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To the reader

If you spot any typos/errors or have any feedback that you would like to share, please let me
know.

The course. We’re going to learn some elementary number theory. Elementary in this
context doesn’t mean easy. It’s the traditional name for “number theory that doesn’t use
complex analysis.” This distinction exists for historical reasons, which I’ll explain at some
point.

So, what are we going to cover? A lot of the basics: divisibility, prime numbers, congruences,
some famous Diophantine equations, arithmetic functions, continued fractions, and some
applications (mostly to cryptography). If we have time, I hope to say a thing or two about
elliptic curves at the end.

You should know that number theory has many sub-disciplines: there’s algebraic number
theory, analytic number theory, combinatorial number theory, computational number the-
ory, Diophantine analysis, arithmetic geometry, and a bunch of others. We will explore a
little bit of each during this course.

Problems. The best way to learn number theory is by trying to solve problems. Each
lecture will have Exercises meant for you to tackle as you make your way through the
material. Additionally, there are end-of-lecture problems which have been designed to
test your understanding at a deeper level. Some of them (marked with ▶) are especially
important, since they will be used in later lectures. Solutions can be found in Appendix A.

Anyway—you should do all of these problems, and more. You can find plenty of problems
online and in textbooks. Here are two recommended textbooks:

· Jones and Jones, Elementary Number Theory, Springer, 1998.

· Niven, Zuckerman and Montgomery, An Introduction to the Theory of Numbers (5th
ed.), Wiley, 1991.

You can access the first one digitally for free through the UW Library with your WatIAM
credentials. The copyright on the second one has lapsed; a PDF can be found online easily.

Acknowledgements. The material in these notes is fairly standard. I make no claim to
originality. The base LATEX template was created by Michael A. La Croix.

https://ocul-wtl.primo.exlibrisgroup.com/permalink/01OCUL_WTL/pa2qcq/alma999986787932905162
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Lecture 1 Introduction

“Begin at the beginning,” the King said gravely, “and go on till you come to the
end: then stop.”

– Lewis Carroll, Alice in Wonderland

What is number theory?

We first need to agree on what we mean by “number.” The natural starting point is to
consider the positive integers

Z>0 = {1, 2, 3, . . .}1

or maybe just the integers altogether

Z = {. . . ,−2,−1, 0, 1, 2, . . .}.

This will suffice for a while, but soon we’ll find ourselves needing more flexibility. For
example, we’ll want use the rational numbers Q and the real numbers R, and also more
exotic things like the Gaussian integers

Z[𝑖] = {𝑎+ 𝑏𝑖 : 𝑎, 𝑏 ∈ Z}

where 𝑖 satisfies 𝑖2 = −1 (a complex number).

Let’s fix a choice of number system, like Z. This system should come equipped with basic
algebraic operations, like addition and multiplication. These operations generally lead to
related natural notions, like divisibility (if we can multiply two things, we can ask whether
we can divide two things) and prime numbers (what numbers can’t be divided into other
numbers?). Number theory can be broadly defined as the study of the structure that arises
from operations in number systems. This turns out, as we’ll learn throughout this course,
to be simultaneously very interesting and (potentially) very difficult.2

To be more concrete, let’s look at an example of something number theorists study.

Diophantine equations

If we can add and multiply, we can create polynomials. One of the classical number theoretic
problems is that of solving polynomials equations, where we insist that the solutions must
belong to our chosen number system. We call these Diophantine equations, in honour of
the Greek mathematician Diophantus who was the first to seriously study such equations.

For instance, the equation
2𝑥 = 5

which is trivial to solve over Q or R, becomes slightly more interesting over Z where it has
no solution because 5 is not divisible (a number-theoretic concept) by 2. But this is kind
of boring. Let’s look at more interesting examples.

1In these notes, the positive integers will be denoted by Z>0 and the non-negative integers by Z≥0. I will
not be using the ambiguous N.

2It’s probably interesting because it’s difficult.
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Example 1.1 (Some famous Diophantine equations)

• Pythagorean triples. What are the positive integer solutions to the Pythagorean
equation

𝑥2 + 𝑦2 = 𝑧2?

Solutions (𝑥, 𝑦, 𝑧) = (𝑎, 𝑏, 𝑐) with 𝑎, 𝑏, 𝑐 ∈ Z>0 are called Pythagorean triples; they
represent integer side lengths of a right-angled triangle.

You might be familiar with the triples (3, 4, 5) and (5, 12, 13). Are there any others?
Are there infinitely many?

The answer to both questions is yes for a silly reason: if (𝑎, 𝑏, 𝑐) is a Pythagorean triple,
then so is (𝑛𝑎, 𝑛𝑏, 𝑛𝑐) for any 𝑛 ∈ Z>0 (check this!). So, for instance, (30, 40, 50) is a
Pythagorean triple, as is (10, 24, 26).

Are there any other non-silly triples? One way to quantify this is to ask for triples
(𝑎, 𝑏, 𝑐) that don’t have a common factor; we call such triples primitive. We’ll come
back and answer this question later in the course.

• Fermat’s Last Theorem. Generalizing the above, we can ask (as Fermat did) for
the positive integer solutions to the equation

𝑥𝑛 + 𝑦𝑛 = 𝑧𝑛

where 𝑛 > 2. Fermat famously claimed that there are no such solutions. But why
not? This question went unanswered for approximately 300 years (not for lack of
trying!) until a proof was finally provided by Andrew Wiles and Richard Taylor in
1995. They used modern ideas that are so far beyond anything accessible to Fermat.
The title of one of the two papers containing the proof is

Ring-theoretic properties of certain Hecke algebras.

You’re probably wondering, what the Hecke does this mean? (No offence to E. Hecke,
one of my personal mathematical heroes.)

• Pell’s equation.3 Fix a positive integer 𝑛 ∈ Z>0 that isn’t a perfect square. What
are the integer solutions to

𝑥2 − 𝑛𝑦2 = 1?

We’ll be exploring this equation in detail later on. It’s an interesting one because its
solution set exhibits some peculiar structure. For instance, starting from one solution,
we can generate others. To see what I mean by this, take 𝑛 = 2, so that the equation
becomes

𝑥2 − 2𝑦2 = 1.

An easy-to-find solution is given by (𝑥, 𝑦) = (3, 2). You can check that if (𝑎, 𝑏) is an
integer solution, then so is (3𝑎 + 4𝑏, 2𝑎 + 3𝑏). Starting with (3, 2) and applying this
rule repeatedly, we can generate the following sequence of (non-obvious) solutions

(3, 2), (17, 12), (99, 70), (577, 408), (3363, 2378), . . . , (22619537, 15994428), . . . .

Here’s another curious thing. If (𝑥, 𝑦) is a solution to Pell’s equation, then 𝑥/𝑦 can be
used to approximate

√
𝑛 if 𝑦 is large. (To see why, divide both sides of the equation
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by 𝑦2. Then the right-side becomes 1/𝑦2 ≈ 0 for large 𝑦.) For example, our work
above yields

√
2 ≈ 22619537

15994428
.

Go plug this into your favorite calculator and be amazed!

Exercise 1.2 (a) Show that if (𝑎, 𝑏, 𝑐) is a Pythagorean triple, then so is (𝑛𝑎, 𝑛𝑏, 𝑛𝑐) for any 𝑛 ∈ Z>0.

(b) Confirm that if (𝑥, 𝑦) = (𝑎, 𝑏) is a solution to the Pell equation 𝑥2 − 2𝑦2 = 1, then so is
(𝑥, 𝑦) = (3𝑎+ 4𝑏, 2𝑎+ 3𝑏).

Given a Diophantine equation, there are three natural questions that we can ask:

1. Does it have any solutions?

2. If it has solutions, how many are there? (Finitely many? Infinitely many?)

3. Can we find all of the solutions?

But even before that, there is a much more pressing question:

0. Why do we care about any of this?

This is a fair question; the why? is arguably more important than the how?. Let me give
two answers. The first is that, occasionally, problems that you might care about can be
turned into Diophantine equations. If this happens, then surely you will want to know how
to solve the resulting Diophantine equation, and at which point you’ll be thankful that
number theorists have done the hard work for you.

The second answer is more philosophical. Diophantine equations are extremely simple
problems to formulate: all that’s involved is addition, multiplication and an equals sign.
The fact that we can’t solve a given Diophantine equation indicates that there is something
that we (humanity as a whole) are missing. What is it? And why is it so difficult to figure
out? It’s this—the fact that there is something about such basic mathematics that we don’t
quite understand—that make the subject worth investigating.

That said, it’s really easy to create a lot of hard-to-solve Diophantine equations. The ones
that get number theorists excited are those that reveal some hidden mathematical structure.
The three equations given in Example 1.1 do this, as we’ll come to learn.

3Should probably be called the Brahmagupta–Fermat equation, since Pell had little to do with it.
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Solving Diophantine equations

Let’s return to the three questions above, but let’s be a bit more greedy and ask:

Is there a general algorithm that can decide, in finite time, whether any given
Diophantine equation has a solution?

This question was posed by Hilbert at the International Congress of Mathematicians in
1900. It was part of a famous list of 23 problems that he set for mathematicians in the 20th
century. The above was the 10th problem on the list.

I have good news and bad news. The good news: The problem has been solved! The bad
news: The answer is NO! In 1970, Matiyasevich, building on work of Davis, Putnam and
Robinson, proved that there can be no general algorithm that is capable of deciding whether
a given Diophantine equation has a solution (over Z, at least). The proof uses mathematical
logic and computability theory; you can read about it here.

Now, while there is no “super algorithm” that you can apply to any old Diophantine equa-
tion, there can be (in fact, there are) algorithms that work on certain classes of Diophantine
equations. The point, however, is that you should expect to invoke a certain amount of
ingenuity if you want to solve a random Diophantine equation.

Here are some Diophantine equations that we know (as we’ll learn in this course) how to
solve over Z:

• 𝑥2 + 𝑥 = 1

• 3𝑥+ 5𝑦 = 7

• 𝑥2 + 𝑦2 = 𝑛

• 𝑥4 + 𝑦4 = 𝑧2

The first two are much easier to solve than the last two. The first one involves only a
single variable (it’s a univariate Diophantine equation) and the second one involves only
variables of degree 1 (it’s a linear Diophantine equation). We have good methods for
dealing with these types of equations. Non-linear multivariable equations are generally
much more difficult to analyze.

Exercise 1.3 Try to see if you can solve any of the above equations. (Don’t be upset if you can’t. Instead,
get excited that you’ll soon learn how!)

Univariate Diophantine equations

We’ll now explore how to solve any Diophantine equation of the form

𝑓(𝑥) = 0

where 𝑓(𝑥) is a polynomial with integer coefficients. Note that any univariate Diophantine
equation is of this form, since we can move everything to the left-side; e.g.

𝑥2 + 𝑥 = 1 ⇐⇒ 𝑥2 + 𝑥− 1 = 0.

We’re going to make use of the following extremely fundamental number theoretic concept.

https://en.wikipedia.org/wiki/Hilbert%27s_problems
https://en.wikipedia.org/wiki/Hilbert%27s_tenth_problem
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Definition 1.4

Divides,
Divisible,

Divisor, Factor,
𝑎 | 𝑏, 𝑎 ∤ 𝑏

Let 𝑎, 𝑏 ∈ Z. We say that 𝑎 divides 𝑏, and write 𝑎 | 𝑏, if there is an integer 𝑐 ∈ Z such
that 𝑏 = 𝑎𝑐. In this case we also say that 𝑏 is divisible by 𝑎, and that 𝑎 is a divisor (or
factor) of 𝑏.

If 𝑎 doesn’t divide 𝑏, then we denote this by writing 𝑎 ∤ 𝑏.

For example, 2 | 10, −4 | 8 and 1 | 𝑛 for all 𝑛 ∈ Z, but 3 ∤ 17. The divisors of 6 are ±1, ±2
and ±3.

Here is our main result.

Proposition 1.5 If 𝑥 = 𝑠 is an integer solution to the equation

𝑎𝑛𝑥
𝑛 + · · ·+ 𝑎1𝑥+ 𝑎0 = 0,

where 𝑎𝑖 ∈ Z and 𝑛 ≥ 1, then 𝑠 | 𝑎0.

Proof: Plugging the solution 𝑥 = 𝑠 into the equation and rearranging, we arrive at

𝑎0 = 𝑠(−𝑎𝑛𝑠
𝑛−1 − · · · − 𝑎1).

If 𝑠 is an integer then so is −𝑎𝑛𝑠
𝑛−1 − · · · − 𝑎1. Thus, 𝑠 | 𝑎0 by definition. ■

This proposition tells us that if we want to solve a univariate Diophantine equation

𝑎𝑛𝑥
𝑛 + · · ·+ 𝑎1𝑥+ 𝑎0 = 0

then all (!) we have to do is find all the divisors of the constant term 𝑎0 and plug them into
the equation one by one. Those that satisfy the equation are solutions—and these are all
the solutions.

Example 1.6 To solve 𝑥2 + 𝑥 = 1, or equivalently 𝑥2 + 𝑥 − 1 = 0, we just have to test if the divisors of
−1 satisfy the equation. The divisors of −1 are ±1, and we have

12 + 1− 1 = 1 ̸= 0 and (−1)2 + (−1)− 1 = −1 ̸= 0.

So neither satisfies the equation. Hence the equation has no integer solutions.

On the other hand, consider the equation

𝑥5 + 2𝑥4 + 𝑥+ 2 = 0.

Plugging in the divisors of 2, which are ±1 and ±2, we find that

• 15 + 2(14) + 1 + 2 = 6 ̸= 0.

• (−1)5 + 2(−1)4 + (−1) + 2 = 2 ̸= 0.

• 25 + 2(24) + 2 + 2 = 68 ̸= 0.

• (−2)5 + 2(−2)4 + (−2) + 2 = 0.

So the only integer solution is 𝑥 = −2.
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While we certainly have, in theory, a finite-time algorithm that decides the solvability of
any univariate Diophantine equation 𝑓(𝑥) = 0, in practice this method can be extremely
impractical. For one, finding all the divisors of a given integer is a hard problem in general
(in a certain sense that we will investigate later), especially if the integer in question is
large. Second, even if we are able to factor 𝑎0, it may have many divisors, and we’ll have
to check them one by one. This can take a very long time.

Example 1.7 Consider the equation
𝑥2 + 𝑥− 2100 = 0.

Our algorithm requires us to check each of the 202 divisors of 2100. We can arbitrarily
increase the exponent on the constant term, say from 100 to 1010

10
, to make this computa-

tionally infeasible. So our algorithm is not of much help here, really.

There is however an easy way to see that this equation—even if we change the constant
term from 2100 to 2𝑛—has no solution in Z if 𝑛 > 1. We begin by re-writing the equation
as

𝑥(𝑥+ 1) = 2𝑛.

If this has a solution in Z, then the left-side would be a product of two consecutive integers,
so one of them must be odd, and it must divide 2𝑛. The only odd divisors of 2𝑛 are ±1, so
either 𝑥 = ±1 or 𝑥+ 1 = ±1. If 𝑥 = 1 then 𝑥+ 1 = 2 and so 𝑥(𝑥+ 1) = 2 ̸= 2𝑛 if 𝑛 > 1. If
𝑥 = −1 then 𝑥+ 1 = 0 so 𝑥(𝑥+ 1) = 0 ̸= 2𝑛. Similarly, we can show that 𝑥+ 1 = ±1 leads
to no solutions either.

Example 1.8 Suppose our Diophantine equation 𝑓(𝑥) = 0 has constant term given by the 250-digit integer

𝑎0 = 21403246502407449612644230728393335630086147151447550177977549208814180

23447140136643345519095804679610992851872470914587687396261921557363047

45477052080511905649310668769159001975940569345745223058932597669747168

1738069364894699871578494975937497937.

Now we have the joyous task of attempting to factor this integer, which actually has name—
it’s RSA-250. Factoring this integer, and other “RSA numbers,” was set as a challenge by
RSA Laboratories in 1991.

The task of factoring RSA-250 was only accomplished in February 2020—almost 30 years
after the challenge had been set. There are several other RSA numbers that remain unfac-
tored to this day. The difficulty of factoring large integers is a principle that underlies the
security of many widely used cryptosystems.

So our solution-finding algorithm is a bit naive and can run into various difficulties in
practice. It is possible to improve it and make it significantly more efficient, but we won’t
pursue these ideas here since they’ll take us a bit too far afield.4

4If you’re curious, you should look up Sturm’s theorem, which can be used to perform a root-search in
the real interval [−|𝑎0|, |𝑎0|] where the integer roots are guaranteed to lie.

https://en.wikipedia.org/wiki/RSA_numbers#RSA-250
https://en.wikipedia.org/wiki/Sturm%27s_theorem
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Lecture 1 Problems

1.1. Let 𝑛 > 2 be an integer. Find all integer solutions to the equation 𝑥𝑛 + 𝑥𝑛−1 − 2𝑥− 2 = 0.

1.2. Find all integer solution (𝑥, 𝑦) to the equation 2𝑥3 + 𝑥𝑦 − 7 = 0.

1.3. Show that if equation 𝑎𝑥2+ 𝑏𝑥+ 𝑐 = 0, where 𝑎, 𝑏, 𝑐 ∈ Z and 𝑎 ̸= 0, has a solution in Z then
𝑏2 − 4𝑎𝑐 must be a perfect square. Does the converse hold?

1.4. Formulate (but do not solve) a two-variable Diophantine equation that models the following
problem.

Captain Hook has 𝑛 cannonballs. He can lay them flat on a table to create a perfect square.
He can also stack them vertically to create a perfect square pyramid (i.e. a pyramid whose
layers are squares—for example, with 14 cannonballs, he can make a pyramid whose layers
from bottom to top consist of 9, 4 and 1 cannonballs arranged into perfect 3× 3, 2× 2 and
1× 1 squares). How many cannonballs does he have?

1.5. Consider the following meme that made the rounds on the internet a few years ago:

Using 𝑎, 𝑏 and 𝑐, to represent apples, bananas and pineapples, the problem here is to solve
the equation

𝑎

𝑏+ 𝑐
+

𝑏

𝑎+ 𝑐
+

𝑐

𝑎+ 𝑏
= 4 (*)

presumably over Z or perhaps Z>0. Our definition of Diophantine equations restricts us to
polynomial equations, and the above isn’t one.

(a) Show that if we set

𝑎 =
56− 𝑥+ 𝑦

56− 14𝑥
, 𝑏 =

56− 𝑥− 𝑦

56− 14𝑥
, and 𝑐 =

−28− 6𝑥

28− 7𝑥

then equation (*) can be transformed into the Diophantine equation

𝑦2 = 𝑥3 + 109𝑥2 + 224𝑥.

(b) Show that if 𝑦 = 28, then the equation in part (a) has an integer solution. Hence
determine an integer solution (𝑎, 𝑏, 𝑐) to equation (*).

Note: The solution you’re led to find in part (b) will not consist of positive integers. It’s
a bit more tricky to find positive solutions to (*)—but they exist! The smallest one is:

𝑎 = 154476802108746166441951315019919837485664325669565431

700026634898253202035277999

𝑏 = 368751317941299998271978115652254748254929799689719709

96283137471637224634055579

𝑐 = 437361267792869725786125260237139015281653755816161361

8621437993378423467772036.
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Lecture 2 The Remainder Theorem

Let’s take a closer look at the notion of divisibility of integers (refer to Definition 1.4).

Proposition 2.1 Let 𝑎, 𝑏, 𝑐 ∈ Z.

(a) If 𝑎 | 𝑏 and 𝑏 | 𝑐 then 𝑎 | 𝑐. (We say that divisibility is transitive.)

(b) If 𝑎 | 𝑏 and 𝑎 | 𝑐 then 𝑎 | 𝑥𝑏+ 𝑦𝑐 for all 𝑥, 𝑦 ∈ Z.

(c) If 𝑎 | 𝑏 and 𝑏 ̸= 0, then |𝑎| ≤ |𝑏|.

Proof: For part (a), observe that 𝑏 = 𝑘𝑎 for some 𝑘 ∈ Z since 𝑎 | 𝑏. Likewise, 𝑐 = 𝑙𝑏 for
some 𝑙 ∈ Z. Therefore, 𝑐 = 𝑙𝑏 = 𝑙(𝑘𝑎) = (𝑙𝑘)𝑎. So 𝑎 | 𝑐. The proof of (b) is similar and left
as an exercise.

For part (c), write 𝑏 = 𝑘𝑎 with 𝑘 ∈ Z. Then |𝑏| = |𝑘||𝑎|. Note that 𝑘 ̸= 0 since otherwise
we’d get 𝑏 = 𝑘𝑎 = 0, contrary to the assumption on 𝑏. So, since 𝑘 is a non-zero integer,
|𝑘| ≥ 1, and therefore |𝑏| = |𝑘||𝑎| ≥ |𝑎|. ■

Exercise 2.2 Prove part (b) of Proposition 2.1. Prove that its converse is true, too.

We usually express Proposition 2.1(b) by saying that if 𝑎 divides 𝑏 and 𝑐, then 𝑎 divides
every (integer) linear combination of 𝑏 and 𝑐. For example, since 4 | 12 and 4 | 40, we have

4 | (−6) · 12 + 2 · 40, that is, 4 | 8.

Our next result is extremely fundamental. We’ll be making use of it repeatedly.

Theorem 2.3 (The Remainder Theorem)

Let 𝑎, 𝑏 ∈ Z with 𝑏 > 0. Then there exist unique integers 𝑞, 𝑟 ∈ Z such that

𝑎 = 𝑏𝑞 + 𝑟 and 0 ≤ 𝑟 < 𝑏.

The integers 𝑞 and 𝑟 are called the quotient and remainder, resp., of 𝑎 divided by 𝑏.

Notice that the remainder 𝑟 will be 0 if and only if 𝑏 | 𝑎, in which case the quotient will
simply be 𝑞 = 𝑎/𝑏.

The proof of the remainder theorem will make use of the floor of a real number.

Definition 2.4

Floor

Let 𝑥 ∈ R. The floor of 𝑥, denoted by ⌊𝑥⌋, is the greatest integer less than or equal to 𝑥.
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For example,
⌊3.14⌋ = 3, ⌊7⌋ = 7, and ⌊−1.2⌋ = −2.

We always have
𝑥− 1 < ⌊𝑥⌋ ≤ 𝑥 for all 𝑥 ∈ R. (*)

Exercise 2.5 Prove (*). In particular, explain why the inequality 𝑥− 1 < ⌊𝑥⌋ is strict.

With this in hand, we’re ready to give:

Proof of Theorem 2.3 (The Remainder Theorem):

Existence: Let 𝑞 = ⌊𝑎/𝑏⌋ and then set 𝑟 = 𝑎− 𝑏𝑞. Note that 𝑞, 𝑟 ∈ Z and 𝑎 = 𝑏𝑞 + 𝑟, so all
that’s left is to prove that 0 ≤ 𝑟 < 𝑏. To this end, we have from (*) (with 𝑥 = 𝑎/𝑏)

𝑎

𝑏
− 1 < 𝑞 ≤ 𝑎

𝑏
.

Multiply through by −𝑏 to get
𝑏− 𝑎 > −𝑏𝑞 ≥ −𝑎.

Now add 𝑎 to all sides to get the desired result. This completes the proof of the existence
of 𝑞 and 𝑟.

Uniqueness: Suppose that we also have 𝑎 = 𝑞′𝑏 + 𝑟′ for some 𝑞′, 𝑟′ ∈ Z with 0 ≤ 𝑟′ < 𝑏.
Then

𝑞𝑏+ 𝑟 = 𝑎 = 𝑞′𝑏+ 𝑟′ =⇒ (𝑞 − 𝑞′)𝑏 = 𝑟′ − 𝑟.

This shows that 𝑏 divides 𝑟′ − 𝑟. However, 𝑟′ − 𝑟 is between −𝑏 and 𝑏, that is, |𝑟′ − 𝑟| < 𝑏.
So, by Proposition 2.1(c), we must have that 𝑟′ − 𝑟 = 0. Hence 𝑟 = 𝑟′ and then since
𝑞𝑏+ 𝑟 = 𝑞′𝑏+ 𝑟′ and 𝑏 ̸= 0, we also get 𝑞 = 𝑞′. ■

The above proof actually tells us how to find 𝑞 and 𝑟: take 𝑞 = ⌊𝑎/𝑏⌋ and 𝑟 = 𝑎− 𝑏𝑞.

Example 2.6 If 𝑎 = 100 and 𝑏 = 7, then 𝑞 = ⌊100/7⌋ = 14 and 𝑟 = 100− 7 · 14 = 2. Indeed, we have

100 = 7 · 14 + 2 and 0 ≤ 2 < 7.

So the quotient and remainder of 100 divided by 7 are 𝑞 = 14 and 𝑟 = 2, respectively.

Note that we can write 100 in the form 7𝑞+ 𝑟 in many ways, e.g. 100 = 7 ·2+86. However,
it’s only when 𝑟 satisfies the inequalities 0 ≤ 𝑟 < 7 that we call it the remainder of 100
divided by 7.

Exercise 2.7 Find the quotient and remainder of −75 divided by 6.

Here are some examples of the remainder theorem in action.

Example 2.8 We can classify integers into their remainders after division by a given integer 𝑏.
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(a) Taking 𝑏 = 2, we see that every 𝑎 ∈ Z can be written in the form 𝑎 = 2𝑞 or 𝑎 = 2𝑞 + 1
for some 𝑞 ∈ Z. We call integers of the form 2𝑞 even and those of the form 2𝑞+1 odd.

(b) Taking 𝑏 = 3, we see that every 𝑎 ∈ Z can be written in the form 𝑎 = 3𝑞, 𝑎 = 3𝑞 + 1 or
𝑎 = 3𝑞 + 2 for some 𝑞 ∈ Z.

(c) Taking 𝑏 = 10, we see that every 𝑎 ∈ Z can be written in the form 𝑎 = 10𝑞, 𝑎 = 10𝑞+1,
..., or 𝑎 = 10𝑞+9. In this case we recognize the remainders as being the allowable ones
digits in the decimal representation of 𝑎. For instance,

1234 = 10 · 123 + 4.

Exercise 2.9 Show that every 𝑎 ∈ Z can be written in the form 𝑎 = 3𝑘 − 1, 𝑎 = 3𝑘 or 𝑎 = 3𝑘 + 1 for
some 𝑘 ∈ Z.

Example 2.10 Prove that an odd integer leaves a remainder of 1, 3 or 5 after division by 6.

Solution: The possible remainders are 0, 1, 2, . . . , 6. The remainders 0, 2 and 4 give us
integers of the form 6𝑘 = 2(3𝑘), 6𝑘+2 = 2(3𝑘+1) and 6𝑘+4 = 2(3𝑘+2), which are even,
so they cannot occur. Thus, the only possible remainders for an odd integer are 1, 3 and 5.

Example 2.11 Prove that if 𝑎 and 𝑏 are odd then 𝑎2 + 𝑏2 is even but not divisible by 4.

Solution: We can write 𝑎 = 2𝑘 + 1 and 𝑏 = 2𝑙 + 1 for some 𝑘, 𝑙 ∈ Z. Then

𝑎2 + 𝑏2 = (4𝑘2 + 4𝑘 + 1) + (4𝑙2 + 4𝑙 + 1) = 4(𝑘2 + 𝑘 + 𝑙2 + 𝑙) + 2.

This shows that 𝑎2 + 𝑏2 leaves a remainder of 2 after division by 4, so 4 ∤ 𝑎2 + 𝑏2. It also
follows that 𝑎2 + 𝑏2 is even since it’s of the form 4𝑚+ 2 = 2(2𝑚+ 1).

Exercise 2.12 Prove that if 𝑎 and 𝑏 are arbitrary integers then the remainder of 𝑎2 + 𝑏2 after division by
4 is either 0, 1 or 2.

Let’s close the lecture by showing how the above considerations can be applied to Diophan-
tine equation

𝑥2 + 𝑦2 = 𝑛

that was mentioned in Lecture 1. Thanks to Exercise 2.12, we can now assert that this
equation doesn’t have integer solution if 𝑛 leaves a remainder of 3 after division by 4.

So, for example, the equations

𝑥2 + 𝑦2 = 3, 𝑥2 + 𝑦2 = 7 and 𝑥2 + 𝑦2 = 10003

do not have any integer solutions.

Note that we could have attempted to solve these equations with a brute-force approach:
since 𝑥2 ≤ 𝑥2 + 𝑦2 we have that |𝑥| =

√
𝑥2 ≤

√︀
𝑥2 + 𝑦2, and so we would need |𝑥| ≤

√
3,
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|𝑥| ≤
√
7 and |𝑥| ≤

√
10003 for each equation, respectively. There are not many integers

that satisfy the first two inequalities, and we can simply go through them by hand. The
last one is a bit more tedious, but you can do it if you were sufficiently motivated (e.g. if
I offered a 10% bonus to your final grade).5 But you should appreciate that our approach
via remainders doesn’t require this kind of lengthy computation, and it can prevail where
such computations will surely fail—for instance, with the equation

𝑥2 + 𝑦2 = 410
10
+ 3.

Exercise 2.13 Warning: Our result concerning 𝑥2 + 𝑦2 = 𝑛 is not an “if and only if.”

Show that 𝑥2+𝑦2 = 6 does not have any integer solutions, even though 6 leaves a remainder
of 2 after division by 4.

The complete story of 𝑥2 + 𝑦2 = 𝑛 will have to wait for another day.

Lecture 2 Problems

2.1. Prove:

(a) 1 | 𝑎 for all 𝑎 ∈ Z.
(b) 𝑎 | 0 for all 𝑎 ∈ Z.
(c) 0 | 𝑎 if and only if 𝑎 = 0.

(d) If 𝑎 | 𝑏 and 𝑏 | 𝑎 then 𝑎 = ±𝑏.

(e) If 𝑎 | 𝑏 then 𝑎𝑛 | 𝑏𝑛 for all 𝑛 ∈ Z>0.

2.2. Prove or disprove:

(a) If 𝑎 | 𝑏 and 𝑐 | 𝑑 then 𝑎𝑐 | 𝑏𝑑.
(b) If 𝑎 | 𝑏 and 𝑐 | 𝑑 then 𝑎+ 𝑐 | 𝑏+ 𝑑.

(c) If 𝑎 | 𝑏𝑐 then either 𝑎 | 𝑏 or 𝑎 | 𝑐.
(d) If 𝑎 | 𝑏2 then 𝑎 | 𝑏.

▶ 2.3. Prove that 3 | 𝑎3 − 𝑎 for all 𝑎 ∈ Z.
2.4. In our formulation of Theorem 2.3 (The Remainder Theorem), we assumed that 𝑏 > 0.

Show that the theorem holds for 𝑏 < 0 too provided we use the inequalities 0 ≤ 𝑟 < |𝑏| on
the remainder. [Hint: Apply the theorem to −𝑏.]

▶ 2.5. This problem sketches another proof of the existence part of Theorem 2.3 (The Remainder
Theorem) using the Well-Ordering Principle:

Every non-empty subset of Z≥0 has a smallest element.

This principle is not something that requires proof—it is one of the defining features of Z≥0

that is equivalent to the principle of mathematical induction.

(a) Let 𝑆 = {𝑎− 𝑛𝑏 : 𝑛 ∈ Z} ∩ Z≥0. Prove that 𝑆 is nonempty.

(b) By the Well-Ordering Principle, 𝑆 has a smallest element—call it 𝑟. Prove that 𝑟 < 𝑏.
[Hint: Argue by contradiction.]

(c) Explain how The Remainder Theorem follows.

5Just to be clear: I am not offering such a bonus.
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Lecture 3 The Euclidean Algorithm

One of the most basic facts about positive integers is that they can be factored uniquely
into products of primes. The existence of such a factorization is easy to prove. Proving
uniqueness, however, is quite tricky. So we’re going to postpone the discussion of primes
and factorizations until we have the necessary tools. One of these tools—the gcd—will be
examined in this lecture.

Definition 3.1

Common
Divisor, Greatest

Common
Divisor, gcd

Let 𝑎, 𝑏 ∈ Z. A common divisor of 𝑎 and 𝑏 is an integer 𝑑 such that 𝑑 | 𝑎 and 𝑑 | 𝑏.

If 𝑎 and 𝑏 are not both are zero, their greatest common divisor is the largest integer
that is a common divisor of 𝑎 and 𝑏. We denote it by gcd(𝑎, 𝑏).

We define gcd(0, 0) to be 0.

For example, gcd(8, 20) = 4 and gcd(−10, 15) = 5. Note that gcd(𝑎, 𝑏) is always non-
negative, since if 𝑑 < 0 is a common divisor of 𝑎 and 𝑏, then so is −𝑑 > 0 and −𝑑 is larger
than 𝑑.

Exercise 3.2 Show that gcd(𝑎, 0) = gcd(0, 𝑎) = |𝑎| for all 𝑎 ∈ Z.

Let’s now assume that 𝑎 and 𝑏 are both non-zero. How do we actually compute gcd(𝑎, 𝑏)?
Since gcd(𝑎, 𝑏) = gcd(−𝑎, 𝑏) = gcd(𝑎,−𝑏) (prove it!), let’s also assume that 𝑎 and 𝑏 are
positive.

The naive way to compute gcd(𝑎, 𝑏) would be to run through the positive divisors of 𝑎 one
at a time and check if they divide 𝑏; the largest one that does is gcd(𝑎, 𝑏). This clearly is
not very efficient, let alone viable if we’re dealing with huge integers. Fortunately, there is
a much better method. Let me illustrate with an example.

Suppose we want to compute gcd(693, 105). We start by applying the remainder theorem:

693 = 6 · 105 + 63.

We’ve just written 693 as a linear combination of 105 and 63. So, if 𝑑 divides 105 and 63, then
it will divide 693. Conversely, if 𝑑 divides both 693 and 105, it will divide 63 = 693−6 ·105.
Thus, the common divisors of 693 and 105 coincide with the common divisors of 105 and
63. So

gcd(693, 105) = gcd(105, 63).

So now we have to compute gcd(105, 63). We repeat the same process above, starting with
the remainder theorem:

105 = 1 · 63 + 42.

By the same reasoning, gcd(105, 63) = gcd(63, 42). Repeat this process a couple more times:

63 = 1 · 42 + 21

42 = 2 · 21 + 0.

We now have

gcd(693, 105) = gcd(105, 63) = gcd(63, 42) = gcd(42, 21) = gcd(21, 0).
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But this last gcd is easy to compute! By Exercise 3.2, it’s just 21. So, gcd(693, 105) = 21.

The process we just went through is called the Euclidean algorithm. It rests entirely upon
the following lemma, which was used repeatedly above.

Lemma 3.3 (gcd Reduction Lemma)

Let 𝑎, 𝑏 ∈ Z be non-zero integers. Then, for all 𝑞 ∈ Z, we have

gcd(𝑎, 𝑏) = gcd(𝑏, 𝑎− 𝑞𝑏).

Proof: The key idea was explained above. You should write up the details. ■

Exercise 3.4 Prove Lemma 3.3.

ALGORITHM (The Euclidean Algorithm)

Let 𝑎, 𝑏 ∈ Z>0 and assume that 𝑎 > 𝑏. To compute gcd(𝑎, 𝑏):

• Step 1: Repeatedly apply the remainder theorem:

𝑎 = 𝑞1𝑏+ 𝑟1 (0 ≤ 𝑟1 < 𝑏)

𝑏 = 𝑞2𝑟1 + 𝑟2 (0 ≤ 𝑟2 < 𝑟1)

𝑟1 = 𝑞3𝑟2 + 𝑟3 (0 ≤ 𝑟3 < 𝑟2)

𝑟2 = 𝑞4𝑟3 + 𝑟4 (0 ≤ 𝑟3 < 𝑟2)

...
... .

In the first iteration, the remainder theorem is applied to 𝑎 and 𝑏 giving a remainder
of 𝑟1. In the second iteration, the remainder theorem is applied to 𝑏 and 𝑟1 giving a
remainder of 𝑟2. In the 𝑖th iteration for 𝑖 > 2, the remainder theorem is applied to
𝑟𝑖−2 and 𝑟𝑖−1 giving a remainder of 𝑟𝑖.

• Step 2: Stop once you reach a zero remainder.

• Step 3: Return gcd(𝑎, 𝑏) = 𝑟𝑛−1, where 𝑟𝑛 = 0 is the zero remainder reached in Step
2. Here, we take 𝑟−1 = 𝑏. (Since if the first iteration produces a remainder of zero,
then 𝑏 | 𝑎 so gcd(𝑎, 𝑏) = 𝑏.)

We must make two comments. First, this algorithm is guaranteed to terminate (i.e. Step 2
will always occur) because the iterations of the remainder theorem in Step 1 yield a strictly
decreasing sequence of non-negative integers

𝑟1 > 𝑟2 > · · · > 𝑟𝑖 > · · · ≥ 0

and this sequence cannot continue decreasing indefinitely. Second, Step 3 correctly gives us
gcd(𝑎, 𝑏) thanks to Lemma 3.3:

gcd(𝑎, 𝑏) = gcd(𝑏, 𝑟1) = gcd(𝑟1, 𝑟2) = · · · = gcd(𝑟𝑛−1, 𝑟𝑛) = 𝑟𝑛−1,
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where the last equality holds because 𝑟𝑛 = 0. So the Euclidean algorithm works!

Example 3.5 Determine gcd(124,−608).

Solution: The Euclidean algorithm requires positive integers 𝑎 > 𝑏. No problem:

gcd(124,−608) = gcd(124, 608) = gcd(608, 124).

So let’s take 𝑎 = 608 and 𝑏 = 124, and let’s run the algorithm:

608 = 4 · 124 + 112

124 = 1 · 112 + 12

112 = 9 · 12 + 4

12 = 3 · 4 + 0.

We’ve reached a zero remainder! So what we want is the last non-zero remainder, that is,

gcd(124,−608) = 4.

Exercise 3.6 Determine gcd(1234, 5678).

We can run the Euclidean algorithm in reverse to obtain an interesting result. For instance,
in Example 3.5, we have

gcd(124,−608) = 4

= 112− 9 · 12
= 112− 9(124− 112)

= 10 · 112− 9 · 124
= 10(608− 4 · 124)− 9 · 124
= (−10) · (−608) + (−49) · 124.

What we’ve just managed to do is write gcd(124,−608) as an integer linear combination of
124 and −608. This works in general.

Proposition 3.7 (Bézout’s Lemma)

Let 𝑎, 𝑏 ∈ Z. There exist 𝑥, 𝑦 ∈ Z such that

gcd(𝑎, 𝑏) = 𝑥𝑎+ 𝑦𝑏.

We can give a proof that mimics what we did with gcd(124,−608) above—namely, by
reversing the output of the Euclidean algorithm—but the details will be messy because of
all the indices. So I’m going to present a different proof. The drawback is that it’s not
constructive: it tells us 𝑥 and 𝑦 exist, but not how to find them.
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Proof of Proposition 3.7 (Bézout’s Lemma): We may assume without loss of gen-
erality that 𝑎 ̸= 0. Indeed, if 𝑎 = 0, then gcd(𝑎, 𝑏) = gcd(0, 𝑏) = |𝑏| = 0𝑎 + (±1)𝑏,
and so the result follows. Likewise, we may assume that 𝑎 > 0 since if 𝑎 < 0, then as
gcd(𝑎, 𝑏) = gcd(−𝑎, 𝑏) we can work with −𝑎 > 0 instead.

Let 𝑆 = {𝑥𝑎+𝑦𝑏 : 𝑥, 𝑦 ∈ Z}. Then 𝑆 contains positive integers since 𝑎 = 1𝑎+0𝑏 is in 𝑆. By
the Well-Ordering Principle, there must be a smallest positive integer in 𝑆; call it 𝑑. We
can write 𝑑 = 𝑥0𝑎+ 𝑦0𝑏 for some 𝑥0, 𝑦0 ∈ Z. We’re done if we can show that 𝑑 = gcd(𝑎, 𝑏).

To start, let’s show that 𝑑 is a common divisor of 𝑎 and 𝑏. By applying the remainder
theorem to 𝑎 and 𝑑, we can write

𝑎 = 𝑞𝑑+ 𝑟, where 0 ≤ 𝑟 < 𝑑.

Note that 𝑟 = 𝑎− 𝑞𝑑 = (1− 𝑞𝑥0)𝑎+(−𝑞𝑦0)𝑏 must belong to 𝑆. So if 𝑟 > 0 then we’ve found
a positive integer in 𝑆 that’s smaller than 𝑑—contradicting the minimality of 𝑑! Thus 𝑟 = 0
and therefore 𝑑 | 𝑎. Similarly, 𝑑 | 𝑏.

But now if 𝑑′ is any common divisor of 𝑎 and 𝑏, then it will also be a divisor of the linear
combination 𝑑 = 𝑥0𝑎 + 𝑦0𝑏. So 𝑑′ ≤ 𝑑 (by Proposition 2.1(c)). Thus, 𝑑 is the greatest
common divisor of 𝑎 and 𝑏, as desired. ■

The proof shows that every common divisor must divide the gcd. This is worth recording.

Corollary 3.8 Let 𝑎, 𝑏, 𝑐 ∈ Z. If 𝑐 | 𝑎 and 𝑐 | 𝑏, then 𝑐 | gcd(𝑎, 𝑏).

This is all well and good, but if you actually want to find the 𝑥 and 𝑦 in Bézout’s Lemma,
you can do so by running the Euclidean algorithm backwards.

Example 3.9 Express gcd(693, 105) as a linear combination of 693 and 105.

Solution: We carried out the Euclidean algorithm on this pair of integers above. Here it
is again:

693 = 6 · 105 + 63

105 = 1 · 63 + 42

63 = 1 · 42 + 21

42 = 2 · 21 + 0.

So gcd(693, 105) = 21. Running this backwards, starting from the third equation, we get:

21 = 63− 1 · 42
= 63− 1 · (105− 1 · 63)
= 2 · 63− 1 · 105
= 2(693− 6 · 105)− 1 · 105
= 2 · 693− 13 · 105.

Thus,
gcd(693, 105) = 2 · 693 + (−13) · 105

is our desired linear combination.
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Exercise 3.10 Express gcd(1234, 5678) as an integer linear combination of 1234 and 5678.

REMARK (Computational Complexity of the Euclidean Algorithm)

It can be shown that the maximum number of steps required to apply the Euclidean algo-
rithm to positive integers 𝑎 and 𝑏 is 𝑂(log 𝑛), where 𝑛 = max(𝑎, 𝑏). Each step involves a
division, which roughly takes 𝑂((log 𝑛)2) time. So the total complexity of the Euclidean
algorithm is 𝑂((log 𝑛)3). (There are more efficient implementations.)

The naive check-each-divisor approach has complexity 𝑂(𝑛(log 𝑛)2) if 𝑎 and 𝑏 are roughly
of the same size. This is significantly worse than the Euclidean algorithm when 𝑛 is large.

Lecture 3 Problems

3.1. Let 𝑎, 𝑏, 𝑐 ∈ Z. Prove that 𝑐 is a common divisor of 𝑎 and 𝑏 if and only if 𝑐 | gcd(𝑎, 𝑏).
3.2. Let 𝑎, 𝑏, 𝑑, 𝑛 ∈ Z. Prove:

(a) gcd(𝑛𝑎, 𝑛𝑏) = |𝑛| gcd(𝑎, 𝑏).
(b) If 𝑑 ̸= 0 and 𝑑 | 𝑎 and 𝑑 | 𝑏 then gcd(𝑎𝑑 ,

𝑏
𝑑) =

1
|𝑑| gcd(𝑎, 𝑏).

3.3. The Fibonacci numbers 𝑓0, 𝑓1, 𝑓2, . . . are defined recursively by

𝑓0 = 𝑓1 = 1, 𝑓𝑛+1 = 𝑓𝑛 + 𝑓𝑛−1 for 𝑛 ≥ 1.

Prove that gcd(𝑓𝑛, 𝑓𝑛+1) = 1 for all 𝑛 ∈ Z≥0.

3.4. For 𝑎1, . . . , 𝑎𝑛 ∈ Z not all zero, we can define gcd(𝑎1, . . . , 𝑎𝑛) exactly how we did in the case
where 𝑛 = 2, namely: it’s the largest integer that divides all of 𝑎1, . . . , 𝑎𝑛.

(a) Prove that gcd(𝑎1, 𝑎2, . . . , 𝑎𝑛) = gcd(gcd(𝑎1, 𝑎2), . . . , 𝑎𝑛).

(b) Compute gcd(20, 28, 100, 36).
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Lecture 4 Coprimality

We’ll often find ourselves in the following situation. We have integers 𝑎, 𝑏, 𝑐 ∈ Z such that
𝑎 | 𝑏𝑐 and we’d like to conclude that either 𝑎 | 𝑏 or 𝑎 | 𝑐. This conclusion is generally false.
For example, 4 | 2 · 6 but 4 ∤ 2 and 4 ∤ 6. The problem is that “part of 4” can be found in 2
and 6 but not in either of them separately—said differently, gcd(4, 2) > 1 and gcd(4, 6) > 1.
This prompts the following definition.

Definition 4.1

Coprime,
Relatively Prime

Two integers 𝑎, 𝑏 ∈ Z are said to be coprime (or relatively prime) if gcd(𝑎, 𝑏) = 1.

The integers 𝑎1, . . . , 𝑎𝑛 ∈ Z are said to be mutually coprime if gcd(𝑎1, . . . , 𝑎𝑛) = 1. They
are said to be pairwise coprime if gcd(𝑎𝑖, 𝑎𝑗) = 1 for all 𝑖 ̸= 𝑗.

For example, 4 and 15 are coprime, but 4 and 6 are not. The integers 2, 3 and 4 are mutually
coprime since gcd(2, 3, 4) = 1 but they are not pairwise coprime, since gcd(2, 4) ̸= 1.

The following result is an immediate consequence of Proposition 3.7 (Bézout’s Lemma).

Proposition 4.2 The integers 𝑎, 𝑏 ∈ Z are coprime if and only if there exist integers 𝑥, 𝑦 ∈ Z such that

𝑎𝑥+ 𝑏𝑦 = 1.

This result can be immensely helpful when it comes to proving things involving coprime
integers. Here is an illustration.

Proposition 4.3 Let 𝑎, 𝑏, 𝑐 ∈ Z.

(a) If 𝑎 | 𝑏𝑐 and if 𝑎 and 𝑏 are coprime, then 𝑎 | 𝑐.

(b) If 𝑎 | 𝑐 and 𝑏 | 𝑐, and if 𝑎 and 𝑏 are coprime, then 𝑎𝑏 | 𝑐.

Proof: For part (a), start by writing 1 = 𝑎𝑥+ 𝑏𝑦 with 𝑥, 𝑦 ∈ Z. Then multiply through by
𝑐 to get 𝑐 = 𝑎(𝑥𝑐) + (𝑏𝑐)𝑦. Since 𝑎 | 𝑎 and 𝑎 | 𝑏𝑐, it follows that 𝑎 | 𝑎(𝑥𝑐) + (𝑏𝑐)𝑦 = 𝑐.

The proof of (b) is left for you as an exercise. ■

Exercise 4.4 Prove part (b) of Proposition 4.3.

This proposition explains the issue with trying to go from 4 | 2 · 6 to 4 | 2 or 4 | 6. We
cannot make this jump since 4 is not coprime with either 2 or 6.
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Example 4.5 Let 𝑎, 𝑏 ∈ Z be non-zero integers. Prove that 𝑎/ gcd(𝑎, 𝑏) and 𝑏/ gcd(𝑎, 𝑏) are coprime.

Solution: Let 𝑔 = gcd(𝑎, 𝑏). We can write 𝑔 = 𝑎𝑘 + 𝑏𝑙 with 𝑘, 𝑙 ∈ Z by Bézout’s lemma.
Dividing through by 𝑔, we get

1 =
𝑎

𝑔
𝑘 +

𝑏

𝑔
𝑙.

Now apply Proposition 4.2.

The previous example should make intuitive sense: when we divide by gcd(𝑎, 𝑏), we remove
all common factors from 𝑎 and 𝑏, and so the resulting integers 𝑎/ gcd(𝑎, 𝑏) and 𝑏/ gcd(𝑎, 𝑏)
must be coprime.

As an application, let’s solve a family of Diophantine equations!

4.1 Linear Diophantine Equations

A linear Diophantine equation is an equation of the form

𝑎1𝑥1 + · · ·+ 𝑎𝑛𝑥𝑛 = 𝑏

where 𝑎1, . . . , 𝑎𝑛, 𝑏 ∈ Z and we want our solutions for the 𝑥𝑖 to be in Z too.

If 𝑛 = 1 the equation takes the form
𝑎𝑥1 = 𝑏.

This equation has a solution in Z if and only if 𝑎 | 𝑏, in which case the solution is 𝑥1 =
𝑏
𝑎 .

So the first interesting case is 𝑛 = 2. It also turns out6 that we can reduce equations with
𝑛 > 2 variables to ones with two variables, so really the 𝑛 = 2 case is the most interesting
one. Fortunately, we know how to solve it completely. To ease notation, let’s drop all these
subscripts and work with 𝑎𝑥+ 𝑏𝑦 = 𝑐.

Theorem 4.6 (Solvability of Linear Diophantine Equations)

Suppose that 𝑎, 𝑏, 𝑐 ∈ Z, and consider the Diophantine equation

𝑎𝑥+ 𝑏𝑦 = 𝑐. (*)

(a) Equation (*) has a solution (𝑥0, 𝑦0) with 𝑥0, 𝑦0 ∈ Z if and only if gcd(𝑎, 𝑏) | 𝑐.

(b) If (𝑥, 𝑦) = (𝑥0, 𝑦0) is one particular integer solution to (*), then the general integer
solution is given by

(𝑥, 𝑦) = (𝑥0, 𝑦0) + 𝑛(−𝑏/𝑔, 𝑎/𝑔), (**)

where 𝑛 ∈ Z is arbitrary, and 𝑔 = gcd(𝑎, 𝑏).

In particular, if (*) has one solution, then it has infinitely many; and if we can find just one
solution, then we can find them all.

6As you’ll explore in the end-of-lecture problems.
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Proof: If (*) has an integer solution (𝑥0, 𝑦0), then 𝑐 = 𝑎𝑥0 + 𝑏𝑦0 will be divisible by any
common divisor of 𝑎 and 𝑏—so, in particular, by 𝑔 = gcd(𝑎, 𝑏). Conversely, if 𝑔 | 𝑐, then we
can write 𝑐 = 𝑔𝑚 for some 𝑚 ∈ Z. By Bézout’s Lemma, we can find 𝑘, 𝑙 ∈ Z such that

𝑔 = 𝑎𝑘 + 𝑏𝑙.

If we multiply this equation through by 𝑚, we immediately see that (𝑘𝑚, 𝑙𝑚) is a solution
to (*). This proves part (a).

For part (b), assume that (𝑥0, 𝑦0) is a solution. I’ll leave it to you to check that (**) is a
solution to (*). It remains to show all solutions are of this form for some 𝑛 ∈ Z. To this
end, suppose that (𝑥1, 𝑦1) is another integer solution. Then

𝑎𝑥0 + 𝑏𝑦0 = 𝑎𝑥1 + 𝑏𝑦1.

Re-arranging and dividing by 𝑔, we get

𝑎

𝑔
(𝑥0 − 𝑥1) =

𝑏

𝑔
(𝑦1 − 𝑦0). (♠)

This shows that 𝑎/𝑔 divides (𝑏/𝑔)(𝑦1 − 𝑦0) and therefore, since 𝑎/𝑔 and 𝑏/𝑔 are coprime, it
follows that 𝑎/𝑔 must divide 𝑦1−𝑦0. (This is the kind of thing I mentioned at the beginning
of the lecture!) Thus, 𝑦1 − 𝑦0 = (𝑎/𝑔)𝑛 for some 𝑛 ∈ Z or, equivalently,

𝑦1 = 𝑦0 +
𝑎

𝑔
𝑛.

Substituting this into (♠), we find that

𝑥1 = 𝑥0 − 𝑛
𝑏

𝑔
.

Thus, every solution is of the form given in (**), which is what we wanted to prove. ■

REMARK

On page 7, we noted that there are three fundamental questions to ask about any given
Diophantine equation. Theorem 4.6 answers all three for the equation 𝑎𝑥 + 𝑏𝑦 = 𝑐: It
provides us with an easy check for whether a solution exists, and it tells us how many
solutions there are and how to find them—indeed, the proof contains an algorithm:

• Determine 𝑔 = gcd(𝑎, 𝑏). (Use the Euclidean algorithm.)

• If 𝑔 ∤ 𝑐, STOP: no solution exists. Otherwise, proceed to next step.

• Determine 𝑘, 𝑙 ∈ Z such that 𝑎𝑘 + 𝑏𝑙 = 𝑔. (Reverse Euclidean algorithm.)

• A particular solution is then given by (𝑥0, 𝑦0) = (𝑐𝑘/𝑔, 𝑐𝑙/𝑔). (Proof: Multiply above
equation by 𝑐/𝑔: 𝑎(𝑐𝑘/𝑔) + 𝑏(𝑐𝑙/𝑔) = 𝑐.)

• The general solution is then given by (**).

Let’s illustrate how the algorithm works.
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Example 4.7 Find all integer solutions to 6𝑥+ 22𝑦 = 10.

Solution: First, we find gcd(6, 22) using the Euclidean algorithm:

22 = 3 · 6 + 4

6 = 1 · 4 + 2

4 = 2 · 2 + 0.

So gcd(6, 22) = 2 and since 2 | 10, we are guaranteed that the equation has a solution.
To find one, we reverse the Euclidean algorithm to express gcd(6, 22) as an integer linear
combination of 6 and 22 (Bézout’s Lemma):

2 = 6− 1 · 4
= 6− 1 · (22− 3 · 6)
= 6 · 4 + 22 · (−1).

Multiplying through by 𝑏/ gcd(𝑎1, 𝑎2) = 10/2, this gives

10 = 6 · 20 + 22 · (−5).

So (𝑥, 𝑦) = (20,−5) is a particular solution. The general solution is therefore

(𝑥, 𝑦) = (20,−5) + 𝑛(−22/2, 6/2)

= (20,−5) + 𝑛(−11, 3), 𝑛 ∈ Z.

Note that the form of the general solution is somewhat dependent on our choice of particular
solution. Had we used the particular solution (𝑥, 𝑦) = (−2, 1) instead, our general solution
would have looked like

(𝑥, 𝑦) = (−2, 1) + 𝑛(−11, 3), 𝑛 ∈ Z.

One thing worth pointing out is that the equation 6𝑥 + 22𝑦 = 10 defines a line in R2.
(Indeed, we can re-write the equation into the more familiar form 𝑦 = − 6

22𝑥 + 10
22 .) What

we are doing here is finding the lattice points (𝑥, 𝑦) ∈ Z2 that lie on this line.

(−2, 1)

(9,−2)
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Exercise 4.8 Find all integer solutions to 5𝑥+ 7𝑦 = 23.

Example 4.9 (Postage Stamp Problem)

Assuming you can only buy 5 cent and 7 cent postage stamps, prove that you cannot mail
a letter that costs 23 cents to post.

Solution: The problem here is to show that the Diophantine equation

5𝑥+ 7𝑦 = 23 (*)

does not have any solutions with 𝑥, 𝑦 ∈ Z≥0 (note: Z≥0 and not Z since we can’t purchase
a negative amount of stamps).

You solved this equation over Z in Exercise 4.8. The general solution is given by

(𝑥, 𝑦) = (69,−46) + 𝑛(−7, 5), 𝑛 ∈ Z.

Since we want 𝑥 ≥ 0 and 𝑦 ≥ 0, we are led to the inequalities

69− 7𝑛 ≥ 0 and − 46 + 5𝑛 ≥ 0.

These give

𝑛 ≤ 69

7
and 𝑛 ≥ 46

5
.

That is, we want 𝑛 ∈ Z such that
46

5
≤ 𝑛 ≤ 69

7
.

But there is no such integer, since 46/5 = 9.2 and 69/7 ≈ 9.9. So there are no non-negative
integer solutions to (*).

The number 23 in the previous example is special: it’s the largest problematic number, in
the sense that you are able to post a letter that costs 𝑛 cents for all 𝑛 > 23. (See Problem
3 below.)

Lecture 4 Problems

4.1. Let 𝑎, 𝑏 ∈ Z. Suppose that there are integers 𝑟, 𝑠, 𝑡, 𝑢 ∈ Z such that

𝑟𝑎+ 𝑠𝑏 = 2 and 𝑡𝑎+ 𝑡𝑏 = 5.

Prove that 𝑎 and 𝑏 must be coprime.

4.2. Let 𝑎 ∈ Z.
(a) Prove that 2𝑎− 1 and 2𝑎+ 1 are coprime.

(b) Prove that 𝑎! + 1 and (𝑎+ 1)! + 1 are coprime.

4.3. Let 𝑎 > 1 and 𝑏 > 1 be coprime integers.

(a) Prove that there are no solutions to 𝑎𝑥+ 𝑏𝑦 = 𝑎𝑏− 𝑎− 𝑏 with 𝑥, 𝑦 ∈ Z≥0.
[Hint: Begin by finding a particular solution (𝑥0, 𝑦0) ∈ Z2 by inspection.]
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(b) If 𝑛 > 𝑎𝑏− 𝑎− 𝑏, prove that there are 𝑥, 𝑦 ∈ Z≥0 such that 𝑎𝑥+ 𝑏𝑦 = 𝑛.
[Hint: Consider the integer solution (𝑥1, 𝑦1) with smallest non-negative 𝑥1 (why is
there such a solution?). Prove that 𝑥1 ≤ 𝑏− 1 and then deduce that 𝑦1 ≥ 0.]

4.4. In this problem you’ll learn how to solve the linear Diophantine equation

𝑎𝑥+ 𝑏𝑦 + 𝑐𝑧 = 𝑒 (♢)

where 𝑎, 𝑏, 𝑐, 𝑒 ∈ Z. The same techniques will also be able to handle any linear Diophantine
equation in more than three variables.

(a) Let 𝑑 = gcd(𝑎, 𝑏) and let 𝑢 = 𝑎
𝑑𝑥 + 𝑏

𝑑𝑦. Then (♢) is transformed into the two-variable
Diophantine equation

𝑑𝑢+ 𝑐𝑧 = 𝑒. (♣)

Explain how the solutions to (♣) can be used to generate all solutions to (♢).

(b) Let 𝑔 = gcd(𝑎1, 𝑎2, 𝑎3). Deduce that (♢) has integer solutions if and only if 𝑔 | 𝑏.
4.5. Solve the Diophantine equation 3𝑥+ 12𝑦 + 5𝑧 = 8.
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Lecture 5 The Fundamental Theorem of Arithmetic

At last, we come to prime numbers! The following definition should be familiar.

Definition 5.1

Prime Numbers,
Composite

A prime number is an integer 𝑝 > 1 whose only positive divisors are 1 and 𝑝. An integer
that isn’t prime is said to be composite.

The prime numbers ≤ 100 are

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97.

We do not consider 1 to be a prime number because doing so would violate the pleasant
fact that every positive integer can be written as a product of primes in a unique way. We
formally state this unique factorization result as a theorem.

Theorem 5.2 (Fundamental Theorem of Arithmetic)

Every integer 𝑛 > 1 can be expressed as a product of primes in a unique way (up to
re-ordering).

Thus, for example, we view the factorizations

12 = 2 · 2 · 3 = 2 · 3 · 2 = 3 · 2 · 2

of 𝑛 = 12 as being essentially the same. The uniqueness in the theorem is the assertion that
the only primes that appear in the prime factorization of 12 are 2 (which appears twice)
and 3 (which appears once). Had we allowed 1 to be a prime, we would have infinitely many
distinct factorizations of 12 into a product of primes:

12 = 22 · 3 · 1 = 22 · 3 · 12 = · · · .

The key tool that will allow us to prove the uniqueness of prime factorizations is the following
lemma, which is essentially a special case of Proposition 4.3(a).

Lemma 5.3 (Euclid’s Lemma)

Let 𝑎, 𝑏 ∈ Z. If 𝑝 is prime and 𝑝 | 𝑎𝑏 then either 𝑝 | 𝑎 or 𝑝 | 𝑏.

Proof: For any 𝑎 ∈ Z, gcd(𝑎, 𝑝) is either 1 or 𝑝. If it’s 1, then apply Proposition 4.3(a). If
it’s 𝑝, then that means 𝑝 | 𝑎. ■

Exercise 5.4 Let 𝑎1, . . . , 𝑎𝑛 ∈ Z. Prove that if 𝑝 is prime and if 𝑝 | 𝑎1 · · · 𝑎𝑛 then 𝑝 | 𝑎𝑖 for some 𝑖.
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Proof of Theorem 5.2 (Fundamental Theorem of Arithmetic):

Existence: If the theorem were false, then there would be a smallest integer 𝑛0 > 1 that
cannot be expressed as a product of primes. Note that 𝑛0 itself cannot be prime and so we
can factor it as 𝑛0 = 𝑎𝑏 where 𝑎, 𝑏 ∈ Z>0 are both different from 1 and 𝑛0. In particular,
𝑎 < 𝑛0 and 𝑏 < 𝑛0, so by the minimality assumption on 𝑛0, we can factor 𝑎 =

∏︀
𝑝𝑖 and

𝑏 =
∏︀

𝑞𝑖 into a product of primes. But then 𝑛0 = 𝑎𝑏 =
∏︀

𝑝𝑖𝑞𝑖 is a product of primes!
Contradiction.

Uniqueness: Suppose 𝑛 = 𝑝1 · · · 𝑝𝑘 and 𝑛 = 𝑞1 · · · 𝑞𝑙, where the 𝑝𝑖 and 𝑞𝑗 are primes. Then
since 𝑝𝑖 divides 𝑛 = 𝑞1 · · · 𝑞𝑙, and since the 𝑞𝑗 are coprime, Euclid’s lemma tells us that
𝑝𝑖 | 𝑞𝑗0 for some 𝑗0. This implies that 𝑝𝑖 = 𝑞𝑗0 since 𝑞𝑗0 is prime. Thus, every 𝑝𝑖 occurs
amongst the 𝑞𝑗 . Similarly, by considering 𝑞𝑗 | 𝑛 = 𝑝1 · · · 𝑝𝑘, we see that every 𝑞𝑗 occurs
amongst the 𝑝𝑖. This completes the proof. ■

We usually collect prime factors together when we express 𝑛 as a product of primes. That
is, we write

𝑛 = 𝑝𝑎11 · · · 𝑝𝑎𝑘𝑘
where the 𝑝𝑖 are distinct primes and the 𝑎𝑖 are positive integers. This is called the canonical
factorization of 𝑛 into a product of primes. It is unique up to re-ordering. If we wish to
eliminate the ambiguity of ordering, we can choose to list the primes in ascending order:
𝑝1 < 𝑝2 < · · · < 𝑝𝑘.

For example, the canonical factorization of 1400 is

1400 = 23 · 52 · 7.

If 𝑛 < −1 then, by factoring −𝑛, we can obtain unique factorization of 𝑛 into (−1) times a
product of primes. For example,

−132 = (−1) · 22 · 3 · 11.

In this way, we see that every integer 𝑛, other than 𝑛 = 0 and 𝑛 = ±1, can be expressed
uniquely in the form

𝑛 = (−1)𝑠𝑝𝑎𝑖𝑖 · · · 𝑝𝑎𝑘𝑘
where 𝑠 ∈ {0, 1} is the sign of 𝑛, the 𝑝𝑖 are the distinct prime divisors of 𝑛, and the 𝑎𝑖
are the so-called prime valuations of 𝑛. Let’s elaborate on this last bit.

Definition 5.5

𝑝-adic Valuation,
𝑣𝑝

Let 𝑝 be a prime and 𝑛 be a non-zero integer. The 𝑝-adic valuation of 𝑛, denoted by
𝑣𝑝(𝑛), is defined to be the largest integer 𝑎 such that 𝑝𝑎 | 𝑛. (So 𝑝𝑣𝑝(𝑛) | 𝑛 but 𝑝𝑣𝑝(𝑛)+1 ∤ 𝑛.)

We do not define 𝑣𝑝(0).

For example,
𝑣2(18) = 1 since 21 | 18 but 22 ∤ 18

and
𝑣3(18) = 2 since 32 | 18 but 33 ∤ 18.

For all other primes 𝑝 ̸= 2, 3, we have 𝑣𝑝(18) = 0.



Lecture 5 The Fundamental Theorem of Arithmetic 29

In general, if
𝑛 = (−1)𝑠𝑝𝑎𝑖𝑖 · · · 𝑝𝑎𝑘𝑘

is the canonical factorization of 𝑛, then 𝑣𝑝(𝑛) = 𝑎𝑖 for 𝑝 = 𝑝𝑖, and 𝑣𝑝(𝑛) = 0 for all other
primes 𝑝. In particular, 𝑣𝑝(𝑛) = 0 for all 𝑝 ∤ 𝑛.

Exercise 5.6 Determine 𝑣𝑝(100) for all primes 𝑝.

Example 5.7 (Legendre’s formula for 𝑣𝑝(𝑛!))

Let 𝑛 ∈ Z>0 and let 𝑝 be prime. Show that

𝑣𝑝(𝑛!) =

⌊︂
𝑛

𝑝

⌋︂
+

⌊︂
𝑛

𝑝2

⌋︂
+

⌊︂
𝑛

𝑝3

⌋︂
+ · · · .

(Note that the sum is finite since
⌊︀
𝑛/𝑝𝑘

⌋︀
= 0 for all sufficiently large 𝑘.)

Solution: Since 𝑛! = 1 · 2 · · · · 𝑛, we need to count the multiples of 𝑝 that are ≤ 𝑛.

There are ⌊𝑛/𝑝⌋ multiples of 𝑝. Of these, the multiples of 𝑝2 are only counted once, but they
should be counted twice since they contribute another 𝑝 in 𝑛!. So we should add

⌊︀
𝑛/𝑝2

⌋︀
.

Likewise, to properly account for the multiples of 𝑝3, we should add
⌊︀
𝑛/𝑝3

⌋︀
, and so on.

As an illustration, we have

𝑣5(100!) =

⌊︂
100

5

⌋︂
+

⌊︂
100

52

⌋︂
+

⌊︂
100

53

⌋︂
+ · · ·

= ⌊20⌋+ ⌊4⌋+ 0 + · · ·
= 24.

Exercise 5.8 Determine 𝑣3(1000!).

REMARK (Unique Factorization in Other Number Systems)

That we have unique factorization into primes in Z is something special. It should not be
taken for granted since it can fail in other number systems. For example, in

Z[
√
−5] = {𝑎+ 𝑏

√
−5: 𝑎, 𝑏 ∈ Z} ⊆ C,

the number 6 has two distinct factorizations

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5)

into “primes.” This phenomenon is the starting point of algebraic number theory.

Exercise 5.9 Find two distinct factorizations of 9 in Z[
√
−5]. [Hint: For a clue, try to reverse-engineer

the factorization of 6 given in the previous remark.]
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Lecture 5 Problems

5.1. Prove the following “converse” to Lemma 5.3 (Euclid’s Lemma): If 𝑞 ∈ Z>0 is such that
whenever 𝑞 | 𝑎𝑏 then 𝑞 | 𝑎 or 𝑞 | 𝑏, then 𝑞 must be a prime number.

5.2. Let 𝑎, 𝑏 ∈ Z>0. Prove that if 𝑎5 | 𝑏2 then 𝑎 | 𝑏.
5.3. Let 𝑎 and 𝑏 be non-zero integers. Prove:

(a) 𝑣𝑝(𝑎𝑏) = 𝑣𝑝(𝑎) + 𝑣𝑝(𝑏) for all primes 𝑝.

(b) 𝑣𝑝(𝑎
𝑘) = 𝑘𝑣𝑝(𝑎) for all primes 𝑝 and 𝑘 ∈ Z>0.

(c) 𝑣𝑝(𝑎+ 𝑏) ≥ min(𝑣𝑝(𝑎), 𝑣𝑝(𝑏)), with equality if 𝑣𝑝(𝑎) ̸= 𝑣𝑝(𝑏).

(d) 𝑎 | 𝑏 if and only if 𝑣𝑝(𝑎) ≤ 𝑣𝑝(𝑏) for all primes 𝑝.

(e) 𝑎 is a perfect 𝑘th power if and only if 𝑘 | 𝑣𝑝(𝑎) for all primes 𝑝.

5.4. Let 𝑎, 𝑏 ∈ Z>0 have prime factorizations 𝑎 =
∏︀

𝑖 𝑝
𝑎𝑖
𝑖 and 𝑏 =

∏︀
𝑖 𝑝

𝑏𝑖
𝑖 , where 𝑎𝑖 ≥ 0 and 𝑏𝑖 ≥ 0

to allow for the same set of primes to occur in both factorizations. Prove that

gcd(𝑎, 𝑏) =
∏︁
𝑖

𝑝𝑚𝑖

where 𝑚𝑖 = min(𝑎𝑖, 𝑏𝑖).

5.5. Let 𝑝 and 𝑞 be prime numbers.

(a) Determine the number of divisors of 𝑝𝑘, where 𝑘 ∈ Z>0.

(b) Determine the number of divisors of 𝑝𝑘𝑞𝑙, where 𝑘, 𝑙 ∈ Z>0.

5.6. Let 𝑛, 𝑘 ∈ Z>0 and let 𝑝 be prime. Recall the definition of the binomial coefficient:(︂
𝑛

𝑘

)︂
=

𝑛!

𝑘!(𝑛− 𝑘)!
.

(a) Prove that

𝑣𝑝

(︂(︂
𝑛

𝑘

)︂)︂
=

∞∑︁
𝑖=1

⌊︂
𝑛

𝑝𝑖

⌋︂
−
⌊︂
𝑛− 𝑘

𝑝𝑖

⌋︂
−
⌊︂
𝑘

𝑝𝑖

⌋︂
.

(b) Determine 𝑣2
(︀(︀

600
300

)︀)︀
.

▶ 5.7. Let 𝑝 be a prime number. Prove that

𝑝 |
(︂
𝑝

𝑘

)︂
and 𝑝2 ∤

(︂
𝑝

𝑘

)︂
for all integers 𝑘 such that 0 < 𝑘 < 𝑝.
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Lecture 6 The Infinitude of Primes

The most basic fact about the distribution of prime numbers is following.

Theorem 6.1 There are infinitely many primes.

I will present two proofs of this theorem.

Proof 1 of Theorem 6.1 (Euclid): Suppose there are only finitely many primes; call
them 𝑝1, 𝑝2, . . ., 𝑝𝑛. Let 𝑁 = 𝑝1 · · · 𝑝𝑛 + 1. Then 𝑁 > 1 so 𝑁 has a prime divisor. It must
be one of the 𝑝𝑖 since these are all the primes. But 𝑁 leaves a remainder of 1 after division
by 𝑝𝑖, so in particular 𝑝𝑖 ∤ 𝑁 . Contradiction! ■

Let me make three comments about Euclid’s proof.

1. If we let 𝑝𝑛 denote the 𝑛th prime (so 𝑝1 = 2, 𝑝2 = 3, etc.), then Euclid’s proof shows
that 𝑝𝑛+1 ≤ 𝑝1 · · · 𝑝𝑛 + 1. Using this, we can show that

𝑝𝑛 ≤ 22
𝑛−1

.

(See the end-of-lecture problems.) This bound, however, is not great. For instance,
when 𝑛 = 10, it tells us that 𝑝10 = 29 is no larger than 22

9
, a number which has 155

digits...

2. A common misconception is to think Euclid’s proof shows that 𝑝1 · · · 𝑝𝑛+1 is a prime.
This is false. For example, while

2 + 1 = 3

2 · 3 + 1 = 7

2 · 3 · 5 + 1 = 31

2 · 3 · 5 · 7 + 1 = 211

2 · 3 · 5 · 7 · 11 + 1 = 2311

are primes,
2 · 3 · 5 · 7 · 11 · 13 + 1 = 30031 = 59 · 509

is composite. This prompts the following question.

Are there infinitely many primes of the form 𝑝1 · · · 𝑝𝑛 + 1?

This is an open problem. No one knows what the answer is!

3. This is less of a comment and more of a joke.7 Theorem: There are infinitely many
composite numbers. Proof: Suppose there are finitely many and then multiply them
but don’t add 1.

As dumb as that joke was, the underlying idea gives the following interesting result.

7It’s a math joke, where the standards for humor are lower.
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Example 6.2 Prove that there are arbitrarily long sequences of consecutive composite numbers. That is,
for each 𝑛 > 1, find 𝑛 consecutive composite numbers.

Solution: The “joke” teaches us that (𝑛 + 1)! = (𝑛 + 1) · 𝑛 · · · 2 · 1 is divisible by every
positive integer 𝑘 ≤ (𝑛+ 1).

Hence 𝑘 + (𝑛+ 1)! will be divisible by 𝑘 if 𝑘 ≤ (𝑛+ 1).

Consequently, the 𝑛 consecutive numbers

2 + (𝑛+ 1)!, 3 + (𝑛+ 1)!, . . . , 𝑛+ (𝑛+ 1)!

are composite.

This shows that the primes, while infinite, can be arbitrarily far apart. So if we try to make
a list of primes by going through the integers one-by-one, then it might be quite a while
between each discovery.

On the other hand, sometimes primes are fairly close to each other: for instance, (2, 3),
(3, 5) and (5, 7) are all primes, as are (641, 643) and (197597, 197599). Primes that differ by
≤ 2 are called twin primes. It is an open problem whether there are infinitely many twin
primes. In 2013, Yitang Zhang surprised the mathematical world by proving that there are
infinitely many primes that differ by ≤ 70 million. The bound was subsequently reduced to
246. Unfortunately, the consensus is that Zhang’s techniques cannot be further optimized
to reduce the bound to 2, so new ideas are needed to settle the twin prime conjecture.

We’ll have a bit more to say about the distribution of primes, but before going down that
rabbit hole, let’s look at another proof of the infinitude of primes.

Proof 2 of Theorem 6.1 (Euler): The starting point is the geometric series expansion

1

1− 1/𝑝
= 1 +

1

𝑝
+

1

𝑝2
+

1

𝑝3
+ · · · .

Consider what happens when we multiply two of these series for different primes 𝑝. For
example, for the primes 2 and 3, we want to look at

1

1− 1/2

1

1− 1/3
=

(︂
1 +

1

2
+

1

22
+

1

23
+ · · ·

)︂(︂
1 +

1

3
+

1

32
+

1

33
+ · · ·

)︂
If we expand the right-side and re-arrange it (which is OK to do since we’re dealing with
convergent series of positive numbers), we get

1 +
1

2
+

1

3
+

1

4
+

1

6
+

1

8
+

1

9
+

1

12
+

1

16
+

1

18
+ · · · .

The denominators that appear are precisely the positive integer 𝑛 whose only prime divisors
are 2 and 3. If we multiply the above by the series for 1/(1−1/𝑝) for another prime 𝑝, then
we will introduce additional terms 1/𝑛 where the only prime divisors of 𝑛 are 2, 3 and 𝑝.

Now assume that there are finitely many primes 𝑝1, . . . , 𝑝𝑘. Then if we multiply out

1

1− 1/𝑝1

1

1− 1/𝑝2
· · · 1

1− 1/𝑝𝑘
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as above, we obtain all numbers of the form 1/𝑛 where the prime divisors of 𝑛 involve only
the 𝑝𝑖. Since the 𝑝𝑖 are all the primes, this means we obtain all positive integers 𝑛, thanks
to the Fundamental Theorem of Arithmetic.

Thus,

1

1− 1/𝑝1

1

1− 1/𝑝2
· · · 1

1− 1/𝑝𝑘
=

∞∑︁
𝑛=1

1

𝑛
.

This, however, is impossible! The series on the right—the famous harmonic series—is
divergent. It cannot be equal to the finite product on the left-side. This contradiction
proves that there must be infinitely many primes. ■

Euler’s proof marks the beginning of analytic number theory, where ideas from calculus
(analysis) are brought to bear on number theoretic problems. The ideas in the proof can
be tweaked to yield many other interesting results, such as the following (which we state
without proof).

Proposition 6.3 (Euler)

The infinite series ∑︁
𝑝

1

𝑝
=

1

2
+

1

3
+

1

5
+

1

7
+

1

11
+ · · · ,

where 𝑝 ranges over the prime numbers, is divergent.

This result can be viewed as a strengthening of the fact that there are infinitely many
primes. Indeed, since

∑︀
𝑛 1/𝑛 and

∑︀
𝑝 1/𝑝 are both divergent while

∑︀
𝑛 1/𝑛

2 is convergent,
in some sense we can say that the primes are “more infinite” than the perfect squares. To
learn how to make this idea more precise, take a course in analytic number theory!

6.1 Primes and Arithmetic Progressions

Besides the prime number 2, prime numbers are odd and hence will leave a remainder of 1
or 3 after division by 4. Since there are infinitely many primes, either infinitely many will
have remainder 1, or infinitely many will have remainder 3, or both of these scenarios will
happen. Which is it?

Proposition 6.4 There are infinitely many primes of the form 4𝑞 + 3.

Proof: We’re going to mimic Euclid’s proof. Suppose there are only finitely many such
primes, call them 𝑝1, . . . , 𝑝𝑘, and set 𝑁 = 4𝑝1 · · · 𝑝𝑘 − 1. Then 𝑁 is odd (so not divisible
by 2) and not divisible by any of the 𝑝𝑖. So it must be the case that all the prime divisors
prime divisors are of the form 4𝑞 + 1.

But this is impossible! The product of numbers of the form 4𝑞+1 is also of the form 4𝑞+1:

(4𝑞1 + 1)(4𝑞2 + 1) = 16𝑞1𝑞2 + 4𝑞1 + 4𝑞2 + 1 = 4(4𝑞1𝑞2 + 𝑞1 + 𝑞2) + 1.

Since 𝑁 is not of the form 4𝑞 + 1, we’ve reached a contradiction. ■
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There are also infinitely many primes of the form 4𝑞 + 1, but the proof is a little beyond
us at this point. We’ll come back to it later. In fact, much more is true! This next result
is a famous theorem of Dirichlet, which we give without proof. (The proof that Dirichlet
gave involved an ingenious modification of Euler’s already ingenious proof of the infinitude
of primes—in particular, it brought in some ideas from complex analysis!)

Theorem 6.5 (Dirichlet’s Theorem on Primes in Arithmetic Progressions)

If gcd(𝑎, 𝑏) = 1, then there are infinitely many primes of the form 𝑎+ 𝑏𝑞.

The gcd condition is necessary since if 𝑑 = gcd(𝑎, 𝑏) > 1 then the numbers 𝑎+ 𝑏𝑞 would all
be divisible by 𝑑. The name of the theorem refers to the fact that the numbers 𝑎 + 𝑏𝑞, as
𝑞 varies, form an arithmetic progression. For instance, we are guaranteed to find infinitely
many primes in the arithmetic progression

7, 10, 13, 16, . . . , 7 + 3𝑞, . . . .

On the flip side, we might ask if we can find arithmetic progressions consisting entirely of
primes. It’s impossible to find an infinite such progression (why?) so we might ask instead
for really long ones. The fact that this is possible was only proved in 2004!

Theorem 6.6 (Green–Tao)

For all 𝑁 ∈ Z>0, there is an arithmetic progression of length 𝑁 consisting entirely of primes.

