Perspectives on the moduli space of torsion-free $$\rm G_2\mathchar`s$ structures

Faisal Romshoo

University of Waterloo

August 14, 2024

1 G_2 preliminaries

- 2 The moduli space of compact torsion-free G₂-structures
- \bigcirc Gauge transformations on the space of torsion-free G_2 -structures

4 Future questions

Definition

Let M^7 be a smooth 7-manifold. A G₂-structure on M is a smooth 3-form φ on M such that at each point $p \in M$, there exists a linear isomorphism $T_p M \cong \mathbb{R}^7$ with respect to which $\varphi_p \in \Lambda^3(T_p^*M)$ corresponds to the associative form $\varphi_0 \in \Lambda^3(\mathbb{R}^7)^*$ given by $\varphi_0(a, b, c) = \langle a \times b, c \rangle$.

- The G₂-structure induces a Riemannian metric g_{φ} and an orientation, which gives us a Hodge star operator \star_{φ} and dual 4-form $\psi = \star_{\varphi} \varphi$.
- A G_2 -structure exists iff M is orientable and spinnable.

Definition

Let ∇ be the Levi-Civita connection of g_{φ} . We say that a manifold (M, φ) with G₂-structure is a G₂-manifold if φ is torsion-free. That is, if $\nabla \varphi = 0$.

Theorem (Fernández-Gray, 1982)

 (M, φ) is torsion-free iff $d\varphi = 0$ (closed) and $d\psi = 0$ (co-closed).

On (M, φ) , the G₂-structure φ induces the following decomposition on the space of differential forms:

$$\begin{split} \Omega^2 &= \Omega_7^2 \oplus \Omega_{14}^2 \\ \Omega^3 &= \Omega_1^3 \oplus \Omega_7^3 \oplus \Omega_{27}^3, \end{split}$$

where Ω_I^k has dimension *I*.

Assume that M is compact and let \mathcal{X} be the space of torsion-free structures on M. Then, if \mathcal{D} is the group of diffeomorphisms isotopic to the identity, we define the moduli space of torsion-free G₂-structures on M to be the quotient space

$$\mathcal{M}=\mathcal{X}/\mathcal{D}$$

where the action of ${\mathcal D}$ on ${\mathcal X}$ is given by

$$\varphi \mapsto \Psi^*(\varphi),$$

for $\Psi \in \mathcal{D}, \varphi \in \mathcal{X}$.

Theorem (Joyce, 1994)

The moduli space \mathcal{M} is a smooth manifold of dimension $b^3(\mathcal{M})$, and is locally diffeomorphic to an open subset of the vector space of $H^3(\mathcal{M}, \mathbb{R})$ through the map $[\varphi]_{\mathcal{M}} \mapsto [\varphi]_{dR}$.

Sketch of Proof.

We construct a "slice" S_{φ} for the action of \mathcal{D} on \mathcal{X} , which is a submanifold of \mathcal{X} containing φ locally transverse to the nearby orbits of φ in \mathcal{D} . Then, \mathcal{M} is locally homeomorphic in a neighbourhood of $[\varphi]_{\mathcal{M}} \in \mathcal{M}$ to S_{φ} . As $\varphi \in \mathcal{X}$ is arbitrary, \mathcal{M} is a smooth manifold.

The moduli space of compact torsion-free G₂-structures

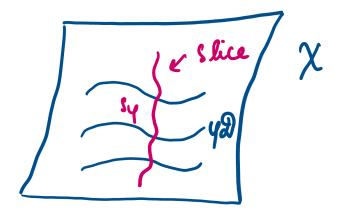


Figure: Slice

Gauge transformations on torsion-free G_2 -structures

We will now consider the infinitesimal characterization of this moduli space using a different approach, which is by exploring the action of gauge transformations of the form e^{tA} , where A is a 2-tensor, on the space of torsion-free G₂-structures.

