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compactifying moduli spaces is that we can then calcu-
late integrals over the completed space. This is crucial
for the next item.

Invariants from moduli spaces. An important appli-
cation of moduli spaces in geometry and topology is
inspired by quantum field theory, where a particle,
rather than following the “best” classical path between
two points, follows all paths with varying probabilities
(see mirror symmetry [IV.16 §2.2.4]). Classically, one
calculates many topological invariants by picking a geo-
metric structure (such as a metric) on a space, calculat-
ing some quantity using this structure, and finally prov-
ing that the result of the calculation did not depend on
the structure we chose. The new alternative is to look
at all such geometric structures, and integrate some
quantity over the space of all choices. The result, if
we can show convergence, will manifestly not depend
on any choices. String theory has given rise to many
important applications of this idea, in particular by
giving a rich structure to the collection of integrals
obtained in this way. Donaldson and Seiberg–Witten
theories use this philosophy to give topological invari-
ants of four-manifolds. Gromov–Witten theory applies
it to the topology of symplectic manifolds [III.88],
and to counting problems in algebraic geometry, such
as, How many rational plane curves of degree 5 pass
through fourteen points in general position? (Answer:
87 304.)

Modular forms. One of the most profound ideas in
mathematics, the Langlands program, relates number
theory to function theory (harmonic analysis) on very
special moduli spaces, generalizing the moduli space
of elliptic curves. These moduli spaces (Shimura vari-
eties) are expressible as quotients of symmetric spaces
(such as H) by arithmetic groups (such as PSL2(Z)).
modular forms [III.59] and automorphic forms are
special functions on these moduli spaces, described
by their interaction with the large symmetry groups
of the spaces. This is an extremely exciting and active
area of mathematics, which counts among its recent tri-
umphs the proof of fermat’s last theorem [V.10] and
the Shimura–Taniyama–Weil conjecture (Wiles, Taylor–
Wiles, Breuil–Conrad–Diamond–Taylor).

Further Reading

For historical accounts and bibliographies on moduli
spaces, the following articles are highly recommended.

A beautiful and accessible overview of moduli spaces,
with an emphasis on the notion of deformations, is

given by Mazur (2004). The articles by Hain (2000) and
Looijenga (2000) give excellent introductions to the
study of the moduli spaces of curves, perhaps the old-
est and most important of all moduli problems. The
article by Mumford and Suominen (1972) introduces
the key ideas underlying the study of moduli spaces
in algebraic geometry.
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IV.9 Representation Theory
Ian Grojnowski

1 Introduction

It is a fundamental theme in mathematics that many
objects, both mathematical and physical, have sym-
metries. The goal of group [I.3 §2.1] theory in gen-
eral, and representation theory in particular, is to study
these symmetries. The difference between representa-
tion theory and general group theory is that in repre-
sentation theory one restricts one’s attention to sym-
metries of vector spaces [I.3 §2.3]. I will attempt here
to explain why this is sensible and how it influences our
study of groups, causing us to focus on groups with
certain nice structures involving conjugacy classes.

2 Why Vector Spaces?

The aim of representation theory is to understand how
the internal structure of a group controls the way it acts
externally as a collection of symmetries. In the other
direction, it also studies what one can learn about a
group’s internal structure by regarding it as a group of
symmetries.
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We begin our discussion by making more precise
what we mean by “acts as a collection of symmetries.”
The idea we are trying to capture is that if we are given
a group G and an object X, then we can associate with
each element g ofG some symmetry ofX, which we call
φ(g). For this to be sensible, we need the composition
of symmetries to work properly: that is,φ(g)φ(h) (the
result of applying φ(h) and then φ(g)) should be the
same symmetry asφ(gh). IfX is a set, then a symmetry
of X is a particular kind of permutation [III.68] of its
elements. Let us denote by Aut(X) the group of all per-
mutations of X. Then an action of G on X is defined to
be a homomorphism from G to Aut(X). If we are given
such a homomorphism, then we say that G acts on X.

The image to have in mind is that G “does things” to
X. This idea can often be expressed more conveniently
and vividly by forgetting about φ in the notation: thus,
instead of writing φ(g)(x) for the effect on x of the
symmetry associated with g, we simply think of g itself
as a permutation and write gx. However, sometimes we
do need to talk about φ as well: for instance, we might
wish to compare two different actions of G on X.

Here is an example. Take as our object X a square in
the plane, centered at the origin, and let its vertices be
A, B, C, and D (see figure 1). A square has eight symme-
tries: four rotations by multiples of 90◦ and four reflec-
tions. Let G be the group consisting of these eight sym-
metries; this group is often called D8, or the dihedral
group of order 8. By definition, G acts on the square.
But it also acts on the set of vertices of the square:
for instance, the action of the reflection through the
y-axis is to switch A with B and C with D. It might seem
as though we have done very little here. After all, we
defined G as a group of symmetries so it does not take
much effort to associate a symmetry with each element
ofG. However, we did not defineG as a group of permu-
tations of the set {A,B,C,D}, so we have at least done
something.

To make this point clearer, let us look at some other
sets on which G acts, which will include any set that
we can build sufficiently naturally from the square.
For instance, G acts not only on the set of vertices
{A,B,C,D}, but on the set of edges {AB,BC,CD,DA}
and on the set of cross-diagonals {AC,BD} as well.
Notice in the latter case that some of the elements of
G act in the same way: for example, a clockwise rota-
tion through 90◦ interchanges the two diagonals, as
does a counterclockwise rotation through 90◦. If all the
elements of G act differently, then the action is called
faithful.

A B

CD

Figure 1 A square and its diagonals.

Notice that the operations on the square (“reflect
through the y-axis,” “rotate through 90◦,” and so on)
can be applied to the whole Cartesian plane R2. There-
fore, R2 is another (and much larger) set on which G
acts. To call R2 a set, though, is to forget the very
interesting fact that the elements in R2 can be added
together and multiplied by real numbers: in other
words, R2 is a vector space. Furthermore, the action
of G is well-behaved with respect to this extra struc-
ture. For instance, if g is one of our symmetries and v1

and v2 are two elements of R2, then g applied to the
sum v1 + v2 yields the sum g(v1)+ g(v2). Because of
this, we say that G acts linearly on the vector space R2.
When V is a vector space, we denote by GL(V) the set
of invertible linear maps from V to V . If V is the vec-
tor space Rn, this group is the familiar group GLn(R)
of invertible n×nmatrices with real entries; similarly,
when V = Cn it is the group of invertible matrices with
complex entries.

Definition. A representation of a group G on a vector
space V is a homomorphism from G to GL(V).