For example, when 𝑁 = 5, the progression 5 + 6𝑞 consists of primes for 0 ≤ 𝑞 ≤ 4:

5, 11, 17, 23, 29.

For larger 𝑁 , we’ll have to go deeper into the primes. Unfortunately, the proof of the Green–
Tao theorem is not constructive, and there are no efficient methods for generating prime
progressions. At the time of writing, the longest known progression has length 𝑁 = 27.
Three such progressions are known; the first was discovered in 2019 and is given by

224584605939537911 + 18135696597948930𝑞, 0 ≤ 𝑞 ≤ 26.

Exercise 6.7 Find an arithmetic progression of length 6 consisting of primes. [Hint: There is one starting
at a single-digit prime and ending at 157.]

Lecture 6 Problems

▶ 6.1. Let 𝑝𝑛 denote the 𝑛th prime number.

(a) Explain how Euclid’s proof shows that 𝑝𝑛+1 ≤ 𝑝1 · · · 𝑝𝑛 + 1.

(b) Prove by induction that 𝑝𝑛 ≤ 22
𝑛−1

for all 𝑛 ≥ 1.

6.2. Let 𝐹𝑛 = 22
𝑛
+1 for 𝑛 ∈ Z≥0. (This is the 𝑛th Fermat number, named after Fermat who

falsely believed 𝐹𝑛 to be prime for all 𝑛.)
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(a) Prove that 𝐹𝑛 − 2 = 𝐹0𝐹1 · · ·𝐹𝑛−1 for all 𝑛 ≥ 1.

(b) Prove that gcd(𝐹𝑛, 𝐹𝑚) = 1 for 𝑛 ̸= 𝑚.

(c) Deduce that there are infinitely many primes.

6.3. Prove that there are infinitely many primes of the form 3𝑞 + 2.

6.4. Unlike with twin primes, we can prove that there are finitely many “prime triplets”: Find
all primes 𝑝 such that 𝑝+ 2 and 𝑝+ 4 are primes.

6.5. Prove that there cannot be an infinite arithmetic progression consisting entirely of primes.
That is, prove that if 𝑎, 𝑏 ∈ Z>0, then there must be a composite number in the arithmetic
progression

𝑎, 𝑎+ 𝑏, 𝑎+ 2𝑏, 𝑎+ 3𝑏, . . . .
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Lecture 7 The Distribution of Primes

“There are two facts about the distribution of prime numbers of which I hope to
convince you [...]. The first is that, despite their simple definition and role as
the building blocks of the natural numbers, the prime numbers grow like weeds
among the natural numbers, seeming to obey no other law than that of chance, and
nobody can predict where the next one will sprout. The second fact is even more
astonishing, for it states just the opposite: that the prime numbers exhibit stunning
regularity, that there are laws governing their behavior, and that they obey these
laws with almost military precision.”

– Don Zagier

This lecture will showcase some results from analytic number theory. It will be relatively
light on proofs.

The Sieve of Eratosthenes

Before diving in, let’s look at a simple method for tabulating prime numbers. Suppose we
want to find all the primes ≤ 50. We start by listing all the integers from 2 to 50.

2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50

Next, we circle 2 indicating that it’s prime and then cross off every multiple of 2 since none
of them can be prime.

2 3 �4 5 �6 7 �8 9 ��10
11 ��12 13 ��14 15 ��16 17 ��18 19 ��20
21 ��22 23 ��24 25 ��26 27 ��28 29 ��30
31 ��32 33 ��34 35 ��36 37 ��38 39 ��40
41 ��42 43 ��44 45 ��46 47 ��48 49 ��50

The next number that isn’t circled or crossed off, which in this case is 3, must then be
prime. So we circle it and cross off all its multiples.

2 3 �4 5 �6 7 �8 �9 ��10
11 ��12 13 ��14 ��15 ��16 17 ��18 19 ��20

��21 ��22 23 ��24 25 ��26 ��27 ��28 29 ��30
31 ��32 ��33 ��34 35 ��36 37 ��38 ��39 ��40
41 ��42 43 ��44 ��45 ��46 47 ��48 49 ��50
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We repeat this process a couple more times, first with 5 and then with 7.

2 3 �4 5 �6 7 �8 �9 ��10
11 ��12 13 ��14 ��15 ��16 17 ��18 19 ��20

��21 ��22 23 ��24 ��25 ��26 ��27 ��28 29 ��30
31 ��32 ��33 ��34 ��35 ��36 37 ��38 ��39 ��40
41 ��42 43 ��44 ��45 ��46 47 ��48 ��49 ��50

Since
√
50 ≈ 7.07, we can now stop: all remaining numbers that haven’t been crossed off

are necessarily prime. This is because we have the following result.

Proposition 7.1 Let 𝑛 > 1. Then either 𝑛 is prime or else 𝑛 has a prime divisor 𝑝 such that 𝑝 ≤
√
𝑛.

Proof: If 𝑛 is prime, that’s that. If 𝑛 is composite, then we can factor it as 𝑛 = 𝑎𝑏 with
1 < 𝑎 < 𝑛 and 1 < 𝑏 < 𝑛. One of 𝑎 and 𝑏 must be ≤

√
𝑛, since if they were both >

√
𝑛 we

would have
𝑛 = 𝑎𝑏 >

√
𝑛
√
𝑛 = 𝑛,

which is absurd. So let’s say 𝑎 <
√
𝑛. Since 𝑎 > 1, it must have a prime divisor 𝑝 and this

𝑝 will divide 𝑛 (why?) and must satisfy 𝑝 < 𝑎 <
√
𝑛. ■

We can reformulate the previous result as follows.

Corollary 7.2 (Simple Primality Test)

Let 𝑛 > 1. If none of the primes ≤ ⌊
√
𝑛⌋ divide 𝑛, then 𝑛 must be prime.

Corollary 7.2 guarantees that any composite number ≤ 50 will be divisible by some prime
≤
⌊︀√

50
⌋︀
= 7. So once we’ve removed all the composite numbers divisible by the primes

≤ 7 from our list, we’ve removed all composite numbers. Thus, the primes ≤ 50 are

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47.

This method of finding primes is called the sieve of Eratosthenes. We’re basically passing
numbers through a sieve and catching the ones that are prime, hence the name.

Exercise 7.3 Find all primes ≤ 100.

Example 7.4 Determine if 691 is prime.

Solution: Since
⌊︀√

691
⌋︀
= 26, we just have to check if 691 is divisible by any of the primes

≤ 23. I’ll leave it to you to check that it isn’t. So 691 is prime.

Exercise 7.5 Determine if 1891 is prime.
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REMARK (Computational Complexity of the Sieve of Eratosthenes)

The sieving technique just described is not very efficient from a computational perspective.
Its complexity is exponential in the number of bits of the input. The same can be said about
Corollary 7.2 (Simple Primality Test). This makes them completely impractical when the
numbers under consideration get large.

For instance, to check whether the 33265-digit number 2110503−1 is prime (it is!), a computer
executing one-billion bit operations per second would take approximately 1016619 years to
run Corollary 7.2.

The Prime Counting Function

The sieving procedure we just learned raises a natural question. Can we determine, before-
hand, how many primes there are less than a given constant?

Definition 7.6

Prime Counting
Function, 𝜋(𝑥)

For 𝑥 ∈ R≥0, the number of primes ≤ 𝑥 is denoted by 𝜋(𝑥). That is,

𝜋(𝑥) = #{𝑝 : 𝑝 ≤ 𝑥 and 𝑝 is a prime}.

We call 𝜋(𝑥) the prime counting function.8

For example,

𝜋(1) = #{} = 0

𝜋(10) = #{2, 3, 5, 7} = 4

𝜋(21.34) = #{2, 3, 5, 7, 11, 13, 17, 19} = 8.

(a) 𝜋(𝑥) for 𝑥 ≤ 100 (b) 𝜋(𝑥) for 𝑥 ≤ 1000

Figure 7.1: Graphs of 𝜋(𝑥)

Since there are infinitely many primes, we know that

𝜋(𝑥) → ∞ as 𝑥 → ∞.

What can we say about the growth rate of 𝜋(𝑥)? Here is a simple lower bound.

8The notation 𝜋(𝑥) for this function is not great but unfortunately it’s completely standard.
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Proposition 7.7 For all 𝑥 ≥ 2, 𝜋(𝑥) > log(log 𝑥).

Proof: Let 𝑝𝑛 denote the 𝑛th prime. Last lecture we saw that 𝑝𝑛 ≤ 22
𝑛−1

for 𝑛 ≥ 1. This
means there are at least 𝑛 primes ≤ 22

𝑛−1
and therefore 𝜋(22

𝑛−1
) ≥ 𝑛.

Given any 𝑥 ≥ 2, we can find an integer 𝑛 ≥ 1 such that 22
𝑛−1 ≤ 𝑥 < 22

𝑛
(why?). Since

2 < 𝑒, it follows that 𝑥 < 𝑒𝑒
𝑛
and therefore

log(log 𝑥) < 𝑛.

On the other hand, from 22
𝑛−1 ≤ 𝑥 we get

𝜋(𝑥) ≥ 𝜋
(︁
22

𝑛−1
)︁
≥ 𝑛.

Now combine both inequalities to get the desired result. ■

This bound is actually quite terrible, as the following table shows.

𝑥 𝜋(𝑥) log(log 𝑥)

102 25 1.527...
103 168 1.932...
104 1229 2.220...
105 9592 2.443...
106 78498 2.625...

So 𝜋(106) > log(log(106)) tells us we can find at least 3 primes under one million. No
kidding! Can we do any better? The answer is yes. In fact, we can do much better.

7.1 The Prime Number Theorem

In the 1790s, while presumably studying tables of primes, Gauss (at the age of 15) and
Legendre independently conjectured that 𝜋(𝑥) grows like the function 𝑥/ log 𝑥:

𝜋(𝑥) ∼ 𝑥

log 𝑥
for large 𝑥

where ∼ means that the ratio of both sides tends to 1 as 𝑥 increases.

Actually, Legendre conjectured that

𝜋(𝑥) ∼ 𝑥

log 𝑥− 1.08366

and Gauss conjectured that
𝜋(𝑥) ∼ Li(𝑥),

where Li(𝑥) is the logarithmic integral function defined by

Li(𝑥) =

∫︁ 𝑥

2

𝑑𝑡

log 𝑡
.

It can be shown that
𝑥

log 𝑥− 1.08366
∼ 𝑥

log 𝑥
∼ Li(𝑥) as 𝑥 → ∞, so these approximations

are asymptotically the same. The table below lists some of these values (rounded to the
nearest integer).
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𝑥 𝜋(𝑥) 𝑥/ log 𝑥 𝑥/(log 𝑥− 1.08366) Li(𝑥)

102 25 21 28 29
103 168 145 172 177
104 1229 1086 1231 1245
105 9592 8686 9588 9629
106 78498 72382 78543 78627
107 664579 620421 665140 664917

Figure 7.2: Approximations of 𝜋(𝑥)

Here’s how you can informally interpret the statement that 𝜋(𝑥) ∼ 𝑥/ log 𝑥. Since there
are 𝑛 positive integers ≤ 𝑛, the approximation 𝜋(𝑛) ∼ 𝑛/ log(𝑛) says that approximately
1/ log 𝑛 of the integers ≤ 𝑛 are prime numbers.

Neither Gauss nor Legendre could prove that their empirical observations held in general.
The world had to wait 100 years for J. Hadamard and C.-J. de la Vallée Poussin who
independently proved, in 1896, what we now call the Prime Number Theorem.

Theorem 7.8 (Prime Number Theorem [PNT])

lim
𝑥→∞

𝜋(𝑥)

𝑥/ log 𝑥
= 1.

If we let 𝑝𝑛 denote the 𝑛th prime, so that 𝑝1 = 2, 𝑝2 = 3, etc., then the PNT gives the
following result. (In fact, the result below is equivalent to the PNT, though we won’t prove
that here.)

Corollary 7.9 For all 𝑛 ≥ 1,
𝑝𝑛 ∼ 𝑛 log 𝑛.

Proof: By the Prime Number Theorem, we have

𝜋(𝑝𝑛) ∼
𝑝𝑛

log 𝑝𝑛
.
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Since 𝜋(𝑝𝑛) = 𝑛, the above implies that

𝑝𝑛 ∼ 𝜋(𝑝𝑛) log 𝑝𝑛 = 𝑛 log 𝑝𝑛.

Using this very result, we get that

log 𝑝𝑛 ∼ log(𝑛 log 𝑝𝑛) = log𝑛+ log(log 𝑝𝑛) ∼ log 𝑛.

Thus, 𝑝𝑛 ∼ 𝑛 log 𝑝𝑛 ∼ 𝑛 log 𝑛, as desired. ■

Exercise 7.10 The above proof was a bit sketchy on details. Confirm all steps by using the fact that

𝑓(𝑛) ∼ 𝑔(𝑛) ⇐⇒ lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)
= 1.

Although the proof of the PNT lies beyond the scope of this course, let me sketch some of
the details. The crucial object here is the Riemann zeta function

𝜁(𝑠) =
∞∑︁
𝑛=1

1

𝑛𝑠
.

The connection between 𝜁(𝑠) and prime numbers was actually first discovered by Euler. If
you recall Euler’s proof of the infinitude of primes, you’ll remember that if we expand the
product ∏︁

𝑝

1

1− 1/𝑝
=
∏︁
𝑝

(︂
1 +

1

𝑝
+

1

𝑝2
+ · · ·

)︂
then we obtain all numbers of the form 1/𝑛 where the prime divisors of 𝑛 are the primes 𝑝
occurring in the product. By the same token, if we take the product over all primes 𝑝, we
obtain ∏︁

𝑝

1

1− 1/𝑝𝑠
=

∞∑︁
𝑛=1

1

𝑛𝑠
= 𝜁(𝑠).

This is called the Euler product expansion of 𝜁(𝑠). Of course, here I am ignoring issues of
convergence and whatnot. In particular, the zeta function 𝜁(𝑠) only converges when 𝑠 > 1.

Riemann’s contribution starts with him viewing 𝜁(𝑠) as a function of a complex variable
𝑠 ∈ C, in which case the series converges for all 𝑠 with Re(𝑠) > 1. Riemann proved that there
is a unique extension of 𝜁(𝑠) to a complex analytic function defined for all 𝑠 ∈ C∖{1}, which
we also denote by 𝜁(𝑠). Let me stress that this extension is not given by the series

∑︀
𝑛 1/𝑛

𝑠.
Rather, Riemann found another complex analytic function that agrees with

∑︀
𝑛 1/𝑛

𝑠 on the
domain Re(𝑠) > 1. He then leveraged the Euler product expansion to connect properties of
prime numbers to the zeroes of 𝜁(𝑠).

The proof of the Prime Number Theorem has two key steps:

Step 1. Prove that 𝜁(𝑠) ̸= 0 for all 𝑠 with Re(𝑠) = 1.

Step 2. Deduce the Prime Number Theorem from Step 1.

Both steps require a substantial amount a bit of work.
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REMARK (The “Elementary” Proof of the PNT)

Historically, proofs of number theoretic statements that used complex analytic techniques
were labeled as being non-elementary, with the proof sketched above being the prime ex-
ample (no pun intended). This distinction seems to be due to G.H. Hardy who believed it
“extraordinarily unlikely” for there to be an “elementary” proof of the PNT that didn’t use
results from complex analysis.

So it came as a huge surprise when Selberg and Erdős discovered, in 1949, an elementary
proof of the PNT. Their proof follows the basic outline of the complex analytic proof,
except it manages to replace the complex analysis with intricate “elementary” arguments.
The proof still uses real analysis, which perhaps is to be expected since the statement of
the PNT involves a limit!

7.2 Bonus: Bertrand’s Postulate

“Chebyshev said it, but I’ll say it again: There’s always a prime between 𝑛 and 2𝑛.”

– N.J. Fine

Here’s an interesting result concerning the distribution of primes.

Theorem 7.11 (Bertrand’s Postulate)

For all 𝑛 > 1, there is a prime 𝑝 such that 𝑛 < 𝑝 < 2𝑛.

(In other words, 𝜋(𝑥)− 𝜋(𝑥/2) ≥ 1 for 𝑥 > 2.)

I will sketch Erdős’s proof of this fact. The main idea is to examine the prime factorization
of the binomial coefficient

(︀
2𝑛
𝑛

)︀
. Then some magic happens.

Lemma 7.12 Let 𝑝 be a prime and let 𝑣𝑝 = 𝑣𝑝
(︀(︀

2𝑛
𝑛

)︀)︀
. Assume that 𝑛 ≥ 3. Then:

(a) 𝑣𝑝 = 0 if 𝑝 > 2𝑛 or 2𝑛
3 < 𝑝 ≤ 𝑛.

(b) 𝑣𝑝 ≤ 1 if
√
2𝑛 < 𝑝 ≤ 2𝑛.

(c) 𝑣𝑝 = 1 if 𝑛 < 𝑝 ≤ 2𝑛.

(d) 𝑝𝑣𝑝 ≤ 2𝑛.

Proof: Let’s use Legendre’s formula:

𝑣𝑝 = 𝑣𝑝((2𝑛)!)− 2𝑣𝑝(𝑛!) =

∞∑︁
𝑘=1

⌊︂
2𝑛

𝑝𝑘

⌋︂
− 2

⌊︂
𝑛

𝑝𝑘

⌋︂
. (*)



Lecture 7 The Distribution of Primes 43

(a) If 𝑝 > 2𝑛 then all terms on in the sum are 0, hence 𝑣𝑝 = 0.

If 2𝑛
3 < 𝑝 ≤ 𝑛, then 2𝑝 > 𝑛 and 3𝑝 > 2𝑛, so 𝑝 only appears once in the prime

factorization of 𝑛! and appears twice (once as 𝑝 and once as 2𝑝) in the prime factorization
of (2𝑛)!. Thus, 𝑣𝑝 = 𝑣𝑝((2𝑛)!) − 2𝑣𝑝(𝑛!) = 2 − 2 · 1 = 0. Note since 𝑛 ≥ 3 we have
𝑝 > 2𝑛/3 ≥ 2 so 𝑝 ̸= 2. So our previous counts are correct—in particular 𝑝 appears
only once in 2𝑝 and not twice as it would’ve if 𝑝 = 2.

(b) If 𝑝 >
√
2𝑛 then 𝑝2 > 2𝑛 so in (*) all the terms where 𝑘 > 1 are zero, leaving us with

⌊2𝑛/𝑝⌋ − 2 ⌊𝑛/𝑝⌋. This is either 0 or 1. (See exercise below.)

(c) Since 𝑛 ≥ 3, 𝑛 ≥
√
2𝑛. So by part (b), we have 𝑣𝑝 ≤ 1. On the other hand, 𝑝 | (2𝑛)!

since 𝑝 ≤ 2𝑛 and 𝑝 ∤ 𝑛! since 𝑝 > 𝑛. So 𝑝 divides
(︀
2𝑛
𝑛

)︀
. Thus, 𝑣𝑝 > 0 and so 𝑣𝑝 = 1.

(d) Let 𝑙 be such that 𝑝𝑙 ≤ 2𝑛 < 𝑝𝑙+1. Then all the summands in (*) with 𝑘 > 𝑙 vanish,
leaving us with 𝑙 summands each of which is ≤ 1 (by the exercise below). Thus, 𝑣𝑝 ≤ 𝑙.
So 𝑝𝑣

𝑝 ≤ 𝑝𝑙 ≤ 2𝑛. ■

Exercise 7.13 Prove that the value of ⌊2𝑥⌋ − 2 ⌊𝑥⌋ is either 0 or 1.

Our proof will involve breaking up (︂
2𝑛

𝑛

)︂
=
∏︁
𝑝≤2𝑛

𝑝𝑣𝑝

into pieces and then bounding each piece. The next lemma will be useful for this.

Lemma 7.14 For all 𝑘 ∈ Z>0, ∏︁
𝑝≤𝑘

𝑝 ≤ 4𝑘,

where the product runs over all prime numbers 𝑝 ≤ 𝑘.

Proof: We’ll prove this by induction on 𝑘. The cases 𝑘 = 1, 2, 3 are clear by inspection.
So now assume that 𝑘 ≥ 4 and that the result is true for all integers < 𝑘.

If 𝑘 is even then 𝑘 isn’t prime and so
∏︀

𝑝≤𝑘 𝑝 =
∏︀

𝑝≤𝑘−1 𝑝 ≤ 4𝑘−1 ≤ 4𝑘 by the inductive
hypothesis.

If 𝑘 = 2𝑚 + 1 is odd then
(︀
2𝑚+1
𝑚

)︀
= (2𝑚+1)!

𝑚!(𝑚+1)! is divisible by every prime 𝑝 satisfying
𝑚+ 2 ≤ 𝑝 ≤ 2𝑚+ 1. Thus,

∏︁
𝑝≤𝑘

𝑝 =
∏︁

𝑝≤𝑚+1

𝑝

2𝑚+1∏︁
𝑘=𝑚+2

𝑝 ≤ 4𝑚+1

(︂
2𝑚+ 1

𝑚

)︂
, (**)

where the first bound is given by the inductive hypothesis. Now, using the binomial theorem,
we have

2

(︂
2𝑚+ 1

𝑚

)︂
=

(︂
2𝑚+ 1

𝑚

)︂
+

(︂
2𝑚+ 1

𝑚+ 1

)︂
≤

2𝑚+1∑︁
𝑖=0

(︂
2𝑚+ 1

𝑖

)︂
= (1 + 1)2𝑚+1 = 22𝑚+1.

So
(︀
2𝑚+1
𝑚

)︀
≤ 22𝑚 = 4𝑚. By combining this with (**), we complete the proof. ■



Lecture 7 The Distribution of Primes 44

Proof of Theorem 7.11 (Bertrand’s Postulate): Assume for the moment that 𝑛 ≥
600 and that the statement is false: there is no prime between 𝑛 and 2𝑛. Then, since√
2𝑛 ≤ 2𝑛

3 , Lemma 7.12 (parts (a), (b) and (c)) implies that all the prime divisors 𝑝 of
(︀
2𝑛
𝑛

)︀
satisfy 𝑝 ≤ 2𝑛

3 . Thus,(︂
2𝑛

𝑛

)︂
=
∏︁
𝑝≤2𝑛

𝑝𝑣𝑝 =
∏︁

𝑝≤
√
2𝑛

𝑝𝑣𝑝
∏︁

√
2𝑛<𝑝≤2𝑛/3

𝑝 ≤ (2𝑛)
√
2𝑛 42𝑛/3,

where we used Lemma 7.12 part (d) and Lemma 7.14 to bound the first and second products,
respectively.

On the other hand, the middle binomial coefficient
(︀
2𝑛
𝑛

)︀
is the largest term in the binomial

expansion

4𝑛 = 22𝑛 = (1 + 1)2𝑛 =

(︂
2𝑛

0

)︂
+

(︂
2𝑛

1

)︂
+ · · ·+

(︂
2𝑛

2𝑛

)︂
.

Since there are 2𝑛+ 1 terms in this sum, and all are ≤
(︀
2𝑛
𝑛

)︀
, we deduce that

4𝑛 ≤ (2𝑛+ 1)

(︂
2𝑛

𝑛

)︂
.

Combining this with our upper bound on
(︀
2𝑛
𝑛

)︀
, we arrive at

4𝑛

2𝑛+ 1
≤ (2𝑛)

√
2𝑛42𝑛/3.

Since 2𝑛+ 1 < (2𝑛)2 for 𝑛 ≥ 2, we can re-write the above as

22𝑛/3 < (2𝑛)
√
2𝑛+2.

Using calculus, you can show that this inequality is false for all 𝑛 ≥ 600. This contradiction
proves Bertrand’s postulate for all 𝑛 ≥ 600.

The truth of the postulate for 𝑛 ≤ 600 can be established by noting that the in the sequence
of primes

2, 3, 5, 7, 13, 23, 43, 83, 163, 317, 631

each prime is less than twice the previous one. ■

Lecture 7 Problems

7.1. Use the Prime Number Theorem to estimate the number of 100-digit primes.

7.2. Use the Prime Number Theorem to prove that there are arbitrarily large gaps between
consecutive primes. (Note that we’d already proved this in Example 6.2.) [Hint: Suppose
the largest gap between consecutive primes is 𝑔, in the sense that there cannot be more than
𝑔 consecutive composite integers . Deduce that 𝜋(𝑥) ≥ 𝑥/𝑔.]

7.3. Prove that lim
𝑛→∞

𝑝𝑛+1

𝑝𝑛
= 1.

7.4. Find all solutions to the Diophantine equation 𝑥! = 𝑦2 with 𝑥, 𝑦 ∈ Z>0. [Hint: Bertrand’s
postulate.]
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Lecture 8 Congruence Modulo 𝑛

One of the complicating features of Z is that there are infinitely many integers. However,
we can sometimes get away with condensing Z into a finite number system. The idea is to
group together numbers that share the same remainder after division by a fixed integer 𝑛.
We saw an instance of this when we considered the Diophantine equation

𝑥2 + 𝑦2 = 𝑚.

We proved that the sum of two squares can only leave a remainder of 0, 1 or 2 after division
by 4. So if 𝑚 leaves a remainder of 3, then we can conclude that the above equation has no
integer solutions. We’re going to put this type of argument into a general framework.

Here is the key definition.

Definition 8.1

Congruent
Modulo 𝑛, 𝑎 ≡ 𝑏

(mod 𝑛)

Let 𝑛 ∈ Z>0 be fixed. We say that 𝑎, 𝑏 ∈ Z are congruent modulo 𝑛 if they leave the
same remainder after division by 𝑛. We denote this by writing

𝑎 ≡ 𝑏 (mod 𝑛).

If 𝑎 and 𝑏 are not congruent modulo 𝑛, we write 𝑎 ̸≡ 𝑏 (mod 𝑛).

Theorem 2.3 (The Remainder Theorem) implies that

𝑎 ≡ 𝑏 (mod 𝑛) if and only if 𝑛 | 𝑎− 𝑏.

So, for example:

• 7 ≡ 11 (mod 4) since 4 | 7− 11;

• 100 ≡ 0 (mod 25) since 25 | 100− 25; and

• −16 ≡ 8 (mod 6) since 6 | −16− 8,

Before proceeding, let me just mention that there are familiar examples of congruence
modulo 𝑛 in everyday life. Analogue clocks operate modulo 12 (e.g. 14 o’clock is the same
as 2 o’clock, and 14 ≡ 2 (mod 12)); digital clocks operate modulo 24; weekly calendars
operate modulo 7 (e.g. if Day 1 is a Monday then Day 8 is also a Monday, and 8 ≡ 1
(mod 7)) and yearly ones modulo 12.

The notation ≡ for congruence, which is due to Gauss9, is meant to signify that congruence
behaves in many ways like regular equality =.

Proposition 8.2 Let 𝑛 ∈ Z>0 and 𝑎, 𝑏, 𝑐 ∈ Z. Then:

(a) Congruence is symmetric: 𝑎 ≡ 𝑎 (mod 𝑛).

(b) Congruence is reflexive: If 𝑎 ≡ 𝑏 (mod 𝑛) then 𝑏 ≡ 𝑎 (mod 𝑛).

(c) Congruence is transitive: If 𝑎 ≡ 𝑏 (mod 𝑛) and 𝑏 ≡ 𝑐 (mod 𝑛) then 𝑎 ≡ 𝑐 (mod 𝑛).

9C.F. Gauss (1777–1855) was one of the greatest mathematicians of all time. His book Disquisitiones
Arithmeticae revolutionized number theory and shaped it into what it is today. Most of the main results of
PMATH 340 were first clearly stated and proved in the Disquisitiones.

 https://en.wikipedia.org/wiki/Disquisitiones_Arithmeticae
 https://en.wikipedia.org/wiki/Disquisitiones_Arithmeticae
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Proof: Exercise. ■

Exercise 8.3 Prove Proposition 8.2.

A relationship that is symmetric, reflexive and transitive is said to be an equivalence
relation. So congruence modulo 𝑛 is an equivalence relation.10 In mathematics, when you
find yourself in possession of an equivalence relation on a set of objects, the natural thing
to do is to partition your set into equivalence classes where each class consists of objects
that are equivalent to each other, and no two objects from different classes are equivalent.

Definition 8.4

Congruence
Class, Residue
Class, Integers
Modulo 𝑛, Z/𝑛Z

Let 𝑛 ∈ Z>0. The congruence class (or residue class) of 𝑎 ∈ Z modulo 𝑛 is the set

[𝑎]𝑛 := {𝑏 ∈ Z : 𝑏 ≡ 𝑎 (mod 𝑛)}

of all integers congruent to 𝑎 modulo 𝑛. When 𝑛 is clear from the context, we will drop it
from the notation and write [𝑎] instead of [𝑎]𝑛.

The set of all congruence classes modulo 𝑛 is denoted by Z/𝑛Z and is called the set of
integers modulo 𝑛.

For example,

[1]3 = {𝑏 ∈ Z : 𝑏 ≡ 1 (mod 3)}
= {𝑏 ∈ Z : 𝑏 = 3𝑞 + 1 for some 𝑞 ∈ Z}
= {. . . ,−5,−2, 1, 4, 7, . . .}.

Note that if 𝑎 ≡ 𝑏 (mod 𝑛), then [𝑎]𝑛 = [𝑏]𝑛 (and conversely). So, for instance,

[1]3 = [4]3 = [7]3 = [−2]3 = · · · .

Example 8.5 Let 𝑛 = 2. The congruence class of 1 modulo 2 consists of all odd numbers, since any two
odd integers are congruent modulo 2:

[1] = {±1,±3, . . .}.

Likewise, since any two even numbers are congruent modulo 2, we have

[0] = {0,±2,±4, . . .}.

There are no other congruence classes, so

Z/2Z = {[0], [1]}

consists of two elements. In some sense we have condensed the infinite set Z into the finite
set Z/2Z by classifying integers as even or odd.

10Can you think of other equivalence relations you’ve seen in your studies so far?
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Example 8.6 Let’s look at congruence classes modulo 𝑛 = 4. There will be one congruence class for each
possible remainder after division by 4. For instance, [0] consists of all multiples of 4, [1]
consists of all integers that leave a remainder of 1 after division by 4, and so on. Thus,
there are 4 congruence classes in total, and we have

Z/4Z = {[0], [1], [2], [3]}.

The previous examples can be generalized as follows.

Proposition 8.7 Let 𝑛 ∈ Z>0. Then
Z/𝑛Z = {[0]𝑛, [1]𝑛, . . . , [𝑛− 1]𝑛}.

In particular, Z/𝑛Z is finite set of size 𝑛.

Proof: By the remainder theorem, every integer is congruent to exactly one of 0, 1, ... or
𝑛− 1 modulo 𝑛. This shows that [0]𝑛, [1]𝑛, . . . , [𝑛− 1]𝑛 give all possible congruence classes
and that they are all distinct. This proves the proposition. ■

It’s important to keep in mind that in Z/𝑛Z what matters are the equivalence classes and
not the integers chosen to represent the equivalence classes. For instance, we could equally
well represent Z/4Z by

Z/4Z = {[−8]4, [5]4, [18]4, [−1]4}.

This is the same set as {[0]4, [1]4, [2]4, [3]4} since

[−8]4 = [0]4, [5]4 = [1]4, [18]4 = [2]4 and [−1]4 = [3]4.

This prompts the following definition.

Definition 8.8

Complete Set of
Representatives

Let 𝑛 ∈ Z>0. An integer 𝑏 in the congruence class [𝑎]𝑛 is said to be a representative of
the congruence class.

A complete set of representatives modulo 𝑛 is a set of 𝑛 distinct integers {𝑎1, . . . , 𝑎𝑛}
such that every integer is congruent modulo 𝑛 to exactly one 𝑎𝑖.

A representative of [𝑎]𝑛 is any integer 𝑏 such that 𝑏 ≡ 𝑎 (mod 𝑛). For instance, 1, 5 and
−7 are representatives of [1]4 but 6 isn’t. The terminology reflects the fact that

[1]4 = [5]4 = [−7]4

so any one of these integers can be used to represent the congruence class.

The sets {0, 1, 2, 3} and {−8, 5, 18,−1} are complete sets of representatives modulo 4.
Proposition 8.7 asserts that {0, 1, . . . , 𝑛− 1} is a complete set of representatives modulo 𝑛.

Exercise 8.9 Find a complete set of representatives modulo 5 that consists of even integers.
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The upshot of all this is that we now have a mechanism for passing from the infinite set Z
to the finite set Z/𝑛Z and that further every integer has a representative in Z/𝑛Z. What’s
more, this passage to Z/𝑛Z respects addition, subtraction and multiplication. (Division is
a bit more tricky.)

Proposition 8.10 If 𝑎 ≡ 𝑐 (mod 𝑛) and 𝑏 ≡ 𝑑 (mod 𝑛), then

𝑎± 𝑏 ≡ 𝑐± 𝑑 (mod 𝑛) and 𝑎𝑏 ≡ 𝑐𝑑 (mod 𝑛).

Proof: I’ll only prove that 𝑎 + 𝑏 ≡ 𝑐 + 𝑑 (mod 𝑛); the others are similarly handled. We
must show that 𝑛 | (𝑎 + 𝑏) − (𝑐 + 𝑑). Since 𝑛 | (𝑎 − 𝑐) and 𝑛 | (𝑏 − 𝑑), it follows that 𝑛
divides (𝑎− 𝑐) + (𝑏− 𝑑) = (𝑎+ 𝑏)− (𝑐+ 𝑑), as desired. ■

This proposition allows us to define +,− and · on the set Z/𝑛Z by

[𝑎]𝑛 ± [𝑏]𝑛 = [𝑎± 𝑏]𝑛 and [𝑎]𝑛 · [𝑏]𝑛 = [𝑎𝑏]𝑛.

The subtlety here is that since [𝑎]𝑛 is not uniquely determined by 𝑎, we have to be careful
whenever we use [𝑎]𝑛 in a formula. The formula should hold regardless of what representative
for [𝑎]𝑛 we choose in place of 𝑎.

For example, suppose we want to add [1]4 and [2]4. The above formula says this is equal to

[1]4 + [2]4 = [1 + 2]4 = [3]4.

However, since [1]4 = [13]4 and [2]4 = [−2]4, applying the same formula to these represen-
tatives instead gives

[1]4 + [2]4 = [13]4 + [−2]4 = [13− 2]4 = [11]4.

The apparent contradiction disappears since [3]4 = [11]4. This is what Proposition 8.10
guarantees: it says that [𝑎]𝑛 + [𝑏]𝑛 = [𝑎+ 𝑏]𝑛 is well-defined independently of the choice of
representatives.

Exercise 8.11 Convince yourself of this. Suppose that [𝑎]𝑛 = [𝑐]𝑛 and [𝑏]𝑛 = [𝑑]𝑛. Prove that [𝑎]𝑛 + [𝑏]𝑛 =
[𝑐]𝑛 + [𝑑]𝑛.

To see that this is not something to be taken for granted, consider the following example.

Example 8.12 Suppose we were to define exponentiation in Z/𝑛Z via the formula

[𝑎][𝑏] = [𝑎𝑏].

There’s an immediate problem here: if 𝑏 is a negative integer then [𝑎𝑏]𝑛 would be undefined
since 𝑎𝑏 need not be an integer. So let’s restrict this definition to representatives 𝑏 that are
positive integers.
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This is still problematic. For instance, let 𝑛 = 4 and consider

[2][5] = [25] = [32] = [0].

On the other hand, since [5] = [1], [2][5] should also be equal to

[2][1] = [21] = [2].

However, [2]4 ̸= [0]4, so we have reached a contradiction!

The conclusion is that our proposed formula for [𝑎][𝑏] is not well-defined.

REMARK (Notation: Z/𝑛Z vs. Z𝑛)

In other sources (e.g. MATH 135), the set of integers modulo 𝑛 is denoted by Z𝑛. The
notation Z/𝑛Z is more common in number theory for two reasons:

1. It’s less ambiguous. (Z𝑝 is used by number theorists to denote the 𝑝-adic integers.)

2. It reflects the ring-theoretic construction of Z/𝑛Z as the quotient of Z by the ideal 𝑛Z.
Because of this, the notation Z/𝑛Z generalizes to other contexts more consistently.

That said, you’re welcome to use Z𝑛 if you want.

Lecture 8 Problems

8.1. Prove carefully the assertion made in the lecture that

𝑎 ≡ 𝑏 (mod 𝑛) if and only if 𝑛 | 𝑎− 𝑏.

8.2. If tomorrow is a Tuesday, what day of the week is it 365 days from now?

8.3. (a) Show that 𝑆 = {3, 6, 17,−5, 14, 34} is a complete set of representatives modulo 6.

(b) Evaluate the following in Z/6Z. Express your final answer as a congruence class [𝑎]6
with 𝑎 ∈ 𝑆 from part (a).

(i) [3]6 + [15]6.

(ii) [1]6 − [5]6.

(iii) [4]6 · [−4]6.

8.4. Either find a complete set of representatives modulo 4 consisting of perfect squares or prove
that no such set can exist.
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Lecture 9 Modular Arithmetic

In the previous lecture, we introduced the set Z/𝑛Z of integers modulo 𝑛. This is a finite
set of size 𝑛 consisting of all congruence classes modulo 𝑛. We can list the elements of Z/𝑛Z
by first choosing a complete set of representatives modulo 𝑛. A convenient choice is the set
of remainders after division by 𝑛, which gives us

Z/𝑛Z = {[0], [1], . . . , [𝑛− 1]}.

We learned that we can do arithmetic in Z/𝑛Z with congruence classes:

[𝑎] + [𝑏] = [𝑎+ 𝑏]

[𝑎]− [𝑏] = [𝑎− 𝑏]

[𝑎][𝑏] = [𝑎][𝑏].

Division is also possible in some cases, but we will postpone its discussion to later.

These operations obey all the familiar rules of arithmetic, such as

[𝑎] + [𝑏] = [𝑏] + [𝑎]

[𝑎] + ([𝑏] + [𝑐]) = ([𝑎] + [𝑏]) + [𝑐]

[𝑎]([𝑏] + [𝑐]) = [𝑎𝑏+ 𝑎𝑐]

[𝑎]𝑘 = [𝑎𝑘] where 𝑘 ∈ Z>0.

(Warning: In the last one, 𝑘 is a positive integer and not a congruence class. You cannot
replace it with 𝑘′ even if 𝑘 ≡ 𝑘′ (mod 𝑛). See Example 8.12.)

Thus, we’ve created a new number system. The way to think about it is like a “condensed”
version of Z where each integer 𝑎 is replaced by a representative modulo 𝑛. This can be
very convenient when the representatives are chosen in a clever way, since in Z/𝑛Z we can
replace every instance of 𝑎 with any 𝑎′ such that 𝑎 ≡ 𝑎′ (mod 𝑛).

Example 9.1 To calculate 33 · 106 + 633 modulo 4 (by “calculate” let’s agree to mean: find the smallest
non-negative integer congruent to this one), we first observe that

[33] = [1], [106] = [2] and [63] = [−1].

Thus,
33 · 106 + 633 ≡ 1 · 2 + (−1)3 ≡ 2− 1 = 1 (mod 4).

We could have also done:

33 · 106 + 633 ≡ (−3)(2) + 33 ≡ −6 + 27 ≡ 21 ≡ 1 (mod 4).

You’re free to make whatever replacements modulo 4 you like, though some will be more
efficient than others.

Exercise 9.2 Calculate 1! + 2! + 3! + · · ·+ 100! modulo 5.
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The next examples illustrate how modular arithmetic can help prove results concerning
arithmetic in Z.

Example 9.3 In the problem set for Lecture 2, you were asked to prove that 3 | 𝑎3 − 𝑎 for all 𝑎 ∈ Z. Use
modular arithmetic to prove the stronger statement that 6 | 𝑎3 − 𝑎 for all 𝑎 ∈ Z.

Solution: What we want to prove here is that

𝑎3 − 𝑎 ≡ 0 (mod 6)

for all 𝑎 ∈ Z. Since 𝑎 is congruent to one of 0, 1, . . . , 5, we just have to plug these in one at
a time and confirm that the result holds. Let’s do it:

03 − 0 ≡ 0 (mod 6)

13 − 1 ≡ 0 (mod 6)

23 − 2 ≡ 6 ≡ 0 (mod 6)

33 − 3 ≡ 24 ≡ 0 (mod 6)

43 − 4 ≡ (−2)3 − (−2) ≡ 0 (mod 6)

53 − 5 ≡ (−1)3 − (−1) ≡ 0 (mod 6)

This proves the result! We’ve managed to turn our problem into a finite and doable (if
slightly tedious) computational task.

(By the way, we’ll be able to give a quicker proof of this particular result very soon.)

Exercise 9.4 Prove that 30 | 𝑎5 − 𝑎 for all 𝑎 ∈ Z.

Example 9.5 (A test for divisibility by 9)

Let’s prove that 𝑎 ∈ Z>0 is divisible by 9 if and only if the sum of its decimal digits is
divisible by 9. (For example, 378 is divisible by 9 since 3+7+8=18 is.)

If 𝑎 is expressed in decimal form as 𝑎𝑘 · · · 𝑎1𝑎0, where 𝑎0 is the units digits, 𝑎1 is the tens
digit, and so on, then that means

𝑎 = 𝑎𝑘10
𝑘 + · · ·+ 𝑎110 + 𝑎0.

(For example, 378 = 3 · 102 + 7 · 10 + 8.) Since 10𝑘 ≡ 1𝑘 ≡ 1 (mod 9) for all 𝑘 ∈ Z>0, it
follows that

𝑎 ≡ 𝑎𝑘 + · · ·+ 𝑎1 + 𝑎0 (mod 9).

Thus, 𝑎 is congruent to the sum of its digits modulo 9. Since an integer is divisible by 9 if
and only if it is congruent to 0 modulo 9, the proof is complete.

Exercise 9.6 (A test for divisibility by 11)

Prove that 𝑎 ∈ Z>0 is divisible by 11 if and only if the alternating sum of its decimal digits
is divisible by 11. (For example, 4818 is divisible by 11 since 4− 8 + 1− 8 = −11 is.)
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Modular arithmetic can sometimes be used to show that Diophantine equations have no in-
teger solutions. The idea is that if 𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛) is a polynomial with integer coefficients,
and if the equation

𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛) = 0

has an integer solution, say (𝑥1, . . . , 𝑥𝑛) = (𝑎1, . . . , 𝑎𝑛), then

𝑓(𝑎1, . . . , 𝑎𝑛) ≡ 0 (mod 𝑛)

for all 𝑛 ∈ Z>0, since 𝑓(𝑎1, . . . , 𝑎𝑛) is in fact equal to 0. So if we can find an 𝑛 for which
the congruence

𝑓(𝑥1, . . . , 𝑥𝑛) ≡ 0 (mod 𝑛)

doesn’t have any solutions, then that means the original Diophantine equation doesn’t have
any solutions either. (Warning: The converse is false. If 𝑓(𝑥1, . . . , 𝑥𝑛) = 0 has a solution
modulo 𝑛, that doesn’t mean it has a solution in Z. See the Remark on page 53.) If 𝑛 is
small, it’s a finite and manageable task to check whether there are no solutions modulo 𝑛.

Example 9.7 Show that the Diophantine equation

𝑥2 − 5𝑦2 = 13

does not have any integer solutions.

Solution: Let’s consider the equation modulo 5. It reduces to

𝑥2 ≡ 3 (mod 5).

There are only finitely many possibilities for 𝑥 modulo 5: 0, 1, 2, 3, 4. In turn, these give
𝑥2 ≡ 0, 1, 4, 4, 1 (mod 5). So 𝑥2 is never congruent to 3 modulo 5.

Thus, the equation 𝑥2 − 5𝑦2 = 13 has no solutions in the integers modulo 5, and therefore
no solutions in the integers.

In the previous example, it was perhaps obvious to try reducing the equation modulo 𝑛 = 5.
Sometimes you have to be creative in choosing 𝑛.

Example 9.8 Show that the Diophantine equation

𝑥2 + 𝑦2 + 𝑧2 = 7

does not have any integer solutions.

Solution: Let’s consider the equation modulo 8. The key observation is that squares are
congruent to 0, 1 or 4 modulo 8:

𝑎 (mod 8) 0 1 2 3 4 5 6 7

𝑎2 (mod 8) 0 1 4 1 0 1 4 1

So the sum of three squares can only be congruent to 0, 1, 2, 3, 4, 5 or 6 modulo 8.
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Thus, the congruence
𝑥2 + 𝑦2 + 𝑧2 ≡ 7 (mod 8)

does not have any solutions, and so the Diophantine equation

𝑥2 + 𝑦2 + 𝑧2 = 7

does not have any integer solutions. Our proof actually shows that the Diophantine equation
𝑥2 + 𝑦2 + 𝑧2 = 𝑚 has no integer solutions whenever 𝑚 ≡ 7 (mod 8).

Example 9.9 Show that the Diophantine equation

𝑥3 + 117𝑦3 = 5

does not have any integer solutions.

Solution: The natural thing to try here is to reduce modulo 117, in which case the equation
becomes

𝑥3 ≡ 5 (mod 117).

We could try to check all 117 congruence classes by hand (or ask a computer to do this for
us!). We would find there are none.

It would be easier to notice that 9 | 117 (why does 9 divide 117?), so let’s reduce modulo 9:

𝑥3 ≡ 5 (mod 9).

You can now quickly check that cubes are congruent modulo 9 to 0 or ±1. Thus, there are
no solutions to 𝑥3 + 117𝑦3 = 5 modulo 9, and therefore no solutions in the integers.

This equation is part of an amusing story. It appeared in a paper where the authors used
some fairly complicated algebraic number theory to show that it has no integer solutions.
Shortly afterwards, another author published the quick mod 9 solution described above.

REMARK (The Local-to-Global Principle)

We’ve observed that any integer solution to the Diophantine equation 𝑓(𝑥1, . . . , 𝑥𝑛) = 0
will be a solution modulo 𝑛 for every 𝑛.

Solutions in Z are referred to as global solutions, while solutions in Z/𝑛Z are referred
to as local solutions. So our observation can be rephrased as: a global solution is a local
solution.

Conversely, not every local solution comes from a global solution. For instance, 𝑥2+𝑦2 = −1
clearly has no solutions in Z (why?) but it has the “local” solution (𝑥, 𝑦) = (1, 1) modulo 3.
However, there is no solution modulo 4 as you can check (in fact, you proved this in a
previous lecture). So the lack of a local solution modulo 4 can perhaps explain why there
is no global solution.

A natural question, then, is the following. If a Diophantine equation has solutions modulo
𝑛 for all 𝑛, must it have a solution in Z? In more provocative language: if there are local
solutions locally everywhere, must there exist a global solution? Ponder this for a while.
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Lecture 9 Problems

9.1. Let 𝑓(𝑥) be a polynomial with integer coefficients. Prove that if 𝑎 ≡ 𝑏 (mod 𝑛) then
𝑓(𝑎) ≡ 𝑓(𝑏) (mod 𝑛).

9.2. Prove or disprove: If [𝑎]𝑛[𝑏]𝑛 = [0]𝑛 then either [𝑎]𝑛 = [0]𝑛 or [𝑏]𝑛 = [0]𝑛.

▶ 9.3. Let 𝑝 be prime. Prove that (𝑎 + 𝑏)𝑝 ≡ 𝑎𝑝 + 𝑏𝑝 (mod 𝑝) for all 𝑎, 𝑏 ∈ Z. [Hint: There is
helpful problem at the end of Lecture 5.]

9.4. Prove that the product of 𝑘 ≥ 1 consecutive integers is divisible by 𝑘. (A stronger result is
possible: the product will be divisible by 𝑘! not just by 𝑘.)

9.5. Show that the Diophantine equation 𝑥2 − 11 = 12𝑦5 does not have any integer solutions.

9.6. Show that the Diophantine equation 𝑥3 + 𝑦3 + 𝑧3 = 22 does not have any integer solutions.

9.7. (a) Show that 1! + 2! + · · ·+ 100! is not a perfect square.

(b) Find all solutions to the Diophantine equation 1! + 2! + · · ·+ 𝑥! = 𝑦2 with 𝑥, 𝑦 ∈ Z>0.
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Lecture 10 Division Modulo 𝑛

Let [𝑎] and [𝑏] be congruence classes modulo 𝑛. We would like (if possible) to define their
quotient [𝑥] := [𝑏]/[𝑎] to be a congruence class [𝑥] modulo 𝑛 too. For this to behave as
expected, we would need to have

[𝑎][𝑥] = [𝑏], or equivalently, 𝑎𝑥 ≡ 𝑏 (mod 𝑛).

Thus, we’re led to consider the linear congruence 𝑎𝑥 ≡ 𝑏 (mod 𝑛). However, this con-
gruence need not have any solutions; moreover, when it does have solutions, they need not
be unique! These are difficulties that need to be addressed if we want to be able to divide
by 𝑏 modulo 𝑛.

Example 10.1 The linear congruence
2𝑥 ≡ 1 (mod 4)

has no solutions, as can be confirmed by substituting 𝑥 = 0, 1, 2 and 3 into the left-side.

Alternatively, this congruence is equivalent to the Diophantine equation

2𝑥 = 1 + 4𝑦 ⇐⇒ 2𝑥− 4𝑦 = 1.

Since gcd(2, 4) ∤ 1, it follows from Theorem 4.6 that there are no integer solutions to this
Diophantine equation, and so there are no solutions to the congruence.

In any case, we conclude that [1]/[2] is meaningless modulo 4.

Example 10.2 Consider the linear congruence
2𝑥 ≡ 2 (mod 4).

By inspection, this has two solutions given by 𝑥 ≡ 1, 3 (mod 4). If we had naively tried to
“cancel the 2s” we would have missed the second solution.

Less obvious is the congruence
4𝑥 ≡ 2 (mod 6).

Now there is no obvious cancellation, but there are still two solutions: 𝑥 ≡ 2, 5 (mod 6).

The conclusion we draw from both of these congruences is that [𝑎]/[𝑏] can sometimes be
ambiguous. What do we mean by [2]/[4] modulo 6? Is it [2]? Is it [5]? The answer is it is
neither : because of this ambiguity, we leave it undefined.

The next theorem, which should remind you of Theorem 4.6, tells us how to deal with linear
congruences.

Theorem 10.3 (Solvability of Linear Congruences)

Let 𝑎, 𝑏, 𝑛 ∈ Z with 𝑛 ≥ 1, and consider the linear congruence

𝑎𝑥 ≡ 𝑏 (mod 𝑛). (*)

(a) The congruence (*) has a solution modulo 𝑛 if and only if gcd(𝑎, 𝑛) | 𝑏.
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(b) If 𝑥 ≡ 𝑥0 is a particular solution to (*), then the full set of solutions modulo 𝑛 is given
by the 𝑔 distinct congruence classes[︂

𝑥0 + 𝑘
𝑛

𝑔

]︂
, 0 ≤ 𝑘 ≤ 𝑔 − 1,

where 𝑔 = gcd(𝑎, 𝑛).

Proof: The whole thing follows from Theorem 4.6. Indeed, the congruence 𝑎𝑥 ≡ 𝑏 (mod 𝑛)
is equivalent to the linear Diophantine equation

𝑎𝑥 = 𝑏+ 𝑛𝑦 ⇐⇒ 𝑎𝑥− 𝑛𝑦 = 𝑏

which, according to 4.6(a), has a solution if and only if gcd(𝑎, 𝑛) | 𝑛. This proves part (a).
Further, by 4.6(b), if (𝑥0, 𝑦0) is a particular solution, then the general solution is given by

(𝑥, 𝑦) = (𝑥0 + 𝑘(𝑛/𝑔)), 𝑦0 + 𝑘(𝑎/𝑔)), 𝑘 ∈ Z.

So the solutions for 𝑥 modulo 𝑛 are all of the form

𝑥 ≡ 𝑥0 + 𝑘
𝑛

𝑔
(mod 𝑛), 𝑘 ∈ Z.

It remains to determine which of these are distinct modulo 𝑛. This is a good exercise for
you to work out. ■

Exercise 10.4 Complete the proof of Theorem 10.3(b) by showing that the congruence classes[︂
𝑥0 + 𝑘

𝑛

𝑔

]︂
, 0 ≤ 𝑘 ≤ 𝑔 − 1,

are all distinct, and that further any congruence class [𝑥0+𝑙(𝑛/𝑔)], where 𝑙 ∈ Z, is congruent
to one of the above congruence classes.

One important takeaway from the proof of Theorem 10.3 is that the linear congruence
𝑎𝑥 ≡ 𝑏 (mod 𝑛) is equivalent to the linear Diophantine equation 𝑎𝑥 − 𝑛𝑦 = 𝑏. So we can
find solutions to the congruence by solving this latter equation, which we know how to do
(e.g. by inspection or by using the Euclidean algorithm). Let’s illustrate.

Example 10.5 Solve the following linear congruences (if possible).

(a) 6𝑥 ≡ 4 (mod 15).

(b) 6𝑥 ≡ 9 (mod 15).

Solution:

(a) Since gcd(6, 15) ∤ 4, this congruence has no solution.
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(b) Since gcd(6, 15) | 9, this congruence has a solution. We can find a solution by inspection
rather quickly by noticing that 9 ≡ −6 (mod 15), so the congruence is equivalent to

6𝑥 ≡ −6 (mod 15)

where it’s clear that 𝑥 ≡ −1 (mod 15) is a solution. Since 𝑔 = gcd(6, 15) = 3, the full
solution set modulo 15 is{︂[︂

−1 + 𝑘
15

3

]︂
: 0 ≤ 𝑘 ≤ 2

}︂
= {[−1], [4], [9]}.

Exercise 10.6 Solve the linear congruence 15𝑥 ≡ 25 (mod 35).

Theorem 10.3(b) shows that if the linear congruence 𝑎𝑥 ≡ 𝑏 (mod 𝑛) has a solution, then it
has exactly 𝑔 = gcd(𝑎, 𝑛) solutions modulo 𝑛. However, all of these solutions are congruent
to each other modulo 𝑛/𝑔! So we obtain the following result.

Corollary 10.7 The linear congruence
𝑎𝑥 ≡ 𝑏 (mod 𝑛)

has a solution if and only if 𝑔 = gcd(𝑎, 𝑛) | 𝑏, in which case there is a unique solution modulo
𝑛/𝑔. Furthermore, this aforementioned solution satisfies the congruence

𝑎

𝑔
𝑥 ≡ 𝑏

𝑔
(mod

𝑛

𝑔
).

Proof: Only the final assertion still requires proof. It follows from the fact that a solution
to the congruence gives a solution to the Diophantine equation 𝑎𝑥 = 𝑏+𝑛𝑦 and therefore, by
dividing through by 𝑔, to the Diophantine equation (𝑎/𝑔)𝑥 = (𝑏/𝑔) + (𝑛/𝑔)𝑦, hence to the
congruence (𝑎/𝑔)𝑥 ≡ (𝑏/𝑔) (mod 𝑛/𝑔). (Note that 𝑎/𝑔, 𝑏/𝑔 and 𝑛/𝑔 are all integers.) ■

Example 10.8 Returning to the congruence 6𝑥 ≡ 9 (mod 15), where 𝑔 = gcd(6, 15) = 3, the preceding
corollary tells us that there is a unique solution modulo 15/3 = 5, and that this solution
satisfies

2𝑥 ≡ 3 (mod 5).

At this point we can confirm that our solutions 𝑥 ≡ −1, 4, 9 (mod 15) all reduce to 4
(mod 5), and that 𝑥 ≡ 4 satisfies the above congruence, as predicted by the corollary.

However, had we not already not determined the solutions modulo 15, we could have used
this simplified congruence modulo 5 to find them. Let’s see how this works in a separate
example.
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Example 10.9 Solve the congruence 12𝑥 ≡ 18 (mod 27).

Solution: Since 𝑔 = gcd(12, 27) = 3 and 3 divides 18, we know that there is a unique
solution to this congruence modulo 27/3 = 9, and that this solution satisfies

12

3
𝑥 ≡ 18

3
(mod

27

3
) ⇐⇒ 4𝑥 ≡ 6 (mod 9).

This congruence is easy to solve by inspection since there are only 9 values of 𝑥 to check.
We end up discovering that 𝑥 ≡ 6 (mod 9) is the desired solution.

Note that 𝑥 ≡ 6 is guaranteed to be a solution to the original congruence modulo 27. So
now we can obtain the full set of solutions modulo 27:{︂[︂

6 +
27

3
𝑘

]︂
: 0 ≤ 𝑘 ≤ 2

}︂
= {[6], [15], [24]}.

Exercise 10.10 Express your solution to the congruence 15𝑥 ≡ 25 (mod 35) from Exercise 10.6 as a single
congruence class modulo 7.

A special case of Corollary 10.7 deserves singling out: the congruence 𝑎𝑥 ≡ 1 (mod 𝑛) has
a solution if and only if gcd(𝑎, 𝑛) = 1, that is, if and only if 𝑎 and 𝑛 are coprime. In this
case, there is a unique a solution modulo 𝑛, and we give it a name.

Definition 10.11

Inverse Modulo 𝑛

Let 𝑛 ∈ Z>0. If 𝑎 ∈ Z is coprime to 𝑛, then the unique congruence class [𝑥]𝑛 satisfying
[𝑎]𝑛[𝑥]𝑛 = [1]𝑛 is called the inverse of [𝑎] modulo 𝑛. We denote it by [𝑎]−1

𝑛 .

If 𝑎 is not coprime to 𝑛, then we say that [𝑎]−1
𝑛 is undefined.

When 𝑛 is clear from context, we will write [𝑎]−1 in place of [𝑎]−1
𝑛 .

One thing worth pointing out here is that if [𝑎]𝑛 = [𝑏]𝑛 then 𝑎 is coprime to 𝑛 if and only if
𝑏 is coprime to 𝑛. That is, being coprime to 𝑛 is a feature of the congruence class [𝑎]𝑛 that
is independent of the choice of representative of the class.

Example 10.12 Since gcd(3, 10) = 1, [3] has an inverse modulo 10. To find it, we solve 3𝑥 ≡ 1 (mod 10) to
get that [3]−1 = [7].

On the other hand, since gcd(2, 10) ̸= 1, [2] has no inverse modulo 10.

Here is a table of the congruence classes modulo 10 and their inverses, when they exist. (A
dash − indicates that [𝑥]−1 is undefined.)

[𝑥] [0] [1] [2] [3] [4] [5] [6] [7] [8] [9]

[𝑥]−1 − [1] − [7] − − − [3] − [9]
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Exercise 10.13 Construct a similar table for the congruence classes and their inverses modulo 12.

If we have [𝑎]−1
𝑛 , we can easily solve any linear congruence 𝑎𝑥 ≡ 𝑏 (mod 𝑛) by multiplying

both sides by this inverse.

Example 10.14 To solve the congruence 3𝑥 ≡ 8 (mod 10), let’s multiply through by [3]−1 = [7]:

(7 · 3)⏟  ⏞  
≡1

𝑥 ≡ 7 · 8 (mod 10)

𝑥 ≡ 56 (mod 10)

𝑥 ≡ 6 (mod 10).

Of course, this method is only useful if you can determine [𝑎]−1
𝑛 quickly (if it even exists).

If you have to run the Euclidean algorithm to find [𝑎]−1
𝑛 then you might as well just run it

to solve 𝑎𝑥 ≡ 𝑏 (mod 𝑛) directly.

Lecture 10 Problems

10.1. Prove that if [𝑎]𝑛 = [𝑏]𝑛 then gcd(𝑎, 𝑛) = gcd(𝑏, 𝑛) and, in particular, 𝑎 is coprime to 𝑛 if
and only if 𝑏 is coprime to 𝑛.

10.2. Find all values of 𝑛 ∈ Z>0 such that [2]−1 exists in Z/𝑛Z. In the cases where [2]−1 exists,
determine it explicitly as a congruence class in Z/𝑛Z. (Your answer will depend on 𝑛.)

10.3. TheChinese Remainder Theorem (CRT) states that if 𝑛1, 𝑛2 . . . , 𝑛𝑘 ∈ Z>0 are pairwise
coprime integers, then the system of linear congruences

𝑥 ≡ 𝑎1 (mod 𝑛1)

𝑥 ≡ 𝑎2 (mod 𝑛2)

...

𝑥 ≡ 𝑎𝑘 (mod 𝑛𝑘)

has a unique solution modulo 𝑛1𝑛2 · · ·𝑛𝑘.

(a) Prove the CRT in the case where 𝑘 = 2 by writing 𝑥 = 𝑎1 + 𝑛1𝑦 (with 𝑦 ∈ Z) and
substituting this into the congruence 𝑥 ≡ 𝑎2 (mod 𝑛2). (You should obtain a linear
congruence for 𝑦.)

(b) Prove the CRT in the case where 𝑘 ≥ 2 by using part (a). [Hint: First deal with the
congruences modulo 𝑛1 and 𝑛2 to find a solution modulo 𝑛1𝑛2, then pair this off with
the congruence modulo 𝑛3, etc.]

10.4. Solve Sunzi’s problem (the origin of the Chinese Remainder Theorem): Find all solutions
to the system of linear congruences

𝑥 ≡ 2 (mod 3)

𝑥 ≡ 3 (mod 5)

𝑥 ≡ 2 (mod 7).
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Lecture 11 The Group of Units Modulo 𝑛

Here’s a summary of what we discovered last lecture. A congruence class [𝑎]𝑛 ∈ Z/𝑛Z
will have a unique inverse modulo 𝑛 if and only if 𝑎 and 𝑛 are coprime. This inverse is a
congruence class [𝑏]𝑛 ∈ Z/𝑛Z that is characterized by the fact that

[𝑎]𝑛[𝑏]𝑛 = [1]𝑛.

Since it’s unique (if it exists), we can and will denote it unambiguously by [𝑎]−1
𝑛 .

For example, [2]−1
5 = [3]5 since [2]5[3]5 = [1]5. Likewise, [3]−1

5 = [2]5. In general, to find
[𝑎]−1

𝑛 , we must solve the congruence

𝑎𝑥 ≡ 1 (mod 𝑛).

Exercise 11.1 As a refresher, find the inverse of 7 modulo 11.

Here’s some helpful terminology.

Definition 11.2

Invertible Modulo
𝑛, Inverse Modulo
𝑛, Units Modulo

𝑛, (Z/𝑛Z)×

Let 𝑛 ∈ Z>0. A congruence class [𝑎]𝑛 ∈ Z/𝑛Z is called a unit (or said to be invertible) if
there is a congruence class [𝑏]𝑛 ∈ Z/𝑛Z such that [𝑎]𝑛[𝑏]𝑛 = 1. In this case, [𝑏]𝑛 is uniquely
determined by [𝑎]𝑛 and is called the inverse of [𝑎]𝑛 and denoted by [𝑎]−1

𝑛 .

The set of all units in Z/𝑛Z will be denoted by (Z/𝑛Z)×.

REMARK

The terminology for units stems from the fact that in Z, the only integers 𝑎 that have
inverses 1/𝑎 in Z are the “units” ±1. The notation (Z/𝑛Z)× comes from ring theory, where
𝑅× denotes the set of units in a ring 𝑅 (and Z/𝑛Z is an example of a ring). The × is meant
to signify that we are dealing with elements that have a multiplicative inverse.

For example,

(Z/4Z)× = {[1], [3]}
(Z/5Z)× = {[1], [2], [3], [4]}
(Z/6Z)× = {[1], [5]}
(Z/8Z)× = {[1], [3], [5], [7]}.

Here are the basic properties of units modulo 𝑛.

Proposition 11.3 Let 𝑛 ∈ Z>0.

(a) [𝑎]𝑛 ∈ Z/𝑛Z is a unit if and only if gcd(𝑎, 𝑛) = 1.

(b) [1]𝑛 a unit for all 𝑛.

(c) If [𝑎]𝑛, [𝑏]𝑛 ∈ Z/𝑛Z are units, then so is [𝑎]𝑛[𝑏]𝑛.

(d) If [𝑎]𝑛 ∈ Z/𝑛Z is a unit, then [𝑎]−1
𝑛 is a unit.
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Proof: Part (a) was proved last lecture and is restated here for convenience. We can use
it to immediately prove parts (b)–(d). However, let’s give different proofs. We will use the
fact that [𝑎] is a unit if and only if there is a [𝑏] such that [𝑎][𝑏] = 1.

For (b), since [1][1] = [1], we see that [1] is a unit with [1]−1 = [1]. Similarly, since
([𝑎][𝑏])([𝑏]−1[𝑎]−1) = [𝑎][1][𝑎]−1 = [1], we have that [𝑎][𝑏] is a unit with inverse [𝑏]−1[𝑎]−1.
Finally, since [𝑎]−1[𝑎] = [𝑎][𝑎]−1 = [1], it follows that [𝑎]−1 is a unit with inverse [𝑎]. ■

Parts (b)–(d) of Proposition 11.3 say that the set (Z/𝑛Z)× of units modulo 𝑛 forms a
group under multiplication. A group, much like a vector space, is an abstract mathematical
object consisting of a set together with an operation that satisfies certain axioms. Here is
the formal definition.

Definition 11.4

Group, Order

A group is a set 𝐺 together with an operation ⋆ defined so that for all 𝑔, ℎ ∈ 𝐺, 𝑔 ⋆ ℎ ∈ 𝐺.
Furthermore, the operation ⋆ must satisfy the following properties, known as the group
axioms.

1. [Associativity] For all 𝑔, ℎ, 𝑘 ∈ 𝐺, we have 𝑔 ⋆ (ℎ ⋆ 𝑘) = (𝑔 ⋆ ℎ) ⋆ 𝑘.

2. [Identity Element] There is a unique element 𝑒 ∈ 𝐺 such that 𝑒 ⋆ 𝑔 = 𝑔 ⋆ 𝑒 = 𝑔 for all
𝑔 ∈ 𝐺. This element 𝑒 is called the identity element of 𝐺.

3. [Inverses] For all 𝑔 ∈ 𝐺, there exists a unique element ℎ ∈ 𝐺 such that 𝑔⋆ℎ = ℎ⋆𝑔 = 𝑒.
Such an element ℎ is called the inverse of 𝑔 and is denoted by 𝑔−1.

A group 𝐺 is said to be commutative if ⋆ satisfies the following additional property.

4. [Commutativity] For all 𝑔, ℎ ∈ 𝐺, 𝑔 ⋆ ℎ = ℎ ⋆ 𝑔.

If the set 𝐺 is finite, then the size of 𝐺 is called the order of 𝐺 and will be denoted by |𝐺|
or #𝐺.

We won’t delve too deeply in the theory of groups since there are separate courses for that.
The above definition was introduced primarily to put things in perspective. One payoff is
that some very simple ideas from group theory will allow us to give cleaner statements and
proofs of several results down the line.

First, here are some examples of commutative groups:

• 𝐺 = Z with ⋆ being the usual addition of integers. In this case, the associativity
axioms reads: 𝑎+ (𝑏+ 𝑐) = (𝑎+ 𝑏) + 𝑐 for all 𝑎, 𝑏, 𝑐 ∈ Z. The identity element 𝑒 ∈ Z
must satisfy 𝑒+ 𝑎 = 𝑎+ 𝑒 = 𝑎 for all 𝑎 ∈ Z — so 𝑒 = 0. Finally, the inverse of 𝑎 ∈ Z
is an integer 𝑏 ∈ Z that satisfies 𝑎+ 𝑏 = 𝑒 = 0. So the invese of 𝑎 is −𝑎.

• 𝐺 = Z/𝑛Z is a group with ⋆ being addition of congruence classes. I’ll let you confirm
that the identity element is [0] and the additive inverse of [𝑎] is [−𝑎].

• 𝐺 = (Z/𝑛Z)× is a group with ⋆ being multiplication of congruence classes. The iden-
tity element this time is [1] and the inverse of [𝑎] is [𝑎]−1. (Look back at Proposition
11.3.)
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For an example of a non-commutative group, we can take:

• 𝐺 = {𝑛×𝑛 invertible matrices with entries in R} with ⋆ being matrix multiplication.
The identity element is the identity matrix 𝐼𝑛 and the inverse of 𝐴 is the matrix
inverse 𝐴−1. If 𝑛 ≥ 2, we can find invertible matrices 𝐴 and 𝐵 such that 𝐴𝐵 ̸= 𝐵𝐴
(prove this!), so 𝐺 is not commutative in this case.

There are plenty (and I mean plenty) of other examples of groups, but the above should
suffice for now. It is also useful to have non-examples.

Exercise 11.5 Show that neither Z nor Z/𝑛Z are groups if we take ⋆ to be multiplication instead of addition
modulo 𝑛. Likewise, show that (Z/𝑛Z)× is not a group if ⋆ is addition modulo 𝑛.

Going forward, whenever we view Z and Z/𝑛Z as groups, we do so with the understanding
that the group operation is addition. Likewise with (Z/𝑛Z)× and multiplication.

One way Z/𝑛Z and (Z/𝑛Z)× differ from Z is that they are finite groups. Finite groups are
subject to Lagrange’s theorem. A special case of this theorem is given below. To state it,
we need the following notation. If 𝐺 is a group, we define 𝑔𝑛 for 𝑔 ∈ 𝐺 and 𝑛 ∈ Z>0 by

𝑔𝑛 = 𝑔 ⋆ 𝑔 ⋆ · · · ⋆ 𝑔⏟  ⏞  
𝑛 times

.

We also define 𝑔0 = 𝑒. If the group operation is addition, then we write 𝑛𝑔 = 𝑔 + · · · + 𝑔
instead of 𝑔𝑛. If 𝑛 < 0 is a negative integer, then we define 𝑔𝑛 to be (𝑔−1)|𝑛| (and likewise
𝑛𝑔 = |𝑛|(−𝑔), where −𝑔 is the inverse of 𝑔). For example, 𝑔−2 = (𝑔−1)2 = 𝑔−1 ⋆ 𝑔−1.

Theorem 11.6 (Lagrange’s Theorem—Special Case)

Let 𝐺 be a finite commutative group of order 𝑚. Then 𝑔𝑚 = 𝑒 for all 𝑔 ∈ 𝐺.

Proof: Suppose that 𝐺 = {𝑔1, . . . , 𝑔𝑚}, where the 𝑔𝑖 are the 𝑚 distinct elements of 𝐺.
Consider the set 𝑆 = {𝑔 ⋆ 𝑔1, . . . , 𝑔 ⋆ 𝑔𝑚}. Since 𝑔 ⋆ 𝑔𝑖 ∈ 𝐺 for all 𝑖, we have that 𝑆 ⊆ 𝐺. I
claim that 𝑆 = 𝐺. To prove this, it suffices to show that 𝑆 contains 𝑚 elements. To prove
that, it suffices to show that 𝑔 ⋆ 𝑔𝑖 ̸= 𝑔 ⋆ 𝑔𝑗 if 𝑖 ̸= 𝑗. But this is easy:

if 𝑔 ⋆ 𝑔𝑖 = 𝑔 ⋆ 𝑔𝑗 then 𝑔−1 ⋆ (𝑔 ⋆ 𝑔𝑖) = 𝑔−1 ⋆ (𝑔 ⋆ 𝑔𝑗)

hence (𝑔−1 ⋆ 𝑔) ⋆ 𝑔𝑖 = (𝑔−1 ⋆ 𝑔) ⋆ 𝑔𝑗 by associativity

so 𝑒 ⋆ 𝑔𝑖 = 𝑒 ⋆ 𝑔𝑗

and therefore 𝑔𝑖 = 𝑔𝑗 . So 𝑖 = 𝑗 since the 𝑔𝑖’s are distinct. So if 𝑖 ̸= 𝑗 then it must follow
that 𝑔 ⋆ 𝑔𝑖 ̸= 𝑔 ⋆ 𝑔𝑗 .

Thus, 𝑆 = 𝐺. So if we multiply all the elements in 𝑆 we get the same result as if we had
multiplied all the elements in 𝐺:

(𝑔 ⋆ 𝑔1) ⋆ (𝑔 ⋆ 𝑔2) · · · (𝑔 ⋆ 𝑔𝑚) = 𝑔1 ⋆ 𝑔2 ⋆ · · · ⋆ 𝑔𝑚.

Since 𝐺 is commutative, we can re-order the left-side to obtain

𝑔𝑚 ⋆ (𝑔1 ⋆ 𝑔2 ⋆ · · · ⋆ 𝑔𝑚) = 𝑔1 ⋆ 𝑔2 ⋆ · · · ⋆ 𝑔𝑚.

Now ℎ = 𝑔1 ⋆ · · · ⋆ 𝑔𝑚 is an element in 𝐺, so it has an inverse ℎ−1. Multiplying the above
on the right by ℎ−1, we finally arrive at 𝑔𝑚 = 𝑒, as desired. ■
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REMARK

This version of Lagrange’s theorem also holds for non-commutative groups, but the proof
requires different ideas.

Let’s end the lecture by noting that Lagrange’s theorem is completely obvious if 𝐺 = Z/𝑛Z.
In this case 𝐺 has order 𝑛 and so the theorem claims that

𝑛[𝑎] = [0] for all [𝑎] ∈ Z/𝑛Z.

And indeed,
𝑛[𝑎] = [𝑎] + · · ·+ [𝑎] = [𝑛𝑎] = [0]

since 𝑛𝑎 ≡ 0 (mod 𝑛).

The theorem is much more interesting in the case of 𝐺 = (Z/𝑛Z)×. We’ll take this up in
detail next time, but here’s an example.

Example 11.7 Consider 𝐺 = (Z/5Z)× = {[1], [2], [3], [4]}, which has order 4. Lagrange’s theorem asserts,
in this case, that

[𝑎]4 = [1] for all [𝑎] ∈ (Z/5Z)×.

Let’s confirm:

[1]4 = [1]

[2]4 = [16] = [1] (since 16 ≡ 1 (mod 5))

[3]4 = [81] = [1] (since 81 ≡ 1 (mod 5))

[4]4 = [256] = [1] (since 256 ≡ 1 (mod 5)).

Lecture 11 Problems

11.1. Look back at your math courses from previous terms or any math courses that you’re taking
this term. Can you recognize if groups made an appearance in any of them?

11.2. Let 𝐺 be the set of invertible 2× 2 matrices with entries in Z/3Z.
(a) Prove that 𝐺 is a group under matrix multiplication. (That is, if we define 𝐴⋆𝐵 = 𝐴𝐵,

then ⋆ satisfies the group axioms.)

(b) Determine the order of 𝐺. [Hint: A square matrix with entries in Z/3Z is invertible if
and only if its columns are linearly independent.]

11.3. Let 𝑆 = {𝑎1, . . . , 𝑎𝑛} be a complete set of representatives modulo 𝑛. Prove that if [𝑢] is a
unit in Z/𝑛Z, then {𝑢𝑎1, . . . , 𝑢𝑎𝑛} is a complete set of representatives modulo 𝑛.

11.4. Let 𝐺 be a finite commutative group. Prove that 𝑔−1 = 𝑔|𝐺|−1 for all 𝑔 ∈ 𝐺.

▶ 11.5. Let 𝑝 and 𝑞 be distinct primes. Determine the orders of:

(a) (Z/𝑝Z)×.
(b) (Z/𝑝2Z)×.
(c) (Z/(𝑝𝑞)Z)×.
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Lecture 12 The Theorems of Fermat and Euler

Last time we stated and proved Lagrange’s theorem which asserts that if 𝐺 is a finite
commutative group of order 𝑚, then 𝑔𝑚 = 𝑒 for all 𝑔 ∈ 𝐺.

We would like to investigate what this looks like if 𝐺 = (Z/𝑛Z)× is the group of units
modulo 𝑛. The first thing we have to figure out is: What is the order of 𝐺?

Definition 12.1

Euler’s 𝜙 function

Let 𝑛 ∈ Z>0. The order of (Z/𝑛Z)× is denoted by 𝜙(𝑛). The function 𝜙 : Z>0 → Z defined
in this manner is called Euler’s 𝜙 function.

For example:

• 𝜙(2) = 1 since (Z/2Z)× = {[1]}.

• 𝜙(5) = 4 since (Z/5Z)× = {[1], [2], [3], [4]}.

• 𝜙(6) = 2 since (Z/6Z)× = {[1], [5]}.

In general, since Z/𝑛Z = {[0], [1], . . . , [𝑛]} and (Z/𝑛Z)× = {[𝑎] ∈ Z/𝑛Z : gcd(𝑎, 𝑛) = 1}, we
obtain the following alternative characterization of 𝜙(𝑛).

Proposition 12.2 For 𝑛 ∈ Z>0,
𝜙(𝑛) = #{𝑎 ∈ Z : 0 ≤ 𝑎 ≤ 𝑛− 1, gcd(𝑎, 𝑛) = 1}.

In other words, 𝜙(𝑛) is equal to the number of positive integers ≤ 𝑛 − 1 that are coprime
to 𝑛. A special case is worth singling out:

Corollary 12.3 If 𝑝 is prime, then 𝜙(𝑝) = 𝑝− 1.

Proof: All of the 𝑝− 1 integers 1, ..., and 𝑝− 1 are coprime to 𝑝. ■

With this in hand, we obtain the following two theorems as immediate corollaries of La-
grange’s theorem.

Theorem 12.4 (Euler’s Theorem)

If 𝑎 ∈ Z is coprime to 𝑛, then
𝑎𝜙(𝑛) ≡ 1 (mod 𝑛).

Proof: If 𝑎 is coprime to 𝑛, then [𝑎] ∈ (Z/𝑛Z)×, and so [𝑎]𝜙(𝑛) = [1] by Lagrange. ■
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Theorem 12.5 (Fermat’s Little Theorem)

Let 𝑝 be prime. For all 𝑎 ∈ Z, we have

𝑎𝑝 ≡ 𝑎 (mod 𝑝).

If 𝑝 ∤ 𝑎, then
𝑎𝑝−1 ≡ 1 (mod 𝑝).

Proof 1: If 𝑝 | 𝑎 then 𝑎 ≡ 0 and 𝑎𝑝 ≡ 0, so the theorem holds. If 𝑝 ∤ 𝑎, then the theorem
is the case 𝑛 = 𝑝 of Euler’s theorem. ■

Let’s give a completely different proof of Fermat’s little theorem!

Proof 2: First off, the second statement follows from the first since if 𝑝 ∤ 𝑎 then 𝑎 is
invertible modulo 𝑝, so we can divide the first congruence through by 𝑎 to obtain the
second congruence. So it suffices to prove the first congruence.

In the Lecture 9 problem set, you proved that (𝑎+ 𝑏)𝑝 ≡ 𝑎𝑝+ 𝑏𝑝 (mod 𝑝) for all 𝑎, 𝑏 ∈ Z. In
particular, then, (𝑎 + 1)𝑝 ≡ 𝑎𝑝 + 1 (mod 𝑝). With this in hand, we can prove that 𝑎𝑝 ≡ 𝑎
for all non-negative 𝑎 ∈ Z by induction on 𝑎.

Indeed, the base case 𝑎 = 0 is obvious. For the inductive step, assume that 𝑎𝑝 ≡ 𝑎. Then
(𝑎+ 1)𝑝 ≡ 𝑎𝑝 + 1 ≡ 𝑎+ 1. Done!

It remains to prove the theorem for negative 𝑎 ∈ Z. Exercise! ■

Exercise 12.6 Complete the second proof of Fermat’s Little Theorem by showing that if the theorem holds
for all non-negative integers, then it also holds for all negative integers. [Hint: If 𝑎 ∈ Z is
negative, apply the theorem to −𝑎 > 0.]

