In the problems below, G is a finite group. You may assume $F = \mathbb{C}$.

- **Q1.** (Copy of A1Q5.) Let V and W be finite-dimensional F-vector spaces.
 - (a) Let $z \in V \otimes W$. Prove that there exist linearly independent $v_1, \ldots, v_n \in V$ such that $z = \sum_{i=1}^n v_i \otimes w_i$ for some $w_i \in W$.
 - (b) Let $V_0 \subseteq V$ and $W_0 \subseteq W$ be subspaces. Show that there is a unique injective linear map $T: V_0 \otimes W_0 \to V \otimes W$ such that $T(v_0 \otimes w_0) = v_0 \otimes w_0$.
 - (c) True or false? Every subspace of $V \otimes W$ is of the form $V_0 \otimes W_0$ for some subspaces $V_0 \subseteq V$ and $W_0 \subseteq W$. [Note: Here $V_0 \otimes W_0$ is being viewed as a subspace of $V \otimes W$ via the embedding given in part (b).]
- **Q2.** Let X and Y be finite G-sets. In this problem, view $X \times Y$ as a G-set with action given by g(x, y) = (gx, gy).
 - (a) Establish the following isomorphisms of *G*-modules:
 - (i) $F\langle X \times Y \rangle \cong F\langle X \rangle \otimes F\langle Y \rangle$.
 - (ii) $F\langle X \rangle^* \cong F\langle X \rangle$.
 - (iii) $\operatorname{Hom}(F\langle X\rangle, F\langle Y\rangle) \cong F\langle X \times Y\rangle.$
 - (b) Deduce that dim Hom_G($F\langle X\rangle, F\langle Y\rangle$) is equal to the number of G-orbits in $X \times Y$.
 - (c) Determine dim $\operatorname{Hom}_{S_n}(V, V)$, where V is the defining representation of S_n .
- **Q3.** Let V be an FG-module and let $\chi: G \to F^{\times}$ be a one-dimensional representation of G. Put $V_{\chi} = \{v \in V: gv = \chi(g)v \text{ for all } g \in G\}$ and note that this is a G-submodule of V. Let F_{χ} denote the G-module determined by χ ; that is, $F_{\chi} = F$ and the action of $g \in G$ on $a \in F$ is given by $g \cdot a = \chi(g)a$.
 - (a) Show that $\operatorname{Hom}_G(F_{\chi}, V) \cong V_{\chi}$ as vector spaces.
 - (b) Determine dim Hom_G(F_{χ}, V_{reg}) if χ is the trivial representation of G.
- **Q4.** Let V and W be finite-dimensional G-modules. Prove or disprove:
 - (a) V^* is irreducible if and only if V is irreducible.
 - (b) $V \otimes W$ is irreducible if and only if V and W are irreducible.
- **Q5.** Bonus. Let $A \in M_n(F)$ and $B \in M_m(F)$. Prove that $tr(A \otimes B) = tr(A) tr(B)$ using the characterization of trace given in Theorem 5.4. [I am looking for an argument along the lines of the solution to Exercise 5.5. Submit your solution directly by email to me.]