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Abstract

The moduli space of torsion-free G2-structures for a compact 7-manifold forms a non-
singular smooth manifold. This was originally proved by Joyce [Joy00]. In this thesis,
we present the details of this proof, modifying some of the arguments using techniques in
[Kar08] and [DGK23]. Next, we consider the action of gauge transformations of the form
etA where A is a 2-tensor, on the space of torsion-free G2-structures. This gives us a new
framework to study the moduli space.

We show that a G2-structure φ̃ = P ∗φ acted upon by a gauge transformation P = etA

is infinitesimal torsion-free condition almost exactly corresponds to A ⋄ φ being harmonic
if A satisfies a “gauge-fixing” condition, where A ⋄ φ is a 3-form defined using the di-
amond operator ⋄ which features in [DGK23]. This may be the first step in giving an
alternate proof of the fact that the moduli space forms a manifold in our framework of
gauge transformations.

iii



Acknowledgements

To begin with, I would like to thank my supervisor Spiro Karigiannis for his guidance
throughout my master’s degree. This thesis was made possible through his meticulous
reviewing of the drafts and his patience in answering my questions. I look forward to
being supervised by him during my PhD. I would also like to thank Ruxandra Moraru for
sparking my interest in differential geometry and being a source of encouragement during
my undergraduate years.

Next I want to thank the most important people in my life, my parents Shakil and Shaheen
and my sister Baseerat. They probably do not care much about the funny symbols in the
remainder of this document, but I would not be here without their unconditional and
unwavering support.

Finally, I want to mention the people without whom this thesis would have definitely been
possible. In fact, if anything, they actually acted as obstructions to getting it done. The
time I spent with my fellow master’s students: Aareyan, Andrew, Jared, Jashan, Ramana,
Seraphim, Ted and Victor in the one big office that we all shared almost made me want to
quit mathematics. Also, shout-out to the other characters in this mathematical comedy:
Furqan bhai, Jumana “jumlab” Labib, Liam McQuay, Mustafa and Raza, the cousins
Farhan and Umayr, my bandmates Faraz and the two Hamads and last but not least
Lazeez Shawarma.

iv



This thesis is dedicated to Mama, Papa and Didi.

v



Table of Contents

1 Introduction 1

1.1 Notation and conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Standard results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Homogeneous Manifolds 8

3 H-structures 13

3.1 Lie algebra background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 H-connections and intrinsic torsion . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Compatible H-structures and holonomy groups . . . . . . . . . . . . . . . 19

3.4 Stabilized tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 G2-structures 27

4.1 Structures on normed division algebras . . . . . . . . . . . . . . . . . . . . 27

4.2 Canonical G2-structure on R7 . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 G2-manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4 Decomposition of the space of forms on a manifold with G2-structure . . . 35

4.4.1 The decomposition of Ω2 . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4.2 The decomposition of Ω3 and Ω4 . . . . . . . . . . . . . . . . . . . 39

4.5 Torsion of a G2-structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.6 The G2-Bianchi identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

vi



5 The family of compact torsion-free G2-structures 47

5.1 Computations with differential forms on G2-manifolds . . . . . . . . . . . . 47

5.2 The moduli space of compact torsion-free G2-structures . . . . . . . . . . . 56

6 Gauge transformations on the space of torsion-free G2-structures 61

6.1 The difference between connections under a gauge transformation . . . . . 61

6.2 Harmonicity of A ⋄ φ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.3 Linearization of the torsion-free condition . . . . . . . . . . . . . . . . . . . 66

6.4 Gauge-fixing and the main theorem . . . . . . . . . . . . . . . . . . . . . . 70

6.5 Future questions and extensions . . . . . . . . . . . . . . . . . . . . . . . . 73

References 74

vii



Chapter 1

Introduction

Our aim in thesis is to study the moduli space of torsion-free G2-structures and present a
new way to explore these moduli spaces through the framework of gauge transformations.

In this chapter, we will set the notation and conventions for the thesis and state some
fundamental results which we will need later on. Chapter 2 provides a brief overview of
facts and essential results about homogeneous manifolds.

In Chapter 3, we will discuss H-structures, their torsion and their interplay with holonomy
groups. The theory of H-structures provides a different way of looking at connections on
the underlying manifold and their holonomy groups, and proves to be useful for studying
geometrical structures.

We study G2-structures, which are examples of H-structures, in detail in Chapter 4. We
will see how a G2-structure on a manifold arises from the canonical G2-structure on R7

which is isomorphic to the imaginary octonions. Moreover, we will present various identities
and properties of differential forms on manifolds with such a structure and look at ways
to package the torsion of these G2-structures.

In Chapter 5, we define the moduli space of G2-structures on a compact manifold of dimen-
sion 7 and prove that it forms a non-singular smooth manifold of dimension b3. Finally, we
present a new framework to study these moduli spaces through gauge transformations in
Chapter 6. In particular, we show that infinitesimally, the torsion-free condition under the
action of gauge transformations almost exactly corresponds to a particular 3-form, which
arises naturally from the G2-structure and the gauge transformation, being harmonic when
we add a “gauge-fixing” condition.
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1.1 Notation and conventions

The following standards for notation and conventions are followed throughout Chapter 4,
5 and 6. Unless specified otherwise, M is a 7-dimensional smooth manifold equipped with
a Riemannian metric g from a G2-structure φ (which we define in Chapter 4). We use
the metric to identify vector fields with 1-forms and the tensors are expressed with respect
to a local frame {e1, . . . , en} that is orthonormal with respect to g. Due to this, all of
our indices are subscripts. When an operator like ∇p appears, unless specified otherwise
by parentheses, it only acts on the term which follows it immediately. For instance,
∇pφijkψqijk means (∇pφijk)ψqijk and not ∇p(φijkψqijk).