In other words, a group action is a way of regarding
a group as a collection of permutations, while a repre-
sentation is the special case where these permutations
are invertible linear maps. One sometimes sees repre-
sentations referred to, for emphasis, as linear repre-
sentations. In the representation of D8 on R2 that we
described above, the homomorphism fromG to GL2(R)
took the symmetry “clockwise rotation through 90◦” to
the matrix ( 0 1

−1 0 ) and the symmetry “reflection through
the y-axis” to the matrix (−1 0

0 1 ).
Given one representation of G, we can produce oth-

ers using natural constructions from linear algebra. For
example, if ρ is the representation ofG on R2 described
above, then its determinant [III.15] detρ is a homo-
morphism from G to R∗ (the group of nonzero real
numbers under multiplication), since

det(ρ(gh)) = det(ρ(g)ρ(h)) = det(ρ(g))det(ρ(h)),
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by the multiplicative property of determinants. This
makes detρ a one-dimensional representation, since
each nonzero real number t can be thought of as the
element “multiply by t” of GL1(R). If ρ is the represen-
tation of D8 just discussed, then under detρ we find
that rotations act as the identity and reflections act as
multiplication by −1.

The definition of “representation” is formally very
similar to the definition of “action,” and indeed, since
every linear automorphism of V is a permutation on
the set of vectors in V , the representations of G on V
form a subset of the actions of G on V . But the set of
representations is in general a much more interesting
object. We see here an instance of a general principle:
if a set comes equipped with some extra structure (as
a vector space comes with the ability to add elements
together), then it is a mistake not to make use of that
structure; and the more structure the better.

In order to emphasize this point, and to place rep-
resentations in a very favorable light, let us start by
considering the general story of actions of groups on
sets. Suppose, then, that G is a group that acts on a set
X. For each x, the set of all elements of the form gx, as
g ranges over G, is called the orbit of x. It is not hard
to show that the orbits form a partition of X.

Example. Let G be the dihedral group D8 acting on
the set X of ordered pairs of vertices of the square, of
which there are sixteen. Then there are three orbits of
G on X, namely {AA,BB,CC,DD}, {AB,BA,BC,CB,CD,
DC,DA,AD}, and {AC,CA,BD,DB}.

An action of G on X is called transitive if there is just
one orbit. In other words, it is transitive if for every
x and y in X you can find an element g such that
gx = y . When an action is not transitive, we can con-
sider the action of G on each orbit separately, which
effectively breaks up the action into a collection of
transitive actions on disjoint sets. So in order to study
all actions of G on sets it suffices to study transitive
actions; you can think of actions as “molecules” and
transitive actions as the “atoms” into which they can
be decomposed. We shall see that this idea of decom-
posing into objects that cannot be further decomposed
is fundamental to representation theory.

What are the possible transitive actions? A rich
source of such actions comes from subgroups H of G.
Given a subgroup H of G, a left coset of H is a set of
the form {gh : h ∈ H}, which is commonly denoted by
gH. An elementary result in group theory is that the
left cosets form a partition of G (as do the right cosets,

if you prefer them). There is an obvious action of G on
the set of left cosets of H, which we denote by G/H: if
g′ is an element of G, then it sends the coset gH to the
coset (g′g)H.

It turns out that every transitive action is of this form!
Given a transitive action of G on a set X, choose some
x ∈ X and let Hx be the subgroup of G consisting of
all elements h such that hx = x. (This set is called the
stabilizer of x.) Then one can check that the action of G
on X is the same1 as that of G on the left cosets of Hx .
For example, the action of D8 on the first orbit above is
isomorphic to the action on the left cosets of the two-
element subgroup H generated by a reflection of the
square through its diagonal. If we had made a different
choice of x, for example the point x′ = gx, then the
subgroup of G fixing x′ would just be gHxg−1. This is
a so-called conjugate subgroup, and it gives a different
description of the same orbit, this time as left cosets of
gHxg−1.

It follows that there is a one-to-one correspondence
between transitive actions of G and conjugacy classes
of subgroups (that is, collections of subgroups conju-
gate to some given subgroup). If G acts on our original
set X in a nontransitive way, then we can break X up
into a union of orbits, each of which, as a result of this
correspondence, is associated with a conjugacy class of
subgroups. This gives us a convenient “bookkeeping”
mechanism for describing the action of G on X: just
keep track of how many times each conjugacy class of
subgroups arises.

Exercise. Check that in the example earlier the three
orbits correspond (respectively) to a two-element sub-
group R generated by reflection through a diagonal, the
trivial subgroup, and another copy of the group R.

This completely solves the problem of how groups
act on sets. The internal structure that controls the
action is the subgroup structure of G.

In a moment we will see the corresponding solution
to the problem of how groups act on vector spaces.
First, let us just stare at sets for a while and see why,
though we have answered our question, we should not
feel too happy about it.2

The problem is that the subgroup structure of a
group is just horrible.

1. By “the same” we mean “isomorphic as sets with G-action.” The
casual reader may read this as “the same,” while the more careful
reader should stop here and work out, or look up, precisely what is
meant.

2. Exercise: go back to the example of D8 and list all the possible
transitive actions.
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For example, any finite group of ordern is a subgroup
of the symmetric group [III.68] Sn (this is “Cayley’s
theorem,” which follows by considering the action of
G on itself), so in order to list the conjugacy classes of
subgroups of the symmetric group Sn one must under-
stand all finite groups of size less than n.3 Or consider
the cyclic group Z/nZ. The subgroups correspond to
the divisors of n, a subtle property of n that makes
the cyclic groups behave quite differently as n varies.
If n is prime, then there are very few subgroups, while
if n is a power of 2 there are quite a few. So number
theory is involved even if all we want to do is under-
stand the subgroup structure of a group as simple as a
cyclic group.

With some relief we now turn our attention back to
linear representations. We will see that, just as with
actions on sets, one can decompose representations
into “atomic” ones. But, by contrast with the case of
sets, these atomic representations (called “irreducible”
representations, or sometimes simply “irreducibles”)
turn out to exhibit quite beautiful regularities.

The nice properties of representation theory come
largely from the following fact. While elements of the
symmetric group Sn can be multiplied together, ele-
ments of GL(V), being matrices, can be added as well
as multiplied. (But beware: the sum of two elements of
GL(V) is not necessarily an element of GL(V), because
it may not be invertible. It is, however, an element of the
endomorphism algebra End(V). When V = Cn, End(V)
is just the familiar algebra of all n×n matrices with
complex entries, both invertible and not.)

To see the difference it makes to be able to add, con-
sider the cyclic group G = Z/nZ. For each ω ∈ C with
ωn = 1, we get a representation χω of G on C by asso-
ciating the element r ∈ Z/nZ with multiplication by
ωr , which we think of as a linear map from the one-
dimensional space C to itself. This gives us n differ-
ent one-dimensional representations, one for each nth
root of unity, and it turns out that there are no others.
Moreover, if ρ : G → GL(V) is any representation of
Z/nZ, then we can write it as a direct sum of these rep-
resentations by imitating the formula for finding the
Fourier mode of a function. Using the representation
ρ, we associate with each r in Z/nZ a linear map ρ(r).
Now let us define a linear map pω : V → V by the

3. the classification of finite simple groups [V.7] does at least
allow us to estimate the number γn of subgroups of Sn up to conju-
gacy: it is a result of Pyber that 2((1/16)+o(1))n2 � γn � 24((1/6)+o(1))n2

.
Equality is expected for the lower bound.

formula

pω = 1

n

∑
0�r<n

ω−r ρ(r).

