Perspectives on the moduli space of torsion-free $G₂$ -structures

Faisal Romshoo

University of Waterloo

August 14, 2024

$G₂$ [preliminaries](#page-2-0)

- (2) [The moduli space of compact torsion-free](#page-4-0) $G₂$ -structures
- 3 [Gauge transformations on the space of torsion-free](#page-7-0) G_2 -structures

[Future questions](#page-16-0)

Definition

Let M^7 be a smooth 7-manifold. A G_2 -structure on M is a smooth 3-form φ on M such that at each point $p \in M$, there exists a linear isomorphism $T_pM \cong \mathbb{R}^7$ with respect to which $\varphi_p \in \Lambda^3(\mathcal{T}_p^*M)$ corresponds to the associative form $\varphi_0\in \Lambda^3(\mathbb{R}^7)^*$ given by $\varphi_0(a,b,c)=\langle a\times b,c\rangle.$

- The G_2 -structure induces a Riemannian metric g_{φ} and an orientation, which gives us a Hodge star operator \star_{φ} and dual 4-form $\psi = \star_{\varphi} \varphi$.
- A $G₂$ -structure exists iff M is orientable and spinnable.

Definition

Let ∇ be the Levi-Civita connection of g_{φ} . We say that a manifold (M, φ) with G₂-structure is a G₂-manifold if φ is torsion-free. That is, if $\nabla \varphi = 0$.

Theorem (Fernández-Gray, 1982)

 (M, φ) is torsion-free iff $d\varphi = 0$ (closed) and $d\psi = 0$ (co-closed).

On (M, φ) , the G₂-structure φ induces the following decomposition on the space of differential forms:

$$
\begin{aligned} \Omega^2 &= \Omega_7^2 \oplus \Omega_{14}^2 \\ \Omega^3 &= \Omega_1^3 \oplus \Omega_7^3 \oplus \Omega_{27}^3, \end{aligned}
$$

where Ω_{I}^{k} has dimension *I*.

Assume that M is compact and let X be the space of torsion-free structures on M. Then, if D is the group of diffeomorphisms isotopic to the identity, we define the moduli space of torsion-free G_2 -structures on M to be the quotient space

$$
\mathcal{M}=\mathcal{X}/\mathcal{D}
$$

where the action of D on X is given by

$$
\varphi\mapsto \Psi^*(\varphi),
$$

for $\Psi \in \mathcal{D}, \varphi \in \mathcal{X}$.

Theorem (Joyce, 1994)

The moduli space M is a smooth manifold of dimension $b^3(M)$, and is locally diffeomorphic to an open subset of the vector space of $H^3(M,\mathbb{R})$ through the map $[\varphi]_M \mapsto [\varphi]_{dR}$.

Sketch of Proof.

We construct a "slice" S_{φ} for the action of D on X, which is a submanifold of X containing φ locally transverse to the nearby orbits of φ in D . Then, M is locally homeomorphic in a neighbourhood of $[\varphi]_{\mathcal{M}} \in \mathcal{M}$ to S_{φ} . As $\varphi \in \mathcal{X}$ is arbitrary, \mathcal{M} is a smooth manifold.

The moduli space of compact torsion-free G_2 -structures

Figure: Slice

←□

Gauge transformations on torsion-free G_2 -structures

We will now consider the infinitesimal characterization of this moduli space using a different approach, which is by exploring the action of gauge transformations of the form e^{tA} , where A is a 2-tensor, on the space of torsion-free G_2 -structures.

The space \mathcal{T}^2 of 2-tensors decomposes as

$$
\mathcal{T}^2\cong\Omega^0\oplus\mathcal{S}_0^2\oplus\Omega_7^2\oplus\Omega_{14}^2,
$$

which allows us to write $A\in \mathcal{T}^2$ as

$$
A = \frac{1}{7} (\text{tr } A)g + A_{27} + A_7 + A_{14},
$$

where A_{27} is the traceless symmetric part of A.

