
PMATH 445/745: Representation Theory
Assignment 0

Winter 2025
Due Never

Notes

• PMATH 445/745 requires a solid foundation in linear algebra, group theory and ring theory.
This assignment is meant to help you identify any weak points in your background. I’ve also
added some commentary in purple to indicate how the problems below are relevant to this
course.

• Hopefully most of the material below will be somewhat familiar. However, I suspect that
some things will be unfamiliar—either because you’ve actually never seen them before or
because the perspective taken here is new to you. (Or you’ve forgotten that you’ve seen
them.)

• I’m happy to discuss any of these problems during office hours. Please stop by!

Problems

Q1. Homs, Ends and Auts. If A and B are algebraic ‘objects’, we write

• Hom(A,B) for the set of all homomorphisms from A to B;

• End(A) = Hom(A,A) for the set of endomorphisms of A; and

• Aut(A) for the set of automorphisms of A, i.e. invertible endomorphisms A → A
whose inverses are also endomorphisms.

By defining appropriate (and “natural”) operations, show:

(a) If V and W are F -vector spaces, then Hom(V,W ) is an F -vector space.

(b) If V is an F -vector space, then End(V ) is a ring.

(c) If G is a group, then Aut(G) is a group.

I just want you to know what Hom, End and Aut are. The set of homs between representations
is a prominent object in representation theory. Endomorphism rings play a central role in
the algebraic approach to representation theory. Automorphism groups are the targets for
group actions and representations.

Q2. Exact sequences. Given algebraic objects A,B,C (e.g. groups, rings, vector spaces, ...), a
short exact sequence is a diagram of the form

0 → A
f→ B

g→ C → 0 (∗)

where f : A → B and g : B → C are homomorphisms (of the appropriate type, e.g. group
homs if we’re working with groups) such that

• f is injective. (We say (∗) is exact at A or that the piece 0 → A
f→ B is exact.)

• g is surjective. (We say (∗) is exact at C or that the piece B
g→ C → 0 is exact.)

• ker g = im f . (We say (∗) is exact at B or that the piece A
f→ B

g→ C is exact.)
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(a) Suppose (∗) is a short exact sequence of groups (or rings or vector spaces). Show that
B/f(A) ∼= C. [Frequently this is written sloppily as B/A ∼= C, where A is being viewed
as a subset of B via the injection f : A → B.]

(b) Show that if
0 → U → V → W → 0

is a short exact sequence of vector spaces, then V ∼= U ×W . Show by way of example
that the analogous statement is false for groups. [Hint: S3 contains a normal subgroup
of order 3.]

This is also just lingo. It won’t be that important in our course, but every math student
should know what a short exact sequence is.

Q3. Matrix groups. Let Mn(F ) be the ring of n× n matrices with entries in the field F . The
ring operations are addition and multiplication of matrices. Inside this ring, we can find
several interesting multiplicative groups.

(a) The general linear group is GLn(F ) = {A ∈ Mn(F ) : A is invertible}. Prove that
GLn(F ) is a group under multiplication.

(b) If V is an F -vector space, we defineGL(V ) = {T : V → V : T is an invertible linear map}.
Show that this is a group under composition and prove that, if dimV = n, GL(V ) is
isomorphic to GLn(F ).

(c) The special linear group is SLn(F ) = {A ∈ GLn(F ) : det(A) = 1}. Prove that
SLn(F ) is a subgroup of GLn(F ). [Hint: A quick way would be to note that det is a
homomorphism.]

(d) If F comes equipped with some extra linear algebraic structure (e.g. a bilinear form)
then we can examine subgroups of GLn(F ) that preserve that form.

(i) Let F = Cn and let ⟨ , ⟩ be the standard Hermitian inner product. The (standard)
unitary group is Un(C) = {A ∈ GLn(C) : ⟨A #»x ,A #»y ⟩ = ⟨ #»x , #»y ⟩}. Prove that
Un(C) = {A ∈ GLn(C) : A∗ = A−1}, where A∗ is the conjugate transpose of A and
deduce that Un(C) is a subgroup of GLn(C).

(ii) Let F = Rn and let ⟨ , ⟩ be the dot product. The (standard) orthogonal group
is On(R) = {A ∈ GLn(R) : ⟨A #»x ,A #»y ⟩ = ⟨ #»x , #»y ⟩}. Prove that On(R) = {A ∈
GLn(R) : AT = A−1} and deduce that On(R) is a subgroup of GLn(R).

Given a group, we’ll want to “represent” it as a matrix group; this is the basic idea of
representation theory. Furthermore, matrix groups themselves turn out to have interesting
representations, so they sort of play a dual role in the subject. Speaking of duals...

Q4. Dual spaces. Let V be a vector space over a field F . Its dual space is the set V ∗ of linear
maps f : V → F . (That is, V ∗ = Hom(V, F ).) Addition and scalar multiplication of linear
maps turn V ∗ into a vector space. In this problem, assume that V is finite-dimensional.
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(a) Let B = {v1, . . . , vn} be a basis for V . For each i, define an element v∗i ∈ V ∗ by
v∗i (vj) = δij (Kronecker delta). Show that B∗ = {v∗1, . . . , v∗n} is a basis for V ∗; this
is called the dual basis corresponding to B. Conclude that V ∼= V ∗. [Note: This
isomorphism is non-canonical, i.e., it depends on a choice of basis. It also needs V to be
finite-dimensional, since in the infinite-dimensional setting V ̸∼= V ∗.]