Then pω is an element of End(V), and one can check
that it is actually a projection [III.50 §3.5] onto a sub-
space Vω of V . In fact, this subspace is an eigenspace
[I.3 §4.3]: it consists of all vectors v such that ρ(1)v =
ωv , which implies, since ρ is a representation, that
ρ(r)v =ωrv . The projection pω should be thought of
as the analogue of thenth fourier coefficient [III.27]
an(f) of a function f(θ) on the circle; note the formal
similarity of the above formula to the Fourier expansion
formula an(f) =

∫
e−2π inθf(θ)dθ.

Now the interesting thing about the Fourier series of
f is that, under favorable circumstances, it adds up to
f itself: that is, it decomposes f into trigonometric
functions [III.92]. Similarly, what is interesting about
the subspaces Vω is that we can use them to decom-
pose the representation ρ. The composition of any two
distinct projectionspω is 0, from which it can be shown
that

V =
⊕
ω
Vω.

We can write each subspace Vω as a sum of one-
dimensional spaces, which are copies of C, and the
restriction of ρ to any one of these is just the sim-
ple representation χω defined earlier. Thus, ρ has been
decomposed as a combination of very simple “atoms”
χω.4

This ability to add matrices has a very useful conse-
quence. Let a finite group G act on a complex vector
space V . A subspace W of V is called G-invariant if
gW = W for every g ∈ G. Let W be a G-invariant sub-
space, and let U be a complementary subspace (that is,
one such that every element v of V can be written in
exactly one way as w +u with w ∈ W and u ∈ U ). Let
φ be an arbitrary projection onto U . Then it is a simple
exercise to show that the linear map 1/|G|∑g∈G gφ is
also a projection onto a complementary subspace, but
with the added advantage that it isG-invariant. This lat-
ter fact follows because applying an element g′ to the
sum just rearranges its terms.

The reason this is so useful is that it allows us to
decompose an arbitrary representation into a direct
sum of irreducible representations, which are represen-
tations without a G-invariant subspace. Indeed, if ρ is

4. To summarize the rest of this article: the similarity to the Fourier
transform is not just analogy—decomposing a representation into its
irreducible summands is a notion that includes both this example and
the Fourier transform.
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not irreducible, then there is a G-invariant subspaceW .
By the above remark, we can write G = W ⊕ W ′ with
W ′ also G-invariant. If either W or W ′ has a further
G-invariant subspace, then we can decompose it fur-
ther, and so on. We have just seen this done for the
cyclic group: in that case the irreducible representa-
tions were the one-dimensional representations χω.

The irreducible representations are the basic build-
ing blocks of arbitrary complex representations, just
as the basic building blocks for actions on sets are the
transitive actions. It raises the question of what the irre-
ducible representations are, a question that has been
answered for many important examples, but which is
not yet solvable by any general procedure.

To return to the difference between actions and rep-
resentations, another important observation is that any
action of a group G on a finite set X can be linearized
in the following sense. If X has n elements, then we can
look at the hilbert space [III.37] L2(X) of all complex-
valued functions defined on X. This has a natural basis
given by the “delta functions” δx , which sendx to 1 and
all other elements of X to 0. Now we can turn the action
of G on X into an action of G on the basis in an obvious
way: we just define gδx to be δgx . We can extend this
definition by linearity, since an arbitrary function f is a
linear combination of the basis functions δx . This gives
us an action of G on L2(X), which can be defined by a
simple formula: if f is a function in L2(X), then gf is
the function defined by (gf)(x) = f(g−1x). Equiva-
lently, gf does to gx what f does to x. Thus, an action
on sets can be thought of as an assignment of a very
special matrix to every group element, namely a matrix
with only 0s and 1s and precisely one 1 in each row
and each column. (Such matrices are called permutation
matrices.) By contrast, a general representation assigns
an arbitrary invertible matrix.

Now, even when X itself is a single orbit under the
action of G, the above representation on L2(X) can
break up into pieces. For an extreme example of this
phenomenon, consider the action of Z/nZ on itself by
multiplication. We have just seen that, by means of the
“Fourier expansion” above, this breaks up into a sum
of n one-dimensional representations.

Let us now consider the action of an arbitrary group
G on itself by multiplication, or, to be more precise, left
multiplication. That is, we shall associate with each ele-
ment g the permutation of G that takes each h in G to
gh. This action is obviously transitive. As an action on
a set it cannot be decomposed any further. But when
we linearize this action to a representation of G on the

vector space L2(G), we have much greater flexibility to
decompose the action. It turns out that, not only does
it break up into a direct sum of many irreducible rep-
resentations, but every irreducible representation ρ of
G occurs as one of the summands in this direct sum,
and the number of times that ρ appears is equal to the
dimension of the subspace on which it acts.

The representation we have just discussed is called
the left regular representation of G. The fact that every
irreducible representation occurs in it so regularly
makes it extremely useful. Notice that it is easier to
decompose representations on complex vector spaces
than on real vector spaces, since every automorphism
of a complex vector space has an eigenvector. So it is
simplest to begin by studying complex representations.

The time has now come to state the fundamental the-
orem about complex representations of finite groups.
This theorem tells us how many irreducible representa-
tions there are for a finite group, and, more colorfully,
that representation theory is a “non-Abelian analogue
of Fourier decomposition.”

Let ρ : G → End(V) be a representation of G. The
character χρ of ρ is defined to be its trace: that is, χρ is
a function from G to C and χρ(g) = tr(ρ(g)) for each g
in G. Since tr(AB) = tr(BA) for any two matrices A and
B, we have χρ(hgh−1) = χρ(g). Therefore, χV is very
far from an arbitrary function on G: it is a function that
is constant on each conjugacy class. Let KG denote the
vector space of all complex-valued functions on G with
this property; it is called the representation ring of G.

The characters of the irreducible representations of
a group form a very important set of data about the
group, which it is natural to organize into a matrix. The
columns are indexed by the conjugacy classes, the rows
by the irreducible representations, and each entry is the
value of the character of the given representation at the
given conjugacy class. This array is called the character
table of the group, and it contains all the important
information about representations of the group: it is
our periodic table. The basic theorem of the subject is
that this array is a square.

Theorem (the character table is square). Let G be
a finite group. Then the characters of the irreducible
representations form an orthonormal basis of KG.

When we say that the basis of characters is orthonor-
mal we mean that the Hermitian inner product defined
by

〈χ,ψ〉 = |G|−1
∑
g∈G

χ(g)ψ(g)
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is 1 when χ = ψ and 0 otherwise. The fact that it
is a basis implies in particular that there are exactly
as many irreducible representations as there are con-
jugacy classes in G, and the map from isomorphism
classes of representations to KG that sends each ρ to
its character is an injection. That is, an arbitrary rep-
resentation is determined up to isomorphism by its
character.

