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The barbeque pool heater 
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The General Approach 
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• Given a volume, discretize and pack sections with circles 

• Connect the network with endcaps and internal connections 

• Confirm the feasibility of the networks produced on topological grounds 

• Then to determine the optimal pipe network for heat exchange: 

• Determine fluid flow subject to pressure boundary conditions 

• Given the flow distribution and appropriate thermal boundary 
conditions, estimate heat transfer characteristics of the pipe network 
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Spatial Discretization 
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• Given an envelope, discretize into blocks 𝐵𝑖 to obtain cross sections 
• Pack different cross sections with circles to represent tubes 
• Algorithmically, connect the tubes based on the packing 
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A Particular Envelope 
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Construction of Tubular Networks 
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• Step 1: Obtain a solution for each side to get a 
potential solution for the network connection 
problem. 
 

• Step 2: Check feasibility of potential solutions. 
 
 
 

 

The connection algorithm: 



Allowable Elements 
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Allow only these basic elements: 



Step 1: Obtain a Feasible Solution for Each Side 
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  For outer ends:  
• Use only end caps to connect 

tubes and leave two tubes as 
inlet and outlet of the entire 
network. 
 

• Use Minimum Degree 
Matching Algorithm and 
Depth-first Search to 
enumerate all possible 
solutions for one end. 
 

 
 



Step 1: Obtain a Feasible Solution for Each Side 
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  For middle sides:   

• Employ the operations in the figure below 

• Use Unified Minimum Degree Matching Algorithm 

combined with Depth-first Search to enumerate all 

possible solutions for one middle side 



Step 2: Verify Feasibility 
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• Construct a graph from the potential solution. 
• Determine whether dead ends exist (bridges) 
• Determine whether the graph is connected. 

 
 
 
 
 



The General Approach 
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• Given a volume, discretize and pack sections with circles 

• Connect the network with endcaps and internal connections 

• Confirm the feasibility of the networks produced on topological grounds 

• Then to determine the optimal pipe network for heat exchange: 

• Determine fluid flow subject to pressure boundary conditions 

• Given the flow distribution and appropriate thermal boundary 
conditions, estimate heat transfer characteristics of the pipe network 



Given One of 6798 Feasible Solutions 

12 



Abstract Network Representation 
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Element-wise Network Decomposition 
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Partial Network Near Inlet 
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Conservation Equations: 
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Conservation of mass 

�𝑚̇𝑖𝑖

𝑁

𝑖=1

+ 𝑏𝑗 = 0 

𝑚̇𝑖𝑖 is the mass flow rate [kg/s] from node i to node j and 𝑏𝑗 
is either a source or a sink of mass, (positive at inlets, 
negative at outlets, and zero at internal nodes) 

𝑚̇𝑖𝑖 = −𝑚̇𝑗𝑗   



Conservation of Mass 

17 

𝑚̇21 + 𝑏1 = 0 

⋮ 

𝑚̇12 + 𝑚̇32 = 0 



Conservation Equations: 
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Conservation of energy 

𝑃𝑖 − 𝑃𝑗 = 𝑓𝑖𝑖(𝑚̇𝑖𝑖 , geometry) 

where 𝑃𝑖 is the pressure [Pa] at node i and 𝑓𝑖𝑖 is the 
pressure drop in branch ij as a function of the flow 
through and the geometry of the branch 



Conservation of Energy 

19 

𝑃2 − 𝑃3 = 𝑓2,3(𝑚̇23, geometry) 

𝑃1 − 𝑃2 = 𝑓1,2(𝑚̇12, geometry) 

⋮ 

𝑃1 = 𝑃inlet 



A System of Linear Equations: 
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The General Approach 
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• Given a volume, discretize and pack sections with circles 

• Connect the network with endcaps and internal connections 

• Confirm the feasibility of the networks produced on topological grounds 

• Then to determine the optimal pipe network for heat exchange: 

• Determine fluid flow subject to pressure boundary conditions 

• Given the flow distribution and appropriate thermal boundary 
conditions, estimate heat transfer characteristics of the pipe network 