We take $P=e^{tA},$ and let

$$
\widetilde{\varphi} = P^* \varphi.
$$

Gauge transformations on torsion-free G_2 -structures

For *k*-forms $\sigma \in \Omega^k$ and 2-tensors $A = A_{ij}dx^i \otimes dx^j \in \mathcal{T}^2$, we define the diamond operator as

$$
(A \diamond \sigma)_{i_1 i_2 \cdots i_k} = A_{i_1 \rho} \sigma_{p i_2 \cdots i_k} + A_{i_2 \rho} \sigma_{i_1 p i_3 \cdots i_k} + \cdots + A_{i_k \rho} \sigma_{i_1 i_2 \cdots i_{k-1} \rho}.
$$

Taking $\sigma = \varphi$, we have

$$
(A \diamond \varphi)_{ijk} = A_{ip} \varphi_{pjk} + A_{jp} \varphi_{ipk} + A_{kp} \varphi_{ijp}.
$$

Using this framework of gauge transformations, we will show that infinitesimally, there is a relation between the torsion-free condition and the 3-form $A \diamond \varphi$ being harmonic (closed and co-closed).

Proposition

Let (M, φ) is a compact G₂-manifold. Suppose that $\gamma = A \circ \varphi$ is a 3-form on M where $A\in \mathcal{T}^{2}.$ Then, γ is harmonic if and only if

$$
\nabla_i A_{ip} \varphi_{pjk} + \nabla_i A_{jp} \varphi_{ipk} + \nabla_i A_{kp} \varphi_{ijp} = 0
$$

and

$$
\nabla_i A_{pq} \varphi_{pqa} + \nabla_p A_{iq} \varphi_{paq} + \nabla_j A_{kp} \varphi_{jkp} g_{ia} \n- \nabla_j A_{ka} \varphi_{ijk} - \nabla_p A_{kp} \varphi_{aik} - \nabla_j (\text{tr } A) \varphi_{aji} = 0.
$$

4 0 8

э

 QQ

With respect to the decomposition $\Omega^2=\Omega^2_7\oplus\Omega^2_{14}$ and $\Omega^4 = \Omega^4_1 \oplus \Omega^4_7 \oplus \Omega^4_{27},$ we have the explicit equations

$$
(d^*\gamma)_7=0\iff 2\mathop{\rm div}\nolimits A+\nabla\mathop{\rm Tr}\nolimits A-\langle\nabla A,\psi\rangle=0
$$

$$
(d\gamma)_1 = 0 \iff \text{div}(\text{V}A) = \nabla_a A_{pq} \varphi_{pqa} = 0
$$

$$
\Bigl|(d\gamma)_{7}=0\iff 2\mathop{\rm div}\nolimits A^{T}-2\nabla\mathop{\rm Tr}\nolimits A+\langle\nabla A,\psi\rangle=0,
$$

where $(\text{div } A)_m = \nabla_i A_{im}$, $(\nabla A)_k = A_{ij} \varphi_{ijk}$ and $\langle \nabla A, \psi \rangle_m = \nabla_i A_{pq} \psi_{ipqm}$.

 Ω

Let $\widetilde{g} = P^*g = (e^{tA})^*\varphi$ and let ∇ denote the Levi-Civita connection of \widetilde{g} .
Then, infinitesimally the tersion free condition is given by vanishing of the Then, infinitesimally the torsion-free condition is given by vanishing of the linearization

$$
\left.\frac{d}{dt}\right|_{t=0}\widetilde{\nabla}\widetilde{\varphi}.
$$

Lemma

For any vector field X on M, $K_X = \frac{d}{dt}|_{t=0} \widetilde{\nabla}_X \widetilde{\varphi}$ lies in Ω^3 with respect to the C_5 structure φ the G₂-structure φ .

As $\Omega^3_7=\{X\,\lrcorner\,\psi\mid X\in\mathfrak{X}(M)\},$ we have $K_X=K(X)\,\lrcorner\,\psi$ for some unique vector field $K(X) \in \mathfrak{X}$.