The internal structure of a groupG that controls how
it can act on vector spaces is the structure of conju-
gacy classes of elements of G. This is a much gentler
structure than the set of all conjugacy classes of sub-
groups of G. For example, in the symmetric group Sn
two permutations belong to the same conjugacy class
if and only if they have the same cycle type. Therefore,
in that group there is a bijection between conjugacy
classes and partitions of n.5

Furthermore, whereas it is completely unclear how to
count subgroups, conjugacy classes are much easier to
handle. For instance, since they partition the group, we
have the formula |G| =∑C a conjugacy class|C|. On the rep-
resentation side, there is a similar formula, which arises
from the decomposition of the regular representation
L2(G) into irreducibles: |G| = ∑

V irreducible(dimV)2. It
is inconceivable that there might be a similarly simple
formula for sums over all subgroups of a group.

We have reduced the problem of understanding the
general structure of the representations of a finite
group G to the problem of determining the character
table of G. When G = Z/nZ, our description of the n
irreducible representations above implies that all the
entries of this matrix are roots of unity. Here are the
character tables for D8 (on the left), the group of sym-
metries of the square, and, just for contrast, for the
group Z/3Z (on the right):

1 1 1 1 1

1 1 1 −1 −1

1 1 −1 1 −1

1 1 −1 −1 1

2 −2 0 0 0

1 1 1

1 z z2

1 z2 z

where z = exp(2π i/3).
The obvious question—Where did the first table come

from?—indicates the main problem with the theorem:
though it tells us the shape of the character table, it
leaves us no closer to understanding what the actual

5. Not only is the set of all partitions a sensible combinatorial
object, it is far smaller than the set of all subgroups of Sn : hardy
[VI.73] and ramanujan [VI.82] showed that the number of partitions
of n is about (1/4n

√
3)eπ

√
(2n/3).

character values are. We know how many representa-
tions there are, but not what they are, or even what
their dimensions are. We do not have a general method
for constructing them, a kind of “non-Abelian Fourier
transform.” This is the central problem of representa-
tion theory.

Let us see how this problem can be solved for the
group D8. Over the course of this article, we have
already encountered three irreducible representations
of this group. The first is the “trivial” one-dimensional
representation: the homomorphism ρ : D8 → GL1 that
takes every element ofD8 to the identity. The second is
the two-dimensional representation we wrote down in
the first section, where each element of D8 acts on R2

in the obvious way. The determinant of this represen-
tation is a one-dimensional representation that is not
trivial: it sends the rotations to 1 and the reflections to
−1. So we have constructed three rows of the character
table above. There are five conjugacy classes inD8 (triv-
ial, reflection through axis, reflection through diagonal,
90◦ rotation, 180◦ rotation), so we know that there are
just two more rows.

The equality |G| = 8 = 22 + 1 + 1 + (dimV4)2 +
(dimV5)2 implies that these missing representations
are one dimensional. One way of getting the missing
character values is to use orthogonality of characters.

A slightly (but only slightly) less ad hoc way is to
decompose L2(X) for small X. For example when X is
the pair of diagonals {AC,BD}, we have L2(X) = V4 ⊕C,
where C is the trivial representation.

We are now going to start pointing the way toward
some more modern topics in representation theory. Of
necessity, we will use language from fairly advanced
mathematics: the reader who is familiar with only some
of this language should consider browsing the remain-
ing sections, since different discussions have different
prerequisites.

In general, a good, but not systematic, way of find-
ing representations is to find objects on which G acts,
and “linearize” the action. We have seen one exam-
ple of this: when G acts on a set X we can consider
the linearized action on L2(X). Recall that the irre-
ducible G-sets are all of the form G/H, forH some sub-
group of G. As well as looking at L2(G/H), we can con-
sider, for every representationW ofH, the vector space
L2(G/H,W) = {f : G → W | f(gh) = h−1f(g), g ∈
G, h ∈ H}; in geometric language, for those who pre-
fer it, this is the space of sections of the associated
W -bundle on G/H. This representation of G is called
the induced representation of W from H to G.
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Other linearizations are also important. For example,
if G acts continuously on a topological space X, we can
consider how it acts on homology classes and hence
on the homology groups [IV.6 §4] of X.6 The simplest
case of this is the map z → z̄ of the circle S1. Since
this map squares to the identity map, it gives us an
action of Z/2Z on S1, which becomes a representation
of Z/2Z on H1(S1) = R (which represents the identity
as multiplication by 1 and the other element of Z/2Z as
multiplication by −1).

Methods like these have been used to determine the
character tables of all finite simple groups [I.3 §3.3],
but they still fall short of a uniform description valid
for all groups.

There are many arithmetic properties of the charac-
ter table that hint at properties of the desired non-
Abelian Fourier transform. For example, the size of a
conjugacy class divides the order of the group, and
in fact the dimension of a representation also divides
the order of the group. Pursuing this thought leads to
an examination of the values of the characters mod p,
relating them to the so-called p-local subgroups. These
are groups of the formN(Q)/Q, whereQ is a subgroup
of G, the number of elements of Q is a power of p, and
N(Q) is the normalizer of Q (defined to be the largest
subgroup of G that contains Q as a normal subgroup).
When the so-called “p-Sylow subgroup” of G is Abe-
lian, beautiful conjectures of Broué give us an essen-
tially complete picture of the representations of G. But
in general these questions are at the center of a great
deal of contemporary research.

3 Fourier Analysis

We have justified the study of group actions on vector
spaces by explaining that the theory of representations
has a nice structure that is not present in the theory
of group actions on sets. A more historically based
account would start by saying that spaces of functions
very often come with natural actions of some group
G, and many problems of traditional interest can be
related to the decomposition of these representations
of G.

In this section we will concentrate on the case where
G is a compact lie group [III.48 §1]. We will see that in
this case many of the nice features of the representa-
tion theory of finite groups persist.

6. The homology groups discussed in the article just referred to
consist of formal sums of homology classes with integer coefficients.
Here, where a vector space is required, we are taking real coefficients.

The prototypical example is the space L2(S1) of

square-integrable functions on the circle S1. We can

think of the circle as the unit circle in C, and thereby

identify it with the group of rotations of the circle

(since multiplication by eiθ rotates the circle by θ). This

action linearizes to an action on L2(S1): if f is a square-

integrable function defined on S1 andw belongs to the

circle, then (w · f)(z) is defined to be f(w−1z). That

is, w · f does to wz what f does to z.

Classical Fourier analysis expands functions in the

space L2(S1) in terms of a basis of trigonometric func-

tions: the functions zn for n ∈ Z. (These look more

“trigonometric” if one writes eiθ for z and einθ for zn.)

