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Abstract

The moduli space of torsion-free Ga-structures for a compact 7-manifold forms a non-
singular smooth manifold. This was originally proved by Joyce | ]. In this thesis,
we present the details of this proof, modifying some of the arguments using techniques in
[ | and | |. Next, we consider the action of gauge transformations of the form
et where A is a 2-tensor, on the space of torsion-free Gy-structures. This gives us a new
framework to study the moduli space.

We show that a Ga-structure @ = P*p acted upon by a gauge transformation P = e*4

is infinitesimal torsion-free condition almost exactly corresponds to A ¢ ¢ being harmonic
if A satisfies a “gauge-fixing” condition, where A ¢ ¢ is a 3-form defined using the di-
amond operator ¢ which features in [ |. This may be the first step in giving an
alternate proof of the fact that the moduli space forms a manifold in our framework of
gauge transformations.
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Chapter 1

Introduction

Our aim in thesis is to study the moduli space of torsion-free Go-structures and present a
new way to explore these moduli spaces through the framework of gauge transformations.

In this chapter, we will set the notation and conventions for the thesis and state some
fundamental results which we will need later on. Chapter 2 provides a brief overview of
facts and essential results about homogeneous manifolds.

In Chapter 3, we will discuss H-structures, their torsion and their interplay with holonomy
groups. The theory of H-structures provides a different way of looking at connections on
the underlying manifold and their holonomy groups, and proves to be useful for studying
geometrical structures.

We study Ga-structures, which are examples of H-structures, in detail in Chapter 4. We
will see how a Gy-structure on a manifold arises from the canonical Go-structure on R
which is isomorphic to the imaginary octonions. Moreover, we will present various identities
and properties of differential forms on manifolds with such a structure and look at ways
to package the torsion of these Gy-structures.

In Chapter 5, we define the moduli space of Go-structures on a compact manifold of dimen-
sion 7 and prove that it forms a non-singular smooth manifold of dimension 4%. Finally, we
present a new framework to study these moduli spaces through gauge transformations in
Chapter 6. In particular, we show that infinitesimally, the torsion-free condition under the
action of gauge transformations almost exactly corresponds to a particular 3-form, which
arises naturally from the Gy-structure and the gauge transformation, being harmonic when
we add a “gauge-fixing” condition.



1.1 Notation and conventions

The following standards for notation and conventions are followed throughout Chapter 4,
5 and 6. Unless specified otherwise, M is a 7-dimensional smooth manifold equipped with
a Riemannian metric g from a Go-structure ¢ (which we define in Chapter 4). We use
the metric to identify vector fields with 1-forms and the tensors are expressed with respect
to a local frame {ey,...,e,} that is orthonormal with respect to g. Due to this, all of
our indices are subscripts. When an operator like V,, appears, unless specified otherwise
by parentheses, it only acts on the term which follows it immediately. For instance,
Vo@ijrgije means (Vypijr)Ugije and not V, (@intgijr)-

For a fibre bundle E over M, we denote the space of smooth sections of E by I'(E). For
some special cases, we use the following notation:

o OF =T(A*(T*M)) is the space of smooth k-forms on M
e X =T(TM) is the space of smooth vector fields on M
o TF =T(®F(T*M)) is the space of smooth covariant k-tensors on M

o SF =T(S*(T*M)) is the space of smooth symmetric k-tensors on M

Next, we set notations for the three Banach spaces we will encounter in this thesis:
Li(M),C*(M) and C**(M). For ¢ > 1, define LI(M) to be the Lebesgue space, that
is, the set of locally integrable functions f on M for which the norm

1/q
1l = ( / Iflqvolg>

is finite, where voly is the volume form associated to the metric g. We denote the space
of continuous, bounded functions f on M that have k continuous, bounded derivatives as
C*(M), for integers k > 0 and define the norm || - ||ox as

k
| fller = ZSUP V71,
=0 M

where V is the Levi-Civita connection on M. If d(z,y) is the distance between x,y € M,
for sections v of a vector bundle V' over M, [v], is given as

['U]a _ sup |’U(£L') — ’U(y)”

xFyeM d(l‘, y)a
d(z,y)<é(g)



where 0(g) is the injectivity radius of g. For an integer £ > 0 and « € (0,1), we define the
Holder spaces C**(M) as the set of f € C*(M) for which the supremum [V*f], exists,
working in the vector bundle ®*T*M with its natural metric and connection. The norm
on C*(M) is then given as

1fllora = Iflex + [V* fla-

We view k-forms as totally skew-symmetric k-tensors on M and hence the inner products of
tensors, which include k-forms, are inner products as tensors. For k-forms o = %ail...ik iy, N
e Neg, B= 5856 N A ey, the pointwise inner product as tensors is given as

<a75> = ail"'ikﬂjl“'jk' (1'1)

The exterior derivative da of a k-form « can be written in terms of the covariant derivative
as

1 _
do = g(vioah---ik - vhaioiz---ik +eeet (_l)k 1vikai0---ik—1)ei0 ARRRNA i (1'2)
The adjoint d* : QF — QF1 of the exterior derivative is called the coderivative, which
can be written in terms of the covariant derivative as
1

d*a = _mvmamilmim&h ARRRNARCTNY

The metric and orientation determine the Hodge star operator x which takes k-forms to

(7 — k) forms, satisfying the relation

a A= g(a,B)voly,

where a, 8 are k-forms. Furthermore, we have x> = 1. Let v be a vector field and o a
k-form. Then, we have the following identities between the interior product, wedge product
and the Hodge star operator:

*(vaa) = (=1 A *a),
*(v axa) = (=1)*(° A a). (1.4)

Let A = Ajjda' @dx? € T2 Weset A' € T2 as (A');; to be the transpose of A and let us
define

Agm = =(A+ A" (1.5)

1
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and
1 t
Ao = §(A —A"). (1.6)

Therefore, we have a decomposition T*M ® T*M = S*(T*M) @ A?>(T*M) and hence we
can write

A= Asym + Askew (17)

uniquely where Agyy, is a symmetric tensor and Aggew is a 2-form.

The trace of A with respect to g is given as tr A = A;; = tr Agym. Hence, we can further
decompose

! (tr A)g + Ao, (1.8)

n

Asym =

where Ay = Agym — %(tr A)g is the traceless part of Ay, and n = dim M. Therefore, we
get a decomposition

1
A= E(trA)quAg—i-Askew, (1.9)
which is orthogonal with respect to the inner product given as
(A, B) = Ai; Bj; (1.10)

for A, B € T?2. Thus, denoting the traceless symmetric 2-tensors as Sz, we get the following
pointwise orthogonal splitting

T2={fg|fe}aSiao®=20as" o0 (1.11)

Let E = @"T*M and take S € T'(E). If W € X, then

(EWS)(Xl, e ,Xk) - W(S(Xl, e ,Xk>> - S(EWXl, e ,Xk) — S(Xl, e 7/:'WXk>
—S(LwX1,... ., Xp)— - —S(X1,...,LwXy).

From VWX - ,CWX = VwX - (VwX - VXW) = wa, we get
([,W‘S)(Xl,,Xk) - (VWS)(Xl,,Xk)+S(vX1W,,Xk)+—FS(Xl,,VXkW)

4



When k£ = 2 or k = 3, with respect to a local orthonormal frame, we get
(LwS)ij = WpV,S8: + VWS, + V,;W,S5,,

1.12
(ﬁwS)Uk = vapsijk -+ VinSpjk + VijSZ'pk -+ VkWpSijp. ( )

For vector fields X, we define the divergence div X as the function V,;X,; and it equals
—d*X when we identify X with its metric dual 1-form. In terms of a local orthonormal
frame, we have div X =V, X,,.

Let S € I'(E), where E = @*T*M. Then, we have that VS € T(T*M @ E) = T'(@*1T* M)
where
(V)X ) = (VxS)() e T'(E).
If k > 1, we define the divergence div S of S as the element of T'(@*T1T* M) given by
(div )iy ipy = VpSpir.in_s-

Note that this generalizes the notion of divergence for vector fields when we identify 1-forms
with vector fields since the two definitions agree when k = 1.
We will denote the Riemann curvature tensor in terms of a local orthonormal frame as

Riji = g(vei(vejek) - Vej(veiek) = Viese;1€ks er). (1.13)
The Ricci tensor in this convention is given as Rj; = Ry, and the Ricci identity for a

k-tensor is given as

k
vpvqsilmik - qupsiy..ik - - Z quilmSi1~~~i171miz+1~--ik' (1'14)

=1

1.2 Standard results

In this section, we present some standard results without proof which we will use in this
thesis. First, let us discuss some basic facts about Hodge theory. For a compact, oriented
Riemannian manifold M, we define the vector space of harmonic k-forms as

HY = ker(Ay),

where Ay : OF — OF is the Hodge Laplacian given as Ay = dd* + d*d. It is easy to show
that a k-form « lies in H* if and only if it is closed (da = 0) and co-closed (d*a = 0). In
addition if o € H*, then xa € H"*. Next, we mention the Hodge decomposition theorem
which is proved in | , Theorem 6.8]



Theorem 1.2.1 (The Hodge Decomposition Theorem). Let M be a compact, oriented
Riemannian manifold. Let us denote the exterior derivative and coderivative acting on k-
forms as dj, and dj, respectively. Then, we have

OF = H* @ Im(dy_1) © Im(dj,,).
Furthermore,
ker(dy,) = H" @ Im(dy_,)
and

ker(d;) = H* ® Im(dj_,).

Now, since the k-th deRham cohomology is given as H*(M,R) = ker(d},)/ Im(dj_;) and as
ker(dy) = H* @ Im(dy_,) from above, we have a canonical isomorphism between H* and
H%(M,R) given as:

Theorem 1.2.2 (The Hodge Theorem). Let M be a compact, oriented Riemannian
manifold. Then, every deRham cohomology class on M contains a unique harmonic rep-
resentative and H* = H*(M,R).

Now, we state the Implicit mapping theorem which can be found in | , Theorem 2.1,
pg. 364]

Theorem 1.2.3 (The Implicit Mapping Theorem). Let X,Y and Z be Banach spaces,
and U,V open neigbourhoods of 0 in X and 'Y respectively. If the function

F:UxV =2

is C* for some k > 1 such that F(0,0) = 0 and dF(o0)|y : Y — Z is an isomorphism of Y
and Z as vector and topological spaces, then there exists an open neighbourhood U' C U of

0 in X and a unique C* map
G:U =V

such that G(0) = 0 and
F(z,G(x)) =0

for all x € U'.



Let V and W be vector bundles, with metrics on the fibres, over a compact Riemannian
manifold M. Then, let P be a smooth linear elliptic operator from V to W and let P*
denote its formal adjoint from W to V. The Fredholm alternative is an existence result
for the equation Pv = w. That is, it gives a simple condition w L ker P* for w to satisfy
for there to exist a solution v. A proof can be found in | , Theorem 1.5.3].

Theorem 1.2.4. Let V,W, M and P be as above. Let k be the order of P and let | > 0 be
an integer, let p > 1 and let a € (0,1). Then, the image of the map

P CH (V) — CP(W)

is a closed linear subspace of CY*(W). If w € CY(W), then there exists v € CkThe (V)
with Pv = w if and only if w L ker P* and if one requires that v L ker P, then v is unique.



Chapter 2

Homogeneous Manifolds

We begin by briefly recalling some of the background material required to understand
group actions on manifolds and the spaces which are formed through these actions. The
main source for this chapter is | ]

Recall that an action of a group G on a set M is transitive if for every p,q € M, there
exists g € GG such that g-p = ¢q. A smooth manifold M with a smooth transitive action by
a Lie group G is called a homogeneous space of G (or just homogeneous manifold if
it is clear what the group action is). Due to the transitive action, a homogeneous manifold
can be informally seen as a space which looks the same everywhere. Let us look at some
basic examples of homogeneous manifolds.

Example 2.0.1. Consider the action of O(n) on S"~!. Since the action of O(n) on R™ is
smooth and S"~! is an embedded submanifold of R”, it is a smooth action. For v,v" € S,
we can complete v and v’ to orthonormal bases and let A and A’ be the orthogonal matrices
whose columns are these orthonormal bases. Then A’A~! takes v to v’. Since the action is
transitive, S""! is a homogeneous space of O(n).

Example 2.0.2. The above action of O(n) restricts to a smooth action of SO(n) on S"!.
For n = 1, this action is trivial since SO(1) is just the trivial group. To show that the action
is transitive for n > 2, it suffices to show that for any v € S"~!, there exists A € SO(n)
which takes the first standard basic vector e; to v. As O(n) acts transitively, we have some
A € O(n) which takes e; to v. We know that det A = +1. If det A = 1, then we are
done. But if det A = —1, then we can take the matrix obtained by multiplying the second
column of A by —1 which is in SO(n) and takes e; to v. Hence, S""! is a homogeneous
space of SO(n) for n > 2.



Example 2.0.3. The group SL(2,R) acts smoothly and transitively on the upper half
plane U = {z € C: J(z) > 0} under the action

a b az+0b
ey = —
c d cz+d
The induced diffeomorphisms on U are called Mobius transformations.

Now, we want to show that by taking the quotients of Lie groups by closed subgroups, we
can generate many examples of homogeneous manifolds. Let G be a Lie group, H C G be
a Lie subgroup and G/H denote the left coset space of G modulo H. We then have the
following theorem:

Theorem 2.0.4 (Homogeneous Space Construction Theorem). Let G be a Lie group
and let H be a closed subgroup of G. The left coset space G/H is a topological manifold
with dimension dim G — dim H and a unique smooth structure such that the quotient map
7 : G — G/H is a smooth submersion. The left action of G on G/H given as

91 (92H) = (q192)H

exhibits G/H as a homogeneous space of G.

Recall that a continuous left action of a Lie group GG on a manifold M is said to be a
proper action if the map G x M — M x M given by (g,p) — (g - p,p) is proper. It is
said to be a free action if every isotropy group is trivial. To prove Theorem 2.0.4, we
will require a few fundamental theorems about Lie groups, quotient manifolds and proper
actions. The proofs of the theorems which we do not prove in this chapter can be found
in | ].

Theorem 2.0.5 (Closed Subgroup Theorem). Let G be a Lie group and H C G is
a subgroup which is also a closed subset of G. Then, H is a Lie subgroup which is an
embedded submanifold of G. We say that H is an embedded Lie subgroup. Furthermore,
every embedded Lie subgroup is properly embedded. That is, the inclusion H — G is a
proper map.

Theorem 2.0.6 (Quotient Manifold Theorem). Let G be a Lie group acting smoothly,
freely and properly on a smooth manifold M. Then the orbit space M /G is a topological
manifold with dimension dim M — dim G and has a unique smooth structure such that the
quotient map w: M — M/G is a smooth submersion.



Theorem 2.0.7 (Sequential Characterization of Proper Actions). Let G be a Lie
group acting continuously on a manifold M. Then the action is proper iff for sequences (p;)
in M and (g;) in G such that (p;) and (g; - p;) converge, a subsequence of (g;) converges.

Proof of Theorem 2.0.4. Consider the right action of H on G by translation. Note that
the orbit space determined by this right action is the same as the left coset space G/H
since g1, 9o € G are in the same H-orbit if and only if g; = goh for some h € H which is
equivalent to saying that g;, go are in the same coset of H.

The H-action on G is smooth as it is the restriction of the multiplication on G which is
smooth. In addition, as H is a closed subgroup of GG, from Theorem 2.0.5, it is a properly
embedded subgroup. Furthermore, since gh = g implies that h = e, the action is free. To
show that the action is proper we will use Theorem 2.0.7. Let (g;) be a convergent sequence
in G and let (h;) be a sequence in H such that (g;h;) converges in G. Since multiplication
and inverses are continuous as G is a Lie group, h; = g; ' (g;h;) converges in G and as H is
closed in G with the subspace topology, (h;) converges in H.