For a fibre bundle E over M , we denote the space of smooth sections of E by Γ(E). For
some special cases, we use the following notation:

• Ωk = Γ(Λk(T ∗M)) is the space of smooth k-forms on M

• X = Γ(TM) is the space of smooth vector fields on M

• T k = Γ(⊗k(T ∗M)) is the space of smooth covariant k-tensors on M

• Sk = Γ(Sk(T ∗M)) is the space of smooth symmetric k-tensors on M

Next, we set notations for the three Banach spaces we will encounter in this thesis:
Lq(M), Ck(M) and Ck,α(M). For q ≥ 1, define Lq(M) to be the Lebesgue space, that
is, the set of locally integrable functions f on M for which the norm

∥f∥Lq =

(∫
M

|f |q volg
)1/q

is finite, where volg is the volume form associated to the metric g. We denote the space
of continuous, bounded functions f on M that have k continuous, bounded derivatives as
Ck(M), for integers k ≥ 0 and define the norm ∥ · ∥Ck as

∥f∥Ck =
k∑
j=0

sup
M

|∇jf |,

where ∇ is the Levi-Civita connection on M . If d(x, y) is the distance between x, y ∈ M ,
for sections v of a vector bundle V over M , [v]α is given as

[v]α = sup
x ̸=y∈M

d(x,y)<δ(g)

|v(x)− v(y)|
d(x, y)α

,
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where δ(g) is the injectivity radius of g. For an integer k ≥ 0 and α ∈ (0, 1), we define the
Hölder spaces Ck,α(M) as the set of f ∈ Ck(M) for which the supremum [∇kf ]α exists,
working in the vector bundle ⊗kT ∗M with its natural metric and connection. The norm
on Ck,α(M) is then given as

∥f∥Ck,α = ∥f∥Ck + [∇kf ]α.

We view k-forms as totally skew-symmetric k-tensors onM and hence the inner products of
tensors, which include k-forms, are inner products as tensors. For k-forms α = 1

k!
αi1···ikei1∧

· · · ∧ eik , β = 1
k!
βj1···jkej1 ∧ · · · ∧ ejk , the pointwise inner product as tensors is given as

⟨α, β⟩ = αi1···ikβj1···jk . (1.1)

The exterior derivative dα of a k-form α can be written in terms of the covariant derivative
as

dα =
1

k!
(∇i0αi1...ik −∇i1αi0i2...ik + · · ·+ (−1)k−1∇ikαi0...ik−1

)ei0 ∧ · · · ∧ eik . (1.2)

The adjoint d∗ : Ωk → Ωk−1 of the exterior derivative is called the coderivative, which
can be written in terms of the covariant derivative as

d∗α = − 1

(k − 1)!
∇mαmi1...ik−1

ei1 ∧ · · · ∧ eik−1
.

The metric and orientation determine the Hodge star operator ⋆ which takes k-forms to
(7− k) forms, satisfying the relation

α ∧ β = g(α, β) volg,

where α, β are k-forms. Furthermore, we have ⋆2 = 1. Let v be a vector field and α a
k-form. Then, we have the following identities between the interior product, wedge product
and the Hodge star operator:

⋆(v ⌟α) = (−1)k+1(v♭ ∧ ⋆α), (1.3)

⋆(v ⌟ ⋆α) = (−1)k(v♭ ∧ α). (1.4)

Let A = Aijdx
i⊗ dxj ∈ T 2. We set At ∈ T 2 as (At)ij to be the transpose of A and let us

define

Asym =
1

2
(A+ At) (1.5)
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and

Askew =
1

2
(A− At). (1.6)

Therefore, we have a decomposition T ∗M ⊗ T ∗M = S2(T ∗M) ⊕ Λ2(T ∗M) and hence we
can write

A = Asym + Askew (1.7)

uniquely where Asym is a symmetric tensor and Askew is a 2-form.

The trace of A with respect to g is given as trA = Aii = trAsym. Hence, we can further
decompose

Asym =
1

n
(trA)g + A0, (1.8)

where A0 = Asym − 1
n
(trA)g is the traceless part of Asym and n = dimM . Therefore, we

get a decomposition

A =
1

n
(trA)g + A0 + Askew, (1.9)

which is orthogonal with respect to the inner product given as

⟨A,B⟩ = AijBij (1.10)

for A,B ∈ T 2. Thus, denoting the traceless symmetric 2-tensors as S2
0 , we get the following

pointwise orthogonal splitting

T 2 = {fg | f ∈ Ω0} ⊕ S2
0 ⊕ Ω2 ∼= Ω0 ⊕ S0 ⊕ Ω2. (1.11)

Let E = ⊗kT ∗M and take S ∈ Γ(E). If W ∈ X, then

(LWS)(X1, . . . , Xk) = W (S(X1, . . . , Xk))− S(LWX1, . . . , Xk)− · · · − S(X1, . . . ,LWXk)

= (∇WS)(X1, . . . , Xk) + S(∇WX1, . . . , Xk) + · · ·+ S(X1, . . . ,∇WXk)

− S(LWX1, . . . , Xk)− · · · − S(X1, . . . ,LWXk).

From ∇WX − LWX = ∇WX − (∇WX −∇XW ) = ∇XW , we get

(LWS)(X1, . . . , Xk) = (∇WS)(X1, . . . , Xk) + S(∇X1W, . . . , Xk) + · · ·+ S(X1, . . . ,∇Xk
W ).
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When k = 2 or k = 3, with respect to a local orthonormal frame, we get

(LWS)ij = Wp∇pSij +∇iWpSpj +∇jWpSip,

(LWS)ijk = Wp∇pSijk +∇iWpSpjk +∇jWpSipk +∇kWpSijp.
(1.12)

For vector fields X, we define the divergence divX as the function ∇iXi and it equals
−d∗X when we identify X with its metric dual 1-form. In terms of a local orthonormal
frame, we have divX = ∇pXp.

Let S ∈ Γ(E), where E = ⊗kT ∗M . Then, we have that∇S ∈ Γ(T ∗M⊗E) = Γ(⊗k+1T ∗M)
where

(∇S)(X, ·) = (∇XS)(·) ∈ Γ(E).

If k ≥ 1, we define the divergence divS of S as the element of Γ(⊗k+1T ∗M) given by

(divS)i1...ik−1
= ∇pSpi1...ik−1

.