These two theorems of Fermat and Euler can help us compute powers modulo 𝑛. (As we’ll
soon see, calculating 𝑎𝑚 (mod 𝑛) has important applications to cryptography.)

Example 12.7 Find the last digit of 31234.

Solution:

We want to find the remainder of 31234 modulo 10.

Since 3 is coprime to 10, Euler’s theorem asserts that 3𝜙(10) ≡ 1 (mod 10). Note that
𝜙(10) = 4, since there are 4 positive integers < 10 that are coprime to 10 (what are they?).
Thus, 34 ≡ 1 (mod 10).

Now, 1234 = 4 · 308 + 2. Therefore,

31234 = 34·308+2 = (34)30832 ≡ 1617 · 9 ≡ 9 (mod 10).

So the last digit of 31234 is 9.
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Example 12.8 Calculate 7365 modulo 24.

Solution: Since there are 8 positive integers< 24 that are coprime to 24, we have 𝜙(24) = 8.
Therefore, 78 ≡ 1 (mod 24) by Euler’s theorem.

Now, as 365 = 8 · 45 + 5, we find that

7365 = (78)4575 = 145 · 75 (mod 24).

To calculate 75 modulo 24, we can proceed as follows. First,

72 = 49 ≡ 1 (mod 24)

and then
74 = (72)2 ≡ 1 (mod 24)

so
75 = 74 · 7 ≡ 1 · 7 ≡ 7 (mod 24).

Thus, 7365 ≡ 7 (mod 24).

I want to make two comments about the preceding examples:

1. We calculated 𝜙(𝑛) by counting integers < 𝑛 coprime to 𝑛. This isn’t very efficient
when 𝑛 is large. We’ll come back to this problem later.

2. What we did when we calculated 75 modulo 24 can be generalized to give a relatively
efficient algorithm for calculating 𝑎𝑘 (mod 𝑛) by repeated squaring. Let’s explore this
now.

Exponentiation via Repeated Squaring

The basic idea is as follows. To compute 𝑎𝑘 for 𝑘 ∈ Z>0, we begin by finding the binary
representation of 𝑘:

𝑘 = 20𝑎0 + 2𝑎1 + 22𝑎2 + · · ·+ 2𝑙𝑎𝑙, where 𝑎𝑖 ∈ {0, 1}.

This is analogous to how we write numbers in decimal form, except with powers of 2 instead
of powers of 10. To find the binary representation of 𝑘, we simply repeatedly divide by 2
and use the remainder theorem:

𝑘 = 2𝑞 + 𝑟 = 2(2𝑞′ + 𝑟′) = 22𝑞′ + 2𝑟′ + 𝑟 = · · · .

At each step, the remainder is either 0 or 1, and the process eventually terminates because
we’re getting smaller and smaller positive integers.
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Example 12.9 Find the binary representation of 97.

Solution: We have

97 = 2 · 48 + 1

= 2(2 · 24 + 0) + 1

= 22 · 24 + 2 · 0 + 1

= 22(2 · 12 + 0) + 2 · 0 + 1

= 23 · 12 + 22 · 0 + 2 · 0 + 1

= 23 · (2 · 6 + 0) + 22 · 0 + 2 · 0 + 1

= 24 · 6 + 23 · 0 + 22 · 0 + 2 · 0 + 1

= 24(2 · 3 + 0) + 23 · 0 + 22 · 0 + 2 · 0 + 1

= 25 · 3 + 24 · 0 + 23 · 0 + 22 · 0 + 2 · 0 + 1

= 25(2 · 1 + 1) + 24 · 0 + 22 + 2 · 0 + 1

= 26 + 25 + 24 · 0 + 23 · 0 + 22 · 0 + 2 · 0 + 1.

Exercise 12.10 Find the binary representation of 173.

Once we have 𝑘 =
∑︀𝑙

𝑖=0 2
𝑖𝑎𝑖 in binary, it follows that

𝑎𝑘 = 𝑎2
0𝑎0𝑎2

1𝑎1𝑎2
2𝑎2 · · · 𝑎2𝑙𝑎𝑙 .

Since 𝑎𝑖 is either 0 or 1, the problem now is reduced to calculating 𝑎2
𝑟
. This we can perform

recursively by squaring, since 𝑎2
𝑟
= (𝑎2

𝑟−1
)2.

Example 12.11 Calculate 597 (mod 19).

Solution 1: Using the binary representation

97 = 26 + 25 + 1

(where the powers of 2 with 0 coefficient have been omitted), we have

597 = 52
6
52

5
5.

Now,
52 ≡ 25 ≡ 6 (mod 19)

hence
52

2
= (52)2 ≡ 62 ≡ 36 ≡ −2 (mod 19)

hence
52

3
= (52

2
)2 ≡ (−2)2 ≡ 4 (mod 19)

hence
52

4
= (52

3
)2 ≡ 42 ≡ −3 (mod 19)
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hence
52

5
= (52

4
)2 ≡ (−3)2 ≡ 9 (mod 19)

hence
52

6
= (52

5
)2 ≡ 92 ≡ 81 ≡ 5 (mod 19).

So, finally,
597 ≡ 52

6
52

5
5 ≡ 5 · 9 · 5 ≡ 52 · 9 ≡ 54 ≡ 16 (mod 19).

Solution 2: Since 19 is prime, Fermat’s Little Theorem tells us that 518 ≡ 1 (mod 19).
Since 97 = 5 · 18 + 7, we have

597 = 55·18+7 = (518)557 ≡ 1557 ≡ 57 (mod 19).

Now we just have to compute 57 modulo 19. We can do this using the repeated squaring
algorithm as in Solution 1. In binary, 7 = 1 + 2 + 22, so

57 = 5 · 52 · (52)2 ≡ 5 · 6 · 62 ≡ 5 · 6 · (−2) ≡ 16 (mod 19).

Exercise 12.12 Calculate 3155 (mod 13).

Lecture 12 Problems

▶ 12.1. Show that 2340 ≡ 1 (mod 341). [Warning: 341 = 11× 31 is not prime.]

▶ 12.2. Let 𝑎, 𝑛 ∈ Z>0 be coprime integers. Prove that if 𝑘 ≡ 𝑙 (mod 𝜙(𝑛)) then 𝑎𝑘 ≡ 𝑎𝑙 (mod 𝑛).

12.3. Let [𝑎] ∈ (Z/𝑝Z)×, where 𝑝 is a prime. Prove that [𝑎]−1 = [𝑎]𝑝−2.

12.4. Fermat’s Little Theorem says that 𝑎𝑝−1 ≡ 1 (mod 𝑝) if 𝑎 is a unit modulo 𝑝 and 𝑎𝑝 ≡ 𝑎
(mod 𝑝) for all 𝑎. Euler’s theorem says 𝑎𝜙(𝑛) ≡ 1 (mod 𝑛) if 𝑎 is a unit modulo 𝑛.

Prove/disprove: 𝑎𝜙(𝑛)+1 ≡ 𝑎 (mod 𝑛) for all 𝑎 ∈ Z.
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Lecture 13 Intro to Mathematical Cryptography

Note: This is the first of two lectures on cryptography. If you want to learn more, I highly
recommend the book An Introduction to Mathematical Cryptography by Silverman, Pipher
and Hoffstein.

Alice wants to send Bob a message𝑚. They can only communicate through a public channel.
Alice doesn’t want any eavesdropper, such as her nemesis Eve, to know the content of 𝑚.
So Alice wants to devise a system that allows her communicate secret messages through a
public channel.11

To achieve this, Alice is looking for a way to encrypt her message 𝑚 in such a way that
only Bob knows how to decrypt the encrypted message back to 𝑚. Alice wants to devise
a cryptosystem.

We’re going to explore a few cryptosystems based on modular arithmetic. For this to make
sense, we’re going to assume that our messages are integers. This is okay because we can
encode all text into numbers in a variety of ways. For example, we can simply set

𝐴 ↔ 00, 𝐵 ↔ 01, 𝐶 ↔ 02, ..., 𝑍 ↔ 25.

(We can also similarly deal with punctuation, etc.) Under this scheme, the message

H E L L O

is encoded as
07 04 11 11 14.

There are more sophisticated encoding schemes but we won’t dwell on this. Let’s look at a
couple of basic cryptosystems.

Example 13.1 (Shift ciphers)

We will encrypt our message letter by letter. So we will assume that 𝑚 is an integer
between 0 and 25. (We can therefore pretend that 𝑚 lives in Z/26Z.) For example, 𝑚 = 11
represents the letter L. We will choose a secret encryption key 𝑘, which will also be an
integer 𝑘 ∈ {0, 1, . . . , 25}. Then we define our encryption function by

𝑒(𝑚) ≡ 𝑚+ 𝑘 (mod 26).

This function shifts the alphabet to the right by 𝑘 letters. For example, if 𝑘 = 14, then the
message

H E L L O

07 04 11 11 14

gets encrypted letter by letter into

21 18 25 25 02

11To make this a bit more relatable: Imagine that you are Alice, that Bob is an online vendor, and that
𝑚 is your credit card information. The public channel here is the internet.
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Notice that 𝑒(14) ≡ 14+ 14 ≡ 28 ≡ 2 (mod 26). So in shifting beyond the letter Z, we loop
back and start again at A. If we now consult our encoding table 𝐴 ↔ 00, 𝐵 ↔ 01, ..., we
see that our encrypted message is

V S Z Z C

The decryption function uses the same key 𝑘 and is defined by

𝑑(𝑐) ≡ 𝑐− 𝑘 (mod 26).

Note that
𝑑(𝑒(𝑚)) ≡ 𝑑(𝑚+ 𝑘) ≡ (𝑚+ 𝑘)− 𝑘 ≡ 𝑚 (mod 26)

so that the decryption function undoes the encryption on 𝑒(𝑚) and returns the original
message 𝑚.

For instance, the letter V which is represented by 21 is decrypted into 𝑑(21) = 21− 14 = 7
(mod 26). Since 07 represents the letter H, we obtain the first letter of our original message
HELLO.

Exercise 13.2 Encrypt the message
MODULAR ARITHMETIC

using a shift cipher using the key 𝑘 = 7.

Definition 13.3

Plaintext,
Ciphertext

A message in original form (pre-encryption) is referred to as plaintext. After encryption,
the result is referred to as ciphertext.

In the preceding example, HELLO is the plaintext and VSZZO is the ciphertext. We might
also consider their encodings 07 04 11 11 14 and 21 18 25 25 02 as being the plaintext and
ciphertext, respectively.

You might wonder about the difference between encoding and encryption. It is simply a
matter of intent. When we encode, we assume everyone knows about the encoding process
and how to reverse (decode) it. On the other hand, with encryption and decryption we are
more secretive. Only Alice and Bob should be able to decrypt any encrypted ciphertexts.

The shift cipher is very easy to break. Eve can simply try each possible 𝑘 ∈ {0, 1, . . . , 25}
to find the secret key. This is called a brute-force or exhaustive search attack. Since there
are only 26 possible keys in total, it is a very manageable task (especially for a computer)
to go through them one by one.

More sophisticated attacks are possible. For instance, in English text, the most frequently
occurring letters are E, T, A, O and N (listed in descending order of frequency). So if the
shift cipher was used to encrypt a long piece of plaintext, then the frequency of the letters
in the ciphertext can help Eve discover 𝑘.
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Exercise 13.4 A shift cipher with secret key 𝑘 produced the ciphertext

VCUJMZ BPMWZG QA MFKMTTMVB.

Discover the secret key 𝑘 and use it to obtain the original plaintext message.

Let’s take a look at another encryption scheme.

Example 13.5 (Affine ciphers)

Again, we will encrypt our plaintext message one letter at a time. This time, our key 𝑘
will consist of two pieces: 𝑘 = (𝑘1, 𝑘2) where 𝑘1, 𝑘2 ∈ {0, 1, . . . , 25} as in the shift cipher,
but now we insist that gcd(𝑘1, 26) = 1 so that 𝑘1 is a unit modulo 26. Then we define our
encryption function by

𝑒(𝑚) = 𝑘1𝑚+ 𝑘2 (mod 26)

and our decryption function by

𝑑(𝑐) = 𝑘−1
1 (𝑐− 𝑘2) (mod 26).

Note that 𝑘−1
1 exists mod 26 since 𝑘1 is a unit mod 26. Also,

𝑑(𝑒(𝑚)) ≡ 𝑑(𝑘1𝑚+ 𝑘2) = 𝑘−1
1 (𝑘1𝑚+ 𝑘2 − 𝑘2) ≡ 𝑘−1

1 𝑘1𝑚 ≡ 𝑚 (mod 26)

that is, 𝑑(𝑒(𝑚)) = 𝑚 so that 𝑑 does in fact decrypt 𝑒(𝑚) back into 𝑚.

If we use the key 𝑘 = (5, 12) then our encryption process will look like this:

H E L L O

07 04 11 11 14
↓ ↓ ↓ ↓ ↓
21 06 15 15 04
V G P P E

To be able to decrypt messages encrypted with (𝑘1, 𝑘2), we need to first determine 𝑘−1
1

modulo 26. Fortunately, we have the tools for that. For instance, if 𝑘1 = 5, then to find
𝑘−1
1 we must solve 5𝑥 ≡ 1 (mod 26). It is easy to see by inspection that 𝑥 ≡ −5 solves this

congruence, so 𝑘−1
1 ≡ −5 (mod 26). (Had we not been able to find this by inspection, we

could have used the Euclidean algorithm.) Thus, to decrypt the letter V, which is encoded
as 21, using the key 𝑘 = (5, 12), we compute

𝑑(21) ≡ 5−1(21− 12) ≡ (−5)(9) = 7 (mod 26).

So the first letter in our plaintext is the letter corresponding to 07—namely, H.

Exercise 13.6 (a) Encrypt the message
UNIT MOD N

using an affine cipher with key 𝑘 = (3, 9).
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(b) An affine cipher with key 𝑘 = (3, 9) produced the ciphertext

HL HWUVIOHMQV.

What was the original plaintext message?

Before giving our next example, let’s pause to introduce some terminology.

Definition 13.7

Cryptosystem

A cryptosystem consists of a triple (ℳ, 𝒞,𝒦), where

• ℳ is the plaintext space consisting of the set of all possible plaintext messages;

• 𝒞 is the ciphertext space consisting of the set of all possible ciphertexts; and

• 𝒦 is the key space consisting of all possible keys.

Furthermore, for each key 𝑘 ∈ 𝒦, there must exist an encryption function 𝑒𝑘 : ℳ → 𝒞
and a decryption function 𝑑𝑘 : 𝒞 → ℳ that satisfy

𝑑𝑘(𝑒𝑘(𝑚)) = 𝑚 for all 𝑚 ∈ ℳ.

For example, for the shift cipher cryptosystem, we have

ℳ = 𝒞 = 𝒦 = Z/26Z.

For a key 𝑘 ∈ 𝒦, the encryption and decryption functions are given by

𝑒𝑘(𝑚) ≡ 𝑚+ 𝑘 (mod 26) and 𝑑𝑘(𝑐) = 𝑐− 𝑘 (mod 26).

For the affine cipher, ℳ = 𝒞 = Z/26Z again, but the key space is

𝒦 = (Z/26Z)× × Z/26Z = {(𝑘1, 𝑘2) : 𝑘1 ∈ (Z/26Z)× and 𝑘2 ∈ Z/26Z}.

The encryption and decryption functions are given by

𝑒𝑘(𝑚) = 𝑘1𝑚+ 𝑘2 (mod 26) and 𝑑(𝑐) = 𝑘−1
1 (𝑐− 𝑘2) (mod 26).

For a cryptosystem to be secure, we should have conditions on the acceptable encryption
and decryption functions. The following is a bare minimum list of requirements.

1. We must be able to compute 𝑒𝑘(𝑚) efficiently for each 𝑘 ∈ 𝒦 and 𝑚 ∈ ℳ.

2. We must be able to compute 𝑑𝑘(𝑐) efficiently for each 𝑘 ∈ 𝒦 and 𝑐 ∈ 𝒞.

3. Given a ciphertext 𝑐 ∈ 𝒞 encrypted using 𝑘 ∈ 𝒦, it must be very difficult to determine
the corresponding plaintext message 𝑑𝑘(𝑐) without knowledge of 𝑘.

We might also require further assurances, such as security against known-plaintext at-
tacks:
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4. Given a list of pairs (𝑚1, 𝑐1), . . . , (𝑚𝑛, 𝑐𝑛) of plaintext messages and their corre-
sponding ciphertexts encrypted using the same key 𝑘 ∈ 𝒦, it must be very difficult to
decrypt a ciphertext 𝑐 ∈ 𝒞 not in this list without knowledge of 𝑘.

Exercise 13.8 Which of the above requirements does the shift cipher cryptosystem satisfy? How about
the affine cipher cryptosystem?

If you attempted the previous exercise, you would have reached the conclusion that the
shift and affine ciphers are inadequate because their key spaces are too small and hence are
susceptible to brute-force attacks. Our next example involves a much larger key space.

Example 13.9 (Pohlig–Hellman exponentiation cipher)

This cipher encrypts blocks of size 𝑏. For the sake of illustration, let’s take 𝑏 = 2. Suppose
we want to encrypt the plaintext message

MARGIN TOO NARROW.

We begin by removing all spaces and punctuation, then splitting up the letters into blocks
of size 𝑏 = 2 and finally encoding the individual letters in each block:

MA RG IN TO ON AR RO WX
1200 1706 0813 1914 1413 0017 1714 2223

(The last block has been padded with an X to make it have the correct size.)

The key space consists of keys 𝑘 = (𝑝, 𝑒), where

• 𝑝 is a prime that is > the largest number that can occupy a block of size 𝑏. For
example, when 𝑏 = 2, we want 𝑝 > 2525.

• 𝑒 ∈ {1, 2, . . . , 𝑝− 2} is an integer coprime to 𝑝− 1.

Given such a 𝑘 = (𝑝, 𝑒), the encryption function is

𝑒𝑘(𝑚) = 𝑚𝑒 (mod 𝑝).

The decryption function involves the inverse 𝑑 of 𝑒 modulo 𝑝− 1 and is given by

𝑑𝑘(𝑐) = 𝑚𝑑 (mod 𝑝).

To prove that 𝑑𝑘(𝑒𝑘(𝑚)) = 𝑚, we first note that

𝑑𝑘(𝑒𝑘(𝑚)) ≡ 𝑚𝑑𝑒 (mod 𝑝).

Next, since 𝑑𝑒 = 1 (mod 𝑝 − 1), it follows from Problem 12.2 that 𝑚𝑑𝑒 ≡ 𝑚 (mod 𝑝).
(Problem 12.2 only applies if 𝑚 ̸≡ 0 (mod 𝑝). But if 𝑚 ≡ 0 then 𝑚𝑑𝑒 ≡ 0 ≡ 𝑚 too.)

Let’s demonstrate. Suppose we pick (𝑝, 𝑒) = (3037, 31). Then to encrypt the first block
𝑚 = 1200, we must compute 120031 modulo 3037. Fortunately, this can be done quickly
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using a computer (or by hand—plus a pocket calculator—using the square-and-multiply al-
gorithm!). We find that 120031 ≡ 1967 (mod 3037). Doing the same thing to the remaining
blocks, we arrive at the ciphertext

1967 2805 1678 1178 2377 1109 2047 2359.

(We do not attempt to decode this back into alphabet.)

To decrypt this ciphertext, we first determine the inverse 𝑑 of 31 modulo 3036 by solving
31𝑑 ≡ 1 (mod 3036). (Pay attention! The decryption key uses the inverse of 𝑒 modulo 𝑝−1
not modulo 𝑝!) Using a computer (or the Euclidean algorithm), we find that 𝑑 ≡ 31−1 ≡
1567 (mod 3037). To decrypt the ciphertext block 𝑐 = 1967, we compute

𝑐𝑑 ≡ 19671567 ≡ 1200 (mod 3031).

We have recovered the first block of our original plaintext message.

Exercise 13.10 Use the Pohlig–Hellman cipher with key (𝑒, 𝑝) = (7, 250739) and blocksize 𝑏 = 3 to:

(a) Encrypt the plaintext message EUCLID ALGORITHM.

(b) Decrypt the ciphertext 216369 50016 52858 112945.

Does the Pohlig–Hellman cipher satisfy our requirements 1–4? The encryption and decryp-
tion functions both use modular exponentiation, which can be performed efficiently on a
computer. Furthermore, to determine the decryption exponent 𝑑 from the encryption ex-
ponent 𝑒, we can simply run the Euclidean algorithm—which also is reasonably efficient.
So requirements 1 and 2 are satisfied.

What about requirements 3 and 4? How secure is this cipher? A brute-force attack would
be infeasible if 𝑝 is sufficiently large, say 𝑝 ≈ 22048. But are there other attacks?

Let’s think about what Eve would need to do to break the cipher. Assume she has access
to a plaintext-ciphertext pair (𝑚, 𝑐) and that she somehow knows the prime 𝑝 in the key
𝑘 = (𝑝, 𝑒). Her task is to determine 𝑒, since once she has 𝑒 she can determine 𝑑 and then
decrypt any ciphertext she comes across. So Eve must solve the equation

𝑐 ≡ 𝑚𝑒 (mod 𝑝)

for 𝑒. She is in effect looking for 𝑒 = “ log𝑚(𝑐)”. This is known as the Discrete Logarithm
Problem (DLP). As far as is known, there is no efficient algorithm for solving the DLP
if 𝑝 is large. A naive trial-and-error approach would require about 𝑝 steps, so if 𝑝 ≈ 22048

then the solar system would have collapsed into itself before our search for 𝑒 concluded.

REMARK (Security of a Cryptosystem)

In designing a cryptosystem, the general idea is to prove that an attacker can circumvent
the system if and only if they can solve a mathematical problem that is believed (or proved)
to be difficult to solve in some precise sense (e.g. in terms of computational complexity).
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The DLP is an example of such a problem. It is believed that there is no efficient (say,
polynomial-time) algorithm that is capable of solving the DLP in general. However, nobody
has been able to prove this so far. Perhaps you can try?

Lecture 13 Problems

13.1. Alice and Bob are communicating using an affine cipher with key 𝑘 = (𝑘1, 𝑘2). You have
intercepted the plaintext-ciphertext pairs (𝑚, 𝑐) = (D, L), (K, X). Use this to discover 𝑘.

13.2. Suppose we were to replace the exponentiation encryption and decryption functions in the
Pohlig–Hellman algorithm with the functions

𝐸(𝑚) ≡ 𝑒𝑚 (mod 𝑝) and 𝐷(𝑚) ≡ 𝑑𝑚 (mod 𝑝)

where 𝑒 ∈ (Z/𝑝Z)× and 𝑑 is the inverse of 𝑒 mod 𝑝. Is this cipher secure against known-
plaintext attacks? You may assume that 𝑝 is very large and that Eve knows 𝑝.

▶ 13.3. In this exercise you will examine the discrete logarithm log3 in (Z/7Z)×. Let 𝑐 ∈ (Z/7Z)×
be arbitrary.

(a) Show that the equation 𝑐 ≡ 3𝑒 (mod 7) has a solution 𝑒 ∈ Z. [Hint: Calculate 32, 33, . . .
modulo 7.]

(b) Show that if 𝑒 and 𝑒′ are solutions to 𝑐 ≡ 3𝑒 (mod 7) then 𝑒 ≡ 𝑒′ (mod 6).

The above allows us to define a function log3 : (Z/7Z)× → Z/6Z by specifying that log3(𝑐)
is the unique [𝑒] ∈ Z/6Z such that 3𝑒 ≡ 𝑐 (mod 7).

(c) Prove that the function log3 satisfies:

(i) log3(1) ≡ 0 (mod 6).

(ii) log3(𝑎𝑏) ≡ log3(𝑎) + log3(𝑏) (mod 6) for all 𝑎, 𝑏 ∈ (Z/7Z)×.
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Lecture 14 The RSA Cryptosystem

“We stand today on the brink of a revolution in cryptography.”

– W. Diffie and M. E. Hellman, New Directions in Cryptography

The three cryptosystems we saw in the previous lecture had one thing in common: the
same key 𝑘 was used in both their encryption and decryption functions. For example, in
Pohlig–Hellman, the key 𝑘 = (𝑝, 𝑒) allows us to compute the encryption function 𝑒(𝑚) ≡ 𝑚𝑒

(mod 𝑝) and the decryption function 𝑑(𝑐) ≡ 𝑐𝑑 (mod 𝑝) since 𝑑 can be efficiently obtained
from 𝑒 as its inverse modulo 𝑝 − 1. Conversely, 𝑒 can be obtained from 𝑑. So (𝑝, 𝑒)
and (𝑝, 𝑑) effectively contain the same information. Such systems, where the same key
information is used on both the encryption side and decryption side, are called symmetric
key cryptosystems.

If Alice and Bob are to use a symmetric key cryptosystem, they must somehow agree on a
shared secret key. This can prove challenging if they have no secure way to communicate.
(After all, wasn’t this—the desire to communicate securely over insecure channels—the
problem to begin with?)

Enter asymmetric (or public) key cryptosystems (PKC). In a PKC, the key consists
of two pieces: a private key 𝑘priv and a public key 𝑘pub. The public key is used to encrypt
messages and the private key is used to decrypt ciphertexts. In practice, the public key (and
the encryption function) are released to the public but the private key is kept secret. In
this way, if Bob has the private key, then everyone (including Alice) can send him messages
that only he can decrypt.

REMARK (Symmetric vs. Asymmetric)

PKCs suffer from the drawback that they are generally slower than symmetric cryptosys-
tems. In practice, PKCs are used to share private keys that can then be used in symmetric
cryptosystems.

The possibility of asymmetric encryption was put forward by Diffie and Hellman (in the
paper quoted at the top of this page) and independently by Merkle. Nowadays there are
various PKCs. The most popular by far is the RSA cryptosystem, named after its creators
Rivest, Shamir and Adleman (although it was already known to the UK intelligence agency
GCHQ!).

Next time you browse an HTTPS website secured by SSL/TLS, try to look up the certificate
data to see what it entails. For example, this is what my browser tells me when I visit
https://uwaterloo.ca:12

12The other fragments are also interesting: ECDHE is Elliptic Curve Diffie–Hellman Ephemeral key
exchange; see Problem 14.1 for the basic idea. AES-128 is a popular symmetric key cryptosystem that uses
128-bit keys. GCM is Galois/Counter Mode, which is a mode of operation for blockciphers that involves the
arithmetic of finite fields. SHA256 is the Secure Hash Algorithm, which is used to insert pseudorandomness
into the protocol.

https://uwaterloo.ca
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RSA has two phases: key generation (where 𝑘priv and 𝑘pub are created) and then encryp-
tion/decryption using the generated key 𝑘 = (𝑘priv, 𝑘pub).

RSA Key Generation

• Choose distinct large primes 𝑝 and 𝑞, say 𝑝, 𝑞 ≥ 22048, and let 𝑛 = 𝑝𝑞.

• Choose an integer 𝑒 that is coprime to 𝜙(𝑛).

• The public key 𝑘pub is the pair (𝑛, 𝑒). The primes 𝑝 and 𝑞 are to be kept secret.

• Compute the inverse 𝑑 of 𝑒 modulo 𝜙(𝑛).

• The private key 𝑘priv is the integer 𝑑 (and the primes 𝑝 and 𝑞).

RSA Encryption and Decryption Functions

• Given the public key (𝑛, 𝑒), the encryption function is defined by

𝑒(𝑚) ≡ 𝑚𝑒 (mod 𝑛).

The plaintext space ℳ is the set of integers 𝑚 in the interval 0 ≤ 𝑚 < 𝑛 that are
coprime to 𝑛.

• Given the private key 𝑑, the decryption function is

𝑑(𝑐) ≡ 𝑐𝑑 (mod 𝑛).

Note the similarity to the Pohlig–Hellman cipher. The difference here is that the modulus
𝑛 is composite. This creates a minor complication: we must now insist that 𝑚 be coprime
to 𝑛. In practice this is not an issue since we can always pad a plaintext message to achieve
this coprimality requirement. If 𝑚 is coprime to 𝑛, we can verify that 𝑑 decrypts 𝑒(𝑚):

𝑑(𝑒(𝑚)) ≡ 𝑑(𝑚𝑒) ≡ 𝑚𝑒𝑑 ≡ 𝑚1 (mod 𝑛),

where the last step follows from Problem 12.2 together with the fact that 𝑒𝑑 ≡ 1 (mod 𝜙(𝑛)).13

Example 14.1 Suppose Alice wants to let Bob know that the password to her banking account is

WONDERLAND.

Bob generates an RSA key as follows. He picks 𝑝 = 1000183 and 𝑞 = 2593697 and sets

𝑛 = 𝑝𝑞 = 2594171646551.

He picks 𝑒 = 65537, which he confirms is coprime to 𝜙(𝑛) = (𝑝 − 1)(𝑞 − 1). Finally, he
computes the inverse of 𝑒 mod 𝜙(𝑛) to be 𝑑 = 1675321858817.

Bob publishes (𝑒, 𝑛) and keeps 𝑑 (and 𝑝 and 𝑞) private.

13In fact, 𝑑(𝑒(𝑚)) = 𝑚 even if 𝑚 and 𝑛 are not coprime. (See Problem 14.2.) However, in practice, if
we find ourselves with a message 𝑚 that isn’t coprime to 𝑛 then we can use it to factor 𝑛. Indeed, we can
efficiently compute gcd(𝑚,𝑛) and this gcd will be either 𝑝 or 𝑞. Since factoring 𝑛 breaks RSA (see the next
page), it’s more secure to only use 𝑚 such that gcd(𝑚,𝑛) = 1.
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Alice will now encrypt her message using the public key (𝑒, 𝑛). She first converts it into an
integer:

W O N D E R L A N D

22 14 13 03 04 17 11 00 13 03

She breaks this up into two blocks 𝑚1 = 2214130304 and 𝑚2 = 1711001303 (to get integers
smaller than 𝑛). She encrypts these into the ciphertexts

𝑐1 ≡ 𝑒(𝑚1) ≡ 𝑚𝑒
1 ≡ 2393950175804 (mod 𝑛)

and
𝑐2 ≡ 𝑒(𝑚2) ≡ 𝑚𝑒

2 ≡ 738407767416 (mod 𝑛)

which she then sends to Bob.

Bob takes each ciphertext and then computes

𝑑(𝑐1) ≡ 𝑐𝑑1 ≡ 2214130304 (mod 𝑛)

and
𝑑(𝑐1) ≡ 𝑐𝑑1 ≡ 1711001303 (mod 𝑛).

He has thus recovered Alice’s 𝑚1 and 𝑚2.

Exercise 14.2 Bob has generated the public key (𝑒, 𝑛) = (3, 6319).

(a) Determine 𝜙(𝑛) and compute the private key 𝑘.

(b) Encrypt the plaintext message ZETA. (Break it up into two pieces.)

(c) Decrypt the ciphertext 2173 5047.

Let’s wrap up with a brief analysis of the security of the RSA cryptosystem.

How easily can Eve determine 𝑑 given the public key (𝑒, 𝑛)? Since 𝑑 is the inverse of 𝑒 mod
𝜙(𝑛), if Eve can compute 𝜙(𝑛), she can find 𝑑 using the Euclidean algorithm.

How difficult is it to compute 𝜙(𝑛)? It’s very easy if we can determine the prime factorization
of 𝑛. (See Problem 11.5. We’ll say more next lecture.) In fact, for integers of the form
𝑛 = 𝑝𝑞, computing 𝜙(𝑛) is equivalent to factoring 𝑛. To see why, suppose you can compute
𝜙(𝑛) = (𝑝− 1)(𝑞 − 1) = 𝑝𝑞 − (𝑝+ 𝑞) + 1 = (𝑛+ 1)− (𝑝+ 𝑞). Then you can determine the
sum 𝑝 + 𝑞. Since you also know the product 𝑝𝑞 = 𝑛, you can find 𝑝 and 𝑞 by solving the
quadratic equation

(𝑥− 𝑝)(𝑥− 𝑞) = 𝑥2 − (𝑝+ 𝑞)𝑥+ 𝑝𝑞 = 0.

Exercise 14.3 Given that 𝑝𝑞 = 239777 and 𝑝+ 𝑞 = 1038, determine 𝑝 and 𝑞.
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So, computing 𝜙(𝑛) is just as difficult as factoring 𝑛 = 𝑝𝑞. If 𝑝 and 𝑞 are large primes,
this is known to be a difficult problem in general (i.e. no efficient algorithm for factoring
large integers 𝑛 is known). Can we determine the private key 𝑑 by some other means that
don’t involve computing 𝜙(𝑛) or factoring 𝑛? The answer is no. It is known that if you can
determine the private key 𝑑 then you can use this information to factor 𝑛. So the problems
of factoring 𝑛 and determining 𝑑 are equivalent.

We conclude that RSA is secure inasmuch as it is difficult for Eve to obtain 𝑑 from (𝑒, 𝑛) in
general. However, what if Eve only wants to decrypt a specific ciphertext 𝑐 ≡ 𝑚𝑒 mod 𝑛?
Strictly speaking, all that is necessary here is the ability to take an 𝑒th root modulo 𝑛. This
might be an easier problem to solve. However, as far as we know, it is just as difficult as
factoring 𝑛. (Though there is no proof that this is the case.)

So assuming that the problem of cracking RSA is equivalent to the problem of efficiently
factoring large integers, which decades of evidence indicates is the case, we can surmise
that RSA is secure. (In truth, the version of RSA presented here—which is called Textbook
RSA—is susceptible to a variety of attacks in certain circumstances. For more information,
see D. Boneh, Twenty Years of Attacks on the RSA Cryptosystem. Notices of the AMS, 46
(2), 203–213, 1999.)

14.1 Number Theoretic Problems Inspired by Cryptography

Our foray into cryptography has raised many interesting problems. Here is a sampling:

1. How do we find large primes? / How do we efficiently test for primality?

To be secure against brute-force attacks, we found ourselves needing to work modulo
a large prime or product of large primes. For example, in RSA, we should use primes
that are roughly of size 22048 or 24096. (We could use larger primes, of course, but
that might be a waste of computer memory.) The Prime Number Theorem guarantees
that there are plenty of such primes, but how do we find them?

2. How do we solve the Discrete Logarithm Problem (DLP)?

That is, given 𝑎, 𝑏 ∈ (Z/𝑛Z)×, how can we find 𝑥 ∈ Z such that 𝑎 ≡ 𝑏𝑥 (mod 𝑛)?
Strictly speaking, this is the DLP for the group (Z/𝑛Z)×. We can formulate the
DLP in a general group (solve for 𝑥 ∈ Z given 𝑔 = ℎ𝑥 in 𝐺). We are typically more
interested in showing that the DLP cannot be solved efficiently, since the DLP forms
the mathematical backbone of several widely used cryptosystems. If we can find a
group 𝐺 in which the DLP is provably difficult, then that would be good news.

3. How do we compute the Euler phi function 𝜙(𝑛)?

In our discussion of RSA, we worked with 𝜙(𝑛) where 𝑛 = 𝑝𝑞 is a product of two
distinct primes. We discovered that computing 𝜙(𝑛) in this case is equivalent to
being able to factor 𝑛. What can be said about computing 𝜙(𝑛) in general?

4. How do we efficiently factor large integers?

This might seem to be a special case of the first question above, but this is not the
case! Testing for primality turns out to be easier than factoring.

We will explore these problems over the next several lectures.

https://www.ams.org/notices/199902/boneh.pdf
https://www.ams.org/notices/199902/boneh.pdf
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Lecture 14 Problems

14.1. The Diffie–Hellman Key Exchange is a protocol that allows Alice and Bob to share a
secret key across a public channel. It works as follows:

• Alice and Bob publicly agree on prime 𝑝 and an integer 𝑔.

• Alice selects a private key 𝑎 ∈ Z and sends Bob the public key 𝐴 ≡ 𝑔𝑎 (mod 𝑝).

• Bob selects a private key 𝑏 ∈ Z and sends Alice the public key 𝐵 ≡ 𝑔𝑏 (mod 𝑝).

(a) Prove that 𝐴𝑏 ≡ 𝐵𝑎 (mod 𝑝). This is Alice and Bob’s shared secret key 𝐾.

(b) Eve knows 𝐴 = 𝑔𝑎, 𝐵 = 𝑔𝑏, 𝑔 and 𝑝. Her goal is to determine the secret key 𝐾 from
this information. This is known as the Diffie–Hellman Problem. Show that if Eve
can efficiently solve the Discrete Logarithm Problem then she can efficiently solve the
Diffie–Hellman Problem. [Note: The converse is an open problem.]

14.2. Let 𝑝 and 𝑞 be primes and let 𝑒, 𝑑 ∈ Z satisfy 𝑒𝑑 ≡ 1 (mod 𝜙(𝑝𝑞)). The goal of this problem
is to prove that 𝑚𝑒𝑑 ≡ 𝑚 (mod 𝑝𝑞) for all 𝑚 ∈ Z. (Problem 12.2 gives us this for 𝑚 coprime
to 𝑝𝑞.)

(a) Prove that 𝑚𝑒𝑑 ≡ 𝑚 (mod 𝑝) and 𝑚𝑒𝑑 ≡ 𝑚 (mod 𝑞).

(b) Use the Chinese Remainder Theorem to deduce that 𝑚𝑒𝑑 ≡ 𝑚 (mod 𝑝𝑞).

14.3. Alice and Bob use RSA with the same modulus 𝑛 but different encryption exponents 𝑒𝐴 and
𝑒𝐵. Charles sends Alice and Bob the same message 𝑚 using the keys (𝑒𝐴, 𝑛) and (𝑒𝐵, 𝑛).
Eve intercepts the resulting ciphertexts 𝑐𝐴 and 𝑐𝐵. Assuming that 𝑒𝐴 and 𝑒𝐵 are coprime,
show that Eve can recover the original message 𝑚.
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Lecture 15 Arithmetic Functions

The Euler phi function 𝜙 satisfies the following two properties:

(1) 𝜙(𝑛𝑚) = 𝜙(𝑛)𝜙(𝑚) if gcd(𝑛,𝑚) = 1.

(2) 𝜙(𝑝𝑎) = 𝑝𝑎 − 𝑝𝑎−1 if 𝑝 is prime and 𝑎 ∈ Z>0.

This gives us a method for computing 𝜙(𝑛) for any 𝑛 > 1 as follows. First, determine the
prime factorization 𝑛 = 𝑝𝑎11 · · · 𝑝𝑎𝑘𝑘 of 𝑛, and then

𝜙(𝑛) = 𝜙(𝑝𝑎11 ) · · ·𝜙(𝑝𝑎11 ) = (𝑝𝑎11 − 𝑝𝑎1−1
1 ) · · · (𝑝𝑎𝑘𝑘 − 𝑝𝑎𝑘−1

𝑘 ).

For example,

𝜙(200) = 𝜙(2352) = 𝜙(23)𝜙(52) = (23 − 22)(52 − 5) = 80.

This beats trying to count all the integers in the interval 1 ≤ 𝑎 ≤ 200 that are coprime to
200.

What I want to do in this lecture and the next is prove properties (1) and (2). It’s possible
to prove both using counting arguments similar to those in the solutions to Problem 11.5.
However, I will present a roundabout proof as an excuse to showcase some interesting
mathematics that can be applied in more general situations.

The Euler 𝜙 function is an example of what is called an arithmetic function.

Definition 15.1

Arithmetic
function

An arithmetic function is a function whose domain is Z>0 and whose range is a subset
of C.

An arithmetic function 𝑓 is said to be

• multiplicative if 𝑓(𝑛𝑚) = 𝑓(𝑛)𝑓(𝑚) for all 𝑛,𝑚 ∈ Z>0 such that gcd(𝑛,𝑚) = 1;

• completely multiplicative if 𝑓(𝑛𝑚) = 𝑓(𝑛)𝑓(𝑚) for all 𝑛,𝑚 ∈ Z>0.

The next proposition follows immediately from the above definitions.

Proposition 15.2 Suppose that 𝑛 = 𝑝𝑎11 · · · 𝑝𝑎𝑘𝑘 is the prime factorization of 𝑛. If 𝑓 is a multiplicative function,
then

𝑓(𝑛) = 𝑓(𝑝𝑎11 ) · · · 𝑓(𝑝𝑎𝑘𝑘 ).

If 𝑓 is completely multiplicative, then

𝑓(𝑛) = 𝑓(𝑝1)
𝑎1 · · · 𝑓(𝑝𝑘)𝑎𝑘 .

We will be particularly interested in arithmetic functions 𝑓(𝑛) that have something to do
with the arithmetic nature of 𝑛. Euler’s 𝜙(𝑛) and the 𝑝-adic valuation 𝑣𝑝(𝑛) are examples.
The prime counting function 𝜋(𝑥) as we’ve defined it is not an arithmetic function according
to the above definition since its domain is R>0. However, if we restrict the domain to Z>0

then 𝜋(𝑛) becomes an arithmetic function. Here are some more examples:
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• The (little) omega function 𝜔(𝑛) = number of distinct prime divisors of 𝑛.

For example, 𝜔(1) = 0, 𝜔(8) = 𝜔(23) = 1 and 𝜔(12) = 𝜔(22 · 3) = 2.

• The (big) omega function Ω(𝑛) = number of distinct prime divisors of 𝑛 counted
according to their valuation.

For example, Ω(10) = Ω(21 · 51) = 1 + 1 = 2, Ω(12) = Ω(22 · 3) = 2 + 1 = 3 and
Ω(100) = Ω(22 · 52) = 2 + 2 = 4.

• The divisor functions 𝜎𝑘(𝑛) =
∑︀

𝑑|𝑛 𝑑
𝑘, where the sum runs over the positive divisors

of 𝑛 and where 𝑘 ∈ R.

For example

𝜎0(10) =
∑︁
𝑑|10

𝑑0 = 10 + 20 + 50 + 100 = 4

and
𝜎1(10) =

∑︁
𝑑|10

𝑑1 = 11 + 21 + 51 + 101 = 18.

Notice that 𝜎0(𝑛) is the number of positive divisors of 𝑛 and 𝜎1(𝑛) is their sum. We
set 𝑑(𝑛) = 𝜎0(𝑛) and 𝜎(𝑛) = 𝜎1(𝑛).

Here are a couple of more “creative” examples:

• The sum-of-squares function 𝑟2(𝑛) = #{(𝑥, 𝑦) ∈ Z2 : 𝑥2 + 𝑦2 = 𝑛}. That is, 𝑟2(𝑛)
is the number of solutions to the equation 𝑥2 + 𝑦2 = 𝑛 with 𝑥, 𝑦 ∈ Z.
For example, 𝑟2(1) = 4 since there are four solutions to 𝑥2 + 𝑦2 = 1 (namely: (𝑥, 𝑦) =
(±1, 0) and (𝑥, 𝑦) = (0,±1)). On the other hand, 𝑟2(23) = 0 since 23 ≡ 3 (mod 4)
and we have seen that the sum of two squares cannot be congruent to 3 modulo 4.

• The Ramanujan tau function 𝜏(𝑛) is the coefficient of 𝑞𝑛 in the expansion

𝑞
∞∏︁
𝑛=1

(1− 𝑞𝑛)24 = 𝑞(1− 𝑞)24(1− 𝑞2)24 · · · = 𝜏(1)𝑞 + 𝜏(2)𝑞2 + 𝜏(3)𝑞3 + · · · .

For example, 𝜏(1) = 1, 𝜏(2) = −24 and 𝜏(3) = 252. (Can you determine 𝜏(4)?)

Ramanujan stumbled upon this function while investigating the divisor functions
𝜎𝑘(𝑛). He stated three famous conjectures concerning 𝜏(𝑛). The first is that 𝜏(𝑛)
is multiplicative; the second is a recursive formula for 𝜏(𝑝𝑘) for 𝑝 a prime; and the
third is the inequality |𝜏(𝑛)| ≤ 𝑛11/2𝑑(𝑛), where 𝑑(𝑛) = 𝜎0(𝑛) as above. The first two
conjectures were proved quickly by Mordell. The third was much more difficult. Pierre
Deligne won a Fields Medal in part for his proof of Ramanujan’s third conjecture.

One of our two goals (1) and (2) is to prove that 𝜙(𝑛) is multiplicative. Of the functions
above, we’ve noted that 𝜏(𝑛) is multiplicative. What about the others?

Exercise 15.3 For each of 𝑣𝑝(𝑛), 𝜋(𝑛), 𝜔(𝑛), Ω(𝑛) and 𝑟2(𝑛), determine whether it is multiplicative,
completely multiplicative or neither.
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Are the divisor functions 𝜎𝑘(𝑛) multiplicative? The answer is yes. The proof is actually not
that difficult, so I encourage you to pause and try come up with it yourself before reading
ahead.

We will need a simple, but very useful, lemma.

Lemma 15.4 Let 𝑚,𝑛 ∈ Z be coprime. If 𝑑 | 𝑚𝑛 then we express 𝑑 in the form 𝑑 = 𝑑1𝑑2 where 𝑑1 | 𝑚
and 𝑑2 | 𝑛. Conversely, if 𝑑1 | 𝑚 and 𝑑2 | 𝑛, then 𝑑1𝑑2 | 𝑚𝑛.

Proof: If𝑚 = 1 or 𝑛 = 1, this is trivial, so we may assume that𝑚,𝑛 ̸= 1. Consider then the
prime factorizations of all integers involved. Since 𝑚 and 𝑛 are coprime, they do not share
primes in common. So if 𝑑 | 𝑚𝑛 then we can break up its prime factorization into two pieces:
one piece consisting of the primes appearing in 𝑚 and the other consisting of the primes
appearing in 𝑛. These are our desired 𝑑1 and 𝑑2. The converse follows from Proposition
4.3(b) since 𝑑1 and 𝑑2 must be coprime and they each divide 𝑚𝑛 by transitivity. ■

This lemma shows in particular that, if 𝑚 and 𝑛 are coprime, the divisors of 𝑚𝑛 are in
one-to-one correspondence with divisors of 𝑚 and 𝑛.

Proposition 15.5 The function 𝜎𝑘(𝑛) =
∑︀

𝑑|𝑛 𝑑
𝑘 is multiplicative.

Proof: We must show that 𝜎𝑘(𝑚𝑛) = 𝜎𝑘(𝑚)𝜎𝑘(𝑛) whenever 𝑚,𝑛 ∈ Z>0 are coprime.
Lemma 15.4 implies that summing over the divisors 𝑑 of 𝑚𝑛 is the same as summing over
𝑑1𝑑2 where 𝑑1 | 𝑚 and 𝑑2 | 𝑛. Thus,

𝜎𝑘(𝑚𝑛) =
∑︁
𝑑|𝑚𝑛

𝑑𝑘

=
∑︁
𝑑1|𝑚
𝑑2|𝑛

(𝑑1𝑑2)
𝑘

=
∑︁
𝑑1|𝑚

∑︁
𝑑2|𝑛

𝑑𝑘1𝑑
𝑘
2

=

⎛⎝∑︁
𝑑1|𝑚

𝑑𝑘1

⎞⎠⎛⎝∑︁
𝑑2|𝑛

𝑑𝑘2

⎞⎠
= 𝜎𝑘(𝑚)𝜎𝑘(𝑛),

as desired. ■

Exercise 15.6 Is 𝜎𝑘(𝑛) completely multiplicative?

As a consequence of Propositions 15.2 and 15.5, we’ve reduced the problem of computing
𝜎𝑘(𝑛) to the problem of computing 𝜎𝑘(𝑝

𝑖) where 𝑝 is a prime. We can use this to obtain
formulas for the number of positive divisors of 𝑛 and their sum. See Problem 15.3.
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If we analyze the proof of Proposition 15.5, we discover that there are two things that
make it work: First, we are able to break up the sum

∑︀
𝑑|𝑚𝑛 into

∑︀
𝑑1|𝑚

∑︀
𝑑2|𝑛 thanks to

Lemma 15.4. Second, we are able to split up the summand 𝑑𝑘 into 𝑑𝑘1𝑑
𝑘
2 since the function

𝑓(𝑑) = 𝑑𝑘 is multiplicative. So the same proof would show that every function of the
form 𝐹 (𝑛) =

∑︀
𝑑|𝑛 𝑓(𝑑), with 𝑓(𝑑) multiplicative, is itself multiplicative. This prompts the

following definition.

Definition 15.7

Summatory
Function

If 𝑓(𝑛) is an arithmetic function, then its summatory function is the arithmetic function
𝐹 (𝑛) defined by

𝐹 (𝑛) =
∑︁
𝑑|𝑛

𝑓(𝑑)

where the sum runs over the positive divisors 𝑑 of 𝑛.

REMARK

You can think of the summatory function as a kind of “discrete” integral of the function 𝑓(𝑑).
Perhaps a more appropriate integral would be a function of the form 𝐹 (𝑥) =

∑︀
𝑑≤𝑥 𝑓(𝑑).

Functions of this type are in fact studied in number theory; they are, confusingly, also called
summatory functions.

For example, the summatory function of 𝑓(𝑛) = 𝑛𝑘 is 𝐹 (𝑛) =
∑︀

𝑑|𝑛 𝑑
𝑘 = 𝜎𝑘(𝑛).

Theorem 15.8 Let 𝑓 be an arithmetic function and let 𝐹 be the summatory function of 𝑓 . Then 𝑓 is
multiplicative if and only if 𝐹 is multiplicative.

If 𝑓 is multiplicative, we can prove that its summatory function 𝐹 is multiplicative by
mimicking the proof of Proposition 15.5, as we’ve indicated above. The converse will be
proved next lecture by means of Möbius inversion—a technique that allows us to express 𝑓
in terms of 𝐹 . (See Corollary 16.5.)

Our strategy for proving (1)—that is, that 𝜙(𝑛) is multiplicative—will be to prove that
its summatory function is multiplicative! We will end this lecture by determining the
summatory function of 𝜙(𝑛).

Theorem 15.9 For all 𝑛 ∈ Z>0, we have ∑︁
𝑑|𝑛

𝜙(𝑑) = 𝑛.

Proof: Let 𝑆 = {1, . . . , 𝑛} and let 𝑆𝑑 = {𝑘 ∈ 𝑆 : gcd(𝑘, 𝑛) = 𝑑}. Observe that each 𝑘 ∈ 𝑆
belongs to exactly one 𝑆𝑑, so the sets 𝑆𝑑 partition 𝑆. Of course, 𝑆𝑑 is empty if 𝑑 ∤ 𝑛 since
the condition gcd(𝑘, 𝑛) = 𝑑 is impossible in this case. Thus,

𝑛 = |𝑆| =
∑︁
𝑑|𝑛

|𝑆𝑑|.
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Now,

𝑘 ∈ 𝑆𝑑 ⇐⇒ 1 ≤ 𝑘 ≤ 𝑛 and gcd(𝑘, 𝑛) = 𝑑

⇐⇒ 1 ≤ 𝑘 ≤ 𝑛 and gcd(𝑘/𝑑, 𝑛/𝑑) = 1

⇐⇒ 1 ≤ 𝑘/𝑑 ≤ 𝑛/𝑑 and gcd(𝑘/𝑑, 𝑛/𝑑) = 1.

Setting 𝑎 = 𝑘/𝑑, we see that the size of 𝑆𝑑 is equal to the number of integers in the interval
1 ≤ 𝑎 ≤ 𝑛/𝑑 that are coprime to 𝑛/𝑑. That is, |𝑆𝑑| = 𝜙(𝑛/𝑑). Consequently,

𝑛 =
∑︁
𝑑|𝑛

|𝑆𝑑| =
∑︁
𝑑|𝑛

𝜙(𝑛/𝑑).

Finally, note that as 𝑑 runs over the divisors of 𝑛 then so does 𝑛/𝑑. Thus,∑︁
𝑑|𝑛

𝜙(𝑛/𝑑) =
∑︁
𝑑|𝑛

𝜙(𝑑),

which completes the proof. ■

Thus, the summatory function of 𝜙(𝑛) is the constant function 𝐹 (𝑛) = 𝑛. Since the latter
is clearly multiplicative, it follows that 𝜙(𝑛) is multiplicative. This completes our proof of
(1)—except we still need to prove the reverse implication in Theorem 15.8. We’ll do this
next time.

Lecture 15 Problems

15.1. Let 𝑓 and 𝑔 be multiplicative functions. Prove that if 𝑓(𝑝𝑎) = 𝑔(𝑝𝑎) for all primes 𝑝 and all
𝑎 ∈ Z≥0 then 𝑓(𝑛) = 𝑔(𝑛) for all 𝑛 ∈ Z>0.

15.2. Prove that if 𝑓 is multiplicative then either 𝑓(1) = 1 or else 𝑓(𝑛) = 0 for all 𝑛 ∈ Z>0.

15.3. (a) Prove that

𝑑(𝑛) =
∏︁
𝑝|𝑛

(𝑣𝑝(𝑛) + 1) and 𝜎(𝑛) =
∏︁
𝑝|𝑛

(︃
𝑝𝑣𝑝(𝑛)+1 − 1

𝑝− 1

)︃
,

where each product is over the prime divisors 𝑝 of 𝑛. [Hint: 𝜎𝑘 is multiplicative.]

(b) Determine 𝑑(100) and 𝜎(100).

15.4. For 𝑛 ∈ Z>0, let

𝜒(𝑛) =

⎧⎪⎨⎪⎩
0 if 𝑛 is even

1 if 𝑛 ≡ 1 (mod 4)

−1 if 𝑛 ≡ 3 (mod 4).

(a) Prove that 𝜒(𝑛) is a completely multiplicative function.

(b) Determine whether 𝑋(𝑛) =
∑︀

𝑑|𝑛 𝜒(𝑑) is multiplicative, completely multiplicative or
neither.

(c) Show that 𝑟2(𝑛) = 4𝑋(𝑛) for 𝑛 = 1, 2, . . . , 10. [Note: In fact, 𝑟2(𝑛) = 4𝑋(𝑛) for all 𝑛.]

15.5. Determine all multiplicative functions 𝑓(𝑛) that satisfy

𝑛 ≡ 𝑚 (mod 3) =⇒ 𝑓(𝑛) = 𝑓(𝑚).
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Lecture 16 Möbius Inversion

Let’s recap. We wanted to prove that the Euler phi function 𝜙(𝑛) is multiplicative, meaning
that 𝜙(𝑚𝑛) = 𝜙(𝑚)𝜙(𝑛) whenever 𝑚,𝑛 ∈ Z>0 are coprime. We claimed that an arithmetic
function 𝑓(𝑛) is multiplicative if and only if its summatory function 𝐹 (𝑛) =

∑︀
𝑑|𝑛 is multi-

plicative, and proved the direction

𝑓(𝑛) is multiplicative =⇒ 𝐹 (𝑛) is multiplicative.

In this lecture we will prove the ⇐= implication. Since the summatory function of
𝑓(𝑛) = 𝜙(𝑛) is 𝐹 (𝑛) = 𝑛 (Theorem 15.9), which is multiplicative, this will allows us to
conclude that 𝜙(𝑛) is multiplicative.

Our proof will involve expressing 𝑓(𝑛) in terms of its summatory function 𝐹 (𝑛). Let’s see
why this ought to be possible. Consider the following values of 𝐹 :

𝐹 (1) = 𝑓(1)

𝐹 (2) = 𝑓(1) + 𝑓(2)

𝐹 (3) = 𝑓(1) + 𝑓(3)

𝐹 (4) = 𝑓(1) + 𝑓(2) + 𝑓(4)

𝐹 (5) = 𝑓(1) + 𝑓(5)

𝐹 (6) = 𝑓(1) + 𝑓(2) + 𝑓(3) + 𝑓(6).

We can “invert” the above system to obtain

𝑓(1) = 𝐹 (1)

𝑓(2) = 𝐹 (2)− 𝐹 (1)

𝑓(3) = 𝐹 (3)− 𝐹 (1)

𝑓(4) = 𝐹 (4)− 𝐹 (2)

𝑓(5) = 𝐹 (5)− 𝐹 (1)

𝑓(6) = 𝐹 (6)− 𝐹 (3)− 𝐹 (2) + 𝐹 (1).

Continuing in this manner, we begin to suspect that there is a relation of the form

𝑓(𝑛) =
∑︁
𝑑|𝑛

𝜇𝑑𝐹 (𝑛/𝑑)

where the coefficients 𝜇𝑑 are 0 or ±1. This is indeed the case. With a little more thought,
we can discover what 𝜇𝑑 should be. The upshot is as follows.

Definition 16.1

The Möbius
Function

The Möbius function 𝜇 is defined by

𝜇(𝑛) =

⎧⎪⎨⎪⎩
0 if 𝑛 has a repeated prime divisor

1 if 𝑛 = 1

(−1)𝑘 if 𝑛 is a product of 𝑘 distinct primes.

for all 𝑛 ∈ Z>0.
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For example 𝜇(4) = 𝜇(54) = 0 since 22 | 4 and 33 | 54, while 𝜇(30) = 𝜇(2·3·5) = (−1)3 = −1.

Exercise 16.2 (a) Determine 𝜇(𝑛) for 𝑛 = 1, 2, . . . , 10.

(b) Prove that 𝜇(𝑛) is multiplicative but not completely multiplicative.

The next result determines the summatory function of 𝜇(𝑛).

Theorem 16.3 For all 𝑛 ∈ Z>0, we have ∑︁
𝑑|𝑛

𝜇(𝑑) =

{︃
1 if 𝑛 = 1,

0 if 𝑛 > 1.

(This can be expressed more compactly as:
∑︀

𝑑|𝑛 𝜇(𝑑) =
⌊︀
1
𝑛

⌋︀
.)

Proof: If 𝑛 = 1 then the sum is simply 𝜇(1) = 1, so that’s that. If 𝑛 > 1 and 𝑛 = 𝑝𝑎11 · · · 𝑝𝑎𝑘𝑘
is the prime factorization of 𝑛, then since 𝜇(𝑑) = 0 if 𝑑 has a repeated prime factor, we have∑︁

𝑑|𝑛

𝜇(𝑑) = 𝜇(1) +
∑︁
𝑝|𝑛

𝜇(𝑝) +
∑︁
𝑝,𝑞|𝑛

𝜇(𝑝𝑞) + · · ·+ 𝜇(𝑝1 · · · 𝑝𝑘),

where the sums are over the distinct prime divisors of 𝑛, pairs of distinct prime divisors
of 𝑛, and so on. In the 𝑖th sum, we are summing over the

(︀
𝑘
𝑖

)︀
choices of 𝑖 distinct prime

divisors of 𝑛. Since 𝜇(𝑝𝑗1 · · · 𝑝𝑗𝑖) = (−1)𝑖, it follows that

∑︁
𝑛|𝑑

𝜇(𝑑) =

𝑘∑︁
𝑖=0

(︂
𝑘

𝑖

)︂
(−1)𝑖 = (1− 1)𝑘 = 0,

where the binomial theorem was used to sum up the series. ■

With this in hand, we can now show how to recover 𝑓 from its summatory function.

Theorem 16.4 (Möbius Inversion Formula)

Let 𝑓 be an arithmetic function and let 𝐹 (𝑛) =
∑︀

𝑑|𝑛 𝑓(𝑑) be the summatory function of 𝑓 .
Then

𝑓(𝑛) =
∑︁
𝑑|𝑛

𝜇(𝑑)𝐹 (𝑛/𝑑).

Proof: We have ∑︁
𝑑|𝑛

𝜇(𝑑)𝐹 (𝑛/𝑑) =
∑︁
𝑑|𝑛

𝜇(𝑑)
∑︁
𝑒|𝑛/𝑑

𝑓(𝑒)

=
∑︁
𝑑|𝑛

∑︁
𝑒|𝑛/𝑑

𝜇(𝑑)𝑓(𝑒)

In the above, we are summing up over all pairs (𝑑, 𝑒) such that 𝑑 | 𝑒 and 𝑒 | 𝑛/𝑑. Observe
that if 𝑒 | 𝑛/𝑑 then 𝑒 | 𝑛. Conversely, if 𝑒 | 𝑛 then 𝑒 will divide 𝑛/𝑑 if and only if 𝑑 divides
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𝑛/𝑒 (in which case 𝑑 will divide 𝑛 too). So we may view the sum as being over all pairs
(𝑑, 𝑒) such that 𝑒 | 𝑛 and 𝑑 | 𝑛/𝑒. Thus, we can interchange the roles of 𝑒 and 𝑑 in the
expression above, leaving us with

∑︁
𝑑|𝑛

∑︁
𝑒|𝑛/𝑒

𝜇(𝑑)𝑓(𝑒) =
∑︁
𝑒|𝑛

⎛⎝∑︁
𝑑|𝑛/𝑒

𝜇(𝑑)

⎞⎠ 𝑓(𝑒).

By Theorem 16.3, ∑︁
𝑑|𝑛/𝑒

𝜇(𝑑) =

{︃
1 if 𝑛/𝑒 = 1,

0 otherwise.

So in the above sum all terms except the 𝑒 = 𝑛 term vanish, leaving us with 𝑓(𝑛). This
completes the proof. ■

Let’s record an important corollary.

Corollary 16.5 Let 𝐹 (𝑛) =
∑︀

𝑑|𝑛 𝑓(𝑑) be the summatory function of 𝑓 . If 𝐹 is multiplicative then 𝑓 is
multiplicative.

Proof: Möbius inversion gives 𝑓(𝑛) =
∑︀

𝑑|𝑛 𝜇(𝑑)𝐹 (𝑛/𝑑). So if 𝑚,𝑛 ∈ Z>0 are coprime,
then

𝑓(𝑚𝑛) =
∑︁
𝑑|𝑚𝑛

𝜇(𝑑)𝐹 (𝑚𝑛/𝑑)

=
∑︁
𝑑1|𝑚

∑︁
𝑑2|𝑛

𝜇(𝑑1𝑑2)𝐹 (𝑚𝑛/(𝑑1𝑑2)) (Lemma 15.4)

=
∑︁
𝑑1|𝑚

𝜇(𝑑1)𝐹 (𝑚/𝑑1)
∑︁
𝑑2|𝑛

𝜇(𝑑2)𝐹 (𝑛/𝑑2) (𝜇 and 𝐹 are multiplicative)

= 𝑓(𝑚)𝑓(𝑛),

as desired. ■

Example 16.6 (Möbius inversion applied to 𝜎𝑘(𝑛))

The divisor function 𝜎𝑘(𝑛) =
∑︀

𝑑|𝑛 𝑛
𝑘 can be viewed as the summatory function of the

power function 𝑓(𝑛) = 𝑛𝑘. Applying Möbius inversion, we obtain

𝑛𝑘 =
∑︁
𝑑|𝑛

𝜇(𝑑)𝜎𝑘(𝑛/𝑑).

For instance, if 𝑘 = 0, this result gives the (non-obvious) identity

1 =
∑︁
𝑑|𝑛

𝜇(𝑑)𝜎0(𝑛/𝑑)
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where 𝜎0(𝑛/𝑑) is the number of positive divisors of 𝑛/𝑑. To illustrate, let 𝑛 = 10. Then∑︁
𝑑|10

𝜇(𝑑)𝜎0(10/𝑑) = 𝜇(1)𝜎0(10) + 𝜇(2)𝜎0(5) + 𝜇(5)𝜎0(2) + 𝜇(10)𝜎0(1)

= 1(4) + (−1)(2) + (−1)(2) + (1)(1)

= 1.

If we apply Möbius inversion to 𝜙(𝑛) and its summatory function, we can finally prove both
items (1) and (2) from the previous lecture.

Proposition 16.7 (1) 𝜙(𝑛𝑚) = 𝜙(𝑛)𝜙(𝑚) if gcd(𝑛,𝑚) = 1.

(2) 𝜙(𝑝𝑎) = 𝑝𝑎 − 𝑝𝑎−1 if 𝑝 is prime and 𝑎 ∈ Z>0.

Proof: The summatory function of 𝜙(𝑛) is the constant function 𝐹 (𝑛) = 𝑛 (Theorem 15.9).
Since 𝐹 (𝑛) = 𝑛 is obviously multiplicative, item (1) follows from Corollary 16.5.

For item (2), we apply Möbius inversion to 𝑓(𝑛) = 𝜙(𝑛) and 𝐹 (𝑛) = 𝑛, obtaining

𝜙(𝑛) =
∑︁
𝑑|𝑛

𝜇(𝑑)
𝑛

𝑑
.

Letting 𝑛 = 𝑝𝑎, we find

𝜙(𝑝𝑎) =
∑︁
𝑑|𝑝𝑎

𝜇(𝑝𝑎)
𝑝𝑎

𝑑
.

The positive divisors of 𝑝𝑎 are the integers 𝑝𝑏 with 0 ≤ 𝑏 ≤ 𝑎. If 𝑏 > 1 then 𝜇(𝑝𝑏) = 0,
leaving us with

𝜙(𝑝𝑎) = 𝜇(1)𝑝𝑎 + (−1)
𝑝𝑎

𝑝
= 𝑝𝑎 − 𝑝𝑎−1,

as desired. ■

By combining items (1) and (2), we obtain the following corollary.

Corollary 16.8 If 𝑛 = 𝑝𝑎11 · · · 𝑝𝑎𝑘𝑘 is the prime factorization of 𝑛, then

𝜙(𝑛) =
𝑘∏︁

𝑖=1

(︁
𝑝𝑎𝑖𝑖 − 𝑝𝑎𝑖−1

𝑖

)︁
.

Exercise 16.9 Compute 𝜙(2024).
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REMARK (Computing 𝜙(𝑛))

Corollary 16.8 answers question 3 in Section 14.1 with the caveat that we have the prime
factorization of 𝑛 available to us. However, since there are no known efficient algorithms for
factoring integers, this is not a very satisfying answer. Alas, it’s expected that computing
arbitrary values of 𝜙(𝑛) is as hard as factoring arbitrary integers. We already saw this
explicitly in the case where 𝑛 = 𝑝𝑞 was the product of two primes. We proved that knowing
the value of 𝜙(𝑛) allows one to determine 𝑝 and 𝑞 (see bottom of page 78).

Lecture 16 Problems

16.1. Let 𝑛 > 1. Prove that

𝜙(𝑛) = 𝑛
∏︁
𝑝|𝑛

(︂
1− 1

𝑝

)︂
,

where the product is over the prime divisors 𝑝 of 𝑛.

16.2. Let 𝑛,𝑚 ∈ Z>0. Prove:

(a) 𝜙(𝑛𝑚) = 𝜙(𝑛)𝜙(𝑚)(𝑑/𝜙(𝑑)), where 𝑑 = gcd(𝑚,𝑛).

(b) If 𝑛 | 𝑚 then 𝜙(𝑛) | 𝜙(𝑚). [Hint: Try induction on 𝑚 and use part (a).]

(c) 𝜙(𝑛) is even for all 𝑛 ≥ 3.

16.3. The van Mangoldt function is defined by

Λ(𝑛) =

{︃
log 𝑝 if 𝑛 = 𝑝𝑎 for some prime 𝑝 and 𝑎 ∈ Z>0

0 otherwise.

This function plays an important role in the proof of the Prime Number Theorem. Prove:

(a)
∑︀

𝑑|𝑛 Λ(𝑑) = log𝑛.

(b) Λ(𝑛) = −
∑︀

𝑑|𝑛 𝜇(𝑑) log 𝑑.

16.4. If 𝑓 and 𝑔 are arithmetic functions, we define their convolution 𝑓 * 𝑔 by

(𝑓 * 𝑔)(𝑛) =
∑︁
𝑑|𝑛

𝑓(𝑑)𝑔(𝑛/𝑑).

Let 𝑓 , 𝑔 and ℎ be arithmetic functions. Prove:

(a) 𝑓 * 𝑔 = 𝑔 * 𝑓 .
(b) (𝑓 * 𝑔) * ℎ = 𝑓 * (𝑔 * ℎ).

(c) 𝑓 * 𝑒 = 𝑒 * 𝑓 , where 𝑒 is defined by 𝑒(𝑛) =

{︃
1 if 𝑛 = 1

0 if 𝑛 > 1.

(d) If 𝑓(1) ̸= 0, then 𝑓 * 𝑓 𝜄 = 𝑒 = 𝑓 𝜄 * 𝑓 , where 𝑓 𝜄 is defined recursively by

𝑓 𝜄(1) =
1

𝑓(1)
and 𝑓 𝜄(𝑛) = − 1

𝑓(1)

∑︁
𝑑|𝑛,𝑑<𝑛

𝑓 𝜄(𝑑)𝑓(𝑛/𝑑) for 𝑛 > 1.

[Note: This shows that the set of arithmetic functions 𝑓 with 𝑓(1) ̸= 0 forms a commutative
group with respect to the convolution operation. The identity element is the function 𝑒 and
the inverse of 𝑓 is the function 𝑓 𝜄 defined above.]

16.5. This problem is a continuation of the previous one.
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(a) The unit function 𝑢 is defined by 𝑢(𝑛) = 1 for all 𝑛 ∈ Z>0. Prove that 𝑢 * 𝜇 = 𝑒.

(b) Let 𝑓 be an arithmetic function and let 𝐹 be its summatory function. Prove that
𝐹 = 𝑓 * 𝑢 and hence deduce that 𝑓 = 𝐹 * 𝜇.

[Note: This gives a one-line proof of the Möbius inversion formula!]
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Lecture 17 The Discrete Logarithm

Recall that the Discrete Logarithm Problem asks us to find 𝑥 ∈ Z such that 𝑎𝑥 ≡ 𝑏 (mod 𝑛),
where 𝑎 and 𝑏 are integers coprime to 𝑛. The idea is that such a solution 𝑥, if one exists,
ought to be called “log𝑎(𝑏).” There are a couple of subtleties that arise. Let’s consider some
examples.

Example 17.1 Find all 𝑥 ∈ Z, if any, that satisfy the given congruences.

(a) 3𝑥 ≡ 6 (mod 7).

(b) 4𝑥 ≡ 6 (mod 7).

Solution:

(a) Let’s calculate powers of 3 modulo 7:

31 ≡ 3

32 ≡ 2

33 ≡ 6

and we’re done! We found a solution, namely 𝑥 = 3. But let’s continue:

34 ≡ 4

35 ≡ 5

36 ≡ 1

37 ≡ 3

38 ≡ 2

39 ≡ 6.

We’ve discovered another solution: 𝑥 = 9. What happened here is that the moment
we arrived at 36 ≡ 1, the pattern of values of 3𝑥 began to repeat, so we were destined
to find another solution. The powers of 3 repeat in cycles of length 6: 3, 2, 6, 4, 5, 1,
and repeat. Since we found that 3𝑥 ≡ 6 when 𝑥 = 3, then we will have 3𝑥 ≡ 6 for all
𝑥 = 3 + 6𝑘 with 𝑘 ∈ Z. Indeed:

33+6𝑘 = 33(36)𝑘 ≡ 6(1)𝑘 ≡ 6 (mod 7).

Based on our computations of powers of 3, these are the only exponents that produces
a 6. Thus, there are infinitely many possible values for “log3(6)”, namely 3 + 6𝑘 for
𝑘 ∈ Z.

(b) Let’s calculate powers of 4 modulo 7:

41 ≡ 4

42 ≡ 2

43 ≡ 1

and now the pattern of values of 4𝑥 will repeat: 4, 2, 1, 4, 2, 1, . . .. This time the cycle
length is only 3, and 6 never occurs amongst these values. So there are no solutions to
4𝑥 ≡ 6 (mod 7). Thus, “log3(4)” is undefined.
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We learn two things from Example 17.1:

1. There might be infinitely many solutions to 𝑎𝑥 ≡ 𝑏 (mod 𝑛). That is, log𝑎(𝑏) might
be “multi-valued.”

2. There might be no solutions to 𝑎𝑥 ≡ 𝑏 (mod 𝑛). That is, log𝑎(𝑏) might be undefined.

The latter is not too surprising, since for example in R, log𝑒(−1) is undefined. The former
might be surprising if you’re only familiar with real logarithms, but if you know about
complex logarithms, then you will recall that log𝑒(𝑧) is multi-valued and is defined only up
to an integer multiple 2𝜋𝑖. This is analogous to the Z/7Z logarithm log3(6) which we’ve
discovered is defined only up to an integer multiple of 6.

Let’s look at another example.

Example 17.2 Find all 𝑥 ∈ Z, if any, that satisfy the given congruences.

(a) 2𝑥 ≡ 5 (mod 11).

(b) 3𝑥 ≡ 5 (mod 11).

Solution:

(a) The powers of 2 modulo 11 in order from 21 to 210 are:

2, 4, 8, 5, 10, 9, 7, 3, 6, 1.

Here 𝑒 = 10 is the smallest exponent 𝑒 ≥ 1 where 2𝑒 ≡ 1. So the powers of 2 modulo
11 will repeat in cycles of length 10.

Therefore, since we see that 24 ≡ 5, it follows that the solutions to 2𝑥 ≡ 5 (mod 11)
are all given by 𝑥 = 4 + 10𝑘 with 𝑘 ∈ Z. In more provocative terms:

log2(5) = 4 + 10𝑘 (𝑘 ∈ Z).

(b) The powers of 3 mod 11 in order from 31 to 35 are:

3, 9, 5, 4, 1.

This time 𝑒 = 5 is the smallest exponent where 3𝑒 ≡ 1. So the powers of 3 mod 11 will
repeat in cycles of length 5.

Since 33 ≡ 5, it follows that the solutions to 3𝑥 ≡ 5 (mod 11) are all given by 𝑥 = 3+5𝑘
with 𝑘 ∈ Z. That is,

log3(5) = 3 + 5𝑘 (𝑘 ∈ Z).

Exercise 17.3 Find all 𝑥 ∈ Z such that 4𝑥 ≡ 5 (mod 11).

It becomes apparent now that the smallest exponent 𝑒 ≥ 1 for which 𝑎𝑒 ≡ 1 (mod 𝑛) is of
some importance, so let’s give it a name.
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Definition 17.4

Order, ord(𝑎)

Let 𝑎 ∈ Z be coprime to 𝑛. The order of 𝑎 modulo 𝑛, denoted by ord𝑛(𝑎) or ord(𝑎), is the
smallest integer 𝑒 ≥ 1 such that 𝑎𝑒 ≡ 1 (mod 𝑛).

For example, our computations in Examples 17.1 and 17.2 show:

• In (Z/7Z)×, ord7(3) = 6 and ord7(4) = 3.

• In (Z/11Z)×, ord11(2) = 10 and ord11(3) = 5.

Some housekeeping: Since 𝑎𝜙(𝑛) ≡ 1 (mod 𝑛) for all 𝑎 coprime to 𝑛 (by Theorem 12.4
(Euler’s Theorem)), we know that there is some integer 𝑒 ≥ 1 for which 𝑎𝑒 ≡ 1 (mod 𝑛), so
there must be a smallest such integer. So ord(𝑎) is well-defined. Also note that if 𝑎 is not
coprime to 𝑛, then 𝑎 is not a unit modulo 𝑛, so 𝑎𝑒 ̸≡ 1 (mod 𝑛) for all 𝑒 ≥ 1, so it makes no
sense to speak of ord(𝑎) in this case. Finally, if 𝑎 ≡ 𝑏 (mod 𝑛) and if 𝑎 and 𝑏 are coprime
to 𝑛, then ord(𝑎) = ord(𝑏), so the order of 𝑎 depends only on the congruence class of 𝑎 in
(Z/𝑛Z)×.

The following table lists sets of representatives of (Z/5Z)×, (Z/7Z)× and (Z/10Z)× together
with their orders.

𝑎 values of 𝑎𝑒 ord5(𝑎)

1 {1} 1
2 {2, 4, 3, 1} 4
3 {3, 4, 2, 1} 4
4 {4, 1} 2

𝑎 values of 𝑎𝑒 ord7(𝑎)

1 {1} 1
2 {2, 4, 1} 3
3 {3, 2, 6, 4, 5, 1} 6
4 {4, 2, 1} 3
5 {5, 4, 6, 2, 3, 1} 6
6 {6, 1} 2

𝑎 values of 𝑎𝑒 ord10(𝑎)

1 {1} 1
3 {3, 9, 7, 1} 4
7 {7, 9, 3, 1} 4
9 {9, 1} 2

Exercise 17.5 Create a similar table for (Z/11Z)×.

By studying these tables, we can make lots of conjectures. For instance, it appears that
ord𝑛(𝑎) is always a divisor of the order of (Z/𝑛Z)×—that is, it appears that ord𝑛(𝑎) | 𝜙(𝑛).
It also looks appears that 1, 𝑎, 𝑎2, . . . , 𝑎ord𝑛(𝑎) are distinct mod 𝑛. Let’s prove that both of
these observations hold in general.

Proposition 17.6 Let 𝑛 ∈ Z>0 and let 𝑎 ∈ Z be coprime to 𝑛. If 𝑎𝑘 ≡ 1 (mod 𝑛) then ord𝑛(𝑎) | 𝑘. In
particular, ord𝑛(𝑎) | 𝜙(𝑛).

Proof: Apply the Remainder Theorem to write 𝑘 = ord(𝑎)𝑞 + 𝑟 for some 𝑞, 𝑟 ∈ Z with
0 ≤ 𝑟 < ord(𝑎). Then

1 ≡ 𝑎𝑘 ≡ 𝑎ord(𝑎)𝑞+𝑟 ≡ (𝑎ord(𝑎))𝑞𝑎𝑟 ≡ 𝑎𝑟 (mod 𝑛).

It follows that 𝑟 = 0 by minimality of ord(𝑎), and hence ord(𝑎) | 𝑘. This proves the first
part of the proposition. The second part follows from the first since 𝑎𝜙(𝑛) ≡ 1 (mod 𝑛) by
Euler’s theorem. ■
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Corollary 17.7 If 𝑘 = ord𝑛(𝑎), then 1, 𝑎, 𝑎2, . . . , 𝑎𝑘−1 are all distinct mod 𝑛.

Proof: If 𝑎𝑖 ≡ 𝑎𝑗 (mod 𝑛) with 0 ≤ 𝑖 ≤ 𝑗 < 𝑘 then 𝑎𝑗(𝑎𝑖)−1 ≡ 1 (mod 𝑛) hence 𝑎𝑗−𝑖 ≡ 1
(mod 𝑛). So by the previous proposition, 𝑘 | 𝑗 − 𝑖. However, since 𝑗 − 𝑖 < 𝑘, this is only
possible if 𝑗 − 𝑖 = 0. So if 𝑖 ̸= 𝑗 then 𝑎𝑖 ̸≡ 𝑎𝑗 (mod 𝑛). ■

Example 17.8 Determine ord17(7).

Solution: Since 𝜙(17) = 16, the only possible values for ord17(7) are 1, 2, 4, 8 and 16. We
can compute

72 ≡ 15, 74 ≡ 4 and 78 ≡ 16 (mod 17).

It follows that 716 must be congruent to 1 mod 17, and thus ord17(7) = 16.

Exercise 17.9 Determine ord23(5).

In the tables above (and in the previous example and exercise!), there always appears to be
an integer 𝑎 with ord𝑛(𝑎) = 𝜙(𝑛). For such an 𝑎, the set of values 𝑎𝑒 mod 𝑛 encompasses
all of (Z/𝑛Z)×. This is of interest in the Discrete Logarithm Problem because it tells us
that the equation 𝑎𝑥 ≡ 𝑏 (mod 𝑛) has a solution for every 𝑏 coprime to 𝑛. For instance, in
Example 17.1, we saw that ord7(3) = 6. Since 𝜙(7) = 6, it follows that 3𝑥 ≡ 𝑏 (mod 7) has
a solution for all 𝑏. On the other hand, since ord7(4) = 3 < 𝜙(7), there must be values of 𝑏
for which 4𝑥 ≡ 𝑏 (mod 7) has no solution, and indeed we saw that 𝑏 = 6 is such a value.