Hence, from Theorem 2.0.6 it follows that GG/H has a unique smooth structure such that
7 : G — G/H is a smooth submersion. As the product of smooth submersions is also a
smooth submersion, we get that the map Idg x 7 : G x G — G x G/H is also a smooth
submersion. Denoting the group multiplication by m and the action of G on G/H given
in the statement of the theorem as #, we have the following diagram:

GxG@ ——— @G

Idg x ﬂl lﬂ'

GxG/H —— G/H

Note that for (g, [¢']) € G x G/H, we have that
(Ide x ™)~ (g.19') = {(9,9") | ¢"H = ¢'H for h € H}.

It follows that 7 o m is constant on the fibres of Idg X 7, because for (g, g”) such that
(Idg x 7)(g,9") = (9,19']),

m(m(g,9")) = m(99") = 9¢"H = g¢g'H.

Thus, passing smoothly to the quotient it follows that 6 is a well-defined and smooth group
action. Finally, it is transitive since for ¢, H, goH € G/H, we have gog;* € G such that
(9291") - 1l = goHl. 0

10



As we will see in the next theorem, the homogeneous spaces constructed in Theorem 2.0.4
are special since it turns out that every homogeneous space is equivalent to one of this
type. To prove it, we need to use the equivariant rank theorem which we will state without
proof:

Theorem 2.0.8 (Equivariant Rank Theorem). For smooth manifolds M, N and a Lie
group G, if F : M — N s a smooth map that is equivariant with respect to a transitive
smooth G-action on M and any smooth G-action on N, then F' has constant rank. There-
fore, F 1is a smooth submersion if it is surjective, a smooth imersion if it is injective and
a diffeomorphism if it is bijective.

Theorem 2.0.9 (Homogeneous Space Characterization Theorem). Let G be a Lie
group, M be a homogeneous space of G and let p € M. Then the isotropy group G, is
a closed subgroup of G, and the map F : G/G, — M defined by F(9G,) = g -p is an
equivariant diffeomorphism.

Proof. Let % : G — M denote the orbit map given as %) (g) = g -p and let H =
G, = (0%)~L(p). Since P is continuous, H is closed. Note that F is well-defined since if
g1H = goH, we have g, = g1h for some h € H and hence

F(goH)=g2 - p=gih-p=g1-p= F(g:H).

Furthermore, F'is equivariant since
F(g'gH) = (g'9) - p=4g - F(gH).

As F is obtained from the orbit map ) : G — M by passing to the quotient, it is smooth.

By Theorem 2.0.8, we know that equivariant smooth bijections are diffeomorphisms. Thus,
it suffices to show that F' is bijective. Let ¢ € M. Since the action is transitive, there
exists g € G such that g - p = ¢ and thus F(gH) = ¢, which shows surjectivity. For the
injectivity, if F'(g1H) = F(g2H), then

NP=g2p = g1 G2 P=p = ¢ € H = gH=gH O
Therefore, understanding homogeneous spaces can be reduced to the algebraic problem
of dealing with quotients of Lie groups by closed subgroups. Equipped with this new

perspective, let us take another look at the previously discussed examples of homogeneous
spaces.

11



Example 2.0.10. For the action of O(n) on S*!, if we choose the base point to be
the north pole N = (0,...,0,1), the isotropy group is O(n — 1) since it consists of the
orthogonal transformations fixing the last coordinate. Hence S"~! is diffeomorphic to the
quotient manifold O(n)/ O(n — 1).

Example 2.0.11. Similar to the previous example, we get that the isotropy group for the
action of SO(n) on S"~! is SO(n — 1) and hence S~ is diffeomorphic to SO(n)/SO(n —1)
for n > 2.

Example 2.0.12. Consider the transitive action of SL(2,R) on the upper half-plane by
Mobius transformations. Computing the isotropy group of ¢ € U directly shows that it

consists of matrices of the form with a? + b* = 1. Note that this is precisely the

a
—b
group SO(2) C SL(2,R). Thus, we have a diffeomorphism U = SL(2,R)/SO(2).

Let us conclude this section by defining principal G-bundles, which will be objects of focus
in Chapter 3.

Definition 2.0.13. If GG is a topological group, a principal G-bundle is a fibre bundle
7w : P — X with a continuous right G-action P x G — P given by (p,g) ~ p - g which
preserves the fibres of P (that is, 7(p - g) = m(p)) and acts freely and transitively on the
fibres.

From the definition above it follows that each fibre P, = 7~!(z) is homeomorphic to G
non-canonically through the map G — P, which sends g to yg for x € X,y € P,. Note
that if we take G to be a Lie group and take its action on a manifold M to be smooth,
free and proper, then the fibre bundle 7 : M — M /G with fibre G is a principal G-bundle.
For H a subgroup of GG, we say that H is admissible is the quotient map G — G/H is a
principal H-bundle. Using Theorem 2.0.6, it can be shown that every closed Lie subgroup
is admissible.

12



Chapter 3

H-structures

For this thesis, we will be mainly focusing on Gs-manifolds which are examples of a larger
class of objects known as H-structures. Before studying the special properties of G-
manifolds, we will lay down a theoretical framework for H-structures. This chapter closely
follows | | and | ]. The sources for the Lie algebra part are | ] and | ].

Let M™ be a connected and orientable smooth n-manifold without boundary where n > 2.
A frame at a point x € M is given by a linear isomorphism v : T, M — R". For any
g € GL(n,R), g~ ou is again a frame and for any two frames u,u’, there is a unique
g € GL(n,R) with «/ = g~ ou. That is, GL(n,R) acts freely and transitively on the set
of frames at a point.

Definition 3.0.1. The frame bundle of M denoted by Fr(M) is the principal GL(n,R)-
bundle whose fibre over x € M consists of frames u : T, M — R™ where the right action
GL(n,R) x Fr(M) — Fr(M) is given by (g,u) = g-u =gt ou.

Given a principal G-bundle for some group G, one can ask if it “comes from” a subgroup
H of G. If it does, then we say that it admits a reduction of structure group to H. More
concretely:

Definition 3.0.2. Let H, G be topological groups such that H < G. If p: H — G is the
inclusion, then a principal G-bundle P admits a reduction of structure group to H
if there is a principal H-bundle Py and an inclusion ¢ : Py — Pg which is H-equivariant,
that is, i(ph) = i(p)h for p € Py, h € H. The bundle Py is called an H-reduction of Pg.

Let H C GL(n,R) be a Lie subgroup. Then, an H-structure on M" is an H-reduction
of Fr(M). For instance, it can be shown that an SO(n)-structure on M" is equivalent to

13



a choice of a Riemannian metric ¢ and an orientation. We fix an oriented Riemannian
manifold (M", g) and denote the associated SO(n)-structure by mso@ : Fr(M,g) — M.
Then, if H is a Lie subgroup of SO(n), we say that @) is a compatible H-structure
on (M",g) if @ is an H-reduction of Fr(M,g). Now, let us assume that H C SO(n) is
closed and connected. From the discussion at the end of Chapter 2, it follows that the
quotient map 7y : Fr(M,g) — Fr(M,g)/H is a principal H-bundle. Hence, the map
7 Fr(M,g)/H — M which is defined such that the following diagram commutes

v(M,g) —2 Fr(M,g)/H
ﬂSO(vL)l /

is a fibre bundle with fibre SO(n)/H.

We then have a one-to-one correspondence between compatible H-structures Q@ C Fr(M, g)
and sections o € I'(Fr(M,g)/H). Since o is a section of a homogeneous fibre bundle
Fr(M,g9)/H — M, we call it a homogeneous section. Indeed, given ) C Fr(M,g), we
can define og(z) := my(u) where u € @ with 7go@(u) = x. This is well defined since
for u,u € ﬂs’é(n)(u) C @, as @ is an H-bundle, we have w = h - u for some h € H which
implies that 7y (u) = 7y (w). Conversely, if o € I'(Fr(M, g)/H), we can define a compatible
H-structure by Q, := 75 (0(M)) C Fr(M, g).

Next, we will briefly discuss some Lie algebra preliminaries relating to Riemannian mani-
folds which we require in order to define connections associated to H-structures.

3.1 Lie algebra background

We will denote the Lie algebras of G and H by g and b respectively. Let Ad : G — GL(g)
denote the adjoint representation of G, where

Ad(g)(X) = Ady(X) = gXg~!

for g € G and X € g and let us denote the adjoint representation of g, which is the
derivative of Ad at the identity, by ad : g — gl(g) where

ad(X)(Y) = adx(Y) = [X, Y],
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Definition 3.1.1. If G is a Lie group and H is a closed subgroup, then we say that the
homogeneous manifold G/H is reductive if for some subspace m of g we have

g=hbom
such that
Adp(m) Cm
for all h € H.

We can put certain conditions on GG and g such that it always admits a reductive decom-
position. One such condition is as follows:

Theorem 3.1.2. Let G/H be a homogeneous space such that G is a connected Lie group.
Assume that g admits an Ad(G)-invariant inner product (-,-) and let m be the orthogonal
complement of by with respect to the metric (-,-). Then, G/H is reductive with respect to
the decomposition g = bh G m.

Proof. As H is closed under conjugation, W,(h) = aha™! for all a,h € H and as the adjoint
representation is given by Ad, = (d¥})., it follows that b is invariant under Ad, for all
h € H. Furthermore, since each Ady, is an isomorphism, we get that Ad,(h) = bh. Now, let
X €m. As m = h', we have that for all Y € b,

(X,Y)=0.
As the inner product is Ad(G)-invariant, we have that for h € H,
(Ad,(X),Ad,(Y)) = 0.
As Ady(h) = b, for all W € h we have
(Ady(X), W) =0

which shows that Ad,(X) € bt = m. As X was arbitrary, we have that Ad,(m) C m and
hence, the decomposition is reductive. O

Definition 3.1.3. The Killing form B of g is the symmetric bilinear form given by
B(X,Y)=tr(ad X oadY)

for X,Y € g.
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If B is non-degenerate, we say that g is semi-simple. If the Lie algebra g of a Lie group
G is semi-simple, then we say that G is semi-simple. From | , Appendix 9], we know
that a compact, connected Lie group G is semisimple iff the Killing form B is negative
definite. Furthermore, B is Ad(G)-invariant:

Theorem 3.1.4. The Killing form B of a Lie algebra is Adg-invariant for all g € G.
That s, for X, Y € g,

B(Ad, X,Ad,Y) = B(X,Y).

Proof. Since each Ady is a Lie algebra homomorphism, it preserves brackets and hence
Ad,[X,Y] =[Ad, X,Ad, Y].

Furthermore, since Ad, is an automorphism, taking Z = Ad,(Y’), we have that
Ady[X,Ad," Z] = [Ad, X, Z].

Since ad(V)(W) = [V, W] for VW € g, we have

Adyoad(X) o Ad,! = ad(Ad,y(X)).
This gives us
B(Ad, X,Ad,Y) = tr(ad(Ad, X) o (ad Ad, Y))
= tr(Adgad(X) o ad(Y) Ad, ")
= tr(ad( )oad(Y))
B(X,Y). O
Note that in the above proof, we only used the fact that Ad, is a Lie algebra automorphism.

Hence, this proof works for any Lie algebra automorphism p. That is, the Killing form B
is p-invariant for any automorphism p of g.

Therefore, for any Lie group G' which is compact, connected and semisimple, the bilinear
form —cB for any constant ¢ > 0 gives us an Ad(G)-invariant inner product on g. We say
that a homogeneous space G/H is normal if G is a connected, compact and semisimple
Lie group. Thus, we obtain the following corollary of Theorem 3.1.2

Corollary 3.1.5. Let G/H be a normal homogeneous space. That is, G is a connected,
compact and semisimple Lie group. Then under the Ad(G)-invariant inner product (-, -)
given by —cB on g where ¢ > 0, G/H 1is reductive with respect to the decomposition
g = b @& m, where m is the orthogonal complement of b with respect to the metric (-, -).
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We will conclude this section by defining adjoint bundles. Earlier in this chapter, using
frame bundles we were able to go from vector bundles to principal bundles. The following
is a way to go in the opposite direction.

Definition 3.1.6. Let M be a manifold, G a Lie group and P a principal bundle over M
with fibre G. If p is a representation of GG on a vector space V', then there is an action of
G on the product space P x V where the action on the first factor is the principal bundle
action and on the second factor it acts by p. We define the quotient of P x V by this
G-action to be

p(P) = (P x V)/G.

Since P/G = M, the natural projection map from (P x V')/G to P/G gives us a projection
from p(P) to M. As G acts freely on P, this projection has fibre V' and thus p(P) is a
vector bundle over M with fibre V.

Take 7 : P x V — p(P) to be the natural projection. Let us consider P x V as the trivial
vector bundle over P with fibre V. Then, if e € I'(p(P)) is a smooth section of p(P) over
M, then the pullback 7*(e) is a smooth section of P x V over P. Furthermore, 7*(e) is
invariant under the action of G on P x V', which gives us a 1-1 correspondence between
sections of p(P) over M and G-invariant sections of P x V over P. Due to this, we often
write p(P) = P x¢ V if the choice of the representation p is clear.

If P is a principal G-bundle over a smooth manifold, then the adjoint bundle Ad(P) of
P is the bundle associated to the representation Ad : G — GL(g). That is, the elements of
the adjoint bundle are equivalence classes [p, X| for p € P, X € g such that for all g € G,

[p- g, X] = [p, Ady(X)].

Due to the above 1-1 correspondence, we can also represent Ad(P) as P x¢ g.

3.2 H-connections and intrinsic torsion

Consider the quotient SO(n)/H equipped with the metric on SO(n) given by (A, B) =
—tr(AB). Then, as H is closed and connected, and as SO(n) is connected, semisimple (for
n > 2) and compact, SO(n)/H is a normal, homogeneous Riemannian manifold. From
Corollary 3.1.5 we get that there is a reductive decomposition

so(n)=hédm (3.1)
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where m = h is the orthogonal complement of b with respect to the metric (-,-). That is,
Ady(m) Cm. If (M" g) admits a compatible H-structure Q C Fr(M, g), then the above
reductive decomposition induces an orthogonal H-module decomposition

EO(TM) = [)Q ) mg (32)

where the adjoint bundle so(T'M) := Fr(M, g) Xso@m) s0(n) is the subbundle of skew-
symmetric endomorphisms in End(TM) = T*M @ TM and hg := Q xgh,mg := Q xgm.

We say that a connection V on TM is an H-connection if for the associated connection
I-form & € Q' (Fr(M), gl(n,R)), we have that (5@ € Q'(Q, b) is a connection 1-form on Q

where 1 : () — Fr(M) is the H-subbundle inclusion. If V is an H-connection and V is
the Levi-Civita connection on (M™, g). Then, define

fX = 6)(—VX. (33)

Since () is compatible with g, the H-connection V on TM is compatible with g. Thus, we
have

X(g(Y,2)) = g(VxY, Z) + g(Y,VxZ)
and since V is a Levi-Civita connection,
X(9(Y,2)) = g(VxY, Z) + g(Y,VxZ).
Combining the two gives us
(VxY —VxY,Z) = —(Y,VxZ —VxZ) = (IxY,Z) = —(Y,TxZ).

Therefore, for fixed X € X(M), the map ¥ — TxY is a skew-adjoint endomorphism.
This means that Tx defines a skew-symmetric endomorphism Ty € T'(so(TM)) for all
X € X(M). As V is torsion-free, T' is essentially the torsion of V as

VxY —Vy X —[X, Y] =VxY —Vy X — [X, Y] — (VxY = Vy X — [X,Y))
=TyY — Ty X

for all XY € X(M). As Ty = Th (fX) + Wm(TvX) where 7y, T, denote the projections for
the decomposition in (3.2), we can define the H-connection

Vi = Vx — my(Tx).
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Note that since the difference between any two H-connections lies in I'(hg), it follows that

V# only depends on the H-structure and not on the choice of the H-connection V. That
is, V# is the unique H-connection on M such that its torsion T of V! satisfies

Ty = Vg —Vx € F(mQ)

This tensor T € Q'(M,mg) is called the intrinsic torsion of the H-structure @ and @
is said to be torsion-free when 7" = 0. That is, the Levi-Civita connection is an H-
connection which as we will see in Section 3.3 shows that its holonomy is a subgroup of

H.