Note that this generalizes the notion of divergence for vector fields when we identify 1-forms
with vector fields since the two definitions agree when k = 1.

We will denote the Riemann curvature tensor in terms of a local orthonormal frame as

Rijkl = g(∇ei(∇ejek)−∇ej(∇eiek)−∇[ei,ej ]ek, el). (1.13)

The Ricci tensor in this convention is given as Rjk = Rljkl and the Ricci identity for a
k-tensor is given as

∇p∇qSi1...ik −∇q∇pSi1...ik = −
k∑
l=1

RpqilmSi1...il−1mil+1...ik . (1.14)

1.2 Standard results

In this section, we present some standard results without proof which we will use in this
thesis. First, let us discuss some basic facts about Hodge theory. For a compact, oriented
Riemannian manifold M , we define the vector space of harmonic k-forms as

Hk = ker(∆d),

where ∆d : Ω
k → Ωk is the Hodge Laplacian given as ∆d = dd∗ + d∗d. It is easy to show

that a k-form α lies in Hk if and only if it is closed (dα = 0) and co-closed (d∗α = 0). In
addition if α ∈ Hk, then ⋆α ∈ Hn−k. Next, we mention the Hodge decomposition theorem
which is proved in [War83, Theorem 6.8]
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Theorem 1.2.1 (The Hodge Decomposition Theorem). LetM be a compact, oriented
Riemannian manifold. Let us denote the exterior derivative and coderivative acting on k-
forms as dk and d∗k respectively. Then, we have

Ωk = Hk ⊕ Im(dk−1)⊕ Im(d∗k+1).

Furthermore,

ker(dk) = Hk ⊕ Im(dk−1)

and

ker(d∗k) = Hk ⊕ Im(d∗k+1).

Now, since the k-th deRham cohomology is given as Hk(M,R) = ker(dk)/ Im(dk−1) and as
ker(dk) = Hk ⊕ Im(dk−1) from above, we have a canonical isomorphism between Hk and
Hk(M,R) given as:

Theorem 1.2.2 (The Hodge Theorem). Let M be a compact, oriented Riemannian
manifold. Then, every deRham cohomology class on M contains a unique harmonic rep-
resentative and Hk ∼= Hk(M,R).

Now, we state the Implicit mapping theorem which can be found in [Lan12, Theorem 2.1,
pg. 364]

Theorem 1.2.3 (The Implicit Mapping Theorem). Let X, Y and Z be Banach spaces,
and U, V open neigbourhoods of 0 in X and Y respectively. If the function

F : U × V → Z

is Ck for some k ≥ 1 such that F (0, 0) = 0 and dF(0,0)|Y : Y → Z is an isomorphism of Y
and Z as vector and topological spaces, then there exists an open neighbourhood U ′ ⊂ U of
0 in X and a unique Ck map

G : U ′ → V

such that G(0) = 0 and
F (x,G(x)) = 0

for all x ∈ U ′.
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Let V and W be vector bundles, with metrics on the fibres, over a compact Riemannian
manifold M . Then, let P be a smooth linear elliptic operator from V to W and let P ∗

denote its formal adjoint from W to V . The Fredholm alternative is an existence result
for the equation Pv = w. That is, it gives a simple condition w ⊥ kerP ∗ for w to satisfy
for there to exist a solution v. A proof can be found in [Joy00, Theorem 1.5.3].

Theorem 1.2.4. Let V,W,M and P be as above. Let k be the order of P and let l ≥ 0 be
an integer, let p > 1 and let α ∈ (0, 1). Then, the image of the map

P : Ck+l,α(V ) → C l,α(W )

is a closed linear subspace of C l,α(W ). If w ∈ C l,α(W ), then there exists v ∈ Ck+l,α(V )
with Pv = w if and only if w ⊥ kerP ∗ and if one requires that v ⊥ kerP , then v is unique.
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Chapter 2

Homogeneous Manifolds

We begin by briefly recalling some of the background material required to understand
group actions on manifolds and the spaces which are formed through these actions. The
main source for this chapter is [Lee12].

Recall that an action of a group G on a set M is transitive if for every p, q ∈ M , there
exists g ∈ G such that g · p = q. A smooth manifold M with a smooth transitive action by
a Lie group G is called a homogeneous space of G (or just homogeneous manifold if
it is clear what the group action is). Due to the transitive action, a homogeneous manifold
can be informally seen as a space which looks the same everywhere. Let us look at some
basic examples of homogeneous manifolds.

Example 2.0.1. Consider the action of O(n) on Sn−1. Since the action of O(n) on Rn is
smooth and Sn−1 is an embedded submanifold of Rn, it is a smooth action. For v, v′ ∈ Sn−1,
we can complete v and v′ to orthonormal bases and let A and A′ be the orthogonal matrices
whose columns are these orthonormal bases. Then A′A−1 takes v to v′. Since the action is
transitive, Sn−1 is a homogeneous space of O(n).

Example 2.0.2. The above action of O(n) restricts to a smooth action of SO(n) on Sn−1.
For n = 1, this action is trivial since SO(1) is just the trivial group. To show that the action
is transitive for n ≥ 2, it suffices to show that for any v ∈ Sn−1, there exists A ∈ SO(n)
which takes the first standard basic vector e1 to v. As O(n) acts transitively, we have some
A ∈ O(n) which takes e1 to v. We know that detA = ±1. If detA = 1, then we are
done. But if detA = −1, then we can take the matrix obtained by multiplying the second
column of A by −1 which is in SO(n) and takes e1 to v. Hence, Sn−1 is a homogeneous
space of SO(n) for n ≥ 2.
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Example 2.0.3. The group SL(2,R) acts smoothly and transitively on the upper half
plane U = {z ∈ C : ℑ(z) > 0} under the action(

a b
c d

)
· z = az + b

cz + d

The induced diffeomorphisms on U are called Möbius transformations.