Definition 17.10

Primitive Root,
Generator Mod 𝑛

Let 𝑎 ∈ Z be coprime to 𝑛. We say that 𝑎 is a primitive root (or generator) modulo 𝑛
if ord𝑛(𝑎) = 𝜙(𝑛).

For example:

• 2 and 3 are primitive roots modulo 5.

• 3 and 5 are primitive roots modulo 7.

• 3 and 7 are primitive roots modulo 10.

Exercise 17.11 Which integers are primitive roots modulo 11?

Alas, it is not true that there is always a primitive root mod 𝑛. Here is what we can say:

Theorem 17.12 There is a primitive root modulo 𝑛 if and only if

𝑛 = 1, 2, 4, 2𝑝𝑎, 𝑝𝑎

where 𝑝 is an odd prime and 𝑎 ∈ Z>0.
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Exercise 17.13 Show that there is no primitive root mod 8.

Next lecture we will prove that primitive roots always exist mod 𝑝 if 𝑝 is a prime. We won’t
prove Theorem 17.12 in this course. However, let me mention that the following two facts
are true:

• If 𝑔 is a primitive root mod an odd prime 𝑝, then either 𝑔 or 𝑔 + 𝑝 is a primitive root
mod 𝑝𝑎 for all 𝑎 ≥ 2.

• If 𝑔 is a primitive root mod 𝑝𝑎, then whichever of 𝑔 and 𝑔+𝑝𝑎 is odd will be a primitive
root mod 2𝑝𝑎.

Let’s close this lecture by returning to the Discrete Logarithm Problem. If 𝑔 is a primitive
root mod 𝑝, then for all 𝑏 coprime to 𝑝, the equation 𝑔𝑥 ≡ 𝑏 (mod 𝑝) has a solution with
𝑥 ∈ Z. You will prove in Problem 17.4 that any two solutions 𝑥, 𝑥′ ∈ Z must be congruent
mod 𝑝 − 1. Thus, there is a unique congruence class [ℓ] ∈ Z/(𝑝 − 1)Z such that 𝑔ℓ ≡ 𝑏
(mod 𝑝). We denote this congruence class by log𝑔(𝑏). This gives us a function

log𝑔 : (Z/𝑝Z)× → Z/(𝑝− 1)Z.

You will explore some properties of this function in the problem set below.

Lecture 17 Problems

▶ 17.1. Let 𝑝 be an odd prime. Prove that ord(𝑎) = 2 if and only if 𝑎 ≡ −1 (mod 𝑝).

▶ 17.2. Let 𝑎 ∈ Z be coprime to 𝑛, and let 𝑘 ∈ Z>0. Prove:

ord𝑛(𝑎
𝑘) =

ord𝑛(𝑎)

gcd(ord𝑛(𝑎), 𝑘)
.

[Hint: Prove that the left-side divides the right, and vice versa. Proposition 17.6 will be
helpful.]

17.3. Let 𝑎, 𝑏 ∈ Z be coprime to 𝑛.

(a) Prove that if gcd(ord𝑛(𝑎), ord𝑛(𝑏)) = 1 then ord𝑛(𝑎𝑏) = ord𝑛(𝑎) · ord𝑛(𝑏).
(b) Give an example showing that ord𝑛(𝑎𝑏) ̸= ord𝑛(𝑎) · ord𝑛(𝑏) in general.

17.4. (a) Let 𝑎 ∈ Z be coprime to 𝑛. Prove that 𝑎𝑥 ≡ 𝑎𝑦 (mod 𝑛) if and only if 𝑥 ≡ 𝑦
(mod ord𝑛(𝑎)).

(b) Let 𝑝 be a prime and let 𝑔 be a primitive root mod 𝑝. Prove that 𝑔𝑥 ≡ 𝑔𝑦 (mod 𝑝) if
and only if 𝑥 ≡ 𝑦 (mod 𝑝− 1).

▶ 17.5. Let 𝑝 be a prime and let 𝑔 be a primitive root mod 𝑝. Prove:

(a) log𝑔(1) ≡ 0 (mod 𝑝− 1).

(b) log𝑔(𝑎𝑏) ≡ log𝑔(𝑎) + log𝑔(𝑏) (mod 𝑝− 1) for all 𝑎, 𝑏 ∈ Z coprime to 𝑝.

(c) log𝑔(𝑎
𝑘) ≡ 𝑘 log𝑔(𝑎) (mod 𝑝− 1) for all 𝑎 ∈ Z coprime to 𝑝 and all 𝑘 ∈ Z.

[Note: If 𝑘 < 0 then 𝑎𝑘 is to be interpreted as (𝑎−1)−𝑘 mod 𝑝. So 𝑎−2 = (𝑎−1)2.]

17.6. Let 𝑝 be a prime and let 𝑔 be a primitive root mod 𝑝. Determine log𝑔(−1).
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Lecture 18 Primitive Roots Mod 𝑝

Note: This material took up two in-class lectures. So what’s here is really Lectures 18+19.

Our goal in this lecture is to prove that there is a primitive root modulo 𝑝 if 𝑝 is prime.
(This is a special case of Theorem 17.12.) We will need some preliminary results concerning
polynomial congruences.

Example 18.1 Find all solutions to the following congruences.

(a) 𝑥2 − 1 ≡ 0 (mod 𝑝), where 𝑝 is a prime.

(b) 𝑥2 − 1 ≡ 0 (mod 8).

Solution:

(a) If 𝑥2−1 ≡ 0 (mod 𝑝), then 𝑝 | (𝑥2−1) = (𝑥−1)(𝑥+1). So, by Euclid’s Lemma, either
𝑝 | (𝑥− 1) or 𝑝 | (𝑥+ 1). Thus, 𝑥 ≡ ±1 (mod 𝑝).

(b) We cannot use the same argument as in (a) since Euclid’s Lemma no longer applies. If
we try all possible values mod 8, we find that the solutions are given by 𝑥 ≡ ±1,±3
(mod 8).

Part (a) of the previous example shows that the polynomial 𝑓(𝑥) = 𝑥2 − 1 has at most 2
roots mod 𝑝. (In fact, it has one root mod 2 and two roots mod 𝑝 if 𝑝 > 2.) The next result
is a generalization of this fact.

Theorem 18.2 Let 𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 + · · · + 𝑎𝑛𝑥
𝑛 be a polynomial with integer coefficients and let 𝑝 be a

prime. Assume that 𝑝 ∤ 𝑎𝑛. Then the congruence

𝑓(𝑥) ≡ 0 (mod 𝑝)

has at most 𝑛 distinct solutions mod 𝑝.

Proof: We proceed by induction on 𝑛 = deg 𝑓(𝑥).

If 𝑛 = 1 then we are reduced to the linear congruence 𝑎1𝑥 ≡ −𝑎0 (mod 𝑝) which, by
Theorem 10.3, has exactly one solution since gcd(𝑝, 𝑎1) = 1.

The proof of the inductive step will make use of a familiar fact from elementary algebra: if
𝑥 = 𝑎 is a solution of 𝑓(𝑥) = 0, then we can write 𝑓(𝑥) = (𝑥−𝑎)𝑔(𝑥) where deg 𝑔(𝑥) = 𝑛−1.

Assume now that the result is true for all polynomials of degree ≤ 𝑛 − 1. If 𝑓(𝑥) has no
roots, we’re done. Otherwise, suppose that 𝑓(𝑎) ≡ 0 (mod 𝑝). Then

𝑓(𝑥) ≡ 𝑓(𝑥)− 𝑓(𝑎) ≡ 𝑎1(𝑥− 𝑎) + · · ·+ 𝑎𝑛(𝑥
𝑛 − 𝑎𝑛) (mod 𝑝).

By applying the identity

𝑥𝑘 − 𝑎𝑘 = (𝑥− 𝑎)(𝑥𝑘−1 + 𝑥𝑘−2𝑎+ · · ·+ 𝑥𝑎𝑘−2 + 𝑎𝑘−1)
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to each term above, we find that

𝑓(𝑥) ≡ (𝑥− 𝑎)𝑔(𝑥) (mod 𝑝)

where 𝑔(𝑥) is a polynomial of degree 𝑛− 1. So if 𝑓(𝑥) ≡ 0 (mod 𝑝) then 𝑝 | (𝑥−𝑎)𝑔(𝑥) and
hence either

𝑥− 𝑎 ≡ 0 (mod 𝑝) or 𝑔(𝑥) ≡ 0 (mod 𝑝)

by Euclid’s Lemma. Also note that the leading coefficient of 𝑔(𝑥) is not divisible by 𝑝 since
otherwise the same would be true of 𝑓(𝑥) ≡ (𝑥 − 𝑎)𝑔(𝑥) contrary to assumption. So, by
the inductive hypothesis, 𝑔(𝑥) ≡ 0 (mod 𝑝) has at most 𝑛− 1 solutions. Thus, the original
congruence 𝑓(𝑥) ≡ 0 (mod 𝑝) has at most 𝑛 solutions (namely, 𝑥 ≡ 𝑎 and the solutions of
𝑔(𝑥) ≡ 0 (mod 𝑝)). ■

Warning: This theorem is false if the modulus is not prime. Indeed, in Example 18.1 we
saw that the quadratic congruence 𝑥2 − 1 ≡ 0 (mod 8) has four solutions.

Theorem 18.3 Let 𝑝 be a prime and let 𝑑 ∈ Z>0 be a divisor of 𝑝− 1. Then the congruence

𝑥𝑑 − 1 ≡ 0 (mod 𝑝)

has exactly 𝑑 solutions.

Proof: Write 𝑝− 1 = 𝑑𝑘. Then

𝑥𝑝−1 − 1 = (𝑥𝑑)𝑘 − 1 = (𝑥𝑑 − 1)(𝑥𝑑(𝑘−1) + 𝑥𝑑(𝑘−2) + · · ·+ 𝑥𝑑 + 1⏟  ⏞  
𝑔(𝑥)

).

By Fermat’s Little Theorem, 𝑥𝑝−1 − 1 has exactly 𝑝− 1 roots mod 𝑝. By Euclid’s Lemma,
each of these roots is either a root of 𝑥𝑑 − 1 or of 𝑔(𝑥); conversely, any root of 𝑥𝑑 − 1 and
𝑔(𝑥) must be a root of 𝑥𝑝−1 − 1. By Theorem 18.2, these latter two polynomials have at
most 𝑑 and 𝑑𝑘 − 𝑑 roots, respectively. It follows that they must each have exactly 𝑑 and
𝑑𝑘 − 𝑑 roots since otherwise 𝑥𝑝−1 − 1 would have < 𝑑+ 𝑑𝑘 − 𝑑 = 𝑝− 1 roots. ■

We can now prove the existence of primitive roots mod 𝑝. It’s instructive to see how the
argument works in a couple of examples.

Example 18.4 Prove that there is a primitive root mod 11.

Solution: We want to show that there is an integer 𝑎 such that ord11(𝑎) = 𝜙(11). The
possible orders mod 11 are the divisors of 𝜙(11) = 10, namely 1, 2, 5 and 10.

If ord11(𝑎) = 𝑑, then 𝑥 = 𝑎 is a solution to 𝑥𝑑 − 1 ≡ 0 (mod 11). Thus, by Theorem
18.3, there are at most 1, 2 and 5 elements of order 1, 2 and 5, respectively. This accounts
for 1+2+5=8 of the classes in (Z/11Z)×, leaving us with two classes whose orders must
therefore be 10. These are our desired primitive roots.

Everything worked out nicely in the previous example! We won’t always be so lucky, as the
next example shows.
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Example 18.5 Prove that there is a primitive root mod 13.

Solution: We want to show that there is an integer 𝑎 such that ord13(𝑎) = 𝜙(13). The
possible orders mod 13 are the divisors of 𝜙(13) = 12, namely 1, 2, 3, 4, 6 and 12.

If ord13(𝑎) = 𝑑, then 𝑥 = 𝑎 is a solution to 𝑥𝑑 − 1 ≡ 0 (mod 13). Thus, by Theorem 18.3,
there are at most 1, 2, 3, 4 and 6 elements of order 1, 2, 3, 4 and 6, respectively. This
accounts for 1+2+3+4+6=16 of the classes in (Z/13Z)×. Oops—we’ve over-counted!

Let’s count a bit more carefully. The elements of order 6 satisfy the equation 𝑥6 − 1 ≡ 0
(mod 13), but so do the elements of orders 2 and 3. In fact, if ord(𝑔) = 6 then
1, 𝑔, 𝑔2, 𝑔3, 𝑔4, 𝑔5 are all distinct and they all satisfy 𝑥6 − 1 ≡ 0 (mod 13) (since (𝑔𝑖)6 =
(𝑔6)𝑖 ≡ 1𝑖 (mod 13)). Thus, these six roots must be all of the roots of 𝑥6 − 1 mod 13. On
the other hand, since

ord(𝑔𝑖) =
ord(𝑔)

gcd(𝑖, ord(𝑔))

by Problem 17.2 we see that of these roots, only 𝑔 and 𝑔5 have order 6.

Likewise, by considering the equation 𝑥4 − 1 ≡ 0 (mod 13), we can no see that of its roots,
at most 2 will have order 4 (in fact, exactly 2 will have order 4).

So now we’ve accounted for 1 + 2 + 3 + 2 + 2 = 10 of the elements of (Z/13Z)×, leaving us
with 2 elements whose orders must therefore be 12. These are primitive roots.

We can do better still. There is exactly only 1 element of order 2 (of the roots 𝑥 = ±1 of
𝑥2 − 1, only 𝑥 = −1 has order 2), and only 2 elements of order 3 (why?). So in fact there
are 12− (1 + 1 + 2 + 2 + 2) = 4 primitive roots mod 13.

Exercise 18.6 Show, by an argument similar to the one in the previous two examples, that there is a
primitive root mod 19.

The counting argument used above works in general.

Theorem 18.7 Let 𝑝 be a prime and let 𝑑 | 𝜙(𝑝). Then the number of congruence classes in (Z/𝑝Z)× of
order 𝑑 is equal to 𝜙(𝑑).

Proof: Let 𝑁𝑑 be the number of classes in (Z/𝑝Z)× of order 𝑑. Since every class in (Z/𝑝Z)×
has order dividing 𝜙(𝑝), and since there are 𝜙(𝑝) = 𝑝− 1 classes in total, we see that

𝑝− 1 =
∑︁
𝑑|𝑝−1

𝑁𝑑.

Let’s prove that 𝑁𝑑 ≤ 𝜙(𝑑). If there are no classes of order 𝑑, then 𝑁𝑑 = 0, and we’re done.
Otherwise, suppose 𝑎 has order 𝑑. Then the 𝑑 roots of 𝑥𝑑 − 1 ≡ 0 (mod 𝑝) are given by
1, 𝑎, . . . , 𝑎𝑑−1. Of these, since ord(𝑎𝑖) = 𝑑/ gcd(𝑑, 𝑖) (by Problem 17.2), only the 𝑎𝑖 with 𝑖
coprime to 𝑑 have order 𝑑. Thus, 𝑁𝑑 = 𝜙(𝑑) since there are 𝜙(𝑑) such 𝑖.

Consequently,

𝑝− 1 =
∑︁
𝑑|𝑝−1

𝑁𝑑 ≤
∑︁
𝑑|𝑝−1

𝜙(𝑑).
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On the other hand, by Theorem 15.9,∑︁
𝑑|𝑝−1

𝜙(𝑑) = 𝑝− 1.

It follows that the inequality above is an equality. Looking at our argument, a strict
inequality results only if 𝑁𝑑 < 𝜙(𝑑) for some 𝑑. So it must be the case that 𝑁𝑑 = 𝜙(𝑑) for
all 𝑑 | 𝑝− 1, which is precisely what we wanted to prove. ■

Applying this theorem to the case where 𝑑 = 𝜙(𝑝), we obtain:

Corollary 18.8 (Existence of Primitive Roots Mod 𝑝)

Let 𝑝 be a prime. There are 𝜙(𝑝− 1) distinct primitive roots mod 𝑝.

The following table illustrates the previous corollary.

𝑝 𝜙(𝑝− 1) primitive roots mod 𝑝

2 1 1
3 1 2
5 2 2, 3
7 2 3, 5
11 4 2, 6, 7, 8
13 4 2, 6, 7, 11
17 8 3, 5, 6, 7, 10, 11, 12, 14
19 6 2, 3, 10, 13, 14, 15

How do we find primitive roots in practice? The counting method in our existence proof
above is horribly inefficient. Is there a method better than picking a random 𝑎 and com-
puting all the powers 𝑎𝑑 where 𝑑 | 𝑝− 1? The following result shows that we don’t have to
compute 𝑎𝑑 for all divisors of 𝑝− 1.

Proposition 18.9 Let 𝑝 be prime and let 𝑎 ∈ Z be coprime to 𝑝. Then 𝑎 is a primitive root mod 𝑝 if and only
if 𝑎(𝑝−1)/𝑞 ̸≡ 1 (mod 𝑝) for all prime divisors 𝑞 of 𝑝− 1.

Proof: If 𝑎(𝑝−1)/𝑞 ≡ 1 (mod 𝑝), then ord(𝑎) < 𝑝 − 1 so 𝑎 cannot be a primitive root.
Conversely, assume that 𝑎(𝑝−1)/𝑞 ̸≡ 1 (mod 𝑝) for all prime divisors 𝑞 of 𝑝 − 1. Let 𝑘 =
ord(𝑎). We know that 𝑘 | 𝑝− 1. If 𝑘 ̸= 𝑝− 1 then (𝑝− 1)/𝑘 has a prime divisor 𝑞. But then
(𝑝− 1)/(𝑘𝑞) is an integer, and therefore

𝑎(𝑝−1)/𝑞 = (𝑎𝑘)(𝑝−1)/𝑞𝑘 ≡ 1(𝑝−1)/𝑞𝑘 ≡ 1 (mod 𝑝),

which is a contradiction. Thus, 𝑘 = 𝑝− 1 and so 𝑎 is a primitive root mod 𝑝. ■

So here is how we can find a primitive root mod 𝑝: First, find the prime factors 𝑞 of 𝑝− 1.
Next, pick a small integer 𝑎 in the interval 2 ≤ 𝑎 < 𝑝. Finally, compute 𝑎(𝑝−1)/𝑞 mod 𝑝 for
all 𝑞. If none of these are 1, then you’ve found a primitive root. If one of them is 1, then
repeat the same process with 𝑎+ 1. This actually works decently well in practice.14

14It’s a polynomial time algorithm... if you assume the generalized Riemann Hypothesis.
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Example 18.10 Let 𝑝 = 19 and 𝑎 = 2. Then 𝑝− 1 = 18 = 2 · 32. Now compute:

2(𝑝−1)/2 = 29 ≡ 18 (mod 19)

2(𝑝−1)/3 = 26 ≡ 7 (mod 19).

Since neither is congruent to 1, 2 must be a primitive root mod 19.

Exercise 18.11 Find a primitive root mod 𝑝 = 31.

REMARK (Primitive Root Mysteries)

There are many open problems concerning primitive roots. For example, how many primes
𝑝 have 2 as a primitive root? Of the primes ≤ 100, the following twelve primes do:

3, 5, 11, 13, 19, 29, 37, 53, 59, 61, 67, 83.

Since there are 25 primes ≤ 100, we see that 48% of them admit 2 as a primitive root.
Approximately 40% of the primes ≤ 103, 38% of the primes ≤ 104, and 38% of the primes
≤ 105 admit 2 as a primitive root.

Artin’s Conjecture (1927): There are infinitely many primes that admit 2 as a primitive
root. More precisely, the proportion of primes ≤ 𝑥 that admit 2 as a primitive root tends
to ∏︁

𝑝 prime

(︂
1− 1

𝑝(𝑝− 1)

)︂
≈ 0.3739...

as 𝑥 → ∞.

Assuming a general form of the Riemann Hypothesis, Hooley was able to prove Artin’s
Cojecture in 1967. However, since the Riemann Hypothesis is still an open problem, so too
is Artin’s Conjecture.

If we ignore results that rely on the Riemann Hypothesis, we actually do not know of a
single, specific integer 𝑎 that is a primitive root modulo infinitely many primes. However,
there is a remarkable result due to Gupta, M.R. Murty and Heath-Brown that says: Every
prime number—with at most two exceptions—is a primitive root modulo infinitely many
primes. So one of 2, 3 and 5 is definitely a primitive root for infinitely many primes, but
we do not know which one!

Lecture 18 Problems

18.1. Let 𝑝 be a prime.

(a) Prove that if 𝑔 is a primitive root mod 𝑝 then every primitive root mod 𝑝 is congruent
to exactly one integer in the set {𝑔𝑖 : 0 ≤ 𝑖 ≤ 𝑝− 1, gcd(𝑖, 𝑝− 1) = 1}.

(b) Given that 2 is a primitive root mod 19, find all of the primitive roots mod 19.

▶ 18.2. Let 𝑝 be a prime such that 𝑝 ≡ 1 (mod 4).

(a) Prove that there exists an 𝑎 such that ord𝑝(𝑎) = 4.
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(b) Prove that the congruence 𝑥2 + 1 ≡ 0 (mod 𝑝) has a solution. [Note: This shows that√
−1 ∈ Z/𝑝Z if 𝑝 ≡ 1 (mod 4).]

▶ 18.3. Let 𝑝 be a prime such that 𝑝 ≡ 3 (mod 4). Prove that the congruence 𝑥2 + 1 ≡ 0 (mod 𝑝)
has no solutions. [Note: This shows that

√
−1 ̸∈ Z/𝑝Z if 𝑝 ≡ 3 (mod 4).]

18.4. Let 𝑝 be a prime, and let

𝑓(𝑥) = (𝑥− 1)(𝑥− 2) · · · (𝑥− (𝑝− 1))− (𝑥𝑝−1 − 1).

(a) What is the degree of 𝑓(𝑥)?

(b) Show that 𝑓(𝑎) ≡ 0 (mod 𝑝) for all 𝑎 ∈ Z coprime to 𝑝.

(c) Deduce from parts (a) and (b) that all of the coefficients of 𝑓(𝑥) are divisible by 𝑝.

(d) Use part (c) to deduce Wilson’s Theorem:

(𝑝− 1)! ≡ −1 (mod 𝑝).

18.5. Let 𝑝 be a prime, and let 𝑔 be a primitive root mod 𝑝.

(a) Prove that if 𝑝 is odd, then 𝑔(𝑝−1)/2 ≡ −1 (mod 𝑝). [Hint: What is
(︀
𝑔(𝑝−1)/2

)︀2
(mod 𝑝)?]

(b) Prove that (𝑝− 1)! ≡ 𝑔𝑝(𝑝−1)/2 (mod 𝑝).

(c) Use parts (a) and (b) to give another proof of Wilson’s Theorem (see previous problem).
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Lecture 19 Applications of Primitive Roots

Solving Congruences

Let’s begin by recalling the definition of the discrete logarithm mod 𝑝.

If 𝑔 is a primitive root mod 𝑝 then the {1, 𝑔, 𝑔2, . . . , 𝑔𝑝−2} is a complete set of representatives
for the unit group (Z/𝑝Z)×. Thus, for every 𝑏 ∈ Z coprime to 𝑝, the congruence

𝑔𝑥 ≡ 𝑏 (mod 𝑝)

has a unique solution 𝑥 = ℓ ∈ {0, 1, 2, . . . , 𝑝− 2}. We denote this unique solution by log𝑔(𝑏)
and we view it as a congruence class in Z/(𝑝− 1)Z. We’ve thus defined a function

log𝑔 : (Z/𝑝Z)× → Z/(𝑝− 1)Z

which we call the discrete logarithm mod 𝑝 to the base 𝑔. (Some textbooks call this the
index and denote it by ind𝑔.) Here are some of its key properties, which you had already
proved in Problem 17.5.

Proposition 19.1 Let 𝑝 be a prime and let 𝑔 be a primitive root mod 𝑝. Then:

(a) log𝑔(1) ≡ 0 (mod 𝑝− 1).

(b) log𝑔(𝑎𝑏) ≡ log𝑔(𝑎) + log𝑔(𝑏) (mod 𝑝− 1) for all 𝑎, 𝑏 ∈ Z coprime to 𝑝.

(c) log𝑔(𝑎
𝑘) ≡ 𝑘 log𝑔(𝑎) (mod 𝑝− 1) for all 𝑎 ∈ Z coprime to 𝑝 and all 𝑘 ∈ Z.

REMARK

All of the above works equally well for any modulus 𝑛 that admits a primitive root 𝑔. We
can in the same way define a function

log𝑔 : (Z/𝑛Z)× → Z/𝜙(𝑛)Z

that satisfies the same congruences given in Proposition 19.1 except now they are all taken
mod 𝜙(𝑛). If you know some group theory, you will recognize that part (b) says that log𝑔
is a group homomorphism; it is, in fact, an isomorphism.

Example 19.2 I claim that 𝑔 = 2 is a primitive root mod 𝑝 = 13. I will actually confirm this by computing
all the powers of 2, but just as a refresher, let’s also see how this quickly follows from
Proposition 18.9: We have 𝑝 − 1 = 12 = 22 · 3, and since 2(𝑝−1)/3 ≡ 3 (mod 13) and
2(𝑝−1)/2 ≡ 6 (mod 13), we can safely conclude that 2 is a primitive mod 13.

Here are the powers of 2 mod 13:

20 ≡ 1, 21 ≡ 2, 22 ≡ 4, 23 ≡ 8, 24 ≡ 3, 25 ≡ 6,

26 ≡ 12, 27 ≡ 11, 28 ≡ 9, 29 ≡ 5, 210 ≡ 10, 211 ≡ 7.
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So, for instance, we have that

log2(1) = 0, log2(2) = 1, log2(4) = 2, log2(8) = 3, log2(3) = 4, etc.

We can record this information in a table:

𝑥 1 2 3 4 5 6 7 8 9 10 11 12

log2(𝑥) 0 1 4 2 9 5 11 3 8 10 7 6

Exercise 19.3 Create a table containing the values of log3(𝑥) for 𝑥 ∈ (Z/7Z)×.

In elementary algebra we can use logarithms to solve equations of the form 𝑎𝑥𝑏 = 𝑐. For
example,

11𝑥5 = 4 =⇒ log(11) + 5 log(𝑥) = log(4) =⇒ log(𝑥) = log

(︂
4

11

)︂1/5

=⇒ 𝑥 =

(︂
4

11

)︂1/5

.

We can do the same with the discrete logarithm!

Example 19.4 Find all solutions to the congruence 11𝑥5 ≡ 4 (mod 13).

Solution: We will use log𝑔 with the primitive root 𝑔 = 2 mod 13. We find that

log2(11) + 5 log2(𝑥) ≡ log2(4) (mod 12)

(Warning: The discrete logarithm goes from (Z/𝑝Z)× to Z/(𝑝−1)Z!) Referring to our table
in the previous example, we see that log2(11) = 7 and log2(4) = 2, so the above congruence
simplifies to

7 + 5 log2(𝑥) ≡ 2 (mod 12) =⇒ 5 log2(𝑥) ≡ −5 (mod 12).

Since 5 is a unit mod 12, we can multiply through by 5−1 mod 12 to obtain

log2(𝑥) ≡ −1 ≡ 11 (mod 12).

Thus, 𝑥 ≡ 211 ≡ 7 (mod 13), where 211 was determined using our log table.

Exercise 19.5 Use log3 to find all solutions to the congruence 5𝑥46 ≡ 6 (mod 7).

Example 19.6 Prove that the Diophantine equation 5𝑥16 − 13𝑦16 = 3 has no solutions in the integers.

Solution: Reducing mod 13, we arrive at the congruence

5𝑥16 ≡ 3 (mod 13).

Applying log2 to both sides and setting ℓ = log2(𝑥), we get

log2(5) + 16 log2(𝑥) ≡ log2(3) (mod 12) =⇒ 16ℓ ≡ 4− 9 = 7 (mod 12).
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This linear congruence in ℓ will have a solution if and only if gcd(16, 12) | 7. Since
gcd(16, 12) = 4 does not divide 7, it follows there is no solution for ℓ = log2(𝑥) mod 12 and
hence no solution for 𝑥 mod 13. So there can be no solutions to the original Diophantine
equation in the integers.

Of course, we didn’t have to use log2 to deal with the congruence mod 13 in previous
example. For instance, we could have used Fermat’s Little Theorem to deduce that 𝑥16 =
𝑥13𝑥3 ≡ 𝑥 · 𝑥3 (mod 13), and we could have computed the inverse of 5 mod 13 to be 8, and
thus we would have arrived at

5𝑥16 ≡ 3 (mod 13) =⇒ 𝑥4 ≡ 5−1 · 3 ≡ 8 · 3 ≡ 11 (mod 13).

Now it’s just a matter of checking whether 11 is a 4th power mod 13, which we can do by
inspection. The discrete logarithm just makes this process a bit more efficient. In fact, this
brings us to our next topic...

Power Residues

Let’s look at congruences of the form 𝑥𝑘 ≡ 𝑎 (mod 𝑝), where 𝑝 is a prime, 𝑎 ̸≡ 0 (mod 𝑝)
and 𝑘 ≥ 2. The terminology below is due to Gauss.

Definition 19.7

𝑘th Power Residue
and Nonresidue,

Quadratic
Residue, Cubic

Residue

Let 𝑎 ∈ Z be coprime to 𝑝.

If the congruence 𝑥𝑘 ≡ 𝑎 (mod 𝑝) has a solution, then we say that 𝑎 is a 𝑘th power
residue mod 𝑝. Otherwise, if the congruence has no solutions, then we say that 𝑎 is a 𝑘th
power nonresidue mod 𝑝.

In the special case where 𝑘 = 2, we say respectively that 𝑎 is a quadratic residue or
nonresidue mod 𝑝. If 𝑘 = 3, then we say cubic residue and nonresidue.

For example, 1 and 4 are quadratic residues mod 5, since 1 ≡ 12 (mod 5) and 4 ≡ 22

(mod 5), while 3 is a quadratic non-residue since there are no solution to 𝑥2 ≡ 3 (mod 5)
as we can check by inspection.

Exercise 19.8 Find all cubic residues and nonresidues mod 7.

The study of quadratic residues, and more generally 𝑘th power residues, was historically a
major driving force in the development of number theory. In the next several lectures we
will investigate the properties of quadratic residues. For now, we close this lecture with the
following important characterization of 𝑘th power residues.

Theorem 19.9 (𝑘th Power Residue Criterion)

Let 𝑝 be a prime and let 𝑎 ∈ Z be coprime to 𝑝. Then 𝑎 is a 𝑘th power residue mod 𝑝 if
and only if

𝑎(𝑝−1)/𝑑 ≡ 1 (mod 𝑝) where 𝑑 = gcd(𝑘, 𝑝− 1).

Furthermore, if 𝑎 is a 𝑘th power residue, then the congruence 𝑥𝑘 ≡ 𝑎 (mod 𝑝) has exactly
𝑑 distinct solutions mod 𝑝.
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Proof: Let 𝑔 be a primitive root mod 𝑝. Then 𝑎 is a 𝑘th power residue if and only if the
congruence

𝑥𝑘 ≡ 𝑎 (mod 𝑝) (*)

has a solution. Taking logs and setting ℓ = log𝑔(𝑥), we see that (*) has a solution if and
only if the linear congruence

𝑘ℓ ≡ log𝑔(𝑎) (mod 𝑝− 1) (**)

has a solution which is the case if and only if 𝑑 = gcd(𝑘, 𝑝− 1) | log𝑔(𝑎) by Theorem 10.3.
Now,

𝑑 | log𝑔(𝑎) ⇐⇒ log𝑔(𝑎) = 𝑑𝑘 for some 𝑘 ∈ Z

⇐⇒ 𝑝− 1

𝑑
log𝑔(𝑎) = (𝑝− 1)𝑘 for some 𝑘 ∈ Z

⇐⇒ 𝑝− 1

𝑑
log𝑔(𝑎) ≡ 0 (mod 𝑝− 1)

⇐⇒ log𝑔

(︁
𝑎(𝑝−1)/𝑑

)︁
≡ 0 (mod 𝑝− 1)

⇐⇒ 𝑎(𝑝−1)/𝑑 ≡ 1 (mod 𝑝).

This proves the first part of the theorem. For the last part, simply note that every solution
to (*) gives a solution to (**) and vice versa. By Theorem 10.3, if (**) has solutions, then
it has exactly 𝑑 distinct solutions. ■

The special case 𝑘 = 2 is a famous result due to Euler.

Corollary 19.10 (Euler’s Criterion—First Form)

Let 𝑝 be an odd prime and let 𝑎 ∈ Z be coprime to 𝑝. Then

𝑎(𝑝−1)/2 ≡

{︃
1 (mod 𝑝) if 𝑎 is a quadratic residue mod 𝑝

−1 (mod 𝑝) if 𝑎 is a quadratic nonresidue mod 𝑝.

Proof: Since 𝑝 is odd, gcd(𝑝 − 1, 2) = 2. So 𝑎 will be a quadratic residue if and only if
𝑎(𝑝−1)/2 ≡ 1 (mod 𝑝). Now observe that(︁

𝑎(𝑝−1)/2
)︁2

= 𝑎𝑝−1 ≡ 1 (mod 𝑝).

So 𝑎(𝑝−1)/2 is a root of the polynomial 𝑥2 − 1 mod 𝑝, hence the only possible values of
𝑎(𝑝−1)/2 mod 𝑝 are ±1 (why?). Since the value 1 corresponds to the case where 𝑎 is a
quadratic residue, the value −1 must therefore correspond to the nonresidue case. ■

Example 19.11 Determine whether 11 is a 4th power residue mod 13.

Solution: Here 𝑑 = gcd(4, 13− 1) = 4, and

11(13−1)/4 = 113 ≡ 5 (mod 13).

Since 11(13−1)/𝑑 ̸≡ 1 (mod 13), it follows that 11 is not a 4th power mod 13.
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Lecture 19 Problems

▶ 19.1. Prove that there are exactly (𝑝 − 1)/𝑑 distinct 𝑘th power residues mod 𝑝, where 𝑑 =
gcd(𝑘, 𝑝− 1).

19.2. Prove that if 𝑝 ≡ 2 (mod 3), then all integers 𝑎 coprime to 𝑝 are cubic residues mod 𝑝.

19.3. Let 𝑝 be an odd prime. Prove that if −1 is a 4th power residue mod 𝑝 then 𝑝 ≡ 1 (mod 8).

19.4. Prove that there are infinitely many primes of the form 8𝑘 + 1. [Hint: Suppose 𝑝1, . . . , 𝑝𝑛
are all such primes and consider 𝑁 = (𝑝1 · · · 𝑝𝑛)4 + 1. The previous problem can help.]
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Lecture 20 Quadratic Residues

We’ve learned how to solve linear congruences 𝑎𝑥 ≡ 𝑏 (mod 𝑛). We can test for solvability
using Theorem 10.3 and we can find solutions using the Euclidean algorithm.

Naturally, the next thing to do is to look at quadratic congruences. For simplicity, we’ll
work modulo a prime 𝑝. Consider the congruence

𝑎𝑥2 + 𝑏𝑥+ 𝑐 ≡ 0 (mod 𝑝)

where 𝑎 ̸≡ 0 (mod 𝑝). Let’s assume that 𝑝 > 2 (the case 𝑝 = 2 is trivial), so that 2 is
invertible mod 𝑝. Since 𝑎 is also invertible mod 𝑝, we can complete the square:

𝑎

(︂
𝑥+

𝑏

2𝑎

)︂2

+ 𝑐− 𝑏2

4𝑎
≡ 0 (mod 𝑝).

Setting 𝑦 = 𝑥+ 𝑏/2𝑎 and re-arranging, we arrive at

𝑦2 ≡ 𝑏2 − 4𝑎𝑐

4𝑎2
(mod 𝑝).

The question now is how to solve this for 𝑦. Since any quadratic congruence can be brought
into this form, we may as well just start with

𝑥2 ≡ 𝑎 (mod 𝑝).

You will now recognize (see Definition 19.7) that our question essentially is: When is 𝑎 a
quadratic residue mod 𝑝?

Definition 20.1

Legendre Symbol

Let 𝑝 be an odd prime, and let 𝑎 ∈ Z. The Legendre symbol is defined by

(︂
𝑎

𝑝

)︂
=

⎧⎪⎨⎪⎩
0 if 𝑎 ≡ 0 (mod 𝑝)

1 if 𝑎 is a quadratic residue mod 𝑝

−1 if 𝑎 is a quadratic nonresidue mod 𝑝(︂
𝑎

𝑝

)︂
is read as “𝑎 on 𝑝” and occasionally written as (𝑎|𝑝).

For example, (︁𝑎
5

)︁
=

⎧⎪⎨⎪⎩
0 if 𝑎 ≡ 0 (mod 5)

1 if 𝑎 ≡ 1, 4 (mod 5)

−1 if 𝑎 ≡ 2, 3 (mod 5).

Exercise 20.2 Determine
(︁𝑎
7

)︁
.

The Legendre symbol has many interesting properties. A convenient tool for demonstrating
these properties is Corollary 19.10 which we re-state here in terms of the Legendre symbol.
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Theorem 20.3 (Euler’s Criterion—Second Form)

Let 𝑝 be an odd prime and let 𝑎 ∈ Z be coprime to 𝑝. Then(︂
𝑎

𝑝

)︂
≡ 𝑎(𝑝−1)/2 (mod 𝑝).

We can use Euler’s criterion to determine
(︁
𝑎
𝑝

)︁
without having to solve 𝑥2 ≡ 𝑎 (mod 𝑝).

Example 20.4 Determine
(︀

5
17

)︀
.

Solution: Using Euler’s criterion, we have(︂
5

17

)︂
≡ 5(17−1)/2 ≡ 58 ≡ −1 (mod 17).

Since
(︀

5
17

)︀
is either 1 or −1, it follows that

(︀
5
17

)︀
= −1 (an actual equality and not just a

congruence mod 17).

Exercise 20.5 Determine
(︀

8
17

)︀
.

The next result presents some basic properties of the Legendre symbol.

Proposition 20.6 Let 𝑝 be an odd prime and let 𝑎, 𝑏 ∈ Z be coprime to 𝑝.

(a) If 𝑎 ≡ 𝑏 (mod 𝑝) then

(︂
𝑎

𝑝

)︂
=

(︂
𝑏

𝑝

)︂
.

(b)

(︂
𝑎𝑏

𝑝

)︂
=

(︂
𝑎

𝑝

)︂(︂
𝑏

𝑝

)︂
.

(c)

(︂
𝑎2

𝑝

)︂
= 1.

(d)

(︂
−1

𝑝

)︂
=

{︃
1 if 𝑝 ≡ 1 (mod 4)

−1 if 𝑝 ≡ −1 (mod 4).

Proof:

(a) If 𝑎 ≡ 𝑏 (mod 𝑝) then 𝑥2 ≡ 𝑎 (mod 𝑝) has a solution if and only if 𝑥2 ≡ 𝑏 (mod 𝑝) has

a solution. So
(︁
𝑎
𝑝

)︁
=
(︁

𝑏
𝑝

)︁
.
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(b) By Euler’s criterion,(︂
𝑎𝑏

𝑝

)︂
≡ (𝑎𝑏)(𝑝−1)/2 ≡ 𝑎(𝑝−1)/2𝑏(𝑝−1)/2 ≡

(︂
𝑎

𝑝

)︂(︂
𝑏

𝑝

)︂
(mod 𝑝)

Since
(︁
𝑎𝑏
𝑝

)︁
,
(︁
𝑎
𝑝

)︁
and

(︁
𝑏
𝑝

)︁
are each ±1, it follows that(︂

𝑎𝑏

𝑝

)︂
=

(︂
𝑎

𝑝

)︂(︂
𝑏

𝑝

)︂
.

(c) 𝑎2 is obviously a quadratic residue mod 𝑝.

(d) By Euler’s criterion, (︂
−1

𝑝

)︂
= (−1)(𝑝−1)/2 (mod 𝑝).

If 𝑝 ≡ 1 (mod 4) then (𝑝− 1)/2 is even, so (−1)(𝑝−1)/2 = −1. If 𝑝 ≡ −1 (mod 4), then
(𝑝− 1)/2 is odd, so (−1)(𝑝−1)/2 = −1. ■

REMARK

If you know some group theory, you will recognize that parts (a) and (b) of Proposition
20.6 imply that the map (︂

·
𝑝

)︂
: (Z/𝑝Z)× → {±1}

defined by sending 𝑎 to
(︁
𝑎
𝑝

)︁
is a group homomorphism. The kernel of this map is the set

(subgroup!) of quadratic residues mod 𝑝. The quadratic nonresidues are a coset of the
quadratic residues in (Z/𝑝Z)×.

Our calculation of
(︁
−1
𝑝

)︁
can be used to show that a certain type of Diophantine equation

has no solutions.

Example 20.7 Show that the equation 𝑦2 = 𝑥3 − 5 has no solutions in the integers.

Solution: Suppose for a contradiction that there are integer solutions. Reducing mod 4,
the equation becomes 𝑦2 ≡ 𝑥3 − 1 (mod 4). Since 𝑦2 is either 0 or 1 mod 4, it follows that
either 𝑥3 ≡ 1 (mod 4) or 𝑥3 ≡ 2 (mod 4). By inspection, the latter is impossible. Thus,
𝑥3 ≡ 1 (mod 4) and hence 𝑥 ≡ 1 (mod 4) (again, by inspection).

Now re-write the original equation 𝑦2 = 𝑥3 − 5 as

𝑦2 + 4 = 𝑥3 − 1 = (𝑥− 1)(𝑥2 + 𝑥+ 1).

Since 𝑥 ≡ 1 (mod 4), it follows that 𝑥2 + 𝑥 + 1 ≡ 3 (mod 4). Also, 𝑥2 + 𝑥 + 1 is positive,
odd and not equal to 1 (why?) hence it can be factored into a product of odd primes. If
all prime factors were 1 mod 4, then 𝑥2 + 𝑥 + 1 would be 1 mod 4 too, but it’s not. So
𝑥2 + 𝑥+ 1 must have a prime divisor 𝑝 congruent to 3 mod 4. As 𝑥2 + 𝑥+ 1 ≡ 0 (mod 𝑝),
it follows that

𝑦2 + 4 ≡ 0 (mod 𝑝).
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Re-arranging and using the fact that 2 is invertible mod 𝑝 (since 𝑝 is odd), we can re-write
this as

(2−1𝑦)2 ≡ −1 (mod 𝑝).

This shows that −1 is a quadratic residue mod 𝑝, that is,
(︁
−1
𝑝

)︁
= 1. Since 𝑝 ≡ 3 (mod 4),

this contradicts Proposition 20.6(d).

Exercise 20.8 Show that the equation 𝑦2 = 𝑥3 + 11 has no solutions in the integers.

REMARK (The Local-to-Global Principle Fails)

Our main tool thus far for showing that a Diophantine equation has no solutions is to reduce
the equation modulo a cleverly chosen 𝑛 and show that there are no solutions mod 𝑛. In
a remark on page 53 we considered the converse to this process. Namely, if a Diophantine
equation has solutions modulo 𝑛 for every 𝑛, must it have a solution in the integers?

Alas, it’s now time for me to break the bad news: The answer is no.

It can be shown that the equations in Example 20.7 and Exercise 20.8 have solutions mod
𝑛 for every 𝑛, but as we just saw, they do not have integer solutions. Thus, these equations
have solutions “locally everywhere” but not “globally.”

Proposition 20.6 allows us to speed up Legendre symbol calculations. For instance, we have(︂
198

23

)︂
=

(︂
22 · 9
23

)︂
=

(︂
22

23

)︂(︂
9

23

)︂
=

(︂
−1

23

)︂(︂
32

23

)︂
= (−1)(1) = −1.

(From this we are able to conclude that the congruence 𝑥2 ≡ 198 (mod 23) has no solutions
without doing much work!)

More generally, if 𝑎 ∈ Z has prime factorization 𝑎 = ±𝑞𝑎11 · · · 𝑞𝑎𝑘𝑘 then(︂
𝑎

𝑝

)︂
=

(︂
±1

𝑝

)︂(︂
𝑞1
𝑝

)︂𝑎1

· · ·
(︂
𝑞𝑘
𝑝

)︂𝑎𝑘

.

Since we’ve determined
(︁
−1
𝑝

)︁
in Proposition 20.6(c), and since

(︁
𝑝
𝑝

)︁
= 0, our next task is

to determine
(︁
𝑞
𝑝

)︁
where 𝑞 is a prime different from 𝑝. We will take this up next lecture.

However, I will leave you with this important exercise...

Exercise 20.9 Make some tables containing values of
(︁
𝑝
𝑞

)︁
and

(︁
𝑞
𝑝

)︁
where 𝑝 and 𝑞 are distinct primes.

Do you notice anything interesting? Make some conjectures and try to see if you can
discover the results that we’re going to discuss next time!
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Lecture 20 Problems

20.1. Prove:

(a) The product of two quadratic residues is a quadratic residue.

(b) The product of two nonquadratic residues is a quadratic residue.

(c) The product of a quadratic residue and a quadratic nonresidue is a quadratic nonresidue.

20.2. Let 𝑝 be an odd prime. Prove that there are (𝑝 − 1)/2 quadratic residues and (𝑝 − 1)/2
quadratic nonresidues mod 𝑝.

20.3. Let 𝑝 be an odd prime.

(a) Show that the number of solutions to the congruence 𝑥2 ≡ 𝑎 (mod 𝑝) is 1 +
(︁
𝑎
𝑝

)︁
.

(b) Assume 𝑎 ̸= 0 (mod 𝑝). Show that the number of solutions to the congruence 𝑎𝑥2 +

𝑏𝑥+ 𝑐 ≡ 0 (mod 𝑝) is 1 +
(︁
𝑏2−4𝑎𝑐

𝑝

)︁
.

20.4. Let 𝑝 and 𝑞 be odd primes and suppose that 𝑝 = 4𝑞 + 1. Prove that 2 is a primitive root
mod 𝑝.

20.5. Let 𝑝 be an odd prime and let 𝑔 be a primitive root mod 𝑝. Prove that
(︁
𝑔
𝑝

)︁
= −1.

20.6. Let 𝑝 be an odd prime and let 𝑎 ∈ Z be coprime to 𝑝. Prove:

𝑝−1∑︁
𝑘=0

(︂
𝑘𝑎

𝑝

)︂
= 0.

20.7. Let 𝑝 be an odd prime and let 𝑎 ∈ Z be coprime to 𝑝. Prove that the congruence 𝑥2 ≡ 𝑎
(mod 𝑝𝑛) has a solution for all 𝑛 ∈ Z>0 if and only if 𝑎 is a quadratic residue mod 𝑝.

[Hint: Suppose 𝑥 = 𝑥0 is a solution to 𝑥2 ≡ 𝑎 (mod 𝑝𝑛). Argue that there is some 𝑚 ∈ Z
such that 𝑥 = 𝑥0 +𝑚𝑝𝑛 is a solution to 𝑥2 ≡ 𝑎 (mod 𝑝𝑛+1).]
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Lecture 21 Quadratic Reciprocity

The fundamental theorem must certainly be regarded as one of the most elegant of
its type.

– C.F. Gauss, Disquisitiones Arithmeticae

We now come to one of the deepest theorems in all of elementary number theory.

Theorem 21.1 (Law of Quadratic Reciprocity)

Let 𝑝 and 𝑞 be distinct odd primes. Then:

(a)

(︂
2

𝑝

)︂
=

{︃
1 if 𝑝 ≡ ±1 (mod 8)

−1 if 𝑝 ≡ ±3 (mod 8).

(b)

(︂
𝑞

𝑝

)︂
=

⎧⎪⎪⎨⎪⎪⎩
−
(︂
𝑝

𝑞

)︂
if 𝑝 ≡ 𝑞 ≡ 3 (mod 4)(︂

𝑝

𝑞

)︂
otherwise.

Exercise 21.2 Show that the statements of Theorem 21.1 are equivalent to:

(a)

(︂
2

𝑝

)︂
= (−1)

𝑝2−1
8 .

(b)

(︂
𝑝

𝑞

)︂(︂
𝑞

𝑝

)︂
= (−1)

𝑝−1
2

𝑞−1
2 .

The “reciprocity” in Theorem 21.1 refers to the (unexpected) relation between
(︁
𝑞
𝑝

)︁
and(︁

𝑝
𝑞

)︁
. Recall that

(︁
𝑎
𝑝

)︁
has to do with the solvability of the equation 𝑥2 − 𝑎 ≡ 0 (mod 𝑝).

There is no reason to expect the behavior of the polynomial 𝑥2 − 𝑞 mod 𝑝 to have such a
strong influence on the behavior of 𝑥2 − 𝑝 mod 𝑞. The fact that it does have an influence
is one of the profound mysteries of number theory.

The first traces of the law of quadratic reciprocity are in the work of Fermat, who essentially

discovered that the value
(︁
−1
𝑝

)︁
depended on the congruence class of 𝑝 mod 4. In trying

to extend Fermat’s work, Euler noticed that the value of
(︁
𝑎
𝑝

)︁
seems to depend on the

congruence class of 𝑝 mod 4|𝑎| (see Problem 21.4). He conjectured, but was not able to
prove (a rarity for Euler!), a precise result that is equivalent to the Law of Quadratic
Reciprocity. Legendre formulated the Law in the same way we have, and attempted to give
a proof. However, his proof had gaps.

The first complete proof of quadratic reciprocity was given by Gauss in 1796 (when he was
19 years old). Gauss went on to give eight proofs during his lifetime. He cherished this
result and referred to it in his mathematical diary as “aureum theorema” (golden theorem).
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Today there are over 300 proofs of the law of quadratic reciprocity.15 These proofs are not
all completely different; one thing they certainly have in common is that they each rely on
at least one non-obvious idea. Indeed, the law of quadratic reciprocity is significantly more
difficult to prove than anything else we’ve seen in the course. For this reason, I’m going to
postpone the proof until after we’ve looked at some applications.

The first application is to calculating Legendre symbols.

Example 21.3 Determine

(︂
246

347

)︂
.

Solution: Since 246 = 2 · 3 · 41, we have(︂
246

347

)︂
=

(︂
2

347

)︂(︂
3

347

)︂(︂
41

347

)︂
.

Now let’s determine each of the Legendre symbols on the right with the help of the law of
quadratic reciprocity: (︂

2

347

)︂
= −1 (347 ≡ 3 (mod 8))(︂

3

347

)︂
= −

(︂
347

3

)︂
(since 347 ≡ 3 (mod 4))

= −
(︂
2

3

)︂
(since 347 ≡ 2 (mod 3))

= −(−1) (since 3 ≡ 3 (mod 8))

= 1(︂
41

347

)︂
=

(︂
347

41

)︂
(since 41 ≡ 1 (mod 4))

=

(︂
19

41

)︂
(since 347 ≡ 19 (mod 41))

=

(︂
41

19

)︂
(since 19 is prime)

=

(︂
3

19

)︂
(since 41 ≡ 3 (mod 19))

= −
(︂
19

3

)︂
(since 19 ≡ 3 (mod 4))

= −
(︂
1

3

)︂
(since 19 ≡ 1 (mod 3))

= −1.

Thus, (︂
246

347

)︂
= (−1)(1)(−1) = 1.

Note that this shows that 246 is a square mod 347. (In fact, 246 ≡ (±151)2 (mod 347).)

15See https://www.mathi.uni-heidelberg.de/∼flemmermeyer/qrg proofs.html

https://www.mathi.uni-heidelberg.de/~flemmermeyer/qrg_proofs.html
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Exercise 21.4 Determine

(︂
30

61

)︂
.

REMARK (Finding Square Roots mod 𝑝)

If we know that
(︁
𝑎
𝑝

)︁
= 1, how do we actually find a 𝑏 such that 𝑏2 ≡ 𝑎 (mod 𝑝)? Of course,

we can try squaring each 𝑏 = 1, 2, . . . but this is not very efficient in general. For better
approaches, look up the Tonelli–Shanks algorithm and Cipolla’s algorithm.

Our next application of quadratic reciprocity is to the problem of determining, given an
integer 𝑎, which primes 𝑝 have that integer as a quadratic residue. Note that, so far, we

have fixed 𝑝 and asked for
(︁
𝑎
𝑝

)︁
(a finite problem, since this depends only on 𝑎 mod 𝑝). Now

we are fixing 𝑎 and asking for
(︁
𝑎
𝑝

)︁
(an infinite problem). Remarkably, quadratic reciprocity

converts the latter problem into the first!

Example 21.5 Determine

(︂
3

𝑝

)︂
, where 𝑝 is an odd prime.

Solution: If 𝑝 = 3 then
(︀
3
3

)︀
= 0, so let’s assume that 𝑝 ̸= 3. We consider two cases.

If 𝑝 ≡ 1 (mod 4), then (︂
3

𝑝

)︂
=
(︁𝑝
3

)︁
=

{︃
1 if 𝑝 ≡ 1 (mod 3)

−1 if 𝑝 ≡ 2 (mod 3).

If 𝑝 ≡ 3 (mod 4), then (︂
3

𝑝

)︂
= −

(︁𝑝
3

)︁
=

{︃
1 if 𝑝 ≡ 2 (mod 3)

−1 if 𝑝 ≡ 1 (mod 3).

Using the Chinese Remainder Theorem (Problem 10.3), we can combine each pair of condi-
tions mod 4 and mod 3 into a condition mod 12. For example, the conditions 𝑝 ≡ 1 (mod 4)
and 𝑝 ≡ 1 (mod 3) are equivalent to 𝑝 ≡ 1 (mod 12). The conditions 𝑝 ≡ 1 (mod 4) and
𝑝 ≡ 2 (mod 3) are equivalent to 𝑝 ≡ 5 (mod 12). We end up with the following uniform
result for all 𝑝 ̸= 3: (︂

3

𝑝

)︂
=

{︃
1 if 𝑝 ≡ 1, 11 (mod 12)

−1 if 𝑝 ≡ 5, 7 (mod 12).

Exercise 21.6 Determine

(︂
5

𝑝

)︂
and

(︂
7

𝑝

)︂
for all odd primes 𝑝.

https://en.wikipedia.org/wiki/Tonelli%E2%80%93Shanks_algorithm
https://en.wikipedia.org/wiki/Cipolla%27s_algorithm
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Our final application is to Diophantine equations. Since the Legendre symbol is intimately
related to quadratic congruences, it shouldn’t be surprising that quadratic reciprocity might
be able to say something about certain Diophantine equations.

Example 21.7 Show that the equation 𝑥2 − 43𝑦2 = 7 has no solutions in the integers.

Solution: Reducing mod 𝑝 = 43, we end up with

𝑥2 ≡ 7 (mod 43)

Since (︂
7

43

)︂
= (−1)

(︂
43

7

)︂
= (−1)

(︂
1

7

)︂
= −1,

it follows that 7 is a quadratic nonresidue mod 43. So there are no solutions to the equation
mod 43, hence no solutions in the integers.

The next example is more involved, but it showcases a variety of techniques that we’ve
learned in the course, so it’s worth the effort.

Example 21.8 Show that the only solution to 𝑥4 − 17𝑦4 = 2𝑧2 in the integers is (𝑥, 𝑦, 𝑧) = (0, 0, 0).

Solution: We may assume without loss of generality that 𝑥, 𝑦, 𝑧 are pairwise coprime
(exercise!). Suppose that 𝑝 is an odd prime divisor of 𝑧. Then 𝑝 ̸= 17 since otherwise 𝑝
would divide 𝑥, contradicting the assumption that 𝑥 and 𝑧 are coprime. Now reduce the
equation mod 𝑝 to obtain

𝑥4 ≡ 17𝑦4 (mod 𝑝).

Note that 𝑝 ∤ 𝑦 since 𝑦 and 𝑧 are coprime, so 𝑦 is invertible mod 𝑝. Thus, 17 ≡ (𝑥𝑦−1)4

(mod 𝑝) is a quadratic residue mod 𝑝. So, by the law of quadratic reciprocity,(︁ 𝑝

17

)︁
=

(︂
17

𝑝

)︂
= 1.

Furthermore, since 17 ≡ 1 (mod 8), we also have that(︂
−1

17

)︂
=

(︂
2

17

)︂
= 1.

Assuming 𝑧 ̸= 0, we can write 𝑧 a product of ±1, 2 and odd primes. Thus,
(︀

𝑧
17

)︀
= 1 by the

multiplicativity of the Legendre symbol. So 𝑧 ≡ 𝑤2 (mod 17) for some 𝑤. But then

𝑥4 ≡ 2𝑤4 (mod 17).

Since 𝑤 ̸≡ 0 (mod 17) (otherwise 17 | 𝑧), the above shows that 2 ≡ (𝑥𝑤−1)4 (mod 17) is
a 4th power residue mod 17. But this is not true (exercise!). The only way out of this
contradiction is for 𝑧 to not be a product of ±1, 2 and odd primes, which can only be the
case if 𝑧 = 0. It easily follows then that 𝑥 = 𝑦 = 0 (exercise!).

Exercise 21.9 Fill in the gaps left in the above solution.
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(a) Explain why we may assume that 𝑥, 𝑦 and 𝑧 are pairwise coprime.

(b) Prove that 2 is not a 4th power residue mod 17.

(c) Prove that if 𝑧 = 0 then 𝑥 = 𝑦 = 0.

Lecture 21 Problems

21.1. In this problem you will use quadratic reciprocity to give a Euclid-style proof that there are
infinitely many primes of the form 5𝑘 + 4.

(a) Suppose that 𝑝1, . . . , 𝑝𝑛 are primes of the form 5𝑘+4. Let 𝑁 = 5(𝑝1 · · · 𝑝𝑛)2 − 1. Show
that if a prime 𝑝 divides 𝑁 then

(︀𝑝
5

)︀
= 1.

(b) Deduce from part (a) that 𝑁 must have a prime divisor of the form 5𝑘 + 4.

(c) Conclude that there must be infinitely many primes of the form 5𝑘 + 4.

21.2. Suppose that 𝑝 is a prime of the form 𝑝 = 22
𝑛
+ 1 with 𝑛 > 1. (Such a prime is called a

Fermat prime; see Problem 6.2.)

(a) Determine
(︁
3
𝑝

)︁
.

(b) Prove that 3 is a primitive root mod 𝑝.

21.3. Find all primes 𝑝 for which the congruence 𝑥2 + 𝑥+ 1 ≡ 0 (mod 𝑝) has a solution.

21.4. Let 𝑎 be a non-zero integer, and let 𝑝 and 𝑞 be odd primes that do not divide 𝑎. Prove that

if 𝑝 ≡ 𝑞 (mod 4|𝑎|) then
(︁
𝑎
𝑝

)︁
=
(︁
𝑎
𝑞

)︁
.

21.5. Show that the equation 𝑥2 + 10𝑥𝑦 − 6𝑦2 = 17 has no solutions in the integers. [Hint: Try
to complete the square on the left-side.]
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Lecture 22 The Proof of Quadratic Reciprocity

The proof works, but it is remarkable in the fact that it gives us no insight at all into why
the theorem is true. In particular, it does not yield any direct connection between “life mod
p” and “life mod q.” Every time I present the proof to students, I point out the feeling that
yes, it comes out right, but it comes out right because the theorem is true. It’s hard to claim
(and I do not believe) that counting points in a rectangle explains why the theorem is true.

– F. Gouvêa

The task of presenting an illuminating, elementary proof of the law quadratic reciprocity is
a challenging one. In my opinion, none of the known elementary proofs offer any insight as
to why the result is true. They all rely on some counting trickery, where the same thing is
tallied up in two ways, and when the two counts are compared the desired result magically
appears.

The plan for this lecture is to present a version of Gauss’s third proof of the law of quadratic
reciprocity. The counting trickery will be based on a clever (and interesting) result known
as Gauss’s Lemma.

We need some notation. Let 𝑝 be an odd prime and let

𝑆 = {1, 2, . . . , (𝑝− 1)/2} and − 𝑆 = {−1,−2, . . . ,−(𝑝− 1)/2}.

Notice that 𝑆 and −𝑆 are disjoint and that 𝑆 ∪−𝑆 forms a complete set of representatives
for (Z/𝑝Z)×. For example, if 𝑝 = 7 then 𝑆 = {1, 2, 3} and −𝑆 = {−1,−2,−3}, and we have
𝑆 ∪−𝑆 = {1, 2, 3,−1,−2,−3}. Since 4, 5, 6 ≡ −3,−2,−1 (mod 7), we see that the integers
in 𝑆 ∪ −𝑆 represent every class in (Z/7Z)×.

If 𝑎 ∈ Z is coprime to 𝑝, let 𝑛(𝑎) denote the number of integers among

𝑎, 2𝑎, 3𝑎, . . . , ((𝑝− 1)/2)𝑎

that have representatives in −𝑆. For example, if 𝑝 = 7 and 𝑎 = 3, then

𝑎, 2𝑎, 3 = 3, 6, 9 ≡ 3,−1, 2 (mod 7)

so 𝑛(𝑎) = 1. If 𝑎 = 4, then

𝑎, 2𝑎, 3𝑎 = 4, 8, 12 ≡ −3, 1,−2 (mod 7)

so 𝑛(𝑎) = 2.

Informally, 𝑛(𝑎) counts the number of sign changes that occur after we multiply the elements
of 𝑆 by 𝑎.

Lemma 22.1 (Gauss’s Lemma)

Using the above notation,

(︂
𝑎

𝑝

)︂
= (−1)𝑛(𝑎).
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For example, (︂
3

7

)︂
= (−1)𝑛(3) = (−1)1 = −1

and (︂
4

7

)︂
= (−1)𝑛(4) = (−1)2 = 1.

Note that we can confirm the latter by noting that

(︂
4

7

)︂
=

(︂
22

7

)︂
= 1.

Exercise 22.2 Use Gauss’s Lemma to determine

(︂
5

7

)︂
.

Proof of Lemma 22.1 (Gauss’s Lemma):

For each 𝑠 ∈ 𝑆, we have 𝑎𝑠 ≡ ±𝑠 (mod 𝑝) for some 𝑠 ∈ 𝑆, since 𝑆 ∪ −𝑆 is a complete set
of representatives for all (Z/𝑝Z)×. Note that this 𝑠 is uniquely determined by 𝑠, because if
there is a 𝑡 ∈ 𝑆 such that 𝑎𝑡 ≡ ±𝑠 mod 𝑝, then

𝑎𝑠 ≡ ±𝑎𝑡 (mod 𝑝) ⇐⇒ 𝑠 ≡ ±𝑡 (mod 𝑝).

This is only possible if 𝑠 = 𝑡 since both 𝑠 and 𝑡 are in 𝑆. So 𝑠 ↦→ 𝑠 is an injection, hence a
bijection, on the finite set 𝑆.

Now we will compute the product
∏︀

𝑠∈𝑆 𝑎𝑠 in two ways. First, we have

∏︁
𝑠∈𝑆

𝑎𝑠 = 𝑎|𝑆|
∏︁
𝑠∈𝑆

𝑠 = 𝑎(𝑝−1)/2
∏︁
𝑠∈𝑆

𝑠 ≡
(︂
𝑎

𝑝

)︂∏︁
𝑠∈𝑆

𝑠 (mod 𝑝),

where we used Euler’s Criterion 20.3 in the last step. Second, we have∏︁
𝑠∈𝑆

𝑎𝑠 ≡
∏︁
𝑠∈𝑆

±𝑠 = (−1)𝑛(𝑎)
∏︁
𝑠∈𝑆

𝑠 = (−1)𝑛(𝑎)
∏︁
𝑠∈𝑆

𝑠 (mod 𝑝),

where we’ve used the fact that 𝑠 ↔ 𝑠 is a bijection.

Thus, (︂
𝑎

𝑝

)︂∏︁
𝑠∈𝑆

𝑠 ≡ (−1)𝑛(𝑎)
∏︁
𝑠∈𝑆

𝑠 (mod 𝑝).

Note that since all the elements 𝑠 ∈ 𝑆 are units mod 𝑝, so is their product, and so we can
cancel off the product from both sides, leaving us with(︂

𝑎

𝑝

)︂
≡ (−1)𝑛(𝑎) (mod 𝑝).

Since both sides are ±1, they must be equal—not just congruent mod 𝑝 (since 𝑝 is odd).
This completes the proof. ■

With this in hand, we can easily determine
(︁
2
𝑝

)︁
.
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Proof of Theorem 21.1 (Law of Quadratic Reciprocity) – Part (a):

In order to use Gauss’s Lemma, we must count the number of sign changes in 2𝑠 (𝑠 ∈ 𝑆):

2, 4, 6, . . . , 𝑝− 1.

The values of 𝑠 that flip signs are precisely those that satisfy

𝑝− 1

2
< 2𝑠 ≤ 𝑝− 1

or, equivalently,
𝑝− 1

4
< 𝑠 ≤ 𝑝− 1

2
.

There are precisely

𝑛(2) =
𝑝− 1

2
−
⌊︂
𝑝− 1

4

⌋︂
such values of 𝑠. We then have

(︁
2
𝑝

)︁
= (−1)𝑛(2) by Gauss’s Lemma. Examining each of the

possibilities of 𝑝 mod 8, we find:

𝑝 𝑛(2) (−1)𝑛(2)

8𝑘 + 1 4𝑘 − 2𝑘 = 2𝑘 +1
8𝑘 + 3 (4𝑘 + 1)− 2𝑘 = 2𝑘 + 1 −1
8𝑘 + 5 (2𝑘 + 2)− (2𝑘 + 1) = 2𝑘 + 1 −1
8𝑘 + 7 (4𝑘 + 3)− (2𝑘 + 1) = 2𝑘 + 2 +1

This is precisely what we want to prove. ■

Proof of Theorem 21.1 (Law of Quadratic Reciprocity) – Part (b):

We will prove that
(︁
𝑝
𝑞

)︁(︁
𝑞
𝑝

)︁
= (−1)(𝑝−1)(𝑞−1)/4. Let

𝑆𝑝 = {1, 2, . . . , (𝑝− 1)/2} and 𝑆𝑞 = {1, 2, . . . , (𝑞 − 1)/2}.

We wish to apply Gauss’s Lemma to 𝑞 and 𝑆𝑝 mod 𝑝, and then to 𝑝 and 𝑆𝑞 mod 𝑞. Thus,
let 𝑛𝑝(𝑞) be the number of sign changes of 𝑞𝑠 (𝑠 ∈ 𝑆𝑝) mod 𝑝, and let 𝑛𝑞(𝑝) be the number
of sign changes of 𝑝𝑠 (𝑠 ∈ 𝑆𝑞) mod 𝑞. Then, using Gauss’s Lemma twice, we have(︂

𝑝

𝑞

)︂(︂
𝑞

𝑝

)︂
= (−1)𝑛𝑞(𝑝)(−1)𝑛𝑝(𝑞) = (−1)𝑛𝑞(𝑝)+𝑛𝑝(𝑞).

We need a better handle on how to count these sign flips. To this end, note that if 𝑞𝑠 ≡ −𝑠′

(mod 𝑝) for some 𝑠′ ∈ 𝑆 (so 𝑠 contributes to 𝑛𝑝(𝑞)) then we can write 𝑞𝑠 = −𝑠′ + 𝑝𝑡 for
some 𝑡 ∈ Z. We have 𝑝𝑡− 𝑞𝑠 = 𝑠′ ∈ 𝑆𝑝 therefore

0 < 𝑝𝑡− 𝑞𝑠 ≤ 𝑝− 1

2
.

This 𝑡 must belong to 𝑆𝑞 since 𝑝𝑡 > 𝑞𝑠 > 0 and

𝑝𝑡 ≤ 𝑝− 1

2
+ 𝑞𝑠 ≤ (𝑞 + 1)

𝑝− 1

2
<

𝑞 + 1

2
𝑝

hence 𝑡 < (𝑞 + 1)/2 and therefore, since 𝑞 is odd, 𝑡 ≤ (𝑞 − 1)/2.
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This shows that

𝑛𝑝(𝑞) = |{(𝑠, 𝑡) ∈ 𝑆𝑝 × 𝑆𝑞 : 0 < 𝑝𝑡− 𝑞𝑠 ≤ (𝑝− 1)/2}| .

By the same argument,

𝑛𝑞(𝑝) = |{(𝑠, 𝑡) ∈ 𝑆𝑝 × 𝑆𝑞 : 0 ≤ 𝑞𝑠− 𝑝𝑡 ≤ (𝑞 − 1)/2}| .

We can re-write this as

𝑛𝑞(𝑝) = |{(𝑠, 𝑡) ∈ 𝑆𝑝 × 𝑆𝑞 : − (𝑞 − 1)/2 ≤ 𝑝𝑡− 𝑞𝑠 < 0}| .

Now since 𝑝𝑡− 𝑞𝑠 ̸= 0 when (𝑠, 𝑡) ∈ 𝑆𝑝 × 𝑆𝑞, if we let

𝑋 = {(𝑠, 𝑡) : − (𝑞 − 1)/2 ≤ 𝑝𝑡− 𝑞𝑠 ≤ (𝑝− 1)/𝑠}

then we find that
𝑛𝑝(𝑞) + 𝑛𝑞(𝑝) = |𝑋|.

Now, given (𝑠, 𝑡) ∈ 𝑋, let (𝑠′, 𝑡′) = ((𝑝 + 1)/2 − 𝑠, (𝑞 + 1)/2 − 𝑡). It’s easy to check that
(𝑠′, 𝑡′) ∈ 𝑋. Thus, 𝑓(𝑠, 𝑡) = (𝑠′, 𝑡′) defines a function 𝑓 : 𝑋 → 𝑋. This function is a bijection
(with inverse 𝑓−1 = 𝑓 itself). Thus, the number of elements in 𝑋 is equal to 2 times the
number of 𝑥 such that 𝑓(𝑥) ̸= 𝑥 (since each such 𝑥 pairs with a unique 𝑓(𝑥) ̸= 𝑥) plus
the number of fixed points 𝑥 such that 𝑓(𝑥) = 𝑥. The only potential fixed point of 𝑓 is
((𝑝+1)/4, (𝑞+1)/4) which only exists if both 𝑝 and 𝑞 are 3 mod 4. Thus, |𝑋| is odd if and
only if 𝑝 and 𝑞 are 3 mod 4 and |𝑋| is even in all other cases. But then the same is true of

𝑛𝑝(𝑞) + 𝑛𝑞(𝑝) = |𝑋|

and hence (︂
𝑝

𝑞

)︂(︂
𝑞

𝑝

)︂
= (−1)𝑛𝑝(𝑞)+𝑛𝑞(𝑝)

is exactly as stated by the law of quadratic reciprocity. This completes the proof. ■

If you made it this far, congratulations!

In some textbooks, the set 𝑆𝑝 ×𝑆𝑞 is displayed as a rectangle of lattice points in the plane,
and the set 𝑋 is identified as a strip along the diagonal of the rectangle. The function 𝑓 is
then a half-rotation about the midpoint of 𝑋. It might be instructive to try to draw these
pictures and try to make sense of the above manipulations. But, as Gouvêa says in the
opening quote to the lecture, these manipulations and pictures don’t really tell the story of
why quadratic reciprocity is true. They merely verify that it is true.

REMARK (A Better Proof?)

It’s a bit of a letdown that one of the great theorems of elementary number theory has such
a clunky proof. The good news is: illuminating proofs exist! The best one, in my opinion,
requires ideas from algebraic number theory and Galois theory, so it’s unfortunately a bit
too advanced for this course.

Lecture 22 Problems

22.1. Use Gauss’s Lemma to prove that

(︂
−1

𝑝

)︂
=

{︃
1 if 𝑝 ≡ 1 (mod 4)

−1 if 𝑝 ≡ 3 (mod 4)
.
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Lecture 23 Primality Testing

Having tackled the second and third problems on page 79, we now turn our attention to
the first problem: How do we test if a positive integer 𝑛 is a prime number? We of course
have our naive test (Corollary 7.2) that asks us to run through the integers 1, 2, . . . , ⌊

√
𝑛⌋

and check if any of them divide 𝑛. Obviously, this is extremely inefficient if 𝑛 is large.

In this lecture we will learn about about more efficient primality tests. The underlying idea
is simple: Identify a property that all primes satisfy, and then check if 𝑛 satisfies it as well.
If 𝑛 doesn’t, then we know for sure that 𝑛 isn’t prime. If 𝑛 does, then 𝑛 may or may not
be a prime—but if 𝑛 passes several of these checks, then we grow more confident in the
primality of 𝑛.

Here are two things that every prime 𝑝 must satisfy:

• Fermat’s Little Theorem: If 𝑎 is coprime to 𝑝 then 𝑎𝑝−1 ≡ 1 (mod 𝑝).

• Euler’s Criterion: If 𝑎 is coprime to 𝑝, and if 𝑝 is odd, then 𝑎(𝑝−1)/2 ≡
(︂
𝑎

𝑝

)︂
(mod 𝑝).

We will leverage them to create two primality tests.

The Fermat Test

To test whether 𝑛 ∈ Z>0 is prime, we check if Fermat’s Little Theorem holds for 𝑛.

• If gcd(𝑎, 𝑛) = 1 and 𝑎𝑛−1 ≡ 1 (mod 𝑛), then we say that 𝑛 passes the Fermat test
for the base 𝑎.

• If gcd(𝑎, 𝑛) = 1 and 𝑎𝑛−1 ̸≡ 1 (mod 𝑛), then we say that 𝑛 fails the Fermat test
for the base 𝑎.

If 𝑛 is prime, it will pass the Fermat test for all bases 𝑎 coprime to 𝑛. So if an integer 𝑛
passes the test, then it “behaves like” a prime (although it may not actually be prime—see
below). If 𝑛 fails one instance of the Fermat test, then 𝑛 is definitely not prime.

Example 23.1 Determine if 𝑛 = 119 is prime.

Solution: Clearly gcd(2, 𝑛) = 1, and we have

2𝑛−1 = 2118 ≡ 30 (mod 119).

Since 2𝑛−1 ̸≡ 1 (mod 119), 119 fails the Fermat test for 𝑎 = 2. Thus, 119 is not prime.

It’s interesting that we’re able to assert this without having found any nontrivial divisors
of 119. (In fact, 119 = 7× 17.)
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Example 23.2 Determine if 𝑛 = 341 is prime.

Solution: We have gcd(2, 𝑛) = 1 and

2𝑛−1 = 2340 ≡ 1 (mod 341).

So 341 passes the Fermat test for the base 𝑎 = 2. However, if we try 𝑎 = 3, we find that
gcd(3, 𝑛) = 1 and

3𝑛−1 = 3340 ≡ 56 (mod 341).

So 341 fails the Fermat test for the base 𝑎 = 3. Thus, 341 is not prime. (In fact, 341 =
11× 31.)

Numbers like 𝑛 = 341 that are composite but that pass the Fermat test are “pretending”
to be prime. We call them pseudoprimes.

Definition 23.3

Base-𝑎
Pseudoprime

Let 𝑛 be an odd positive integer and let 𝑎 ∈ Z be coprime to 𝑛. If 𝑛 is composite but passes
the Fermat test for the base 𝑎 then we say that 𝑛 is a base-𝑎 (Fermat) pseudoprime.

So 341 is a base-2 pseudoprime. Pseudoprimes are relatively rare, although it is known
that there are infinitely many of them. Of the integers up to 1000, only three are base-2
pseudoprimes, namely

341, 561 and 645.

Of the integers up to one billion, only 5595 are base-2 pseudoprimes.

We were able to deal with 𝑛 = 341 by applying the Fermat test with 𝑎 = 3. After all,
for the Fermat test to detect that 𝑛 is composite, all we need is a single 𝑎 < 𝑛 such that
𝑎𝑛−1 ̸≡ 1 (mod 𝑛).

Example 23.4 Determine if 𝑛 = 8911 is prime.

Solution: We compute that gcd(2, 𝑛) = gcd(3, 𝑛) = gcd(5, 𝑛) = gcd(7, 𝑛) = 1 and

2𝑛−1 = 28910 ≡ 1 (mod 8911)

3𝑛−1 = 38910 ≡ 1 (mod 8911)

5𝑛−1 = 58910 ≡ 1 (mod 8911)

7𝑛−1 = 78910 ≡ 1274 (mod 8911).

The first three congruences don’t give any conclusive information, but the last one tells us
that 8910 is composite.

As long as we can find a suitable base 𝑎 quickly, the Fermat test works rather well. Unfor-
tunately, there are composite numbers 𝑛 that are pseudoprimes for all bases 𝑎 coprime to
𝑛. Such numbers are called Carmichael numbers. The smallest one is 561 = 3× 11× 17
and the next smallest one is 1105 = 5× 13× 17. Alford, Granville and Pomerance proved
in 1994 that there are infinitely many Carmichael numbers. However, they are extremely
rare. There are only 646 Carmichael numbers below one billion.
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For a Carmichael number 𝑛, the first 𝑎 such that 𝑎𝑛−1 ̸≡ 1 (mod 𝑛) will be a divisor of 𝑛
(why?). The existence of Carmichael numbers is bad news for the Fermat test since finding
a base for which the test fails is just as difficult as finding a nontrivial divisor.

Exercise 23.5 Show that 𝑎561−1 ≡ 1 (mod 561) for all 𝑎 coprime to 561.

REMARK (History of Fermat’s Little Theorem)

Fermat discovered his “Little Theorem” while trying to determine which integers of the
form 2𝑛 − 1 are prime (these are called Mersenne primes); that is, he was trying to
devise a primality test! He actually proved (or, well, claims to have proved!) the following
statement, which is stronger than what is usually called Fermat’s Little Theorem.

If 𝑝 ∤ 𝑎 then there exists an integer 𝑑 such that 𝑎𝑑 ≡ 1 (mod 𝑝) and the smallest such integer
𝑑 divides 𝑝− 1 and divides any 𝑛 such that 𝑎𝑛 ≡ 1 (mod 𝑝).

In modern language, Fermat discovered the notion of ord𝑝(𝑎) and the fact that ord𝑝(𝑎) |
𝜙(𝑝).

The Miller–Rabin Test

There is a way around the Carmichael number problem. It involves a slightly more pen-
etrating look at the Fermat congruence 𝑎𝑛−1 ≡ 1 (mod 𝑛). Let me illustrate with an
example.

Example 23.6 Let 𝑛 = 341, which we know passes the Fermat test for the base 𝑎 = 2. That is, we know
that 2𝑛−1 ≡ 1 (mod 𝑛), or equivalently, that 𝑛 divides

2340 − 1 = (2170 − 1)(2170 + 1) = (285 − 1)(285 + 1)(2170 + 1).

If 𝑛 were prime, then 𝑛 would divide one of the factors on the right (by Euclid’s Lemma).
Thus, one of the following congruences must be true:

285 ≡ 1 (mod 341)

285 ≡ −1 (mod 341)

2170 ≡ −1 (mod 341).

However, we have

285 ≡ 32 (mod 341)

2170 ≡ 1 (mod 341).

So none of the congruences hold. Consequently, 𝑛 cannot be prime.

