In the problems below, G is a finite group and all representations are finite-dimensional.

Q1. The **character** of a $\mathbb{C}C_n$ -module (V, ρ) is the function $\chi_{\rho} \colon G \to \mathbb{C}$ defined by $\chi_{\rho}(g) = \operatorname{tr}(\rho(g))$. Prove that two $\mathbb{C}C_n$ -modules (V, ρ) and (W, σ) are isomorphic if and only if $\chi_{\rho} = \chi_{\sigma}$ as functions. [Hint: Use the isotypic decomposition of V to diagonalize $\rho(a)$. Warm up with n = 2.]

In next week's lectures, we will prove that this (incredible) result holds for *all* finite groups G. It's instructive to try to do it "by hand" for $G = C_n$.

Q2. Assume $n \ge 3$. In this problem you will determine the isotypic decomposition of the defining representation $V = \mathbb{C}^n$ of S_n . Let

$$U = \text{span}\{(1, 1, \dots, 1)\}$$
 and $W = \{(x_1, \dots, x_n) \in \mathbb{C}^n : x_1 + \dots + x_n = 0\}.$

- (a) Show that U and W are S_n -invariant and that $V = U \oplus W$.
- (b) Let e_1, \ldots, e_n denote the standard basis vectors of \mathbb{C}^n . Let w be a nonzero vector in W. Show that $e_1 e_i \in \text{span}\{\pi w \colon \pi \in S_n\}$ for all $i = 2, \ldots, n$. Deduce that W has no proper nonzero S_n -invariant subspaces.

The irreducible representation W is called the standard representation of S_n .

- **Q3.** In this problem you will determine $\operatorname{Irr}_{\mathbb{C}}(S_4)$.
 - (a) Prove that the trivial representation and the alternating representation are the only one-dimensional representations of S_4 .
 - (b) Prove that the tensor product of an irreducible representation and a one-dimensional representation is irreducible. (Compare A2 Q4.)
 - (c) Determine the number and dimensions of the irreducible representations of S_4 .
 - (d) Figure out (or look up) how to realize S_3 as a quotient of S_4 . Use this to produce an irreducible two-dimensional representation of S_4 .
 - (e) Describe $\operatorname{Irr}_{\mathbb{C}}(S_4)$.
- **Q4.** Bonus. Suppose $\rho: G \to GL_2(\mathbb{C})$ is a representation of G such that, for each $g \in G$,

$$\rho(g) \in \left\{ \begin{bmatrix} a & b \\ c & a \end{bmatrix} : a, b, c \in \mathbb{C} \right\}.$$

Prove that ρ cannot be irreducible.