If we fix w and write φn(z) = zn, then (w ·φn)(z) =
φn(w−1z) = w−nφn(z). In particular,w ·φn is a mul-

tiple of φn for each w, so the one-dimensional sub-

space generated by φn is invariant under the action of

S1. In fact, every irreducible representation of S1 is of

this form, as long as we restrict attention to continuous

representations.

Now let us consider an innocuous-looking general-

ization of the above situation: we shall replace 1 by n
and try to understand L2(Sn), the space of complex-

valued square-integrable functions on the n-sphere Sn.

The n-sphere is acted on by the group of rotations

SO(n+1). As usual, this can be converted into a rep-

resentation of SO(n+1) on the space L2(Sn), which

we would like to decompose into irreducible repre-

sentations; equivalently, we would like to decompose

L2(Sn) into a direct sum of minimal SO(n+1)-invariant

subspaces.

This turns out to be possible, and the proof is very

similar to the proof for finite groups. In particular, a

compact group such as SO(n+1) has a natural proba-

bility measure [III.71 §2] on it (called Haar measure)

in terms of which we can define averages. Roughly

speaking, the only difference between the proof for

SO(n+1) and the proof in the finite case is that we

have to replace a few sums by integrals.

The general result that one can prove by this method

is the following. If G is a compact group that acts con-

tinuously on a compact space X (in the sense that each

permutation φ(g) of X is continuous, and also that

φ(g) varies continuously with g), then L2(X) splits

up into an orthogonal direct sum of finite-dimensional

minimal G-invariant subspaces; equivalently, the lin-

earized action of G on L2(X) splits up into an orthog-

onal direct sum of irreducible representations, all of

which are finite dimensional. The problem of finding a
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Hilbert space basis of L2(X) then splits into two sub-
problems: we must first determine the irreducible rep-
resentations of G, a problem which is independent of
X, and then determine how many times each of these
irreducible representations occurs in L2(X).

When G = S1 (which we identified with SO(2)) and
X = S1 as well, we saw that these irreducible repre-
sentations were one dimensional. Now let us look at
the action of the compact group SO(3) on S2. It can be
shown that the action of G on L2(S2) commutes with
the Laplacian, the differential operator Δ on L2(S2)
defined by

Δ = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
.

That is, g(Δf) = Δ(gf) for any g ∈ G and any
(sufficiently smooth) function f . In particular, if f is
an eigenfunction for the Laplacian (which means that
Δf = λf for some λ ∈ C), then for each g ∈ SO(3) we
have

Δgf = gΔf = gλf = λgf ,
so gf is also an eigenfunction for Δ. Therefore, the
space Vλ of all eigenvectors for the Laplacian with
eigenvalue λ is G-invariant. In fact, it turns out that
if Vλ is nonzero then the action of G on Vλ is an irre-
ducible representation. Furthermore, each irreducible
representation of SO(3) arises exactly once in this way.
More precisely, we have a Hilbert space direct sum,

L2(S2) =
⊕
n�0

V2n(2n+2),

and each eigenspace V2n(2n+2) has dimension 2n + 1.
Note that this is a case where the set of eigenvalues
is discrete. (These eigenspaces are discussed further in
spherical harmonics [III.87].)

The nice feature that each irreducible representation
appears at most once is rather special to the exam-
ple L2(Sn). (For an example where this does not hap-
pen, recall that with the regular representation L2(G)
of a finite group G each irreducible representation ρ
occurs dimρ times in L2(G).) However, other features
are more generic: for example, when a compact Lie
group acts differentiably on a space X, then the sum of
all the G-invariant subspaces of L2(X) corresponding
to a particular representation is always equal to the set
of common eigenvectors of some family of commuting
differential operators. (In the example above, there was
just one operator, the Laplacian.)

Interesting special functions [III.85], such as solu-
tions of certain differential equations, often admit rep-
resentation-theoretic meaning, for example as matrix

coefficients. Their properties can then easily be de-
duced from general results in functional analysis and
representation theory rather than from any calculation.
Hypergeometric equations, Bessel equations, and many
integrable systems arise in this way.

There is more to say about the similarities between
the representation theory of compact groups and that
of finite groups. Given a compact group G and an
irreducible representation ρ of G, we can again take
its trace (since it is finite dimensional) and thereby
define its character χρ . Just as before, χρ is constant
on each conjugacy class. Finally, “the character table
is square,” in the sense that the characters of the irre-
ducible representations form an orthonormal basis of
the Hilbert space of all square-integrable functions that
are conjugation invariant in this sense. (Now, though,
the “square matrix” is infinite.) When G = S1 this is the
Fourier theorem; when G is finite this is the theorem of
section 2.

4 Noncompact Groups, Groups in
Characteristic p, and Lie Algebras

The “character table is square” theorem focuses our
attention on groups with nice conjugacy-class struc-
ture. What happens when we take such a group but
relax the requirement that it be compact?

A paradigmatic noncompact group is the real num-
bers R. Like S1, R acts on itself in an obvious way
(the real number t is associated with the translation
s �→ s+t), so let us linearize that action in the usual way
and look for a decomposition of L2(R) into R-invariant
subspaces.

In this situation we have a continuous family of irre-
ducible one-dimensional representations: for each real
number λ we can define the function χλ by χλ(x) =
e2π iλx . These functions are not square integrable, but
despite this difficulty classical Fourier analysis tells us
that we can write an L2-function in terms of them.
However, since the Fourier modes now vary in a con-
tinuous family, we can no longer decompose a func-
tion as a sum: rather we must use an integral. First,
we define the Fourier transform f̂ of f by the formula
f̂ (λ) = ∫ f(x)e2π iλx dx. The desired decomposition of
f is then f(x) = ∫

f̂ (λ)e−2π iλx dλ. This, the Fourier
inversion formula, tells us that f is a weighted integral
of the functions χλ. We can also think of it as some-
thing like a decomposition of L2(R) as a “direct inte-
gral” (rather than direct sum) of the one-dimensional
subspaces generated by the functions χλ. However,
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we must treat this picture with due caution since the
functions χλ do not belong to L2(R).

This example indicates what we should expect in gen-
eral. If X is a space with a measure and G acts continu-
ously on it in a way that preserves the measures of sub-
sets of X (as translations did with subsets of R), then
the action of G on X gives rise to a measure μX defined
on the set of all irreducible representations, and L2(X)
can be decomposed as the integral over all irreducible
representations with respect to this measure. A theo-
rem that explicitly describes such a decomposition is
called a Plancherel theorem for X.