3.3 Compatible H-structures and holonomy groups

In this section, we will explore the relations between H-structures and holonomy groups.
First, let us briefly recall some facts about holonomy groups on vector bundles.

Given a manifold M, a vector bundle E over M and a connection V on FE, for a piecewise-
smooth curve v : [0,1] — M such that v(0) = x and y(1) = y for z,y € M, we have that
for each e € E, there exists a unique smooth section s of the pullback bundle v*(E) such
that V. us(t) = 0 for t € [0,1], with s(0) = e. We then define the parallel transport
map as P,(e) = s(1) where P, : B, — E, is a well-defined linear map.

We call v : [0, 1] — M aloop based at x € M if it is piecewise-smooth with v(0) = (1) = x.
The parallel transport map for a loop P, : £, — E, is an invertible linear map, which
means that P, € GL(E,). We define the holonomy group of V based at z as

Hol, (V) = {P, : v is a loop based at x} C GL(E;,).

It can be easily confirmed that Hol,(V) is indeed a a subgroup of GL(E,). Furthermore,
we can drop the basepoint from the notation and write the holonomy group of V as Hol(V)
since for z,y € M, Hol,(V) and Hol,(V) determine the same subgroup of GL(k,R) for
some k, up to conjugation.

Next, let us briefly summarize the notion of a connection on a principal bundle. Let P be a
principal bundle over a manifold M with fibre G and denote the projection by 7 : P — M.
Let p € P and fix m = m(p). Then we define C, to be the subspace of T, P given by
C, = ker(dm,) where dm, : T,P — T,,M is the derivative of 7. We can then form a
vector subbundle C of the tangent bundle TP consisting of the subspaces C, which we call
the vertical subbundle. Furthermore, as 7 is a submersion from the implicit function
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theorem, we have C, = T,(7~'(m)). But since the fibres of 7 are the orbits of the free
G-action on P, we have a natural isomorphism

C,> g (3.4)

where g is the Lie algebra of G. A connection on P then is a vector subbundle D of TP
called the horizontal subbundle which is invariant under the G-action on P satisfying

T,P=C,® D, (3.5)
for each p € P. As C, = kerdm,, we have the isomorphism

Dp = W*(Tﬂ(p)M>. (36)

Now, let v : [0,1] — P be a piecewise-smooth curve in P, where P is as above and D is a
connection on P. Then we say that v is a horizontal curve if 7/(t) € D, for each t in
the open, dense subset of [0, 1] where /(¢) is well-defined. Furthermore, if v : [0,1] — M
is piecewise-smooth with v(0) = m and 7(p) = m for some p € P, then from existence
results for ordinary differential equations, it follows that there exists a unique horizontal,
piecewise-smooth map 7 : [0,1] — P such that ¥(0) = p and T o5 = . We call 5 the
horizontal lift of v. We are now ready to define a holonomy group for a principal bundle.

Definition 3.3.1. Let M be a manifold, P a principal bundle over M with fibre G and D
a connection on P. Let p,q € P. Then we write p ~ ¢ if there exists a piecewise-smooth
horizontal curve in P joining p and ¢. This is clearly an equivalence relation. Fix p € P
and define the holonomy group of (P, D) based at p to be

Hol,(P,D) ={9 € G:p~g-p}.

Like in the case of vector bundles, it is easy to see that Hol,(P, D) is a subgroup of G and
that Hol,(P, D) depends on the base point p € P only up to conjugation, which means
that the holonomy groups can be regarded as an equivalence class of subgroups of G under
conjugation and thus we can write Hol(P, D).

The next theorem gives us a way to get H-reductions through holonomy groups of a
principal G-bundle P for certain closed Lie subgroups H of G.

Theorem 3.3.2 (Reduction Theorem). Let M be a manifold, P a principal bundle over
M with fibre G, and D a connection on P. Fizp € P and let H = Hol,(P, D). Suppose
that H is a closed Lie subgroup of G. Define Q = {q € P :p ~ q}. Then, Q is a principal
subbundle of P with fibre H and the connection D on P restricts to a connection D' on Q).
That is, P reduces to QQ and the connection D on P reduces to D’ on Q).
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Proof. Clearly, () is preserved by the action of H on P, and hence it acts freely on Q.
In addition, 7 restricts to () which gives us a projection 7 : ) — M, with the fibres of
7w Q — M being the orbits of H. Furthermore, as H is a closed subgroup of G, it is a Lie
group and thus ) is a submanifold of P. Therefore, () is a principal subbundle of P with
fibre H.

Now, let C’ be the vertical subbundle of (). By definition of @), a point ¢ lies in @ if it can
be joined to p by a horizontal curve. Thus, as a horizontal curve starting in ) must stay in
Q, T, must contain all horizontal vectors at ¢ and therefore, D, C T;(). Then, we have
T,P=C,® Dy, D, C T,Q and C; = C, NT,Q which combine to give us T,Q = C; ® D,.

Hence, the restriction D’ of the connection D to () is indeed a connection on Q). O

The two definitions of holonomy groups turn out to be equivalent. But to see that, we
need to first see how connections on vector and principal bundles relate. Let P, M and G
be as above and let p be a representation of G on a vector space V. Then let £ — M be
the vector bundle p(P) over M as defined in Section 3.1. Given a connection D on P, we
want to construct a unique connection V on E. Let e € I'(E) be a smooth section. Then,
if m: P xV — p(P) is the natural projection, 7*(e) is a section of P x V over P. Thus,
considering 7*(e) as a function 7*(e) : P — V, its exterior derivative is a linear map given
as dn*(e)|, : T,P — V for each p € P. This shows that dm*(e) is a smooth section of the
vector bundle V ® T*P over P. Now, from the isomorphisms (3.4), (3.5) and (3.6), we
obtain the natural splitting

VeT'P=(Veg)e (Ver(TM). (3.7)

Let mp(dr*(e)) represent the component of dn*(e) in I'(V @ 7*(T*M)) with respect to the
above splitting. Since both 7*(e) and the splitting above are G-invariant, we have that
7p(dr*(e)) is G-invariant. But from Section 3.1, we know that there is a 1-1 correspondence
between G-invariant sections of V ® 7*(T*M) over P and sections of the corresponding
vector bundle E®T*M over M. Therefore, mp(dn*(e)) is the pullback of a unique element
in ['(E ® T*M). This allows to state the following definition.

Definition 3.3.3. Let M be a manifold, P a principal bundle over M with fiber G and
D a connection on P. Let p be a representation of G on a vector space V and let E be
the vector bundle p(P) over M. If e € I'(E), then mp(dn*(e)) is a G-invariant section of
V @ n*(T*M) over P. Let us then define Ve € I'(E ® T*M) to be the unique section of
E®T*M with pullback mp(dn*(e)) under the natural projection V@7n*(T*M) — EQT*M.
This determines a connection on the vector bundle E over M.
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Therefore, we have associated a connection V on the vector bundle £ = p(P) for every
connection D on a principal bundle P. In particular, if we take G = GL(k,R) and p as
the standard representation of G on R¥, such that P is the frame bundle of E, we get a
1-1 correspondence between connections on P and E. But in general, the map D — V for
any G and p may be neither injective nor surjective.

Now, this allows us to compare the holonomy groups of connections in vector bundles and
principal bundles. The following proposition from | ] gives us the correspondence.

Proposition 3.3.4. Let M be a manifold, P a principal bundle over M with fiber G. Let
p: G — GL(V) be a representation of G on a vector space V' and set E = p(P). Let D
be a connection on P and let V be the induced connection on E. Then, Hol(P, D) and
Hol(V) are subgroups of G and GL(V') defined up to conjugation respectively and

p(Hol(P, D)) = Hol(V).

If F¥ is the frame bundle of a vector bundle E over a manifold M with fibre R¥, then
we know that F'¥ is a principal bundle with fibre GL(k,R). If V¥ is a connection on F
and D¥ is the corresponding connection on F'¥; then Hol(V¥) and Hol(F¥  D¥) are both
subgroups of GL(k,R) defined up to conjugation and

Hol(V¥) = Hol(F¥, D).

Finally, the next proposition, whose proof is similar to that of Theorem 3.3.2, shows that
for a connection V on T'M where M is connected, V is an H-connection if and only if

Hol(V) C H.

Proposition 3.3.5. Suppose M is a connected manifold of dimension n and let us denote
its frame bundle by F'. Let V be a connection on T'M. Fix f € F. Then, for each Lie
subgroup H C GL(n,R), there exists a H-structure Q on M which is compatible with V
(that is, V is an H-connection) which contains f if and only if Hol;(V) C H C GL(n,R).
If such a Q exists, then it is unique. In general, there is a 1-1 correspondence between

H-stuctures equipped with a H-connection V but not necessarily containing f and the
homogeneous space H \ {a € GL(n,R) : aHol;(V)a™' C H}

Proof. If () exists, then it must contain f. As it is closed under H, we get that it contains
h - f for each h € H. As V is an H-connection, any horizontal curve starting in ) must
remain in (). Thus, if ¢ € @ and p € F such that p ~ ¢, then p € ), where ~ is the
equivalence relation in Definition 3.3.1. Therefore, if p € F and p ~ h - f for any h € H,
then p € Q. But as M is connected, there exists a curve 7 from 7(p) to w(f) in M, where
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7 is the projection from the frame bundle. It follows that the horizontal lift ¥ of v from p
ends at h - f for some h € H. Hence, every p € Q must satisfy p ~ h - f for some h € H.
Thus, if @ exists, @ must be {p € F' : p ~ h - f for some h € H}. This set is a principal
bundle over M and it has the subgroup of GL(n,R) generated by H and Hol;(V) as its
fibre. Therefore, () exists if and only if Holy(V) C H and if it exists, it is unique.

Now, if a € GL(n,R), then we know that Hol,.;(V) = aHol;(V)a~!. Thus, we get that
there is a unique H-structure @ containing a - f if and only if aHol;(V)a™' C H. But
H-structures containing a - f must contain (ha) - f for all h € H. Therefore, we get the
1-1 correspondence of the H-structures with the set as claimed above. O

3.4 Stabilized tensors

This section gives a characterisation of H-structures on manifolds in terms of their stabi-
lized tensors. Consider the canonical right-actions on R™ and (R")* by GL(n,R):

(g,0) = g v

for g € GL(n,R),v € R" and
(9, 0) = gra=aog

for o € (R™)*. Let § € TPI(R") := (®"R") ® (®7(R")*) be a (p, ¢)-tensor. Then, denoting
the canonical basis on R" as {¢;} and the dual basis on (R™)* as {e'}, we can represent &,
in terms of its components as

5025?1”'7;.1)61'1®'”®€ip®€jl®"'®€jq

917 Jq
where f’ﬁ;‘; = &le",...,e",ej,...,e;,) € R. Then, we extend the canonical actions
naturally onto tensors by
g-b=& g e, @@y e, g @@ gel, (3.8)

The stabilizer of this action is denoted by

and if we have a finite collection of tensors (&);, then letting GL(n,R) act on & =
((&)1, - -+, (&)x) component wise, we have

Stab(&) = [)(Stab(&):)-

]

23



For example, if gy := d;j¢' ® €’ is the standard Euclidean metric and g is the standard
volume form, then they are stabilized by

Stab(go, t0) = Stab(go) N Stab(ug) = O(n) N SL(n, R) = SO(n).

Definition 3.4.1. Given an H-structure o € I'(Fr(M)/H), we say that £ € I'(TP4(T'M))
is stabilized by H if H C Stab(u™!-¢) for a frame u € Q, = 7' (¢(M)) C Fr(M), where

uy : T,M =5 R™ for all z € M and 7y is the quotient map 7 : Fr(M) — Fr(M)/H.

We want to study H-structures that are completely characterised by their stabilised tensors.
That is, H C SO(n) is the stabilizer of a finite number of tensors on R™. Hence,

H= St&b(§0>

for some & = ((0)1,- - -, (§0)x) in an r-dimensional GL(n,R) submodule V' < @7P4(R"),
where V.= Vi @ -+ @V, with V; < TP»%(R"). Then, let F < &T?4(TM) be a rank
r subbundle with fibre V' = R". We then obtain a natural monomorphism of principal
bundles p : Fr(M) < Fr(F) given on the fibres as

pug) : Fo =V (3.9)

which identifies u, € Fr(M), at each point = € M with a frame on the fibre F,.

Definition 3.4.2. A section ¢ € I'(F) is a geometric structure modelled on a fixed
element & € V < TP4(R"), if for each x € M there exists a frame of T, M identifying £(z)
and &.

Now, if we have H C SO(n) such that H = Stab(&), then we can define the universal
section = € I'(7*F) as

Z(y) = y" o

The universal section assigns to each H-class of frames y € Fr(M)/H, the vector in Fr
whose coordinates are given by the model tensor &, in the frame p(ur(,)) as described in
(3.9). Therefore, it codifies all smooth H-structures.

Furthermore, to each homogeneous section o € I'(Fr(M)/H) defining an H-structure, we
can associate a geometric structure £ € I'(F) modelled on &, by

*

(11
(1]

o =0 oo0. (3.10)



And conversely, if ¢ € I'(F) is a geometric structure stabilized by H we can associate with
it at each point x € M, the H-class of frames o(z) € 7—!(z) such that

§(x) = o(2) &

This correspondence allows us to talk about geometric structures, H-structures and ho-
mogeneous sections interchangeably. Now, let us give a brief overview of three well-known
examples of H-structures through this theoretical framework.

Example 3.4.3 (U(m)-structures). Let n = 2m > 4 and take H = U(m) C SO(2m)
to be the unitary group. If Jy € End(R*") is the standard almost complex structure on

R*™ = R™ @ R™ given by Jy = (13 _Iod") then we have

U(m) = St&b(Jo) N Stab(go) = Stabso(n)(Jo).

A U(m)-structure (g, J) on M?™ consists of a Riemannian metric g and a J € T'(End(T'M))
such that J?> = —Idrys and g(J-,J-) = g, that is, an orthogonal almost complex struc-
ture. Compatible U(m)-structures are in one-to-one correspondence with sections of the
SO(2m)/U(m)-bundle 7 : Fr(M?>™,g)/U(m) — M. Using the metric identification A? =
s0(2m), we have that the U(m)-irreducible decomposition as in (3.1) is given as

where A%, = u(m) = {A € 50(2m) : JyA = AJo} and AY = m = u(m)" = {A € s0(2m) :
J()A - —AJ()}

Example 3.4.4 (Go-structures). Let n = 7 and take H = Gy C SO(7) (see Chapter 4 for
details). Then denoting the standard basis of (R7)* as (e,...,e"), we define the standard
Gy structure ¢y € A*(R7)* by

Do = 12 4 el A (€ — 5T) 4 2 A (6 — ™) 4 68 A (1 — ¢5)
where €% = ¢! A el A e and e = ¢! Ael. Then, Gy = Stab(pg) C SO(7). Furthermore,

o induces the standard Euclidean metric gy and the orientation po through the non-linear
algebraic relation

(X 50) A (Y a0) Ao = —6go(X, Y ) g (3.11)

for X,Y € R”. Then a Gy-structure on a smooth 7-manifold M7 is a 3-form ¢ which can
be identified pointwise with ¢y through a linear isomorphism. We call such a structure
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a positive 3-form ¢ € Z3M. Tt then follows from (3.11) that ¢ induces a metric g and
orientation g, on M7 satisfying the condition

(X o) A (Y 5p) N = —6g(X,Y ) pg.