Now, we want to show that by taking the quotients of Lie groups by closed subgroups, we
can generate many examples of homogeneous manifolds. Let G be a Lie group, H ⊆ G be
a Lie subgroup and G/H denote the left coset space of G modulo H. We then have the
following theorem:

Theorem 2.0.4 (Homogeneous Space Construction Theorem). Let G be a Lie group
and let H be a closed subgroup of G. The left coset space G/H is a topological manifold
with dimension dimG− dimH and a unique smooth structure such that the quotient map
π : G→ G/H is a smooth submersion. The left action of G on G/H given as

g1 · (g2H) = (g1g2)H

exhibits G/H as a homogeneous space of G.

Recall that a continuous left action of a Lie group G on a manifold M is said to be a
proper action if the map G ×M → M ×M given by (g, p) 7→ (g · p, p) is proper. It is
said to be a free action if every isotropy group is trivial. To prove Theorem 2.0.4, we
will require a few fundamental theorems about Lie groups, quotient manifolds and proper
actions. The proofs of the theorems which we do not prove in this chapter can be found
in [Lee12].

Theorem 2.0.5 (Closed Subgroup Theorem). Let G be a Lie group and H ⊆ G is
a subgroup which is also a closed subset of G. Then, H is a Lie subgroup which is an
embedded submanifold of G. We say that H is an embedded Lie subgroup. Furthermore,
every embedded Lie subgroup is properly embedded. That is, the inclusion H ↪→ G is a
proper map.

Theorem 2.0.6 (Quotient Manifold Theorem). Let G be a Lie group acting smoothly,
freely and properly on a smooth manifold M . Then the orbit space M/G is a topological
manifold with dimension dimM − dimG and has a unique smooth structure such that the
quotient map π :M →M/G is a smooth submersion.

9



Theorem 2.0.7 (Sequential Characterization of Proper Actions). Let G be a Lie
group acting continuously on a manifold M . Then the action is proper iff for sequences (pi)
in M and (gi) in G such that (pi) and (gi · pi) converge, a subsequence of (gi) converges.

Proof of Theorem 2.0.4. Consider the right action of H on G by translation. Note that
the orbit space determined by this right action is the same as the left coset space G/H
since g1, g2 ∈ G are in the same H-orbit if and only if g1 = g2h for some h ∈ H which is
equivalent to saying that g1, g2 are in the same coset of H.

The H-action on G is smooth as it is the restriction of the multiplication on G which is
smooth. In addition, as H is a closed subgroup of G, from Theorem 2.0.5, it is a properly
embedded subgroup. Furthermore, since gh = g implies that h = e, the action is free. To
show that the action is proper we will use Theorem 2.0.7. Let (gi) be a convergent sequence
in G and let (hi) be a sequence in H such that (gihi) converges in G. Since multiplication
and inverses are continuous as G is a Lie group, hi = g−1

i (gihi) converges in G and as H is
closed in G with the subspace topology, (hi) converges in H.

Hence, from Theorem 2.0.6 it follows that G/H has a unique smooth structure such that
π : G → G/H is a smooth submersion. As the product of smooth submersions is also a
smooth submersion, we get that the map IdG × π : G × G → G × G/H is also a smooth
submersion. Denoting the group multiplication by m and the action of G on G/H given
in the statement of the theorem as θ, we have the following diagram:

G×G G

G×G/H G/H

m

IdG×π π

θ

Note that for (g, [g′]) ∈ G×G/H, we have that

(IdG × π)−1(g, [g′]) = {(g, g′′) | g′′H = g′H for h ∈ H}.

It follows that π ◦ m is constant on the fibres of IdG × π, because for (g, g′′) such that
(IdG × π)(g, g′′) = (g, [g′]),

π(m(g, g′′)) = π(gg′′) = gg′′H = gg′H.

Thus, passing smoothly to the quotient it follows that θ is a well-defined and smooth group
action. Finally, it is transitive since for g1H, g2H ∈ G/H, we have g2g

−1
1 ∈ G such that

(g2g
−1
1 ) · g1H = g2H.
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As we will see in the next theorem, the homogeneous spaces constructed in Theorem 2.0.4
are special since it turns out that every homogeneous space is equivalent to one of this
type. To prove it, we need to use the equivariant rank theorem which we will state without
proof:

Theorem 2.0.8 (Equivariant Rank Theorem). For smooth manifolds M,N and a Lie
group G, if F : M → N is a smooth map that is equivariant with respect to a transitive
smooth G-action on M and any smooth G-action on N , then F has constant rank. There-
fore, F is a smooth submersion if it is surjective, a smooth imersion if it is injective and
a diffeomorphism if it is bijective.

Theorem 2.0.9 (Homogeneous Space Characterization Theorem). Let G be a Lie
group, M be a homogeneous space of G and let p ∈ M . Then the isotropy group Gp is
a closed subgroup of G, and the map F : G/Gp → M defined by F (gGp) = g · p is an
equivariant diffeomorphism.

Proof. Let θ(p) : G → M denote the orbit map given as θ(p)(g) = g · p and let H =
Gp = (θ(p))−1(p). Since θ(p) is continuous, H is closed. Note that F is well-defined since if
g1H = g2H, we have g2 = g1h for some h ∈ H and hence

F (g2H) = g2 · p = g1h · p = g1 · p = F (g1H).

Furthermore, F is equivariant since

F (g′gH) = (g′g) · p = g′ · F (gH).

As F is obtained from the orbit map θ(p) : G→M by passing to the quotient, it is smooth.

By Theorem 2.0.8, we know that equivariant smooth bijections are diffeomorphisms. Thus,
it suffices to show that F is bijective. Let q ∈ M . Since the action is transitive, there
exists g ∈ G such that g · p = q and thus F (gH) = q, which shows surjectivity. For the
injectivity, if F (g1H) = F (g2H), then

g1 · p = g2 · p =⇒ g−1
1 g2 · p = p =⇒ g−1

1 g2 ∈ H =⇒ g1H = g2H.