For a more complicated but more typical example,
let us look at the action of SL2(R) (the group of real
2 × 2 matrices with determinant 1) on R2 and see how
to decompose L2(R2). As we did when we looked at
functions defined on S2, we shall make use of a differ-
ential operator. This involves the small technicality that
we should look at smooth functions, and we do not ask
for them to be defined at the origin. The appropriate
differential operator this time turns out to be the Euler
vector field x(∂/∂x)+y(∂/∂y). It is not hard to check
that if f satisfies the condition f(tx, ty) = tsf (x,y)
for every x, y , and t > 0, then f is an eigenfunction
of this operator with eigenvalue s, and indeed all func-
tions in the eigenspace with this eigenvalue, which we
shall denote by Ws , are of this form. We can also split
Ws up as W+

s ⊕W−
s , where W+

s and W−
s consist of the

even and odd functions in Ws , respectively.
The easiest way of analyzing the structure ofWs is to

compute the action of the lie algebra [III.48 §2] sl2.
For those readers unfamiliar with Lie algebras, we will
say only that the Lie algebra of a Lie group G keeps
track of the action of elements of G that are “infinites-
imally close to the identity,” and that in this case the
Lie algebra sl2 can be identified with the space of 2 × 2
matrices of trace 0, with ( a b

c −a ) acting as the differential
operator (−ax − by)(∂/∂x)+ (−cx + ay)(∂/∂y).

Every element ofWs is a function on R2. If we restrict
these functions to the unit circle, then we obtain a map
from Ws to the space of smooth functions defined on
S1, which turns out to be an isomorphism. We already
know that this space has a basis of Fourier modes zm,
which we can now think of as (x+ iy)m, defined when
x2 +y2 = 1. There is a unique extension of this from a
function defined on S1 to a function in Ws , namely the
function wm(x,y) = (x + iy)m(x2 +y2)(s−m)/2. One
can then check the following actions of simple matri-
ces on these functions (to do so, recall the association
of the matrices with differential operators given in the

previous paragraph):(
0 −i

i 0

)
·wm =mwm,(

1 i

i −1

)
·wm = (m− s)wm+2,(

1 −i

−i −1

)
·wm = (−m− s)wm−2.

It follows that if s is not an integer, then from any func-
tion wm in W+

s we can produce all the others using
the action of SL2(R). Therefore, SL2(R) acts irreducibly
on W+

s . Similarly, it acts irreducibly on W−
s . We have

therefore encountered a significant difference between
this and the finite/compact case: when G is not com-
pact, irreducible representations of G can be infinite
dimensional.

Looking more closely at the formulas for Ws when
s ∈ Z, we see more disturbing differences. In order to
understand these, let us distinguish carefully between
representations that are reducible and representations
that are decomposable. The former are representations
that have nontrivial G-invariant subspaces, whereas
the latter are representations where one can decom-
pose the space on which G acts into a direct sum of
G-invariant subspaces. Decomposable representations
are obviously reducible. In the finite/compact case, we
used an averaging process to show that reducible rep-
resentations are decomposable. Now we do not have
a natural probability measure to use for the aver-
aging, and it turns out that there can be reducible
representations that are not decomposable.

Indeed, if s is a nonnegative integer, then the sub-
spaces W+

s and W−
s give us an example of this phe-

nomenon. They are indecomposable (in fact, this is true
even when s is a negative integer not equal to −1) but
they contain an invariant subspace of dimension s + 1.
Thus, we cannot write the representation as a direct
sum of irreducible representations. (One can do some-
thing a little bit weaker, however: if we quotient out
by the (s + 1)-dimensional subspace, then the quotient
representation can be decomposed.)

It is important to understand that in order to produce
these indecomposable but reducible representations
we worked not in the space L2(R2) but in the space of
smooth functions on R2 with the origin removed. For
instance, the functions wm above are not square inte-
grable. If we look just at representations of G that act
on subspaces of L2(X), then we can split them up into
a direct sum of irreducibles: given a G-invariant sub-
space, its orthogonal complement is also G-invariant.
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It might therefore seem best to ignore the other, rather
subtle representations and just look at these ones. But
it turns out to be easier to study all representations
and only later ask which ones occur inside L2(X). For
SL2(R), the representations we have just constructed
(which were subquotients of W±

s ) exhaust all the irre-
ducible representations,7 and there is a Plancherel for-
mula for L2(R2) that tells us which ones appear in
L2(R2) and with what multiplicity:

L2(R2) =
∫∞

−∞
W−1+iteit dt.

To summarize: if G is not compact, then we can no
longer take averages over G. This has various conse-
quences:

Representations occur in continuous families. The
decomposition of L2(X) takes the form of a direct
integral, not a direct sum.

Representations do not split up into a direct sum of
irreducibles. Even when a representation admits a
finite composition series, as with the action of SL2(R)
on W±

s , it need not split up into a direct sum. So
to describe all representations we need to do more
than just describe the irreducibles—we also need to
describe the glue that holds them together.

So far, the theory of representations of a noncom-
pact group G seems to have none of the pleasant fea-
tures of the compact case. But one thing does survive:
there is still an analogue of the theorem that the char-
acter table is square. Indeed, we can still define charac-
ters in terms of the traces of group elements. But now
we must be careful, since the irreducible representa-
tion may be on an infinite-dimensional vector space, so
that its trace cannot be defined so easily. In fact, char-
acters are not functions on G, but only distributions
[III.18]. The character of a representation determines
the semisimplification of a representation ρ: that is, it
tells us which irreducible representations are part of ρ,
but not how they are glued together.8

These phenomena were discovered by Harish-Chan-
dra in the 1950s in an extraordinary series of works that
completely described the representation theory of Lie
groups such as the ones we have discussed (the precise

7. To make this precise requires some care about what we mean
by “isomorphic.” Because many different topological vector spaces
can have the same underlying sl2-module, the correct notion is of
infinitesimal equivalence. Pursuing this notion leads to the category of
Harish-Chandra modules, a category with good finiteness properties.

8. It is a major theorem of Harish-Chandra that the distribution that
defines a character is given by analytic functions on a dense subset of
the semisimple elements of the group.

condition is that they should be real and reductive—
a concept that will be explained later in this article)
and the generalizations of classical theorems of Fourier
analysis to this setting.9

Independently and slightly earlier, Brauer had inves-
tigated the representation theory of finite groups on
finite-dimensional vector spaces over fields of char-
acteristic p. Here, too, reducible representations need
not decompose as direct sums, though in this case the
problem is not lack of compactness (obviously, since
everything is finite) but an inability to average over the
group: we would like to divide by |G|, but often this
is zero. A simple example that illustrates this is the
action of Z/pZ on the space F2

p that takes x to the 2 × 2
matrix ( 1 x

1 0 ). This is reducible, since the column vec-
tor ( 1

0 ) is fixed by the action, and therefore generates
an invariant subspace. However, if one could decom-
pose the action, then the matrices ( 1 x

1 0 ) would all be
diagonalizable, which they are not.

It is possible for there to be infinitely many indecom-
posable representations, which again may vary in fam-
ilies. However, as before, there are only finitely many
irreducible representations, so there is some chance of
a “character table is square” theorem in which the rows
of the square are parametrized by characters of irre-
ducible representations. Brauer proved just such a the-
orem, pairing the characters with p-semisimple conju-
gacy classes in G: that is, conjugacy classes of elements
whose order is not divisible by p.