The compatible G, structures on (M7, g) are in one-to-one correspondence with the sections
of the fibre bundle 7 : Fr(M7, g)/Gy — M with fibre SO(7)/Gy = RP”. Using the metric
identification A? 2 s0(7), we have that the Go-irreducible decomposition as in (3.1) is given
as

2 2 2
A=A, @A,
where A2, = {w: *(WA @) =w} ={w:wA*xp =0} Zgyand AL = {w: *(wAy) =
—2w}={usp:u€eR} =2m.
We will explore these structures in detail in Chapter 4.
Example 3.4.5 (Spin(7)-structures). Let n = 8 and take H = Spin(7) C SO(8). Denot-

ing the standard basis of (R®)* = (R)* @ (R")* as (¢, ¢e!,...,e"), we define the structure
Py € AY(R®)* as

q)o = 60 N ®o + *R70-

Then a Spin(7)-structure on (M?, g) is a 4-form ® which can be identified pointwise with
®, through a linear isomorphism. The compatible Spin(7) structures on (M8, g) are in one-
to-one correspondence with the sections of the fibre bundle 7 : Fr(M®, g)/ Spin(7) — M
with fibre SO(8)/ Spin(7) = RP?. Using the metric identification A? = s0(8), we have that
the Spin(7)-irreducible decomposition as in (3.1) is given as

A? = Agpin(7) D Arzn

where A2 ) = {w #(WAP) = w} = spin(7) = 50(7) and A2 ={w: *(WAD) = —3w} X m.

spin
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Chapter 4

Go-structures

In Chapter 3, we briefly discussed Go-structures as examples of H-structures when H =
Go C SO(7). In this chapter, we will first study the structures on the imaginary part of
normed division algebras from which the canonical Gy-structure on R” arises. Next, we
describe how we can equip the tangent spaces of 7-dimensional Riemannian manifolds with
that structure. We will describe how the space of k-forms on such manifolds decomposes
and finally, we give an alternate formulation of the torsion of a Ga-structure. The main
references for this chapter include | 1, [ I, [ | and [ .

4.1 Structures on normed division algebras

Let us equip A := R" with the standard Euclidean inner product (-,-) and we denote the
norm induced from (-,-) by || - ||.

Definition 4.1.1. If A is an algebra over R with multiplicative identity 1 # 0 such that
[labl| = lall]|] (4.1)

for all a,b € A, then we say that A is a normed division algebra.

That is, for a normed division algebra, the inner product and the algebra structure on A
are compatible through equation (4.1). We define the real part of A to be the span of the
multiplicative identity 1 € A over R and denote it by Re A and we define the imaginary
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part of A to be the orthogonal complement of Re A with respect to (-,-), denoting it by
Im A. Thus, we have an orthogonal decomposition

A=ReA®dImA

Notice that Im A = (ReA)+ = R""!. For a € A, we define the conjugate of a, which we
denote by @ to be

a=Rea—Ima, (4.2)

where Rea € Re A and Ima € Im A.

Normed division algebras were classified by Hurwitz in 1898. Up to isomorphism, there
are exactly four possibilities which are given by the following table:

n = dim A 1 2 4 8
Symbol R C = R? H =~ R* O~ R8
Name Real numbers | Complex numbers | Quaternions | Octonions

Table 4.1: Classification of normed division algebras

Note that as the dimension increases, the algebras in the table are subalgebras of the larger
algebras. Furthermore, in the progression R — C — H — O, some algebraic property is
lost at each step. From R to C, we lose the natural ordering. From C to H we lose
commutativity. And from H to O we lose associativity. For the next section, the object of
our focus would be the octonions O, which allows us to define the canonical Gy-structure
on RT.

From the compatibility condition (4.1), the following lemmas and identities (the proofs can
be found in | , Section 3.1]) follow:

Lemma 4.1.2. Let a,b,c € A. Then we have

{ac,bc) = {ca, cb) = {(a,b)]|c|?, (4.3)
(a,bc) = (ac,b), (a,cb) = (ca,b).

and

ab = ba (4.5)



Lemma 4.1.3. Let a,b € A. Then
{a,b) = Re(ab) = Re(ba) = Re(ba) = Re(ab) (4.6)
and
|a||* = aa = aa (4.7)
which gives us that a®> = aa 1is real if and only if a is either real or imaginary.
Lemma 4.1.4. Let a,b € A. Then, we have

(ab)b = a(bb) = ||b]|*a = a(bb) = (ab)b,

a(ab) = (aa)b = ||a|*b = (@a)b = a(ab). (4.8)

Now, we will define two A-valued multilinear maps on A which induce the associative and
coassociative forms on Im A.

Definition 4.1.5. For a,b € A, we define a bilinear map [-,-] : A2 — A by
[a,b] = ab— ba (4.9)
and we call the map [-, -] the commutator of A. For a,b,c € A we define a trilinear map
[,+] : A3 — A by
la, b, c] = (ab)c — a(bc) (4.10)
and we call the map [-, -, -] the associator of A.

We now use the above identities and lemmas to prove some characteristic properties of the
commutator and the associator.

Proposition 4.1.6. The commutator and associator are both totally skew-symmetric (al-
ternating) in their arguments.

Proof. From the definition of the commutator, it is clear that it is skew-symmetric. As
A is an algebra over R, in particular it is a vector space over R and thus if any of the
arguments of the associator are in Re A, the associator vanishes. Hence, as the associator
is trilinear, it is enough to show that it is alternating when all the arguments are imaginary.
Let a,b € ImA. Then, @ = —a and b = —b. From (4.8), we have

—la,a,b] = la,a,b] = (aa)b — a(ab) =0
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and

—[a,b,b] = [a,b,b] = (ab)b — a(bb) = 0.

We thus have that [-,-,-] is alternating in the first two arguments and the last two ar-
guments. Therefore, we also have [a,b,a] = —[a,a,b] = 0 which shows that it is also
alternating in the first and last argument. O

The next property that we will prove will show that the commutator and the associator
restrict to Im A-valued maps on Im A.

Lemma 4.1.7. Let a,b,c € ImA. Then [a,b] € Im A and [a,b,c] € Im A.

Proof. To show that [a,b],[a,b,c] € ImA it suffices to show that they are orthogonal to
every element in Re A = {t1 : ¢t € R}. That is, we need to show that [a,b] and [a, b, c] are
orthogonal to 1. As @ = —a, from the identity (4.4), we have
<[CL, b]? > < b— bCL 1) <b76> <CL b>
—(b,a) + (a,b) = 0.

Similarly, as b = —b,¢ = —c, from (4.5) we have bc = b = (—c)(—b) = cb and thus we get
<[CL, ba C]? 1> = ((ab)c - a(bc), 1> = <CLb,E> - <bC, a)
= _<aba C> + <bC, CL>
= —{a, cb) + (bc, a)
= {a,cb + be) = (a,bc + be) = 2(a, Re(be)) = 0,
as desired. ]

As the next proposition shows, it turns out that we get multilinear alternating forms on A
by combining the commutator and the associator with the inner product.

Lemma 4.1.8. For a,b,c,d € A, the expressions (a,[b,c]) and {a, [b,c,d]) are both totally
skew-symmetric in their arguments.

Proof. From Lemma 4.1.6, we know that the associator and the commutator are totally
skew-symmetric. Therefore, it suffices to show that (a,[a,b]) = 0 and (a,[a,b,c]) = 0.
From (4.3) we have

(a,[a,b]) = {a, ab —ba) = [la]*(1,b) — [la]|*(1,b) = 0
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and for the associator, using (4.3) and (4.4) we have

(a,[a,b,d]) = (a, (ab)c — a(be)) = (a€, ab) — ||a||*(1, be)
= [lall*(¢,b) — [lal*(,b) = 0

as desired. O]
Definition 4.1.9. Define a 3-form ¢ and 4-form 1 on Im A as follows:

o(a,b,c) = %(a, b, c|) = %([a, bl, c), (4.11)

W(a,b, c,d) = %(a, b, ¢, d]) = —%([a, b,cl, d), (4.12)

for a,b,c,d € Im A. We call the form ¢ € A3(Im A)* the associative 3-form and the form
1 € A*(Im A)* the coassociative 4-form.

We can also define a cross-product on Im A which generalizes the cross-product on R3.

Definition 4.1.10. The vector cross product on Im A is the bilinear map x : Im A x
ImA — ImA given as

a x b= Im(ab) (4.13)

for all a,b € ImA.

From the above identities and lemmas it follows easily that this vector cross product
satisfies properties similar to the usual cross product on R? such as the following:

Lemma 4.1.11. For a,b € Im A we have

axb=-bxa, (4.14)
(a x b,a) =0, (4.15)
Re(ab) = —(a, b)1. (4.16)

Proof. As @ = —a and b = —b and as Rev = (v +0),Imv = L(v — ) for v € A, from
(4.5), we get

2a x b= ab— ab = ab — ba = [a, b]. (4.17)
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Hence, a x b = —b x a. As a € Im A, from the definition of the vector product (4.13) we
have

(a x b,a) = (Im(ab),a) = (ab, a).
Then, using (4.3) we have
{(a x b,a) = (ab,a) = {ab,al) = ||a|*(b,1) =0
as b € Im A is orthogonal to 1 € Re A. Finally, as b = —b, from (4.6) we get

{a,b)1 = Re(ab) = — Re(ab). O

From (4.16) and (4.13) we have that for ab € A the decomposition into real and imaginary
parts is given as
ab = —(a,b)1 +a x b. (4.18)
Therefore, from (4.17) and (4.11) it follows that for a,b,c € Im A
o(a,b,c) = (a xb,c). (4.19)
Furthermore as from (4.18) we know that a x b — ab is real, we have
o(a,b,c) = (ab,c). (4.20)

Hence, we have an elegant relation between the vector cross product and the associative
3-form ¢.

4.2 Canonical G,-structure on R’

The previous section defined the associative 3-form, coassociate 4-form and the vector
cross product on Im A. In this section, we will take A = O and describe the canonical
Go-structure on R” =2 Im Q. Let us denote the standard Euclidean metric on R” = Im O
by go, the associated orthonormal basis by ey, ..., e7, standard volume form associated
to go and the standard orientation by voly = e! A --- A €7, the associative 3-form by ¢y,
the co-associative 4-form by 1)y and finally the cross-product by xy. We call the tuple
(g0, volg, o, o, Xo) the standard Gy-package on R”.
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Let e!,... e" denote the standard dual basis on (R7)*, let €% = ¢ A e/ A e* and ek =
e’ Ael Ae¥ Ael. Then, from the octonion multiplication table it follows that

0o = €123 Q16T _ (52T _ (563 _ od15 426 437 (4.21
o = 1967 _ 1523 _ 4163 _ 12T _ 2637 _ 1537 _ 1526 (4.22)
From these representations, it follows that
Yo = *o0o

where xq is the Hodge star operator induced from (go, voly). Now, we use the standard
Gs-package on R7 to define the Go-group.

Definition 4.2.1. We define the group Go < GL(7,R) as
G2 = {A € GL(?, R) : A*go = 4Jo, A* VOIO = VOlo, A*QDO = QDO} (423)
That is, Gy preserves the standard Go-package on R7.

Notice that as A € G, preserves the standard metric and orientation on R7, it follows that
G is a subgroup of SO(7). Also, note that in the above definition, we are missing the cross
product Xy and the coassociative form 1)y which are part of the standard Gs-package on
R”. Since gy and voly determine x, and as 1)y = %oy, it determines 1)y. Furthermore, we
know from (4.19) that gy and ¢y determine x. Therefore, any A € G5 preserves X, and
th as well. In fact, the following theorem from | | shows that the definition of the Go
group only requires the 3-form ¢y:

Theorem 4.2.2. Let G = {A € GL(7,R) : A*py = po}. Then Gy = G. That is, if
A € GL(7,R) preserves g, then it preserves gy and voly as well.

Proof. From the explicit formula for ¢q in (4.21), from direct computation it follows that
(@ 1p0) A (bawe) A wo = —6go(a,b)volg (4.24)
where a,b € R”. Then, if A*py = o, applying A* on both sides of the equation we have
go(a,b)(det A) voly = go(a, b)A* voly

1
= —EA*(CLJQO(D A A*<b_| 900) VAN A*(,Oo
1

= = (AT a s A%p0) A (A7Mb L A%p) A A%y (4.25)

1
= —E(A_la_l QOQ) A\ (A_lb_l @0) N Yo
= go(A " a, A7'b) volg

= (A_l)*gg(a, b) voly
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which implies that (det A)go(Aa, Ab) = go(a,b). In terms of matrices, this means gy =
(det A)AT gy A. Taking determinants of both sides, we get det gy = (det A)%det go. This
gives us det A = 1 and A*gy = go. Furthermore, from (4.25) we have A* voly = voly. H

4.3 Go-manifolds

In this section, we want to associate the Gy-package on R” to each tangent space of an
orientable 7-manifold.

Let M be an oriented 7-manifold. For each point p € M, let us define QSM to be the
subset of 3-forms ¢ such that there exists an oriented isomorphism between T,M and R”

which identifies ¢ and the associative 3-form ¢, on R”. Since from Theorem 4.2.2 we know
that ¢ has symmetry group Gs, we get QZSM =~ GLL(7,R)/Gs..

Note that dim GL,(7,R) = 49 and dim G, = 14 so dim GL, (7,R)/Gy = 49—14 = 35 which
is the same as dim AT M = (5) = 35 and hence P3M is an open subset of A°TyM. Let
Z*M be the bundle over M with fibre Z23M over each p € M. Then Z?°M is an open
subbundle of A3T*M. We say that a 3-form ¢ on M is positive if ¢, € L@SM for each
pe M.

Definition 4.3.1. Let M be an oriented 7-manifold. A Gs-structure on M is a positive
3-form ¢.

As g determines gq and voly, a Ge-structure ¢ on M induces a Riemannian metric g, and
an associated Riemannian volume form vol,, which then induce a Hodge star operator x,
and dual 4-form ¢ = *,¢.

Note that if ¢ is a Go-structure, and if we let @) be the subset of the frame bundle Fr(M)
consisting of isomorphisms between 7,M amd R” which idenitfy ¢ and ¢, then it can
be shown that @ is a principal subbundle of Fr(M) with fibre Go. That is, @ is a Go-
structure as in Chapter 3. Therefore, the existence of a Go-structure depends completely
on the topology of the manifold. The next theorem whose proof can be found in | ]
characterizes topologically which manifolds admit a Gg-structure.

Theorem 4.3.2. An orientable 7T-dimensional manifold M admits a Ga-structure if and
only if M 1is spinnable. That is, if and only if its first and second Stiefel-Whitney classes
wy (M) and wo(M) vanish.

Let M be a 7-manifold equipped with a Ga-structure ¢ and let g be the induced metric.
If V is the Levi-Civita connection of g, then we call Vy the torsion of ¢ and we say that
¢ is torsion-free if Vi = 0.
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Definition 4.3.3. Let M be a 7-manifold. We say that (M, ¢) is a Go-manifold if ¢ is
a torsion-free Go-structure.

Later in this thesis, we will be using some contractions relating ¢, and g. We list these
identities in the next few lemmas. The proofs of these lemmas can be found in | ].

Lemma 4.3.4 (Contractions of ¢ with itself). With respect to a local orthonormal
frame on M, the following identities hold

PijkPijr = 42, (4.26)
PijkPajk = 0Gia; (4.27)
PijkPabk = Giadjb — GibGja — 1/)ijab- (4-28)

Lemma 4.3.5 (Contractions of ¢ with ). With respect to a local orthonormal frame
on M, the following identities hold

PijkPaijk = 0, (4.29)
CijkVabjk = —4Piab, (4.30)
CijkWabek = GiaPjbe + GivPajc + GicPabj
— GajPive — GbjPaic — GejPabi-
Lemma 4.3.6 (Contractions of ¢ with itself). With respect to a local orthonormal
frame on M, the following identities hold

(4.31)

VYijrijr = 168, (4.32)
VijkiVajkt = 24Gia, (4.33)
¢ijkl¢abkl = 4giagjb - 4gibgja - 2¢z’jab> (4'34)

wijklwabcl = —PajkPibe — PiakPibc — PijaPkbe
+ Gia9jvGke + GivGjcIka + GicjaJkb
~ GiaGjckb — GivGjaTke — GicGjbGha (4.35)
- gia%’kbc - gjawkibc - gkawijbc
+ gabVijke — GacVijkb-

4.4 Decomposition of the space of forms on a manifold

with Gy-structure

Similar to how complex-valued differential forms on an almost complex manifold decompose
into forms of type (p, ¢), if M is a manifold with a Ga-structure ¢ on a manifold M, where

35



¢ is not necessarily torsion-free, the space of differential forms QF on M decomposes into
irreducible representations of Go. The characterization of these decompositions given in
this section will be useful to simplify our computations involving these differential forms
in the later chapters.