 $\bullet\,$ The space \mathcal{T}^2 of 2-tensors decomposes as

$$\mathcal{T}^2\cong\Omega^0\oplus\mathcal{S}_0^2\oplus\Omega_7^2\oplus\Omega_{14}^2,$$

which allows us to write $A\in \mathcal{T}^2$ as

$$A = rac{1}{7}(\operatorname{tr} A)g + A_{27} + A_7 + A_{14},$$

where A_{27} is the traceless symmetric part of A.

• We take $P = e^{tA}$, and let

$$\widetilde{\varphi} = P^* \varphi.$$

Gauge transformations on torsion-free G_2 -structures

For k-forms σ ∈ Ω^k and 2-tensors A = A_{ij}dxⁱ ⊗ dx^j ∈ T², we define the diamond operator as

$$(A\diamond\sigma)_{i_1i_2\cdots i_k}=A_{i_1p}\sigma_{pi_2\cdots i_k}+A_{i_2p}\sigma_{i_1pi_3\cdots i_k}+\cdots+A_{i_kp}\sigma_{i_1i_2\cdots i_{k-1}p}.$$

Taking $\sigma = \varphi$, we have

$$(A \diamond \varphi)_{ijk} = A_{ip}\varphi_{pjk} + A_{jp}\varphi_{ipk} + A_{kp}\varphi_{ijp}.$$

• Using this framework of gauge transformations, we will show that infinitesimally, there is a relation between the torsion-free condition and the 3-form $A \diamond \varphi$ being harmonic (closed and co-closed).

Proposition

Let (M, φ) is a compact G₂-manifold. Suppose that $\gamma = A \diamond \varphi$ is a 3-form on M where $A \in \mathcal{T}^2$. Then, γ is harmonic if and only if

$$\nabla_i A_{ip} \varphi_{pjk} + \nabla_i A_{jp} \varphi_{ipk} + \nabla_i A_{kp} \varphi_{ijp} = 0$$

and

$$\begin{aligned} \nabla_i A_{pq} \varphi_{pqa} + \nabla_p A_{iq} \varphi_{paq} + \nabla_j A_{kp} \varphi_{jkp} g_{ia} \\ - \nabla_j A_{ka} \varphi_{ijk} - \nabla_p A_{kp} \varphi_{aik} - \nabla_j (\operatorname{tr} A) \varphi_{aji} = 0 \end{aligned}$$

э

With respect to the decomposition $\Omega^2 = \Omega_7^2 \oplus \Omega_{14}^2$ and $\Omega^4 = \Omega_1^4 \oplus \Omega_7^4 \oplus \Omega_{27}^4$, we have the explicit equations

$$(d^*\gamma)_7 = 0 \iff 2 \operatorname{div} A + \nabla \operatorname{Tr} A - \langle \nabla A, \psi \rangle = 0$$

$$(d\gamma)_1 = 0 \iff \operatorname{div}(\operatorname{VA}) = \nabla_a A_{pq} \varphi_{pqa} = 0$$

$$(d\gamma)_7 = 0 \iff 2 \operatorname{div} A^T - 2\nabla \operatorname{Tr} A + \langle \nabla A, \psi \rangle = 0,$$

where $(\operatorname{div} A)_m = \nabla_i A_{im}$, $(VA)_k = A_{ij}\varphi_{ijk}$ and $\langle \nabla A, \psi \rangle_m = \nabla_i A_{pq}\psi_{ipqm}$.

Let $\tilde{g} = P^*g = (e^{tA})^*\varphi$ and let $\tilde{\nabla}$ denote the Levi-Civita connection of \tilde{g} . Then, infinitesimally the torsion-free condition is given by vanishing of the linearization

$$\frac{d}{dt}\bigg|_{t=0}\widetilde{\nabla}\widetilde{\varphi}.$$

Lemma

For any vector field X on M, $K_X = \frac{d}{dt}|_{t=0} \widetilde{\nabla}_X \widetilde{\varphi}$ lies in Ω_7^3 with respect to the G₂-structure φ .