We will draw two crude morals from the work of
Harish-Chandra and of Brauer. The first is that the cat-
egory of representations of a group is always a reason-
able object, but when the representations are infinite
dimensional it requires serious technical work to set it
up. Objects in this category do not necessarily decom-
pose as a direct sum of irreducibles (one says that the
category is not semisimple), and can occur in infinite
families, but irreducible objects pair off in some precise
way with certain “diagonalizable” conjugacy classes in
the group—there is always some kind of analogue of
“the character table is square” theorem.

It turns out that when we consider representations
in more general contexts—Lie algebras acting on vec-
tor spaces, quantum groups, p-adic groups on infinite-
dimensional complex or p-adic vector spaces, etc.—
these qualitative features stay the same.

9. The problem of determining the irreducible unitary represen-
tations for real reductive groups has still not been solved; the most
complete results are due to Vogan.



�

IV.9. Representation Theory 429

The second moral is that we should always hope
for some “non-Abelian Fourier transform”: that is, a
set that parametrizes irreducible representations and a
description of the character values in terms of this set.

In the case of real reductive groups Harish-Chandra’s
work provides such an answer, generalizing the Weyl
character formula for compact groups; for arbitrary
groups no such answer is known. For special classes
of groups, there are partially successful general princi-
ples (the orbit method, Broué’s conjecture), of which
the deepest are the extraordinary circle of conjec-
tures known as the Langlands program, which we shall
discuss later.

5 Interlude: The Philosophical Lessons of
“The Character Table Is Square”

Our basic theorem (“the character table is square”) tells
us to expect that the category of all irreducible rep-
resentations of G is interesting when the conjugacy-
class structure of G is in some way under control. We
will finish this essay by explaining a remarkable fam-
ily of examples of such groups—the rational points of
reductive algebraic groups—and their conjectured rep-
resentation theory, which is described by the Langlands
program.

An affine algebraic group is a subgroup of some
group GLn that is defined by polynomial equations in
the matrix coefficients. For example, the determinant
of a matrix is a polynomial in the matrix coefficients,
so the group SLn, which consists of all matrices in GLn
with determinant 1, is such a group. Another is SOn,
which is the set of matrices with determinant 1 that
satisfy the equation AAT = I.

The above notation did not specify what sort of coef-
ficients we were allowing for the matrices. That vague-
ness was deliberate. Given an algebraic group G and
a field k, let us write G(k) for the group where the
coefficients are taken to have values in k. For exam-
ple, SLn(Fq) is the set of n×n matrices with coeffi-
cients in the finite field Fq and determinant 1. This
group is finite, as is SOn(Fq), while SLn(R) and SOn(R)
are Lie groups. Moreover, SOn(R) is compact, while
SLn(R) is not. So among affine algebraic groups over
fields one already finds all three types of groups we
have discussed: finite groups, compact Lie groups, and
noncompact Lie groups.

We can think of SLn(R) as the set of matrices in
SLn(C) that are equal to their complex conjugates.
There is another involution on SLn(C) that is a sort

of “twisted” form of complex conjugation, where we
send a matrix A to the complex conjugate of (A−1)T.
The fixed points of this new involution (that is, the
determinant-1 matrices A such that A equals the com-
plex conjugate of (A−1)T) form a group called SUn(R).
This is also called a real form of SLn(C),10 and it is
compact.

The groups SLn(Fq) and SOn(Fq) are almost simple
groups;11 the classification of finite simple groups tells
us, mysteriously, that all but twenty-six of the finite
simple groups are of this form. A much, much easier
theorem tells us that the connected compact groups are
also of this form.

Now, given an algebraic group G, we can also con-
sider the instances G(Qp), where Qp is the field of
p-adic numbers, and alsoG(Q). For that matter, we may
consider G(k) for any other field k, such as the func-
tion field of an algebraic variety [V.30]. The les-
son of section 4 is that we may hope for all of these
many groups to have a good representation theory,
but that to obtain it there will be serious “analytic” or
“arithmetic” difficulties to overcome, which will depend
strongly on the properties of the field k.

Lest the reader adopt too optimistic a viewpoint, we
point out that not every affine algebraic group has a
nice conjugacy-class structure. For example, let Vn be
the set of upper triangular matrices in GLn with 1s
along the diagonal, and let k be Fq . For large n, the con-
jugacy classes in Vn(Fq) form large and complex fami-
lies: to parametrize them sensibly one needs more than
n parameters (in other words, they belong to families
of dimension greater than n, in an appropriate sense),
and it is not in fact known how to parametrize them
even for a smallish value of n, such as 11. (It is not
obvious that this is a “good” question though.)

More generally, solvable groups tend to have horrible
conjugacy-class structure, even when the groups them-
selves are “sensible.” So we might expect their repre-
sentation theory to be similarly horrible. The best we
can hope for is a result that describes the entries of
the character table in terms of this horrible structure—
some kind of non-Abelian Fourier integral. For certain
p-groups Kirillov found such a result in the 1960s, as

10. When we say that SLn(R) and SUn(R) are both “real forms” of
SLn(C), what is meant more precisely is that in both cases the group
can be described as a subgroup of some group of real matrices that
consists of all solutions to a set of polynomial equations, and that
when the same set of equations is applied instead to the group of
complex matrices the result is isomorphic to SLn(C).

11. Which is to say that the quotient of these groups by their center
is simple.
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an example of the “orbit method,” but the general result
is not yet known.

On the other hand, groups that are similar to con-
nected compact groups do have a nice conjugacy-class
structure: in particular, finite simple groups do. An
algebraic group is called reductive if G(C) has a com-
pact real form. So, for instance, SLn is reductive by the
existence of the real form SUn(R). The groups GLn and
SOn are also reductive, but Vn is not.12

Let us examine the conjugacy classes in the group
SUn. Every matrix in SUn(R) can be diagonalized, and
two conjugate matrices have the same eigenvalues, up
to reordering. Conversely, any two matrices in SUn(R)
with the same eigenvalues are conjugate. Therefore, the
conjugacy classes are parametrized by the quotient of
the subgroup of all diagonal matrices by the action of
Sn that permutes the entries.

This example can be generalized. Any compact con-
nected group has a maximal torus T , that is, a maximal
subgroup isomorphic to a product of circles. (In the pre-
vious example it was the subgroup of diagonal matri-
ces.) Any two maximal tori are conjugate in G, and any
conjugacy class inG intersects T in a uniqueW -orbit on
T , where W is the Weyl group, the finite group N(T)/T
(where N(T) is the normalizer of T ).