Therefore, understanding homogeneous spaces can be reduced to the algebraic problem
of dealing with quotients of Lie groups by closed subgroups. Equipped with this new
perspective, let us take another look at the previously discussed examples of homogeneous
spaces.
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Example 2.0.10. For the action of O(n) on Sn−1, if we choose the base point to be
the north pole N = (0, . . . , 0, 1), the isotropy group is O(n − 1) since it consists of the
orthogonal transformations fixing the last coordinate. Hence Sn−1 is diffeomorphic to the
quotient manifold O(n)/O(n− 1).

Example 2.0.11. Similar to the previous example, we get that the isotropy group for the
action of SO(n) on Sn−1 is SO(n−1) and hence Sn−1 is diffeomorphic to SO(n)/ SO(n−1)
for n ≥ 2.

Example 2.0.12. Consider the transitive action of SL(2,R) on the upper half-plane by
Möbius transformations. Computing the isotropy group of i ∈ U directly shows that it

consists of matrices of the form

(
a b
−b a

)
with a2 + b2 = 1. Note that this is precisely the

group SO(2) ⊆ SL(2,R). Thus, we have a diffeomorphism U ∼= SL(2,R)/ SO(2).

Let us conclude this section by defining principal G-bundles, which will be objects of focus
in Chapter 3.

Definition 2.0.13. If G is a topological group, a principal G-bundle is a fibre bundle
π : P → X with a continuous right G-action P × G → P given by (p, g) 7→ p · g which
preserves the fibres of P (that is, π(p · g) = π(p)) and acts freely and transitively on the
fibres.

From the definition above it follows that each fibre Px = π−1(x) is homeomorphic to G
non-canonically through the map G → Px which sends g to yg for x ∈ X, y ∈ Px. Note
that if we take G to be a Lie group and take its action on a manifold M to be smooth,
free and proper, then the fibre bundle π :M →M/G with fibre G is a principal G-bundle.
For H a subgroup of G, we say that H is admissible is the quotient map G→ G/H is a
principal H-bundle. Using Theorem 2.0.6, it can be shown that every closed Lie subgroup
is admissible.
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Chapter 3

H-structures

For this thesis, we will be mainly focusing on G2-manifolds which are examples of a larger
class of objects known as H-structures. Before studying the special properties of G2-
manifolds, we will lay down a theoretical framework for H-structures. This chapter closely
follows [FEME23] and [Joy00]. The sources for the Lie algebra part are [KN69] and [CE08].

Let Mn be a connected and orientable smooth n-manifold without boundary where n > 2.
A frame at a point x ∈ M is given by a linear isomorphism u : TxM → Rn. For any
g ∈ GL(n,R), g−1 ◦ u is again a frame and for any two frames u, u′, there is a unique
g ∈ GL(n,R) with u′ = g−1 ◦ u. That is, GL(n,R) acts freely and transitively on the set
of frames at a point.

Definition 3.0.1. The frame bundle of M denoted by Fr(M) is the principal GL(n,R)-
bundle whose fibre over x ∈ M consists of frames u : TxM → Rn where the right action
GL(n,R)× Fr(M) → Fr(M) is given by (g, u) 7→ g · u := g−1 ◦ u.

Given a principal G-bundle for some group G, one can ask if it “comes from” a subgroup
H of G. If it does, then we say that it admits a reduction of structure group to H. More
concretely:

Definition 3.0.2. Let H,G be topological groups such that H < G. If ρ : H → G is the
inclusion, then a principal G-bundle PG admits a reduction of structure group to H
if there is a principal H-bundle PH and an inclusion i : PH → PG which is H-equivariant,
that is, i(ph) = i(p)h for p ∈ PH , h ∈ H. The bundle PH is called an H-reduction of PG.

Let H ⊂ GL(n,R) be a Lie subgroup. Then, an H-structure on Mn is an H-reduction
of Fr(M). For instance, it can be shown that an SO(n)-structure on Mn is equivalent to
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a choice of a Riemannian metric g and an orientation. We fix an oriented Riemannian
manifold (Mn, g) and denote the associated SO(n)-structure by πSO(n) : Fr(M, g) → M .
Then, if H is a Lie subgroup of SO(n), we say that Q is a compatible H-structure
on (Mn, g) if Q is an H-reduction of Fr(M, g). Now, let us assume that H ⊂ SO(n) is
closed and connected. From the discussion at the end of Chapter 2, it follows that the
quotient map πH : Fr(M, g) → Fr(M, g)/H is a principal H-bundle. Hence, the map
π : Fr(M, g)/H →M which is defined such that the following diagram commutes

Fr(M, g) Fr(M, g)/H

M

πH

πSO(n)
π

is a fibre bundle with fibre SO(n)/H.

We then have a one-to-one correspondence between compatible H-structures Q ⊂ Fr(M, g)
and sections σ ∈ Γ(Fr(M, g)/H). Since σ is a section of a homogeneous fibre bundle
Fr(M, g)/H → M , we call it a homogeneous section. Indeed, given Q ⊂ Fr(M, g), we
can define σQ(x) := πH(u) where u ∈ Q with πSO(n)(u) = x. This is well defined since
for u, ũ ∈ π−1

SO(n)(u) ⊂ Q, as Q is an H-bundle, we have ũ = h · u for some h ∈ H which

implies that πH(u) = πH(ũ). Conversely, if σ ∈ Γ(Fr(M, g)/H), we can define a compatible
H-structure by Qσ := π−1

H (σ(M)) ⊂ Fr(M, g).

Next, we will briefly discuss some Lie algebra preliminaries relating to Riemannian mani-
folds which we require in order to define connections associated to H-structures.

3.1 Lie algebra background

We will denote the Lie algebras of G and H by g and h respectively. Let Ad : G→ GL(g)
denote the adjoint representation of G, where

Ad(g)(X) = Adg(X) = gXg−1

for g ∈ G and X ∈ g and let us denote the adjoint representation of g, which is the
derivative of Ad at the identity, by ad : g → gl(g) where

ad(X)(Y ) = adX(Y ) = [X, Y ].