The method in the example generalizes to give the Miller–Rabin test, which I will now
describe.
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Suppose we want to test 𝑛 ∈ Z>0 for primality. We may certainly assume that 𝑛 is odd.
Let’s also assume that 𝑛 has passed the Fermat test for the base 𝑎, so that gcd(𝑎, 𝑛) = 1
and

𝑎𝑛−1 ≡ 1 (mod 𝑛).

Writing 𝑛 = 2𝑣𝑚+ 1, where 𝑚 is odd, we see that 𝑛 divides

𝑎𝑛−1 − 1 = 𝑎2
𝑣𝑚 − 1

= (𝑎2
𝑣−1𝑚 − 1)(𝑎2

𝑣−1𝑚 + 1)

= (𝑎2
𝑣−2𝑚 − 1)(𝑎2

𝑣−2𝑚 − 1)(𝑎2
𝑣−1𝑚 + 1)

...

= (𝑎𝑚 − 1)(𝑎𝑚 + 1)(𝑎2𝑚 + 1) · · · (𝑎2𝑣−1𝑚 + 1).

If 𝑛 were prime, then by Euclid’s Lemma, 𝑛 would divide one of the factors on the right,
and so one of the following congruences must hold:

• 𝑎𝑚 ≡ 1 (mod 𝑛), or

• 𝑎2
𝑖𝑚 ≡ −1 (mod 𝑛) for some 0 ≤ 𝑖 < 𝑣.

Notice that the powers of 𝑎 above can be obtained by repeated squaring:

𝑎𝑚 → 𝑎2𝑚 → 𝑎4𝑚 → · · · → 𝑎2
𝑣−1𝑚.

So we can check whether the congruences hold in sequential order.

• If 𝑎𝑚 ≡ ±1 (mod 𝑛), we can stop. One of the congruences has been satisfied. We say
the 𝑛 has passed the Miller–Rabin test for the base 𝑎.

• If 𝑎𝑚 ̸≡ ±1 (mod 𝑛), then we compute 𝑎2𝑚.

– If 𝑎2𝑚 ≡ 1 (mod 𝑛), we can stop. All the other 𝑎2
𝑖𝑚 will also be congruent to

1, and so none of the congruences hold. Thus, 𝑎 is composite. We say the 𝑛 has
failed the Miller–Rabin test for the base 𝑎.

– If 𝑎2𝑚 ≡ −1 (mod 𝑛), we can stop. One of the congruences has been satisfied.
We say the 𝑛 has passed the Miller–Rabin test for the base 𝑎.

• If 𝑎2𝑚 ̸≡ ±1 (mod 𝑛), then we compute 𝑎4𝑚, and repeat the analysis above. Etc.

So if one of the congruences holds, then 𝑛 passes the Miller–Rabin test and is “behaving
like” a prime (though, just like with the Fermat test, 𝑛 is not necessarily prime—see be-
low). Otherwise, if none of the congruences hold, then 𝑛 fails the Miller–Rabin test and is
definitely composite.
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Example 23.7 Let’s apply the Miller–Rabin test to the Carmichael number 𝑛 = 561. We know that 𝑛
satisfies the Fermat test for the base 𝑎 = 2.

In this case, 𝑛 = 24 · 35 + 1, so 𝑚 = 35 and 𝑣 = 4. We compute

235 ≡ 263 ̸≡ ±1 (mod 561)

22·35 ≡ 166 ̸≡ ±1 (mod 561)

22
2·35 ≡ 67 ̸≡ ±1 (mod 561)

22
3·35 ≡ 1 (mod 561).

At this point we stop and note that 𝑛 has failed the Miller–Rabin test. Thus, 561 is
composite.

Example 23.8 Let’s apply the Miller–Rabin test to 𝑛 = 2047. In this case, 𝑛 = 2 · 1023 + 1, so 𝑚 = 1023
and 𝑣 = 1, and we only have to check whether 𝑎𝑚 ≡ ±1 (mod 𝑛).

With 𝑎 = 2, we compute
21023 ≡ 1 (mod 2047).

So 𝑛 passes the Miller–Rabin test for the base 𝑎 = 2.

With 𝑎 = 3, we compute

31023 ≡ 1565 ̸≡ ±1 (mod 2047).

So 𝑛 has failed the Miller–Rabin test for the base 𝑎 = 3. Thus, 𝑛 is composite. Indeed,
2047 = 23× 89.

Exercise 23.9 Determine if 𝑛 = 15841 is prime using the Miller–Rabin test.

Composite numbers like 2047 that pass the Miller–Rabin test also deserve to be called
pseudoprimes. However, they are more sneaky than Fermat pseudoprimes.

Definition 23.10

Strong
Pseudoprime

Let 𝑛 be an odd positive integer and let 𝑎 ∈ Z be coprime to 𝑛. If 𝑛 is composite but passes
the Miller–Rabin Test for the base 𝑎 then we say that 𝑛 is a base-𝑎 strong pseudoprime.

So 2047 is a base-2 strong pseudoprime. By design, any integer 𝑛 that passes the Miller–
Rabin test also passes the Fermat test. Thus, a strong pseudoprime is automatically a
pseudoprime. The converse is false (𝑛 = 561 is a counterexample).

Strong pseudoprimes are rarer than pseudoprimes. There are only 1282 base-2 strong pseu-
doprimes below one billion (compared to 5597 pseudoprimes). Of these, only three are also
strong pseudoprimes for the bases 𝑎 = 3 and 𝑎 = 5, namely

25326001, 161304001 and 960946321.

So assuming we don’t apply it to one of these numbers, the Miller–Rabin test can correctly
detect primality up to 109—we just have to use the three bases 𝑎 = 2, 3, 5. Unfortunately,
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109 is not large enough for cryptographic applications, where we often need primes of size
22048 or 24096.

However, here is some good news. First, there are no “strong Carmichael numbers” (i.e.
integers 𝑛 that pass the Miller–Rabin test for all bases coprime to 𝑛) like there were for the
Fermat test. Second, Rabin proved that if we perform the Miller–Rabin test on a composite
𝑛 using 𝑘 randomly chosen bases, then the probability that 𝑛 passes these 𝑘 tests is ≤ 4−𝑘.
So the probability that a pseudoprime survives 𝑘 = 100 iterations of the Miller–Rabin test
is ≤ 4−100, i.e., it is practically zero. This gives us a fairly reliable probabilistic primality
test. This testing scheme is actually used in practice. Integers that pass it, and are therefore
very probably prime, are called industrial-grade primes!

REMARK (Deterministic Primality Testing)

If one assumes a version of the generalized Riemann hypothesis, then it can be proved that
every composite integer 𝑛 fails the Miller–Rabin test for some base 𝑎 ≤ 2(log 𝑛)2. This gives
us an algorithm for proving primality (and not just establishing probable primality)—we just
have to apply the Miller–Rabin test to all bases up to this bound. However, in practice,
the probabilistic test is more efficient since it requires significantly fewer computations.

The Solovay–Strassen Test and the Jacobi Symbol

The Fermat and Miller–Rabin tests were based on Fermat’s Little Theorem and Euclid’s
Lemma. I will now describe a primality test that makes use of the fact that primes satisfy
Euler’s Criterion: If 𝑝 is an odd prime and if 𝑎 is coprime to 𝑝, then

𝑎(𝑝−1)/2 =

(︂
𝑎

𝑝

)︂
(mod 𝑝).

Thus, to test 𝑛 for primality, we can take an integer 𝑎 coprime to 𝑛, and determine whether

𝑎(𝑛−1)/2 =
(︁𝑎
𝑛

)︁
(mod 𝑛).

But wait! The Legendre symbol is only defined for primes 𝑝, so we need to explain what
we mean by

(︀
𝑎
𝑛

)︀
.

Definition 23.11

Jacobi symbol

Let 𝑛 ∈ Z>0 be odd and let 𝑎 ∈ Z. If the prime factorization of 𝑛 is

𝑛 = 𝑝𝑎11 · · · 𝑝𝑎𝑘𝑘

then the Jacobi symbol is defined by(︁𝑎
𝑛

)︁
=

(︂
𝑎

𝑝1

)︂𝑎1

· · ·
(︂

𝑎

𝑝𝑘

)︂𝑎𝑘

,

where
(︁

𝑎
𝑝𝑖

)︁
is the Legendre symbol (well-defined since 𝑝𝑖 is necessarily an odd prime).

For example, (︂
11

45

)︂
=

(︂
11

32 · 5

)︂
=

(︂
11

3

)︂2(︂11

5

)︂
= (1)

(︂
1

5

)︂
= 1.
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It should be pointed out immediately that, unlike with the Legendre symbol, the fact that(︀
𝑎
𝑛

)︀
= 1 does not imply that 𝑎 is a square mod 𝑛. Indeed,(︂

2

15

)︂
=

(︂
2

3

)︂(︂
2

5

)︂
= (−1)(−1) = 1

but 2 is not a square mod 15 (because, for instance, it’s not a square mod 3).

This aside, the Jacobi symbol satisfies many properties that the Legendre symbol satisfies,
including the law of quadratic reciprocity.

Proposition 23.12 Let 𝑛 ∈ Z>0 be an odd and let 𝑎, 𝑏 ∈ Z be coprime to 𝑛.

(a) If 𝑎 ≡ 𝑏 (mod 𝑛) then
(︁𝑎
𝑛

)︁
=

(︂
𝑏

𝑛

)︂
.

(b)

(︂
𝑎𝑏

𝑛

)︂
=
(︁𝑎
𝑛

)︁(︂ 𝑏

𝑛

)︂
.

(c)

(︂
𝑎2

𝑛

)︂
= 1.

Theorem 23.13 (Law of Quadratic Reciprocity—Jacobi Symbol Version)

Let 𝑛 and 𝑚 be coprime positive integers. Then:

(a)

(︂
−1

𝑛

)︂
= (−1)

𝑛−1
2 .

(b)

(︂
2

𝑛

)︂
= (−1)

𝑛2−1
8 .

(c)
(︁𝑚
𝑛

)︁(︁ 𝑛

𝑚

)︁
= (−1)

𝑛−1
2

𝑚−1
2 .

Exercise 23.14 Prove Proposition 23.12 and Theorem 23.13.

Before returning to primality testing, let me point out that the law of quadratic reciprocity
for the Jacobi symbol allows us to calculate Legendre symbols without having to factor
integers.

Example 23.15 Determine the Legendre symbol
(︀
585
673

)︀
. [Note: 673 is prime.]

Solution: Using our old method for calculating Legendre symbols, we would begin by
obtaining the prime factorization 585 = 32 × 5× 13 so that(︂

585

673

)︂
=

(︂
3

673

)︂2(︂ 5

673

)︂(︂
13

673

)︂
=

(︂
5

673

)︂(︂
13

673

)︂
.
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We would then proceed by calculating the two Legendre symbols on the right.

However, with the Jacobi symbol, we can note that 673 ≡ 1 (mod 4) and then immediately
apply quadratic reciprocity to get (︂

585

673

)︂
=

(︂
673

585

)︂
.

Now, as 673 ≡ 88 (mod 585), we have(︂
673

585

)︂
=

(︂
88

585

)︂
=

(︂
2

585

)︂3(︂ 11

585

)︂
where in the last step we simply pulled out the factors of 2. Since 585 ≡ 1 (mod 8), we
have that (︂

2

585

)︂
= 1

leaving us with (︂
673

585

)︂
=

(︂
11

585

)︂
=

(︂
585

11

)︂
=

(︂
2

11

)︂
= −1.

Thus, (︂
585

673

)︂
= −1.

Exercise 23.16 Determine the Legendre symbol
(︀
655
719

)︀
.

Now, back to primality testing. To test an odd positive integer 𝑛 for primality, we simply
check if 𝑛 satisfies Euler’s Criterion.

• If gcd(𝑎, 𝑛) = 1 and 𝑎(𝑛−1)/2 ≡
(︀
𝑎
𝑛

)︀
(mod 𝑛), then we say that 𝑛 passes the

Solovay–Strassen test for the base 𝑎.

• If gcd(𝑎, 𝑛) = 1 and 𝑎(𝑛−1)/2 ̸≡
(︀
𝑎
𝑛

)︀
(mod 𝑛), then we say that 𝑛 fails the Solovay–

Strassen test for the base 𝑎.

Just as with the Fermat and Miller–Rabin tests, if 𝑛 passes the Solovay–Strassen test, we
cannot assert that 𝑛 is prime. However, if 𝑛 fails the Solovay–Strassen test, then 𝑛 definitely
composite.

Example 23.17 Determine if 𝑛 = 779 is prime.

Solution: With 𝑎 = 2, we have

𝑎(𝑛−1)/2 = 2389 ≡ 471 (mod 779).

We immediately conclude that 𝑛 has failed the Solovay–Strassen test since 471 is not con-
gruent to

(︀
2
𝑛

)︀
= ±1 mod 779. So 779 is composite.
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Example 23.18 Determine if 𝑛 = 3277 is prime.

Solution: With 𝑎 = 2, we have

𝑎(𝑛−1)/2 = 21638 ≡ −1 (mod 3277).

Since 3277 ≡ −3 (mod 8), we have
(︀

2
3277

)︀
= −1. Thus, 𝑛 passes the Solovay–Strassen test

for the base 𝑎 = 2.

With 𝑎 = 3, we have
𝑎(𝑛−1)/2 = 31638 ≡ 434 (mod 3277).

Since this isn’t congruent to ±1, 𝑛 has failed the Solovay–Strassen test. So 𝑛 is composite.

A composite number that passes the Solovay–Strassen test for the base 𝑎 is called a base-𝑎
Euler pseudoprime. Every Euler pseudoprime is a Fermat pseudoprime but not con-
versely. Every strong pseudoprime is an Euler pseudoprime but not conversely. Although
I won’t be proving these assertions, I will just note that they follow easily from the defini-
tions. A result that lies a little deeper is the following, which was proved by Solovay and
Strassen.

Proposition 23.19 Assume 𝑛 is composite. If we perform the Solovay–Strassen test on 𝑛 using 𝑘 randomly
chosen bases 𝑎 < 𝑛, then the probability that 𝑛 passes these 𝑘 tests is ≤ 2−𝑘.

This result says that performing, say, 𝑘 = 100 iterations of the Solovay–Strassen test is a
good probabilistic primality test (though not as good as 𝑘 = 100 iterations of Miller–Rabin).

Lecture 23 Problems

23.1. Let 𝑛 ∈ Z>0.

(a) Show that if 𝑎𝑛−1 ≡ 1 (mod 𝑛) for all 𝑎 ̸≡ 0 (mod 𝑛), then 𝑛 is prime.

(b) Why does part (a) not contradict the fact that Carmichael numbers exist?

23.2. Show that every composite Fermat number 𝐹𝑛 = 22
𝑛
+ 1 is a base-2 pseudoprime.

23.3. Let 𝑛 ∈ Z>0 and let 𝑎, 𝑏 ∈ Z be coprime to 𝑛. Prove/disprove:

(a) If 𝑛 is a base-𝑎 and base-𝑏 pseudoprime, then 𝑛 is a base-𝑎𝑏 pseudoprime.

(b) If 𝑛 is a base-𝑎 pseudoprime then 𝑛 is a base-𝑎′ pseudoprime, where 𝑎′ is the inverse of
𝑎 mod 𝑛.

23.4. Prove that if 𝑛 is a base-𝑎 Euler pseudoprime, then 𝑛 is a base-𝑎 Fermat pseudoprime. Give
an example to show that the converse is false.
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Lecture 24 The Gaussian Integers

[...] we soon recognized that the principles of arithmetic which were usable until
then were in no way sufficient to build the general theory. Rather such a theory
necessarily required an infinite enlargement to some extent of the field of higher
arithmetic.

– C.F. Gauss

One of the curious facts about number theory is that sometimes to prove theorems about
Z we have to work in larger number systems. In this lecture we will begin our investigation
of the set of Gaussian integers

Z[𝑖] = {𝑎+ 𝑖𝑏 : 𝑎, 𝑏 ∈ Z}.

Here, 𝑖 satisfies 𝑖2 = −1, so we may view Z[𝑖] as sitting inside the set of complex numbers C.
Gauss introduced Z[𝑖] primarily as a tool to help him investigate higher laws of reciprocity
(specifically, quartic reciprocity).

We will be a little more modest. Our primary short-term goal is to determine which integers
are sums of two squares. That is, for which 𝑛 ∈ Z are there solutions to the Diophantine
equation

𝑛 = 𝑥2 + 𝑦2?

The Gaussian integers come into play because of the following identity

𝑥2 + 𝑦2 = 𝑥2 − 𝑖2𝑦2 = (𝑥− 𝑖𝑦)(𝑥+ 𝑖𝑦).

So if we can somehow develop a theory of “unique factorization into primes” in Z[𝑖] (what-
ever that means), then perhaps it will shed some light on our problem.

Towards a Fundamental Theorem of Arithmetic in Z[𝑖]

To prove unique factorization into primes in Z, we made use of the following:

• The fact that Z is closed under addition, subtraction and multiplication but not
division (which leads to the notion of divisibility).

• Theorem 2.3 (The Remainder Theorem).

• GCDs and Proposition 3.7 (Bézout’s Lemma).

• Primes, coprimality and Lemma 5.3 (Euclid’s Lemma).

We will try to generalize each to Z[𝑖]. The first is rather easy—it’s clear that the sum,
difference and product of Gaussian integers is itself a Gaussian integer.16 For example,

(2 + 3𝑖)(4− 7𝑖) = 8− 14𝑖+ 12𝑖+ 21 = 29− 2𝑖.

For divisibility, we make the same definition we had in Z.

16What I am getting at here is that Z[𝑖], like Z, is a ring.
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Definition 24.1

Divides

Let 𝛼, 𝛽 ∈ Z, with 𝛽 ̸= 0. We say that 𝛽 divides 𝛼 if 𝛼 = 𝛽𝛾 for some 𝛾 ∈ Z[𝑖]. We write
𝛽 | 𝛼 if 𝛽 divides 𝛼 and 𝛽 ∤ 𝛼 otherwise.

For example,
5 = 12 + 22 = (1 + 2𝑖)(1− 2𝑖)

so (1 + 2𝑖) | 5 and (1 − 2𝑖) | 5. On the other hand, (1 + 2𝑖) ∤ (3 + 4𝑖). To prove this, we
must show that there is no Gaussian integer 𝛾 = 𝑎+ 𝑏𝑖 such that

3 + 4𝑖 = (𝑎+ 𝑏𝑖)(1 + 2𝑖).

This is easy to do by expanding and comparing real and imaginary parts. Alternatively, we
can leverage the fact that we are working in C, where we can make the observation that for
𝛼, 𝛽 ∈ Z[𝑖],

𝛽 | 𝛼 ⇐⇒ 𝛼

𝛽
∈ Z[𝑖].

Here,
𝛼

𝛽
is a complex number and we are to check that it is in Z[𝑖]. For example,

3 + 4𝑖

1 + 2𝑖
=

3 + 4𝑖

1 + 2𝑖

1− 2𝑖

1− 2𝑖
=

11

5
− 2

5
𝑖.

Since this is not in Z[𝑖], it follows that (1 + 2𝑖) ∤ (3 + 4𝑖).

Being able to multiply by the complex conjugate of 1 + 2𝑖 was very helpful above, and in
general we introduce the following important function.

Definition 24.2

Norm

The norm of 𝛼 = 𝑎+ 𝑖𝑏 ∈ Z[𝑖] is defined to be

𝑁(𝛼) = 𝑎2 + 𝑏2.

Equivalently, 𝑁(𝛼) = 𝛼𝛼 = |𝛼|2 where 𝛼 = 𝑎− 𝑖𝑏 is the complex conjugate of 𝛼 and |𝛼| is
the complex magnitude.

For example,
𝑁(5) = 52 = 25 and 𝑁(3 + 2𝑖) = 32 + 42 = 13.

Proposition 24.3 Let 𝛼, 𝛽 ∈ Z[𝑖]. Then:

(a) 𝑁(𝛼) ∈ Z≥0 and 𝑁(𝛼) = 0 if and only if 𝛼 = 0.

(b) 𝑁(𝛼𝛽) = 𝑁(𝛼)𝑁(𝛽). That is, the norm is (completely) multiplicative.

(c) If 𝛼 | 𝛽 then 𝑁(𝛼) | 𝑁(𝛽).
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Proof: Part (a) is immediate from the definition of 𝑁(𝛼). For part (b), note that

𝑁(𝛼𝛽) = |𝛼𝛽|2 = |𝛼|2|𝛽|2 = 𝑁(𝛼)𝑁(𝛽)

and for part (c) we have

𝛼 | 𝛽 =⇒ 𝛽 = 𝛾𝛼 =⇒ 𝑁(𝛽) = 𝑁(𝛾)𝑁(𝛼) =⇒ 𝑁(𝛼) | 𝑁(𝛽).

This completes the proof. ■

Exercise 24.4 Show that the converse to part (c) is false: 𝑁(𝛼) | 𝑁(𝛽) does not imply that 𝛼 | 𝛽.

The norm is useful because it allows us to move from Z[𝑖] to Z in a way that respects
multiplication. It also allows us to speak of the “size” of a Gaussian integer, and with this
we can state and prove the Remainder Theorem.

Theorem 24.5 (The Remainder Theorem in Z[𝑖])

Let 𝛼, 𝛽 ∈ Z[𝑖] with 𝛽 ̸= 0. Then there exists 𝑞, 𝑟 ∈ Z[𝑖] such that

𝛼 = 𝑞𝛽 + 𝑟 and 0 ≤ 𝑁(𝑟) < 𝑁(𝛽).

Proof: The idea of the proof is similar to the proof in Z. We have to locate the multiple
𝑞𝛽 that is closest to 𝛼, and then 𝑟 = 𝛼 − 𝑞𝛽 will be our desired remainder. The multiples
of 𝛽 tessellate the plane with squares of side length |𝛽| =

√︀
𝑁(𝛽) and 𝛼 will lie in one of

these squares. Needs picture— will add later. The distance from 𝛼 to the closest vertex 𝑞𝛽
is ≤ the distance from the center of the square to that vertex. Thus,

|𝛼− 𝑞𝛽| ≤ 1

2

√
2|𝛽| < |𝛽|.

So with 𝑞 as above, if we put 𝑟 = 𝛼− 𝑞𝛽 then 𝑁(𝑟) < 𝑁(𝛽), as desired. ■

Exercise 24.6 Show that, unlike in Z, we cannot require 𝑞 and 𝑟 to be unique. [Hint: Examine the proof
and come up with an example of an 𝛼 ∈ Z[𝑖] where there are multiple suitable values for 𝑞
and 𝑟.]

In Z, we can find 𝑞 and 𝑟 by dividing and then splitting into the the floor plus what’s left
over (the fractional part). For example,

10

4
= 2.5 = 2 +

1

2

hence
10 = 2 · 4 + 2.

We can do something similar in Z[𝑖]. For example,

5 + 8𝑖

3 + 𝑖
=

23

10
+

19

10
𝑖 = (2 + 𝑖) +

3

10
+

9

10
𝑖

hence

5 + 8𝑖 = (2 + 𝑖)(3 + 𝑖) +

(︂
3

10
+

9

10
𝑖

)︂
(3 + 𝑖) = (2 + 𝑖)(3 + 𝑖) + 30𝑖.
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Lecture 24 Problems

▶ 24.1. Let 𝛼, 𝛽, 𝛾 ∈ Z[𝑖]. Prove that if 𝛼 | 𝛽 and 𝛼 | 𝛾 then 𝛼 | 𝛽𝑥+ 𝛾𝑦 for all 𝑥, 𝑦 ∈ Z[𝑖].
24.2. Let 𝑎, 𝑏 ∈ Z. Prove that 𝑎 | 𝑏 in Z[𝑖] if and only if 𝑎 | 𝑏 in Z.

▶ 24.3. For each 𝑛 ∈ {1, 2, 3, 4, 5}, determine all 𝛼 ∈ Z[𝑖] such that 𝑁(𝛼) = 𝑛.

24.4. Let 𝛼, 𝛽 ∈ Z[𝑖]. Prove or disprove: If 𝛼 | 𝛽 and 𝛽 | 𝛼 then 𝛼 = ±𝛽.

24.5. Determine all Gaussian integers that divide 2.
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Lecture 25 GCDs in Z[𝑖]

We continue our journey towards stating and proving a version of the Fundamental Theorem
of Arithmetic in Z[𝑖]. Last time we formulated the Remainder Theorem for division in Z[𝑖],
and now our task is to introduce greatest common divisors and prove versions of the Bézout
and Euclid lemmas. Everything will work out splendidly (suspiciously so).

One thing we had to contend with so far is the lack of uniqueness in the Remainder Theorem.
This issue will also reappear when we try to define gcd(𝛼, 𝛽). What’s at play is the existence
of unexpected divisors of 1 in Z[𝑖].

Proposition 25.1 (Units in Z[𝑖])

Let 𝑢 ∈ Z[𝑖]. The following statements are equivalent.

(a) 𝑢 | 1 in Z[𝑖].

(b)
1

𝑢
∈ Z[𝑖].

(c) 𝑁(𝑢) = 1.

(d) 𝑢 ∈ {±1,±𝑖}.

Proof: We will prove that (a) =⇒ (b) =⇒ (c) =⇒ (d) =⇒ (a).

(a) =⇒ (b) is obvious. For (b) =⇒ (c), start with

𝑢
1

𝑢
= 1

and take norms of both sides to get

𝑁(𝑢)𝑁

(︂
1

𝑢

)︂
= 𝑁(1) = 1.

Since the norm of a Gaussian integer is a positive integer, the above equation implies
𝑁(𝑢) = 𝑁(1/𝑢) = 1.

Next, for (c) =⇒ (d), suppose that 𝑢 = 𝑎+ 𝑖𝑏 (with 𝑎, 𝑏 ∈ Z) and 𝑁(𝑢) = 1. Then

𝑎2 + 𝑏2 = 1.

Thus, either (𝑎, 𝑏) = (±1, 0) or (𝑎, 𝑏) = (0,±1). This gives 𝑢 = ±1 or 𝑢 = ±𝑖, respectively.

Finally, for (d) =⇒ (a), we just note that 1 = (1)(1), 1 = (−1)(−1) and 1 = 𝑖(−𝑖). ■

Definition 25.2

Unit

If 𝑢 ∈ Z[𝑖] satisfies any of the equivalent properties given in Proposition 25.1 then we say
that 𝑢 is a unit in Z[𝑖].
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REMARK

You should be reminded of the definition of units modulo 𝑛. (See especially the Remark
following Definition 11.2.) What we have proved here is that

Z[𝑖]× = {±1,±𝑖}.

If we know that 𝛼 | 𝛽 then we also have that 𝑢𝛼 | 𝛽 for any unit 𝑢 (why?). For example,
the two different-looking factorizations

5 = (1 + 2𝑖)(1− 2𝑖) = (2− 𝑖)(2 + 𝑖)

are actually not all that different since

1 + 2𝑖 = 𝑖(2− 𝑖) and 1− 2𝑖 = (−𝑖)(2 + 𝑖)

that is, the divisors differ by units. This is similar in principle to the factorizations

10 = 2 · 5 = (−2) · (−5)

in Z. We consider these factorizations to be essentially the same. Generally, in questions of
divisibility, we should not differentiate too much between a divisor and a unit multiple of a
divisor. This prompts the following definition.

Definition 25.3

Associates

Gaussian integers 𝛼, 𝛽 ∈ Z[𝑖] are said to be associates if 𝛼 = 𝑢𝛽 for some unit 𝑢 ∈ Z[𝑖].

The associates of 1 + 2𝑖 are

1+2𝑖 = (1)(1+2𝑖), −1−2𝑖 = (−1)(1+2𝑖), −2+𝑖 = 𝑖(1+2𝑖) and 2−𝑖 = (−𝑖)(1+2𝑖).

We would like to now define the greatest common divisor of two Gaussian integers 𝛼 and
𝛽 to be their “largest” common divisor, by which we mean the common divisor 𝛿 with
maximum norm 𝑁(𝛿). This is well-defined since if 𝛿 | 𝛼 then 𝑁(𝛿) ≤ 𝑁(𝛼) so the norm
of divisors of 𝛼 is bounded. However, there is no unique such element. Indeed, if 𝛿 is a
common divisor with maximum norm then so is 𝑢𝛿 for any unit 𝑢.

The converse is also true.

Indeed, if 𝛿, 𝛿′ ∈ Z[𝑖] are common divisors with the same maximum norm then 𝛿 | 𝛿′. (We
will prove this below. This is the statement that a common divisor divides the gcd.) Thus,
𝛿′/𝛿 ∈ Z[𝑖] and so

𝑁(𝛿′/𝛿) = 𝑁(𝛿′)/𝑁(𝛿) = 1.

This shows that 𝛿′/𝛿 is a unit. Therefore, 𝛿 and 𝛿′ are associates.

Definition 25.4

Greatest Common
Divisor, gcd

Let 𝛼, 𝛽 ∈ Z[𝑖] not both be zero. A greatest common divisor of 𝛼 and 𝛽 is a common
divisor 𝛿 ∈ Z[𝑖] of maximum norm.
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By what we have just noted, any two greatest common divisors are associates, so we will
abuse notation and simply write gcd(𝛼, 𝛽) to denote one of the four possible choices. We
also define gcd(0, 0) = 0.

At this point we can devise a version of the Euclidean algorithm for calculating gcd(𝛼, 𝛽),
but we will forego this since we want to get to the Fundamental Theorem of Arithmetic as
quickly as possible.

Theorem 25.5 (Bézout’s Lemma in Z[𝑖])

Let 𝛼, 𝛽 ∈ Z[𝑖] not both be zero. Then there exist 𝑥, 𝑦 ∈ Z[𝑖] such that

gcd(𝛼, 𝛽) = 𝛼𝑥+ 𝛽𝑦.

Before diving into the proof, let’s note that the statement actually makes sense. Since
there are 4 possible values of 𝛾 = gcd(𝛼, 𝛽), if we can write any one of them in the form
𝛾 = 𝛼𝑥 + 𝛽𝑦 then we can write the other three in this form as well. Indeed, we have
−𝛾 = 𝛼(−𝑥) + 𝛽(−𝑦) and ±𝑖𝛾 = 𝛼(±𝑖𝑥) + 𝛽(±𝑖𝑦).

Proof: We will mimic the proof of Proposition 3.7 (Bézout’s Lemma). Thus, let 𝑆 =
{𝛼𝑥 + 𝛽𝑦 : 𝑥, 𝑦 ∈ Z[𝑖]}. Let 𝛾 ∈ 𝑆 be a non-zero element with smallest possible norm.
Such an element exists by the well-ordering principle (applied to the set of norms 𝑁(𝑠) of
non-zero elements 𝑠 ∈ 𝑆).

Write 𝛾 = 𝛼𝑥0 + 𝛽𝑦0. We claim that 𝛾 | 𝛼 and 𝛾 | 𝛽. To prove this, apply the Remainder
Theorem to write

𝛼 = 𝛾𝑞 + 𝑟

with 0 ≤ 𝑁(𝑟) < 𝑁(𝛾). Since 𝑟 = 𝛼 − 𝛾𝑞 = (1 − 𝑞𝑥0)𝛼 + (−𝑞𝑦0)𝛽 is in 𝑆, we must have
that 𝑁(𝑟) = 0 by minimality of 𝛾. Thus, 𝑟 = 0. This shows that 𝛾 | 𝛼. A similar argument
shows that 𝛾 | 𝛽.

This shows that 𝛾 is a common divisor of 𝛼 and 𝛽. Next, we must prove that 𝛾 has the
largest norm amongst all common divisors 𝛿. To prove this, write 𝛼 = 𝛿𝑧 and 𝛽 = 𝛿𝑤 with
𝑧, 𝑤 ∈ Z[𝑖]. Then

𝛾 = 𝛼𝑥0 + 𝛽𝑦0 = 𝛿(𝑧𝑥0 + 𝑤𝑦0).

So 𝛿 | 𝛾 and therefore 𝑁(𝛿) | 𝑁(𝛾) by Proposition 24.3(c). Since norms are non-negative
integers, it follows that 𝑁(𝛿) ≤ 𝑁(𝛾), as required. ■

REMARK

The final paragraph in the preceding proof shows that every common divisor of 𝛼 and 𝛽
divides gcd(𝛼, 𝛽).

Our next target is Euclid’s Lemma.

Definition 25.6

Coprime

We say that 𝛼, 𝛽 ∈ Z[𝑖] are coprime if gcd(𝛼, 𝛽) = 1.
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In Z, two integers are coprime if and only if ±1 are their only common divisors. This
generalizes in the appropriate way to Z[𝑖].

Exercise 25.7 Prove that gcd(𝛼, 𝛽) = 1 if and only if the only common divisors of 𝛼 and 𝛽 are ±1 and ±𝑖.

Example 25.8 Show that 1− 2𝑖 and 1 + 2𝑖 are coprime.

Solution: Let 𝛿 be a common divisor of 1− 2𝑖 and 1 + 2𝑖. Then 𝛿 divides their sum

(1− 2𝑖) + (1 + 2𝑖) = 2.

Hence 𝑁(𝛿) | 𝑁(2) = 4. On the other hand, 𝑁(𝛿) | 𝑁(1− 2𝑖) = 12 + 22 = 5. So 𝑁(𝛿) is a
positive integer that divides both 4 and 5. Consequently, 𝑁(𝛿) = 1 and so 𝛿 is a unit. It
follows that 1− 2𝑖 and 1 + 2𝑖 are coprime.

Example 25.9 Let 𝑎, 𝑏 ∈ Z. Show that if 𝑎 and 𝑏 are coprime in Z then 𝑎 and 𝑏 are coprime in Z[𝑖].

Solution: By Bézout’s Lemma in Z, we can write

1 = 𝑎𝑥+ 𝑏𝑦

for some 𝑥, 𝑦 ∈ Z. If 𝛿 ∈ Z[𝑖] is a common divisor of 𝑎 and 𝑏, then 𝛿 | 𝑎𝑥+ 𝑏𝑦 = 1, so 𝛿 is a
unit. That is, the only Gaussian integer common divisors of 𝑎 and 𝑏 are units. So 𝑎 and 𝑏
must be coprime in Z[𝑖].

Corollary 25.10 (Euclid’s Lemma in Z[𝑖])

Let 𝛼, 𝛽, 𝛾 ∈ Z[𝑖]. If 𝛼 | 𝛽𝛾 and if 𝛼 and 𝛽 are coprime then 𝛼 | 𝛾.

Exercise 25.11 Prove Corollary 25.10. [Hint: Mimic the proof of Proposition 4.3(a).]

Lecture 25 Problems

25.1. Let 𝛼, 𝛽 ∈ Z[𝑖]. Prove that 𝛼 and 𝛽 are coprime if and only if there exist 𝑥, 𝑦 ∈ Z[𝑖] such
that 𝛼𝑥+ 𝛽𝑦 = 1.

25.2. Let 𝑎, 𝑏 ∈ Z. Show that the gcd of 𝑎 and 𝑏 in Z is equal to their gcd if viewed as Gaussian
integers (up to units).

25.3. Let 𝛼, 𝛽 ∈ Z[𝑖] with 𝛽 ̸= 0. Let 𝛼 = 𝛽𝑞 + 𝑟 be as in the Remainder Theorem (Theorem
24.5). Prove that gcd(𝛼, 𝛽) = gcd(𝛽, 𝑟). [Note: This is a Z[𝑖] version of Lemma 3.3.]

25.4. Let 𝛼, 𝛽, 𝛾 ∈ Z[𝑖] and assume that 𝛼 and 𝛽 are coprime. Show that if 𝛼 | 𝛾 and 𝛽 | 𝛾 then
𝛼𝛽 | 𝛾. [Note: This is a Z[𝑖] version of Proposition 4.3.]
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Lecture 26 Gaussian Primes and Unique Factorization

We are almost ready to state and prove the Fundamental Theorem of Arithmetic in Z[𝑖].

Definition 26.1

Gaussian Prime,
Rational Prime

A Gaussian prime is a Gaussian integer 𝜋 ∈ Z[𝑖] that is a non-zero, non-unit whose only
divisors are units and associates of 𝜋.

For clarity, a prime 𝑝 ∈ Z will be referred to as a rational prime.

If 𝜋 is a Gaussian prime and if 𝜋 = 𝛼𝛽 then one of 𝛼 and 𝛽 must be a unit and the other
one must be an associate of 𝜋. So the only factorizations of 𝜋 in Z[𝑖] are trivial—they are
all of the form

𝜋 = 𝑢(𝑢−1𝜋) where 𝑢 is a unit.

This is analogous to how the only factorizations of a rational prime 𝑝 in Z are

𝑝 = (1)𝑝 = (−1)(−𝑝).

Let’s look at some examples.

Example 26.2 The rational prime 𝑝 = 2 is not a Gaussian prime. Indeed,

2 = 12 + 12 = (1 + 𝑖)(1− 𝑖)

is a non-trivial factorization of 2 in Z[𝑖]. Note that

2 = (1 + 𝑖)(1− 𝑖) = 𝑖(−𝑖+ 1)(1− 𝑖) = 𝑖(1− 𝑖)2

so 2 is in fact a unit times a square in Z[𝑖]. Weird.

Similarly, the rational prime 𝑝 = 5 is not a Gaussian prime since

5 = 12 + 22 = (1 + 2𝑖)(1− 2𝑖).

However, this time the divisors are not associates.

Example 26.3 Prove that 𝜋 = 1 − 𝑖 is a Gaussian prime. (Note that this is one of the two divisors of 2
from the preceding example.)

Solution: Suppose 𝛼 | 𝜋. Then 𝑁(𝛼) | 𝑁(𝜋). Since 𝑁(𝜋) = 12 + 12 = 2, it follows that
𝑁(𝛼) is either 1 or 2. If 𝑁(𝛼) = 1 then 𝛼 is a unit. If 𝑁(𝛼) = 2 then I claim that 𝛼 is
an associate of 2. To see why, write 𝜋 = 𝛼𝛽 and then note that 𝑁(𝜋) = 𝑁(𝛼)𝑁(𝛽) forces
𝑁(𝛽) to be 1 and hence 𝛽 must be a unit.

This shows that the only divisors of 𝜋 are units and associates of 𝜋. Thus 𝜋 must be a
Gaussian prime.
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Example 26.4 Prove that 3 is a Gaussian prime.

Solution: Suppose 𝛼 | 3. Then 𝑁(𝛼) | 𝑁(3). Since 𝑁(3) = 9, it follows that 𝑁(𝛼) is either
1, 3 or 9. If 𝑁(𝛼) = 1 then 𝛼 is a unit and if 𝑁(𝛼) = 9 then, by an argument similar to the
one in the preceding example, 𝛼 is an associate of 3. So it suffices to prove that the case
𝑁(𝛼) = 3 cannot occur.

To see why this is so, note that if 𝛼 = 𝑎+ 𝑖𝑏 then 𝑁(𝛼) = 𝑎2+ 𝑏2 cannot be equal to 3 since
a sum of squares cannot be equal to 3 mod 4.

The arguments in the preceding examples generalize to give the following result.

Proposition 26.5 (a) If 𝑁(𝛼) = 𝑝 is a rational prime, then 𝛼 is a Gaussian prime.

(c) If 𝑝 is a rational prime such that 𝑝 ≡ 3 (mod 4), then 𝑝 is a Gaussian prime.

Exercise 26.6 Prove Proposition 26.5.

We now have a big supply of Gaussian primes. For example, each of the following is a
Gaussian prime:

7, 11, 2 + 3𝑖, 2− 3𝑖, 5 + 2𝑖, 5− 2𝑖.

In fact, we know what all Gaussian primes look like.

Theorem 26.7 (Classification of Gaussian Primes)

Every Gaussian prime is a unit multiple of one of the following Gaussian primes.

• 1− 𝑖.

• A rational prime such that 𝑝 ≡ 3 (mod 4).

• 𝜋 = 𝑎+ 𝑖𝑏 where 𝑁(𝜋) = 𝑎2 + 𝑏2 = 𝑝 is a rational prime such that 𝑝 ≡ 1 (mod 4).

Proposition 26.5 confirms that everything in the above list is a Gaussian prime. To prove
that these are all possible Gaussian primes (up to associates) we will want to use the
Fundamental Theorem of Arithmetic. So let’s move towards that end.

Lemma 26.8 (Euclid’s Lemma for Gaussian Primes)

Let 𝜋 ∈ Z[𝑖] be a Gaussian prime. Then if 𝜋 | 𝛼𝛽 then 𝜋 | 𝛼 or 𝜋 | 𝛽.

More generally, if 𝜋 | 𝛼1 · · ·𝛼𝑘 then 𝜋 | 𝛼𝑗 for some 𝑗.

Proof: If 𝜋 and 𝛼 are not coprime, then gcd(𝜋, 𝛼) would be a non-unit divisor of 𝜋 hence
must be an associate of 𝜋. This shows that 𝜋 | 𝛼. Otherwise, if 𝜋 and 𝛼 are coprime, then
𝜋 | 𝛽 by Corollary 25.10.

The general statement follows by induction. ■
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Theorem 26.9 (Fundamental Theorem of Arithmetic in Z[𝑖])

Every non-zero Gaussian integer that is not a unit can be written as a product of Gaussian
primes in a unique way (up to re-ordering and associates).

For example, the factorizations

5 = (1 + 2𝑖)(1− 2𝑖) = (2 + 𝑖)(2− 𝑖)

are viewed as being the same same since (1 + 2𝑖) = 𝑖(2 − 𝑖) and (1 − 2𝑖) = (−𝑖)(2 + 𝑖), so
the factors are the same up to associates.

Proof of Theorem 26.9:

Existence: Suppose the theorem were false. Then there would exist a non-zero Gaussian
integer 𝛼 that is not a product of Gaussian primes. By the well-ordering principle, there
would exist such an 𝛼 of least norm. Note that 𝛼 itself cannot be prime so 𝛼 = 𝛽𝛾 with
𝑁(𝛽) < 𝑁(𝛼) and 𝑁(𝛾) < 𝑁(𝛼). By minimality, it follows that 𝛽 and 𝛾 are products of
Gaussian primes, and hence so is 𝛼 = 𝛽𝛾. Contradiction!

Uniqueness: If 𝛼 = 𝜋1 · · ·𝜋𝑘 = 𝜋′
1 · · ·𝜋′

𝑙 then 𝜋1 must divide 𝜋′
1 · · ·𝜋′

𝑙 hence (re-labeling
the 𝜋′

𝑗 if necessary) 𝜋1 | 𝜋′
1. So we can cancel off 𝜋 and 𝜋′

1 prime from both sides, leaving
us with

𝜋2 · · ·𝜋𝑘 = 𝑢𝜋′
2 · · ·𝜋′

𝑙

where 𝑢 is a unit. Now repeat the argument. ■

Example 26.10 Write 𝛼 = 3 + 24𝑖 as a product of Gaussian primes.

Solution: We have 𝛼 = 3(1+ 8𝑖) and 3 is a Gaussian prime. So we must factor 1+ 8𝑖 into
Gaussian primes.

If 𝜋 is a prime divisor of 1 + 8𝑖 then 𝜋 | (1 + 8𝑖)(1− 8𝑖) = 1 + 64 = 65. (In general, if 𝜋 | 𝛼
then 𝜋 | 𝑁(𝛼) = 𝛼𝛼.) Now since 65 = 5 · 13, we know that either 𝜋 | 5 or 𝜋 | 13.
We have

5 = 12 + 22 = (1 + 2𝑖)(1− 2𝑖) and 13 = 22 + 32 = (2 + 3𝑖)(2− 3𝑖).

So 𝜋 must be one of the above four prime divisors. Note that only one of the primes divisors
of 5 can be a divisor of 1 + 8𝑖. (If both were, then their product 5 would divide 1 + 8𝑖, but
it does not.) Likewise, only one of the prime divisors of 13 can be a divisor of 1 + 8𝑖.

So now we just check the various possible products. We have

(1 + 2𝑖)(2 + 3𝑖) = −4 + 7𝑖

which is no good. On the other hand,

(1− 2𝑖)(2 + 3𝑖) = 8− 𝑖.

This is not exactly 1 + 8𝑖 but it is an associate: 𝑖(8− 𝑖) = (1 + 8𝑖). Thus,

1 + 8𝑖 = 𝑖(1− 2𝑖)(2 + 3𝑖) = (2 + 𝑖)(2 + 3𝑖).

Consequently,
3 + 24𝑖 = 3(2 + 𝑖)(2 + 3𝑖)

and each of the three factors on the right is a Gaussian prime.
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Exercise 26.11 Write 𝛼 = 4− 18𝑖 as a product of Gaussian primes.

We now have the tools to determine which integers can be written as the sum of two squares.
Let’s deal with the case of primes now, and we’ll take up the general case next lecture.

Theorem 26.12 (Primes of the Form 𝑝 = 𝑥2 + 𝑦2)

Let 𝑝 be a rational prime. Then 𝑝 = 𝑥2 + 𝑦2 with 𝑥, 𝑦 ∈ Z if and only if 𝑝 = 2 or 𝑝 ≡ 1
(mod 4).

Proof: If 𝑝 = 2 then 𝑝 = 12 + 12. So assume 𝑝 is odd. If 𝑝 ≡ 3 (mod 4), then 𝑝 cannot
be the sum of two squares (see, e.g., Exercise 2.12). So it remains to prove that if 𝑝 ≡ 1
(mod 4) then 𝑝 is a sum of two squares.

If 𝑝 ≡ 1 (mod 4) then
(︁
−1
𝑝

)︁
= 1. Thus, there exists an 𝑛 ∈ Z such that 𝑛2 ≡ −1 (mod 𝑝)

and hence
𝑝 | 𝑛2 + 1 = (𝑛+ 𝑖)(𝑛− 𝑖).

If 𝑝 were a Gaussian prime, then it would divide one of the factors on the right. However,
𝑝 ∤ 𝑛 + 𝑖 and 𝑝 ∤ 𝑛 − 𝑖. (Since neither of 𝑛

𝑝 ± 1
𝑝 𝑖 is a Gaussian integer.) Thus, 𝑝 is not a

Gaussian prime, and so we can factor it into a product of two non-units, i.e., we can write

𝑝 = 𝛼𝛽 with 1 < 𝑁(𝛼) < 𝑁(𝑝) and 1 < 𝑁(𝛽) < 𝑁(𝑝).

Thus, 𝑁(𝛼) = 𝑝 since 𝑁(𝑝) = 𝑝2. Writing 𝛼 = 𝑥+ 𝑖𝑦, we find that

𝑝 = 𝑁(𝑥+ 𝑖𝑦) = 𝑥2 + 𝑦2,

as required. ■

You should take a moment to appreciate all the ingredients that went into this proof. Would

you have expected the Legendre symbol
(︁
−1
𝑝

)︁
to pop up?

Let’s close the lecture by completing the proof of the classification of Gaussian primes. The
idea behind the proof is simple (and ends up being important in algebraic number theory):
Where can we find Gaussian primes? Answer: They occur as divisors of rational primes!
So by factoring all rational primes 𝑝 in Z[𝑖], we obtain all possible Gaussian primes.

Proof of Theorem 26.7 (Classification of Gaussian Primes): Let 𝜋 be a Gaussian
prime. Let’s start by proving that 𝜋 must divide a rational prime. The key observation is
that 𝜋 | 𝑁(𝜋) since 𝑁(𝜋) = 𝜋𝜋. However, 𝑁(𝜋) is an integer greater than 1 (why?), so it
is a product of rational primes. By Euclid’s Lemma, since 𝜋 | 𝑁(𝜋), 𝜋 must divide one of
these rational primes—call it 𝑝.

If 𝑝 = 2, then we have determined in Examples 26.2 and 26.3 that the Gaussian prime
divisors of 2 are unit multiples of 1 + 𝑖.

If 𝑝 is odd then either 𝑝 ≡ 1 (mod 4) or 𝑝 ≡ 3 (mod 4). If 𝑝 ≡ 3 (mod 4) then 𝑝 is a
Gaussian prime (by Proposition 26.5 (b)) so since 𝜋 | 𝑝, 𝜋 must be a unit multiple of 𝑝.
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Finally, if 𝑝 ≡ 1 (mod 4) then 𝑝 = 𝑎2+ 𝑏2 = (𝑎− 𝑖𝑏)(𝑎+ 𝑖𝑏) for some 𝑎, 𝑏 ∈ Z. Since 𝜋 | 𝑝, it
follows from Euclid’s Lemma that 𝜋 divides one of 𝑎± 𝑖𝑏. Writing 𝑎± 𝑖𝑏 = 𝜋𝛼 and taking
norms, we find that

𝑝 = 𝑁(𝑎± 𝑖𝑏) = 𝑁(𝜋)𝑁(𝛼).

Since 𝑝 is prime and 𝑁(𝜋) > 1, it must be the case that 𝑁(𝛼) = 1. Thus, 𝛼 is a unit. This
shows that 𝜋 is a unit multiple of 𝑎± 𝑖𝑏. So, in all cases, 𝜋 is a unit multiple of one of the
Gaussian primes in the given list. ■

The diagram below lists the Gaussian primes obtained by factoring the first several rational
primes.

2 3 5 7 11 13

1 + 𝑖 3 1− 2𝑖 1 + 2𝑖 7 11 2− 3𝑖 2 + 3𝑖

· · ·

The line above 𝑝 = 2 was drawn a bit thicker to emphasize the fact that 2 factors into
(1 + 𝑖)2 (times a unit). It’s almost as though 2 wants to behave like 5 and 13 which split
into two factors, but its two factors happen to coincide... (This phenomenon is known as
ramification.)

REMARK (Primes of the Form 𝑝 = 𝑥2 + 𝑛𝑦2)

Fermat was the first to prove that an odd prime 𝑝 is the sum of two squares if and only
if 𝑝 ≡ 1 (mod 4). The proof we’ve presented above is due to Richard Dedekind, one of
the founders of algebraic number theory—the subject whose goal is to generalize number
theory from Z to number systems such as Z[𝑖].

Fermat also claimed:

𝑝 = 𝑥2 + 2𝑦2 ⇐⇒ 𝑝 ≡ 1, 3 (mod 8) or 𝑝 = 2

𝑝 = 𝑥2 + 3𝑦2 ⇐⇒ 𝑝 ≡ 1 (mod 8) or 𝑝 = 3.

Euler was able to prove both of these results (after considerable effort), as well as our result
concerning 𝑝 = 𝑥2+ 𝑦2. In the course of this, he discovered—but could not prove—the Law
of Quadratic Reciprocity. Euler’s proofs hinged on the fact that prime divisors of integers
of the form 𝑥2 + 𝑛𝑦2, where gcd(𝑥, 𝑦) = 1, are themselves also of the form 𝑥2 + 𝑛𝑦2. This
is true if 𝑛 = 1, 2, 3 but not if 𝑛 = 5. Euler conjectured that

𝑝 = 𝑥2 + 5𝑦2 ⇐⇒ 𝑝 ≡ 1, 9 (mod 20) or 𝑝 = 5.

This was proved by Lagrange, who developed the theory of binary quadratic forms for this
purpose.

The story of primes of the form 𝑝 = 𝑥2+𝑛𝑦2 is a fascinating one that quickly gets intertwined
with some of the deepest results in number theory (e.g. quadratic reciprocity, as Euler had
noticed). For example, it is a theorem that, for 𝑝 ̸= 2, 7,

𝑝 = 𝑥2 + 14𝑦2 ⇐⇒

⎧⎪⎨⎪⎩
the congruences

𝑢2 = −14 (mod 𝑝) and (𝑣2 + 1)2 = 8 (mod 𝑝)

have solutions.
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The first congruence is asserting that
(︁
−14
𝑝

)︁
= 1, which we can understand via quadratic

reciprocity. The second congruence is hinting at something more mysterious.

For much more on this, I recommend David Cox’s beautiful book, Primes of the Form
𝑥2 + 𝑛𝑦2, which would make good reading after you have finished PMATH 340.

Lecture 26 Problems

26.1. Let 𝜋 ∈ Z[𝑖] be a non-zero, non-unit. Prove that 𝜋 is a Gaussian prime if and only if
whenever 𝜋 | 𝛼𝛽 then 𝜋 | 𝛼 or 𝜋 | 𝛽.

26.2. Let 𝑝 ≡ 1 (mod 4) be a rational prime. Prove that 𝑝 is a sum of two squares in a unique
way (up to signs and re-ordering). That is, if 𝑝 = 𝑎2 + 𝑏2 = 𝑐2 + 𝑑2, then (𝑐, 𝑑) = (±𝑎,±𝑏)
or (𝑐, 𝑑) = (±𝑏,±𝑎). [Hint: Connect the expression of 𝑝 as a sum of two squares to the
factorization of 𝑝 into a product of Gaussian squares and use unique factorization.]

▶ 26.3. Prove that if 𝑛,𝑚 ∈ Z can be written as the sum of two squares then 𝑛𝑚 can also be written
as the sum of two squares. [Hint: If 𝑛 = 𝑥2 + 𝑦2 then 𝑛 = 𝑁(𝑥+ 𝑖𝑦).]

▶ 26.4. Let 𝛼, 𝛽 ∈ Z[𝑖] be coprime. Prove that if 𝛼𝛽 = 𝛾𝑛 for some 𝑛 ≥ 2 then each of 𝛼 and 𝛽 is a
unit times an 𝑛th power of a Gaussian integer.

26.5. Prove that there are infinitely many Gaussian primes.
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Lecture 27 Sums of Squares and Pythagorean Triples

Our goal in this lecture is to tackle two Diophantine equations from Lecture 1, namely

𝑥2 + 𝑦2 = 𝑛 and 𝑥2 + 𝑦2 = 𝑧2.

The first asks us to determine the integers 𝑛 that can be expressed as the sum of two squares.
The second asks for integer solutions to the Pythagorean equation—and, therefore, for the
possible right-angled triangles with integer side lengths.

27.1 Sums of Two Squares

We have already determined which primes 𝑝 can be written as the sum of two squares. They
are 𝑝 = 2 and all odd primes congruent to 1 mod 4. What about composite integers?

One neat observation is that if 𝑛 and 𝑚 are each the sum of two squares, then so is their
product 𝑛𝑚. (That is, the set of integers that are sums of two squares is “closed under
multiplication”.) This is Problem 26.3 but let’s restate it here again as a lemma.

Lemma 27.1 (𝑎2 + 𝑏2)(𝐴2 +𝐵2) = (𝑎𝐴− 𝑏𝐵)2 + (𝑎𝐵 + 𝑏𝐴)2.

Proof: Of course, we can just multiply out both sides and show that they coincide. How-
ever, here is a more conceptual approach. Note that

𝑎2 + 𝑏2 = 𝑁(𝑎+ 𝑖𝑏) and 𝐴2 +𝐵2 = 𝑁(𝐴+ 𝑖𝐵).

So, since the norm is multiplicative, we have

(𝑎2 + 𝑏2)(𝐴2 +𝐵2) = 𝑁((𝑎+ 𝑖𝑏)(𝐴+ 𝑖𝐵))

= 𝑁((𝑎𝐴− 𝑏𝐵) + 𝑖(𝑎𝐵 + 𝑏𝐴))

= (𝑎𝐴− 𝑏𝐵)2 + (𝑎𝐵 + 𝑏𝐴)2,

as desired. ■

Exercise 27.2 State and prove an analogous result for integers of the form 𝑎2 +𝐷𝑏2.

For example, since
5 = 12 + 22 and 13 = 22 + 32

we discover that

65 = 5 · 13 = (1 · 2− 2 · 3)2 + (1 · 2 + 2 · 3)2 = 42 + 72.

Using 5 = 22 + 12, we also find that

65 = (2 · 2− 1 · 3)2 + (2 · 3 + 1 · 2)2 = 12 + 82.

As another example, we have

72 = 8 · 9 = (22 + 22)(32 + 02) = 62 + 62.
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Theorem 27.3 (Integers of the form 𝑛 = 𝑥2 + 𝑦2)

Let 𝑛 ∈ Z>0. Then 𝑛 can be written as a sum of two squares if and only if 𝑣𝑝(𝑛) is even for
all primes 𝑝 ≡ 3 (mod 4).

The condition in the theorem says that, in the prime factorization of 𝑛, all primes congruent
to 3 mod 4 must appear to an even power (possibly 0). For example, 65 = 5·13 and 72 = 2332

both satisfy this condition (and as seen above they are sums of two squares). On the other
hand, 275 = 52 ·11 doesn’t since 𝑣11 = 1; thus 275 = 𝑥2+𝑦2 has no solutions in the integers.

Proof: If 𝑛 = 1 then the assertion is trivially true, so assume that 𝑛 > 1 and consider the
prime factorization

𝑛 = 2𝑎
∏︁
𝑖

𝑝𝑒𝑖𝑖
∏︁
𝑗

𝑞
𝑓𝑗
𝑗

where the 𝑝𝑖 are congruent to 1 mod 4 and the 𝑞𝑗 are congruent to 3 mod 4. We must prove
that 𝑛 is a sum of two squares if and only if all of the 𝑓𝑗 are even.

Assume all of the 𝑓𝑗 = 2ℎ𝑗 are even. Then since

• 2 = 12 + 12 is a sum of two squares,

• each 𝑝𝑖 is a sum of two squares, and

• each 𝑞
𝑓𝑗
𝑗 = (𝑞

ℎ𝑗

𝑗 )2 + 02 is a sum of two squares,

𝑛 is a sum of two squares by a repeated application of Lemma 27.1.

Conversely, assume that 𝑛 is a sum of two squares, say 𝑛 = 𝑥2 + 𝑦2. We will must show
that all of the 𝑓𝑗 are even. Suppose to the contrary that some 𝑓𝑗 is odd. We may assume,
without loss of generality, that 𝑞 = 𝑞𝑗 doesn’t divide 𝑥 (exercise!). Then since 𝑞 | 𝑛, we find
that

𝑥2 + 𝑦2 ≡ 0 (mod 𝑞)

and therefore, by multiplying through by 𝑥−1 mod 𝑞 and re-arranging, we have

−1 = (𝑦𝑥−1)2 (mod 𝑞).

This shows that −1 is a square mod 𝑞, which is a contradiction since 𝑞 ≡ 3 (mod 4). ■

Exercise 27.4 Explain why we are allowed to assume that 𝑞 ∤ 𝑥 in the final paragraph of the preceding
proof.

Now that we know which integers 𝑛 are sums of two squares, the natural follow-up question
is: How do you actually find 𝑥, 𝑦 ∈ Z so that 𝑛 = 𝑥2 + 𝑦2? There is an obvious brute-force
approach: Try every positive integer 𝑥 ≤

√
𝑛 until you find one such that 𝑛−𝑥2 is a perfect

square. This is not very efficient—and there are more efficient algorithms—but it will suffice
for our purposes.
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The other question we might ask is: How many ways is 𝑛 a sum of two squares? For
example, above we discovered that 65 has two such representations:

65 = 42 + 72 = 12 + 82.

Are there any others?

More generally, let 𝑟2(𝑛) denote the number of solutions (𝑥, 𝑦) to the equation 𝑛 = 𝑥2 + 𝑦2

with 𝑥, 𝑦 ∈ Z (which we allow to be negative or zero). For example, 𝑟2(5) = 8, since

5 = (±1)2 + (±2)2 = (±2)2 + (±1)2

and there are no other representations of 5 as a sum of two squares.

The following theorem, which we state without proof, tells us how to determine 𝑟2(𝑛) from
the prime factorization of 𝑛.

Theorem 27.5 Suppose that

𝑛 = 2𝑎
∏︁
𝑖

𝑝𝑒𝑖𝑖
∏︁
𝑗

𝑞
𝑓𝑗
𝑗

where the 𝑝𝑖 are primes congruent to 1 mod 4 and the 𝑞𝑗 are primes congruent to 3 mod 4.
Then

𝑟2(𝑛) =

{︃
4
∏︀
(1 + 𝑒𝑖) if all of the 𝑓𝑗 are even

0 otherwise.

For example,

• 𝑟2(5) = 4(1 + 1) = 8 just as we’ve determined above. More generally, if 𝑝 is any
prime congruent to 1 mod 4, then 𝑟2(𝑝) = 8. Thus there are 8 ways of writing 𝑝 as
𝑝 = 𝑥2+ 𝑦2. Taking into account sign changes (±𝑥,±𝑦) (which multiply the count by
4; since 𝑥 ̸= 0 and 𝑦 ̸= 0) and switching the order from (𝑥, 𝑦) to (𝑦, 𝑥) (which double
the count; since we can be sure there are no solutions with 𝑥 = 𝑦), this shows that 𝑝
can be uniquely as a sum of two squares. (Refer back to Problem 26.2.)

• Since 65 = 5 · 13, we find that 𝑟2(65) = 4(1 + 1)(1 + 1) = 16. Again, signs and
re-ordering multiply the count by 8 (since 65 is not a perfect square and since 65 ̸=
𝑥2 + 𝑥2). So there are really only two essentially distinct representations of 65 as a
sum of two squares, namely the ones we found above:

65 = 42 + 72 = 12 + 82.

• Consider now 50 = 2·52. Then 𝑟2(50) = 4(1+2) = 12. This time we have 50 = 𝑥2+𝑥2

(with 𝑥 = ±5). Ignoring these four solutions, we are left with 8. These will be of
the form (𝑥, 𝑦) with 𝑥 ̸= 𝑦. Also, neither 𝑥 nor 𝑦 can be zero since 50 is not a
perfect square. Thus, sign changes and order-swaps multiply the solution count by
8—meaning, there is only one other essentially different way of writing 50 as a sum
of two squares. It is given by

50 = 12 + 72 = (±1)2 + (±7)2 = (±7)2 + (±1)2.
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Exercise 27.6 Determine 𝑟2(100) and then find all 𝑥, 𝑦 ∈ Z such that 100 = 𝑥2 + 𝑦2.

REMARK (Sums of 𝑘 Squares)

• Gauss and Legendre independently proved that a positive integer 𝑛 is a sum of three
squares if and only if 𝑛 is not of the form 𝑛 = 4𝑎(8𝑏+7) where 𝑎, 𝑏 ∈ Z≥0. Gauss was
also able to find a formula for 𝑟3(𝑛), the number of solutions to 𝑥2+ 𝑦2+ 𝑧2 = 𝑛 with
𝑥, 𝑦, 𝑧 ∈ Z. His formula is in terms of things we haven’t covered in this course, so I
won’t give it here.

• Lagrange proved that every positive integer is the sum of four squares, and Jacobi
proved that

𝑟4(𝑛) = 8
∑︁
𝑑|𝑛
4∤𝑑

𝑑,

where the sum is over the positive divisors of 𝑛 that are not divisible by 4. For
example, 𝑟4(3) = 8(1 + 3) = 32, and indeed

3 = (±1)2 + (±1)2 + (±1)2 + 02.

There are 8 choices of sign and 4 choices for where to place 0, giving a total of 32
different representations.

• Because of Lagrange’s theorem, we know that every positive integer can be written as
a sum of 𝑘 squares for any 𝑘 ≥ 4 (just use enough 0s). Of course, a more interesting
question is whether we can use non-zero squares. One result in this direction is that
every integer 𝑛 > 33 can be written as a sum of five positive squares. A proof for
𝑛 > 169 is given in Corollary 6.27 of Niven, Montgomery and Zucker; and then you
can check 34 ≤ 𝑛 ≤ 169 by hand (for example, 169 = 52 + 62 + 62 + 62 + 62).

27.2 Pythagorean Triples

Recall that a Pythagorean triple is a triple (𝑎, 𝑏, 𝑐) of positive integers satisfying the
Pythagorean equation

𝑎2 + 𝑏2 = 𝑐2.

A Pythagorean triple (𝑎, 𝑏, 𝑐) is called primitive if gcd(𝑎, 𝑏, 𝑐) = 1. We will determine all
primitive Pythagorean triples. (We can then find all Pythagorean triples by scaling the
primitive ones.)

Lemma 27.7 If (𝑎, 𝑏, 𝑐) is a primitive Pythagorean triple, then:

(a) 𝑎, 𝑏, 𝑐 are pairwise coprime.

(b) One of 𝑎 and 𝑏 is odd and the other is even.

(c) 𝑐 is odd.
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Proof:

(a) If 𝑑 divides any two of 𝑎, 𝑏 or 𝑐 then it must divide the third, since 𝑎2 + 𝑏2 = 𝑐2. So 𝑑
divides gcd(𝑎, 𝑏, 𝑐) = 1 and therefore 𝑑 = ±1. So any two of 𝑎, 𝑏, 𝑐 are coprime.

(b) Since gcd(𝑎, 𝑏, 𝑐) = 1, 𝑎, 𝑏, 𝑐 cannot all be even. So at least one of 𝑎 and 𝑏 must be
odd (because if they were both even then 𝑐 would be even). If they’re both odd then
𝑎2+ 𝑏2 ≡ 1+1 ≡ 2 (mod 4). Hence 𝑎2+ 𝑏2 cannot be equal to 𝑐2 since 2 is not a square
mod 4.

(c) This follows from part (b). ■

Theorem 27.8 (Classification of Primitive Pythagorean Triples)

Let (𝑎, 𝑏, 𝑐) be a primitive Pythagorean triple. Then 𝑐 is odd and only one of 𝑎 and 𝑏 is
even. Assume that 𝑎 is odd and 𝑏 is even. Then there exist coprime integers 𝑚,𝑛 ∈ Z>0

one of which is even and the other one odd such that 𝑚 > 𝑛 and

𝑎 = 𝑚2 − 𝑛2, 𝑏 = 2𝑚𝑛 and 𝑐 = 𝑚2 + 𝑛2.

Note that if (𝑎, 𝑏, 𝑐) = (𝑚2 − 𝑛2, 2𝑚𝑛,𝑚2 + 𝑛2) are as in the theorem, then

𝑎2 + 𝑏2 = (𝑚2 − 𝑛2)2 + (2𝑚𝑛)2

= 𝑚4 − 2𝑛2𝑚2 + 𝑛4 + 4𝑚2𝑛2

= 𝑚4 + 2𝑚2𝑛2 + 𝑛4

= (𝑚2 + 𝑛2)2

= 𝑐2.

So every such triple is a Pythagorean triple. The theorem asserts that every primitive
Pythagorean triple can be obtained in this fashion.

Proof of Theorem 27.8: We have

𝑐2 = (𝑎+ 𝑖𝑏)(𝑎− 𝑖𝑏).

Assume for the moment that 𝑎+ 𝑖𝑏 and 𝑎− 𝑖𝑏 are coprime. Then, by Problem 26.4, 𝑎+ 𝑖𝑏
must be a unit times a square, say

𝑎+ 𝑖𝑏 = 𝑢(𝑚+ 𝑛𝑖)2 = 𝑢((𝑚2 − 𝑛2) + 2𝑚𝑛𝑖).

where 𝑢 ∈ {±1,±𝑖} is a unit. If 𝑢 = ±𝑖 then by equating real parts we fin that 𝑎 = ±2𝑚𝑛,
contrary to our assumption that 𝑎 is odd. Thus 𝑢 = ±1, so

𝑎 = ±(𝑚2 − 𝑛2) and 𝑏 = ±2𝑚𝑛.

By swapping 𝑚 and 𝑛 if necessary to arrange that 𝑚 > 𝑛, we can assume that the signs
above are + (since 𝑎 > 0). It then follows that

𝑐2 = 𝑎2 + 𝑏2 = (𝑚2 − 𝑛2)2 + (2𝑚𝑛)2 = (𝑚2 + 𝑛2)2
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and thus
𝑐 = 𝑚2 + 𝑛2

since 𝑐 > 0. I’ll leave it as an exercise for you to check that 𝑚 and 𝑛 must be coprime and
that one must be odd and the other must be even.

It remains to prove that 𝑎 + 𝑖𝑏 and 𝑎 − 𝑖𝑏 are coprime in Z[𝑖]. Let 𝜋 be a Gaussian prime
that divides both 𝑎± 𝑖𝑏. Then

𝜋 | (𝑎+ 𝑖𝑏)− (𝑎− 𝑖𝑏) = 2𝑖𝑏 and 𝜋 | (𝑎+ 𝑖𝑏) + (𝑎− 𝑖𝑏) = 2𝑎.

Thus, 𝜋 divides 2𝑏 (since 𝑖 is a unit) and 2𝑎. Note that 𝜋 cannot divide 2, since if otherwise
we would have 𝜋 = 𝑢(1 + 𝑖) for some unit 𝑖 and hence 𝑁(𝜋) = 2. However, since 𝜋 | 𝑎+ 𝑖𝑏
we have that 𝑁(𝜋) | 𝑁(𝑎2 + 𝑏2) = 𝑐2 and 𝑐 is odd, so 𝑁(𝜋) must be odd. Thus 𝜋 ∤ 2 and so
by Euclid’s Lemma 𝜋 must divide 𝑎 and 𝑏 and hence will divide gcd(𝑎, 𝑏)—but gcd(𝑎, 𝑏) = 1
by Lemma 27.7. Contradiction. So no Gaussian prime divides both 𝑎 ± 𝑖𝑏, and therefore
they must be coprime. ■

Exercise 27.9 Show that if 𝑚 > 𝑛 are positive integers and (𝑎, 𝑏, 𝑐) = (𝑚2−𝑛2, 2𝑚𝑛,𝑚2+𝑛2) is a primitive
Pythagorean triple, then gcd(𝑚,𝑛) = 1 and one of 𝑚 and 𝑛 must be even and the other
one must be odd.

We can now easily generate Pythagorean triples (𝑎, 𝑏, 𝑐). Here’s a list of the first few
primitive ones.

𝑚 𝑛 𝑎 = 𝑚2 − 𝑛2 𝑏 = 2𝑚𝑛 𝑐 = 𝑚2 + 𝑛2

2 1 3 4 5
3 2 5 12 13
4 1 15 8 17
4 3 7 24 25
5 2 21 20 29
5 4 9 40 41

Lecture 27 Problems

27.1. For 𝑛 ∈ Z>0, let 𝑟
+
2 (𝑛) be the number of pairs of positive integers (𝑥, 𝑦) such that 𝑥2+𝑦2 = 𝑛.

Prove:

𝑟+2 (𝑛) =

{︃
1
4𝑟2(𝑛) if 𝑛 is not a perfect square
1
4𝑟2(𝑛)− 1 if 𝑛 is a perfect square.

27.2. Determine all positive integers 𝑛 that can be written as the difference of two squares.

[Hint: Go through 𝑛 = 1, 2, 3, . . . and see if you can spot any patterns.]

27.3. (a) Find all primitive Pythagorean triples (𝑎, 𝑏, 𝑐) with 𝑏 = 10 or prove that none exist.

(b) Find all Pythagorean triples (𝑎, 𝑏, 𝑐) (not necessarily primitive) with 𝑏 = 18 or prove
that none exist.

27.4. Let (𝑎, 𝑏, 𝑐) be a Pythagorean triple. Prove that 3 | 𝑎𝑏 and 60 | 𝑎𝑏𝑐.
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Lecture 28 The Mordell Equation

In this lecture we will investigate the equation

𝑦2 = 𝑥3 + 𝑘,

where 𝑘 ∈ Z is non-zero. This equation is named after L.J. Mordell who published substan-
tial results about it. In particular, Mordell proved that, for any given 𝑘 ̸= 0, this equation
has finitely many solutions in Z. We’ve seen two special cases in Example 20.7 and Exer-
cise 20.8. Historically, Fermat had claimed and Euler had proved17 that the only integer
solutions to 𝑦2 = 𝑥3 − 2 are (𝑥, 𝑦) = (3,±5).

In the previous couple of lectures, we tackled the Diophantine equations

𝑥2 + 𝑦2 = 𝑛 and 𝑥2 + 𝑦2 = 𝑧2

by utilizing the factorization

𝑥2 + 𝑦2 = (𝑥+ 𝑖𝑦)(𝑥− 𝑖𝑦)

in Z[𝑖], and then leveraging our development of number theory in the Gaussian integers.

Our approach to the Mordell equation will be similar. We will begin with the factorization

𝑥3 = 𝑦2 − 𝑘 = (𝑦 −
√
𝑘)(𝑦 +

√
𝑘)

and then we will “do number theory” in the extended number system

Z[
√
𝑘 ] = {𝑎+ 𝑏

√
𝑘 : 𝑎, 𝑏 ∈ Z}.

This approach was pioneered by Euler, who more generally studied “arithmetic surds” such
as 𝑎

√
𝑘 + 𝑏

√
𝑙. There will be a couple of surprises in store for us (just like there were for

Euler!).

The Case 𝑘 = −1

Let’s look at the Mordell equation

𝑦2 = 𝑥3 − 1 ⇐⇒ 𝑥3 = 𝑦2 + 1.

The factorization trick
𝑥3 = (𝑦 + 𝑖)(𝑦 − 𝑖)

places us in the now-familiar world of Gaussian integers.

Lemma 28.1 If 𝑥, 𝑦 ∈ Z are such that 𝑥3 = 𝑦2 + 1 then 𝑦 must be even.

Proof: If to the contrary 𝑦 were odd, then 𝑥3 hence 𝑥 would be even. Consequently, 𝑥3 ≡ 0
(mod 4) and therefore 𝑦2 ≡ −1 (mod 4). But −1 is not a square mod 4. Contradiction. ■

17Well, almost. He was a bit too fast and loose with the rules of number theory.
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Theorem 28.2 The only solution to 𝑦2 = 𝑥3 − 1 in the integers is (𝑥, 𝑦) = (1, 0).

Proof: I claim that 𝑦 + 𝑖 and 𝑦 − 𝑖 are coprime in Z[𝑖]. I will prove this momentarily, but
let’s grant it for now. Then, since their product is a cube, it must be the case that 𝑦 ± 𝑖
is a unit times a cube in Z[𝑖] (by Problem 26.4). Coincidentally, the units in Z[𝑖]×, namely
±1 and ±𝑖, are themselves cubes: ±1 = (±1)3 and ±𝑖 = (∓𝑖)3.

So if we have 𝑦 + 𝑖 = 𝑢𝛼3 with 𝑢 a unit, we might as well absorb the unit into the cube.
Thus,

𝑦 + 𝑖 = (𝑎+ 𝑏𝑖)3 = (𝑎3 − 3𝑎𝑏2) + (3𝑎2𝑏− 𝑏3)𝑖.

Equating imaginary parts, we find

1 = 𝑏(3𝑎2 − 𝑏2)

so
𝑏 = ±1 and 3𝑎2 − 𝑏2 = ±1.

The second equation gives 3𝑎2 − 1 = ±1. If 𝑏 = 1 then 3𝑎2 = 2 which has no solutions in
Z. If 𝑏 = −1 then 3𝑎2 = 0 so 𝑎 = 0. Consequently,

𝑦 = 𝑎3 − 3𝑎𝑏2 = 0

and
𝑥3 = 𝑦2 + 1 = 1.

Thus, (𝑥, 𝑦) = (1, 0), as claimed.

It remains to prove that 𝑦+ 𝑖 and 𝑦− 𝑖 are coprime. To see this, let 𝜋 be a Gaussian prime
that divides both. Then

𝜋 | (𝑦 + 𝑖)− (𝑦 − 𝑖) = 2𝑖.

So 𝜋 | 2 since 𝑖 is a unit. Thus, 𝜋 = 𝑢(1 + 𝑖), where 𝑢 ∈ Z[𝑖] is a unit, since 1 + 𝑖 is
the only Gaussian prime (up to units) that divides 2. On the other hand, 𝜋 | 𝑦 + 𝑖 hence
𝑁(𝜋) | 𝑁(𝑦 + 𝑖) = 𝑦2 + 1 which is odd by Lemma 28.1. This is a contradiction since
𝑁(𝜋) = 𝑁(1 + 𝑖) = 2. So 𝑦 ± 𝑖 do not have a common Gaussian prime divisor, hence they
must be coprime. ■

The Case 𝑘 = 2

Let’s now apply the same approach to the equation

𝑦2 = 𝑥3 + 2 ⇐⇒ 𝑥3 = 𝑦2 − 2 = (𝑦 −
√
2)(𝑦 +

√
2).

This factorization is taking place in the number system

Z[
√
2 ] = {𝑎+ 𝑏

√
2: 𝑎, 𝑏 ∈ Z}.

Assume (!) for the moment that this number system obeys the same arithmetic rules as
the regular integers Z and the Gaussian integers Z[𝑖]. If we can prove that 𝑦 −

√
2 and

𝑦+
√
2 are coprime, then we would be able to deduce that each is a unit times a cube, and
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then upon absorbing the unit into the cube like we did in the previous section, we end up
considering

𝑦 +
√
2 = (𝑎+ 𝑏

√
2)3 = (𝑎3 + 6𝑎𝑏2) + (3𝑎2𝑏+ 2𝑏3)

√
2.

By equating coefficients of
√
2, we end up with

1 = 3𝑎2𝑏+ 2𝑏3 = 𝑏(3𝑎2 + 2𝑏2).

There are no solutions to this equation because if 𝑏 is non-zero then the right-side will be
greater than 1 in absolute value, while if 𝑏 = 0 the right-side is 0. Thus, it appears we have
proved:

Theorem (?): The equation 𝑦2 = 𝑥3 + 2 has no solutions in the integers.

Wait—we still have to prove that 𝑦−
√
2 and 𝑦+

√
2 are coprime! To this end suppose that

𝜋 is a prime divisor of both. Then

𝜋 | (𝑦 +
√
2)− (𝑦 −

√
2) = 2

√
2 = (

√
2)3.

I claim that
√
2 itself is also prime, that is, it cannot be factored into two elements of Z[

√
2 ].

To prove this, let’s define a norm function by

𝑁(𝑎+ 𝑏
√
2) = (𝑎+ 𝑏

√
2)(𝑎− 𝑏

√
2) = 𝑎2 − 2𝑏2.

You can easily check that this norm satisfies the properties of the Gaussian norm as given
in Proposition 24.3. So here is the proof that

√
2 is prime. Suppose

√
2 = 𝛼𝛽.

Then, upon taking norms, we find

2 = 𝑁(
√
2) = 𝑁(𝛼)𝑁(𝛽).

Since 𝑁(𝛼) and 𝑁(𝛽) are integers and 2 is prime, one of them must be ±1. Thus, one of
𝛼 or 𝛽 must be a unit. So

√
2 admits no non-trivial factorizations. Consequently, since

𝜋 | (
√
2)3, we must have that 𝜋 =

√
2 (or a unit multiple of

√
2). On the other hand, we

are assuming that
𝜋 | 𝑦 +

√
2.

Thus, 𝑁(𝜋) | 𝑁(𝑦+
√
2), or equivalently, 2 | 𝑦2+2. However, by an argument similar to the

one in Lemma 28.1, we can show that 𝑦 is odd. We’ve arrived at our desired contradiction!
Thus, 𝑦 +

√
2 and 𝑦 −

√
2 are coprime.

Before reading ahead, stop and attempt the next exercise.

Exercise 28.3 Inspect the previous argument and try to identity any errors.

There must, in fact, be errors because the equation 𝑦2 = 𝑥3 + 2 has solutions in the
integers—for example, (𝑥, 𝑦) = (−1,±1).18

Your first objection to the proof above should be that we assumed (!) at the very beginning
that Z[

√
2 ] is as nice Z[𝑖]. This actually turns out to be not far from the truth. Indeed,

we can prove a Remainder Theorem, define primality and gcds, all the way up to unique

18These are actually the only integer solutions, but we won’t prove that here.
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factorizations into primes, completely analogously to what we did with Z[𝑖]. Once we do
this, the proof that 𝑦 +

√
2 and 𝑦 −

√
2 (for odd 𝑦 ∈ Z) that we gave above is fully correct!