(b) Let B be a basis for V and let B∗ be the dual basis for V ∗ as in part (a). Given v ∈ V
and f ∈ V ∗, let [v]B be the coordinate vector of v represented as a column, and let [f ]B∗

be the coordinate vector of f represented as a row. Show that

f(v) = [f ]B∗ [v]B,

where the product of the 1×n row and the n×1 column on the right side, which results
in a 1 × 1 matrix, is being identified with a scalar. [Note: This shows that we can
interpret elements of V ∗ as row vectors.]

(c) Show that a vector v ∈ V is zero if and only if f(v) = 0 for all f ∈ V ∗. [Hint: If v ̸= 0,
extend {v} to a basis for V .]

(d) Duality pairing. Given v ∈ V and f ∈ V ∗, we often denote the value f(v) by ⟨v, f⟩.
This defines a non-degenerate bilinear mapping ⟨ , ⟩ : V × V ∗ → F which we refer to
as the duality pairing between V and V ∗. [Non-degenerate means: if ⟨v, f⟩ = 0 for all
f ∈ V ∗ then v = 0; and if ⟨v, f⟩ = 0 for all v ∈ V then f = 0. Be sure to confirm that
⟨ , ⟩ satisfies these two properties.]

Show that for each linear map T : V → V , there is a unique linear map T ∗ : V ∗ → V ∗

that satisfies
⟨T (v), f⟩ = ⟨v, T ∗(f)⟩ .

Show also that the B∗-matrix of T ∗ is the transpose of the B-matrix of T . [Hint: The
pairing actually defines T ∗(f) for you. Convince yourself that the the (i, j)th entry of

[T ∗]B∗ is
〈
ei, T

∗(e∗j )
〉
.]

As mentioned above, homs between representations are generally important, and homs to F
are particularly important.

Q5. Invariant subspaces. Let T : V → V be a linear map. A subspace U ⊆ V is said to be
T -invariant if T (U) ⊆ U . In this problem, assume that V is finite-dimensional.

(a) Suppose U is T -invariant. Let BU be a basis for U and extend it to a basis B for V .
Show that the matrix [T ]B is block upper-triangular:

[T ]B =

[
∗ ∗
0 ∗

]
.

Specifically, the upper-left block is the dimU × dimU matrix [T |U ]BU
.
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(b) Suppose that V = U ⊕ W where both U and W are T -invariant. Let BU and BW be
bases for U and W and set B = BU ∪BW . Show that in this case [T ]B is block diagonal:

[T ]B =

[
∗ 0
0 ∗

]
.

[Special case: If V is the direct sum of eigenspaces then [T ]B is diagonal.]

This will help us understand the decomposition of representations into smaller pieces.

Q6. Simultaneous diagonalizability. A family of matrices {Ai}mi=1 in Mn(F ) is simultaneously
diagonalizable if there is a matrix P such that P−1AiP is diagonal for all i. Show that a com-
muting family (i.e. AiAj = AjAi) of diagonalizable matrices is simultaneously diagonalizable.
[Hint: Suppose Eλ is an eigenspace for Ai. What can you say about AjEλ?]

This will help us understand representations of finite abelian groups.

Q7. A diagonalizability criterion. Let F be an algebraically closed field. A matrix A ∈ Mn(F )
is diagonalizable if and only if there exists a non-zero polynomial f(x) ∈ F [x] with no repeated
roots such that f(A) = 0. Use this to show that if A ∈ Mn(F ) satisfies Ak = I for some
k ∈ Z>0 such that charF ∤ k (see below for charF ), then A is diagonalizable.

Not hugely important, but will be nice to know.

Q8. Facts about Sn. Prove:

(a) Sn is generated by transpositions (2-cycles).

(b) a, b ∈ Sn are conjugate if and only if they have the same cycle type.

(c) If the cycle decomposition of a ∈ Sn contains k1 1-cycles, k2 2-cycles, and so on, then
the size of the conjugacy class in Sn containing a is equal to

n!

1k1k1!2k2k2! · · ·nknkn!
.

We’re going to explore the representation theory of Sn in the course.

Q9. charF . The characteristic of a field F , denoted by charF , is the smallest positive integer
n such that

1 + · · ·+ 1︸ ︷︷ ︸
n times

= 0 in F

provided such an integer n exists; otherwise we define the characteristic of F to be 0.

(a) Show that the characteristic of a field is either 0 or a prime number.

(b) Show that if charF = 0 then F contains a copy of Q. Otherwise, if charF = p, then F
contains a copy of Fp, the finite field of size p.

[Hint: The slick proof is to consider the ring homomorphism f : Z → F defined by sending
1 to 1. Then Z/ ker f sits inside F as an integral domain. What does this say about ker f?]

Some parts of representation theory get weird if the underlying field has positive characteristic.
We will want to be vaguely aware of this.
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