14



Definition 3.1.1. If G is a Lie group and H is a closed subgroup, then we say that the
homogeneous manifold G/H is reductive if for some subspace m of g we have

g = h⊕m

such that

Adh(m) ⊆ m

for all h ∈ H.

We can put certain conditions on G and g such that it always admits a reductive decom-
position. One such condition is as follows:

Theorem 3.1.2. Let G/H be a homogeneous space such that G is a connected Lie group.
Assume that g admits an Ad(G)-invariant inner product ⟨·, ·⟩ and let m be the orthogonal
complement of h with respect to the metric ⟨·, ·⟩. Then, G/H is reductive with respect to
the decomposition g = h⊕m.

Proof. As H is closed under conjugation, Ψa(h) = aha−1 for all a, h ∈ H and as the adjoint
representation is given by Adh = (dΨh)e, it follows that h is invariant under Adh for all
h ∈ H. Furthermore, since each Adh is an isomorphism, we get that Adh(h) = h. Now, let
X ∈ m. As m = h⊥, we have that for all Y ∈ h,

⟨X, Y ⟩ = 0.

As the inner product is Ad(G)-invariant, we have that for h ∈ H,

⟨Adh(X),Adh(Y )⟩ = 0.

As Adh(h) = h, for all W ∈ h we have

⟨Adh(X),W ⟩ = 0

which shows that Adh(X) ∈ h⊥ = m. As X was arbitrary, we have that Adh(m) ⊆ m and
hence, the decomposition is reductive.

Definition 3.1.3. The Killing form B of g is the symmetric bilinear form given by

B(X, Y ) = tr(adX ◦ adY )

for X, Y ∈ g.
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If B is non-degenerate, we say that g is semi-simple. If the Lie algebra g of a Lie group
G is semi-simple, then we say that G is semi-simple. From [KN69, Appendix 9], we know
that a compact, connected Lie group G is semisimple iff the Killing form B is negative
definite. Furthermore, B is Ad(G)-invariant:

Theorem 3.1.4. The Killing form B of a Lie algebra is Adg-invariant for all g ∈ G.
That is, for X, Y ∈ g,

B(AdgX,Adg Y ) = B(X, Y ).

Proof. Since each Adg is a Lie algebra homomorphism, it preserves brackets and hence

Adg[X, Y ] = [AdgX,Adg Y ].

Furthermore, since Adg is an automorphism, taking Z = Adg(Y ), we have that

Adg[X,Ad
−1
g Z] = [AdgX,Z].

Since ad(V )(W ) = [V,W ] for V,W ∈ g, we have

Adg ◦ ad(X) ◦ Ad−1
g = ad(Adg(X)).

This gives us

B(AdgX,Adg Y ) = tr(ad(AdgX) ◦ (adAdg Y ))

= tr(Adg ad(X) ◦ ad(Y )Ad−1
g )

= tr(ad(X) ◦ ad(Y ))

= B(X, Y ).

Note that in the above proof, we only used the fact that Adg is a Lie algebra automorphism.
Hence, this proof works for any Lie algebra automorphism ρ. That is, the Killing form B
is ρ-invariant for any automorphism ρ of g.

Therefore, for any Lie group G which is compact, connected and semisimple, the bilinear
form −cB for any constant c > 0 gives us an Ad(G)-invariant inner product on g. We say
that a homogeneous space G/H is normal if G is a connected, compact and semisimple
Lie group. Thus, we obtain the following corollary of Theorem 3.1.2

Corollary 3.1.5. Let G/H be a normal homogeneous space. That is, G is a connected,
compact and semisimple Lie group. Then under the Ad(G)-invariant inner product ⟨·, ·⟩
given by −cB on g where c > 0, G/H is reductive with respect to the decomposition
g = h⊕m, where m is the orthogonal complement of h with respect to the metric ⟨·, ·⟩.
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We will conclude this section by defining adjoint bundles. Earlier in this chapter, using
frame bundles we were able to go from vector bundles to principal bundles. The following
is a way to go in the opposite direction.

Definition 3.1.6. Let M be a manifold, G a Lie group and P a principal bundle over M
with fibre G. If ρ is a representation of G on a vector space V , then there is an action of
G on the product space P × V where the action on the first factor is the principal bundle
action and on the second factor it acts by ρ. We define the quotient of P × V by this
G-action to be

ρ(P ) = (P × V )/G.

Since P/G =M , the natural projection map from (P ×V )/G to P/G gives us a projection
from ρ(P ) to M . As G acts freely on P , this projection has fibre V and thus ρ(P ) is a
vector bundle over M with fibre V .

Take π : P × V → ρ(P ) to be the natural projection. Let us consider P × V as the trivial
vector bundle over P with fibre V . Then, if e ∈ Γ(ρ(P )) is a smooth section of ρ(P ) over
M , then the pullback π∗(e) is a smooth section of P × V over P . Furthermore, π∗(e) is
invariant under the action of G on P × V , which gives us a 1-1 correspondence between
sections of ρ(P ) over M and G-invariant sections of P × V over P . Due to this, we often
write ρ(P ) = P ×G V if the choice of the representation ρ is clear.

If P is a principal G-bundle over a smooth manifold, then the adjoint bundle Ad(P ) of
P is the bundle associated to the representation Ad : G→ GL(g). That is, the elements of
the adjoint bundle are equivalence classes [p,X] for p ∈ P,X ∈ g such that for all g ∈ G,

[p · g,X] = [p,Adg(X)].

Due to the above 1-1 correspondence, we can also represent Ad(P ) as P ×G g.

3.2 H-connections and intrinsic torsion

Consider the quotient SO(n)/H equipped with the metric on SO(n) given by ⟨A,B⟩ =
− tr(AB). Then, as H is closed and connected, and as SO(n) is connected, semisimple (for
n > 2) and compact, SO(n)/H is a normal, homogeneous Riemannian manifold. From
Corollary 3.1.5 we get that there is a reductive decomposition

so(n) = h⊕m (3.1)
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where m = h⊥ is the orthogonal complement of h with respect to the metric ⟨·, ·⟩. That is,
AdH(m) ⊆ m. If (Mn, g) admits a compatible H-structure Q ⊂ Fr(M, g), then the above
reductive decomposition induces an orthogonal H-module decomposition

so(TM) = hQ ⊕mQ (3.2)

where the adjoint bundle so(TM) := Fr(M, g) ×SO(n) so(n) is the subbundle of skew-
symmetric endomorphisms in End(TM) = T ∗M ⊗TM and hQ := Q×H h,mQ := Q×H m.