The fundamental error occurred when we claimed that we could “absorb units into the
cube.” We were able to this in Z[𝑖] because the units ±1 and ±𝑖 themselves were cubes. Is
this true in Z[

√
2 ]?

To find the units in Z[
√
2 ], we need to look for 𝛼 = 𝑎+ 𝑏

√
2 such that 𝑁(𝛼) | 1, i.e.

𝑎2 − 2𝑏2 | 1 ⇐⇒ 𝑎2 − 2𝑏2 = ±1.

We will study this equation next lecture. For now let me just mention that it has infinitely
many solutions. For example, (𝑎, 𝑏) = (3, 2) is a solution since

𝑁(3 + 2
√
2) = 32 − 2 · 22 = 1.

And we can now generate infinitely many solutions by taking powers of 3 + 2
√
2, since

𝑁((3 + 2
√
2)𝑛) = (𝑁(3 + 2

√
2))𝑛 = 1𝑛 = 1.

For example,
(3 + 2

√
2)2 = 17 + 12

√
2

gives the solution
172 − 2 · 122 = 1.

So, where does that leave us? Since there are infinitely many units in Z[
√
2 ], to deal with the

equation 𝑥2 = 𝑦2− 2, we need a more refined approach that involves considering something
like

𝑦 +
√
2 = 𝑢(𝑎+ 𝑏

√
2)3

where 𝑢 is a unit. This leads to a complicated case-by-case analysis. Too complicated for
us to take up here! (That said, there is a modification of this approach that works nicely. It
uses some ideas from algebraic number theory that are beyond the scope of PMATH 340.)

The Case 𝑘 = −11

Okay, 𝑦2 = 𝑥3 + 2 didn’t quite work out so well, but we won’t be deterred! Let’s now
consider

𝑦2 = 𝑥3 − 11 ⇐⇒ 𝑥3 = 𝑦2 + 11 = (𝑦 −
√
−11)(𝑦 +

√
−11).

This factorization puts us in

Z[
√
−11 ] = {𝑎+ 𝑏

√
−11: 𝑎, 𝑏 ∈ Z}.

Since we don’t want to fall into the same trap again, let’s determine the units before going
further. The norm function

𝑁(𝑎+ 𝑏
√
−11) = 𝑎2 + 11𝑏2

satisfies the same properties as the Gaussian norm (in fact, it’s the same function restricted
to the subset Z[

√
−11 ] = Z[11𝑖] ⊆ Z[𝑖]!). So to find units, we need to find elements of norm

±1, which leads us to the equation

𝑎2 + 11𝑏2 = ±1.
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It’s easy to see that the only solution has 𝑏 = 0 and therefore 𝑎 = ±1. So the only units in
Z[
√
−11 ] are ±1, and we’re safe! The units are cubes.

So now assuming that 𝑦 ±
√
−11 are coprime, we deduce as before that

𝑦 +
√
−11 = (𝑎+ 𝑏

√
−11)3 = (𝑎3 − 33𝑎𝑏2) + (3𝑎2𝑏− 11𝑏3)

√
−11.

(We’ve “absorbed” the unit into the cube, which is OK here.) Equating coefficients of√
−11, we find that

(3𝑎2 − 11𝑏2)𝑏 = 1

so
𝑏 = ±1 and 3𝑎2 − 11𝑏2 = ±1.

The latter equation leads to 3𝑎2 − 11 = ±1. The only solutions to this are 𝑎 = ±2 (and
therefore 𝑏 = 1). Thus,

𝑦 = 𝑎3 − 33𝑎𝑏2 = ±58

and hence
𝑥3 = 𝑦2 + 11 = 3375 = 153.

So it appears we have proved:

Theorem (?): The only integer solutions to 𝑦2 = 𝑥3 − 11 are (𝑥, 𝑦) = (15,±58).

Okay—I still have to show you why 𝑦±
√
−11 are coprime. But believe me—they are. The

proof is similar to the one I gave for 𝑦 ±
√
2. I will omit the details.

Exercise 28.4 Inspect the previous argument and try to identify any errors.

Alas, there must be an error, since we’ve missed the “obvious” solution (𝑥, 𝑦) = (3,±4) to
𝑦2 = 𝑥3 − 11.

The error this time is more subtle. It has to do with the fact that Z[
√
−11 ], unlike its friends

Z[
√
2 ] and Z[𝑖], is not so well-behaved. There is no “Fundamental Theorem of Arithmetic”

that holds in this number system: we do not have have unique factorization into primes.
Indeed, the solution we missed gives us

(4−
√
−11)(4 +

√
−11) = 33.

It can be shown that 4±
√
−11 and 3 are primes19 in Z[

√
−11]. So we have discovered two

fundamentally different factorizations of 27 in Z[
√
−11]! Weird.

Lessons Learned?

The moral here is that we should not be too fast and loose when it comes to carrying out
Z-style manipulations in larger number systems, since there can be some severe differences.
However, not all hope is lost. If you’re interested in learning more, you should take a course
in algebraic number theory, like PMATH 441!

19Actually, the correct word here is irreducible. In algebra, an element in a ring is said to be irreducible
if it can’t be factored non-trivially. A prime is an element that satisfies Euclid’s Lemma. In nice rings, like
Z and Z[𝑖] (and Z[

√
2 ]), these notions coincide. But in others, like Z[

√
−11 ], there are irreducible elements

that aren’t prime.
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Lecture 28 Problems

28.1. At several points in this lecture, we arrived at an equation of the form

𝑎+ 𝑏
√
𝑘 = 𝑐+ 𝑑

√
𝑘

and then we seemingly deduced that we must have 𝑎 = 𝑐 and 𝑏 = 𝑑.

Assuming that 𝑎, 𝑏, 𝑐, 𝑑, 𝑘 ∈ Z and that 𝑘 is not a perfect square, give a proof that this is a
valid deduction.

28.2. Prove Fermat’s claim about the equation 𝑦2 = 𝑥3 − 2 by using the factorization

(𝑦 −
√
−2)(𝑦 +

√
−2) = 𝑥3.

(That is, prove that the only integer solutions are (𝑥, 𝑦) = (3,±5).) Clearly state any
assumptions concerning Z[

√
−2 ] that you make.

28.3. Consider the equation 𝑦2 = 𝑥3 − 9 with 𝑥, 𝑦 ∈ Z.
(a) Prove that 𝑦 is even.

(b) Prove that 3 ∤ 𝑦.
(c) Prove that 𝑦 − 3𝑖 and 𝑦 + 3𝑖 are coprime in Z[𝑖].
(d) Use parts (a)–(c) and the factorization (𝑦+3𝑖)(𝑦− 3𝑖) = 𝑥3 to find all integer solutions

to the equation 𝑦2 = 𝑥3 − 9.
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Lecture 29 The Pell Equation

A person solving this problem within a year is a mathematician.

– Brahmagupta

In trying to solve the Diophantine equation 𝑦2 = 𝑥3 + 2, we ran into the equation

𝑎2 − 2𝑏2 = 1.

This was in connection to the existence of units in Z[
√
2 ]. In general, the equation

𝑎2 −𝐷𝑏2 = 1,

where 𝐷 is not a perfect square, is called the Pell equation. The connection to units in
Z[
√
𝐷 ] is a relatively modern development. This equation has a rich history, having been

studied by the Indian mathematicians Brahmagupta and Bhaskara in the 7th and 12th
centuries, respectively. Brahmagupta’s quote above is in reference to the equation

𝑥2 − 92𝑦2 = 1

where the smallest solution in positive integers is given by (𝑥, 𝑦) = (1151, 120).

In Europe, Fermat was the first mathematician to take interest in the equation. He chal-
lenged his contemporaries to solve the equations

𝑥2 − 61𝑦2 = 1 and 𝑥2 − 109𝑦2 = 1,

adding that he chose small numbers so they wouldn’t have to work too hard. Fermat was
being a troll. The smallest positive solutions to these two equations are

(𝑥, 𝑦) = (1766319049, 226153980)

and
(𝑥, 𝑦) = (158070671986249, 15140424455100),

respectively. Of all Pell equations 𝑥2−𝐷𝑦2 = 1 with small 𝐷, these are the first two whose
smallest solutions are enormous. Fermat must have known this. Incidentally, Bhaskara had
already considered and solved 𝑥2 − 61𝑦2 = 1 a few centuries prior, but Fermat didn’t know
about this.

So why do we call it the Pell equation? Euler is to blame. He accidentally attributed the
equation to the English mathematician John Pell (who was only reporting on the work of
William Brouncker), and the name has stuck. This is probably for the best, because “Pell
equation” is easier to say than “Brahmagupta–Bhaskara–Brouncker–Fermat equation”.

The Solution Set of the Pell Equation

For 𝐷 ∈ Z, let
𝑆𝐷 = {(𝑥, 𝑦) ∈ Z2 : 𝑥2 −𝐷𝑦2 = 1.}

and
𝑆+
𝐷 = {(𝑥, 𝑦) ∈ 𝑆𝐷 : 𝑥 > 0 and 𝑦 > 0}.

These are the sets of integer (resp. positive integer) solutions to the equation 𝑥2−𝐷𝑦2 = 1.
The nature of these solution sets depends drastically on whether 𝐷 is positive or negative.
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Theorem 29.1 Let 𝑆𝐷 be as above. Then:

(a) If 𝐷 < −1, then 𝑆𝐷 = {(±1, 0)} and 𝑆+
𝐷 = ∅.

(b) If 𝐷 = −1, then 𝑆𝐷 = {(±1, 0), (0,±1)} and 𝑆+
𝐷 = ∅.

(c) If 𝐷 > 1 is not a perfect square, then 𝑆𝐷 and 𝑆+
𝐷 are both infinite sets.

Proof: Parts (a) is easy: If 𝐷 < −1 then 𝑥2 − 𝐷𝑦2 will be > 1 if 𝑦 ̸= 0, and if 𝑦 = 0
then we must have 𝑥 = ±1. Part (b) can be proved similarly. Part (c) is considerably more
difficult and won’t be proved here (but see below). ■

Exercise 29.2 Determine 𝑆𝐷 and 𝑆+
𝐷 if 𝐷 = 𝑑2 is a perfect square.

The most interesting thing about 𝑆𝐷 is that it has a group structure: we can use known
solutions to generate new solutions. To see how this works, we first introduce the norm
function on Z[

√
𝐷 ]:

𝑁(𝑎+ 𝑏
√
𝐷) = (𝑎+ 𝑏

√
𝐷)(𝑎− 𝑏

√
𝐷) = 𝑎2 −𝐷𝑏2.

The next lemma follows immediately from this definition.

Lemma 29.3 The solution set 𝑆𝐷 corresponds to the elements in Z[
√
𝐷 ] of norm 1. More precisely,

𝑆𝐷 = {(𝑎, 𝑏) ∈ Z2 : 𝑁(𝑎+ 𝑏
√
𝐷) = 1}.

Now, it can be easily checked that 𝑁 is multiplicative, in the sense that 𝑁(𝛼𝛽) = 𝑁(𝛼)𝑁(𝛽)
for 𝛼, 𝛽 ∈ Z[

√
𝐷 ]. Thus, if 𝛼 and 𝛽 have norm 1, then so does their product 𝛼𝛽. Using

this, we can define a group operation * on 𝑆𝐷 by

(𝑎, 𝑏) * (𝑢, 𝑣) = (𝑎𝑢+𝐷𝑏𝑣, 𝑎𝑣 + 𝑏𝑢).

This definition comes from

(𝑎+ 𝑏
√
𝐷)(𝑢+ 𝑣

√
𝐷) = (𝑎𝑢+𝐷𝑏𝑣) + (𝑎𝑣 + 𝑏𝑢)

√
𝐷.

Exercise 29.4 (The Group 𝑆𝐷)

Verify that * as defined above satisfies the group axioms:

(a) If (𝑎, 𝑏), (𝑢, 𝑣) ∈ 𝑆𝐷, prove that (𝑎, 𝑏) * (𝑢, 𝑣) ∈ 𝑆𝐷.

(b) Prove that * is commutative and associative.

(c) Prove that (𝑎, 𝑏) * (1, 0) = (𝑎, 𝑏) for all (𝑎, 𝑏) ∈ 𝑆𝐷. Thus, the identity element is given
by the trivial solution (1, 0) ∈ 𝑆𝐷.

(d) If (𝑎, 𝑏) ∈ 𝑆𝐷, determine the inverse (𝑎, 𝑏)−1. [Hint: What is (𝑎+ 𝑏
√
𝐷)−1?]
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So, given a non-trivial solution (𝑎, 𝑏) ∈ 𝑆𝐷, we can attempt to generate new solutions by
taking powers of (𝑎, 𝑏):

(𝑎, 𝑏)2 = (𝑎, 𝑏) * (𝑎, 𝑏), (𝑎, 𝑏)3 = (𝑎, 𝑏)2 * (𝑎, 𝑏), . . .

Let’s see how this works in an example.

Example 29.5 The Pell equation 𝑥2− 2𝑦2 = 1 has the solution (3, 2). We will want to repeatedly multiply
by (3, 2) using the formula

(𝑎, 𝑏) * (3, 2) = (3𝑎+ 2(2𝑏), 3𝑎+ 2𝑏) = (3𝑎+ 4𝑏, 2𝑎+ 3𝑏).

Using this, we obtain the following solutions:

(𝑎, 𝑏)2 = (3, 2) * (3, 2) = (3(3) + 4(2), 2(3) + 3(2)) = (17, 12)

(𝑎, 𝑏)3 = (17, 12) * (3, 2) = (3(17) + 4(12), 2(17) + 3(12)) = (99, 70)

(𝑎, 𝑏)4 = (99, 70) * (3, 2) = (3(99) + 4(70), 2(99) + 3(70)) = (577, 408)

(𝑎, 𝑏)5 = (577, 408) * (3, 2) = (3(577) + 4(408), 2(577) + 3(408)) = (3363, 2378).

Amazingly, the process in the preceding example generates all solutions to 𝑥2 − 2𝑦2 = 1 in
the positive integers! This is a special case of the following general theorem.

Theorem 29.6 Assume that 𝐷 ∈ Z>0 is not a perfect square. Let (𝑎, 𝑏) ∈ 𝑆+
𝐷 be a positive solution with

smallest possible 𝑎. Then
𝑆+
𝐷 = {(𝑎, 𝑏)𝑛 : 𝑛 ∈ Z>0}.

The positive solution (𝑎, 𝑏) ∈ 𝑆+
𝐷 with minimal 𝑎 is called the fundamental solution

to the Pell equation 𝑥2 − 𝐷𝑦2 = 1. The preceding theorem asserts that the fundamental
solution generates all other positive solutions. In the next example, we will show how this
works in the case 𝐷 = 2. The general proof will follow the same steps.

Example 29.7 (Solutions to 𝑥2 − 2𝑦2 = 1)

Show that (3, 2) is the fundamental solution to 𝑥2 − 2𝑦2 = 1 and verify that

𝑆+
2 = {(3, 2)𝑛 : 𝑛 ∈ Z>0}.

Proof: I’ll let you check that the positive solution (𝑎, 𝑏) with minimal 𝑎 occurs when 𝑎 = 3.
Thus, (3, 2) is the fundamental solution.

Now, we know that (3, 2)𝑛 will be a solution for all 𝑛 ≥ 1, and it’s also obvious that it
will be a positive solution since computing (3, 2)𝑛 involves adding and multiplying positive
integers. Thus, all that remains is to prove that every positive solution is equal to (3, 2)𝑛

for some 𝑛 ≥ 1.

Here is the key idea. Given a positive solution (𝑥, 𝑦) with 𝑥 > 3, multiply it by (3, 2)−1

to get the solution (𝑥′, 𝑦′). I claim (and will prove below) that (𝑥′, 𝑦′) is positive and that
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𝑥′ < 𝑥. If 𝑥′ ≤ 3 then (𝑥′, 𝑦′) = (3, 2) by minimality; if 𝑥′ > 3, then we can multiply (𝑥′, 𝑦′)
by (3, 2)−1 to get a smaller positive solution (𝑥′′, 𝑦′′) with 𝑥′′ < 𝑥′. Continuing this way
(i.e., by repeatedly multiplying by (3, 2)−1), we must eventually arrive at (3, 2) after finitely
many steps, since otherwise we would have an infinite decreasing sequence

𝑥 > 𝑥′ > 𝑥′′ > · · ·

of positive integers, which is absurd. Thus, we must have that

(𝑥, 𝑦) * (3, 2)−1 * · · · * (3, 2)−1⏟  ⏞  
𝑘 times

= (3, 2)

for some 𝑘 ≥ 1, and therefore
(𝑥, 𝑦) = (3, 2)𝑘+1,

as desired.

So here is what must be proved. Given (𝑥, 𝑦) ∈ 𝑆+
𝐷 with 𝑥 > 3, let

(𝑢, 𝑣) = (𝑥, 𝑦) * (3, 2)−1

= (𝑥, 𝑦) * (3,−2)

= (3𝑥− 4𝑦,−2𝑥+ 3𝑦).

Then I claim:

(i) 𝑢 > 0 and 𝑣 > 0.

(ii) 𝑢 < 𝑥.

To prove (i), note that 𝑥2 = 1 + 2𝑦2 > 2𝑦2 so 𝑥 >
√
2𝑦 (since 𝑥 and 𝑦 are positive). Thus,

𝑢 = 3𝑥− 4𝑦 > (3
√
2− 4)𝑦 > 0.

Next, note that

𝑣 > 0 ⇐⇒ −2𝑥+ 3𝑦 > 0

⇐⇒ 9𝑦2 > 4𝑥2

⇐⇒ 9
𝑥2 − 1

2
> 4𝑥2

⇐⇒ 𝑥2 > 3

⇐⇒ 𝑥 > 3.

So 𝑣 > 0 since we are assuming that 𝑥 > 3.

Finally, to prove (ii), note that

(𝑥, 𝑦) = (𝑢, 𝑣) * (3, 2) = (3𝑢+ 4𝑣, 2𝑢+ 3𝑣)

so that
𝑥 = 3𝑢+ 4𝑣 > 3𝑢 > 𝑢,

as desired.
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Exercise 29.8 Show that the only positive integer solution (𝑎, 𝑏) to 𝑥2−2𝑦2 = 1 with 𝑎 ≤ 3 is (𝑎, 𝑏) = (3, 2).

The proof technique we went through in the previous example is known as an infinite
descent. The general idea is to create a process for going from a certain type of object of
given “size” to another object of the same type of smaller “size”. If size is always a positive
integer, this process (the “descent”) must eventually terminate since we cannot have an
infinite decreasing sequence of positive integers.

Proof of Theorem 29.6 (Sketch): We will follow the descent procedure explained in
Example 29.7. Let (𝑎, 𝑏) be the fundamental solution. Given a positive solution (𝑥, 𝑦) with
𝑥 > 𝑎, consider

(𝑢, 𝑣) = (𝑥, 𝑦)(𝑎, 𝑏)−1 = (𝑥, 𝑦)(𝑎,−𝑏) = (𝑥𝑎−𝐷𝑏𝑦,−𝑏𝑥+ 𝑎𝑦).

As in Example 29.7, we can show that (𝑢, 𝑣) ∈ 𝑆+
𝐷 and that 𝑢 < 𝑥. Thus, after finitely

many iterations of this process, we must arrive at a solution with (𝑢′, 𝑣′) with 𝑢′ ≤ 𝑎 and
hence (𝑢′, 𝑣′) = (𝑎, 𝑏) by minimality. That is, there exists a 𝑘 ≥ 1 such that

(𝑥, 𝑦)(𝑎, 𝑏)−𝑘 = (𝑎, 𝑏) ⇐⇒ (𝑥, 𝑦) = (𝑎, 𝑏)𝑘+1,

as desired. ■

There are now two questions that must be addressed:

1. How do we find a fundamental solution?

2. After having determined the positive solution set 𝑆+
𝐷, how do we determine the full

solution set 𝑆𝐷?

The first question is a bit tricky. The obvious brute-force method (try 𝑥 = 1, 2, . . . until
(𝑥2 − 1)/𝐷 is a perfect square) is not very efficient since fundamental solutions tend to be
rather large, like we saw for 𝑥2 − 61𝑦2 = 1 and 𝑥2 − 109𝑦2 = 1. We will discuss a better
approach next lecture.

On the other hand, the second question has an easy answer.

Proposition 29.9 Assume 𝐷 ∈ Z>0 is not a perfect square and let (𝑎, 𝑏) ∈ 𝑆+
𝐷 be the fundamental solution.

Then
𝑆𝐷 = {±(𝑎, 𝑏)𝑛 : 𝑛 ∈ Z}.

Note: By convention, (𝑎, 𝑏)0 = (1, 0) is the identity element in the group 𝑆𝐷 and negative
powers are given by (𝑎, 𝑏)−𝑚 = ((𝑎, 𝑏)−1)𝑚 = (𝑎,−𝑏)𝑚.

Exercise 29.10 Prove Proposition 29.9. [Hint: If (𝑥, 𝑦) ∈ 𝑆𝐷 is not (±1, 0), then one of (𝑥, 𝑦), (−𝑥, 𝑦),
(𝑥,−𝑦) or (−𝑥,−𝑦) will be in 𝑆+

𝐷.]
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Lecture 29 Problems

29.1. Find the fundamental solution to 𝑥2 − 𝐷𝑦2 = 1 for all non-square 𝐷 ≤ 10 by trial and
error. [Hint: You don’t have to try every 𝑥 = 1, 2, . . .. The equation 𝑥2 = 1 +𝐷𝑦2 gives a
condition on 𝑥 mod 𝐷.]

29.2. Find five solutions to 𝑥2 − 5𝑦2 = 1 with 𝑥, 𝑦 ∈ Z>0.

29.3. Assume 𝐷 > 0 is non-square and let (𝑎, 𝑏) be the fundamental solution to 𝑥2 −𝐷𝑦2 = 1.

(a) Suppose (𝑢, 𝑣) is a solution to 𝑥2 − 𝐷𝑦2 = 𝑚. Devise a method for generating new
solutions to 𝑥2 −𝐷𝑦2 = 𝑚.

(b) Prove that there are infinitely many integer solutions to 𝑥2 − 2𝑦2 = 14.

29.4. Prove that there are no integer solutions to 𝑥2 − 3𝑦2 = 14.

29.5. Prove that if the negative Pell equation 𝑥2 − 𝐷𝑦2 = −1 has integer solutions then
𝑣𝑝(𝐷) = 0 for all primes 𝑝 ≡ 3 (mod 4). [Note: The converse is false. See Problem 30.3.]
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Lecture 30 Continued Fractions

The previous lecture ended with a lingering question: How do we find the fundamental
solution to the Pell equation 𝑥2 −𝐷𝑦2 = 1? This lecture will explain how.

The main idea is that a solution (𝑥, 𝑦) with 𝑦 ̸= 0 provides a rational number 𝑥/𝑦 that is a
good approximation to

√
𝐷 since

𝑥2 −𝐷𝑦2 = 1 ⇐⇒
(︂
𝑥

𝑦

)︂2

−𝐷 =
1

𝑦2
.

If 𝑦 is large, then 1/𝑦2 ≈ 0, and therefore

𝑥

𝑦
≈

√
𝐷.

A little more precisely, we have⃒⃒⃒⃒
𝑥

𝑦
−

√
𝐷

⃒⃒⃒⃒
=

|𝑥− 𝑦
√
𝐷|

|𝑦|
=

|𝑥2 −𝐷𝑦2|
|𝑦||𝑥+ 𝑦

√
𝐷|

≤ 1

2𝑦2
√
𝐷
. (*)

So, as a first step to solving 𝑥2−𝐷𝑦2 = 1, we are going to explain how to find good rational
approximations to

√
𝐷 via continued fractions.

Note: There’s a lot that can be said about continued fractions but we will confine ourselves
to the bits relevant to the Pell equation; there will also be very few proofs (since they tend
to be a bit too technical).

Example 30.1 Suppose we want to approximate
√
2 with a rational number. We begin by observing that
√
2 = 1 + 0.4142 · · · .

We can re-write this as
√
2 = 1 +

1
1

0.4142···
.

Since
1

0.4142 · · ·
= 2.4142 · · · = 2 + 0.4142 · · · (**)

we have

√
2 = 1 +

1

2 + 0.4142 · · ·

= 1 +
1

2 +
1
1

0.4142···

.

The bottom-most fraction is the one that appeared in (**). So we can repeat this process
over and over, leaving us with

√
2 = 1 +

1

2 +
1

2 +
1

2 +
1

. . .

.
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This is the so-called continued fraction expansion of
√
2. Let’s pause to introduce some

terminology.

Definition 30.2

Continued
Fraction, Linear

Form

An expression of the form

𝑎0 +
1

𝑎1 +
1

𝑎2 +
1

. . .

where 𝑎0 ∈ Z≥0 and 𝑎𝑖 ∈ Z>0 for 𝑖 ≥ 1 is called a continued fraction. It is typically
denoted in linear form by [𝑎0; 𝑎1, 𝑎2, . . .].

In the preceding example, we found that the continued fraction expansion of
√
2 is [1; 2, 2, . . .].

We will write this as [1; 2], with the overline indicating that 2 is repeating. Before explaining
the connection to rational approximations, let’s look at one more example.

Example 30.3 Let’s find the continued fraction expansion of
√
3. We have

√
3 = 1 + 0.7320 · · · = 1 +

1
1

0.7320···
.

Now,
1

0.7320 · · ·
= 1.3660 · · · = 1 + 0.3660 · · · = 1 +

1
1

0.3660···
.

So
√
3 = 1 +

1

1 +
1

1

0.3660 · · ·

.

We continue:
1

0.3660 · · ·
= 2 + 0.7320 · · · = 2 +

1
1

0.7320···
.

So
√
3 = 1 +

1

1 +
1

2 +
1

0.7320 · · ·

.

Next,
1

0.7320 · · ·
= 1 + 0.3660 · · · = 1 +

1
1

0.3660···
.

So
√
3 = 1 +

1

1 +
1

2 +
1

1 +
1

0.3660 · · ·

.
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Now our calculations keep cycling and we find that

√
3 = 1 +

1

1 +
1

2 +
1

1 +
1

2 +
1

. . .

So the continued fraction expansion of
√
3 is [1; 1, 2].

Exercise 30.4 Find the continued fraction expansions of
√
5 and

√
6.

In general, to find the continued fraction of 𝛼 =
√
𝐷, we can proceed as follows. Set 𝛼0 = 𝛼

and then recursively define

𝑎𝑛 = ⌊𝛼𝑛⌋ and 𝛼𝑛+1 =
1

𝛼𝑛 − 𝑎𝑛
for 𝑛 ≥ 0.

Then
√
𝐷 = 𝑎0 +

1

𝑎1 +
1

𝑎2 +
1

. . .

.

Let’s now explain the connection between continued fraction expansions and rational ap-
proximations.

Example 30.5 We can truncate
√
2 = 1 +

1

2 +
1

2 +
1

2 +
1

. . .

to obtain the following rational approximations to
√
2:

√
2 ≈ 1

√
2 ≈ 1 +

1

2
=

3

2
√
2 ≈ 1 +

1

2 +
1

2

=
7

5

√
2 ≈ 1 +

1

2 +
1

2 +
1

2

=
17

12
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In decimal form, the last one is 1.416, which is rather close to
√
2 = 1.414 · · · . If we go

deeper into the continued fraction, we get better and better approximations.

Definition 30.6

Convergent

The 𝑛th convergent of the continued fraction [𝑎0; 𝑎1, 𝑎2, . . .] is the rational number

𝑝𝑛
𝑞𝑛

= [𝑎0; 𝑎1, . . . , 𝑎𝑛],

where 𝑝𝑛 and 𝑞𝑛 are given in lowest terms (i.e. gcd(𝑝𝑛, 𝑞𝑛) = 1).

So in the preceding example we computed the first several convergents of the continued
fraction [1; 2].

The first few convergents of [𝑎0; 𝑎1, 𝑎2, . . .] are given by

𝑝0
𝑞0

=
𝑎0
1

𝑝1
𝑞1

=
𝑎0𝑎1 + 1

𝑎1
𝑝2
𝑞2

=
𝑎0𝑎1𝑎2 + 𝑎0 + 𝑎2

𝑎1𝑎2 + 1
.

(You should verify this!) In general, 𝑝𝑛 and 𝑞𝑛 obey a recursive relationship. We record
this relationship, along with several other properties, in the next result.

Proposition 30.7 (Properties of Convergents)

Let 𝑎0, 𝑎1, . . . ∈ Z>0. Set 𝑝−2 = 0, 𝑞−2 = 1, 𝑝−1 = 1, 𝑞−1 = 0 and define

𝑝𝑛 = 𝑎𝑛𝑝𝑛−1 + 𝑝𝑛−2

𝑞𝑛 = 𝑎𝑛𝑞𝑛−1 + 𝑞𝑛−2

for 𝑛 ≥ 0. Then:

(a) [𝑎0; 𝑎1, . . . , 𝑎𝑛] =
𝑝𝑛
𝑞𝑛

for 𝑛 ≥ 0.

(b) 𝑝𝑛+1𝑞𝑛 − 𝑝𝑛𝑞𝑛+1 = (−1)𝑛 for all 𝑛 ≥ −2. (In particular, gcd(𝑝𝑛, 𝑞𝑛) = 1 for all 𝑛 ≥ 0.

Thus,
𝑝𝑛
𝑞𝑛

is the 𝑛th convergent of [𝑎0; 𝑎1, 𝑎2, . . .].)

(c) If [𝑎0; 𝑎1, 𝑎2, . . .] is the continued fraction expansion of 𝛼, then⃒⃒⃒⃒
𝛼− 𝑝𝑛

𝑞𝑛

⃒⃒⃒⃒
<

1

𝑞𝑛𝑞𝑛+2
≤ 1

𝑞2𝑛

for all 𝑛 ≥ 0. Furthermore,

𝑝0
𝑞0

<
𝑝2
𝑞2

<
𝑝4
𝑞4

< · · · < 𝛼 < · · · < 𝑝5
𝑞5

<
𝑝3
𝑞3

<
𝑝1
𝑞1

.

(In particular,
𝑝𝑛
𝑞𝑛

converges to 𝛼 as 𝑛 → ∞.)
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Proof: Parts (a) and (b) can be proved by induction. For part (c), we have

𝛼 = [𝑎0; 𝑎1, . . . , 𝑎𝑛, 𝛼𝑛+1],

and so

𝛼− 𝑝𝑛
𝑞𝑛

=
𝛼𝑛+1𝑝𝑛 + 𝑝𝑛−1

𝛼𝑛+1𝑞𝑛 + 𝑞𝑛−1
− 𝑝𝑛

𝑞𝑛
=

(−1)𝑛

𝑞𝑛(𝛼𝑛+1𝑞𝑛 + 𝑞𝑛−1)
.

In particular, 𝛼 > 𝑝𝑛/𝑞𝑛 if 𝑛 is even, and 𝛼 < 𝑝𝑛/𝑞𝑛 if 𝑛 is odd. Further, since 𝛼𝑛+1 > 𝑎𝑛+1,
we see that 𝛼𝑛+1𝑞𝑛 + 𝑞𝑛−1 > 𝑎𝑛+1𝑞𝑛 + 𝑞𝑛−1 = 𝑞𝑛+1, and therefore⃒⃒⃒⃒

𝛼− 𝑝𝑛
𝑞𝑛

⃒⃒⃒⃒
<

1

𝑞𝑛𝑞𝑛+1
≤ 1

𝑞2𝑛
.

Finally,
𝑝𝑛+2

𝑞𝑛+2
− 𝑝𝑛

𝑞𝑛
=

𝑎𝑛+2(𝑝𝑛+1𝑞𝑛 − 𝑝𝑛𝑞𝑛+1)

𝑞𝑛𝑞𝑛+2
=

𝑎𝑛+2(−1)𝑛

𝑞𝑛𝑞𝑛+2
.

So if 𝑛 is even, the above quantity is positive; while if 𝑛 is odd, it’s negative. ■

Part (c) of the Proposition 30.7 allows us to equate 𝛼 with its continued fraction expansion
[𝑎0; 𝑎1, . . .], with the understanding that the continued fraction expansion is the limit of
the sequence of convergents. It also tells us that the convergents of the continued fraction
expansion of 𝛼 are good rational approximations of 𝛼 (remember—our goal is to find good
rational approximations to

√
𝐷).

The next example illustrates how we can use the recursion given in Proposition 30.7 to
calculate the convergents of a given continued fraction.

Example 30.8 Let’s work with
√
2 = [1, 2] = [1, 2, 2, 2, . . .]. We begin by creating the table

1 2 2 2 · · ·
0 1
1 0

Our goal is to populate this table with the convergents:

1 2 2 2 · · ·
0 1 𝑝0 𝑝1 𝑝2 𝑝3 · · ·
1 0 𝑞0 𝑞1 𝑞2 𝑞3 · · ·

To find 𝑝0, we take the entry 1 at the top of its column then multiply it by the entry to the
left of 𝑝0 and add to it the entry to the left of that:

𝑝0 = 1 · 1 + 0 = 1.

Likewise, to get 𝑞0, we multiply 1 by the entry to the left of 𝑞0 and then add the entry to
the left of that:

𝑞0 = 1 · 0 + 1 = 1.

We now have

1 2 2 2 · · ·
0 1 1 𝑝1 𝑝2 𝑝3 · · ·
1 0 1 𝑞1 𝑞2 𝑞3 · · ·
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We proceed in a similar manner to fill up the second column. The entry 𝑝1 is 2× 1+1, and
the entry 𝑞1 is 2× 1 + 0. Continuing on to the next columns, we end up

1 2 2 2 · · ·
0 1 1 3 7 17 · · ·
1 0 1 2 5 12 · · ·

So the first few convergents of
√
2 = [1; 2] are

1,
3

2
,
7

5
,
17

12
,

exactly as we had found in Example 30.5.

Exercise 30.9 Find the first five convergents of
√
3.

Here is our main result.

Theorem 30.10 (Fundamental Solution of the Pell Equation—First Version)

Assume𝐷 ∈ Z>0 is not a perfect square and let 𝑝𝑛/𝑞𝑛 be the 𝑛th convergent of the continued
fraction expansion of

√
𝐷. The fundamental solution of the Pell equation 𝑥2 −𝐷𝑦2 = 1 is

given by (𝑥, 𝑦) = (𝑝𝑚, 𝑞𝑚) where 𝑚 ≥ 0 is the smallest index such that 𝑝2𝑚 −𝐷𝑞2𝑚 = 1.

Proof (Sketch): The first key point is that any solution (𝑥, 𝑦) with 𝑦 ≥ 1 satisfies⃒⃒⃒⃒
𝑥

𝑦
−
√
𝐷

⃒⃒⃒⃒
<

1

2𝑦2
.

(This follows from (*).) A non-trivial theorem of Lagrange asserts that any 𝑥/𝑦 ∈ Q>0

with gcd(𝑥, 𝑦) = 1 that satisfies this inequality must be a convergent
√
𝐷. In particular,

the fundamental solution arises from a convergent.

Next, using the recurrence relation for 𝑝𝑛 and 𝑞𝑛 (and some work), one can show that

𝑝2𝑛 −𝐷𝑞2𝑛 = (−1)𝑛+1𝑘𝑛

for some integer 𝑘𝑛. It can be shown that 𝑘𝑛 ̸= −1 and that there is an 𝑟 ∈ Z>0 such that
𝑘𝑛 = 1 if and only of 𝑟 | 𝑛. Hence all positive solutions to 𝑥2−𝐷𝑦2 = 1 must be of the form
(𝑝𝑛, 𝑞𝑛) where 𝑛 is a multiple of 𝑟. So there must be a smallest index 𝑚 that gives a solution,
and this solution will have minimal 𝑝𝑚, hence will be the fundamental solution. ■

So to find the fundamental solution to 𝑥2 − 𝐷𝑦2 = 1, we should first find the continued
fraction expansion [𝑎0; 𝑎1, . . .] of

√
𝐷 and then make our table of convergents as explained

in Example 30.8 but now with an additional row containing 𝑝𝑛 −𝐷𝑞2𝑛:

𝑎0 𝑎1 𝑎2 𝑎3 · · ·
0 1 𝑝0 𝑝1 𝑝2 𝑝3 · · ·
1 0 𝑞0 𝑞1 𝑞2 𝑞3 · · ·

𝑝21 −𝐷𝑞21 𝑝22 −𝐷𝑞22 𝑝23 −𝐷𝑞23 𝑝24 −𝐷𝑞24 · · ·
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The first occurrence of 1 in the bottom row indicates that we have found our fundamental
solution.

Example 30.11 Find the fundamental solution of 𝑥2 − 3𝑦2 = 1.

Solution: The continued fraction expansion of
√
3 is [1; 1, 2]. So we have to fill up the

table

1 1 2 1 · · ·
0 1 𝑝0 𝑝1 𝑝2 𝑝3 · · ·
1 0 𝑞0 𝑞1 𝑞2 𝑞3 · · ·

𝑝20 − 3𝑞20 𝑝21 − 3𝑞21 𝑝22 − 3𝑞22 𝑝23 − 3𝑞23 · · ·

until we find a 1 in the bottom row. Doing so, we end up with

1 1 2 1 · · ·
0 1 1 2 𝑝2 𝑝3 · · ·
1 0 1 1 𝑞2 𝑞3 · · ·

−2 1 𝑝22 − 3𝑞22 𝑝23 − 3𝑞23 · · ·

Okay, that was easy! The fundamental solution in (𝑥, 𝑦) = (2, 1).

Example 30.12 Find the fundamental solution of 𝑥2 − 19𝑦2 = 1.

Solution: The continued fraction expansion of
√
19 is [4; 2, 1, 3, 1, 2, 8] (found using a com-

puter!). The table of convergents is:

4 2 1 3 1 2 8 · · ·
0 1 4 9 13 48 61 170 𝑝6 · · ·
1 0 1 2 3 11 14 39 𝑞6 · · ·

−3 5 −2 5 −3 1 · · ·

Thus, the fundamental solution is (𝑥, 𝑦) = (170, 39).

Example 30.13 Find a solution to 𝑥2 − 61𝑦2 = 1.

Solution: This is Fermat’s challenge mentioned last lecture. The continued fraction ex-
pansion of

√
61 is

[7; 1, 4, 3, 1, 2, 2, 1, 3, 4, 1, 14].

Here is the table of convergents:

7 1 4 3 1 2 2 1 3 4 1 · · ·
0 1 7 8 39 125 164 453 1070 1523 5639 24079 29718 · · ·
1 0 1 1 5 16 21 58 137 195 722 3083 3805 · · ·

−4 5 −4 9 −5 5 −9 4 −3 12 −1 · · ·

You’ll notice that I stopped once I found a −1 in the bottom row. This is because once
we have a solution (𝑝, 𝑞) to 𝑥2 − 𝐷𝑦2 = −1 then we can “square it” to find a solution to
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𝑥2 −𝐷𝑦2 = 1. To be more precise, if

𝑁(𝑝+ 𝑞
√
𝐷) = 𝑝2 −𝐷𝑞2 = −1

then
𝑁((𝑝+ 𝑞

√
𝐷)2) = (−1)2 = 1.

Now we compute
(𝑝+ 𝑞

√
𝐷)2 = (𝑝2 +𝐷𝑞2) + (2𝑝𝑞)

√
𝐷

to conclude that (𝑝2+𝐷𝑞2, 2𝑝𝑞) is a solution to 𝑥2−𝐷𝑦2 = 1. (Refer back to Lemma 29.3.)

In our case, the solution (29718, 3805) to 𝑥2 − 61𝑦2 = −1 yields the solution

(1766319049, 226153980)

to 𝑥2− 61𝑦2 = 1. In fact, this is the fundamental solution. It is a theorem that if 𝑝/𝑞 is the
first convergent such that 𝑝2 −𝐷𝑞2 = −1 then (𝑝2 +𝐷𝑞2, 2𝑝𝑞) is the fundamental solution
to 𝑥2 − 𝐷𝑦2 = 1. In our case we can verify this by computing the remaining convergents
𝑝𝑛/𝑞𝑛 in the table above and we’ll find that the solution above occurs when 𝑛 = 21.

We can improve Theorem 30.10 by investigating the continued fraction expansion of
√
𝐷 a

little more closely. We state the next two results without proof.

Proposition 30.14 (Continued Fraction Expansion of
√
𝐷)

Assume 𝐷 ∈ Z>0 is not a perfect square. Then the continue fraction expansion of
√
𝐷

periodic: √
𝐷 = [𝑎0; 𝑎1, . . . , 𝑎ℓ].

Assume ℓ is the length of the smallest period. Then:

(a) 𝑎ℓ = 2𝑎0.

(b) 𝑎1, . . . , 𝑎ℓ−1 is a palindromic sequence: 𝑎1 = 𝑎ℓ−1, 𝑎2 = 𝑎ℓ−2, . . ..

For example, the continued fraction expansions
√
19 = [4; 2, 1, 3, 1, 2, 8] and

√
61 = [7; 1, 4, 3, 1, 2, 2, 1, 3, 4, 1, 14]

illustrate this theorem.

Theorem 30.15 (Fundamental Solution of the Pell Equation—Second Version)

Assume 𝐷 ∈ Z>0 is not a perfect square, and let 𝑝𝑛/𝑞𝑛 and ℓ be, respectively, the 𝑛th
convergent and the period of the continued fraction expansion of

√
𝐷. The fundamental

solution of the Pell equation 𝑥2 −𝐷𝑦2 = 1 is given by

(𝑥, 𝑦) =

{︃
(𝑝ℓ−1, 𝑞ℓ−1) if ℓ is even

(𝑝2ℓ−1, 𝑞2ℓ−1) if ℓ is odd.
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Furthermore, all positive integer solutions are given by

(𝑥, 𝑦) =

{︃
(𝑝𝑛ℓ−1, 𝑞𝑛ℓ−1) if ℓ is even

(𝑝2𝑛ℓ−1, 𝑞2𝑛ℓ−1) if ℓ is odd,

where 𝑛 = 1, 2, . . ..

For instance, we saw above that:

• The fundamental solution of 𝑥2 − 19𝑦2 = 1 is (𝑥, 𝑦) = (𝑝5, 𝑞5), which agrees with the
fact that the period of

√
9 is ℓ = 6.

• The fundamental solution of 𝑥2 − 61𝑦2 = 1 is (𝑥, 𝑦) = (𝑝21, 𝑞21), which agrees with
the fact that the period of

√
61 is ℓ = 11.

Here are the fundamental solutions to 𝑥2 −𝐷𝑦2 = 1 for all non-square 𝐷 ≤ 15.

𝐷
√
𝐷 Fundamental Solution

2 [1, 2] (3, 2)
3 [1, 1, 2] (2, 1)
5 [2, 4] (9, 4)
6 [2, 2, 4] (5, 2)
7 [2, 1, 1, 1, 4] (8, 3)
8 [2, 1, 4] (3, 1)
10 [3, 6] (19, 6)
11 [3, 3, 6] (10, 3)
12 [3, 2, 6] (7, 2)
13 [3, 1, 1, 1, 6] (649, 180)
14 [3, 1, 2, 1, 6] (15, 4)
15 [3, 1, 6] (4, 1)

Exercise 30.16 Verify some of the entries in the table above.

Lecture 30 Problems

30.1. (a) Determine the real number 𝛼 whose continued fraction expansion is [1; 1]. [Hint: Show
that 𝛼 = 1 + 1

𝛼 and use this to solve for 𝛼.]

(b) Determine the real number 𝛽 whose continued fraction expansion is [1; 1, 2, 6].

30.2. Let 𝐷 = 𝑛2 + 1, where 𝑛 ≥ 2 is an integer.

(a) Find the continued fraction expansion of
√
𝐷.

(b) Find the fundamental solution of 𝑥2 −𝐷𝑦2 = 1.

30.3. (a) Find the fundamental solution of 𝑥2 − 34𝑦2 = 1.

(b) Prove that 𝑥2 − 34𝑦2 = −1 has no integer solutions by using the fact that if (𝑝, 𝑞)
were the smallest such positive solution, then (𝑝2+𝐷𝑞2, 2𝑝𝑞) would be the fundamental
solution to 𝑥2 − 34𝑦2 = 1.
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Lecture 31 Fermat’s Last Theorem

Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos
& generaliter nullam in infinitum ultra quadratum potestatem in duos eiusdem
nominis fas est dividere cuius rei demonstrationem mirabilem sane detexi. Hanc
marginis exiguitas non caperet.20

– Pierre de Fermat

The story behind Fermat’s Last Theorem (FLT) is famous. Fermat left a marginal note in
his copy of Diophantus’ Arithmetica claiming he had a “marvellous proof” of the fact that,
for all 𝑛 > 2, the equation

𝑥𝑛 + 𝑦𝑛 = 𝑧𝑛

has no solution in the positive integers. But no proof of this fact was to be found for 300
years—despite the effort of many great (and not-so-great) mathematicians. In this lecture
I will outline—very broadly—the strategy that led to the proof of Fermat’s Last Theorem.

The mathematics used in the eventual proof was mostly developed in the 20th century and
was completely out of Fermat’s reach. It’s very unlikely that Fermat had a proof. Perhaps
the most compelling evidence of this is that he himself never mentioned, in public, that
he did. The marginal note was in his personal copy of Arithmetica, made available to the
public by his son after Fermat had died.

Fermat’s way of doing mathematics was through posing problems as challenges to others.
If he was in possession of a correct proof of FLT, he would have surely made more noise
about it. He did actually pose the case 𝑛 = 3 as a challenge, and we have his proof for
𝑛 = 4 (which I will sketch below)—but that’s it. He probably initially believed that his
argument for the 𝑛 = 4 case would generalize, but it doesn’t.

Here is (essentially21) what Fermat proved. FLT for 𝑛 = 4 follows immediately from this.

Theorem 31.1 There is no solution to the equation 𝑥4 + 𝑦4 = 𝑧2 with 𝑥, 𝑦, 𝑧 ∈ Z>0.

Proof (Outline): The strategy is to use infinite descent: Suppose there is a positive
integer solution (𝑎, 𝑏, 𝑐). Then somehow use this solution to construct another positive
integer solution (𝑎′, 𝑏′, 𝑐′) with 𝑐′ < 𝑐. Repeat this process to get smaller and smaller
positive integer solutions with

𝑐 > 𝑐′ > 𝑐′′ > · · ·

which is absurd, since we cannot have an infinite decreasing sequence of positive integers.
Thus, our original assumption—the existence of (𝑎, 𝑏, 𝑐)—must be false.

To execute this strategy, we must explain how to construct (𝑎′, 𝑏′, 𝑐′) from (𝑎, 𝑏, 𝑐). Here
is the outline; I’ll let you fill in the details as a fun exercise.

• If (𝑎, 𝑏, 𝑐) is a positive solution then (𝑎2, 𝑏2, 𝑐) is a Pythagorean triple. Argue that we
may assume, wlog, that it is primitive.

20It is impossible to separate a cube into two cubes, or a fourth power into two fourth powers, or in
general, any power higher than the second, into two like powers. I have discovered a truly marvelous proof
of this, which this margin is too narrow to contain.

21Fermat actually proved there are no solutions to 𝑥4 − 𝑦4 = 𝑧2, but the method of proof is the same.
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• Conclude that there exist coprime positive integers 𝑛 > 𝑚 with one odd and the other
even such that

𝑎2 = 𝑛2 −𝑚2, 𝑏2 = 2𝑛𝑚 and 𝑐 = 𝑛2 +𝑚2.

• Observe that 𝑎2 + 𝑚2 = 𝑛2. So (𝑎,𝑚, 𝑛) is also primitive Pythagorean triple. Also
note that 𝑚 must be even and 𝑛 must be odd.

• Deduce from this that there are positive integers 𝑢, 𝑣 ∈ Z such that 𝑚 = 2𝑢𝑣 and
𝑛 = 𝑢2 + 𝑣2. Hence 𝑏2 = 4𝑢𝑣(𝑢2 + 𝑣2).

• Argue that 𝑢, 𝑣 and (𝑢2 + 𝑣2) must be squares, say 𝑢 = (𝑎′)2, 𝑣 = (𝑏′)2 and 𝑢2 + 𝑣2 =
(𝑐′)2 with 𝑎′, 𝑏′, 𝑐′ ∈ Z>0.

• Explain why this is our desired smaller solution. ■

Exercise 31.2 Supply the missing details in the above proof.

Having established the 𝑛 = 4 case of FLT, we also get the cases 𝑛 = 4𝑘 for free since

𝑥4𝑘 + 𝑦4𝑘 = 𝑧4𝑘 ⇐⇒ (𝑥𝑘)4 + (𝑦𝑘)4 = (𝑧𝑘)4.

So now all that remains is to prove FLT in the case where 𝑛 = 𝑝 is an odd prime.

Exercise 31.3 Explain why proving FLT in the cases 𝑛 = 4 and 𝑛 = 𝑝 an odd prime allows us to deduce
FLT for all 𝑛 > 2.

Since the 1700s, mathematicians have tried to tackle FLT one prime at a time. Euler proved
𝑝 = 3 (with a significant gap relating to how number theory in Z[

√
−3 ] works); Dirichlet

and Legendre independently proved 𝑝 = 5; Lamé did 𝑝 = 7, and so on, and so forth.

The proofs of these special cases were disjointed and ad hoc. There were some general
approaches, most notably due to Sophie Germain and Ernst Kummer, but they all fell far
short of the prize.

The Modern Approach

The first real progress occurred in the 1950s (approximately 300 years after Fermat had
died), when two Japanese mathematicians, Yutaka Taniyama and Goro Shimura, made the
following claim (which was further solidified with evidence by André Weil in 1967).

Conjecture 31.4 (The Modularity Conjecture)

Every elliptic curve over Q is modular.

You are not expected to understand what this means. What is an elliptic curve? What
does “modular” mean? I will elaborate next lecture.
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The important thing for now: What does this have to do with FLT? The short answer is
that a positive solution to 𝑥𝑝 + 𝑦𝑝 = 𝑧𝑝 would contradict the Modularity Conjecture.

Indeed, in the 1980s Gerhard Frey noticed that a positive solution (𝑎, 𝑏, 𝑐) to 𝑥𝑝 + 𝑦𝑝 = 𝑧𝑝

could be used to create an elliptic curve

𝐸𝑎,𝑏,𝑐 : 𝑦2 = 𝑥(𝑥− 𝑎𝑝)(𝑦 + 𝑏𝑝)

that was very peculiar—specifically, it appeared that 𝐸𝑎,𝑏,𝑐 was not modular. Ken Ribet
proved that Frey’s elliptic curve 𝐸𝑎,𝑏,𝑐 was indeed not modular. This was an amazing
achievement—not just because the proof contained many great ideas, but because it meant
that now FLT was within reach: all (!) you had to do was prove the Modularity Conjecture.

And this is exactly what happened next. Legend has it that Andrew Wiles holed himself up
in his Princeton attic for six years while he secretly tried to find a proof. In 1993, Wiles gave
a series of three lectures in Cambridge explaining his proof, and he published a manuscript
containing the details shortly thereafter.

Things took a dramatic turn, however, when a flaw was discovered in the proof. The error
was not easy to fix. Wiles worked on it for a year, first alone, and then in collaboration
with his student Richard Taylor, but seemingly without much success—until one day when
the pieces somehow fell into place. In 1994 Taylor and Wiles submitted two manuscripts
to the Annals of Mathematics, one of the premier journals for mathematics, containing the
proof of the following theorem.

Theorem 31.5 (Semistable Modularity Theorem)

Every semistable elliptic curve over Q is modular.

This was good enough, because the Frey curve 𝐸𝑎,𝑏,𝑐 is “semistable”. As a corollary, we get:

Theorem 31.6 (Fermat’s Last Theorem)

For every 𝑛 > 2, the equation
𝑥𝑛 + 𝑦𝑛 = 𝑧𝑛

has no solution with 𝑥, 𝑦, 𝑧 ∈ Z>0.

Proof: Without loss of generality we may assume that 𝑛 = 𝑝 > 5 is an odd prime.22

Suppose (𝑎, 𝑏, 𝑐) is a positive solution to 𝑎𝑝 + 𝑏𝑝 = 𝑐𝑝. Let 𝐸𝑎,𝑏,𝑐 be the associated Frey
curve. Then, by Ribet, 𝐸𝑎,𝑏,𝑐 is not modular. However, by Wiles and Taylor–Wiles, 𝐸𝑎,𝑏,𝑐

must be modular. Contradiction! Thus, there is no such (𝑎, 𝑏, 𝑐). ■

The full modularity conjecture was proved in 1999 by Breuil, Conrad, Diamond and Taylor.

Lecture 31 Problems

31.1. Prove Fermat’s Last Theorem without using the Modularity Theorem.

22The restriction to 𝑝 > 5 is needed to make part of the argument work. So to complete this proof, we
need to quote the separate proofs for the cases 𝑝 = 3 and 𝑝 = 5 (and 𝑛 = 4, of course).
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Lecture 32 Elliptic Curves Over Q

It is possible to write endlessly on elliptic curves. (This is not a threat.)

– Serge Lang

This is going to be a crash course (without proofs) on the basics of elliptic curves. If you’re
interested in learning more, I highly recommend the book Rational Points on Elliptic Curves
by Silverman and Tate.

Definition 32.1

Elliptic Curve,
Rational Points

The equation
𝑦2 = 𝑥3 + 𝑎𝑥+ 𝑏,

where 𝑎, 𝑏 ∈ Q, is said to define an elliptic curve over Q if 4𝑎3 + 27𝑏2 ̸= 0.

Given an elliptic curve 𝐸, its set of rational points is

𝐸(Q) = {(𝑥, 𝑦) ∈ Q2 : 𝑦2 = 𝑥3 + 𝑎𝑥+ 𝑏}.

We similarly define the sets of integer points 𝐸(Z) and real points 𝐸(R).

Some comments are in order:

• Elliptic curves are not ellipses. For example, here is the plot of the real points of
𝑦2 = 𝑥3 + 2.

𝑥

𝑦

Figure 32.3: Plot of 𝐸(R) for 𝐸 : 𝑦2 = 𝑥3 + 2.

• Historically, elliptic curves arose in connection with arc length integrals for calculating
lengths of segments of an ellipse. This is a long (and interesting) story. We won’t go
into it here.

• The condition 4𝑎3+27𝑏2 ̸= 0 can be equivalently rephrased as: The cubic polynomial
𝑥3 + 𝑎𝑥+ 𝑏 does not have repeated roots. Geometrically, this means that the plot of
𝑦2 = 𝑥3 + 𝑎𝑥+ 𝑏 in the 𝑥𝑦-plane will be smooth without cusps or nodes.
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𝑥

𝑦

Figure 32.4: 𝑦2 = 𝑥3 (cusp)

𝑥

𝑦

Figure 32.5: 𝑦2 = 𝑥2(𝑥+ 1) (node)

• There is a more general definition of “elliptic curve” that uses equations of the form

𝑦2 + 𝑎𝑥𝑦 + 𝑏𝑦 = 𝑥3 + 𝑐𝑥2 + 𝑑𝑥+ 𝑒,

where the coefficients 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 are required to satisfy a similar smoothness condition.
However, Definition 32.1 will suffice for our purposes.

The equation defining an elliptic curve 𝐸 is interesting because the solution set 𝐸(Q) of
rational points can be turned into a group. That is, there is a way to take two points
𝑃,𝑄 ∈ 𝐸(Q) and somehow generate a new point 𝑃 ⊕𝑄 ∈ 𝐸(Q). This should remind you of
the solution set 𝑆𝐷 to the Pell equation 𝑥2 −𝐷𝑦2 = 1 where a similar thing was possible.
Let’s look at an example.

Example 32.2 (Group Operation on 𝑦2 = 𝑥3 + 1 — First Look)

Consider the elliptic curve
𝐸 : 𝑦2 = 𝑥3 + 1.

If 𝑃 and 𝑄 are two distinct points in 𝐸(Q) then the line through 𝑃 and 𝑄 will intersect
the curve 𝐸 at a third point 𝑅 ∈ 𝐸(Q).

For instance, consider 𝑃 = (−1, 0) and 𝑄 = (0, 1). The line through these two points has
equation 𝑦 = 𝑥+ 1.

∙ 𝑃

∙ 𝑄

∙ 𝑅

𝑥

𝑦
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Let 𝑅 = (𝑥𝑅, 𝑦𝑅) be the third point of intersection between the line and 𝐸. To find the
𝑥-coordinate of 𝑅, we have to solve the equation

(𝑥+ 1)2 = 𝑥3 + 1

for 𝑥. Expanding this out, we end up with

𝑥3 − 𝑥2 − 2𝑥 = 0.

Now it’s easy to factor this, but let’s not do that. Observe instead that the sum of the roots
of this cubic adds up to (−1) times the coefficient of 𝑥2 (see exercise below). But we already
know two roots—namely, the 𝑥-coordinates of 𝑃 and 𝑄! So if 𝑥𝑅 is the 𝑥-coordinate of 𝑅,
then we have

−1 + 0 + 𝑥𝑅 = 1 ⇐⇒ 𝑥𝑅 = 2.

Hence, using the equation of the line 𝑦 = 𝑥+ 1, the 𝑦-coordinate of 𝑅 must be

𝑦𝑅 = 𝑥𝑅 + 1 = 3.

Thus, 𝑅 = (2, 3). Notice that 𝑅 ∈ 𝐸(Q).

Exercise 32.3 Suppose that the cubic equation

𝑥3 + 𝑎𝑥2 + 𝑏𝑥+ 𝑐 = 0

has roots 𝛼, 𝛽, 𝛾. Prove that 𝛼+ 𝛽 + 𝛾 = −𝑎.

Deduce that if the cubic has rational coefficients (i.e. if 𝑎, 𝑏, 𝑐 ∈ Q) and if two of the roots
are rational, then the third root must be rational too.

The process in the previous example can be generalized. Suppose 𝐸 is given by

𝑦2 = 𝑥3 + 𝑎𝑥+ 𝑏, 𝑎, 𝑏 ∈ Q.

Given 𝑃,𝑄 ∈ 𝐸(Q), let 𝑅 be the third point of intersection with 𝐸 of the line through 𝑃
and 𝑄. Suppose the line through 𝑃 and 𝑄 has equation 𝑦 = 𝑚𝑥+ 𝑐; note that both 𝑚 and
𝑐 must be rational because 𝑃 and 𝑄 are. Then to find the points of intersection of this line
with 𝐸, we substitute 𝑦 into the equation for 𝐸 to find that

(𝑚𝑥+ 𝑐)2 = 𝑥3 + 𝑎𝑥+ 𝑏 ⇐⇒ 𝑥3 −𝑚2𝑥2 + (𝑎− 2𝑚𝑐)𝑥+ 𝑏− 𝑐2 = 0.

We know two of the roots, namely 𝑥𝑃 and 𝑥𝑄, so by the preceding exercise we must have

𝑥𝑅 + 𝑥𝑃 + 𝑥𝑄 = 𝑚2.

Using this, we can determine 𝑥𝑅 and therefore 𝑦𝑅 = 𝑚𝑥𝑅 + 𝑐.

The point 𝑅 obtained by this process will be denoted by 𝑃 *𝑄. (Warning: This * is not
a group operation; we will have to modify it. Read ahead.)
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The construction of 𝑃 *𝑄 raises two questions:

1. What do we do if 𝑃 = 𝑄? That is, what is 𝑃 * 𝑃?

2. What if the line through 𝑃 and 𝑄 is vertical? Such a line will not intersect 𝐸(Q) in
a third point.

The first question is easy to deal with. Just use the tangent line to 𝑃 ! This line will intersect
𝐸 “twice” at 𝑃 (more precisely, it will intersect with multiplicity equal to 2); we let 𝑃 * 𝑃
be the third point of intersection of the tangent line and 𝐸.

The second question is more tricky. We will weasel our way out of it by pretending that
there is a “point at infinity” which we will denote by 𝒪. We will pretend that every vertical
line passes through 𝒪. In particular, if 𝑃,𝑄 ∈ 𝐸(Q) are such that the line through them is
vertical, then we define 𝑃 *𝑄 = 𝒪.

Example 32.4 (Group Operation on 𝑦2 = 𝑥3 + 1 — Second Look)

Returning to
𝐸 : 𝑦2 = 𝑥3 + 1,

let 𝑄 = (0, 1) as before, and let 𝑆 = (0,−1). Then the line through 𝑄 and 𝑆 is vertical, so
we have 𝑄 * 𝑆 = 𝒪.

∙ 𝑄

∙ 𝑆

𝑥

𝑦

∙ 𝒪...

∙ 𝑆

∙ 𝑅

𝑥

𝑦

Suppose now we want to calculate 𝐿 = 𝑅 * 𝑅, where 𝑅 = (2, 3). We begin by finding the
tangent line through 𝐸 at 𝑅, which is 𝑦 = 2𝑥 − 1. We plug 𝑦 = 2𝑥 − 1 into the equation
for 𝐸 to find

(2𝑥− 1)2 = 𝑥3 + 1 ⇐⇒ 𝑥3 − 4𝑥2 + · · · = 0.

Thus,
𝑥𝐿 + 𝑥𝑅 + 𝑥𝑅 = 4 ⇐⇒ 𝑥𝐿 = 4− 2𝑥𝑅 = 0

and consequently 𝑦𝐿 = 2𝑥𝑅 − 1 = −1. This shows that 𝑅 *𝑅 = (0,−1) = 𝑆.

Exercise 32.5 Determine 𝑄 *𝑄, where 𝑄 = (0, 1) is as in the preceding example. Can you explain what’s
going on?
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To define a group operation ⊕ on 𝐸(Q), we need to first agree on what the identity element
should be. We choose it to be 𝒪, the point at infinity. For this to be OK, we will need to
count 𝒪 as being in 𝐸(Q). Thus, our amended definition of 𝐸(Q) is

𝐸(Q) = {(𝑥, 𝑦) ∈ Q2 : 𝑦2 = 𝑥3 + 𝑎𝑥+ 𝑏} ∪ {𝒪}.23

Define ⊕ on 𝐸(Q) as follows.

• 𝑃 ⊕𝒪 = 𝒪 ⊕ 𝑃 = 𝑃 for all 𝑃 ∈ 𝐸(Q).

• If 𝑃,𝑄 ∈ 𝐸(Q) are both not 𝒪, then 𝑃 ⊕𝑄 = (𝑥𝑅,−𝑦𝑅), where 𝑅 = (𝑥𝑅, 𝑦𝑅) = 𝑃 *𝑄.

In other words, we obtain 𝑃 ⊕ 𝑄 from 𝑃 * 𝑄 by reflecting across the 𝑥-axis. That is,
𝑃 ⊕𝑄 = (𝑃 *𝑄) * 𝒪.

Example 32.6 (Group Operation on 𝑦2 = 𝑥3 + 1 — Third Look)

Let’s determine 𝑃 ⊕ 𝑄 where 𝑃 = (−1, 0) and 𝑄 = (0, 1). We’ve already found that
𝑅 = 𝑃 *𝑄 = (2, 3). Thus, 𝑃⊕𝑄 = (2,−3). Similarly, 𝑅⊕𝑅 = (𝑅*𝑅)*𝒪 = (0,−1)*𝒪 = 𝑄.

∙ 𝑃

∙ 𝑄

∙ 𝑅

∙ 𝑃 ⊕𝑄

𝑥

𝑦

∙ 𝑅 *𝑅

∙ 𝑄

∙ 𝑅

𝑥

𝑦

What about 𝑅⊕𝑄? The line through 𝑅 and 𝑄 has equation 𝑦 = 𝑥+1, and we can use this
to find that 𝑅 *𝑄 = 𝑃 . Since 𝑃 is already lying on the 𝑥-axis, it follows that 𝑅 ⊕𝑄 = 𝑃
too.

∙ 𝑃

∙ 𝑅

∙ 𝑄

𝑥

𝑦

23We view 𝒪 as also being in 𝐸(R) but not in 𝐸(Z).
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Exercise 32.7 Determine 𝑄⊕𝑄, with 𝑄 = (0, 1) as in the preceding example.

To summarize:

Theorem 32.8 (𝐸(Q) is a Group)

Let 𝐸 be an elliptic curve over Q. Then ⊕ as defined above turns 𝐸(Q) into a commutative
group. The identity element is 𝒪 and the additive inverse of 𝑃 = (𝑥, 𝑦) is −𝑃 = (𝑥,−𝑦).

REMARK (𝐸(R) and 𝐸(Z))

The same definition of ⊕ turns 𝐸(R) into a group. However, 𝐸(Z) is not a group under
⊕, and not just because 𝒪 ̸∈ 𝐸(Z); see Example 32.12 for an elliptic curve 𝐸 with a point
𝑃 ∈ 𝐸(Z) such that 𝑃 ⊕ 𝑃 ̸∈ 𝐸(Z).

Theorem 32.8 is tricky to prove. Specifically, the fact that ⊕ is associative is not so obvious.
(Draw a picture to see what is involved in showing that (𝑃 ⊕𝑄)⊕𝑅 = 𝑃 ⊕ (𝑄⊕𝑅).) The
other group axioms are easy to check.

Exercise 32.9 Show that if 𝑃 = (𝑥, 𝑦) ∈ 𝐸(Q) then −𝑃 = (𝑥,−𝑦) is the additive inverse of 𝑃 .

Example 32.10 (Group Operation on 𝑦2 = 𝑥3 + 1 — Final Look)

It can be shown that if (𝑥, 𝑦) is a rational solution to 𝑦2 = 𝑥3 + 1 then (𝑥, 𝑦) must be one
of (−1, 0), (0,±1) or (2,±3). Thus,

𝐸(Q) = {(−1, 0), (0,±1), (2,±3),𝒪}.

Let’s take 𝑅 = (2, 3) and see what happens if we calculate

2𝑅 = 𝑅⊕𝑅, 3𝑅 = 𝑅⊕𝑅⊕𝑅, . . . .

We already saw that 2𝑅 = (0, 1). Our calculations in the last example also give us

3𝑅 = 𝑅⊕ 2𝑅 = 𝑅⊕ (0, 1) = (−1, 0).

I will leave the following for you to verify:

4𝑅 = (0,−1)

5𝑅 = (2,−3)

6𝑅 = 𝒪.

Thus, 𝑅 generates the entire group 𝐸(Q)!
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Exercise 32.11 Confirm the calculations of 4𝑅, 5𝑅 and 6𝑅 above.

The preceding example should remind you of how Pell equations have fundamental solutions
that generate the entire solution set. Perhaps elliptic curves do as well? Before we get too
carried away, let’s look at another example.

Example 32.12 Let 𝐸 be the elliptic curve 𝑦2 = 𝑥3−9𝑥+9 and consider the points 𝑃 = (1, 1) and 𝑅 = (3, 3)
in 𝐸(Q).

∙ 𝑃

∙ 𝑅

𝑥

𝑦

We have

2𝑃 = (7, 17)

3𝑃 = (8/9, 109/27)

4𝑃 = (715/289, 6731/4913)

5𝑃 = (−17195/5041, 38413/357911)

6𝑃 = (1048753/427716,−361921823/279726264).

Continuing this way, it appears that we can generate infinitely many rational points in 𝐸(Q)
by repeatedly adding 𝑃 to itself. However, notice that 𝑅 is seemingly missing from this list.
Indeed, it can be proved that 𝑅 ̸= 𝑛𝑃 for all 𝑛 ∈ Z. So 𝑃 does not generate all of 𝐸(Q).

Turning to 𝑅, we find that

2𝑅 = (3,−3)

3𝑅 = 𝒪.

So unlike 𝑃 , repeatedly adding 𝑅 to itself will only produce the points 𝑅, 2𝑅 and 𝒪. We
have discovered that 𝑅 has finite order in 𝐸(Q)—specifically, ord(𝑅) = 3. On the other
hand, 𝑃 has infinite order though we won’t prove that here.

Examining 𝐸 more closely, we can find three other integer points, namely 𝑄 = (−3, 3),
𝑇 = (0, 3) and 𝑆 = (15, 57). Remarkably, these points can be generated using 𝑃 and 𝑅:

𝑃 ⊕𝑅 = 𝑄, −𝑃 ⊕𝑅 = 𝑇 and − 2𝑃 ⊕𝑅 = 𝑆.

In fact, 𝑃 and 𝑅 together generate the entirety of 𝐸(Q), in the sense that

𝐸(Q) = {𝑎𝑃 + 𝑏𝑅 : 𝑎, 𝑏 ∈ Z}.
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So, unlike the Pell equation where a single fundamental solution generates the entire solution
set (up to sign), with an elliptic curve 𝐸 we might require several “fundamental solutions”
to generate all of 𝐸(Q). The amazing result here is that we will only ever need finitely
many such solutions. That is, 𝐸(Q) is a finitely generated group.

Theorem 32.13 (Mordell’s Theorem)

Let 𝐸 be an elliptic curve over Q. There exist 𝑃1, . . . , 𝑃𝑘 ∈ 𝐸(Q) such that

𝐸(Q) = {𝑎1𝑃1 ⊕ · · · ⊕ 𝑎𝑘𝑃𝑘 : 𝑎𝑖 ∈ Z}.

This theorem has been generalized by André Weil, and so is sometimes called the Mordell–
Weil theorem. Because of this, 𝐸(Q) is called the Mordell–Weil group of 𝐸.

In Example 32.10, we saw that the Modell–Weil group of 𝐸 : 𝑦2 = 𝑥3 + 1 is

𝐸(Q) = {𝑎(2, 3) : 𝑎 ∈ Z}.

In fact, we also saw that (2, 3) has finite order in 𝐸(Q)—specifically, its order is 6—so we
actually have

𝐸(Q) = {𝑎(2, 3) : 𝑎 = 1, 2, . . . , 6}.

If we squint, this group looks a lot like Z/6Z. In particular, it’s finite.

On the other hand, the elliptic curve 𝐸′ : 𝑦2 = 𝑥3 − 9𝑥+ 9 of Example 32.12 has Mordell–
Weil group

𝐸′(Q) = {𝑎(1, 1) + 𝑏(3, 3) : 𝑎 ∈ Z, 𝑏 = 1, 2, 3}.

The point (1, 1) has infinite order and (3, 3) has order 3. So, in this case, the Mordell–Weil
group looks like Z× Z/3Z. In particular, it’s infinite.

Lecture 32 Problems

32.1. Show that the change of variables

𝑥 = 𝑌 + 36, 𝑦 = −𝑌 + 36 and 𝑧 = 6𝑋

turns the Fermat cubic 𝑥3+ 𝑦3 = 𝑧3 into an elliptic curve 𝐸 of the form 𝑌 2 = 𝑋3+ 𝑎𝑋 + 𝑏.
Assuming Fermat’s Last Theorem, determine 𝐸(Q).

32.2. Let 𝐸 be the elliptic curve 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏, and let 𝑃𝑖 = (𝑥𝑖, 𝑦𝑖) ∈ 𝐸(Q) for 𝑖 = 1, 2.
Assume that 𝑃1 ̸= −𝑃2 and let 𝑃3 = (𝑥3, 𝑦3) = 𝑃1 ⊕ 𝑃2. Prove:

(a) If 𝑃1 = 𝑃2 then

(𝑥3, 𝑦3) =

{︃
𝒪 if 𝑦1 = 0

(𝑚2 − 2𝑥1,𝑚(𝑥1 − 𝑥3)− 𝑦1) if 𝑦1 ̸= 0,

where 𝑚 = (3𝑥21 + 𝑎)/2𝑦1.

(b) If 𝑃1 ̸= 𝑃2, then
(𝑥3, 𝑦3) = (𝑚2 − 𝑥1 − 𝑥2,𝑚(𝑥1 − 𝑥3)− 𝑦1),

where 𝑚 = (𝑦1 − 𝑦2)/(𝑥1 − 𝑥2).
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Lecture 33 Elliptic Curves Over Z/𝑝Z

I would like to now (attempt to) explain what it means for an elliptic curve to be modular.
Recall that Taylor and Wiles proved that all (semistable) elliptic curves over Q are modular,
and this was the final piece of puzzle in the proof of Fermat’s Last Theorem. The definition
of modularity involves working with elliptic curves modulo 𝑝.

Definition 33.1

Elliptic Curve
Over Z/𝑝Z

The equation 𝑦2 = 𝑥3+𝑎𝑥+ 𝑏, where 𝑎, 𝑏 ∈ Z, will be said to define an elliptic curve over
Z/𝑝Z if 4𝑎3 + 27𝑏2 ̸≡ 0 (mod 𝑝).

This is meant to mirror Definition 32.1 except with Z/𝑝Z taking the place of Q.24 We
similarly define the set of Z/𝑝Z points of 𝐸 to be

𝐸(Z/𝑝Z) = {(𝑥, 𝑦) ∈ (Z/𝑝Z)2 : 𝑦2 ≡ 𝑥3 + 𝑎𝑥+ 𝑏 (mod 𝑝)} ∪ {𝒪},

Technically, we should be working with congruence classes ([𝑥]𝑝, [𝑦]𝑝) but I will drop the [ ]𝑝
just to keep the notation manageable. The point 𝒪 is again a “point at infinity” that we
include in 𝐸(Z/𝑝Z) for things to work out nicely. In particular, we find that 𝐸(Z/𝑝Z) is a
group with the same definition of ⊕ as in the previous lecture. In fact, the explicit formulas
for 𝑃 ⊕𝑄 given in Problem 32.2 work just as well over Z/𝑝Z as they do over Q.25

Example 33.2 Let 𝐸 be defined by 𝑦2 = 𝑥3 + 1. We have

4𝑎3 + 27𝑏2 = 4(0)3 + 27(1)2 = 27 ̸≡ 0 (mod 𝑝)

if 𝑝 ̸= 3. Thus, 𝐸 is an elliptic curve over Z/𝑝Z for all 𝑝 > 3.

Let’s determine 𝐸(Z/𝑝Z) for 𝑝 = 5 and 7. This is just a matter of plugging 𝑥 = 0, 1, . . . , 𝑝−1
into the equation for 𝐸 and seeing if we can solve for 𝑦.

If 𝑝 = 5, we find:

𝑥 𝑥3 + 1 Square mod 5? 𝑦

0 1 Yes ±1
1 2 No -
2 4 Yes ±2
3 3 No -
4 0 Yes 0

Thus,
𝐸(Z/5Z) = {(0,±1), (2,±2), (4, 0),𝒪}.

24This definition needs to be modified if 𝑝 = 2 or 3. The fix involves working with the more general
equation 𝑦2 + 𝑎𝑥𝑦 + 𝑏𝑦 = 𝑥3 + 𝑐𝑥2 + 𝑑𝑥+ 𝑒. We will sidestep this and assume that 𝑝 > 3 in this lecture.

25The astute reader will have noticed that the formula for 𝑃 ⊕𝑃 involves dividing by 2, so it doesn’t make
sense mod 𝑝 if 𝑝 = 2. This is related to the previous footnote.
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If 𝑝 = 7, we find:

𝑥 𝑥3 + 1 Square mod 7? 𝑦

0 1 Yes ±1
1 2 Yes ±3
2 2 Yes ±3
3 0 Yes 0
4 2 Yes ±3
5 0 Yes 0
6 0 Yes 0

Thus,
𝐸(Z/7Z) = {(0,±1), (1,±3), (2,±3), (3, 0), (4,±3), (5, 0), (6, 0),𝒪}.

Exercise 33.3 Determine 𝐸(Z/11Z) for the elliptic curve 𝐸 given in the preceding example.

One thing that is immediately obvious is that 𝐸(Z/𝑝Z) will always be a finite group, unlike
𝐸(Q) which could contain elements of infinite order. In fact, since there are 𝑝 choices for
each 𝑥, 𝑦 ∈ Z/𝑝Z, and since 𝒪 ∈ 𝐸(Z/𝑝Z), we see that

|𝐸(Z/𝑝Z)| ≤ 𝑝2 + 1.

We can do quite a bit better, as the following heuristic argument shows. The congruence

𝑦2 ≡ 𝑥3 + 𝑎𝑥+ 𝑏 (mod 𝑝)

will have a solution if and only if 𝑥3+𝑎𝑥+𝑏 is a quadratic residue mod 𝑝. We expect this to
occur about half the time, since half the non-zero elements in Z/𝑝Z are quadratic residues.
Whenever 𝑥3 + 𝑎𝑥 + 𝑏 is a (non-zero) quadratic residue, we get two solutions for 𝑦. If we
remember to include 𝒪 into this count, we expect to find that

|𝐸(Z/𝑝Z)| ≈ 2× 𝑝

2
+ 1 = 𝑝+ 1.

on average. The error in this approximation has a name.

Definition 33.4

𝑝-defect, 𝑎𝑝

Let 𝐸 be an elliptic curve over Z/𝑝Z, The 𝑝-defect of 𝐸 is defined to be

𝑎𝑝 = (𝑝+ 1)− |𝐸(Z/𝑝Z)|.

Our heuristic argument above suggests that 𝑎𝑝 should be fairly small relative to 𝑝. This is
indeed the case.

Theorem 33.5 (Hasse Bound)

Let 𝐸 be an elliptic curve over Z/𝑝Z. Then |𝑎𝑝| ≤ 2
√
𝑝.
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For example, if 𝐸 is given by 𝑦2 = 𝑥3 + 1, our calculations in Example 33.2 and Exercise
33.3 show that

𝑎5 = (5 + 1)− |𝐸(Z/5Z)| = 6− 6 = 0

𝑎7 = (7 + 1)− |𝐸(Z/7Z)| = 8− 12 = −4

𝑎11 = (11 + 1)− |𝐸(Z/11Z)| = 12− 12 = 0

all of which satisfy the Hasse bound.

33.1 Modularity

Talent hits a target no one else can hit; genius hits a target no one else can see.

– A. Schopenhauer

Let’s dive deeper into the elliptic curve defined by 𝑦2 = 𝑥3 + 1. Here is a table containing
the values of 𝑎𝑝 for all 𝑝 < 50:

𝑝 𝑎𝑝
5 0
7 −4
11 0
13 2
17 0
19 8
23 0
29 0
31 −4
37 −10
41 0
43 8
47 0

Do you notice any patterns? It appears that 𝑎𝑝 is nonzero if and only if 𝑝 ≡ 1 (mod 6).
In general, when mathematicians want to study a sequence of numbers (𝑎𝑛), they tend to
package the sequence into a device called a generating function

𝑓(𝑞) =

∞∑︁
𝑛=1

𝑎𝑛𝑞
𝑛 = 𝑎1𝑞 + 𝑎2𝑞

2 + · · · .

The idea is that doing algebra with the generating function will often reveal hidden patterns
in the sequence of coefficients.

An elliptic curve is said to be modular if the generating function built out of its 𝑝-defects
exhibits specific behaviour. To be a little more accurate, 𝑓(𝑞) should be a modular form.
This is definitely not the time or place to define what a modular form is. In broad strokes,
a modular form is an analytic function that obeys interesting transformation rules.

It’s instructive to think about a function like sin𝑥, which has the series expansion

sin𝑥 =
∞∑︁
𝑛=1

(−1)𝑛

(2𝑛+ 1)!
𝑥2𝑛+1.
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The series expansion tells us that sin𝑥 is analytic (i.e. infinitely differentiable). What is
not obvious from the series expansion is that sin𝑥 obeys certain identities such as

sin(𝑥+ 2𝜋) = sin𝑥.

A modular form is kind of like this, but more complicated. (To be clear: sin𝑥 is not a
modular form.)