When k£ = 2,3 the decomposition is given as

0 =020 03, (4.36)
Q=0 Qe Q3 (4.37)

where QF has pointwise dimension [ and the decomposition is orthogonal with respect to
the metric g. Furthermore, since the Hodge star  is an isometry and Qf = x(Q7 %), we
have

Q=053 03, (4.38)
Q' =01 ® QD Qe (4.39)

In the next two subsections, we will describe some characterizations of these subspaces.

4.4.1 The decomposition of (2?

Let P : Q2 — Q% be the map
PB=2x(pApB) (4.40)
for B€ Q2. If B = %Bijei A e; in terms of a local orthonormal frame, then using (1.4),
Pg = %(Pﬁ),-jei Nej = Bij*(e; Nej Ap)
= Bijei ax(e; N p) = —fije; aej axp
= _%5ijwjiab€a N €p.
Hence, we have
(PB)ab = Bijtijab = VabijBij (4.41)
Direct computation yields

(PB, 1) = VijavBijttas = (B, Ppa). (4.42)
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That is, P is pointwise self-adjoint and hence it is orthogonally diagonalizable with real
eigenvalues. Furthermore, we have

(P25)ab = Q,Dabz‘j (Pﬁ)ij = ¢abij¢iqu6pq
= Bij(49ia9ip — 49ibGja — 2Vijab)
= 4By — 4Bpa — 2Bij%ija
= 88 — 2(PB)ab-
Therefore,
P? =8 — 2P

where I : Q% — Q2 is the identity operator. It follows that (P + 41)(P — 2I) = 0 and thus
the eigenvalues of P are —4 and +2. Hence, we get a decomposition of Q? into the two

eigenspaces. The following theorem gives an alternate description of the decomposition of
02

Theorem 4.4.1. We have
0? = Q? ® 9%4

where
02 = {8 € Q| Pj = -45) (4.43)
={Xlp| XeXx} (4.44)
and
0, = {8 |Ps =25} (4.45)
={Be?|BAY =0} (4.46)

Proof. 1t Bi; = Xppri; € Q? for some vector field X, then from (4.31) we have

(PB)ab = Vabij XkPri; = —4Xk@kab = —4Bab-

Conversely, let 3,1 = —4Bw. Then, if X is a vector field defined by X,, = %ﬂklgomkl,
from (4.28) we get

1 1
(X —JSO)ij = AmPmij = éﬁkl(PmleDmij = 66kl<gikgjl — GiGjik — wijkl>

1 1 4
= gﬁij - gﬂjz’ + Eﬁij = Bij-
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Now, let 8 A1 = 0. Then, from (1.3) we have
1 . , 1 .
0= §6ijdflfl Adz? A @ZJ = _56” * (& J*(dﬂT] A QZJ))

1 1

As the Hodge star operator is an isomorphism, we have that the above condition is equiv-
alent to f;;¢ijr = 0. On the other hand, if P35 = 23, as the eigenspace decomposition is
orthogonal, we have that for each vector field X,

0= w,XJSO) = Bink‘pk:ij-

Hence, /Bijgoijk = 0. Finally, if Bij@ijk = O, then
Bijwijab = 51’3‘ (giagjb — 9ibGja — %‘jk@abk) = Bab — Boa = 2B []

Let 5 = %X . That is, in a local orthonormal frame, §;; = %ngokij. Then it follows
from (4.27) that 5;;¢:;, = X,. Therefore,

1
Bab = gXlSplab > Xi = BaPabk- (4.47)
Furthermore, we have
1 1 1
éXkSOkij EYZSOW = éXkYk (4-48)

which can be written invariantly as
(X 10, Y J¢) =6(X,Y). (4.49)
Now, we define a map V: 72 — Q! by
(VA = Aijpiji (4.50)
for A € T2. From the previous proof we know that
B€Ql, < Bipiir=0. (4.51)

It follows that ker V = S§* @ Q3?,, where §? are the symmetric 2-tensors. Thus, only the
Q2 part of A contributes to VA and it is called the vector part of A. Thus we can write
(4.47) as

1
Ar = (VA) s, V(X op) = 6X (4.52)
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and (4.49) becomes
(VA,VB) = 6(A7, Br)

for A, B € T?. Finally, let m; and 74 denote the orthogonal projections to Q% and 03,
respectively. Let us write 87 = m;5 and (14 = m148. Then, we have that

Pp = —407 + 2014 (4.53)

which gives us

b= 58— PB), fu= (45 +PH) (4.54)

4.4.2 The decomposition of 2 and O*
For 0 € QF and A = A;;dz’ @ dz? € T?, we define
(A ©0)iigmiy = AirpOpigeiy T AigpTirpisin T+ + AigpOirigeip_1p- (4.55)
If we take A = ¢ in the above equation, we get
goo =ko. (4.56)
Then from (4.36) and (1.11), we have the decomposition
T’2QoSEe e (4.57)
which allows us to write A € T2 as

1
A= ?(tl" A)g + A27 + A7 + A14 (458)

where As; is the traceless symmetric part of A. Then, we can extend P to be a map on all
of T2 by defining

(PA)ap = Aijtijap- (4.59)

Clearly, ker P = § and hence

1
PA=P <?(tl" A)g + A27 + A7 + A14> = —4A7 + 2A14. (460)
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From (4.55), we have linear maps 72 — QF for k = 3,4 given as

A Ao,
A Ao,
where in a local orthonormal frame,
(Ao )ik = Aipppjr + AjpPipk + AkpPijps (4.61)
(Ao )iju = Aipthpjet + Ajpthipht + Arpijpt + ApUijap. (4.62)

A direct computation using the identities in this subsection along with the contraction
identities, gives us the following proposition.

Proposition 4.4.2. For A, B € T?, with respect to the decomposition (4.58), we have

(Ao, Boy) = %(tr A)(tr B) + 12(Asg, Bar) + 36(Aq, Ba), (4.63)
(Ao, Bo) — ﬁf(tr A)(tr B) + 48(Agr, Byr) + 144(As. Ba). (4.64)

We use this proposition to give a characterization of tensors in 2, in terms of the diamond
operator.

Corollary 4.4.3. Let A€ T?2. Then
AcQ?, <= Aop=0 <= Aoy =0. (4.65)

Furthermore, the maps A — Ao and A — A o1 when restricted to S* & Q2 C T
which forms the orthogonal complement of Q2,, are linear isomorphisms onto 2* and Q*
respectively.

Proof. Taking A = B in (4.63) we have
g 4 2 2 2

Thus, we have Ao =0 < A = Ay, and as we can use the same argument for A ¢ ¢
by taking A = B in (4.64), it proves the first part of the corollary.

If A4 =0, then from above, we get that Acp =0 <= A =0. Thus, the map A — Aoy
is injective on the orthogonal complement of Q?,. Counting the dimensions, as both sides
are 35-dimensional, the map is a linear isomorphism. Similarly, the map A — A< 1) is also
a linear isomorphism. O
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Due to the above corollary, in a local orthonormal frame we have

Ay € 9%4 = Appjr + AjpQipk + Akpijp = 0

4.66
= AipUpirl + AjpVipkt + AkpVijpi + Apijip = 0. (4.66)

Therefore, we have obtained the decompositions

0 =00 o0,
Q=010 0 e Q;..

Moreover, using (4.56), we get the following explicit descriptions

M={felfeQ}, Mq={fy|fe’}
D= {Aop|Ac 2}, Qf={Aoyp|Aci}, (4.67)
Dy ={Aop| A€ ST}, Dy ={Aov|AecS)

~

The next corollary gives us the inverses of the isomorphisms 8% ® Q2 — QF, where k = 3
or k =4.

Corollary 4.4.4. Lety € Q3 and let n € Q. Then, from above, vy = Ao andn = B o)
for some A = L(tr A)g + Asr + A7 and B = %(tr B)g + Byr + By in 8* ® Q2. We define
2-tensors v% and ¥ as

Vi = YijkPajk; 77?; = NijkiVajkl-

Then, we have

1 1 1
trA = 1_8 try¥, Ay = 175077 A7 = EV% (4-68)
and
1 1 1
trB= —trn?. By=—n2 B.=—n" 4.69
r 9% rn-, 27 1277277 7 36777 ( )

Proof. Let C' = 1(tr C)g + Cyr + Cr € S* @ Q2. From (4.63), we get

54
<A <P, Co gO) = 7(131' A) (tI’ C) + 12<A27, Cg7> + 36<A7, C7> (470)
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Then,
(7, C o v) = %ijr(Cippje + Cip@ipk + Crpijp)
= 3’7ijkcip90pjk = 3759011) = 3<’7w7 O)

1 1
= 3(;(tr YE)g + V5 + ), ;(tr C)g + Cor + C7)

3
= S(17?)(trC) + 315, Can) + 3%, Cr).
Comparing the two expressions, from nondegeneracy it follows
Sdtr A =3tr~%¥, 124y = 374, 36A; = 347. (4.71)

Similarly, we get (4.69) from (4.64). O

Finally, we present an alternate way of expressing 3-forms involving vector fields and .

Corollary 4.4.5. For 3-forms v = X 11, where X is a vector field, we can define A =
—3X 2 € Q2 such that v = Ao . This gives us —3X 1) = (X J¢) 0.

Proof. Since vijr = X, ¥mijk, we have

Yo = VijkPajk = XmWUmijkPajk = —4XmPmia-

Thus, from Theorem 4.4.1, we have that v/, € Q2 and hence from Corollary 4.4.4 it follows
that v = Ao ¢ for A= A; € Q% where

1 1

A ia =™ To cp:__Xm mia- []
( 7) 127111 3 2

4.5 Torsion of a Goy-structure

Recall that in section 4.3, we defined the torsion of a Gs-structure on a manifold M to
be V¢ where V is the Levi-Civita connection on M. The next lemma gives us a way to
express the torsion in an alternate way.

Lemma 4.5.1. The 3-form Vxp lies in Q2 for all vector fields X.
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Proof. From Corollary 4.4.4, it suffices to show that for v = V,,¢, we have that v =
VijkPajk 15 skew-symmetric. Hence, using (4.27) we have

%fz = vm%‘jk@ajk = Vm(%‘jk@ajk) - %jkvms%jk
= Vm(6gm) — PijkVajk
= —77. O

Therefore, from Corollary 4.4.5 we know that there exists a 2-tensor 7' such that
Vinijk = LonpWpijk (4.72)

and from now on, we will call this 2-tensor the torsion of the Gg-structure. From the
contractions in Lemma 4.3.6, we get the expression

1
Ty = ﬁvp@pjkﬂ/’qjkl (4.73)

which shows that T'= 0 <= V¢ = 0. That is, ¢ is torsion-free if and only if T" = 0.
Differentiating (4.26) and using (4.72) and (4.31), we get the following expression for Vi
in terms of T’

Vpijie = —Tpipin + Lpjire — Tpepiji + Tpipijn- (4.74)
As the torsion lies in 72, from the decomposition (4.57), we get
T=T +Ty+T7r+ T (4.75)
where Ty = 1(tr T)g. Furthermore, from (4.53) we get
PT = —4T, + 2T),. (4.76)

Using all these new tools, we can present an alternate proof of the classical theorem by
Ferndndez and Gray | ]
Proposition 4.5.2. A Gy-structure p on M 1is torsion-free if and only if dp = 0 and
d*p=20
Proof. From (4.72), we have
(d)ijrr = Viojr — Vi + Vi — Vigijk

- z'p¢pjkl - ,I‘jp,@bpikl + Tkpl/)pijl - ﬂpwpijk

= TipVpjkr + TipVipkt + ThpWijpr + TipWijip

= (T o ¥)iju-
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Using the decomposition (4.75), as T14 ¢t = 0 from Corollary 4.4.3, we have
dp = (T + Tor + T7) o 1. (4.77)
Similarly, using (4.72) again along with (4.76), we get
(d*p)jk = =Vivijr = —TimWimjr = —(PT) 1 = 417 — 2T14. (4.78)
The claim then follows from (4.77) and (4.78). O

Remark 4.5.3. When ¢ is torsion-free, the decomposition for k-forms QF = &,QF induce
a splitting of the harmonic k-forms H* = @;H¥. That is, the projections m; commute with
the Hodge Laplacian Ay = d*d + d*d. For more, see | , Section 3.5].

We conclude this section by giving an alternate way of packaging the torsion of a Gs-
structure using the isomorphism Q' 2 Q2 which we get through (4.47). That is, we define
T e(T*M ® A3(T*M)) as

~

1
Tm’j = LpgPqij; Tpg = 6 pijPaij- (4~79)

A~

For fixed p, fpij lies in Q2 in 4, j. Therefore, from (4.44) we have

Toisthijis = —AT 0. (4.80)

~

Via the pairing (T(X));; = prpij, we can think of 7' as a 1-form on M with values in
A2(T*M). The following lemma gives us a way to express Vo and V4 in terms of 7.

Lemma 4.5.4. Let us firp € {1,...,7}. At the point x € M, we can write T\p = T\pijei@)ej
as an element of A2(TM). Then, we get

1, ~ 1 ~
vpsoabc = _g(Tp <o Sp)abca quvzjabcd = _g(Tp % ¢)abcd' (481)
Proof. From (4.72) and (4.79), we obtain

1~
VpSOabc = quwqabc = _ngijgpijqwabcq

1~
- _ngij (gz’a@jbc + GivPajc + Gic¥Pabj — GjaPibc — GjbPaic — gjcspabz’)‘
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As T,,;; is skew in 4, j, the above becomes

1~
VpPabe = _ngz’j<giaS&jbc + GivPajc + GicPabj)

1 ~ ~ ~
= _g(Tpajgpjbc + prjSOajC + Tpcjgpabj)a

which proves the first claim. The second formula can be derived by differentiating the
identity in (4.28) and then using the formula we derived for V,p.. and (4.28) again. [

4.6 The Go-Bianchi identity

In this section we will prove the Go-Bianchi identity, which gives us a relation between a
Go-structure ¢, the Riemann curvature Rm of g,, the torision T" of ¢ and its covariant
derivative VT

Proposition 4.6.1. The Go-Bianchi identity is given as
1
Vil — VT = TipTiqper + §Riqu90qu' (4.82)

Proof. Taking the covariant derivative of (4.73) and substituting (4.74), we get
vapgpijk - vapq¢qijk + quvm¢qijk
= Vi Tpqaijic + Tpg(—TingPijk + TmitPgje — TimjPair + TinkPais)-

Let us interchange p and m and take the difference. Then, using the fact that 7,,7,,, is
symmetric in p, m, we obtain

Vi Voiik — VpVioije = (vapq - vamq)@bqijk
+ qu (Tmigoqjk - ijquik + ka@qij)
— Tong(Tpipgin — Tpjqir + TortPais)-

Using the Ricci identity above, we have

—RinpiqPait — BompiqPigk — Bmpkgizg = (VimTpg — VpTmg)Vyijk
+ qu(TmiSOqjk - ijgpqik + kagpqij)
— Dong(Tpipaie — TpjPair + Tpkgi)-
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Since the left hand side and each of three terms on the right hand side are totally skew in
i, 7, k, contracting on both sides by 1y yields

=3 RpigPairViijk = (Vi Tpg — VpTing)Vaijiuije + 3T pq TimiPqinViije — 3TmgTpi0qintiijn-
Using the contraction identities on the above expression, we have
12Rpiqpqi = 24(V i T — YV Tou) — 12T, Toniqii + 12100 Lpitpgii- (4.83)

Rearranging and reindexing the above expression, we get (4.82). O]
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Chapter 5

The family of compact torsion-free
Go-structures

In Chapter 4, we got familiar with various properties of Ga-structures. It is then natural
to wonder what properties would the moduli space of these structures, that is, the “set of
all possible Ga-structures”, modulo a reasonable notion of equivalence, satisfy. The aim of
this chapter is to present a proof given in | | which shows that the moduli space of
torsion-free Ga-structures for a compact 7-manifold forms a non-singular smooth manifold.
We will prove some technical results in the first section using techniques from | ] and
[ |, before moving on to prove the main theorem in the second section.