Proposition

Let K be the 2-tensor defined by the equation $K_X = K(X) \cup \psi$, where $K_X = \frac{d}{dt}|_{t=0} \widetilde{\nabla}_X \widetilde{\varphi}.$

$$
K_{ia} = 0 \iff -\nabla_i A_{pq} \varphi_{apq} + \nabla_p A_{qi} \varphi_{pqa} - \nabla_p A_{iq} \varphi_{paq} = 0
$$

Moreover, we have

$$
K_7 = 0 \iff -2 \operatorname{div} A^T + 2 \nabla \operatorname{tr} A - \langle \nabla A, \psi \rangle = 0
$$

$$
K_1=0 \iff \nabla_a A_{pq} \varphi_{apq}=0,
$$

with respect to the decomposition $\mathcal{T}^2\cong\Omega^0\oplus\mathcal{S}_0^2\oplus\Omega_7^2\oplus\Omega_{14}^2.$

Gauge-fixing condition

So far we have that

$$
K_1=0\iff (d\gamma)_1=0
$$

and

$$
K_7=0\iff (d\gamma)_7=0.
$$

Furthermore, since we want tangent directions to our "slice" of torsion-free G_2 -structures to be L^2 -orthogonal to the infinitesimal diffeomorphisms $\mathcal{L}_{W}\varphi$, our gauge-fixing condition is given as

$$
\langle A \diamond \varphi, \mathcal{L}_W \varphi \rangle_{L^2} = 0,
$$

which, by expanding the Lie derivative and using the fact that φ is torsion-free, can be shown to be equivalent to

$$
\langle A \diamond \varphi, \nabla W \diamond \varphi \rangle_{L^2} = 0
$$

for all $W \in \mathfrak{X}(M)$.

 200

Gauge-fixing condition

It turns out the gauge-fixing condition is equivalent to the equation

$$
2 \operatorname{div} A + \nabla \operatorname{tr} A - \langle \nabla A, \psi \rangle = 0,
$$

which gives us

$$
\text{gauge-fixing condition} \iff (d^*\gamma)_{7} = 0
$$

In addition, we also have

$$
K_{27}=0 \iff (d\gamma)_{27}=0.
$$

If we also had

$$
\mathit{K}_{14}=0\iff (d^*\gamma)_{14}=0,
$$

then we would have

$$
A \diamond \varphi
$$
 is harmonic $\iff (K = 0 + G.F.$ condition).

 QQ

Gauge-fixing condition

We have thus obtained the following theorem

Theorem

Let $A \in \mathcal{T}^2$ and K be a 2-tensor defined by the equation $K_X = K(X) \sqcup \psi,$ where $K_X = \frac{d}{dt}|_{t=0} \widetilde{\nabla}_X \widetilde{\varphi}$. Then, our gauge-fixing (G.F.) condition is given
by the equation by the equation

$$
2 \operatorname{div} A + \nabla \operatorname{tr} A - \langle \nabla A, \psi \rangle = 0.
$$

Then, if $\gamma = A \diamond \varphi$, we have that

$$
(d\gamma)_1 = 0 \iff K_1 = 0
$$

\n
$$
(d^*\gamma)_7 = 0 \iff G.F. = 0
$$

\n
$$
(d\gamma)_7 = 0 \iff K_7 = 0
$$

\n
$$
(d\gamma)_{27} = 0 \iff K_{27} = 0.
$$

← ロ → → ← 何 →

э

- One could explore if this method can be used in the non-infinitesimal case to give an alternate proof of the fact that the moduli space of $G₂$ -structures forms a non-singular smooth manifold.
- It could prove fruitful to use this method to prove analogous results for the moduli space formed by structures on manifolds with different holonomy groups such as $Spin(7)$ and $U(m)$.
- In particular, this point of view could give us a differential geometric explanation for why the Kähler moduli space is not smooth in general.

 200

Thank You!

 \prec

K ロ ▶ K 倒 ▶

 $\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$

重