To see what this looks like for our elliptic curve 𝑦2 = 𝑥3 + 1, I first have to tell you how to
define 𝑎𝑛 for composite 𝑛. We begin by setting 𝑎1 = 1 and 𝑎2 = 𝑎3 = 0. Then, for 𝑘 ≥ 2,
we define

𝑎𝑝𝑘 =

{︃
(𝑎𝑝)

𝑘 if 𝑝 = 2, 3

𝑎𝑝𝑎𝑝𝑘−1 − 𝑝𝑎𝑝𝑘−2 if 𝑝 > 3.

(There is good reason for this, I promise.) Finally, we let 𝑎𝑚𝑛 = 𝑎𝑚𝑎𝑛 if gcd(𝑚,𝑛) = 1.

So, for example,
𝑎14 = 𝑎2𝑎7 = 0 · (−4) = 0

and
𝑎52 = (𝑎5)

2 − 5𝑎1 = −5.

The first few terms of the generating function are therefore

𝑓(𝑞) = 𝑞 − 4𝑞7 + 2𝑞13 + 8𝑞19 − 5𝑞25 − 4𝑞31 − 10𝑞37 + 8𝑞43 + 9𝑞49 + · · · . (*)

The next step is to set 𝑞 = 𝑒2𝜋𝑖𝑧, where 𝑧 ∈ C is a complex number. Thus, our generating
function becomes a Fourier series

𝐹 (𝑧) = 𝑓(𝑒2𝜋𝑖𝑧) = 𝑒2𝜋𝑖𝑧 − 4𝑒14𝜋𝑖𝑧 + 2𝑒26𝜋𝑖𝑧 + · · · .

This series converges for all 𝑧 with positive imaginary part because 𝑒2𝜋𝑖𝑛𝑧 will decay expo-
nentially fast as 𝑛 → ∞. To say that it’s a modular form amounts to saying that 𝐹 (𝑧) is
an analytic function (if Im(𝑧) > 0) and that 𝐹 satisfies certain identities, such as

𝐹

(︂
−1

𝑧

)︂
= 𝑧2𝐹 (𝑧) and 𝐹

(︂
𝑧

36𝑧 + 1

)︂
= (36𝑧 + 1)2𝐹 (𝑧).

I’ll leave it at that!

Wiles proved that the generating function built out of the 𝑝-defects of any (semistable)
elliptic curve over Q is a modular form. Thus, in a sense, he was able to bridge two worlds:

elliptic curves ⇝ modular forms.

This is remarkable because elliptic curves live in the world of arithmetic and algebra, whereas
modular forms live in the world of analysis.

In closing, let me mention one (sort of) consequence of the modularity of the generating
series 𝑓(𝑞) given above. It admits the following infinite product expansion:

𝑓(𝑞) = 𝑞
∞∏︁
𝑛=1

(1− 𝑞6𝑛)4 = 𝑞(1− 𝑞6)4(1− 𝑞12)4(1− 𝑞18)4 · · · .

Try expanding out a little bit of this, and confirm that it matches (*).
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33.2 Integer Factorization Using Elliptic Curves

We now turn to the one remaining question in Section 14.1 that we have yet to address:
How do we factor large integers? We can use addition of points on elliptic curves to help
find divisors! It’s best to start with an example.

Example 33.6 Suppose we want to factor 𝑁 = 65. Let 𝐸 be the elliptic curve 𝑦2 = 𝑥3 − 9𝑥 + 9 mod
65. (This is technically undefined, since 65 is not prime. But we will pretend as though it
were.) Let 𝑃 = (1, 1) ∈ 𝐸(Z/65Z), and let’s try to calculate 9𝑃 .

Using our formula for 2𝑃 in Problem 32.2(a), we find that

2𝑃 = (7, 17)

4𝑃 = (50, 57)

8𝑃 = (31, 54).

In the above we had to calculate the tangent line slope 𝑚 = (3𝑥2 − 9)/2𝑦, where 1/2𝑦 is
to be interpreted as (2𝑦)−1 mod 65. In each case 2𝑦 ended up being coprime to 65, so this
was no problem.

However, when we try to calculate 9𝑃 = 𝑃 + 8𝑃 , the slope

𝑚 =
54− 1

31− 1
=

53

30

has denominator that isn’t invertible mod 65. Specifically, gcd(65, 30) = 5. We have found
a non-trivial divisor of 𝑁 = 65!

What happened in the preceding example is the following. The point 𝑃 = (1, 1) has order
9 modulo 5, in the sense that

9𝑃 = 𝒪 in 𝐸(Z/5Z).

But 9𝑃 is the finite point (10, 10) in 𝐸(Z/13Z). This kind of clash resulted in us discovering
5 in the slope denominator of 9𝑃 . (If the order of 𝑃 were 9 in mod 13 too, then we would
have found a 5 · 13 = 65 = 𝑁 in the denominator, so we would not have discovered a
nontrivial divisor of 𝑁 .)

Hendrik Lenstra used this observation as the basis of his Elliptic Curve Method (ECM)
for integer factorization. The basic idea is that a point 𝑃 in 𝐸(Z/𝑁Z) may be viewed as
a point in 𝐸(Z/𝑝Z) for each prime 𝑝 | 𝑁 . If 𝐸 is randomly chosen and if 𝑘 is a reasonably
large integer, then we will likely have 𝑘𝑃 = 𝒪 in 𝐸(Z/𝑝Z) (if not, then choose another 𝐸).
If 𝑘𝑃 = 𝒪 in 𝐸(Z/𝑝Z) it will be unlikely that 𝑘𝑃 = 𝒪 in 𝐸(Z/𝑞Z) for a different prime
𝑞 | 𝑁 . (This is because, by the Hasse bound, the orders of 𝐸(Z/𝑝Z) and 𝐸(Z/𝑞Z) are close
to 𝑝+ 1 and 𝑞 + 1, resp., so will unlikely share many divisors if 𝑝 ̸= 𝑞. On the other hand,
if 𝑘𝑃 = 𝒪 in 𝐸 then 𝑘 divides the order of 𝐸.) Once we find such a 𝑃 , then gcd(𝑘,𝑁) > 1
will be a divisor of 𝑁 .
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ALGORITHM (Lenstra’s ECM)

To factor an odd integer 𝑁 :

1. Choose a large integer 𝑘 (such as 𝑘 = 𝐵! for 𝐵 ≈ 108) and randomly select several
elliptic curves 𝐸𝑖 and points 𝑃𝑖 ∈ 𝐸𝑖(Z/𝑁Z).

2. Compute 𝑘𝑃𝑖 in 𝐸𝑖(Z/𝑁Z).

3. If Step 2 fails because some slope has a denominator 𝑑 not coprime to 𝑛, calculate
gcd(𝑑, 𝑛) to find a divisor of 𝑛.

4. If gcd(𝑑, 𝑛) < 𝑛 in Step 3 then you have found a nontrivial divisor of 𝑛. Stop.

5. If Step 2 succeeds or if gcd(𝑑, 𝑛) = 𝑛, repeat Step 1 with a larger 𝑘 and/or new random
𝐸𝑖 and 𝑃𝑖.

This is currently the most efficient algorithm for finding divisors not exceeding 50 or so
digits. In practice, it’s used in a first pass-through to detect all small divisors. For the
remaining divisors, other algorithms (such as the number field sieve) must be employed.

Lecture 33 Problems

33.1. Go to the LMFDB page for the elliptic curve 𝑦2 = 𝑥3 + 1. Poke around and see if you can
spot anything interesting there. Can you find the associated modular form?

33.2. Look up the Goldwasser–Killian Elliptic Curve Primality Proving (ECPP) algorithm. How
does it compare to the primality tests we learned about in Lecture 23?

https://www.lmfdb.org/EllipticCurve/Q/36/a/4
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Lecture 34 What’s Next?

We are at the end of our course—but there’s plenty more number theory left to explore!
Here are some suggestions if you’re interested in learning more.

• Are you curious about the proofs of the Prime Number Theorem or Dirichlet’s theo-
rem on primes in arithmetic progression? Consider PMATH 440 - Analytic Number
Theory. You will need to beef up your complex analysis (PMATH 352).

• Want to learn how to do number theory in number systems like Z[
√
−𝐷 ] or even more

exotic ones like Z[𝑒2𝜋𝑖/𝑛] (without making fallacious arguments like we did in Lecture
28)? Then PMATH 441 - Algebraic Number Theory is the course for you.

• Did you enjoy our little preview of groups? Do you want to learn what a “ring” is
so that you don’t keep saying “number system”? Then consider a course in abstract
algebra, such as PMATH 334, 336, 347 and/or 348. This stuff is a pre-req to PMATH
441.

• Were you intrigued by elliptic curves and want to investigate them further? For an
introduction, it’s hard to beat the book by Silverman and Tate that I mentioned in
Lecture 32. Eventually you will want to read Silverman’s The Arithmetic of Elliptic
Curves, and for this you will want to know a thing or two about algebraic geometry;
PMATH 464 has you covered.

• Finally, if you want to dive more deeply into the mathematics of cryptography, then
you should check out CO 485 and CO 487.

Good luck!
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Solutions to Exercises and Practice Problems

Lecture 1

Exercises

1.2 (a) Simply note that

(𝑛𝑎)2 + (𝑛𝑏)2 = 𝑛2𝑎2 + 𝑛2𝑏2 = 𝑛2(𝑎2 + 𝑏2) = 𝑛2𝑐2 = (𝑛𝑐)2.

(b) Let’s plug (𝑥, 𝑦) = (3𝑎+ 4𝑏, 2𝑎+ 3𝑏) into 𝑥2 − 2𝑦2 and confirm that we get 1:

𝑥2 − 2𝑦2 = (3𝑎+ 4𝑏)2 − 2(2𝑎+ 3𝑏)2

= 9𝑎2 + 24𝑎𝑏+ 16𝑏2 − 2(4𝑎2 + 12𝑎𝑏+ 9𝑏2)

= 𝑎2 − 2𝑏2

= 1,

where the last equality holds because (𝑥, 𝑦) = (𝑎, 𝑏) is a solution to 𝑥2 − 2𝑦2 = 1.

1.3 No solution provided.

Practice Problems

1.1. No solution provided. Assignment problem.

1.2. Let’s treat 𝑦 as a constant and view this as an equation in 𝑥. The divisors of the
constant term are ±1 and ±7. Let’s try these one at a time:

• 𝑥 = 1 gives 2 + 𝑦 − 7 = 0 hence 𝑦 = 5. So (𝑥, 𝑦) = (1, 5) is a solution.

• 𝑥 = −1 gives −2− 𝑦 − 7 = 0 hence 𝑦 = −9. So (𝑥, 𝑦) = (−1, 9) is a solution.

• 𝑥 = 7 gives 2 · 73 + 7𝑦 − 7 = 0 hence 𝑦 = −97. So (𝑥, 𝑦) = (7,−97) is a solution.

• 𝑥 = −7 gives −2 · 73 − 7𝑦 − 7 = 0 hence 𝑦 = −99. So (𝑥, 𝑦) = (−7,−99) is a
solution.

The above four solutions are the only solutions.

190
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1.3. The solutions are given by the quadratic formula:

𝑥 =
−𝑏±

√
𝑏2 − 4𝑎𝑐

2𝑎
.

So if 𝑥 ∈ Z then 2𝑎𝑥+ 𝑏 ∈ Z and hence ±
√
𝑏2 − 4𝑎𝑐 = 𝑛 is an integer. Squaring both

sides, we get that 𝑏2 − 4𝑎𝑐 = 𝑛2 is a perfect square. This proves the first part.

The converse does not hold. Consider, for example, the equation 4𝑥2 − 1 = 0. Here,
𝑏2 − 4𝑎𝑐 = 0− 4(−1)(4) = 16 is a perfect square but the roots ±1

2 are not integers.

To guarantee integer solutions, we need 𝑏2− 4𝑎𝑐 to be a perfect square 𝑛2 and we need
−𝑏±𝑛 to be divisible by 2𝑎. (This can be proved by examining the quadratic formula.)

1.4. If the 𝑛 cannonballs can be arranged into a square, then that means 𝑛 = 𝑦2 for some
𝑦 ∈ Z.
A square pyramid with 𝑥 layers will consist of 1 cannonball at the top, 22 cannonballs
at the next layer, 32 cannonballs at the layer after next, and so on, ending with 𝑥2

cannonballs at the bottom layer. Thus, 𝑛 = 1 + 22 + 32 + · · ·+ 𝑥2.

So our desired Diophantine equation is

𝑦2 = 12 + 22 + 32 + · · ·+ 𝑥2

or equivalently

𝑦2 =
𝑥(𝑥+ 1)(2𝑥+ 1)

6
.

1.5. (a) Omitted — messy but straightforward algebra.

(b) If 𝑦 = 28, then the equation turns into the univariate Diophantine equation

𝑥3 + 109𝑥2 + 224𝑥− 282 = 0.

Now we just have to try all divisors of 282. Doing so, we discover that there is
a solution when 𝑥 = −4. Thus, (𝑥, 𝑦) = (−4, 28) is a solution to the equation
in part (a). Using the formulas given there for 𝑎, 𝑏, and 𝑐, we can deduce that
(𝑎, 𝑏, 𝑐) = (11, 4,−1) is a solution to the original equation.
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Lecture 2

Exercises

2.2 We can write 𝑏 = 𝑘𝑎 and 𝑐 = 𝑙𝑎 with 𝑘, 𝑙 ∈ Z. Then 𝑥𝑏+𝑦𝑐 = 𝑥(𝑘𝑎)+𝑦(𝑙𝑎) = (𝑥𝑘+𝑦𝑙)𝑎.
Since 𝑥𝑘 + 𝑦𝑙 ∈ Z, it follows that 𝑎 | 𝑥𝑏+ 𝑦𝑐, as required.

For the converse, observe that if 𝑎 | 𝑥𝑏+ 𝑦𝑐 for all choices of 𝑥, 𝑦 ∈ Z, the 𝑎 will divide
𝑥𝑏 + 𝑦𝑐 for the choices (𝑥, 𝑦) = (1, 0) and (𝑥, 𝑦) = (0, 1). This gives us 𝑎 | 𝑏 and 𝑎 | 𝑐,
respectively.

2.5 We have ⌊𝑥⌋ ≤ 𝑥 by definition. Next, notice that there must be an integer between
𝑥 − 1 and 𝑥, so we get 𝑥 − 1 ≤ ⌊𝑥⌋. If this were an equality, then 𝑥 − 1 would be an
integer, and hence 𝑥 would be an integer—which would mean that we actually have
𝑥 = ⌊𝑥⌋ = 𝑥− 1, which is absurd! So the inequality is strict: 𝑥− 1 < ⌊𝑥⌋.

2.7 The quotient is 𝑞 = ⌊−75/6⌋ = ⌊−12.5⌋ = −13 and the remainder is 𝑟 = −75 − 6 ·
(−13) = 3.

2.9 The remainder theorem shows that every 𝑎 ∈ Z can be written in the form 𝑎 = 3𝑞,
𝑎 = 3𝑞 + 1 or 𝑎 = 3𝑞 + 2. All we have to do is observe that every integer of the form
3𝑞 + 2 can be re-expressed in the form 3𝑘 − 1:

3𝑞 + 2 = 3(𝑞 + 1− 1) + 2 = 3(𝑞 + 1)− 3 + 2 = 3(𝑞 + 1)− 1.

2.12 In Example 2.11 we saw that if 𝑎 and 𝑏 are both odd then 𝑎2 + 𝑏2 leaves a remainder
of 2 after division by 4. If 𝑎 = 2𝑘 and 𝑏 = 2𝑙 are both even then

𝑎2 + 𝑏2 = 4𝑘2 + 4𝑙2 = 4(𝑘2 + 𝑙2)

is divisible by 4 hence leaves a remainder of zero. Finally, if only one of 𝑎 and 𝑏 is odd,
say 𝑎, then

𝑎2 + 𝑏2 = (2𝑘 + 1)2 + (2𝑙)2 = 4𝑘2 + 4𝑘 + 1 + 4𝑙2 = 4(𝑘2 + 𝑘 + 𝑙2) + 1

leaves a remainder of 1.

2.13 If 𝑥, 𝑦 ∈ Z satisfy 𝑥2 + 𝑦2 = 6 then

𝑥2 = 6− 𝑦2 ≤ 6 =⇒ |𝑥| ≤
√
6 =⇒ |𝑥| ≤ 2.

So let’s plug in 𝑥 = 0,±1,±2 into 6− 𝑥2 and see if we get a square (since this should
be equal to 𝑦2):

• 𝑥 = 0: 6− 𝑥2 = 0 — not a square.

• 𝑥 = ±1: 6− 𝑥2 = 5 — not a square.

• 𝑥 = ±2: 6− 𝑥2 = 2 — not a square.

Thus, none of the possible integer values of 𝑥 satisfy the equation, and so there can be
no integer solutions.
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Practice Problems

2.1. (a) 𝑎 = 𝑎 · 1.
(b) 0 = 0 · 𝑎.
(c) If 0 | 𝑎 then 𝑎 = 𝑛0 = 0. The converse is part (b).

(d) If 𝑎 = 0 then this follows from (c). So assume 𝑎 ̸= 0. If 𝑎 | 𝑏 then 𝑏 = 𝑛𝑎 for some
𝑛 ∈ Z. If 𝑏 | 𝑎 then 𝑎 = 𝑚𝑏 for some 𝑚 ∈ Z. Combining both, we get

𝑎 = 𝑚𝑏 = 𝑚(𝑛𝑎) = (𝑚𝑛)𝑎.

Since 𝑎 ̸= 0, it follows that 𝑚𝑛 = 1. Since 𝑚,𝑛 ∈ Z, it follows that either
𝑚 = 𝑛 = 1 or 𝑚 = 𝑛 = −1. In either case, we get that 𝑎 = 𝑚𝑏 = ±𝑏, as desired.

(e) If 𝑎 | 𝑏 then 𝑏 = 𝑚𝑎 with 𝑚 ∈ Z hence 𝑏𝑛 = 𝑚𝑛𝑎𝑛 so 𝑎𝑛 | 𝑏𝑛 since 𝑚𝑛 ∈ Z.

2.2. (a) True. If 𝑏 = 𝑛𝑎 and 𝑑 = 𝑚𝑐 then 𝑏𝑑 = (𝑛𝑚)𝑎𝑐.

(b) False. For example, 1 | 2 and 1 | 3 but 1 + 1 ∤ 2 + 3.

(c) False. 4 | 2 · 2 but 4 ∤ 2 and 4 ∤ 2.
(d) False. Same example in (c) works here.

2.3. No solution provided. Assignment problem.

2.4. If 𝑏 < 0 then −𝑏 > 0 so we can apply The Remainder Theorem to 𝑎 and −𝑏. Doing so,
we can write 𝑎 = (−𝑏)𝑞 + 𝑟, where 0 ≤ 𝑟 < −𝑏. This is the same as 𝑎 = 𝑏(−𝑞) + 𝑟 and
0 ≤ 𝑟 < |𝑏|, since |𝑏| = −𝑏 if 𝑏 < 0.

2.5. (a) Let 𝑆 = {𝑎− 𝑛𝑏 : 𝑛 ∈ Z} ∩ Z≥0. If 𝑎 ≥ 0 then 𝑎− 0𝑏 ∈ 𝑆.

If 𝑎 < 0 then, since 𝑏 ≥ 1, 𝑎− 𝑎𝑏 = 𝑎(1− 𝑏) ≥ 0 is in 𝑆.

(b) By the definition of 𝑆, 𝑟 = 𝑎−𝑞𝑏 for some 𝑞 and 𝑟 ≥ 0. Suppose for a contradiction
that 𝑟 ≥ 𝑏. Then 𝑟− 𝑏 ≥ 0. However, 𝑟− 𝑏 = 𝑎− 𝑞𝑏− 𝑏 = 𝑎− (𝑞+1)𝑏 is in 𝑆 and
clearly 𝑟 − 𝑏 < 𝑟. This contradicts the minimality of 𝑟. So 𝑟 < 𝑏, as desired.

(c) From (b), we have 𝑟 = 𝑎 − 𝑞𝑏 with 0 ≤ 𝑟 < 𝑏. This is what Theorem 2.3
(The Remainder Theorem) asserts, since the first equation can be re-written as
𝑎 = 𝑞𝑏+ 𝑟.
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Lecture 3

Exercises

3.2 If 𝑎 = 0 then this is true by definition, since gcd(0, 0) = 0. So we may assume that
𝑎 ̸= 0.

First, since |𝑎| divides both 𝑎 and 0, it’s a common divisor of both. Second, of all the
divisors of 𝑎, |𝑎| is the largest (by Proposition 2.1(c)). It follows that |𝑎| is the greatest
common divisor of 𝑎 and 0.

3.4 If 𝑑 | 𝑎 and 𝑑 | 𝑏, then 𝑑 will divide the linear combination 𝑎−𝑞𝑏. Hence every common
divisor of 𝑎 and 𝑏 is a common divisor of 𝑏 and 𝑎− 𝑞𝑏.

Conversely, if 𝑑 | 𝑏 and 𝑑 | 𝑎−𝑞𝑏, 𝑑 will divide the linear combination 𝑞·𝑏+1·(𝑎−𝑞𝑏) = 𝑎.
So every common divisor of 𝑏 and 𝑎− 𝑞𝑏 is a common divisor of 𝑎 and 𝑏.

3.6 Since gcd(1234, 5678) = gcd(5678, 1234), we can run the Euclidean algorithm with
𝑎 = 5678 and 𝑏 = 1234:

5678 = 4 · 1234 + 742

1234 = 1 · 742 + 492

742 = 1 · 492 + 250

492 = 1 · 250 + 242

250 = 1 · 242 + 8

242 = 30 · 8 + 2

8 = 4 · 2 + 0.

We’ve reached a zero remainder! So what we want is the last non-zero remainder, that
is,

gcd(1234, 5678) = 2.

3.10 In the preceding exercise, we computed gcd(1234, 5678) to be 2. We can run our
Euclidean algorithm backwards to find that

2 = 242− 30 · 8
= 242− 30 · (250− 242)

= −30 · 250 + 31 · 242
= −30 · 250 + 31(492− 250)

= −61 · 250 + 31 · 492
= −61 · (742− 492) + 31 · 492
= −61 · 742 + 92 · 492
= −61 · 742 + 92(1234− 742)

= −153 · 742 + 92 · 1234
= −153(5678− 4 · 1234) + 92 · 1234
= 704 · 1234 + (−153) · 5678.
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Practice Problems

3.1. If 𝑐 | gcd(𝑎, 𝑏) then since gcd(𝑎, 𝑏) divides both 𝑎 and 𝑏, 𝑐 must too, by transitivity of
division.

For the converse, apply Bézout’s lemma to write gcd(𝑎, 𝑏) = 𝑎𝑥+ 𝑏𝑦 for some 𝑥, 𝑦 ∈ Z.
Then if 𝑐 | 𝑎 and 𝑐 | 𝑏, it follows that 𝑐 | 𝑎𝑥+ 𝑏𝑦 = gcd(𝑎, 𝑏).

3.2. (a) Let 𝑔 = gcd(𝑛𝑎, 𝑛𝑏) and ℎ = gcd(𝑎, 𝑏). We wish to show that 𝑔 = |𝑛|ℎ. We will
show that 𝑔 | |𝑛|ℎ and |𝑛|ℎ | 𝑔. It will follow then that 𝑔 = |𝑛|ℎ since both are
≥ 0. (Recall that if 𝑎 | 𝑏 and 𝑏 | 𝑎 then 𝑏 = ±𝑎.)

Proof that 𝑔 divides |𝑛|ℎ: By Bézout’s Lemma, we can write ℎ = 𝑎𝑥 + 𝑏𝑦 with
𝑥, 𝑦 ∈ Z. Then |𝑛|ℎ = (±𝑛)ℎ = 𝑛𝑎 · (±𝑥) + 𝑛𝑏 · (±𝑦). So, since 𝑔 | 𝑛𝑎 and 𝑔 | 𝑛𝑏,
it follows that 𝑔 | |𝑛|ℎ.
Proof that |𝑛|ℎ divides 𝑔: Note that |𝑛|ℎ = ±𝑛ℎ. Since ℎ | 𝑎 it follows that 𝑛ℎ | 𝑛𝑎
and hence |𝑛|ℎ = ±𝑛ℎ | 𝑎. Similarly, since ℎ | 𝑏, we find that |𝑛|ℎ | 𝑛𝑏. Hence, by
Problem 3.1 above, |𝑛|ℎ must divide gcd(𝑛𝑎, 𝑛𝑏) = 𝑔.

(b) Note that 𝑎/𝑑 and 𝑏/𝑑 are integers. So, by part (a),

gcd(𝑎, 𝑏) = gcd

(︂
𝑑
𝑎

𝑑
, 𝑑

𝑏

𝑑

)︂
= |𝑑| gcd

(︂
𝑎

𝑑
,
𝑏

𝑑

)︂
.

Now divide both sides by |𝑑|.

3.3. No solution provided. Assignment problem.

3.4. (a) If 𝑑 is a common divisor of 𝑎1, . . . , 𝑎𝑛, then 𝑑 is in particular a common divisor of
gcd(𝑎1, 𝑎2), hence a common divisor of gcd(𝑎1, 𝑎2), 𝑎3, . . . , 𝑎𝑛.

Conversely, if 𝑑 is a common divisor of gcd(𝑎1, 𝑎2), 𝑎3, . . . , 𝑎𝑛, then 𝑑 is a divisor
of gcd(𝑎1, 𝑎2) and hence 𝑑 is also a common divisor of 𝑎1 and 𝑎2.

This shows that the every common divisors of 𝑎1, . . . , 𝑎𝑛 is a common divisor of
gcd(𝑎1, 𝑎2), 𝑎3, . . . , 𝑎𝑛, and vice versa. So it must be the case that their gcd’s are
the same.

(b) We apply part (a) repeatedly:

gcd(20, 28, 100, 36) = gcd(gcd(20, 28), 100, 36)

= gcd(4, 100, 36)

= gcd(gcd(4, 100), 36)

= gcd(4, 36)

= 4.
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Lecture 4

Exercises

4.4 Proof 1 (using Bézout): Since 𝑎 and 𝑏 are coprime, we have 1 = 𝑎𝑥 + 𝑏𝑦 for some
𝑥, 𝑦 ∈ Z. Now multiply this by 𝑐 to get 𝑐 = 𝑐𝑎𝑥 + 𝑐𝑏𝑦. Since 𝑎 | 𝑐 and 𝑏 | 𝑐, we can
write 𝑐 = 𝑎𝑘 and 𝑐 = 𝑏𝑙 for some 𝑘, 𝑙 ∈ Z. Therefore,

𝑐 = 𝑐𝑎𝑥+ 𝑐𝑏𝑦 = (𝑏𝑙)𝑎𝑥+ (𝑎𝑘)𝑏𝑦 = 𝑎𝑏(𝑙𝑥+ 𝑘𝑦).

So 𝑎𝑏 | 𝑐, as required.

Proof 2 (using Proposition 4.3(a)): Since 𝑎 | 𝑐 and 𝑏 | 𝑐, we can write 𝑐 = 𝑎𝑘 and
𝑐 = 𝑏𝑙 for some 𝑘, 𝑙 ∈ Z. Therefore, 𝑎𝑘 = 𝑏𝑙. From this we see that 𝑎 | 𝑏𝑙 and thus
𝑎 | 𝑙 since 𝑎 and 𝑏 are coprime. So we can write 𝑙 = 𝑎𝑟 for some 𝑟 ∈ Z. But then
𝑐 = 𝑏𝑙 = (𝑎𝑏)𝑟 and hence 𝑎𝑏 | 𝑐.

4.8 We can solve this problem by inspection, but let’s run through our algorithm. We
begin by applying the Euclidean algorithm to determine gcd(5, 7):

7 = 1 · 5 + 2

5 = 2 · 2 + 1

2 = 2 · 1 + 0.

So gcd(5, 7) = 1. Reversing the Euclidean algorithm, we get:

1 = 5− 2 · 2 = 5− 2(7− 1 · 5) = 5 · 3 + 7 · (−2).

(The above could have been determined by inspection.) Multiplying through by 23,
we find that

23 = 5 · 69 + 7 · (−46).

So a particular solution is (𝑥, 𝑦) = (69,−46) and the general solution is therefore

(𝑥, 𝑦) = (69,−46) + 𝑛(−7, 5), 𝑛 ∈ Z.

Practice Problems

4.1. If 𝑑 | 𝑎 and 𝑑 | 𝑏 then 𝑑 | 𝑟𝑎 + 𝑠𝑏 = 2 and 𝑑 | 𝑡𝑎 + 𝑡𝑏 = 5, so 𝑑 | gcd(2, 5) = 1.
Thus 𝑑 = ±1. So the only common divisors of 𝑎 and 𝑏 are ±1, hence 𝑎 and 𝑏 must be
coprime.

4.2. (a) By Lemma 3.3, we have gcd(2𝑎− 1, 2𝑎+ 1) = gcd((2𝑎− 1)− (2𝑎+ 1), 2𝑎+ 1) =
gcd(−2, 2𝑎 + 1). Since 2𝑎 + 1 is odd, the last gcd is 1, so 2𝑎 − 1 and 2𝑎 + 1 are
coprime.

(b) Note that (𝑎+ 1)(𝑎! + 1) = (𝑎+ 1)! + (𝑎+ 1). So, by Lemma 3.3,

gcd(𝑎!+1, (𝑎+1)!+𝑎) = gcd(𝑎!+1, (𝑎+1)!+𝑎−(𝑎+1)(𝑎!+1)) = gcd(𝑎!+1,−1) = 1.

4.3. No solution provided. Assignment problem.
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4.4. (a) Any solution (𝑢, 𝑧) = (𝑢0, 𝑧0) to (♣) gives us a potential value for 𝑧 and a two-
variable equation

𝑎

𝑑
𝑥+

𝑏

𝑑
𝑦 = 𝑢0.

Since gcd(𝑎/𝑑, 𝑏/𝑑) = 1, this equation always has solutions (𝑥, 𝑦) = (𝑥0, 𝑦0). Then
(𝑥, 𝑦, 𝑧) = (𝑥0, 𝑦0, 𝑧0) are solutions to (♢).

Conversely, any solution (𝑥0, 𝑦0, 𝑧0) to (♢) gives a solution to (♣) with (𝑢, 𝑧) =
((𝑎1/𝑑)𝑥0 + (𝑎2/𝑑)𝑦0, 𝑧0).

(b) If there are integers 𝑥1, 𝑥2, 𝑥3 ∈ Z that satisfy (♢), then since 𝑔 | 𝑎1𝑥1+𝑎2𝑥2+𝑎3𝑥3,
we must have that 𝑔 | 𝑏.
Conversely, assume that 𝑔 | 𝑏. Since 𝑔 = gcd(gcd(𝑎, 𝑏), 𝑐) = gcd(𝑑, 𝑐), it follows
that (♣) has integer solutions by Theorem 4.6(a). By part (a), such solutions give
integer solutions to (♢).

4.5. No solution provided. Assignment problem.
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Lecture 5

Exercises

5.4 Induction on 𝑛 plus Euclid’s lemma. The base case 𝑛 = 1 is immediate. So assume
the result holds for 𝑛 = 𝑘 and suppose that 𝑝 | 𝑎1 · · · 𝑎𝑘𝑎𝑘+1. If we view 𝑎1 · · · 𝑎𝑘+1

as 𝑎𝑏, where 𝑎 = 𝑎1 · · · 𝑎𝑘 and 𝑏 = 𝑎𝑘+1, Euclid’s lemma tells us that 𝑝 | 𝑎 or 𝑝 | 𝑏.
If the latter holds, we’re done. If the former holds, apply the inductive hypothesis to
conclude that 𝑝 | 𝑎𝑖 for some 𝑖 ≤ 𝑘. We’re done in either case.

5.6 Since 100 = 22 · 52, we have 𝑣2(100) = 𝑣5(100) = 2, and 𝑣𝑝(100) = 0 for all 𝑝 ̸= 2, 5.

5.8 We have

𝑣3(1000!) =

⌊︂
1000

3

⌋︂
+

⌊︂
1000

32

⌋︂
+

⌊︂
1000

33

⌋︂
+ · · ·

= 333 + 111 + 37 + 12 + 4 + 1 + 0 + · · ·
= 498.

5.9 One is obvious: 9 = 32. To find the other one, notice that

9 = 4 + 5 = 4− (−5) = 22 − (
√
−5)2

hence
9 = (2−

√
−5)(2 +

√
−5).

Note that the given factorization of 6 comes from

6 = 1 + 5 = 12 − (
√
−5)2.

Note: There remains the issue of checking that 2±
√
−5 and 1±

√
−5 (and 2 and 3)

are “prime” in Z[
√
−5]. But take this for granted for now. This would require a more

thorough examination of what it means for a number to be prime.

Practice Problems

5.1. Suppose that 𝑞 is not prime, so that 𝑞 = 𝑎𝑏 for some 𝑎, 𝑏 ∈ Z with 1 < 𝑎 < 𝑞 and
1 < 𝑏 < 𝑞. Then certainly 𝑞 | 𝑎𝑏 but 𝑞 ∤ 𝑎 and 𝑞 ∤ 𝑏 since 𝑎, 𝑏 < 𝑞.

5.2. Suppose that 𝑎 =
∏︀

𝑖 𝑝
𝑎𝑖 and 𝑏 =

∏︀
𝑖 𝑝

𝑏𝑖
𝑖 are the prime factorizations of 𝑎 and 𝑏, where

𝑎𝑖 ≥ 0 and 𝑏𝑖 ≥ 0 to allow for the same set of primes to occur in both factorizations.
Then 𝑎5 =

∏︀
𝑖 𝑝

5𝑎𝑖 and 𝑏2 =
∏︀

𝑖 𝑝
2𝑏𝑖 . So, since 𝑎5 | 𝑏2, Euclid’s lemma tells us that

𝑝5𝑎𝑖 | 𝑝2𝑏𝑖 for all 𝑖. Thus, 5𝑎𝑖 ≤ 2𝑏𝑖, and consequently 𝑏𝑖 ≥ (5/2)𝑎𝑖 ≥ 𝑎𝑖 for all 𝑖. This
implies that 𝑝𝑎𝑖𝑖 | 𝑝𝑏𝑖 for all 𝑖 and therefore 𝑎 | 𝑏. (For the last step, we can either
appeal to Proposition 4.3(b) or observe that

𝑏 =
∏︁
𝑖

𝑝𝑏𝑖𝑖 =
∏︁
𝑖

𝑝𝑎𝑖𝑖 𝑝𝑏𝑖−𝑎𝑖
𝑖 =

∏︁
𝑖

𝑝𝑎𝑖𝑖
∏︁
𝑖

𝑝𝑏𝑖−𝑎𝑖
𝑖 = 𝑎𝑐

where 𝑐 =
∏︀

𝑖 𝑝
𝑏𝑖−𝑎𝑖
𝑖 is an integer since 𝑏𝑖 − 𝑎𝑖 ≥ 0 for all 𝑖.)
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5.3. (a) Since 𝑎 =
∏︀

𝑝 𝑝
𝑣𝑝(𝑎) and 𝑏 =

∏︀
𝑝 𝑝

𝑣𝑝(𝑏), it follows that

𝑎𝑏 =
∏︁
𝑝

𝑝𝑣𝑝(𝑎)𝑝𝑣𝑝(𝑏) =
∏︁
𝑝

𝑝𝑣𝑝(𝑎)+𝑣𝑝(𝑏).

Thus, 𝑣𝑝(𝑎𝑏) = 𝑣𝑝(𝑎) + 𝑣𝑝(𝑏) by definition.

(b) Repeated application of part (a) with 𝑎 = 𝑏. For example,

𝑣𝑝(𝑎
2) = 𝑣𝑝(𝑎𝑎) = 𝑣𝑝(𝑎) + 𝑣𝑝(𝑎) = 2𝑣𝑝(𝑎).

(c) Let 𝑘 = 𝑣𝑝(𝑎) and 𝑙 = 𝑣𝑝(𝑏) and assume, without loss of generality that 𝑘 ≤ 𝑙 so
that min(𝑣𝑝(𝑎), 𝑣𝑝(𝑏)) = 𝑘. We must prove that 𝑣𝑝(𝑎 + 𝑏) ≥ 𝑘 with equality of
𝑙 > 𝑘.

Write 𝑎 = 𝑝𝑘𝑎′ and 𝑏 = 𝑝𝑙𝑏′. So, in particular, 𝑝 ∤ 𝑎′ and 𝑝 ∤ 𝑏. Thus,

𝑎+ 𝑏 = 𝑝𝑘𝑎′ + 𝑝𝑙𝑏′ = 𝑝𝑘(𝑎′ + 𝑝𝑙−𝑘𝑏′).

Note that 𝑎′ + 𝑝𝑙−𝑘𝑏′ is an integer since 𝑙 ≥ 𝑘. This shows that 𝑝𝑘 | 𝑎 + 𝑏 so
𝑣𝑝(𝑎+ 𝑏) ≥ 𝑘.

Suppose now that 𝑣𝑝(𝑎) ̸= 𝑣𝑝(𝑏) so that 𝑙 > 𝑘. Then 𝑎′ + 𝑝𝑙−𝑘𝑏′ is not divisible by
𝑝 (because if it were then since 𝑝 divides 𝑝𝑙−𝑘𝑏′, then 𝑝 would divide 𝑎′ + 𝑝𝑙−𝑘𝑏′ −
𝑝𝑙−𝑘𝑏′ = 𝑎′). Thus, 𝑝𝑘 is the highest power of 𝑝 that divides 𝑎+𝑏. So 𝑣𝑝(𝑎+𝑏) = 𝑘.

(d) If 𝑎 | 𝑏 then since 𝑝𝑣𝑝(𝑎) | 𝑎, it follows that 𝑝𝑣𝑝(𝑎) | 𝑏. So 𝑣𝑝(𝑏) is at least 𝑣𝑝(𝑎).

Conversely, assume that 𝑣𝑝(𝑏) ≥ 𝑣𝑝(𝑎) for all 𝑝. We have

𝑏 =
∏︁
𝑝

𝑝𝑣𝑝(𝑏) =
∏︁
𝑝

𝑝𝑣𝑝(𝑏)−𝑣𝑝(𝑎)𝑝𝑣𝑝(𝑎)

=
∏︁
𝑝

𝑝𝑣𝑝(𝑏)−𝑣𝑝(𝑎)
∏︁
𝑝

𝑝𝑣𝑝(𝑎)

=

(︃∏︁
𝑝

𝑝𝑣𝑝(𝑏)−𝑣𝑝(𝑎)

)︃
𝑎.

The first factor on the right is an integer, since 𝑣𝑝(𝑎) − 𝑣𝑝(𝑎) ≥ 0, so it follows
that 𝑎 | 𝑏.

(e) If 𝑘 | 𝑣𝑝(𝑎) for all 𝑝, so that 𝑣𝑝(𝑎) = 𝑛𝑝𝑘 for some 𝑛𝑝 ∈ Z, we find that

𝑎 =
∏︁
𝑝

𝑝𝑣𝑝(𝑎) =
∏︁
𝑝

𝑝𝑛𝑝𝑘 =

(︃∏︁
𝑝

𝑝𝑛𝑝

)︃𝑘

so 𝑎 is a 𝑘th power of an integer.

Conversely, if 𝑎 = 𝑏𝑘, then using the prime factorization of 𝑏 we get

𝑎 =

(︃∏︁
𝑝

𝑝𝑣𝑝(𝑏)

)︃𝑘

=
∏︁
𝑝

𝑝𝑘𝑣𝑝(𝑏)

from which it follows that 𝑣𝑝(𝑎) = 𝑘𝑣𝑝(𝑏), and therefore 𝑘 | 𝑣𝑝(𝑎).

5.4. Any positive common divisor 𝑑 of 𝑎 and 𝑏 will be of the form 𝑑 =
∏︀

𝑖 𝑝
𝑛𝑖
𝑖 where 𝑛𝑖 ≤ 𝑎𝑖

and 𝑛𝑖 ≤ 𝑏𝑖, since any prime divisor of 𝑑 must divide both 𝑎 and 𝑏. The way to
maximize this divisor is to maximize 𝑛𝑖. This is achieved when 𝑛𝑖 = min(𝑎𝑖, 𝑏𝑖).
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5.5. (a) The divisors of 𝑝𝑘 are ±1,±𝑝, . . . ,±𝑝𝑘. So there are 2(𝑘 + 1) divisors.

(b) The divisors of 𝑝𝑘𝑞𝑙 are of the form ±𝑝𝑖𝑞𝑗 where 0 ≤ 𝑖 ≤ 𝑘 and 0 ≤ 𝑗 ≤ 𝑙. There
are 2(𝑘 + 1)(𝑙 + 1) such numbers.

5.6. (a) We first observe that if 𝑏 | 𝑎, then 𝑣𝑝(𝑎/𝑏) = 𝑣𝑝(𝑎) − 𝑣𝑝(𝑏). (We can prove this
using problem 3(a): 𝑣𝑝(𝑎) = 𝑣𝑝((𝑎/𝑏)𝑏) = 𝑣𝑝(𝑎/𝑏) + 𝑣𝑝(𝑏).)

Consequently,

𝑣𝑝

(︂(︂
𝑛

𝑘

)︂)︂
= 𝑣𝑝(𝑛!)− 𝑣𝑝(𝑘!)− 𝑣𝑝((𝑛− 𝑘)!).

Now apply Legendre’s formula.

(b) We have

𝑣2

(︂(︂
600

300

)︂)︂
=

∞∑︁
𝑖=1

⌊︂
600

𝑝𝑖

⌋︂
−
⌊︂
300

𝑝𝑖

⌋︂
−
⌊︂
300

𝑝𝑖

⌋︂

=
∞∑︁
𝑖=1

⌊︂
600

𝑝𝑖

⌋︂
− 2

∞∑︁
𝑖=1

⌊︂
300

𝑝𝑖

⌋︂
= (300 + 150 + 75 + 37 + 18 + 9 + 4 + 2 + 1)

− 2(150 + 75 + 37 + 18 + 9 + 4 + 2 + 1)

= 4.

5.7. What must be proved is that 𝑣𝑝
(︀(︀

𝑝
𝑘

)︀)︀
= 1. From the previous exercise, we have

𝑣𝑝

(︂(︂
𝑝

𝑘

)︂)︂
=

∞∑︁
𝑖=1

⌊︂
𝑝

𝑝𝑖

⌋︂
−
⌊︂
𝑝− 𝑘

𝑝𝑖

⌋︂
−
⌊︂
𝑘

𝑝𝑖

⌋︂
.

If 𝑘 < 𝑝, then
⌊︁

𝑘
𝑝𝑖

⌋︁
= 0 for all 𝑖 ≥ 1. Likewise, since 𝑘 > 0, we have that 𝑝 − 𝑘 < 𝑝,

and so
⌊︁
𝑝−𝑘
𝑝𝑖

⌋︁
= 0 for all 𝑖 ≥ 1. Also,

⌊︁
𝑝
𝑝𝑖

⌋︁
= 0 for all 𝑖 > 1. Consequently,

𝑣𝑝

(︂(︂
𝑝

𝑘

)︂)︂
=

∞∑︁
𝑖=1

⌊︂
𝑝

𝑝𝑖

⌋︂
− 0− 0 =

⌊︂
𝑝

𝑝

⌋︂
= 1,

as required.
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Lecture 6

Exercises

6.7. Answer: 7 + 30𝑞, 0 ≤ 𝑞 ≤ 5.

Practice Problems

6.1. (a) Euclid’s proof shows that 𝑝1 · · · 𝑝𝑛+1 must have a prime divisor 𝑞 that isn’t among
the first 𝑛 primes 𝑝1, . . . , 𝑝𝑛. Whatever 𝑞 is, it’s not among the first 𝑛 primes, so
it’s one of 𝑝𝑛+1, 𝑝𝑛+2, . . .. In particular then, 𝑝𝑛+1 ≤ 𝑞. Since 𝑞 | 𝑁 , it follows
that 𝑞 ≤ 𝑁 and hence 𝑝𝑛+1 ≤ 𝑁 , as desired.

(b) The base case is obvious (𝑝1 = 2 and 2 = 22
1−1

). So assume 𝑝𝑘 ≤ 22
𝑘−1

for all
𝑘 = 1, . . . , 𝑛. Then, by part (a),

𝑝𝑛+1 ≤ 𝑝1 · · · 𝑝𝑛 + 1 ≤ 22
1−1

22
2−1 · · · 22𝑛−1

+ 1 = 22
0+21+···2𝑛−1

+ 1.

Now,

20 + 21 + · · · 2𝑛−1 =
2𝑛 − 1

2− 1
= 2𝑛 − 1.

Finally, since 𝑎+ 1 ≤ 2𝑎 for 𝑎 ≥ 1, we have

𝑝𝑛+1 ≤ 22
𝑛−1 + 1 ≤ 2(22

𝑛−1) = 22
𝑛
,

as desired.

6.2. (a) Induction. Base case is easy, and here is the inductive step:

𝐹0 · · ·𝐹𝑛+1 = (𝐹0 · · ·𝐹𝑛)𝐹𝑛+1

= (𝐹𝑛+1 − 2)𝐹𝑛+1

= (22
𝑛+1 − 1)(22

𝑛+1
+ 1)

= 22
𝑛+2 − 1

= 𝐹𝑛+2 − 2.

(b) Suppose that 𝑚 > 𝑛 and that 𝑑 | 𝐹𝑛 and 𝑑 | 𝐹𝑚. Then by part (a) 𝐹𝑚 =
𝐹0 · · ·𝐹𝑛 · · ·𝐹𝑚−1 + 2, so we must have that 𝑑 | 2. So the only possibilities for 𝑑
are ±1 and ±2. The latter are impossible since 𝑑 | 𝐹𝑛 and 𝐹𝑛 is odd. So 𝑑 = ±1,
and therefore gcd(𝐹𝑛, 𝐹𝑚) = 1.

(c) If 𝑝𝑛 is a prime dividing 𝐹𝑛 (and there must be such a prime since 𝐹𝑛 > 1), then
𝑝1, 𝑝2, . . . is an infinite sequence of primes since by part (b) we have 𝑝𝑖 ̸= 𝑝𝑗 for
all 𝑖 ̸= 𝑗.

6.3. No solution provided. Assignment problem.

6.4. No solution provided. Assignment problem.

6.5. The 𝑎th term in the progression will necessarily be composite. Indeed, if 𝑞 = 𝑎 then
𝑎 | 𝑎+ 𝑞𝑏 and 𝑎 ̸= 𝑎+ 𝑞𝑎.
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Lecture 7

Exercises

7.3. Answer: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79,
83, 89, 97.

7.5. We have to check divisibility by primes ≤
⌊︀√

1891
⌋︀
= 43. Doing so, we find that

31 | 1891, so 1891 is not prime.

7.10. First off, we have

1 = lim
𝑛→∞

𝜋(𝑝𝑛)

𝑝𝑛/ log 𝑝𝑛
= lim

𝑛→∞

𝑛

𝑝𝑛/ log 𝑝𝑛
= lim

𝑛→∞

𝑛 log 𝑝𝑛
𝑝𝑛

.

Taking logs of both sides (and passing the log through the limit, which is valid because
log is continuous), we have

0 = log(1) = lim
𝑛→∞

(log 𝑛+ log(log 𝑝𝑛)− log 𝑝𝑛) .

Thus,

lim
𝑛→∞

log 𝑛

log 𝑝𝑛
= lim

𝑛→∞

log 𝑝𝑛 − log(log 𝑝𝑛)

log 𝑝𝑛
= lim

𝑛→∞
1− log(log 𝑝𝑛)

log 𝑝𝑛
= 1− 0 = 1,

where we used the fact that 𝑝𝑛 → ∞ and lim𝑥→∞ log(log 𝑥)/ log 𝑥 = 0 (use, e.g.,
L’Hopital’s rule).

So, finally,

lim
𝑛→∞

𝑛/ log 𝑛

𝑝𝑛
= lim

𝑛→∞

𝑛

𝑝𝑛 log 𝑛
· log 𝑝𝑛
log 𝑝𝑛

= lim
𝑛→∞

𝑛 log 𝑝𝑛
𝑝𝑛⏟  ⏞  
→1

log 𝑛

log 𝑝𝑛⏟  ⏞  
→1

= 1,

which is exactly what we want to prove.

7.13. If ⌊𝑥⌋ = 𝑎 then
𝑎 ≤ 𝑥 < 𝑎+ 1.

So
2𝑎 ≤ 2𝑥 < 2𝑎+ 2.

Thus, ⌊2𝑥⌋ could be either 2𝑎 or 2𝑎+1. Correspondingly, ⌊2𝑥⌋−2 ⌊𝑥⌋ will be 2𝑎−2𝑎 = 0
or 2𝑎+ 1− 2𝑎 = 1.

Practice Problems

7.1. No solution provided. Assignment problem.

7.2. There are 𝑥/𝑔 intervals of length 𝑔 between 0 and 𝑥. Each of these must contain at
least one prime by assumption. So 𝜋(𝑥) ≥ 𝑥/𝑔. Consequently,

𝜋(𝑥)

(𝑥/ log 𝑥)
≥ log 𝑥

𝑔
.

As 𝑥 → ∞, the right side goes to ∞ but the left-side goes to 1 by the Prime Number
Theorem. Contradiction!
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7.3. The PNT implies that 𝑝𝑛 ∼ 𝑛 log 𝑛, meaning

lim
𝑛→∞

𝑝𝑛
𝑛 log 𝑛

= 1

and likewise

lim
𝑛→∞

(𝑛+ 1) log(𝑛+ 1)

𝑝𝑛+1
= 1.

Thus,

lim
𝑛→∞

𝑝𝑛+1

𝑝𝑛
= lim

𝑛→∞

𝑝𝑛+1

𝑝𝑛

(𝑛+ 1) log(𝑛+ 1)

(𝑛+ 1) log(𝑛+ 1)

𝑛 log 𝑛

𝑛 log 𝑛

= lim
𝑛→∞

𝑝𝑛+1

(𝑛+ 1) log(𝑛+ 1)⏟  ⏞  
→1

𝑛 log 𝑛

𝑝𝑛⏟  ⏞  
→1

(𝑛+ 1) log(𝑛+ 1)

𝑛 log 𝑛⏟  ⏞  
→1

= 1.

7.4. When 𝑥 = 1, we find that 𝑦 = 1, so (𝑥, 𝑦) = (1, 1) is a solution. By inspection we can
easily see that there are no solutions when 𝑥 = 2, 3 or 4.

So assume that 𝑥 > 4. By Bertrand’s postulate, there is a prime 𝑝 such that 𝑥/2 <
𝑝 < 𝑥, so 𝑝 | 𝑥!. Observe that 𝑝2 > 𝑥2/4 and 𝑥2/4 > 𝑥 if 𝑥 > 4. So 𝑝2 ∤ 𝑥!. It follows
that 𝑥! cannot be a perfect square since 𝑣𝑝(𝑥!) = 1 is odd. Thus there are no solutions
to 𝑥! = 𝑦2 when 𝑥 > 4.
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Lecture 8

Exercises

8.3. 𝑛 | 𝑎−𝑎 is true since all integers divide 0. If 𝑛 | 𝑎−𝑏 then 𝑛 | −(𝑎−𝑏) = 𝑏−𝑎. Finally,
if 𝑛 | 𝑏− 𝑎 and 𝑛 | 𝑐− 𝑏 then 𝑛 | (𝑐− 𝑏)− (𝑏− 𝑎) = 𝑐− 𝑎.

8.9. One possible set is {0, 6, 2, 8, 4}. Another is {10, 26,−8, 18,−6}. There are infinitely
many possibilities here.

8.11. We want to prove that [𝑎+ 𝑏]𝑛 = [𝑐+ 𝑑]𝑛, or equivalently, that 𝑎+ 𝑏 ≡ 𝑐+ 𝑑 (mod 𝑛).
However, since 𝑎 ≡ 𝑐 (mod 𝑛) and 𝑏 ≡ 𝑑 (mod 𝑛), this is precisely what Proposition
8.10 guarantees.

Practice Problems

8.1. By the remainder theorem, we have 𝑎 = 𝑛𝑞 + 𝑟 and 𝑏 = 𝑛𝑞′ + 𝑟′ where 𝑟 and 𝑟′

are the remainders of 𝑎 and 𝑏 modulo 𝑛, resp. If 𝑎 ≡ 𝑏 (mod 𝑛) then by definition
𝑟 = 𝑟′ and therefore 𝑎 − 𝑏 = 𝑛(𝑞 − 𝑞′) is divisible by 𝑛. Conversely, if 𝑛 | 𝑎 − 𝑏, then
𝑛 | 𝑛(𝑞 − 𝑞′) + (𝑟 − 𝑟′) and hence 𝑛 | 𝑟 − 𝑟′. Since 𝑟 − 𝑟′ is strictly between −𝑛 and 𝑛,
it follows that 𝑟 − 𝑟′ = 0. So 𝑟 = 𝑟′ and therefore 𝑎 ≡ 𝑏 (mod 𝑛).

8.2. Week days cycle every 7 days. Since 365 ≡ 1 (mod 7), that means the day we want
will be one day away from today. So it’s also a Tuesday.

8.3. No solution provided. Assignment problem.

8.4. This is impossible. We’ve already seen that perfect squares are congruent to either 0
or 1 modulo 4, so there can be no perfect square that represents the congruence class
[2]4 for example.
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Lecture 9

Exercises

9.2. Observe that 𝑛! ≡ 0 (mod 5) for all 𝑛 ≥ 5. So

1! + 2! + 3! + · · ·+ 100! ≡ 1! + 2! + 3! + 4! ≡ 33 ≡ 3 (mod 5).

9.4. What we can do is plug in 0, 1, . . . , 29 for 𝑎 and confirm that 𝑎5 − 𝑎 ≡ 0 (mod 30).
However, this is tedious!

Here is a better approach. First observe that

𝑎5 − 𝑎 = 𝑎(𝑎4 − 1) = 𝑎(𝑎2 − 1)(𝑎2 + 1) = (𝑎3 − 𝑛)(𝑎2 + 1).

We proved that 6 | 𝑎3−𝑎 in example preceding this exercise. So 6 | 𝑎5−𝑎. It therefore
suffices to prove that 5 | 𝑎5 − 𝑎, since then 30 = 5 · 6 will divide 𝑎5 − 𝑎 by Proposition
4.3(b). For this, we can plug in 𝑎 = 0, 1, 2, 3, 4 and reduce modulo 5. However, it will
be slightly quicker to instead use the representatives 0,±1,±2 modulo 5. We have

05 − 0 ≡ 0 (mod 5)

15 − 1 ≡ 0 (mod 5)

25 − 2 ≡ 30 ≡ 0 (mod 5)

35 − 3 ≡ (−2)5 − (−2) ≡ −(25 − 2) ≡ 0 (mod 5) (by the 𝑎 = 2 calculation)

45 − 4 ≡ (−1)5 − (−1) ≡ −(15 − 1) ≡ 0 (mod 5). (by the 𝑎 = 1 calculation)

This completes the proof.

9.6. Repeat the same proof given in the example preceding this exercise, except now 10𝑘 ≡
(−1)𝑘 (mod 11).

Practice Problems

9.1. Suppose that 𝑓(𝑥) = 𝑐0 + 𝑐1𝑥+ · · ·+ 𝑐𝑚𝑥𝑚, with 𝑐𝑖 ∈ Z.
If 𝑎 ≡ 𝑏 (mod 𝑛) then 𝑎𝑘 ≡ 𝑏𝑘 (mod 𝑛) for all 𝑘 ∈ Z≥0 (by repeatedly using the fact
that 𝑎 ≡ 𝑏 and 𝑎 ≡ 𝑏 implies 𝑎 · 𝑎 ≡ 𝑏 · 𝑏). Similarly, 𝑐𝑖𝑎

𝑘 ≡ 𝑐𝑖𝑏
𝑘 (mod 𝑚) for all 𝑖.

Combining both of these observations, we get 𝑓(𝑎) ≡ 𝑓(𝑏) (mod 𝑚).

9.2. This is false. Counterexample: Consider 𝑛 = 6. Then [2] ̸= [0] and [3] ̸= [0] but
[2][3] = [6] = [0].

9.3. Using the binomial theorem and the fact that 𝑝 |
(︀
𝑝
𝑘

)︀
for 0 < 𝑘 < 𝑝, we have

(𝑎+ 𝑏)𝑝 = 𝑎𝑝 +

(︂
𝑝

1

)︂
𝑎𝑝−1𝑏+

(︂
𝑝

2

)︂
𝑎𝑝−2𝑏+ · · ·+

(︂
𝑝

𝑝− 1

)︂
𝑎𝑏𝑝−1 + 𝑏𝑝

≡ 𝑎𝑝 + 0 + · · ·+ 0 + 𝑏𝑝 (mod 𝑝),

as desired.
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9.4. Any 𝑘 consecutive integers will reduce to give, after re-ordering if necessary, the 𝑘 re-
mainders 0, 1, . . . , 𝑘−1 modulo 𝑘. So the product of 𝑘 consecutive integers is congruent
to

0 · 1 · · · (𝑘 − 1) ≡ 0 (mod 𝑘)

hence is divisible by 𝑘.

For the stronger result, we can observe that

𝑎(𝑎+ 1) · · · (𝑎+ 𝑘 − 1)

𝑘!
=

(𝑎+ 𝑘 − 1)!

(𝑎− 1)!𝑘!
=

(︂
𝑎+ 𝑘 − 1

𝑘

)︂
is a binomial coefficient if 𝑎 ≥ 0, so is an integer. It follows that 𝑘! | 𝑎(𝑎+1) · · · (𝑎+𝑘−1).
If 𝑎 < 0 ≤ 𝑎+ 𝑘 − 1, then the product is zero, so is again an integer. Finally, if the 𝑘
consecutive integers are all negative, then their product is (−1)𝑘 times the product of
𝑘 consecutive positive integers, which is an integer by what we have already proved.

I do not know of a proof of the stronger result that uses simple modular arithmetic
arguments. Can you find one?

9.5. No solution provided. Assignment problem.

9.6. No solution provided. Assignment problem.

9.7. (a) We saw in Exercise 9.2 that

1! + 2! + · · ·+ 100! ≡ 3 (mod 5).

But squares can only be congruent to 0, 1 or 4 modulo 5.

(b) The same argument as in Exercise 9.2 (reduce modulo 5) shows that if 𝑥 ≥ 4 then

1! + 2! + · · ·+ 𝑥! ≡ 3 (mod 5)

and hence can never be a perfect square. So we only need to consider the cases
where 𝑥 < 4:

• 𝑥 = 1: 1! = 1 is a perfect square. This gives the solution (𝑥, 𝑦) = (1, 1).

• 𝑥 = 2: 1! + 2! = 3 is not a perfect square.

• 𝑥 = 3: 1!+2!+3! = 9 is a perfect square. This gives the solution (𝑥, 𝑦) = (3, 3).

So (𝑥, 𝑦) = (1, 1) and (3, 3) are the only solutions with 𝑥, 𝑦 ∈ Z>0.
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Lecture 10

Exercises

10.4. First, suppose that 0 ≤ 𝑘, 𝑘′ ≤ 𝑔 − 1 and that

𝑥0 + 𝑘
𝑛

𝑔
≡ 𝑥0 + 𝑘′

𝑛

𝑔
(mod 𝑛).

This implies that

(𝑘 − 𝑘′)
𝑛

𝑔
≡ 0 (mod 𝑛)

and hence
(𝑘 − 𝑘′)

𝑛

𝑔
= 𝑡𝑛 for some 𝑡 ∈ Z.

But then 𝑘 − 𝑘′ = 𝑡𝑔, which implies that 𝑔 | 𝑘 − 𝑘′. However, since |𝑘 − 𝑘′| < 𝑔, it
follows that 𝑘 = 𝑘′.

Next, given 𝑙 ∈ Z, apply the remainder theorem to write 𝑙 = 𝑞𝑔+𝑟, where 0 ≤ 𝑟 ≤ 𝑔−1.
Then

𝑥0 + 𝑙
𝑛

𝑔
= 𝑥0 + (𝑞𝑔 + 𝑟)

𝑛

𝑔
= 𝑥0 + 𝑞𝑛+ 𝑟

𝑛

𝑔
≡ 𝑥0 + 𝑟

𝑛

𝑔
(mod 𝑛).

This shows that [𝑥0 + 𝑙(𝑛/𝑔)] = [𝑥0 + 𝑟(𝑛/𝑔)] with 0 ≤ 𝑟 ≤ 𝑔 − 1.

10.6. Since 𝑔 = gcd(15, 35) = 5 divides 25, there are solutions to this congruence. It’s not
immediately obvious (to me) what a particular solution is, so let’s run the Euclidean
algorithm on 15𝑥− 35𝑦 = 25:

35 = 2 · 15 + 5

15 = 3 · 5 + 0.

So 5 = 15 · (−2) + 35 and therefore, by multiplying this through by 5, we get

25 = 15 · (−10) + 35 · 5.

Hence (𝑥, 𝑦) = (−10, 5) is a particular solution to 15𝑥 − 35𝑦 = 25, and therefore
𝑥 ≡ −10 is a particular solution to 15𝑥 ≡ 25 (mod 35). Consequently, the full
solution set to this congruence modulo 35 is given by{︂[︂

−10 + 𝑘
35

5

]︂
: 0 ≤ 𝑘 ≤ 4

}︂
= {[−10], [−3], [4], [11], [18]}.

10.10. Looking at the solution set in the previous exercise, we see that all congruence classes
modulo 35 reduce to just [4]7 modulo 7.

10.13. The table is:

[𝑥] [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11]

[𝑥]−1 − [1] − − − [5] − [7] − − − [11]
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Practice Problems

10.1. Since [𝑎]𝑛 = [𝑏]𝑛, we have 𝑎 = 𝑏+ 𝑘𝑛 for some 𝑘 ∈ Z, and therefore

gcd(𝑎, 𝑛) = gcd(𝑏+ 𝑘𝑛, 𝑛) = gcd(𝑏, 𝑛)

where the last step follows from Lemma 3.3. So, gcd(𝑎, 𝑛) = 1 if and only if gcd(𝑏, 𝑛) =
1.

10.2. For [2]−1 to exist in Z/𝑛Z, we need gcd(2, 𝑛) = 1, that is, we need 𝑛 to be odd.

So assume now that 𝑛 = 2𝑘+1 is odd. To find the inverse of 2 modulo 𝑛, we need to
solve the congruence 2𝑥 ≡ 1 (mod 𝑛). This is equivalent to solving the Diophantine
equation

2𝑥− 𝑛𝑦 = 1.

Since 𝑛 = 2𝑘 + 1, a particular solution is given by (𝑥, 𝑦) = (𝑘 + 1, 1). Thus,

[2]−1 = [𝑘 + 1] =

[︂
𝑛− 1

2
+ 1

]︂
=

[︂
𝑛+ 1

2

]︂
.

[Sanity checks:
𝑛+ 1

2
is an integer since 𝑛 is odd. Also, 2 · 𝑛+ 1

2
= 𝑛 + 1 ≡ 1

(mod 𝑛).]

Alternative solution: From 𝑛 = 2𝑘 + 1 we find that 2𝑘 + 1 ≡ 0 (mod 𝑛). Hence
2𝑘 + 2 ≡ 1 (mod 𝑛) and therefore

2(𝑘 + 1) ≡ 1 (mod 𝑛).

So [2]−1 = [𝑘 + 1] =
[︀
𝑛+1
2

]︀
.

10.3. (a) If 𝑥 ≡ 𝑎1 (mod 𝑛1) then we can write 𝑥 = 𝑎1 + 𝑛1𝑦 for some 𝑦 ∈ Z. Therefore,
the congruence 𝑥 ≡ 𝑎2 (mod 𝑛2) becomes

𝑎1 + 𝑛1𝑦 ≡ 𝑎2 (mod 𝑛2)

or equivalently
𝑛1𝑦 ≡ 𝑎2 − 𝑎1 (mod 𝑛2).

This is a linear congruence in 𝑦. Since gcd(𝑛1, 𝑛2) = 1, this congruence has a
unique solution modulo 𝑛2, say given by 𝑦 ≡ 𝑦0 (mod 𝑛2). That is, 𝑦 = 𝑦0+𝑛2𝑧
for some 𝑧 ∈ Z.
Substituting this back into 𝑥 = 𝑎1 + 𝑛1𝑦, we obtain

𝑥 = 𝑎1 + 𝑛1(𝑦0 + 𝑛2𝑧) = 𝑎1 + 𝑛1𝑦0 + 𝑛1𝑛2𝑧0.

Note that
𝑥 ≡ 𝑎1 + 𝑛1𝑦0 (mod 𝑛1𝑛2).

This shows that there is a solution to the pair of congruences modulo 𝑛1𝑛2. To
prove uniqueness, we can argue as follows. If we have two solutions

𝑥 ≡ 𝑟 (mod 𝑛1𝑛2) and 𝑥 ≡ 𝑟′ (mod 𝑛1𝑛2)
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to the pair of congruences modulo 𝑛1 and 𝑛2, then by reducing these solutions
modulo 𝑛1 we must have

𝑟 ≡ 𝑟′ (mod 𝑛1)

since both must be congruent to 𝑎1 modulo 𝑛1. Likewise, we obtain

𝑟 ≡ 𝑟′ (mod 𝑛2).

Thus,
𝑛1 | (𝑟 − 𝑟′) and 𝑛2 | (𝑟 − 𝑟′).

Since 𝑛1 and 𝑛2 are coprime, it follows that

𝑛1𝑛2 | (𝑟 − 𝑟′)

and therefore 𝑟 ≡ 𝑟′ (mod 𝑛1𝑛2), which is what we wanted to prove.

(b) By part (a), the congruences modulo 𝑛1 and 𝑛2 have a unique solution modulo
𝑛1𝑛2. Then this congruence paired with the congruence modulo 𝑛3 has a unique
solution modulo 𝑛1𝑛2𝑛3. Continuing in this manner, we obtain a unique solution
modulo 𝑛1𝑛2 · · ·𝑛𝑘.

10.4. We run through the proof of the CRT presented in the previous problem.

Starting from 𝑥 ≡ 2 (mod 3), we write this as 𝑥 = 2 + 3𝑦 with 𝑦 ∈ Z. Then we plug
this into the second congruence, obtaining

2 + 3𝑦 ≡ 3 (mod 5) ⇐⇒ 3𝑦 ≡ 1 (mod 5).

This has the unique solution 𝑦 ≡ 2 (mod 5). Writing this as 𝑦 = 2 + 5𝑧 and sub-
stituting it into 𝑥 = 2 + 3𝑦, we obtain 𝑥 = 8 + 15𝑧. If we plug this into the third
congruence, we obtain

8 + 15𝑧 ≡ 2 (mod 7) ⇐⇒ 𝑧 ≡ 1 (mod 7).

Thus, 𝑧 = 1 + 7𝑤 and therefore 𝑥 = 8 + 15𝑧 = 8 + 15(1 + 7𝑤) = 23 + 105𝑤.

To summarize: The solutions to the system of linear congruences are given by all 𝑥
such that

𝑥 ≡ 23 (mod 105).
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Lecture 11

Exercises

11.1. We want to solve 7𝑥 ≡ 1 (mod 11). We can either do this by inspection or by using
the Euclidean algorithm. Let’s do it by inspection, but also using a trick.

If we try 𝑥 = 1, 2, . . . one by one, we’ll find when 𝑥 = 3 that 7𝑥 = 21 ≡ −1 (mod 11).
This means that if 𝑥 = −3 then 7𝑥 ≡ −(−1) (mod 11). So −3 ≡ 8 is our desired
inverse modulo 11.

11.5. The identity element in Z under multiplication would have to be 1 but then there are
integers without inverses (e.g. 0 or 2). Likewise, the identity element in Z/𝑛Z would
have to be [1] but then there are congruence classes without inverses (e.g. [0]𝑛).

For (Z/𝑛Z)× with addition, there is no identity element since [𝑥] + [𝑒] = [𝑥] forces [𝑒]
to be [0] which is not in (Z/𝑛Z)×.

Practice Problems

11.1. No solution provided. (However, if you’ve taken a course in linear algebra, then you
should recognize that a vector space is an example of a group with ⋆ being vector
addition. Scalar multiplication is “extra structure” on top of the group structure.)

11.2. (a) Since the product of two invertible matrices is invertible, we have that 𝐴⋆𝐵 ∈ 𝐺

whenever 𝐴,𝐵 ∈ 𝐺. The identity element is the identity matrix 𝐼 =

[︂
[1] [0]
[0] [1]

]︂
.

The inverse of 𝐴 is the matrix inverse 𝐴−1. Finally, the associative law is known
to hold for matrix multiplication. Thus, 𝐺 is a group under ⋆.

(b) There are a few ways we can proceed. The first way is to list all 34 = 81 matrices
with entries in Z/3Z and check which are invertible. This is awful but can be
done if we’re desperate enough.

So let’s use the hint! To construct an invertible 2×2 matrix, we just two linearly

independent vectors with entries in Z/3Z. We can pick any non-zero vector

[︂
[𝑎]
[𝑏]

]︂
and then any vector that isn’t a scalar multiple of this. There are 32 vectors with
entries in Z/3Z. So we have 32 − 1 choices for the first vector (since anything

other that

[︂
[0]
[0]

]︂
is OK). Once we’ve picked the first vector, it will have 3 scalar

multiples (since the scalars are coming from Z/3Z), leaving us with 32−3 choices
for the second vector. So in total, there are (32 − 1)(32 − 3) = 48 matrices in 𝐺.

11.3. We basically proved this in the course of proving Lagrange’s theorem! If we can show
that the congruence classes [𝑢𝑎1], . . . , [𝑢𝑎𝑛] are all distinct, then since there are 𝑛 of
them, they must be all of the congruence classes in Z/𝑛Z. Now simply note that if
[𝑢𝑎𝑖] = [𝑢𝑎𝑗 ] then

[𝑢][𝑎𝑖] = [𝑢][𝑎𝑗 ]

and so by multiplying through by [𝑢]−1 we find that [𝑎𝑖] = [𝑎𝑗 ] and hence 𝑖 = 𝑗 since
𝑆 is a complete set of representatives. So the [𝑢𝑎𝑖] are all distinct, as desired.
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11.4. By Lagrange’s theorem, 𝑔|𝐺| = 𝑒. Hence 𝑔 ⋆ 𝑔|𝐺|−1 = 𝑔|𝐺| = 𝑒, so 𝑔|𝐺|−1 must be the
inverse of 𝑔 (by uniqueness).

11.5. (a) Note that [𝑎] ∈ (Z/𝑝Z)× if and only if 𝑎 and 𝑝 are coprime. Since all of the
integers 1 ≤ 𝑎 ≤ 𝑝− 1 are coprime to 𝑝, we have that

(Z/𝑝Z)× = {[1], [2], . . . , [𝑝− 1]}

hence |(Z/𝑝Z)×| = 𝑝− 1.

(b) Note that [𝑎] ∈ (Z/𝑝2Z)× if and only if 𝑎 and 𝑝2 are coprime. Which of the
integers 𝑎 in the interval 1 ≤ 𝑎 ≤ 𝑝2 − 1 are coprime to 𝑝2? It’ll be easier to
determine those that aren’t coprime to 𝑝2. These are precisely the multiples of
𝑝 that are < 𝑝2—namely: 𝑝, 2𝑝, ..., (𝑝 − 1)𝑝2. There are 𝑝 − 1 such multiples,
and so there are

(𝑝2 − 1)− (𝑝− 1) = 𝑝2 − 𝑝

integers in the interval 1 ≤ 𝑎 ≤ 𝑝2 − 1 that are coprime to 𝑝2. Thus,

|(Z/𝑝2Z)×| = 𝑝2 − 𝑝.

(c) Note that [𝑎] ∈ (Z/(𝑝𝑞)Z)× if and only if 𝑎 and 𝑝𝑞 are coprime. As in part
(b), we’ll begin determining by determining the integers 𝑎 in the interval 1 ≤
𝑎 ≤ 𝑝𝑞 − 1 that aren’t coprime to 𝑝𝑞. These are precisely the integers that are
multiples of 𝑝 or 𝑞. The multiples of 𝑝 are 𝑝, 2𝑝, ..., (𝑞− 1)𝑝 — so there are 𝑞− 1
of them. Likewise, there are 𝑝− 1 multiples of 𝑞. So that leaves us with

(𝑝𝑞 − 1)− (𝑝− 1)− (𝑞 − 1) = 𝑝𝑞 − 𝑝− 𝑞 − 1 = (𝑝− 1)(𝑞 − 1)

integers in the interval 1 ≤ 𝑎 ≤ 𝑝𝑞 − 1 that are coprime to 𝑝𝑞. Thus,

|(Z/(𝑝𝑞)Z)×| = (𝑝− 1)(𝑞 − 1).
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Lecture 12

Exercises

12.6. Suppose 𝑎 ∈ Z is negative. Since we know the theorem holds for −𝑎 > 0, we have
(−𝑎)𝑝 ≡ (−𝑎) (mod 𝑝). If 𝑝 is odd then this becomes (−1)𝑎𝑝 ≡ (−1)𝑎, and we’re
done since we can divide both sides by the unit −1 modulo 𝑝. If 𝑝 is even then 𝑝 = 2
and so −1 ≡ 1, so −𝑎 ≡ 𝑎, and we’re done again.

12.10. We have

173 = 2 · 86 + 1

= 2(2 · 43 + 0) + 1

= 22 · 43 + 2 · 0 + 1

= 22(2 · 21 + 1) + 2 · 0 + 1

= 23 · 21 + 22 + 2 · 0 + 1

= 23 · (2 · 20 + 1) + 22 + 2 + 1

= 24 · 20 + 23 + 22 + 2 · 0 + 1

= 24(2 · 10 + 0) + 22 + 2 · 0 + 1

= 25 · 10 + 24 · 0 + 22 + 2 · 0 + 1

= 25(2 · 5 + 0) + 24 · 0 + 22 + 2 · 0 + 1

= 26 · 5 + 25 · 0 + 24 · 0 + 22 + 2 · 0 + 1

= 26 · (2 · 2 + 1) + 25 · 0 + 24 · 0 + 22 + 2 · 0 + 1

= 27 + 26 + 25 · 0 + 24 · 0 + 22 + 2 · 0 + 1

12.1. Since 13 is prime, 312 ≡ 1 (mod 13) by Fermat. Since 155 = 12 · 12 + 11, we have

3155 = (312)12311 ≡ 112311 (mod 13).

In binary form, 11 = 23 + 2 + 1. So 311 = 32
3
323. Now,

32 = 9

hence
32

2
= (32)2 = 92 ≡ 3 (mod 13)

hence
32

3
= (32

2
)2 ≡ 32 ≡ 9 (mod 13).

So, putting all this together, we arrive at

3155 ≡ 311 ≡ 32
3
323 ≡ 9 · 9 · 3 ≡ 34 · 3 ≡ 3 · 3 ≡ 9 (mod 13).

Alternative Solution: Since 312 ≡ 1 (mod 13), we have

311 ≡ 3−1 (mod 13)

where 3−1 is the inverse of 3 modulo 13. Since 3 · 9 = 27 ≡ 1 (mod 13), it follows
that [3]−1 = [9]. Thus,

311 ≡ 9 (mod 13).

Now we conclude as in the above solution:

3155 = (312)12311 ≡ 112 · 311 ≡ 9 (mod 13).
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Practice Problems

12.1. This can be done fairly easily by repeated squaring. However, here is a shortcut.

Proving that 2340 ≡ 1 (mod 341) means proving that 341 | 2340 − 1. Since the prime
factorization of 341 is 341 = 11 × 31, it suffices to prove that 11 | 2340 − 1 and
31 | 2340 − 1. That is, it suffices to prove that

2340 ≡ 1 (mod 11) and 2340 ≡ 1 (mod 31).

The first of these an immediate consequence of Fermat’s Little Theorem, since 210 ≡ 1
(mod 11). For the second one, observe that 340 = 30×11+10. Since 230 ≡ 1 (mod 31)
by Fermat again, we have

2340 = (230)11210 ≡ 111210 (mod 31).

Now it’s just a matter of proving that 210 ≡ 1 (mod 31), and this can be done quickly
via repeated squaring.

12.2. If 𝑘 ≡ 𝑙 (mod 𝜙(𝑛)) then we can write 𝑘 = 𝑙 +𝑚𝜙(𝑛) for some 𝑚 ∈ Z. Therefore,

𝑎𝑘 = 𝑎𝑙+𝑚𝜙(𝑛) = 𝑎𝑙(𝑎𝜙(𝑛)⏟  ⏞  
≡1

)𝑚 ≡ 𝑎𝑙 (mod 𝑛),

where Euler’s theorem was used in the last step.

12.3. This is a special case of Problem 4 in Lecture 11.

12.4. This is false. For a counterexample, take 𝑎 = 2 and 𝑛 = 4. Then 𝜙(𝑛) = 𝜙(4) = 2
(why?) and

2𝜙(4)+1 = 8 ̸≡ 2 (mod 4).

It’s an interesting exercise to determine conditions on 𝑎 and 𝑛 that make this result
true. It’s true if 𝑎 and 𝑛 are coprime, but can we do better?
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Lecture 13

Exercises

13.2. Answer: TVKBSHY HYPAOTLAPJ.

13.4. Key: 𝑘 = 8. Plaintext: NUMBER THEORY IS FUN.

13.6. (a) Answer: RWHO TZS W.

(b) Answer: IS INVERTIBLE. (The decryption key is (𝑘−1
1 , 𝑘2) = (9, 9).)

13.8. The shift cipher satisfies requirements 1 and 2 but not 3 or 4. It fails requirement
3 because brute-force attacks and frequency attacks can easily determine the key 𝑘.
Since it fails 3, it also fails 4. But it fails 4 in a more extreme way! Knowledge of a
single pair (𝑚, 𝑐) allows us to determine the key since

𝑐 ≡ 𝑚+ 𝑘 (mod 26) =⇒ 𝑘 = 𝑚− 𝑐 (mod 26).

The affine cipher satisfies requirements 1 and 2 but fails 3 for the same reasons. It fails
4 since it fails 3, but it’s an interesting exercise to analyze requirement 4 separately
in this case. Assuming 𝑑𝑘(𝑐) is difficult to compute without knowing 𝑘, is the affine
cipher resistant to known-plaintext attacks?

13.10. (a) Answer: 205028 64933 214281 242631.

(b) Answer: BEZOUT LEMMA. The decryption function uses 𝑑 ≡ 143279 (mod 𝑝).

Practice Problems

13.1. No solution provided. Assignment problem.

13.2. This cipher is not secure against known-plaintext attacks. All it takes is for Eve to
obtain a single plaintext-ciphertext pair (𝑚, 𝑐) ̸= (0, 0) and she can break the cipher.

The mathematical problem is as follows. Eve knows 𝑐, 𝑚 and 𝑝 and wants to solve
the equation 𝑐 ≡ 𝑒𝑚 (mod 𝑝) for 𝑒. (Once she has 𝑒 she can determine 𝑑 via the
Euclidean algorithm.) If Eve knows a pair (𝑚, 𝑐) ̸= (0, 0), then since 𝑚 will be a unit
mod 𝑝, Eve can determine 𝑒 ≡ 𝑐𝑚−1 (mod 𝑝). She can find 𝑚−1 mod 𝑝 using the
Euclidean algorithm.