5.1 Computations with differential forms on G,-manifolds

In this section, we will carry out some useful computations with differential forms on a
Go-manifold which we will need in the next section. Let us start with the following lemma.

Lemma 5.1.1. Let (M, ¢) be a compact Go-manifold and n a 2-form on M. Then we have
m7(d*dn) =0 <= d*m(dn) = d*m;(dn) = 0. (5.1)

Proof. (=) Let m7(d*dn) = 0. From Hodge theory, we know that there exists a unique
d*-exact 2-form £ on M such that d€ = dn. Then, as d*¢ = 0, we get that

m7((dd” + d*d)€) = m7(d*dn) = 0.
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From Remark 4.5.3, we get
(dd* + d*d)(m7(£)) = 0

and hence 77(£) € H2. As ¢ is d*-exact, it is L?-orthogonal to H? from the Hodge de-
composition theorem (Theorem 1.2.1), which means that 77(§) = 0. Thus, from (4.46),
we know that £ A ¢ = 0 and as di» = 0 since ¢ is torsion-free, we have that dé A = 0.
Furthermore, using the Hodge isomorphism and the description of 2 in (4.67), we have

dg N ap = i (dE).
This along with the fact that d¢ = dn shows that m (dn) = 0.

From (4.40) and (4.45), it follows that £ A p = —x ¢ and as ¢ is d*-exact, we have dx & = 0.
Thus, as dp = 0, we get d§ A ¢ = 0. Finally, as dnp = d¢ and as dn A ¢ = 7;(dn) from
Corollary 4.4.5, we have m7(dn) = 0. Therefore, we have d*m(dn) = d*m;(dn) = 0 as
desired.

(<) The converse follows from
7T7<d*d77) = 617T7(d*’/T1 (dn)) + Cg7T7(d*7T7<d7’])),

which appears in | | without proof. We will now prove that m7(d*dn) can be expressed
as a linear combination of m7(d*m (dn)) and 7;(d*m7(dn)) and find the explicit values for ¢
and ¢y in the above statement. From (4.67), we know that m;(dn) = f¢ for some f € Q°.
Then, from (4.26), we have

(m(dn), @) = (fep, ) = 42f.
In addition, from (4.56) and (4.63) we obtain

(mi(dn), p) = (dn, ¢) = (dn)ijxpijr = (Vinjk + Ve + Vini;)pije
= 3VinrPijk-
Thus, we have that

1
f= ﬁ(vmjk)%k'

This gives us

(d*(m1dn))ap = _vp(ﬂ'l (dn))pab = _vp(fSOpab) = _(vpf)%mb

1
= _ﬁ (vamjk)%jk@pab,

48



which when contracted with ¢ on two indices and using (4.27) yields

X 1 3
(d*(m1(dn)))abPabm = —ﬁ(vpviﬁjk)%k%ab%bm = —;(vamg'k)%jk- (5.2)

From Corollary 4.4.5, it follows that there exists Y € X such that m7(dn) = Y 44 and
hence from (4.33),

<7T7(d77)a €p - ,QZ)> = <Y - wv €Ep o l/J) = Y;'d}iabcd}pabc = 24}/]-9

But we also have that

(m7(dn), ep 2v0) = (dn, ep 290) = (Vinik + VM + Vinii ) pise = 3Vinietpiji.-
Therefore,

1
Y, = gvmjkwpzjk-

Substituting the above into the original equation, we have
1
(77(dn))gab = YpUpgad = g(vinjk)¢pijk¢pqab’

and thus

(d*(m7(dn)))ab = —Vo(m7(dn) ) gap = —é(qumjk)%ijk%qab-

Then, we have from (4.30) and (4.31) that

(d* (7T7(dn)))ab90abm = (quinjk)@szijkd]pqabgpabm

1
8
1

= §(qumjk)90mquijkp
1

= §qui77jk(gmi90qjk + GmjPigk + ImkPijq
— 9¢iPmik — 9qjPimk — qu%g‘m)
1 1

= §(qum77jk)<ﬁqjk — Q(Vz'vi??jk)SOmjk

+ (VoVitk)igk — (V3 Vijk) Pim-
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Now, we have

(d*dn)q = _vp(dn)pab = _vp<vp77ab + Ve + Vbnpa)v

which gives us

(d*dn)abgpabm = _vpvpnabﬂpabm - 2vpva77bp(;0abm- (54)
To eliminate the Laplacian term, let us compute (5.4) — 2(5.3). We obtain
(d*dn)ab()pabm - Q(d* (7T7<dn)))ab90abm = _vpvpnabgpabm - 2vpvanbp90abm

— Vo Vanin@gin + ViViiePmik
— 2V Vil Qigk + 2V i Vit Qimk

= =V Valipgir — (VqVi— ViV ) mrPigh

= —V(Vauljxegir — (—Raimiie — Reikilmi) Piqk

= =V VaixPyik + ReimiMieigk = —V ¢ VmNjkPajk

where the second to last equality follows from the Bianchi identity as
Ryiri + Rikqr + Rigit = 0 = 3Rginipigr = 0

and the last equality follows from the Go-Bianchi identity (4.82) as ¢ is torsion-free.
Then, computing (5.4) — 2(5.3) — £(5.2), we have

* * 7 *
(d*dn)abPabm — 2(d"(m7(dn)))ap — g(d (m1(dn)))abvPam = =V Vitix@gjr: + Vi VjrPaji
= _(qum - vqu)ﬁjk@u’k
= _(_qujmlk - qukmjl)%jk'
But note that from (4.82),
—(=Rygmjimu — Rgmranjt) Pgjk = 2RqmjiMik@gik = 2(—Rmjq — Rjgmi)MkPait = —2RmjqMiePqjk

= —2R ik gk
= _2qujlnlk90qjk-

Therefore, as 2R ik Pqjx = —2RgmjiMikPqjx = 0, we have from (4.51)
k * 7 k
m7(d*dn) = 2m7(d*m7(dn)) + §7r7(d m1(dn)). (5.5)
Thus, if d*m (dn) = d*m7(dn) = 0, we have m7(d*dn) = 0. O
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For the rest of the results in this section, we will need Gs-structures ¢ close to a given
Go-structure ¢ in a specific way, which we will describe in the following definition.

Definition 5.1.2. Let ¢, > 0 be a universal constant such that whenever ¢ is a Go-
structure on a 7-manifold M, then

(i) If ¢ € Q*(M) and || — ¢|lco < €, then we have ¢ € T'(22°M). That is, ¢ is a
Go-structure on M. Let us denote the corresponding splitting on 5-forms as Q° =
Q2@ Q3,. Then, for each & € Q3,, we have |m7(&)| < |m4(€)|, where 77, 714 and | -

are with respect to .

(i) If x € Q*(M) and ||[x —¢||co < €1, then for all 1-forms A on M, we have |[m14(AA )| <
1
I (A A X

If we take €; to be sufficiently small, both the conditions hold. Intuitively, the first condition
tells us that when ¢ is small, Q32, is close to Q2,, so if £ € Q2, then 77(£) is small compared
to m14(€). And the second condition tells that since x is close to ¢ and as A A € Q3 from
taking the Hodge star of (4.44), we have that A A x is close to 22 and hence m4(A A ) is
small compared to m7(A A x).

Note that the Hodge star x depends on the metric g which itself depends on the Go-structure
¢. To emphasize this point, we define a map © : Z3M — P4M by

O(p) = *pp = 1. (5.6)
Notice that © depends solely on M and its orientation and it is a non-linear map. Hence-
forth, when we write ¢/, we mean that it is the 4-form associated to ¢. That is, ¥ = xz@.

The following proposition says if ¢ is a 3-form close to a closed Gs-structure ¢ in the
sense of Definition 5.1.2, then given that ¢ satisfies some additional conditions, @ defines
a torsion-free Go-structure on M.

Proposition 5.1.3. Lete; > 0 be as in Definition 5.1.2 and let M be a compact T-manifold.
Let ¢ be a Go-structure, f a real function, o a 1-form, ¢ a 3-form and x a 4-form on M
satisfying ||@ — ¢||co < €1, ||[x — ¥||co < €1 and the equations

d@zd(ﬁ:dxzoandd@zdf/\x%—d&/\gp. (5.7)

Then, we have dip = 0,df = 0 and da = 0. Therefore, ¢ is a torsion-free Go-structure on
M.
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Proof. Let us define 7, y7, 27 € Q3 and w14, y14, 214 € 3, as

vy =mr(dy), yr=m(df NX), 2z =mi(da ),

7 (5.8)
w1y = ma(dy),  yu=muldf Ax), 214 = mu(da ).
Then, taking 77 and 714 of the second equation in (5.7), we have
r7 = yr + 27 and T14 = Y14 + 214 (5.9)

As d@ = 0, from (4.77) and (4.78), it follows that dip € QF,. Thus, from (5.8) and (i) of
Definition 5.1.2, we get that |x7| < |x14|. In addition, making the substitution A = df in
(ii) of Definition 5.1.2, from (5.8), we obtain |y14| < 1|y7|. Squaring these two inequalities
and integrating over M yields the following two L2-norm inequalities

1
lz7][z2 < [|214llz2 and [[y14]|z2 < 71”y7“L2' (5.10)

Since ¢ is closed, da A da A ¢ is exact and thus fM da A da A ¢ = 0 by Stokes” Theorem.
Then, from (4.40), (4.43) and (4.45) we get

1
m7(da) = —g and mi4(da)) = *214
and
da Ada A = (=2|m7(da))? + |ma(da)|?) vol,,

from which we obtain
1
daNda N = <—§|Z7\2 + |zl4|2) volg .

Thus integrating over M gives us —1||27]|22 + ||z14/|3. = 0. and hence

7]l 2 = V2| 214l 2. (5.11)

Similarly, we have

~ 1
/dw/\da:/(:v7+x14)A(—§*Z7+*214):0
M M
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which gives us

(27, 27) 12 = 2(T14, 214) 2. (5.12)

Thus, from (5.9), (5.10), (5.11) and (5.12), we have

(llz7llz2 + |27l z2)

A

1
214 — 214l 2 = [Jy1al[22 < ZHZ/?HL? <
(5.13)

“I%

< —(llz1allz2 + [ 214l 22)-

Squaring the above and using Cauchy-Schwarz, we have

2
21472 + ||214l172 — 2(214, 214) 12 < 1—6(\’9514\!%2 + lz1all72 + 2l|z1al £z ]| 214 22)

= 14)|@1al|7> + 14 214l|72 < 32(w1as 214) 12 + 4@ 14 22] 214]| 2
18
= ||ilﬂ14||2i2 + ||214H%2 < 7||$14||L2H214HL2-

Then, since [|[z14[17: + 214172 > 2[|21a 22 ]| 214 22, we get

2
2714|2214l 22 — 2(214, 214) 12 < 1_6(“3314”%2 + ||214]|72 + 2|14l £2] 214]| £2)

< 2 (Bl lzale + 2z lzal
=716 = T14||L2]|”14]|| L2 T14||L2||”14|| L2

2 esall el

= —|lz z

Tzl 214l 2
5

= (T14, 214) 12 > ?HxMHL?HZMHL?-

Hence, (5.10), (5.11) and (5.12) give us
10 5V/2

w7l z2]|27]| L2 > (7, 27) 12 = 2(14, 204) 2 > 7||9314||L2||214||L2 > T||$7||L2||Z7||L2~

As %ﬁ > 1, we must have ||z7|/z2 = 0 or ||z7||zz2 = 0. Thus, 7 =0 or z; = 0.

If zz = 0 then from (5.11) we have z14 = 0, which will give us z7 = y; and 14 = y14. But
as

1 1
z7)|72 < lz1all72 = [Jyaall72 < Z||?J7||%2 = ZHCE?H%L
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we have ||z7||z2 = 0 and hence x7 = x14 = y; = y14 = 0.

If z7 = 0, then y; = —z7 and thus we have ||y14||zz < iHy?HL"’ = %;HZ7“L2 = QH214HL2. If

— 4
214 7é 0, then we have ||y14||L2 < ||214||L2 so that

(714, 214) = (Y14, 214) + HZl4H2 > —||z14ll 22 || y1al| 2 + H2’14Hi2 >0

since w14 = Y14 + z14. But this gives us (x7, z7) 2 > 0, which contradicts x7 = 0. Therefore,
we get 214 = 0 which gives us 27 = 0 as before. Thus, in both cases we have 7 = y7 = 27 = 0
and x14 = y14 = 214 = 0, which gives di) = df = da = 0 as claimed. O

Now, we give a way to estimate the function © in (5.6).

Proposition 5.1.4. Let €1 be as in Definition 5.1.2. Suppose M is a T-manifold and ¢ is
a Go-structure on M. Let x € Q3(M) with |x| < e1. Then p+x € T(P*M) and (o + x)
s given by

Op+x) = ¥+ 5 *m(x) + xmr(x) — +m () — F()
(5.14)

7
=¥+ g xm(x) + 2xmr(x) = = Flx),
where F' is a smooth function from the closed ball of radius €, in AST*M to A*T*M with
F(0) = 0.

Proof. Since  is a small 3-form we can think of computing the Taylor expansion of ©(p+x)
which we can see as expanding G(t) = ©(p + tn), where x = tn for some 3-form 7, about
t = 0. Thus,

G(t) = G(0) +tG'(0) — F(x),

where F(x) represents the remainder of the terms in the Taylor expansion and hence its
principal part is quadratic in x. Thus, F' is a smooth function on the closed ball of radius
€1 in A3T*M with F(0) = 0. Now, note that G(0) = O(y¢) = ¢ and

(o +1tn) =n=m(n) + mr(n) + w2 (n).

dt|,_,
Then, from | , Remark 3.6], we know that
, d 4
G'(0) = 7 Op +1tn) = 3 * 1 (1) + *77(n) — *m27(n).
t=0
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Thus, we have

O(p+x) =9+ % * i (tn) + *m7(tn) — *mar(tn) — F(X)

:¢+§*WI(X)+2*W7(X)—*X—F(X). O

Now, we will use the technical results above to prove the main theorem of this section. The
theorem shows that the torsion-free conditions for ¢, given as dp = dip = 0, along with
the “gauge-fixing” condition m7(d*®) = 0, are equivalent to the equation (dd* + d*d)n =
*d(F(& 4+ dn)), which is a nonlinear elliptic PDE upon the 2-form 7. We will use this
theorem to study the family of torsion-free Go-structures on a compact 7-manifold in the
next section.

Theorem 5.1.5. Let (M, ) be a compact Go-manifold. Then, let & € H> and n be a
2-form on M such that ||£ + dnl|co < €. Let ¢ = ¢+ &+ dn. Note that dp = 0. Then, we
have

(dd* + d*dyny = *d(F (€ + dn)) < d*n=m(d*@) = dip = 0. (5.15)

Proof. Let (dd*+d*d)n = *d(F({+dn)). As M is compact, from the Hodge decomposition
theorem (Theorem 1.2.1) we know that Imd and Im d* are L?-orthogonal. Therefore, as
d* = —xdx on A3T*M, we have dd*n = —d*dn — d*(xF (£ + dn)), which means that we
must have dd*n = 0 and hence d*n = 0. Thus, d*dn = xd(F({+dn)), from which we obtain

dxdn+d(F(&+dn)) = 0. (5.16)

Substituting x = & + dn in (5.14), as £ € H3, we have that xm;(£), *m7(£) and *ma7(€) are
closed, which along with (5.16) and the fact that the projections commute with A4, gives
us

A = L (dn) + 2d % 7w (dn) — dx dy — d(F(€ + dn))
3 (5.17)

= gd* m1(dn) + 2d x w7 (dn).