The Heat Transfer Problem: 
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d𝑞̇conv = 𝑚̇𝑐𝑝 𝑇m + d𝑇m − 𝑇m = 𝑚̇𝑐𝑝d𝑇m 

but   d𝑞̇conv = 𝑞̇𝑠′′𝑃 d𝑥   and   𝑞̇𝑠′′ = ℎ 𝑇s − 𝑇m  

so    
d𝑇m
d𝑥

= 𝑃
𝑚̇𝑐𝑝

ℎ 𝑇s − 𝑇m  



The Heat Transfer Problem: 
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and, with  ℎ� = 1
𝐿 ∫ ℎ d𝑥𝐿

0   and  𝐴s = 𝑃𝑃,  

ln
∆𝑇𝑜
∆𝑇𝑖

= −
𝐴s
𝑚̇𝑐𝑝

ℎ� 

∆𝑇𝑜
∆𝑇𝑖

=
𝑇s − 𝑇m,𝑜

𝑇s − 𝑇m,𝑖
= 𝑒

− 𝐴s
𝑚̇𝑐𝑝

ℎ�
 

With ∆𝑇 = 𝑇s − 𝑇m and 𝑇s  constant, d𝑇m
d𝑥

= −d∆𝑇
d𝑥
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The Heat Transfer Problem: 
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𝑇𝑠 1 − 𝑒
−𝐴𝑠ℎ�
𝑚̇𝑐𝑝 i = 𝑇𝑚,𝑜 − 𝑇𝑚,𝑖  𝑒

−𝐴𝑠ℎ�
𝑚̇𝑐𝑝  

𝑇s − 𝑇m,𝑜

𝑇s − 𝑇m,𝑖
= 𝑒

−𝐴sℎ
�

𝑚̇𝑐𝑝 

𝑇𝑚,𝑜 

𝑇𝑚,𝑜 𝑚̇, 𝑐𝑝, 𝑇𝑚,𝑖 

𝑚̇, 𝑐𝑝, 𝑇𝑚,𝑖 𝐴𝑠,𝑇𝑠 

𝐴𝑠,𝑇𝑠 



The Heat Transfer Problem: 
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𝑇𝑜 = �
𝑚̇𝑖

∑ 𝑚̇𝑗𝑜𝑢𝑢𝑢𝑢𝑢 𝑗
𝑇𝑖

𝑖𝑛𝑛𝑛𝑛 𝑖

 

𝑚̇1, 𝑐𝑝, 𝑇1 

𝑚̇2, 𝑐𝑝, 𝑇2 

𝑚̇𝑜, 𝑐𝑝, 𝑇𝑜 



Results: 
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• The overall heat transfer to the pool is given by 
𝑞̇𝑜 = 𝑚̇𝑐𝑝𝑇𝑜 

 computed at the outlet of the heat exchanger. 

• For the sake of computational efficiency, are we able to 
infer anything about the overall heat transfer 
characteristics from the geometry or flow alone? 



Results: 
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correlation of ∆𝑇 and inlet 𝑚̇ is -0.8981 

Ranked ∆𝑇 corresponding ranking of 𝑚̇ 



Results: 
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correlation of ∆𝑇 and 𝐴𝑠 is 0.2854 

Ranked ∆𝑇 corresponding ranking of 𝐴𝑠 



Results: 
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correlation of 𝑞̇ and 𝑚̇ is -4.1705e-04 

Ranked 𝑞̇ corresponding ranking of 𝑚̇ 



Results: 
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correlation of heat flux 𝑞̇ and 𝐴𝑠 is -0.0146 

Ranked 𝑞̇ corresponding ranking of 𝐴𝑠 



Conclusions 
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• For the given envelope, discretization, and circle packing, the 
network connection algorithm produces 6000+ feasible networks 

• Neither outlet temperatures nor overall heat transfers exhibit much 
correlation with the overall heat transfer surface area 

• Whereas outlet temperatures exhibit strong negative correlations 
with mass flow rates, overall heat transfer is uncorrelated with inlet 
mass flow 

• The overall characterization of the heat exchanger cannot be 
determined from the geometry or from the fluid flow alone 
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Questions 

Thank You ! 
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