The description of conjugacy classes in G(k̄), for an
algebraically closed field k̄, is only a little more compli-
cated. Any element g ∈ G(k̄) admits a jordan decom-
position [III.43]: it can be written as g = su = us,
where s is conjugate to an element of T(k̄) and u is
unipotent when considered as an element of GLn(k̄).
(A matrix A is unipotent if some power of A − I is
zero.) Unipotent elements never intersect compact sub-
groups. When G = GLn this is the usual Jordan decom-
position; conjugacy classes of unipotent elements are
parametrized by partitions of n, which, as we men-
tioned in section 2, are precisely the conjugacy classes
ofW = Sn. For general reductive groups, unipotent con-
jugacy classes are again almost the same thing as con-
jugacy classes in W .13 In particular, there are finitely
many, independent of k̄.

Finally, when k is not algebraically closed, one de-
scribes conjugacy classes by a kind of Galois descent;

12. The miracle, not relevant for this discussion, is that compact
connected groups can be easily classified. Each one is essentially a
product of circles and non-Abelian simple compact groups. The latter
are parametrized by dynkin diagrams [III.48 §3]. They are SUn, Sp2n,
SOn , and five others, denoted E6, E7, E8, F4, and G2. That is it!

13. They are different, but related. Precisely, they are given by com-
binatorial data, Lusztig’s two-sided cells for the corresponding affine
Weyl group.

for example, in GLn(k), semisimple classes are still
determined by their characteristic polynomial, but the
fact that this polynomial has coefficients in k con-
strains the possible conjugacy classes.

The point of describing the conjugacy-class structure
in such detail is to describe the representation theory
in analogous terms. A crude feature of the conjugacy-
class structure is the way it decouples the field k from
finite combinatorial data that is attached to G but inde-
pendent of k—things like W , the lattice defining T ,
roots, and weights.

The “philosophy” suggested by the theorem that the
character table is square suggests that the represen-
tation theory should also admit such a decoupling: it
should be built out of the representation theory of
k∗, which is the analogue of the circle, and out of
the combinatorial structure of G(k̄) (such as the finite
groups W ). Moreover, representations should have a
“Jordan decomposition”:14 the “unipotent” represen-
tations should have some kind of combinatorial com-
plexity but little dependence on k, and compact groups
should have no unipotent representations.

The Langlands program provides a description along
the lines laid out above, but it goes beyond any of the
results we have suggested in that it also describes the
entries of the character table. Thus, for this class of
examples, it gives us (conjecturally) the hoped-for “non-
Abelian Fourier transform.”

6 Coda: The Langlands Program

And so we conclude by just hinting at statements.
If G(k) is a reductive group, we want to describe an
appropriate category of representations for G(k), or at
least the character table, which we may think of as a
“semisimplification” of that category.

Even when k is finite, it is too much to hope that con-
jugacy classes in G(k) parametrize irreducible repre-
sentations. But something not so far off is conjectured,
as follows.

To a reductive group G over an algebraically closed
field, Langlands attaches another reductive group LG,
the Langlands dual, and conjectures that representa-
tions ofG(k)will be parametrized by conjugacy classes

14. The first such theorems were proved for GLn(Fq) by Green and
Steinberg. However, the notion of Jordan decomposition for charac-
ters originates with Brauer, in his work on modular representation
theory. It is part of his modular analogue of the “character table is
square” theorem, which we mentioned in section 3.
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in LG(C).15 However, these are not conjugacy classes
of elements of LG(C), as before, but of homomorphisms
from the Galois group of k to LG. The Langlands dual
was originally defined in a combinatorial manner, but
there is now a conceptual definition. A few examples
of pairs (G, LG) are (GLn,GLn), (SO2n+1, Sp2n), and
(SLn,PGLn).

In this way the Langlands program describes the rep-
resentation theory as built out of the structure ofG and
the arithmetic of k.

Although this description indicates the flavor of
the conjectures, it is not quite correct as stated. For
instance, one has to modify the Galois group16 in such
a way that the correspondence is true for the group
GL1(k) = k∗. When k = R, we get the representation
theory of R∗ (or its compact form S1), which is Fourier
analysis; on the other hand, when k is a p-adic local
field, the representation theory of k∗ is described by
local class field theory. We already see an extraordinary
aspect of the Langlands program: it precisely unifies
and generalizes harmonic analysis and number theory.

The most compelling versions of the Langlands pro-
gram are “equivalences of derived categories” between
the category of representations and certain geomet-
ric objects on the spaces of Langlands parameters.
These conjectural statements are the hoped-for Fourier
transforms.

Though much progress has been made, a large part of
the Langlands program remains to be proved. For finite
reductive groups, slightly weaker statements have been
proved, mostly by Lusztig. As all but twenty-six of the
finite simple groups arise from reductive groups, and
as the sporadic groups have had their character tables
computed individually, this work already determines
the character tables of all the finite simple groups.

For groups over R, the work of Harish-Chandra and
later authors again confirms the conjectures. But for
other fields, only fragmentary theorems have been
proved. There is much still to be done.

Further Reading

A nice introductory text on representation theory is
Alperin’s Local Representation Theory (Cambridge Uni-
versity Press, Cambridge, 1993). As for the Langlands

15. The C here is because we are looking at representations on com-
plex vector spaces; if we were looking at representations on vector
spaces over some field F, we would take LG(F).

16. The appropriately modified Galois group is called the Weil–
Deligne group.

program, the 1979 American Mathematical Society vol-

ume titled Automorphic Forms, Representations, and

L-functions (but universally known as “The Corvallis

Proceedings”) is more advanced, and as good a place

to start as any.

IV.10 Geometric and Combinatorial
Group Theory
Martin R. Bridson

1 What Are Combinatorial and
Geometric Group Theory?

Groups and geometry are ubiquitous in mathematics,

groups because the symmetries (or automorphisms

[I.3 §4.1]) of any mathematical object in any context

form a group and geometry because it allows one to

think intuitively about abstract problems and to orga-

nize families of objects into spaces from which one may

gain some global insight.

The purpose of this article is to introduce the reader

to the study of infinite, discrete groups. I shall discuss

both the combinatorial approach to the subject that

held sway for much of the twentieth century and the

more geometric perspective that has led to an enor-

mous flowering of the subject in the last twenty years. I

hope to convince the reader that the study of groups is

a concern for all of mathematics rather than something

that belongs particularly to the domain of algebra.

The principal focus of geometric group theory is the

interaction of geometry/topology and group theory,

through group actions and through suitable transla-

tions of geometric concepts into group theory. One

wants to develop and exploit this interaction for the

benefit of both geometry/topology and group theory.

And, in keeping with our assertion that groups are

important throughout mathematics, one hopes to illu-

minate and solve problems from elsewhere in mathe-

matics by encoding them as problems in group theory.

Geometric group theory acquired a distinct identity

in the late 1980s but many of its principal ideas have

their roots in the end of the nineteenth century. At

that time, low-dimensional topology and combinato-

rial group theory emerged entwined. Roughly speak-

ing, combinatorial group theory is the study of groups

defined in terms of presentations, that is, by means of

generators and relations. In order to follow the rest of

this introduction the reader must first understand what

these terms mean. Since their definitions would require