As $\Omega_7^3 = \{X \sqcup \psi \mid X \in \mathfrak{X}(M)\}$, we have $K_X = K(X) \sqcup \psi$ for some unique vector field $K(X) \in \mathfrak{X}$.

Proposition

Let K be the 2-tensor defined by the equation $K_X = K(X) \, \lrcorner \, \psi$, where $K_X = \frac{d}{dt}|_{t=0} \widetilde{\nabla}_X \widetilde{\varphi}$.

$$K_{ia} = 0 \iff -\nabla_i A_{pq} \varphi_{apq} + \nabla_p A_{qi} \varphi_{pqa} - \nabla_p A_{iq} \varphi_{paq} = 0$$

Moreover, we have

$$\mathcal{K}_7 = 0 \iff -2\operatorname{div} \mathcal{A}^T + 2\nabla\operatorname{tr} \mathcal{A} - \langle \nabla \mathcal{A}, \psi \rangle = 0$$

$$K_1 = 0 \iff \nabla_a A_{pq} \varphi_{apq} = 0,$$

with respect to the decomposition $\mathcal{T}^2 \cong \Omega^0 \oplus \mathcal{S}_0^2 \oplus \Omega_7^2 \oplus \Omega_{14}^2$.

э

Gauge-fixing condition

So far we have that

$$K_1 = 0 \iff (d\gamma)_1 = 0$$

and

$$K_7 = 0 \iff (d\gamma)_7 = 0.$$

Furthermore, since we want tangent directions to our "slice" of torsion-free G₂-structures to be L^2 -orthogonal to the infinitesimal diffeomorphisms $\mathcal{L}_W \varphi$, our gauge-fixing condition is given as

$$\langle A \diamond \varphi, \mathcal{L}_W \varphi \rangle_{L^2} = 0,$$

which, by expanding the Lie derivative and using the fact that φ is torsion-free, can be shown to be equivalent to

$$\langle A \diamond \varphi, \nabla W \diamond \varphi \rangle_{L^2} = 0$$

for all $W \in \mathfrak{X}(M)$.

Gauge-fixing condition

It turns out the gauge-fixing condition is equivalent to the equation

$$2\operatorname{div} A + \nabla \operatorname{tr} A - \langle \nabla A, \psi
angle = 0,$$

which gives us

gauge-fixing condition
$$\iff (d^*\gamma)_7 = 0$$

In addition, we also have

$$K_{27}=0\iff (d\gamma)_{27}=0.$$

If we also had

$$K_{14}=0\iff (d^*\gamma)_{14}=0,$$

then we would have

$$A \diamond \varphi$$
 is harmonic \iff ($K = 0 + G.F.$ condition).

Gauge-fixing condition

We have thus obtained the following theorem

Theorem

Let $A \in \mathcal{T}^2$ and K be a 2-tensor defined by the equation $K_X = K(X) \, \lrcorner \, \psi$, where $K_X = \frac{d}{dt}|_{t=0} \widetilde{\nabla}_X \widetilde{\varphi}$. Then, our gauge-fixing (G.F.) condition is given by the equation

$$2\operatorname{\mathsf{div}} A +
abla \operatorname{\mathsf{tr}} A - \langle
abla A, \psi
angle = \mathsf{0}.$$

Then, if $\gamma = A \diamond \varphi$, we have that

$$(d\gamma)_1 = 0 \iff K_1 = 0$$

$$(d^*\gamma)_7 = 0 \iff G.F. = 0$$

$$(d\gamma)_7 = 0 \iff K_7 = 0$$

$$(d\gamma)_{27} = 0 \iff K_{27} = 0.$$

Image: A matrix

- One could explore if this method can be used in the non-infinitesimal case to give an alternate proof of the fact that the moduli space of G₂-structures forms a non-singular smooth manifold.
- It could prove fruitful to use this method to prove analogous results for the moduli space formed by structures on manifolds with different holonomy groups such as Spin(7) and U(m).
- In particular, this point of view could give us a differential geometric explanation for why the Kähler moduli space is not smooth in general.

Thank You!

イロト イヨト イヨト イヨト

3