Taking f and « such that fo = Zmi(dn) and a A ¢ = *(2m7(dn)), which we know exist
from the descriptions in Corollary 4.4.5 and (4.67), in Proposition 5.1.3, we get

dp = d x 71 (dn) = d * 77 (dn) = 0. (5.18)
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Therefore, d*m(dn) = d*m7(dn) = 0, which implies that 7;(d*dn) = 0 from Lemma 5.1.1.
As d*dn = d*p from the statement of the theorem, this finishes the proof of the forward
direction.

Conversely, suppose d*n = m7(d*p) = dibv = 0. Then, from Lemma 5.1.1, we have that
d*mi(dn) = d*m7(dn) = 0 which gives us

i — gd*m(dn) 2 % 7o (diy) = 0

and thus from the first line of (5.17) we have that d x dn + dF(dn) = 0. As d*n = 0, this
gives us (dd* + d*d)n = xd(F (£ 4 dn)) as desired. O

5.2 The moduli space of compact torsion-free Go-structures

Let M be a compact, oriented 7-manifold. Then, let X be the set of positive 3-forms on
M which correspond to torsion-free Go-structures. That is,

X ={pel(Z*M):dp=dy =0} (5.19)

Let D be the group of all diffeomorphisms W which are isotopic to the identity. That is,
each VU is connected to the identity map on M by a continuous path on the space Diff of
diffeomorphisms of M. Thus, D is the connected component of the identity in Diff. Then,
we have a natural action of D on I'(Z3M) and X given by

o 5 U ().

The reason why we consider D instead of the entire space Diff is because it acts trivially
on cohomology. To see this, let [a] € H*(M,R) and let ¥ € D. We then claim that
[V*a] = [a]. Let Wy be a continuous path in Diff with Wy = Idy, and W; = ¥ given by the
flow of the vector field X; on M. As « is a closed form, we get

1 1 1 1
\I/*a—a:/ i(\lfza):/ £Xt04:/ (d(XtJOZ)—f-XtJdO[):/ d(X; )
o dt 0 0 0

:d(/olXtJa>,

and hence U*a — « is exact, as desired.

o6



We define the moduli space of torsion-free Gy-structures on M as M = X' /D. It
turns out, as we will show, that M is a non-singular, smooth manifold with dimension
b3(M). We will prove this fact by constructing a “slice” for the action of D on X. A slice
S, for ¢ € X is a submanifold of X containing ¢ that is locally transverse to the orbits
of D near ¢. That is, all the nearby orbits of D each intersect S, at exactly one point.
If we find such a slice, M = X/D is locally homeomorphic to S, in a neighbourhood of
[p]m € M. Hence, as ¢ € X is arbitrary, we get that M has the structure of a manifold.
For more on slices, see | ].

The following theorem from | ] which is based on Ebin’s Slice Theorem | ] for the
moduli space of Riemannian metrics gives us a slice for the postive 3-forms on a 7-manifold:

Theorem 5.2.1. Let (M, p) be a compact Go-manifold. Consider the action of D on
[(23M). Let 1, be the stabilizer subgroup of ¢ in D with respect to this action. Define

L,={p €T(P*M) : m(d*p) = 0}, (5.20)

where 77 and d* are with respect to @. Then, there ewists an open neighbourhood S,
containing ¢ in L, which is invariant under I, such that the natural projection from S, /I,
to (M) /D induces a homeomorphism between S,/I, and a neighbourhood of ¢D in
[(23M)/D.

Let us see why it makes sense for the condition 77(d*®) = 0 to be in (5.20). The natural
choice for the slice at ¢ for the action of D on I'(Z?2M) would be the L*-orthogonal
subspace to the orbit D of D at ¢ as it would ensure local transversality for ¢ close to
. Consider the tangent vectors at ¢ to the orbit D of D. They are given by

d

7 hip=Lxp=d(X 1),
t=0

where h; is the flow of a smooth vector field X on M. As from (4.44) we know that the
tangent space at ¢ of the orbit ¢D is the space d(£22), the natural choice for the slice is
L,={p eT(Z’M) : (p —p,d(X 2¢))12=0 VX € (TM)}. (5.21)

Since ¢ is torsion-free, we have d*p = 0 and hence from integration of parts we get that
(5.20) is equivalent to (5.21). Now, applying Theorem 5.2.1 to the set of torsion-free
Go-structures X', we have:
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Corollary 5.2.2. Let M be a compact T-manifold and M = X /D the moduli space of
torsion-free Go-structures on M. Let ¢D € M, where ¢ is a torsion-free Go-structure on
M and let 1, be the stabilizer subgroup of ¢ in D with respect to this action. Define

L, ={g e D(P*M) : dp = d) = 0 and m(d"P) = 0}, (5.22)

where m; and d* are with respect to p. Then, there exists an open neighbourhood S;,
containing @ in L, which is invariant under 1, such that the natural projection from S;/]w
to M induces a homeomorphism between S;,/1, and a neighbourhood of ¢D in M.

Now, we use Theorem 5.1.5 to find a condition equivalent to the ones in (5.22).

Proposition 5.2.3. Let (M, ) be a compact Go-manifold and ¢ a closed 3-form on M
such that ||p — |lc, < €1. Then, there exist & € H? and a d*-exact 2-form n such that
¢ = @+&+dn uniquely. Furthermore, ¢ lies in L], from (5.22) if and only if (dd*+d*d)n =
*d(F (&4 dn)).

Proof. Let [¢],[@] be the deRham cohomology classes of ¢, p. As H3 = H3(M,R), there
exists a unique & € H? such that [¢] = [¢] — [p]. Thus, as [p — ¢ — &] = 0 in H3(M,R),
© —p — £ is an exact 3-form. Then, we know by Hodge theory that there exists a unique
d*-exact 2-form 1 on M such that dnp = ¢ — p — &. Thus, ¢ = ¢ + £ + dn as claimed.

Now, we have that d*n = 0 as 7 is d*-exact and ||¢ — ¢||¢, < € from our assumption.
Thus, from Theorem 5.1.5, we have that (dd* + d*d)n = *d(F(§ + dn)) if and only if

dp = 0 and m7(d*@) = 0. Therefore, from (5.22) we have that ¢ € L, if and only if
(dd* + d*d)n = xd(F (& + dn)). O

Now, we will present a proof of the main result of this chapter.

Theorem 5.2.4. Let M be a compact T-manifold. The moduli space of torsion-free Go-
structures M = X /D on M is a smooth manifold of dimension b3(M) = dim H3(M,R).
Furthermore, the natural projection m : M — H3(M,R) which takes an equivalence class
[©]pm in the quotient space X /D to the deRham cohomology class [p] is a local diffeomor-
phism.

Proof. Let ¢ be a torsion-free Go-structure on M. For k > 0 and «a € (0,1), let us define
VEa to be the Banach space of 2-forms given as

Vke = fn e OF*(A*T*M) : i is L*-orthogonal to H?}.
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Then, define an open set UF2« C H3 x VF+2e by
UrEe = {(&n) € H x VI g+ dnflco < €1}
and a map ® : Ukt2e — Vhke by
®(&,n) = (dd” + d*d)n — *d(F(& + dn)).

Since M is compact, and each harmonic form is closed and co-closed, ® is well-defined as
®(&,n) is L*-orthogonal to harmonic 2-forms for each (&,7) € UF22. Furthermore, it is a
smooth and non-linear map of Banach spaces.

From Proposition 5.1.4, we know that F(£ + dn) is atleast quadratic in £ + dn and hence
the first derivative d®| g0 : H* x Ve s yke g given by

d®|0,0)(&,n) = (dd* + d*d)n.

Note that dd* + d*d is a self-adjoint elliptic operator on 2-forms with kernel and cokernel
H?. Thus, from the Fredholm alternative (Theorem 1.2.4), it follows that dd* + d*d :
Vht2e s ko ig an isomorphism. Therefore, d®|0,0) : H® % VhtZae s ke g surjective
with kernel H3.

Hence by the Implicit Mapping Theorem (Theorem 1.2.3), we have that ®~!(0) is a mani-
fold of dimension b3(M) in a neighbourhood of (0,0) and the projection (£, 7) — ¢ induces
a diffeomorphism between neighbourhoods of (0,0) in ®7'(0) and 0 in H3. Note that
for small ||£ 4 dn||co, any solution 7 to the equation ®(£,n) = 0 is smooth rather than
just C**2e by elliptic regularity since ®(&,7) = 0 is a non-linear elliptic equation when
|€ 4 dn||co is small.

Then from Proposition 5.2.3, the slice Lf, from (5.22) is locally isomorphic to the set

{(&,n) € H?> x T(A’T*M) : i is L*-orthogonal to H?,
€+ dillon < ex and (dd + d*d)n = *d(F(E + dn))}.

From above, it follows that this set is a manifold of dimension b3(M) near (0,0) and the
projection to H? is a diffeomorphism. Therefore, L, is a smooth manifold of dimension
b*(M) in a neighbourhood of ¢ and the projection L, — H*(M,R) which maps @ to
the deRham cohomology class [¢] induces a diffeomorphism between neighbourhoods of
¢ € L, and [¢] € H*(M,R).

From Corollary 5.2.2, we have that the moduli space M is homeomorphic near ¢D to

a neighbourhood of I, in L; /I, where I, is the stabilizer subgroup of D which fixes
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@. Since I, is a group of diffeomorphisms of A which are isotopic to the identity, we
know from the discussion earlier in this section that I, acts trivially on the cohomology
f}[l :;(S]\é ,/I%)]. ésloléiuis '}somorplﬁic :Eo [I:{ 5(M,R) near ¢, I, acts trivially on L{, near ¢ and
Ny y isomorphic to L.
Therefore, as M is homeomorphic near ¢D to a neighourhood of ¢ in L, it follows that
M is a smooth manifold of dimension b*(M) in a neighbourhood of D and the projection
T : M — H3(M,R) which maps [¢]y to the deRham cohomology class [@] induces a
diffeomorphism between neighbourhoods of ¢D € M and [¢] € H3(M,R). As ¢D € M is
arbitrary, we have proved our desired result. O

Note that the above theorem only tells us about the local structure of M and gives very
little information about the global geometry of M.
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Chapter 6

Gauge transformations on the space
of torsion-free Go-structures

In this chapter, we will use the techniques from [ | to explore the action of gauge
transformations of the form e*4 where A € T2, on the space of torsion-free Gy-structures.
In particular, we show that infinitesimally, the torsion-free condition almost exactly corre-
sponds to Aoy being harmonic (that is, closed and co-closed) when we add a “gauge-fixing”
condition. This closely matches with the results in | ] that we presented in Chapter 5
but we use a different approach.

6.1 The difference between connections under a gauge
transformation
Before focusing entirely on Go-manifolds, let us do the following computation on a general

Riemannian manifold. From this computation, we will obtain a tensor which will be needed
for our Gy computations.

Let (M, g) be a Riemannian manifold and let P be a gauge transformation on TM. That
is, P: TM — TM is an invertible bundle map. Then, consider another metric

g="Fy
on M. With respect to an orthonormal frame with respect to g, we have

9ij = P Pigp.
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Let V, V be the the Levi-Civita connections of g and g respectively. Then, since the differ-
ence between connections is tensorial, let us denote the difference between these connections
as

B(X,Y):=VxY - VyY
for X, Y € X(M). Furthermore, as V, V are torsion-free, we have
ViY —VyX = [X)Y], VxY —VyX =[X,Y],
which gives us
B(X,Y)=[X,Y]4+ VyX — [X,Y] - VyX = B(Y, X).
Thus, B is symmetric. Then, since the metric g is compatible with V, for X,Y,Z € X(M)

X(@(Y,2)) =3(VxY, Z) + §(Y,VxZ)
:g(P(vXY+B(X>Y))>PZ) +9(PKP(VXZ+B<X7Z))a

and

X(9(Y;2)) = X(g(PY, PZ))
9(Vx(PY), PZ) + g(PY,Vx(PZ))
g(P(VxY),PZ) + g((VxP)Y,PZ) + g(PY,P(VxZ)) + g(PY.(VxP)Z).

Combining the above two, we get

9(P(B(X,Y)),PZ) + g(PY, P(B(X, Z)))

9(VxP)Y,PZ)+g(VxP)Z, PY)
g(PP~ Y (VxP)Y,PZ)+ g(PP ' (VxP)Z,PY),

which implies
J(B(X.Y),Z2) +§(B(X,2),Y) = g(P~(VxP)Y,Z) + g(P" (VxP)Z)Y).
Permuting XY, Z, we get

J(B(X,)Y), Z)+§(B(X,2),Y) =g(P~(VxP)Y, Z) + g(P~'(VxP)Z,Y), (6.1)
J(B(Z,X),Y)+9(B(2,Y),X)=g(P~'(VzP)X,Y) +7



Then, as B is symmetric, (6.1) + (6.2) — (6.3) gives us

29(B(X,Y), 2) = g(P~{(VxP)Y, Z) + §(P" (VxP)Z,Y) + §(P~ (VyP)Z,X) (6.4)
+9(P Y (VyP)X, Z) = g(P~ (VzP)X,Y) = g(P~H(VzP)Y, X).

Now, we want to get everything in terms of an inner product with Z so that we can get
an expression for B(X,Y’). So, with respect to a local frame, we start with defining

(CX, V)™ = (PHV,P)Y) X g5,
which gives us the term
J(C(X,Y), Z) = gmn(C(X,Y))" 2"
= Gn(P"HV,P)Y ) X7 gy ;g"™ 2"
= 0Pg,;(P Y (V,P)Y) X' Z"
= ﬁ,-ij(P_l(VpP)Y)"Xj
= Gy (P (V2P)Y) X
=g(P ' (VZP)Y, X).
And similarly we define
(C"(X,Y)™ = Ggis(P1u(Vx Py Y7,
which gives us the term
J(C'(X,Y), Z) = Gungij(P~1)u(Vx P)yg"" Y 2"
= Gung " 2" Gij (P ) (Vx P)Y?
= GO0 2" (P~ (Vx P)gY?
= 9;(P™)o(VxP); 2°Y?
=g(P ' (VxP)Z,Y).
Therefore, we get
29(B(X,Y), Z) = g(P~ (VxP)Y, Z) + g(C"(X,Y), Z) + §(C"(Y, X), Z
+ §<P_1(VYP)X7 Z) - g(c(X’ Y)> Z) - §(C<Y7 X)a Z)a

and since Z is an arbitrary vector field, we have

B(X,Y) = %(P—l(VXP)Y +C'(X,Y) + C'(Y, X)
+ P HVyP)X — O(X,Y) — C(Y, X)).
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6.2 Harmonicity of Ao ¢

In this section, we will find the necessary and sufficient conditions for a 3-form v = Ao¢ ¢
to be harmonic where A € T2. We will then show that these conditions correspond to the
linearization of the torsion-free condition modulo a gauge-fixing condition in Sections 6.3
and 6.4.

Proposition 6.2.1. Let (M, ) be a compact Go-manifold. Suppose that v = Ao p is a
3-form where A € T2. Then, 7 is harmonic if and only if

ViAipepik + ViAjppipk + ViAippisp = 0
and
ViAppga + VpAigPpaq + Vi Akp@ikpFia — ViAkaPijk — VpAipPair — Vji(tr A)pgji = 0.