13.3. (a) Calculating powers of 3 modulo 7, we find:

𝑒 1 2 3 4 5 6

3𝑒 (mod 7) 3 2 6 4 5 1

Thus, as 𝑒 runs from 1 to 6, 3𝑒 runs over all congruence classes in (Z/7Z)×. So,
given any 𝑐 ∈ (Z/7Z)×, we can find an 𝑒 such that 3𝑒 ≡ 𝑐 (mod 7).

(b) If 3𝑒 ≡ 7 ≡ 3𝑒
′
(mod 7), we get

1 ≡ 3𝑒(3𝑒
′
)−1 ≡ 3𝑒−𝑒′ (mod 7).

If 𝑒 − 𝑒′ ≡ 𝑟 (mod 6), then 3𝑒−𝑒′ ≡ 3𝑟 (mod 7) (by Problem 12.2). From our
table in part (a), we see that the only 𝑟 mod 6 for which 3𝑟 ≡ 1 (mod 7) is
𝑟 ≡ 6 ≡ 0 (mod 6). It follows that 𝑒− 𝑒′ ≡ 0 (mod 6) hence 𝑒 ≡ 𝑒′ (mod 6).
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(c) (i) If 3𝑒 ≡ 1 (mod 7), then since 30 ≡ 1 (mod 7), we have from part (b) that
𝑒 ≡ 0 (mod 6). Thus, log3(1) ≡ 1.

(ii) If 3𝑒 ≡ 𝑎𝑏 (mod 7), 3𝑒1 ≡ 𝑎 (mod 7) and 3𝑒2 ≡ 𝑏 (mod 7), then

3𝑒1+𝑒2 = 3𝑒13𝑒2 ≡ 𝑎𝑏 ≡ 3𝑒 (mod 7).

It follows, by part (b), that 𝑒 ≡ 𝑒1 + 𝑒2 (mod 6).
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Lecture 14

Exercises

14.2. (a) 𝑛 = 6319 = 71 × 89 so 𝜙(𝑛) = 70 × 88 = 6160. The private 𝑑 is the inverse of 3
mod 6160. Solving 3𝑑 ≡ 1 (mod 6160), we find that 𝑑 = 4107.

(b) ZETA is 2504 1925. This gets encrypted into 2173 and 4914.

(c) Notice that 2504 is as in part (b), so we know it decrypts to ZE. (This type of
behaviour is bad ! It makes the cryptosystem vulnerable to attacks. When RSA
is used in practice, messages get padded with random bits in order to avoid such
“coincidences.”) The second half 5047 gets decrypted into 1714, which is RO. Thus,
the original message was ZERO.

14.3. 𝑝 and 𝑞 will be roots of the quadratic equation

𝑥2 − 1038𝑥+ 239777 = 0.

Using the quadratic formula, we find that

𝑥 =
1038±

√
10382 − 4 · 239777

2
=

1038± 344

2
.

Thus, 𝑝 = 691 and 𝑞 = 347.

Practice Problems

14.1. (a) 𝐴𝑏 ≡ (𝑔𝑎)𝑏 = (𝑔𝑏)𝑎 ≡ 𝐵𝑎 (mod 𝑝).

(b) If Eve can solve the DLP then she can find 𝑎 from 𝐴 ≡ 𝑔𝑎 (mod 𝑝) and hence she
can determine the key 𝐾 by computing 𝐵𝑎 (mod 𝑝).

14.2. (a) Since 𝑒𝑑 ≡ 1 (mod 𝜙(𝑝𝑞)), and since 𝜙(𝑝𝑞) = (𝑝 − 1)(𝑞 − 1), we can write 𝑒𝑑 =
1 + 𝑘(𝑝− 1)(𝑞 − 1) for some 𝑘 ∈ Z. Thus,

𝑚𝑒𝑑 = 𝑚(𝑚𝑝−1)𝑘(𝑞−1).

If 𝑝 ∤ 𝑚 then using Fermat’s Little Theorem we get

𝑚𝑒𝑑 ≡ 𝑚(1)𝑘(𝑞−1) ≡ 𝑚 (mod 𝑝).

If 𝑝 | 𝑚 we again get 𝑚𝑒𝑑 ≡ 𝑚 (mod 𝑝) since both sides are congruent to 0. Thus,
𝑚𝑒𝑑 ≡ 𝑚 (mod 𝑝) for all 𝑚. The exact same proof works mod 𝑞.

(b) By part (a), 𝑥 = 𝑚𝑒𝑑 is a solution to the system

𝑥 ≡ 𝑚 (mod 𝑝)

𝑥 ≡ 𝑚 (mod 𝑞)

Since 𝑥 = 𝑚 is also a solution, it follows from the uniqueness assertion in the
Chinese Remainder Theorem that

𝑚𝑒𝑑 ≡ 𝑚 (mod 𝑝𝑞).

14.3. No solution provided. Assignment problem.
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Lecture 15

Exercises

15.3. The answer, for each, is neither! Here’s why:

• 𝑣𝑝(𝑛): If 𝑝 and 𝑞 are distinct primes then 𝑣𝑝(𝑝𝑞) = 1 while 𝑣𝑝(𝑝)𝑣𝑝(𝑞) = 1 · 0 = 0.

• 𝜋(𝑛): For example 𝜋(1) = 0 and 𝜋(2) = 1 so 𝜋(2) = 𝜋(2 · 1) ̸= 𝜋(2)𝜋(1).

• 𝜔(𝑛): For example, 𝜔(6) = 2 while 𝜔(2)𝜔(3) = 1.

• Ω(𝑛): Same counterexample as for 𝜔(𝑛).

• 𝑟2(𝑛): For example, 𝑟2(1) = 4 so 𝑟2(1 · 1) ̸= 𝑟2(1)𝑟2(1).

15.6. No. For example, 𝜎𝑘(4) = 1𝑘 + 2𝑘 + 4𝑘 while 𝜎𝑘(2) = 1𝑘 + 2𝑘 so 𝜎𝑘(2)𝜎𝑘(2) =
1𝑘 + 2𝑘+1 + 4𝑘 ̸= 𝜎𝑘(2

2).

Practice Problems

15.1. First off, 𝑓(1) = 𝑓(𝑝0) = 𝑔(𝑝0) = 𝑔(1). Now assume 𝑛 > 1 and that 𝑛 =
∏︀

𝑖 𝑝
𝑎𝑖
𝑖 is the

prime factorization of 𝑛. Then since 𝑓 is multiplicative we have

𝑓(𝑛) =
∏︁
𝑖

𝑓(𝑝𝑎𝑖𝑖 ) =
∏︁
𝑖

𝑔(𝑝𝑎𝑖𝑖 ).

This product is also equal to 𝑔(𝑛) since 𝑔 is multiplicative. Thus, 𝑓(𝑛) = 𝑔(𝑛).

15.2. We have 𝑓(1) = 𝑓(1 · 1) = 𝑓(1)𝑓(1). So either 𝑓(1) = 1 or else 𝑓(1) = 0. If 𝑓(1) = 0
then 𝑓(𝑛) = 𝑓(𝑛 · 1) = 𝑓(𝑛)𝑓(1) = 0 for all 𝑛.

15.3. No solution provided. Assignment problem.

15.4. (a) Assume that 𝑛,𝑚 ∈ Z>0 are coprime. If either is even, then 𝑛𝑚 is even and
𝜒(𝑛𝑚) = 𝜒(𝑛)𝜒(𝑚) = 0. So we may assume that both 𝑛 and 𝑚 are odd. If they
are both 1 mod 4 or both 3 mod 4, then 𝑛𝑚 is 1 mod 4, so in either case we get
𝜒(𝑛𝑚) = 1 and 𝜒(𝑛)𝜒(𝑚) = 1. If one is 1 mod 4 and the other is 3 mod 4, then
𝑛𝑚 is 3 mod 4, and in this case we get 𝜒(𝑛𝑚) = −1 and 𝜒(𝑛)𝜒(𝑚) = −1. So
𝜒(𝑛𝑚) = 𝜒(𝑛)𝜒(𝑚) in all cases.

(b) Since 𝑋 is the summatory function of 𝜒, and since 𝜒 is (completely) multiplicative,
we know that 𝑋 must be multiplicative. On the other hand, 𝑋 is not completely
multiplicative. For instance, 𝑋(3) = 0 while 𝑋(32) = 1 so 𝑋(32) ̸= 𝑋(3)2.

(c) To compute 𝑟2(𝑛), we must count the solutions to 𝑥2 + 𝑦2 = 𝑛 where 𝑥, 𝑦 ∈ Z.
• If 𝑛 = 1, the only solutions are (𝑥, 𝑦) = (±1, 0) and (0,±1). So 𝑟2(1) = 4.
On the other hand, 𝑋(1) = 𝜒(1) = 1. So 𝑟2(1) = 4𝑋(1).

• If 𝑛 = 2, the only solutions are (𝑥, 𝑦) = ±(1, 1) and ±(1,−1). So 𝑟2(2) = 4.
On the other hand, 𝑋(2) = 𝜒(1) + 𝜒(2) = 1. So 𝑟2(2) = 4𝑋(2).

• If 𝑛 = 3, there are no solutions. So 𝑟2(3) = 0.
On the other hand, 𝑋(3) = 𝜒(1) + 𝜒(3) = 1− 1 = 0. So 𝑟2(3) = 4𝑋(3).

• If 𝑛 = 4, the only solutions are (𝑥, 𝑦) = (±2, 0) and (𝑥, 𝑦) = (0,±2). So
𝑟2(4) = 4.
On the other hand, 𝑋(4) = 𝜒(1)+𝜒(2)+𝜒(4) = 1+ 0+ 0. So 𝑟2(4) = 4𝑋(4).

• If 𝑛 = 5, then the only solutions are (𝑥, 𝑦) = (±2,±1), (±1,±2). So 𝑟2(5) = 8.
On the other hand, 𝑋(5) = 𝜒(1) + 𝜒(5) = 1 + 1 = 2. So 𝑟2(5) = 4𝑋(5).

I’ll let yo do the rest!
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15.5. First of all, there are the constant functions 𝑓(𝑛) = 1 and 𝑓(𝑛) = 0. These are
the only possible constant functions (why?) so let’s assume that 𝑓 is non-constant.
In particular, 𝑓(1) = 1 (since otherwise 𝑓 = 0 is constant). Once we determine
the possible values 𝑓(2) and 𝑓(3), we will have determined 𝑓 completely. Note that
𝑓(2)𝑓(3) = 𝑓(6) = 𝑓(3) since 6 ≡ 3 (mod 3). If 𝑓(3) ̸= 0 then 𝑓(2) = 1. This gives
the function

𝑓(𝑛) =

{︃
𝑎 if 𝑛 ≡ 0 (mod 3)

1 otherwise

where 𝑎 is an arbitrary non-zero number. It’s easy to check that 𝑓 is multiplicative.

On the other hand, if 𝑓(3) = 0, then 𝑓(2) can potentially be arbitrary. This gives the
function

𝑓(𝑛) =

⎧⎪⎨⎪⎩
0 if 𝑛 ≡ 0 (mod 3)

1 if 𝑛 ≡ 1 (mod 3)

𝑏 if 𝑛 ≡ 2 (mod 3)

where 𝑎 is an arbitrary number. For 𝑓 to be multiplicative, we need to check that if
𝑛,𝑚 ∈ Z>0 are coprime then 𝑓(𝑛𝑚) = 𝑓(𝑛)𝑓(𝑚). This is clear if either of 𝑛 or 𝑚 is 0
mod 3, if both are 1 mod 3, or if one is 1 mod 3 and the other is 2 mod 3. However,
if both are 2 mod 3, then 𝑛𝑚 = 1 (mod 3), so we need to have 𝑏2 = 𝑓(𝑛)𝑓(𝑚) =
𝑓(𝑛𝑚) = 1. Thus, we must have that 𝑏 = ±1.
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Lecture 16

Exercises

16.2. (a) Here is the table of values:

𝑛 1 2 3 4 5 6 7 8 9 10

𝜇(𝑛) 1 −1 −1 0 −1 1 −1 0 0 1

(b) Note that 𝜇(22) = 0 ̸= 1 = 𝜇(2)𝜇(2). So 𝜇 is not completely multiplicative.

Let’s now prove that 𝜇(𝑛) is multiplicative. Suppose that 𝑛,𝑚 ∈ Z>0 are coprime.
We wish to prove that 𝜇(𝑛𝑚) = 𝜇(𝑛)𝜇(𝑚). We may assume that 𝑛,𝑚 > 1 since the
result is trivial otherwise. If either 𝑛 or 𝑚 is divisible by 𝑝2 for some prime 𝑝 then
so is 𝑛𝑚 and hence 𝜇(𝑛) = 𝜇(𝑚) = 𝜇(𝑛𝑚) = 0 and therefore 𝜇(𝑛𝑚) = 𝜇(𝑛)𝜇(𝑚).
So all that remains is the case where 𝑛 = 𝑝1 · · · 𝑝𝑘 and 𝑚 = 𝑞1 · · · 𝑞𝑙 are products
of distinct primes. Note that since 𝑛 and 𝑚 are coprime then 𝑝𝑖 ̸= 𝑞𝑗 for any 𝑖, 𝑗.
Thus, 𝑛𝑚 = 𝑝1 · · · 𝑝𝑘𝑞1 · · · 𝑞𝑙 is a product of distinct primes. So the definition of 𝜇
gives

𝜇(𝑛𝑚) = (−1)𝑘+𝑙 = (−1)𝑘(−1)𝑙 = 𝜇(𝑛)𝜇(𝑚),

as desired.

16.9. The prime factorization of 2024 is 2024 = 23 · 11 · 23. So

𝜙(2024) = 𝜙(23 · 11 · 23)
= (23 − 22)(11− 1)(23− 1)

= 880.

Practice Problems

16.1. If 𝑛 = 𝑝𝑎11 · · · 𝑝𝑎𝑘𝑘 then

𝑛
∏︁
𝑝|𝑛

(︂
1− 1

𝑝

)︂
= 𝑝𝑎11 · · · 𝑝𝑎𝑘𝑘

(︂
1− 1

𝑝1

)︂
· · ·
(︂
1− 1

𝑝𝑘

)︂

= 𝑝𝑎11

(︂
1− 1

𝑝1

)︂
· · · 𝑝𝑎𝑘𝑘

(︂
1− 1

𝑝𝑘

)︂
=

(︂
𝑝𝑎11 − 𝑝𝑎11

𝑝1

)︂
· · ·
(︂
𝑝𝑎𝑘𝑘 −

𝑝𝑎1𝑘
𝑝𝑘

)︂
= 𝜙(𝑝𝑎11 ) · · ·𝜙(𝑝𝑎𝑘𝑘 )

= 𝜙(𝑛).

16.2. (a) Using the previous problem, we have

𝜙(𝑛𝑚)

𝑛𝑚
=
∏︁
𝑝|𝑛𝑚

(︂
1− 1

𝑝

)︂
=

∏︀
𝑝|𝑛

(︁
1− 1

𝑝

)︁∏︀
𝑝|𝑚

(︁
1− 1

𝑝

)︁
∏︀

𝑝|𝑑

(︁
1− 1

𝑝

)︁ =

𝜙(𝑛)

𝑛

𝜙(𝑚)

𝑚
𝜙(𝑑)

𝑑

.

Now multiply through by 𝑛𝑚 to get the desired result.



Appendix A 220

(b) We will proceed by induction on 𝑚. If 𝑚 = 1 then 𝑛 = 1 and there is nothing
to prove. So assume the result holds for all integers < 𝑚. Since 𝑛 | 𝑛 we can
write 𝑚 = 𝑘𝑛 where 1 ≤ 𝑘 < 𝑚. By part (a), we have 𝜙(𝑚) = 𝜙(𝑘)𝜙(𝑛)(𝑑/𝜙(𝑑)),
where 𝑑 = gcd(𝑘, 𝑛). Note this doesn’t prove that 𝜙(𝑛) | 𝜙(𝑚) since 𝑑/𝜙(𝑑) is not
necessarily an integer. However, 𝑑 | 𝑘 and since 𝑘 < 𝑚 the inductive hypothesis
tells us that 𝜙(𝑑) | 𝜙(𝑘). So 𝑙 = 𝜙(𝑘)/𝜙(𝑑) is an integer. Since

𝜙(𝑚) = 𝑙𝑑𝜙(𝑛)

it follows that 𝜙(𝑛) | 𝜙(𝑚), as required.

(c) If 𝑛 has an odd prime divisor 𝑝, then we can write

𝜙(𝑛) = (𝑝𝑎 − 𝑝𝑎−1)𝑚

for some integers 𝑎,𝑚 ≥ 1. Note that 𝑝𝑎 − 𝑝𝑎−1 is even, so 𝜙(𝑛) must be even
too. If 𝑛 doesn’t have any odd prime divisors, then 𝑛 = 2𝑎 for some 𝑎 ≥ 2 (since
𝑛 ≥ 3). In this case, 𝜙(𝑛) = 2𝑎 − 2𝑎−1 = 2𝑎−1 is even.

16.3. (a) If 𝑛 =
∏︀𝑘

𝑖=1 𝑝
𝑎𝑖
𝑖 , then the only divisors 𝑑 | 𝑛 for which Λ(𝑑) is non-zero are those

of the form 𝑑 = 𝑝𝑏𝑖𝑖 for 1 ≤ 𝑏𝑖 ≤ 𝑎𝑖. Thus,

∑︁
𝑑|𝑛

Λ(𝑛) =

𝑘∑︁
𝑖=1

𝑎𝑖∑︁
𝑗=1

Λ(𝑝𝑗𝑖 )

=
𝑘∑︁

𝑖=1

𝑎𝑖∑︁
𝑗=1

log 𝑝𝑖

=
𝑘∑︁

𝑖=1

𝑎𝑖 log 𝑝𝑖

=
𝑘∑︁

𝑖=1

log(𝑝𝑎𝑖𝑖 )

= log

(︃
𝑘∏︁

𝑖=1

𝑝𝑎𝑖𝑖

)︃
= log 𝑛.

(b) This is clear if 𝑛 = 1, so let’s assume that 𝑛 > 1. Möbius inversion gives

Λ(𝑛) =
∑︁
𝑑|𝑛

𝜇(𝑑) log(𝑛/𝑑)

=
∑︁
𝑑|𝑛

𝜇(𝑑)(log 𝑛− log 𝑑)

= log 𝑛
∑︁
𝑑|𝑛

𝜇(𝑑)−
∑︁
𝑑|𝑛

𝜇(𝑑) log 𝑑

= −
∑︁
𝑑|𝑛

𝜇(𝑑) log 𝑑

since
∑︀

𝑑|𝑛 𝜇(𝑑) = 0 for 𝑛 > 1 by by Theorem 16.3.

16.4. No solution provided.
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16.5. (a) By definition, (𝑢 * 𝜇)(𝑛) =
∑︀

𝑑|𝑛 𝑢(𝑑)𝜇(𝑛/𝑑) =
∑︀

𝑑|𝑛 𝜇(𝑛/𝑑) =
∑︀

𝑑|𝑛 𝜇(𝑑). So 𝑢 * 𝜇
is the summatory function of 𝜇, which is 𝑒 by Theorem 16.3.

(b) The computation in part (a) shows that 𝑓 *𝑢 is the summatory function of 𝑓 , that
is, 𝐹 = 𝑓 × 𝑢. Therefore, 𝐹 * 𝜇 = (𝑓 * 𝑢) * 𝜇 = 𝑓 * 𝑒 = 𝑓 .
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Lecture 17

Exercises

17.3. The powers of 4 mod 11 in order from 41 to 45 are:

4, 5, 9, 3, 1.

Here 𝑒 = 5 is the smallest exponents where 4𝑒 ≡ 1. So the powers of 4 mod 11 will
repeat in cycles of length 5.

Since 42 ≡ 5, it follows that the solutions are all given by 𝑥 = 2 + 5𝑘 where 𝑘 ∈ Z.
17.5. Here is the table of elements in (Z/11Z)× and their orders:

𝑎 values 𝑎𝑒 ord11(𝑎)

1 {1} 1
2 {2, 4, 8, 5, 10, 9, 7, 3, 6, 1} 10
3 {3, 9, 5, 4, 1} 5
4 {4, 5, 9, 3, 1} 5
5 {5, 3, 4, 9, 1} 5
6 {6, 3, 7, 9, 10, 5, 8, 4, 2, 1} 10
7 {7, 5, 2, 3, 10, 4, 6, 9, 8, 1} 10
8 {8, 9, 6, 4, 10, 3, 2, 5, 7, 1} 10
9 {9, 4, 3, 5, 1} 5
10 {10, 1} 2

17.9. Since 𝜙(23) = 22, the only possibilities for ord23(5) are 1, 2, 11 and 22. We can
compute

52 ≡ 2 and 511 ≡ 22 (mod 23).

It follows that 522 must be congruent to 1 mod 23, and thus ord23(5) = 22.

17.11. From our table in the solution to Exercise 17.5, we see that the primitive roots mod
11 are all integers congruent to 2, 6, 7 or 8 mod 11.

17.13. A complete set of representatives for (Z/8Z)× is {1, 3, 5, 7}. We can quickly compute
that ord(3) = ord(5) = ord(7) = 2 and of course ord(1) = 1. Since 𝜙(8) = 23− 22 = 4,
there are no primitive roots mod 8.

Practice Problems

17.1. If ord(𝑎) = 2 then that means 𝑎2 ≡ 1 (mod 2) but 𝑎 ̸≡ 1 (mod 𝑝). Since the only
roots of 𝑥2− 1 = (𝑥− 1)(𝑥+1) mod 𝑝 are ±1, and since 𝑎 ̸≡ 1, it follows that 𝑎 ≡ −1.

17.2. No solution provided. Assignment problem.

17.3. (a) Note that

(𝑎𝑏)ord(𝑎) ord(𝑏) = (𝑎ord(𝑎))ord(𝑏)(𝑏ord(𝑏))ord(𝑎) ≡ 1 (mod 𝑛).

So ord(𝑎𝑏) | ord(𝑎) ord(𝑏). On the other hand,

1 ≡ (𝑎𝑏)ord(𝑎𝑏) ord(𝑎) ≡ 𝑎ord 𝑎𝑏 ord(𝑎)𝑏ord(𝑎𝑏) ord(𝑎) ≡ 𝑏ord(𝑎𝑏) ord(𝑎) (mod 𝑛).

So ord(𝑏) | ord(𝑎𝑏) ord(𝑎). Since ord(𝑏) and ord(𝑎) are coprime, it follows that
ord(𝑏) | ord(𝑎𝑏). A similar argument shows that ord(𝑎) | ord(𝑎𝑏). Thus, ord(𝑎) ord(𝑏) |
ord(𝑎𝑏) by coprimality again.
Since ord(𝑎) ord(𝑏) divides and is divisible by ord(𝑎𝑏), it follows that ord(𝑎) ord(𝑏) =
ord(𝑎𝑏), as required.
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(b) Mod 5, ord(2) = 4 and ord(4) = 2. So ord(4) ̸= ord(2) ord(2).

17.4. (a) 𝑎𝑥 ≡ 𝑎𝑦 (mod 𝑛) if and only if 𝑎𝑥−𝑦 ≡ 1 (mod 𝑛) if and only if ord(𝑎) | 𝑥 − 𝑦 if
and only if 𝑥 ≡ 𝑦 (mod ord(𝑎)).

(b) This is a special case of (a) since ord(𝑔) = 𝑝− 1.

17.5. (a) This follows from the fact that 𝑔0 ≡ 1 (mod 𝑝).

(b) We have 𝑔log(𝑎𝑏) ≡ 𝑎𝑏 (mod 𝑝) and 𝑔log 𝑎+log 𝑏 = 𝑔log 𝑎𝑔log 𝑏 ≡ 𝑎𝑏 (mod 𝑝). Thus,

𝑔log(𝑎𝑏) ≡ 𝑔log 𝑎+log 𝑏 (mod 𝑝).

The previous problem now implies that

log(𝑎𝑏) ≡ log 𝑎+ log 𝑏 (mod 𝑝− 1).

(c) We have 𝑔log(𝑎
𝑘) ≡ 𝑎𝑘 (mod 𝑝) and 𝑔𝑘 log 𝑎 = (𝑔log 𝑎)𝑘 ≡ 𝑎𝑘 (mod 𝑝). So 𝑔log(𝑎

𝑘) ≡
𝑔𝑘 log 𝑎 (mod 𝑝), and we can finish things off just as we did in part (b).

17.6. No solution provided.
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Lecture 18

Exercises

18.6. Since 𝜙(19) = 18, the possible orders in this case are 1, 2, 3, 6, 9 and 18. Any integer 𝑎
of order 9 will be a root of 𝑥9 − 1 mod 19. The nine roots of this polynomial will then
be 1, 𝑎, 𝑎2, . . . , 𝑎8. Since ord(𝑎𝑖) = gcd(ord(𝑎))/ gcd(𝑖, ord(𝑎)) = 9/ gcd(𝑖, 9), the only
roots 𝑎𝑖 that have order 9 are the ones with gcd(𝑖, 9) = 1. There are 𝜙(9) = 6 of these.

Similarly, any integer of order 𝑑 | 18 will be a root of 𝑥𝑑−1 mod 19, and by mimicking
the above argument, we see that there are at most 𝜙(𝑑) of these. In general we see
that there are at most

𝜙(1) + 𝜙(2) + 𝜙(3) + 𝜙(6) + 𝜙(9) = 1 + 1 + 2 + 2 + 6 = 12

classes of order < 18. So there must be at least 18− 12 = 6 classes of order 18. These
are each primitive roots mod 19.

18.11. We have 𝑝− 1 = 2 · 3 · 5. Let’s try 𝑎 = 2. We compute

2(𝑝−1)/2 = 215 ≡ 1 (mod 31).

So 𝑎 = 2 isn’t a primitive root mod 31. (In retrospect this is obvious, since 25 = 32 ≡ 1
(mod 31).) Let’s try 𝑎 = 3. We compute

2(𝑝−1)/2 = 315 ≡ 30 (mod 31)

2(𝑝−1)/3 = 310 ≡ 25 (mod 31)

2(𝑝−1)/5 = 36 ≡ 16 (mod 31).

Since none of these is congruent to 1, 3 must be a primitive root mod 31.

Practice Problems

18.1. (a) Since 𝑔 is a primitive root mod 𝑝, 𝑎 ∈ Z coprime to 𝑝 is congruent to 𝑔𝑖 for some
𝑖. Since ord(𝑔𝑖) = ord(𝑔)/ gcd(ord(𝑔), 𝑖) = 𝑝− 1/ gcd(𝑝− 1, 𝑖), it follows that 𝑔𝑖 is
a primitive root if and only if gcd(𝑝− 1, 𝑖) = 1.

(b) Since 𝑝−1 = 2 ·9, to show that 2 is a primitive root mod 19, we just have to check
that 218/2 and 218/9 are not congruent to 1 mod 19. And indeed,

29 ≡ −1 (mod 19)

22 ≡ 4 (mod 19).

So 2 is a primitive root mod 19, and all the other ones are congruent to some 2𝑖

with gcd(𝑖, 18) = 1. Explicitly, here is a set of representatives for the primitive
roots mod 19:

{2, 3, 10, 13, 14, 15}.

18.2. No solution provided. Assignment problem.

18.3. No solution provided. Assignment problem.

18.4. (a) 𝑝− 2, since the 𝑥𝑝−1 terms cancel off.
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(b) Since 𝑎−1 − 1 ≡ 0 (mod 𝑝) by Fermat’s Little Theorem, we are left with

𝑓(𝑎) ≡ (𝑎− 1)(𝑎− 2) · · · (𝑎− (𝑝− 1)) (mod 𝑝).

The product on the right is zero since 𝑎 occurs among 1, 2, ..., 𝑝− 1.

(c) Part (b) shows that 𝑓(𝑥) has 𝑝−1 distinct roots mod 𝑝. Since deg 𝑓 = 𝑝−2 < 𝑝−1,
it follows that all of the coefficients of 𝑓 are zero mod 𝑝 since otherwise we would
contradict Theorem 18.2.

(d) The constant term of 𝑓 is 𝑓(0) = (−1)𝑝−1(𝑝− 1)!− (0− 1). This is zero mod 𝑝 by
part (c). Wilson’s Theorem follows immediately upon noting that if 𝑝 is odd then
(−1)𝑝−1 = 1 while if 𝑝 = 2 then the signs don’t matter.

18.5. No solution provided. Assignment problem.
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Lecture 19

Exercises

19.3. The powers of 3 are:

31 ≡ 3, 32 ≡ 2, 33 ≡ 6, 34 ≡ 4, 35 ≡ 5.

So our desired table is:

𝑥 1 2 3 4 5 6

log3(𝑥) 0 2 1 4 5 3

19.5. Since log3(5) = 5 and log3(6) = 3 according the above table, we have

log3(5) + 46 log3(𝑥) ≡ log3(6) (mod 6) =⇒ 4 log3(𝑥) ≡ −2 (mod 6).

Hence
2 log3(𝑥) ≡ −1 (mod 3)

and therefore
log3(𝑥) ≡ 1 (mod 3).

So this gives

log3(𝑥) ≡ 1 (mod 6) and log3(𝑥) ≡ 4 (mod 6)

from which we find that

𝑥 ≡ 31 ≡ 3 (mod 7) and 𝑥 ≡ 34 ≡ 4 (mod 7).

19.8. The cubic residues are 1 and 6, since

13 ≡ 1, 23 ≡ 1, 33 ≡ 6, 43 ≡ (−3)3 ≡ 1, 53 ≡ (−2)3 ≡ 6, 63 ≡ (−1)3 ≡ 6.

Consequently, the non-cubic residues are 2, 3, 4 and 5.

Practice Problems

19.1. By the 𝑘th Power Residue Criterion, the 𝑘th power residues are precisely the roots
of the polynomial 𝑥(𝑝−1)/𝑑 − 1 mod 𝑝. By Theorem 18.3, this polynomial has exactly
(𝑝− 1)/𝑑 roots.

19.2. For 𝑎 to be a cubic residue mod 𝑝, we need to have 𝑎(𝑝−1)/𝑑 ≡ 1 (mod 𝑝), where
𝑑 = gcd(𝑝− 1, 3). If 𝑝 ≡ 2 (mod 3), then 𝑑 = 1 and so the aforementioned congruence
is true for all 𝑎 coprime to 𝑝 by Fermat’s Little Theorem.

19.3. Let 𝑑 = gcd(𝑝−1, 4). If −1 is a 4th power residue mod 𝑝 then (−1)(𝑝−1)/𝑑 ≡ 1 (mod 𝑝)
so (𝑝−1)/𝑑must be even. Note that 𝑝−1 is even so we can write 𝑝−1 = 2𝑣𝑢 with 𝑢 odd
and 𝑣 ≥ 1. If 𝑣 ≤ 2 then 𝑑 = gcd(𝑝−1, 4) = 2𝑣 so (𝑝−1)/𝑑 = 𝑢 is odd—contradiction.
So 𝑣 ≥ 3 and thus 𝑝 − 1 ≡ 0 (mod 8). [Alternatively: We can note that if −1 is a
4th power mod 𝑝 then it must be a square mod 𝑝, so putting 𝑑′ = gcd(𝑝 − 1, 2) = 2,
we would have (−1)(𝑝−1)/2 ≡ 1 (mod 𝑝). Thus, (𝑝− 1)/2 must be even, so 4 | (𝑝− 1).
This implies that 𝑑 = gcd(𝑝− 1, 4) = 4. Since we had observed that (𝑝− 1)/𝑑 is even,
it follows that (𝑝− 1)/4 = 2𝑘 hence 𝑝 = 8𝑘 + 1.]

19.4. If 𝑝1, . . . , 𝑝𝑛 are all such primes then 𝑁 = (2𝑝1 · · · 𝑝𝑛)4 + 1 is odd and is not divisible
by any prime of the form 8𝑘 + 1. Since 𝑁 > 1, 𝑁 must have an odd prime divisor
𝑞. But then 𝑁 ≡ 0 (mod 𝑞) implies that (2𝑝1 · · · 𝑝𝑛)4 ≡ −1 (mod 𝑞) meaning −1 is
a quartic residue mod 𝑞. By the previous problem, this forces 𝑞 to be congruent to 1
mod 8 which is a contradiction since no such prime divides 𝑁 .
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Lecture 20

Exercises

20.2. We have (︁𝑎
7

)︁
=

⎧⎪⎨⎪⎩
0 if 𝑎 ≡ 0 (mod 7)

1 if 𝑎 ≡ 1, 2, 4 (mod 7)

−1 if 𝑎 ≡ 3, 5, 6 (mod 7).

20.5. Since 8(17−1)/2 ≡ 1 (mod 17), it follows that
(︀

8
17

)︀
= 1.

20.8. The same argument as in Example 20.7 allows us to conclude that 𝑥 ≡ 1 (mod 4).
Then, by adding 16 to the given equation we can re-write it as

𝑦2 + 16 = 𝑥3 + 27 = (𝑥+ 3)(𝑥2 − 3𝑥+ 9).

Now, 𝑥2 − 3𝑥 + 9 ≡ 3 (mod 4) since 𝑥 ≡ 1 (mod 4). Also, 𝑥2 − 3𝑥 + 9 is > 1 so by
the argument in Example 20.7 we conclude that 𝑥2 − 3𝑥+9 has a prime divisor 𝑝 ≡ 3
(mod 4). From this we get that 𝑦2 + 16 ≡ 0 (mod 𝑝) and hence that −1 ≡ (−4−1𝑦)2

(mod 4). Thus,
(︁
−1
𝑝

)︁
= 1, a contradiction since 𝑝 ≡ 3 (mod 4).

20.9. No solution provided.

Practice Problems

20.1. Straightforward using Legendre symbols.

20.2. This is a special case of Problem 19.1.

20.3. (a) The congruence has either 0, 1 or 2 solutions depending respectively on whether
𝑎 is a quadratic nonresidue mod 𝑝, 𝑎 ≡ 0 (mod 𝑝) or 𝑎 is a quadratic residue mod

𝑝. These counts match up with 1 +
(︁
𝑎
𝑝

)︁
.

(b) Multiplying by 4𝑎 (which is invertible mod 𝑝) and completing the square, the
congruence is equivalent to

(2𝑎𝑥+ 𝑏)2 − (𝑏2 − 4𝑎𝑐) ≡ 0 (mod 𝑝).

Letting 𝑋 = 2𝑎𝑥+ 𝑏, this becomes 𝑋2 ≡ 𝑏2 − 4𝑎𝑐 (mod 𝑝). Now apply part (a).

20.4. Since 𝑝− 1 = 22𝑞 is the prime factorization of 𝑝− 1, Proposition 18.9 tells us that we
need only check that neither of 2(𝑝−1)/2 and 2(𝑝−1)/𝑞 is congruent to 1 mod 𝑝. To this
end, we have

2(𝑝−1)/2 ≡
(︂
2

𝑝

)︂
(mod 𝑝)

by Euler’s criterion. Since 𝑞 is odd, 𝑝 = 4𝑞 + 1 = 4(2𝑘 + 1) + 1 = 8𝑘 + 5 is congruent

to −3 mod 8, so
(︁
2
𝑝

)︁
= −1. Thus, 2(𝑝−1)/2 ̸≡ 1 (mod 𝑝).

Next,
2(𝑝−1)/𝑞 = 24 = 16.

If this were 1 mod p, then 𝑝 would divide 15 = 3 ·5 implying that either 𝑝 = 3 or 𝑝 = 5
neither of which is of the form 4𝑞 + 1 with 𝑞 a prime. So 2(𝑝−1)/𝑞 ̸≡ 1 (mod 𝑝), and
we’re done.
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20.5. No solution provided. Assignment problem.

20.6. First note that
𝑝−1∑︁
𝑘=0

(︂
𝑘𝑎

𝑝

)︂
=

𝑝−1∑︁
𝑘=0

(︂
𝑘

𝑝

)︂(︂
𝑎

𝑝

)︂
=

(︂
𝑎

𝑝

)︂ 𝑝−1∑︁
𝑘=0

(︂
𝑘

𝑝

)︂
.

Now, since half of the congruence classes in (Z/𝑝Z)× are quadratic residues and the

other half are nonresidues, half the terms in the sum
∑︀𝑝−1

𝑘=0

(︁
𝑘
𝑝

)︁
are +1 and the other

half are −1. So the sum is 0.

20.7. No solution provided. Assignment problem.
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Lecture 21

Exercises

21.2. If 𝑝 = 8𝑘± 1 then (𝑝2 − 1)/8 = 8𝑘2 ± 2𝑘 is even, so (−1)(𝑝
2−1)/2 = 1. The other cases,

where 𝑝 = 8𝑘 ± 3, follow in the same way.

Similarly, (𝑝− 1)(𝑞− 1)/4 is odd if and only if both 𝑝 and 𝑞 are congruent to 3 mod 4.

This proves part (b). So
(︁
𝑝
𝑞

)︁(︁
𝑞
𝑝

)︁
= −1 if and only if 𝑝 ≡ 𝑞 ≡ 3 (mod 4). Multiplying

both sides by
(︁
𝑞
𝑝

)︁
(and noting that

(︁
𝑞
𝑝

)︁2
= (±1)2 = 1 in any case), we get half of the

statement in the theorem. The other half follows similarly.

21.4. We have (︂
30

61

)︂
=

(︂
2

61

)︂(︂
3

61

)︂(︂
5

61

)︂
.

Now, (︂
2

61

)︂
= −1(︂

3

61

)︂
=

(︂
61

3

)︂
=

(︂
1

3

)︂
= 1(︂

5

61

)︂
=

(︂
61

5

)︂
=

(︂
1

5

)︂
= 1.

Thus, (︂
30

61

)︂
= (−1)(1)(1) = −1.

21.6. Since 5 ≡ 1 (mod 4), we end up with (for 𝑝 ̸= 5):(︂
5

𝑝

)︂
=
(︁𝑝
5

)︁
=

{︃
1 if 𝑝 ≡ 1, 4 (mod 5)

−1 if 𝑝 ≡ 2, 3 (mod 5).

On the other hand, since 7 ≡ 3 (mod 4), then we will need to consider two cases: one
for 𝑝 ≡ 1 (mod 4) and one for 𝑝 ≡ 3 (mod 4). We can then express our end results as
conditions on 𝑝 mod 4 · 7 = 28. This is what we get (for 𝑝 ̸= 7):(︂

7

𝑝

)︂
=

{︃
1 if 𝑝 ≡ 1, 3, 9, 19, 25, 27 (mod 28)

−1 if 𝑝 ≡ 5, 11, 13, 15, 17, 23 (mod 28).

21.9. (a) If say 𝑑 = gcd(𝑥, 𝑦), we can write 𝑥 = 𝑑𝑢 and 𝑦 = 𝑑𝑣, where gcd(𝑢, 𝑣) = 1, and
then the equation becomes

𝑑4𝑢4 − 17𝑑4𝑣4 = 2𝑧2.
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This shows that 𝑑4 | 2𝑧2. Thus, 𝑑2 must divide 𝑧, and so we can write 𝑧 = 𝑑2𝑡 and
then we can cancel off 𝑑 from all sides of the equation obtaining

𝑢4 − 17𝑣4 = 2𝑡2.

This is the same as our starting equation, but now gcd(𝑢, 𝑣) = 1. So we may
as well have assumed that gcd(𝑥, 𝑦) = 1. A similar analysis with gcd(𝑥, 𝑧) and
gcd(𝑦, 𝑧) shows that we can assume that they are both equal to 1.

(b) We can, of course, just compute 14, 24, . . . , 164 and check if any of these are con-
gruent to 2 mod 17. However, a (much) better approach is to use Theorem 19.9
(𝑘th Power Residue Criterion). We simply compute

216/ gcd(16,4) = 24 = 16 ≡ −1 (mod 17).

Since this is ̸≡ 1 (mod 17), it follows that 2 is not a 4th power residue mod 17.

(c) If 𝑧 = 0 then 𝑥4 − 17𝑦4 = 0 or equivalently 𝑥4 = 17𝑦4. At this point we can
argue that 𝑥 = 𝑦 = 0 since 17 is irrational, but an argument is also possible using
techniques we’ve developed in the course. Consider the 17-adic valuation. We get

𝑣17(𝑥
4) = 𝑣17(17𝑦

4) =⇒ 4𝑣17(𝑥) = 1 + 4𝑣17(𝑦).

This is impossible since the left side is divisible by 4 but the right side is congruent
to 1 mod 4.

Practice Problems

21.1. (a) If 𝑝 | 𝑁 then 5(𝑝1 · · · 𝑝𝑛)2 ≡ 1 (mod 𝑝). Note that 𝑝 ̸= 𝑝𝑖 since otherwise 𝑝 would
not divide 𝑁 . Thus, each 𝑝𝑖 is invertible mod 𝑝, giving us

5 ≡ (𝑝−1
1 · · · 𝑝−1

𝑛 )2 (mod 𝑝).

So
(︁
5
𝑝

)︁
= 1 (since 𝑝 ̸= 5 because 5 ∤ 𝑁) and hence

(︀𝑝
5

)︀
= 1 by quadratic reciprocity.

(b) If
(︀𝑝
5

)︀
= 1 then 𝑝 ≡ 1, 4 (mod 5). If all the primes dividing 𝑁 were congruent to

1 mod 5, then 𝑁 (being their product) would also be congruent to 1 mod 5. But
𝑁 is congruent to −1 mod 5. So at least one of the primes dividing 𝑁 must be
congruent to 4 mod 5.

(c) By part (b), we know that there must be some prime of the form 5𝑘 + 4 that
divides 𝑁 . This prime cannot be any of the 𝑝𝑖. So we have found a new such
prime. Repeating this argument, we can produce infinitely many primes of the
form 5𝑘 + 4.

21.2. (a) Note that 𝑝 ≡ 1 (mod 4) and also 𝑝 ≡ (−1)2
𝑛
+ 1 ≡ 2 (mod 3). So by quadratic

reciprocity, (︂
3

𝑝

)︂
=
(︁𝑝
3

)︁
=

(︂
2

3

)︂
= −1.

(b) By part (a) and Euler’s criterion, we have

3(𝑝−1)/2 ≡
(︂
3

𝑝

)︂
≡ −1 (mod 𝑝).

Since 2 is the only prime divisor of 𝑝−1, it follows that 3 must be a primitive root
mod 𝑝 by Proposition 18.9.
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21.3. No solution provided. Assignment problem.

21.4. No solution provided. Assignment problem.

21.5. By completing the square, we can re-write the equation

𝑥2 + 10𝑥𝑦 − 6𝑦2 = 17

as
(𝑥+ 5𝑦)2 − 31𝑦2 = 17.

By reducing mod 31 (which is prime), we see that 17 must be a quadratic residue mod
31, that is, (︂

17

31

)︂
= 1.

However, we have(︂
17

31

)︂
=

(︂
31

17

)︂
=

(︂
−3

17

)︂
=

(︂
−1

17

)︂(︂
17

3

)︂
= (+1)

(︂
2

3

)︂
= −1.
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Lecture 22

Exercises

22.2. We have
5 · 1 ≡ −2, 5 · 2 ≡ 3 and 5 · 3 ≡ 1.

So 𝑛(5) = 1 and therefore
(︀
5
7

)︀
= −1.

Practice Problems

22.1. We have that 𝑛(−1) = |𝑆| = (𝑝 − 1)/2 since (−1)𝑆 ∈ −𝑆 for all 𝑠 in 𝑆. Thus, by
Gauss’s Lemma, (︂

−1

𝑝

)︂
= (−1)(𝑝−1)/2.

This is equivalent to what must be proved.
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Lecture 23

Exercises

23.5. Since 561 = 3× 11× 17, it suffices, by the Chinese Remainder Theorem, to show that

𝑎560 ≡ 1 (mod 3)

𝑎560 ≡ 1 (mod 11)

𝑎560 ≡ 1 (mod 17)

for all 𝑎 coprime to 561 (hence coprime to 3, 11 and 17). Each of these follows
immediately from Fermat’s Little Theorem. Indeed: 𝑝− 1 | 560 for 𝑝 = 3, 11, 17.

23.9. Here, 𝑛 = 25 × 495 + 1. Let’s try 𝑎 = 2. We have

2495 ≡ 1 (mod 15841).

So 𝑛 passes the Miller–Rabin test for the base 𝑎 = 2.

Let’s try 𝑎 = 3.

3495 ≡ 12802 (mod 15841)

32·495 ≡ 218 (mod 15841)

32
2·221 ≡ 1 (mod 15841).

So 𝑛 fails the Miller–Rabin test. Thus, 𝑛 is composite.

23.14. No solution provided.

23.16. We have (︂
655

719

)︂
= −

(︂
719

655

)︂
= −

(︂
64

655

)︂
=

(︂
82

655

)︂
= −1.

Practice Problems

23.1. (a) Suppose 𝑑 | 𝑛 is a proper divisor (i.e. 𝑑 ̸= 𝑛). Then 𝑑𝑛−1 ≡ 1 (mod 𝑛) implies
that 𝑛 | 𝑑𝑛−1 − 1 and hence 𝑑 | 𝑑𝑛−1 − 1 since 𝑑 | 𝑛. On the other hand, since
𝑑 | 𝑑𝑛−1, it follows that 𝑑 | 1 = (𝑑𝑛−1 − 1) − 𝑑𝑛−1. So 𝑑 = ±1. Thus, the only
proper divisors of 𝑛 are ±1, so 𝑛 is prime.

(b) There’s not contradiction because 𝑛 is a Carmichael number if 𝑎𝑛−1 ≡ 0 (mod 𝑛)
for 𝑎 coprime to 𝑛, not for all 𝑎 ̸≡ 0 (mod 𝑛).

23.2. We wish to compute 2𝐹𝑛−1 = 22
2𝑛

modulo 𝐹𝑛. Note that

𝐹𝑛 ≡ 0 (mod 𝐹𝑛) ⇐⇒ 22
𝑛 ≡ −1 (mod 𝐹𝑛).

Raising both sides to 22
𝑛−𝑛 (which is even), we get

22
𝑛·22𝑛−𝑛 ≡ (−1)2

2𝑛−𝑛
(mod 𝐹𝑛) ⇐⇒ 22

2𝑛 ≡ 1 (mod 𝐹𝑛).

So, if 𝐹𝑛 is composite, it’s a base-2 pseudoprime.

23.3. (a) This is true. We know 𝑛 is composite and that 𝑎 and 𝑏 are coprime to 𝑛. Since
𝑎𝑛−1 ≡ 1 (mod 𝑛) and 𝑏𝑛−1 ≡ 1 (mod 𝑛), we also have that (𝑎𝑏)𝑛−1 = 𝑎𝑛−1𝑏𝑛−1 ≡
1 (mod 𝑛). So 𝑛 a base-𝑎𝑏 pseudoprime.
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(b) This is also true, since

𝑎𝑛−1 ≡ 1 (mod 𝑛) =⇒ (𝑎−1)𝑛−1 ≡ (𝑎𝑛−1)−1 ≡ 1−1 ≡ 1 (mod 𝑛).

23.4. If 𝑛 is a base-𝑎 Euler pseudoprime, then 𝑛 is composite, coprime to 𝑎 and we have(︁𝑎
𝑛

)︁
≡ 𝑎(𝑛−1)/2 (mod 𝑛).

By squaring both sides and using the fact that
(︀
𝑎
𝑛

)︀2
= 1, we see that

1 = 𝑎𝑛−1 (mod 𝑛).

So 𝑛 is a Fermat pseudoprime.

To see that the converse is false, note that 𝑛 = 341 is a Fermat base-2 pseudoprime,
but (︂

2

341

)︂
=

(︂
2

11

)︂(︂
2

31

)︂
= (−1)(1) = −1

while
2(341−1)/2 = 2170 ≡ 1 (mod 3)41.

So 𝑛 is not an Euler pseudoprime.
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Lecture 24

Exercises

24.4. Let 𝛼 = 3 + 4𝑖 ad 𝛽 = 1 + 2𝑖. Then 𝛽 ∤ 𝛼 but 𝑁(𝛽) = 5 divides 𝑁(𝛼) = 25.

24.6. Let 𝛽 = 2 and 𝛼 = 1 + 𝑖. (So 𝛼 is in the center of the square with vertices at 0, 𝛽, 𝑖𝛽
and (1 + 𝑖)𝛽. Then

𝛼 = 0𝛽 + (1 + 𝑖) and 𝛼 = (1)𝛽 + (−1 + 𝑖)

are decompositions of 𝛼 with

𝑁(1 + 𝑖) = 𝑁(−1 + 𝑖) = 2

strictly less than 𝑁(𝛽) = 𝑁(2) = 4.

Practice Problems

24.1. We have 𝛽 = 𝛼𝜏 and 𝛾 = 𝛼𝜌 for some 𝜏, 𝜌 ∈ Z[𝑖], so 𝛽𝑥+ 𝛾𝑦 = 𝛼(𝜏𝑥+ 𝜌𝑦) is divisible
by 𝛼.

24.2. If 𝑎 | 𝑏 in Z[𝑖] then 𝑏 = 𝑎(𝑐+ 𝑑𝑖) for some 𝑐, 𝑑 ∈ Z. Thus,

𝑏 = 𝑎𝑐+ (𝑎𝑑)𝑖.

By equating real parts, we see that 𝑏 = 𝑎𝑐, so 𝑎 | 𝑏 in Z.
24.3. Let 𝛼 = 𝑥+ 𝑖𝑦. Observe that if 𝑁(𝛼) = 𝑛 ⇐⇒ 𝑥2+𝑦2 = 𝑛, so we must have |𝑥| ≤

√
𝑛

and |𝑦| ≤
√
𝑛, because if either |𝑥| or |𝑦| is >

√
𝑛 then 𝑥2 + 𝑦2 > 𝑛.

Now let’s consider each equation separately.

• 𝑁(𝛼) = 1 ⇐⇒ 𝑥2+𝑦2 = 1. In this case |𝑥| ≤ 1 and |𝑦| ≤ 1. From this we quickly
see that 𝛼 ∈ {±1,±𝑖}.

• 𝑁(𝛼) = 2 ⇐⇒ 𝑥2 + 𝑦2 = 2. In this case |𝑥| ≤ 1 and |𝑦| ≤ 1, too, since 𝑥, 𝑦 ∈ Z.
Running through the cases, we end up finding that 𝛼 ∈ {±(1 + 𝑖),±(1− 𝑖)}.

• 𝑁(𝛼) = 3 ⇐⇒ 𝑥2 + 𝑦2 = 3. There are no solutions (consider the equation mod
4; or do a case analysis like above).

• 𝑁(𝛼) = 4 ⇐⇒ 𝑥2 + 𝑦2 = 4. This time |𝑥| ≤ 2 and |𝑦| ≤ 2. Running through the
cases, we end up finding that 𝛼 ∈ {±2,±2𝑖}.

• 𝑁(𝛼) = 5 ⇐⇒ 𝑥2 + 𝑦2 = 5. So |𝑥| ≤ 2 and |𝑦| ≤ 2 again. Running through the
cases this time, we find 𝛼 ∈ {±(1 + 2𝑖),±(1− 2𝑖),±(2 + 𝑖),±(2− 𝑖)}.

24.4. This is false. For example, 𝑖 | 1 because 𝑖(−𝑖) = 1 and 1 | 𝑖 because 1 · 𝑖 = 𝑖, but
1 ̸= ±𝑖.

24.5. If 𝛼 | 2 then 𝑁(𝛼) | 𝑁(2) = 4. So the possibilities for 𝑁(𝛼) are 1, 2 and 4. From
the previous problem, we see therefore that the possibilities for 𝛼 are ±1,±𝑖,±(1 +
𝑖),±(1− 𝑖),±2 and ±2𝑖. We must now check that each of these does in fact divide 2.
And indeed:

2 = (±2)(±1)

= (∓2𝑖)(±𝑖)

= ±(1 + 𝑖)(∓(1− 𝑖))

= ±(1− 𝑖)(∓(1 + 𝑖))

= ±2(±1)

= (±2𝑖)(∓𝑖).
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Lecture 25

Exercises

25.7. If gcd(𝛼, 𝛽) = 1, then every common divisor of 𝛼 and 𝛽 divides 1 hence is a unit. The
converse is obvious.

25.11. Write 1 = 𝛼𝑥 + 𝛽𝑦 by Bézout. Then multiply by 𝛾 to get 𝛾 = 𝛼𝛾𝑥 + 𝛽𝛾𝑦. Since 𝛼
divides 𝛼𝛾𝑥 and 𝛽𝛾𝑦, it must also divide their sum, which is 𝛾.

Practice Problems

25.1. By Bézout’s Lemma, we can write gcd(𝛼, 𝛽) = 𝛼𝑥+𝛽𝑦 with 𝑥, 𝑦 ∈ Z[𝑖]. If 𝛼 and 𝛽 are
coprime, then their gcd is a unit, say 𝑢. So 𝑢 = 𝛼𝑥+𝛽𝑦 ⇐⇒ 1 = 𝛼(𝑢−1𝑥)+𝛽(𝑢−1𝑦).

25.2. Let 𝑔 and 𝛾 denote the gcd of 𝑎 and 𝑏 in Z and Z[𝑖], respectively. By Bézout’s Lemma
in Z, we can write 𝑔 = 𝑎𝑥 + 𝑏𝑦 for some 𝑥, 𝑦 ∈ Z. Since 𝛾 divides both 𝑎 and 𝑏, it
follows that 𝛾 | 𝑔. On the other hand, since 𝑔 ∈ Z[𝑖] is a common divisor of 𝑎 and 𝑏,
then 𝑔 | 𝛾. So 𝛾 = 𝑢𝑔 for some unit 𝑢 ∈ Z[𝑖].

25.3. If 𝛿 is a common divisor of 𝛼 and 𝛽 then 𝛿 | 𝛼− 𝛽𝑞 = 𝑟. So 𝛿 is a common divisor of
𝛽 and 𝑟.

Conversely, if 𝛿 is a common divisor of 𝛽 and 𝑟, then 𝛿 | 𝛽𝑞+ 𝑟 = 𝛼. So 𝛿 is a common
divisor of 𝛽 and 𝛼.

So the pairs (𝛼, 𝛽) and (𝛽, 𝑟) have the same common divisors, and therefore they have
the same gcd.

25.4. By Problem 1, we can write 1 = 𝛼𝑥+ 𝛽𝑦 with 𝑥, 𝑦 ∈ Z[𝑖]. Therefore,

𝛾 = 𝛾 · 1 = 𝛾(𝛼𝑥+ 𝛽𝑦) = 𝛼𝛾𝑥+ 𝛽𝛾𝑥.

On the other hand, since 𝛼 | 𝛾 and 𝛽 | 𝛾, we can write 𝛾 = 𝛼𝑧 and 𝛾 = 𝛽𝑤 for some
𝑧, 𝑤 ∈ Z[𝑖]. So the above becomes

𝛾 = 𝛼(𝛽𝑤)𝑥+ 𝛽(𝛼𝑧)𝑦 = 𝛼𝛽(𝑤𝑥+ 𝑧𝑤).

This shows that 𝛼𝛽 | 𝛾, as required.
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Lecture 26

Exercises

26.6. (a) If 𝛽 | 𝛼 then 𝑁(𝛽) | 𝑁(𝛼) so either 𝑁(𝛽) = 1, in which case 𝛽 is a unit, or
𝑁(𝛽) = 𝑝 in which case 𝛽 is an associate of 𝛼 (since 𝛼 = 𝛽𝛾 and we must have
𝑁(𝛾) = 1 if 𝑁(𝛼) = 𝑁(𝛽)).

(b) If 𝑝 = 𝛼𝛽 non-trivially then 𝑝2 = 𝑁(𝑝) = 𝑁(𝛼)𝑁(𝛽) implies that 𝑁(𝛼) = 𝑁(𝛽) =
𝑝. If 𝛼 = 𝑎+ 𝑖𝑏 then 𝑝 = 𝑁(𝛼) = 𝑎2 + 𝑏2 is a sum of two integer squares, so 𝑝 cannot
be 3 mod 4.

26.11. We have 𝛼 = 2(2− 9𝑖) so we must factor 2 and 2− 9𝑖. We know how to deal with 2:

2 = 𝑖(1− 𝑖)2.

To factor 2− 9𝑖 into Gaussian prime, we begin by computing

𝑁(2− 9𝑖) = 4 + 91 = 85 = 5× 17 = (1 + 2𝑖)(1− 2𝑖)(1 + 4𝑖)(1− 4𝑖),

where we used 5 = 12 + 22 and 17 = 12 + 42 to factor 5 and 17. Now we just have to
multiply two of these factors to get 2 − 9𝑖 (perhaps up to a unit). By inspection, we
find that

2− 9𝑖 = −𝑖(1− 2𝑖)(1 + 4𝑖).

Thus,
4− 18𝑖 = 𝑖(1− 𝑖)2(−𝑖)(1− 2𝑖)(1 + 4𝑖) = (1− 𝑖)2(1− 2𝑖)(1 + 4𝑖).

Practice Problems

26.1. =⇒ : This is Euclid’s Lemma.

⇐= : Suppose that 𝜋 = 𝛼𝛽. Then 𝜋 | 𝛼𝛽 and so, wlog, 𝜋 | 𝛼, hence we can write
𝛼 = 𝜋𝛾 for some 𝛾 ∈ Z[𝑖]. But then 𝜋 = 𝛼𝛽 = 𝜋𝛾𝛽 =⇒ 1 = 𝛾𝛽, so 𝛽 is a unit. Thus,
he only way to write 𝜋 as a product of two Gaussian integers is if one of the two is a
unit. So 𝜋 is a Gaussian prime.

26.2. If 𝑝 = 𝑎2 + 𝑏2 then letting 𝜋 = 𝑎+ 𝑖𝑏 we have

𝑝 = (𝑎+ 𝑖𝑏)(𝑎− 𝑖𝑏) = 𝜋𝜋.

We know that 𝜋 and 𝜋 are Gaussian primes by Theorem 26.7. Thus, every decompo-
sition of 𝑝 into a sum of two squares gives rise into a factorization of 𝑝 into Gaussian
primes. Since such a factorization is unique up to units, and since multiplying 𝑎 ± 𝑖𝑏
by a unit 𝑢 ∈ {−1,±𝑖} swaps a sign and/or swaps the positions of 𝑎 and 𝑏, the result
follows.

26.3. If 𝑛 = 𝑥2 + 𝑦2 and 𝑚 = 𝑢2 + 𝑣2 then

𝑛 = 𝑁(𝑥+ 𝑖𝑦) and 𝑚 = 𝑁(𝑢+ 𝑖𝑣)

so

𝑛𝑚 = 𝑁((𝑥+ 𝑖𝑦)(𝑢+ 𝑖𝑣)) = 𝑁((𝑥𝑦 − 𝑦𝑣) + (𝑥𝑣 + 𝑦𝑢)𝑖) = (𝑥𝑦 − 𝑦𝑣)2 + (𝑥𝑣 + 𝑦𝑢)2.
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26.4. Sketch: Factor 𝛾 into Gaussian primes, say 𝛾 =
∏︀

𝜋 𝜋
𝑎. Then 𝛼𝛽 = 𝛾𝑛 =

∏︀
𝜋𝑎𝑛. Since

𝛼 and 𝛽 are coprime, their prime factorizations do not share a common Gaussian
prime. The product of the prime factorizations of 𝛼 and 𝛽 gives a prime factorization
of 𝛾𝑛. By unique factorization, 𝛼 must be equal to a unit times a collection of some
𝜋𝑎𝑛; likewise for 𝛽. But now observe that

𝑢
∏︁

𝜋𝑎𝑛 = 𝑢(
∏︁

𝜋𝑎)𝑛

is a unit times an 𝑛th power.

26.5. Since there are infinitely many rational primes 𝑝 ≡ 3 (mod 4), and since these are all
Gaussian primes, there are infinitely many Gaussian primes.

Alternative Solution: Each rational prime 𝑝 has a Gaussian prime divisor. We
claim that if 𝑝 ̸= 𝑞 are distinct rational primes, then they cannot share a Gaussian
prime divisor. Indeed, since gcd(𝑝, 𝑞) = 1 in Z, we must also have gcd(𝑝, 𝑞) = 1 in
Z[𝑖] by an earlier problem, so the claim follows. Now since there are infinitely many
rational primes, and since we can select a Gaussian prime divisor of each and no two
of these are the same, it follows that there are infinitely many Gaussian primes.
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Lecture 27

Exercises

27.2. We take our cue from
𝑁(𝑎+ 𝑏

√
−𝐷) = 𝑎2 +𝐷𝑏2.

We have

(𝑎2 +𝐷𝑏2)(𝑢2 +𝐷𝑣2) = 𝑁(𝑎+ 𝑏
√
−𝐷)𝑁(𝑢+ 𝑣

√
−𝐷)

= 𝑁((𝑎+ 𝑏
√
−𝐷)(𝑢+ 𝑣

√
−𝐷))

= (𝑎𝑢−𝐷𝑏𝑣)2 +𝐷(𝑎𝑣 + 𝑏𝑢)2.

27.4. Let 𝑞 = 𝑞𝑗 . If 𝑞 | 𝑥 then since 𝑞 | 𝑛, we would have that 𝑞 | 𝑛 − 𝑥2 = 𝑦2. But then
𝑞2 | 𝑥2 + 𝑦2 = 𝑛. So we may divide both sides of the equation by 𝑞2. Repeating this
argument sufficiently often, we are reduced to a case where 𝑞 | 𝑛 (there will always be
a 𝑞 left in 𝑛 because 𝑣𝑞(𝑛) is odd) but where 𝑞 ∤ 𝑥.

27.6. We have 𝑟2(100) = 𝑟2(2
252) = 4(1 + 2) = 12. Now, by inspection we find

100 = 02 + (±10)2 = (±10)2 + 02 (4 solutions)

= (±6)2 + (±8)2 = (±8)2 + (±6)2. (8 solutions)

27.6. Any common divisor 𝑑 of 𝑚 and 𝑛 will divide each of 𝑎, 𝑏 and 𝑐. Since gcd(𝑎, 𝑏, 𝑐) = 1,
it follows that 𝑑 = ±1. So gcd(𝑚,𝑛) = 1. In particular, one of 𝑚 and 𝑛 must be odd.
If they were both odd then 𝑎 = 𝑚2 − 𝑛2 would be even, which contradicts Lemma
27.7.

Practice Problems

27.1. Note that 𝑟2(𝑛) counts the number of integer pairs (𝑥, 𝑦) such that 𝑥2 + 𝑦2 = 𝑛. If 𝑛
is not a perfect square, then neither 𝑥 nor 𝑦 can be zero. So, for every such solution
(𝑥, 𝑦), precisely one of

(𝑥, 𝑦), (𝑥,−𝑦), (−𝑥, 𝑦) or (−𝑥,−𝑦)

is positive. Thus, 𝑟+2 (𝑛) =
1
4𝑟2(𝑛).

If 𝑛 is a perfect square, say 𝑛 = 𝑁2, then there are four solutions to 𝑛 = 𝑥2 + 𝑦2 with
either 𝑥 or 𝑦 equal to 0, namely: (𝑥, 𝑦) = (±𝑁, 0) and (𝑥, 𝑦) = (0,±𝑁). Excluding
these solutions, an argument as in the preceding paragraph shows that

𝑟+2 (𝑛) =
1

4
(𝑟2(𝑛)− 4) =

1

4
𝑟2(𝑛)− 1.

27.2. A positive integer 𝑛 can be written as 𝑛 = 𝑥2 − 𝑦2 if and only if 𝑛 ̸≡ 2 (mod 4).

Indeed, if 𝑛 = 𝑥2 − 𝑦2 then since squares are 0 or 1 mod 4, we see that 𝑛 must be
either 0, 1 or 3 mod 4. Equivalently, 𝑛 must be odd or divisible by 4.

Conversely, assume 𝑛 = 2𝑘 + 1 is odd. Then

2𝑘 + 1 = (𝑘 + 1)2 − 𝑘2.

If 𝑛 = 4𝑘 is divisible by 4, then

4𝑘 = (𝑘 + 1)2 − (𝑘 − 1)2.

27.3. No solution provided. Assignment problem.

27.4. No solution provided. Assignment problem.
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Lecture 28

Exercises

28.3. No solution provided. Refer to the discussion following the exercise.

28.4. Ditto.

Practice Problems

28.1. If 𝑘 < 0, say 𝑘 = −𝑙, then
√
𝑘 = 𝑙𝑖 is not real. So

𝑎+ 𝑏
√
𝑘 = 𝑐+ 𝑑

√
𝑘 ⇐⇒ 𝑎+ 𝑏𝑙𝑖 = 𝑐+ 𝑑𝑙𝑖.

Equating real and imaginary parts, we get

𝑎 = 𝑐 and 𝑏𝑙 = 𝑑𝑙 ⇐⇒ 𝑏 = 𝑑.

If 𝑘 > 0 and not square, then
√
𝑘 is irrational. We can re-arrange the equation into

𝑎− 𝑐 = (𝑑− 𝑏)
√
𝑘.

If 𝑑 ̸= 𝑏 then we get a contradiction since this implies that

√
𝑘 =

𝑎− 𝑐

𝑑− 𝑏
.

So 𝑑 = 𝑏. Consequently 𝑎− 𝑐 = 0, so 𝑎 = 𝑐.

28.2. We will assume that:

(i) The only units in Z[
√
−2 ] are ±1.

(ii) There is a version of the FTA asserting that numbers in Z[
√
−2 ] can be uniquely

factored into “primes” in Z[
√
−2 ].

(iii) The norm function𝑁(𝑎+𝑏
√
−2) = 𝑎2+2𝑏2 satisfies Proposition 24.3. In particular,

if 𝑁(𝑎+ 𝑏
√
−2) is a rational prime then 𝑎+ 𝑏

√
−2 is a prime in Z[

√
−2 ].

[Note: (i) and (iii) are easy to prove; (ii) is true but requires more work.]

Starting from
(𝑦 −

√
−2)(𝑦 +

√
−2) = 𝑥3

we first claim that 𝑦−
√
−2 and 𝑦+

√
−2 are coprime in Z[

√
−2 ]. To see why, suppose

𝛿 ∈ Z[
√
−2 ] is a common divisor. Then

𝛿 | (𝑦 +
√
−2)− (𝑦 −

√
−2) = 2

√
−2 = (

√
−2)3.

Now, note that
√
−2 is a prime in Z[

√
−2 ]. (Indeed, if 𝑁(

√
−2) = 2 is prime.) So, by

unique factorization, 𝛿 = ±(
√
−2)𝑖 for some 𝑖 ∈ {1, 2, 3} hence 𝑁(𝛿) = 2𝑖.

On the other hand, since 𝛿 | 𝑦+
√
−2 we get that 𝑁(𝛿) | 𝑁(𝑦+

√
−2) ⇐⇒ 2𝑖 | 𝑦2+2.

But if 𝑦2 = 𝑥3−2 then it’s easy to see that 𝑦 must be odd. Thus, we must have 𝑖 = 0 so
𝛿 = ±(

√
−2)𝑖 = ±1 is a unit. This completes the proof that gcd(𝑦−

√
−2, 𝑦+

√
−2) = 1.
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By unique factorization, we can therefore conclude that 𝑦±
√
−2 are each a unit times

a cube in Z[
√
−2 ], and since the units ±1 = (±1)3 are themselves cubes, we can simply

assume that 𝑦 ±
√
−2 are cubes. In particular,

𝑦 +
√
−2 = (𝑎+ 𝑏

√
−2)3 = 𝑎(𝑎2 − 6𝑏2) + 𝑏(3𝑎2 − 2𝑏2)

√
−2.

Equating coefficients of
√
−2 as usual, we eventually find that 𝑎 = ±1 and 𝑏 = 1, so

𝑦 = 𝑎(𝑎2 − 6𝑏2) = ±5 and therefore 𝑥 = 3.

28.3. No solution provided. Assignment problem.
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Lecture 29

Exercises

29.2. If 𝐷 = 0 then the equation is just 𝑥2 = 1 so 𝑆0 = {(±1, 𝑦) : 𝑦 ∈ Z}.
If 𝐷 = 𝑑2 with 𝑑 ̸= 0 then the equation reduces to

𝑥2 − (𝑑𝑦)2 = 1 ⇐⇒ = (𝑥− 𝑑𝑦)(𝑥+ 𝑑𝑦) = 1.

From this we get that either 𝑥− 𝑑𝑦 = 𝑥+ 𝑑𝑦 = 1 or 𝑥− 𝑑𝑦 = 𝑥+ 𝑑𝑦 = −1. In either
case we get that 𝑦 = 0 and hence 𝑥 = ±1. So 𝑆𝑑2 = {(±1, 0)}.

29.4. Part (a) Follows from the fact that norm is multiplicative. Parts (b) and (c) are
routine calculations. For part (d), we claim that (𝑎, 𝑏)−1 = (𝑎,−𝑏). To confirm, we
just calculate (𝑎, 𝑏) * (𝑎, 𝑏) and verify that this results in (1, 0).

29.8. It suffices to confirm that there are no solutions when 𝑥 = 1 and 𝑥 = 2. And indeed,
in this case the equation 𝑥2 − 2𝑦2 = 1 reduces, respectively, to 1− 2𝑦2 = 1 which has
𝑦 = 0 (not positive) and 4− 2𝑦2 = 1 which has no integer solutions.

29.10. It’s clear that ±(𝑎, 𝑏)𝑛 ∈ 𝑆𝐷 for all 𝑛 ∈ Z. Conversely, let (𝑥, 𝑦) ∈ 𝑆𝐷. If both 𝑥
and 𝑦 are positive, then (𝑥, 𝑦) ∈ 𝑆+

𝐷 so (𝑥, 𝑦) = (𝑎, 𝑏)𝑛 for some 𝑛 ≥ 1. Assume now
that 𝑥 ≤ 0. The case 𝑥 = 0 is impossible, so we must have 𝑥 < 0. If 𝑦 < 0 too,
then (−𝑥,−𝑦) = −(𝑥, 𝑦) is in 𝑆+

𝐷 so (𝑥, 𝑦) = −(𝑎, 𝑏)𝑛 for some 𝑛 ≥ 1. If 𝑦 = 0 then
(𝑥, 𝑦) = ±(1, 0) = ±(𝑎, 𝑏)0. Finally, if 𝑦 > 0 then (−𝑥, 𝑦) ∈ 𝑆+

𝐷 so (−𝑥, 𝑦) = (𝑎, 𝑏)𝑚 for
some 𝑚 ≥ 1 hence

Practice Problems

29.1. Answer:

𝐷 Fundamental Solution

2 (3, 2)
3 (2, 1)
5 (9, 4)
6 (5, 2)
7 (8, 3)
8 (3, 1)
10 (19, 6)

29.2. If (𝑎, 𝑏) is a solution then from

(𝑎+ 𝑏
√
5)2 = (𝑎2 + 5𝑏2) + (2𝑎𝑏)

√
5

we see that (𝑎2 + 5𝑏2, 2𝑎𝑏) is a solution. Starting with (𝑎, 𝑏) = (9, 4) and repeatedly
applying this rule, we get:

(161, 72), (51841, 23184), (5374978561, 2403763488),

and (57780789062419261441, 25840354427429161536).

29.3. (a) If (𝑎, 𝑏) is the fundamental solution then (𝑎, 𝑏) * (𝑢, 𝑣) will be a solution to 𝑥2 −
𝐷𝑦2 = 𝑚. This is because

𝑁((𝑢+ 𝑣
√
𝐷)(𝑎+ 𝑏

√
𝐷)) = 𝑁(𝑢+ 𝑣

√
𝐷)𝑁(𝑎+ 𝑏

√
𝐷) = 𝑚 · 1.
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(b) By inspection, we find that (𝑥, 𝑦) = (4, 1) is a solution to 𝑥2 − 2𝑦2 = 14. Since
(8, 3) is the fundamental solution to 𝑥2 − 2𝑦2 = 1, it follows that (8, 3)𝑛 * (4, 1)
will be solutions to 𝑥2 − 2𝑦2 = 14 for 𝑛 = 1, 2, . . ..

29.4. If there is a solution, then reducing mod 3 we see that 14 must be a square mod 3.
However, (︂

14

3

)︂
=

(︂
2

3

)︂(︂
7

3

)︂
= (−1)(1) = −1.

So 14 isn’t a square mod 3.

29.5. Suppose 𝑝 ≡ 3 mod 4 divides 𝐷. Then reducing 𝑥2 −𝐷𝑦2 = −1 mod 𝑝 gives that −1

is a square mod 𝑝. This is a contradiction because
(︁
−1
𝑝

)︁
= −1 as 𝑝 ≡ 3 (mod 4).
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Lecture 30

Exercises

30.4. Answer: [2, 4] and [2, 2, 4].

30.9. Answer: 1, 2,
5

3
,
7

4
,
19

11
.

30.16. No solution provided.

Practice Problems

30.1. (a) From 𝛼 = 1 + 1
𝛼 we get

𝛼2 − 𝛼− 1 = 0

and hence 𝛼 =
1 +

√
5

2
(since 𝛼 must be the positive root of the above quadratic).

(b) Let’s first determine 𝛾 = [2, 6]:

𝛾 = 2 +
1

6 +
1

2 +
1

6 +
1

. . .

= 2 +
1

6 +
1

𝛾

.

This simplifies to give
3𝛾2 − 6𝛾 − 1 = 0

hence

𝛾 =
3 + 2

√
3

3
.

Consequently,

𝛽 = 1 +
1

1 +
1

𝛾

=
9 + 4

√
3

6 + 2
√
3
=

5 +
√
3

4
.

30.2. (a) Let 𝛼 =
√
𝑛2 + 1. Then ⌊𝛼⌋ = 𝑛 so

𝛼 = 𝑛+ (
√︀
𝑛2 + 1− 𝑛) = 𝑛+

1
1√

𝑛2+1−𝑛

.

Now we must deal with

1√
𝑛2 + 1− 𝑛

=
1√

𝑛2 + 1− 𝑛
·
√
𝑛2 + 1− 𝑛√
𝑛2 + 1− 𝑛

=
√︀
𝑛2 + 1 + 𝑛.

The floor of this number is 2𝑛, so√︀
𝑛2 + 1 + 𝑛 = 2𝑛+ (

√︀
𝑛2 + 1− 𝑛) =

1
1√

𝑛2+1−𝑛

.
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And now the pattern repeats! Thus,

𝛼 = 𝑛+
1

2𝑛+
1

2𝑛+
1

2𝑛+
1

. . .

= [𝑛, 2𝑛].

(b) From part (a), we see that the continued fraction expansion of
√
𝐷 is periodic with

odd period ℓ = 1, so the fundamental solution is (𝑥, 𝑦) = (𝑝2ℓ−1, 𝑞2ℓ−1) = (𝑝1, 𝑞1).
The first convergent is

𝑝1
𝑞1

= 𝑛+
1

2𝑛
=

2𝑛2 + 1

2𝑛
.

Thus, the fundamental solution is (𝑥, 𝑦) = (2𝑛2 + 1, 2𝑛).

30.3. (a) We have
√
34 = [5; 1, 4, 1, 10]. Using this, we can show that the fundamental

solution is (𝑥, 𝑦) = (𝑝3, 𝑞3) = (35, 6).

(b) If 𝑥2 − 34𝑦2 = −1 has an integer solution then (by switching signs if necessary) it
will have a positive integer solution hence it will have a minimal positive solution
(𝑝, 𝑞). Then, by the fact given in the problem and by part (a),

𝑝2 + 34𝑞2 = 35 and 2𝑝𝑞 = 6.

The second equation implies that (𝑝, 𝑞) ∈ {(3, 1), (1, 3)}. However, neither of
these satisfy the first equation. We conclude that 𝑥2−34𝑦2 = −1 cannot have any
integer solutions.
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Lecture 31

Exercises

31.2. Here is the full proof.

If (𝑎, 𝑏, 𝑐) is a positive solution to 𝑥4 + 𝑦4 = 𝑧2 then (𝑎2, 𝑏2, 𝑐) is a Pythagorean triple.
If 𝑑 is a common divisor of 𝑎2, 𝑏2, 𝑐 then we can just factor it out and obtain a smaller
solution; so we may as well assume that (𝑎, 𝑏, 𝑐2) is a primitive triple. In particular,
we may assume that 𝑎 and 𝑐 are odd and 𝑏 is even.

Thus, by our classification of primitive Pythagorean triples, we have

𝑎2 = 𝑛2 −𝑚2, 𝑏2 = 2𝑛𝑚 and 𝑐 = 𝑛2 +𝑚2

where 𝑛 > 𝑚 are coprime positive integers of different parity. Now, 𝑎2 +𝑚2 = 𝑛2 so
(𝑎,𝑚, 𝑛) is a Pythagorean triple. It is also clearly primitive because if 𝑝 divides 𝑎,𝑚, 𝑛
then 𝑑 will divide 𝑏 = 2𝑛𝑚 and 𝑐 = 𝑛2 + 𝑚2 contradicting the fact that (𝑎, 𝑏, 𝑐2) is
primitive. Since (𝑎,𝑚, 𝑛) is primitive and since 𝑎 is odd, it follows that 𝑚 is even and
𝑛 is odd.

Appealing to our classification of Pythagorean triples once again, we have

𝑎 = 𝑢2 − 𝑣2, 𝑚 = 2𝑢𝑣 and 𝑛 = 𝑢2 + 𝑣2.

for some coprime 𝑢, 𝑣 ∈ Z>0. Hence 𝑏
2 = 2𝑚𝑛 = 4𝑢𝑣(𝑢2+𝑣2). Observe that 𝑢, 𝑣, 𝑢2+𝑣2

are pairwise coprime. Thus, since the product 𝑢𝑣(𝑢2 + 𝑣2) = (𝑏/2)2 is a square (note
that 𝑏/2 ∈ Z because 𝑏 is even), it follows that each of 𝑢, 𝑣 and 𝑢2+ 𝑣2 is a square, say
𝑢 = (𝑎′)2, 𝑣 = (𝑏′)2 and 𝑢2 + 𝑣2 = (𝑐′)2, where 𝑎′, 𝑏′, 𝑐′ ∈ Z>0.

Note that (𝑎′)4 + (𝑏′)4 = 𝑢2 + 𝑣2 = (𝑐′)2, so (𝑎′, 𝑏′, 𝑐′) is a positive integer solution to
𝑥4 + 𝑦4 = 𝑧2. Finally, we have

𝑐 = 𝑛2 +𝑚2 ≥ 𝑛2 = (𝑢2 + 𝑣2)2 = (𝑐′)4 > 𝑐′.

This completes our descent.

31.3. If 𝑛 > 4 is divisible by an odd prime 𝑝 then 𝑛 = 𝑝𝑘 and hence

𝑥𝑛 + 𝑦𝑛 = 𝑧𝑛 ⇐⇒ (𝑥𝑘)𝑝 + (𝑦𝑘)𝑝 = (𝑧𝑘)𝑝.

So if there are no solutions to FLT with exponent 𝑝, then there are no solutions to
FLT with exponent 𝑛.

On the other hand, if 𝑛 > 4 is not divisible by any odd prime, then 𝑛 = 2𝑘 must be
divisible by 4. The same kind of argument used above applies here.

Practice Problems

31.1. No solution provided. Margin too narrow.
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