters, Wellesley, Mass.(1993).Y. Fisher, Fractal Image Compression, Theory and Application, Springer-Verlag (1995).Expository papers:M.F. Barnsley and A. Sloan, A better way to compress images, BYTE Magazine, Januaryissue, pp. 215-223 (1988).Y. Fisher, A discussion of fractal image compression, in Chaos and Fractals, New Frontiersof Science, H.-O. Peitgen, H. J�urgens and D. Saupe, Springer-Verlag (1994).Current research papers:B. Forte and E.R. Vrscay, \Theory of generalized fractal transforms" and \Inverse problemmethods for generalized fractal transforms", to appear in Fractal Image Encoding and Anal-ysis, edited by Y. Fisher (Springer Verlag, NY, 1996). Proceedings of the NATO AdvancedStudy Institute held in Trondheim, Norway, July 8-17, 1995. (available from the WaterlooWebsite or by anonymous ftp) 20
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