We say that a connection ∇̃ on TM is an H-connection if for the associated connection
1-form ω̃ ∈ Ω1(Fr(M), gl(n,R)), we have that ι∗Qω̃ ∈ Ω1(Q, h) is a connection 1-form on Q

where ιQ : Q ↪→ Fr(M) is the H-subbundle inclusion. If ∇̃ is an H-connection and ∇ is
the Levi-Civita connection on (Mn, g). Then, define

T̃X := ∇̃X −∇X . (3.3)

Since Q is compatible with g, the H-connection ∇̃ on TM is compatible with g. Thus, we
have

X(g(Y, Z)) = g(∇̃XY, Z) + g(Y, ∇̃XZ)

and since ∇ is a Levi-Civita connection,

X(g(Y, Z)) = g(∇XY, Z) + g(Y,∇XZ).

Combining the two gives us

⟨∇̃XY −∇XY, Z⟩ = −⟨Y, ∇̃XZ −∇XZ⟩ =⇒ ⟨T̃XY, Z⟩ = −⟨Y, T̃XZ⟩.

Therefore, for fixed X ∈ X(M), the map Y 7→ TXY is a skew-adjoint endomorphism.

This means that T̃X defines a skew-symmetric endomorphism T̃X ∈ Γ(so(TM)) for all

X ∈ X(M). As ∇ is torsion-free, T̃ is essentially the torsion of ∇̃ as

∇̃XY − ∇̃YX − [X, Y ] = ∇̃XY − ∇̃YX − [X, Y ]− (∇XY −∇YX − [X, Y ])

= T̃XY − T̃YX

for all X, Y ∈ X(M). As T̃X = πh(T̃X) + πm(T̃X) where πh, πm denote the projections for
the decomposition in (3.2), we can define the H-connection

∇H
X := ∇̃X − πh(T̃X).
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Note that since the difference between any two H-connections lies in Γ(hQ), it follows that

∇H only depends on the H-structure and not on the choice of the H-connection ∇̃. That
is, ∇H is the unique H-connection on M such that its torsion T of ∇H satisfies

TX = ∇H
X −∇X ∈ Γ(mQ).

This tensor T ∈ Ω1(M,mQ) is called the intrinsic torsion of the H-structure Q and Q
is said to be torsion-free when T = 0. That is, the Levi-Civita connection is an H-
connection which as we will see in Section 3.3 shows that its holonomy is a subgroup of
H.

3.3 Compatible H-structures and holonomy groups

In this section, we will explore the relations between H-structures and holonomy groups.
First, let us briefly recall some facts about holonomy groups on vector bundles.

Given a manifold M , a vector bundle E over M and a connection ∇ on E, for a piecewise-
smooth curve γ : [0, 1] → M such that γ(0) = x and γ(1) = y for x, y ∈ M , we have that
for each e ∈ Ex there exists a unique smooth section s of the pullback bundle γ∗(E) such
that ∇γ′(t)s(t) = 0 for t ∈ [0, 1], with s(0) = e. We then define the parallel transport
map as Pγ(e) = s(1) where Pγ : Ex → Ey is a well-defined linear map.

We call γ : [0, 1] →M a loop based at x ∈M if it is piecewise-smooth with γ(0) = γ(1) = x.
The parallel transport map for a loop Pγ : Ex → Ex is an invertible linear map, which
means that Pγ ∈ GL(Ex). We define the holonomy group of ∇ based at x as

Holx(∇) = {Pγ : γ is a loop based at x} ⊂ GL(Ex).

It can be easily confirmed that Holx(∇) is indeed a a subgroup of GL(Ex). Furthermore,
we can drop the basepoint from the notation and write the holonomy group of ∇ as Hol(∇)
since for x, y ∈ M , Holx(∇) and Holy(∇) determine the same subgroup of GL(k,R) for
some k, up to conjugation.

Next, let us briefly summarize the notion of a connection on a principal bundle. Let P be a
principal bundle over a manifoldM with fibre G and denote the projection by π : P →M .
Let p ∈ P and fix m = π(p). Then we define Cp to be the subspace of TpP given by
Cp = ker(dπp) where dπp : TpP → TmM is the derivative of π. We can then form a
vector subbundle C of the tangent bundle TP consisting of the subspaces Cp which we call
the vertical subbundle. Furthermore, as π is a submersion from the implicit function
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theorem, we have Cp = Tp(π
−1(m)). But since the fibres of π are the orbits of the free

G-action on P , we have a natural isomorphism

Cp ∼= g (3.4)

where g is the Lie algebra of G. A connection on P then is a vector subbundle D of TP
called the horizontal subbundle which is invariant under the G-action on P satisfying

TpP = Cp ⊕Dp (3.5)

for each p ∈ P . As Cp = ker dπp, we have the isomorphism

Dp
∼= π∗(Tπ(p)M). (3.6)

Now, let γ : [0, 1] → P be a piecewise-smooth curve in P , where P is as above and D is a
connection on P . Then we say that γ is a horizontal curve if γ′(t) ∈ Dγ(t) for each t in
the open, dense subset of [0, 1] where γ′(t) is well-defined. Furthermore, if γ : [0, 1] → M
is piecewise-smooth with γ(0) = m and π(p) = m for some p ∈ P , then from existence
results for ordinary differential equations, it follows that there exists a unique horizontal,
piecewise-smooth map γ̃ : [0, 1] → P such that γ̃(0) = p and π ◦ γ̃ = γ. We call γ̃ the
horizontal lift of γ. We are now ready to define a holonomy group for a principal bundle.