Moreover, we have

(d*)7 =0 <= 2divA+VTrA— (VA ) =0, (6.6)
(dy)1 =0 <= div(VA) = Vo A¢p0a = 0, (6.7)
(dy); =0 <= 2divAT —2VTr A+ (VA ) =0, (6.8)

where (VA, V) = VA Wipgm -

Proof. Since M is compact, using integration by parts (see | , Section 1.1.3]), we know
that

7 is harmonic <= dy =0 and d*vy = 0. (6.9)
Looking at the co-closed condition first, we have

0= (d"V)jx = —ViYijk
= —Vi(Appjr + Ajppipk + ArpPijp)
= —V;Appjr — ViAjppik — ViArpPijp
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where Qu = (ViAup) @iy From (4.28) and (4.53), it follows that

QabPmab = —(ViAap)PiphPmab
= (ViAap)(giaGpm — GimIpa — Ypima)
= (div A)y, — Vi (AapGpa) + ViAapUapim.
Hence, using (4.27) and (4.51), for the Q2 part of the co-closed condition, we get

mr((d*V)jx) =0 <= 0= (d"Y)jxPmjk
= —(div A)pppisPmir + QjrPmik — QrjPmik
= —6(div A), + 2QjkPmjk
= —6(div A),, + 2((div A)s, — Vi (Aapgpa) + ViAapDapim)
— _4(div A),y, — 2V, (Tr A) + 2(V A, ).

Therefore, we get
(d*v)7 =0 <= 2divA+VTrA— (VA y) =0.
Next, consider the closed condition
0= (dY)ijre = Vivir — Vjivir + Vi — Vivij. (6.10)

Let n;jkr = (d7y)iji- Using the same notation from Corollary 4.4.4, we have

0 = Nijeilajit = VivikWajit — 3V VimWaghi,

as the last three terms of (6.10) are skew in j, k and [. Using the fact that v = Ao ¢,
(4.30), (4.51) and (4.31), we have

ViviriWajii — 3V iYiriaikt = Vi(Ajppki + AkpPipt + AipPikp) Vajki
- 3vj((Aip90pkl + AkpPipt + Alp@ikp)wajkl)
= Vi(—4A4)pPpaj + 2ArpPjp1ajit)
— 3V (—4Aippaj + 2AkpPipiPajit)
= —4V;Apg0pga + 2ViAkp(—40par) + 12V AipPpaj
- G(VjAkp)(gm%jk + GijPapk T GikPajp
— YpaPijk — IpjPaik — IpkPaji)
= =12V, Apgpga — 12V Aig0pag — 6V i Arp@itpGia + 6ViArpipa
— 6V AipPajp + 6V Araije + 6Vp Arppair + 6V (tr A)paji
= —6ViAp0pga — 6V AigPpaq — 6V Akp0irpJia
+ 6V Akapiji + 6V Agpair + 6V (tr A)paji,
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which gives us

1
_67722 = ViApePpga + VpAigtpaq + Vi Arp@irpJia

— VjAraijk — VpArpPair — Vj(tf A)Sf?aji-
Thus, from Corollary 4.4.4, we obtain

(6.11)

(dy)y =0 < trn¥ =0
< div(VA) = V,A,00pga = 0.

Furthermore, from (4.51), it follows that
m7(nj) =0 <= NigPiam =0,
and using (4.27) and (4.28) yields
NaPami =0 = 0= (Vidpg) (9mpYiq — Ima¥ip — Ymipa) = (VpAig) (9mpGia — Imalip — Yrmipa)

— (VpAa) (GapGmg = GaqGmp — Pampg) + 6V p Ay — 6V, (tr A)
= 3(VA, ), + 6(div AT),, — 6V, (tr A)

Hence, we have
(dy); =0 <= 2divAT —2VTr A+ (VA, 1),
which concludes our proof. O]

Remark 6.2.2. Recall that Corollary 4.4.3 tells us that A4, 0 ¢ = 0 for any A € T2. This
agrees with the equations (6.6), (6.7) and (6.8), since they are satisfied for any A € Q3,.
Indeed, for A € Q?,, we have Tr A = 0 and from (4.45), we get

(VA ) = ViApghipgm = 2ViAim = 2(div A),,, = —2(div AT),,,,

which shows (6.6) and (6.8). In addition, from (4.51) we get A,q@pgm = 0, which shows
(6.7).

6.3 Linearization of the torsion-free condition

Now, let us take P = ¢4 and denote 3 = P*¢ = (¢'4)*p and § = P*g = (e'4)*p. Let V
be the Levi-Civita connection of g. We want to compute the linearization

d -
—| Vg 6.12
il V? (6.12)
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For X, Y, Z, W € X(M), we have
(VxP)(Y, Z2,W) = X(B(Y. Z,W)) = B(VxY, Z,W) = G(Y,Vx Z,W) = 3(Y, Z,VxW),
and Vxp = 0 gives us
X(e(PY,PZ,PW))=o(Vx(PY),PZ, PW)+ o(PY,Vx(PZ), PW)+ o(PY,PZ,N x(PW)).
Taking B to be as in Section 6.1, expanding the above yields

(V@Y. Z,W) = o(Vx(PY), PZ,PW) + p(PY,Vx(PZ), PW) + o(PY, PZ,V x(PW))
— p(P(VxY + B(X,Y)), PZ, PW) — o(PY, P(VxZ + B(X, Z)), PW)
— ¢(PY,PZ,P(VxW + B(X,W)))
= o((VxP)Y,PZ,PW) + o(PY,(VxP)Z, PW) + ¢(PY,PZ,(Vx P)W)
— p(P(B(X,Y)),PZ,PW) — o(PY, P(B(X, Z)), PW)
— ¢(PY,PZ, P(B(X,W))),

and we can rewrite (6.4) as

9(B(X,Y), Z) = g(P(B(X,Y)),PZ) = %(g((VXP)Y, PZ)+9((VxP)Z, PY) + g((VyP)Z, PX)

+9(VyP)X, PZ) — g((VzP)X, PY) = g(VzP)Y, PX)).

As %\tZOP = A and P|;—o = I, we have
d
VXP|t:0 - VXI - 0, - VXP - VXA, B|t:0 - 0
dt|,_g
Thus, denoting B = 4|,—oB, we get

9(B(X,Y),Z) = %(9((VXA)Y7 Z)+9(VxA)ZY) +9((VyA)Z, X) + g(VyA) X, Z)
—9((VzA)X,Y) = g((VZA)Y, X)).
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Now, taking %\tzo of (%X@)(Y, Z,W), from the relation between g and ¢ in (4.19), we

obtain

d ~
t=0

- QD(B(X’ Y)’Z’ W) - ¢(Y>B(X7 Z)7W) - @(K ZvB(X’ W))
= (XA, Z x W) = S(g((Vx A, Z X W) + g(Tx A)(Z x V), Y)

-+ g((VyA)(Z X W), X) -+ g((VyA)X, 7 X W) — g((VZXwA)X, Y)
—g((VzxwA)Y, X)) + (cyclic terms Y — Z — W)
1

= 50((VxA)Y, Z x W) = g(VxA)(Z x W), Y) = g(VyA)(Z x W), X)

- 9((VYA)X, 7 X W) + g((VZxWA)X7 Y) + g((VZXWA)Y7 X))
(6.13)

+ (cyclic terms Y — Z — W).

Lemma 6.3.1. For any vector field X on M, Kx = %|t:06X§5 lies in Q2 with respect to
the Go-structure .

Proof. From Lemma 4.5.1, we know that v x@ lies in Q2 with respect to ¢. To emphasize
the fact that the decomposition is with respect to @, we write @ € Q3(@). The decompo-
sition in (4.37) tells us that its inner product with any 3-form in Q3(@) & Q3.(9) is zero.
Furthermore, from Corollary 4.4.4, every w € Q3(9) & Q3,() is of the form w = C o ¢ for
some C' € §%2. Combining these facts gives

J(Vx$,Co3) =0
for all C' € 8%, Then, note that as
(Vx@)lieo = Vxp =0, Flio =,

we have

d o~ -
o J(Vxp,Cop)=0 = g(Kx,Cop)=0 = Kx € Q(p). O
t=0

From Lemma 6.3.1 and Corollary 4.4.5,
Kx = K(X) v (6.14)

for some unique vector field K(X) € X. Now, we will find the necessary and sufficient
conditions for the 2-tensor K to vanish.
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Proposition 6.3.2. Let K be the 2-tensor defined by the equation Kx = K(X) a1, where
Kx =4]_0Vxo.

Kis =0 <= —V;Ap0apq + VpAsirga — VpAigPpaq = 0.
Moreover, we have
K; =0 < —2divA" +2Vtr 4 — (VA ¢) =0 (6.15)
and
K1 =0 <= V,A4,,¢up, = 0. (6.16)
Proof. Note that for an orthonormal frame e,, we have

ex X er = g(er X €1, em)em = PrimCm-
Thus, taking X =e;,Y =¢;,Z = e, W = ¢ in (6.13) gives us

1
Kiji = §(¢klmViAjm — GkimViAmj — CrimVjAmi — CrimV i Aim + CrimVmAij + Crim VinAji)

+ (cyclic terms j — k — ).

Since from (6.14) we have that K;ji = K;pWipr, using the identity (4.33) gives us

K} = Kijutbaju = 24K,.

a

Therefore, using the identity (4.30) yields

3
24Kia = §(<pklmvzf4]m - (pklmviAmj - SpklmvjAmi
— Prim Vi Aim + Crim VimAij + Crim VinAji ) Vajiki
— 16Kia = —4g0ajm(ViAjm — ViAmj — V]Amz — Vinm + VmAZJ + VmA]Z)
— 4Km = —Q@Qjm(viAjm - VjAmZ — VJAzm)
= 2Kio = —VilpgPapg + VpAgiPpga — VpAiqPpag- (6.17)
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Contracting (6.17) with ¢ on two indices and using (4.28) and (4.53), we get

2K,0Piam = —ViApgPapgPiam + VpAgiPpgaPiam — YV pAigPpagPiam
= ViAppgaPima — VpAgiPpgaPima — VpAigPpgaPima
= Vi Ap(9pidem — Gpm9ai — Vpgim) — VpAgi(9piam — Gpmai — Vpqim)
= VpAiq(9piGam — GpmYai — Vpgim)
= ViAim — Vi — (VA )y — VA + Vi (tr A)
+ (VA )y — Vil + Vi (tr A) — (VA ),
= —2(div A7), + 2V, (tr A) — (VA, ).

Hence, we have

K;=0 < —2divAT +2VtrA — (VA,¢) =0,

Finally,
2ngm~ = _viAqupapqgai + vaqigOangai - vaiqgopaqgm
= —VaquQDapq + VpAqa(qua - VpAaq(Ppaq
= —V.(VA), + V,(VA), — V,(VA),
= —V.(VA), = —div(VA),
and thus

K, =0 <= V,Apq¥aps = 0. O

Remark 6.3.3. Note that A4 does not contribute to K since using (4.51) and (1.5), the
equation (6.17) can be rewritten as

2K = —Vz‘A;qSOpqa + 2Vp(Asym ) igPpaa-

That is, K = 0 is always satisfied for any A of type 14. Therefore, any 14-part of A does
not contribute to the torsion at leading order, only at higher order.

6.4 Gauge-fixing and the main theorem

As in Section 5.2, we want tangent directions to our “slice” of torsion-free Ga-structures
to be L?-orthogonal to the infinitesimal diffeomorphisms L. That is, our gauge-fixing
condition is given as:

(Ao, Lywp) 2 = 0. (6.18)
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Taking S = ¢ in (1.12), we get
(Lwe)ijr = WpVpise + ViWpopin + Vi Wopipk + ViWppijp. (6.19)
Using (4.61) and (4.81), we can rewrite the above as

1. = 1~
Ly = _§WPTP oo+ (VIW)op= (VW — gT(W)) o . (6.20)

As ¢ is torsion-free, T = 0 and thus the gauge-fixing condition is
(Ao, VIVo )2 =0 (6.21)
for all W € X(M).

Proposition 6.4.1. Let A €~7-2 and K be a 2-tensor defined by the equation Kx =
K(X) 11, where Kx = %hzovxﬁ. Then, our gauge-fizing (G.F.) condition is given by
the equation

2div A+ VirA— (VA ¢) = 0. (6.22)

Proof. Using (4.61),(4.27), (4.28) and (4.53), we obtain

(Ao, VW o )2 = (Aipppjk + Ajppipk + Arppijp) (VIV © ©) ik
= Aippjt (VW 0 0)iji + 245000k (VW 0 0)ij
= Aipppjt(ViWopgik + ViWopigr + ViWepize)
+ 2A500ipk(ViWepgin + ViWoepige + ViilWepije)
= 6A4;, VW, + 24,V Wo0pikiqe + 24,V Wik ogik
+ 124;,V; Wy, + 245, VW ipe0ijq
= 18A;pViW, + 645V Wy (9pigiq — 9paii — Uiia)
= 184, V,\W, +6(tr A)V,W, — 6A4,,V.W, — 6(VA, ), W,,
= 12A4,,V,W, +6(tr A)V,W, — 6(VA, ) ,,W,p,.

Using integration by parts on the above we obtain that for all W € X(M),
(Ao, VIWWo )2 =0 <= —12(divA, W) —6(VtrA, W) +6((VA ) W) =0.
Since it is true for all W, we have that the gauge-fixing condition is given as

2div A+ VirA— (VA ) =0. m
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Theorem 6.4.2. Let A € T2 and K be a 2-tensor defined by the equation Kx = K(X) 21,
where Kx = %]tzovxfﬁ. We have that

(d*v); =0 <= G.F. condition =0 (6.23)
(dy)7=0 <= K;=0 |

(d’y)27 =0 < Ky;=0.

Proof. Note that the conditions for the vanishing of the 1-parts of K (6.16) and dvy (6.7)
are identical and the same is true for the 7-part of dy (6.8) and 7-part of K (6.15). In
addition, the gauge-fixing condition (6.22) is the same as the vanishing of the 7-part of d*v
(6.6). All that remains to show to prove our claim is that

Ky =0 <— (d"}/)27 = 0. (624)

The symmetric part of K is given as

1
(Ksym)ia = 1(_viqu90apq - vaquSinq + VpAqi‘qua + vaanppqi

— VpAigPpag — vaaqSOm’q)‘

(6.25)

and the symmetric part of n? is given as

1 1
——(Ufym)ia = §(viqu‘qua + VaApgpgi + VpAigPpag + VpAagPpig + 2V j ArpPikpGia

6
— VpAgPipg — VpAgiPapg)-
As V,Apppikpgia € Q°, from (6.25) we have that
727(77@#;) = 7T27((77swym>z'a) = 3m27(—ViApgPapg — VaApePipg + VpAgiPpga + VpAgaPpqi
— VpAigPrag — VpAagPpiq)
= 127T27(Ksym)ia
= 12797 (Kq),

which proves (6.24). O

Remark 6.4.3. Note that if in the above theorem we could also show that

K14 =0 <— (d*’}/)14 = 07
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then we would have that
Ao is harmonic <= (K =0 + G.F. condition),

which would mean that infinitesimally the torsion-free condition (modulo gauge-fixing) is
equivalent to A ¢ being harmonic. At the time of writing this document, it is not entirely
clear if this holds, and in fact our initial analysis appears to indicate that it is false in
general. This equivalence may require a further assumption, which could be related to
ambiguity (non-uniqueness) in the definition of A for ¢ = (¢*4)*. This is a question that
the author hopes to further study in the future.

6.5 Future questions and extensions

In this chapter, using the framework of gauge transformations e*4 acting on the torsion-
free Go-structures, we have shown that infinitesimally, being torsion-free and gauge-fixed
(except for the 14 part) is the same as A ¢ ¢ being harmonic. One could explore if this
method can be used in the non-infinitesimal case to give an alternate proof of the fact that
the moduli space of Ga-structures forms a non-singular smooth manifold.

Furthermore, it could prove fruitful to use this method to prove analogous results for the
moduli space formed by structures on manifolds with different holonomy groups such as
Spin(7) and U(m). In particular, we know from the fundamental work of Kodaira-Spencer
and Kuranishi | | that in general, there are obstructions to deform a complex structure
but in the Kéhler case, if a particular deformation of complex structure is unobstructed,
then the deformation remains Kéahler. Using this method, one could attempt to describe
these obstructions through a differential-geometric approach. Furthermore, this point of
view could give us a differential geometric explanation for why the Kéhler moduli space is
not smooth in general.
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