Definition 3.3.1. Let M be a manifold, P a principal bundle over M with fibre G and D
a connection on P . Let p, q ∈ P . Then we write p ∼ q if there exists a piecewise-smooth
horizontal curve in P joining p and q. This is clearly an equivalence relation. Fix p ∈ P
and define the holonomy group of (P,D) based at p to be

Holp(P,D) = {g ∈ G : p ∼ g · p}.

Like in the case of vector bundles, it is easy to see that Holp(P,D) is a subgroup of G and
that Holp(P,D) depends on the base point p ∈ P only up to conjugation, which means
that the holonomy groups can be regarded as an equivalence class of subgroups of G under
conjugation and thus we can write Hol(P,D).

The next theorem gives us a way to get H-reductions through holonomy groups of a
principal G-bundle P for certain closed Lie subgroups H of G.

Theorem 3.3.2 (Reduction Theorem). Let M be a manifold, P a principal bundle over
M with fibre G, and D a connection on P . Fix p ∈ P and let H = Holp(P,D). Suppose
that H is a closed Lie subgroup of G. Define Q = {q ∈ P : p ∼ q}. Then, Q is a principal
subbundle of P with fibre H and the connection D on P restricts to a connection D′ on Q.
That is, P reduces to Q and the connection D on P reduces to D′ on Q.
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Proof. Clearly, Q is preserved by the action of H on P , and hence it acts freely on Q.
In addition, π restricts to Q which gives us a projection π : Q → M , with the fibres of
π : Q→M being the orbits of H. Furthermore, as H is a closed subgroup of G, it is a Lie
group and thus Q is a submanifold of P . Therefore, Q is a principal subbundle of P with
fibre H.

Now, let C ′ be the vertical subbundle of Q. By definition of Q, a point q lies in Q if it can
be joined to p by a horizontal curve. Thus, as a horizontal curve starting in Q must stay in
Q, TqQ must contain all horizontal vectors at q and therefore, Dq ⊂ TqQ. Then, we have
TqP = Cq ⊕Dq, Dq ⊂ TqQ and C ′

q = Cq ∩ TqQ which combine to give us TqQ = C ′
q ⊕Dq.

Hence, the restriction D′ of the connection D to Q is indeed a connection on Q.

The two definitions of holonomy groups turn out to be equivalent. But to see that, we
need to first see how connections on vector and principal bundles relate. Let P,M and G
be as above and let ρ be a representation of G on a vector space V . Then let E → M be
the vector bundle ρ(P ) over M as defined in Section 3.1. Given a connection D on P , we
want to construct a unique connection ∇ on E. Let e ∈ Γ(E) be a smooth section. Then,
if π : P × V → ρ(P ) is the natural projection, π∗(e) is a section of P × V over P . Thus,
considering π∗(e) as a function π∗(e) : P → V , its exterior derivative is a linear map given
as dπ∗(e)|p : TpP → V for each p ∈ P . This shows that dπ∗(e) is a smooth section of the
vector bundle V ⊗ T ∗P over P . Now, from the isomorphisms (3.4), (3.5) and (3.6), we
obtain the natural splitting

V ⊗ T ∗P ∼= (V ⊗ g∗)⊕ (V ⊗ π∗(TM)). (3.7)

Let πD(dπ
∗(e)) represent the component of dπ∗(e) in Γ(V ⊗ π∗(T ∗M)) with respect to the

above splitting. Since both π∗(e) and the splitting above are G-invariant, we have that
πD(dπ

∗(e)) isG-invariant. But from Section 3.1, we know that there is a 1-1 correspondence
between G-invariant sections of V ⊗ π∗(T ∗M) over P and sections of the corresponding
vector bundle E⊗T ∗M overM . Therefore, πD(dπ

∗(e)) is the pullback of a unique element
in Γ(E ⊗ T ∗M). This allows to state the following definition.

Definition 3.3.3. Let M be a manifold, P a principal bundle over M with fiber G and
D a connection on P . Let ρ be a representation of G on a vector space V and let E be
the vector bundle ρ(P ) over M . If e ∈ Γ(E), then πD(dπ

∗(e)) is a G-invariant section of
V ⊗ π∗(T ∗M) over P . Let us then define ∇e ∈ Γ(E ⊗ T ∗M) to be the unique section of
E⊗T ∗M with pullback πD(dπ

∗(e)) under the natural projection V ⊗π∗(T ∗M) → E⊗T ∗M .
This determines a connection on the vector bundle E over M .
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Therefore, we have associated a connection ∇ on the vector bundle E = ρ(P ) for every
connection D on a principal bundle P . In particular, if we take G = GL(k,R) and ρ as
the standard representation of G on Rk, such that P is the frame bundle of E, we get a
1-1 correspondence between connections on P and E. But in general, the map D 7→ ∇ for
any G and ρ may be neither injective nor surjective.

Now, this allows us to compare the holonomy groups of connections in vector bundles and
principal bundles. The following proposition from [Joy00] gives us the correspondence.

Proposition 3.3.4. Let M be a manifold, P a principal bundle over M with fiber G. Let
ρ : G → GL(V ) be a representation of G on a vector space V and set E = ρ(P ). Let D
be a connection on P and let ∇ be the induced connection on E. Then, Hol(P,D) and
Hol(∇) are subgroups of G and GL(V ) defined up to conjugation respectively and

ρ(Hol(P,D)) = Hol(∇).

If FE is the frame bundle of a vector bundle E over a manifold M with fibre Rk, then
we know that FE is a principal bundle with fibre GL(k,R). If ∇E is a connection on E
and DE is the corresponding connection on FE, then Hol(∇E) and Hol(FE, DE) are both
subgroups of GL(k,R) defined up to conjugation and

Hol(∇E) = Hol(FE, DE).

Finally, the next proposition, whose proof is similar to that of Theorem 3.3.2, shows that
for a connection ∇ on TM where M is connected, ∇ is an H-connection if and only if
Hol(∇) ⊆ H.

Proposition 3.3.5. Suppose M is a connected manifold of dimension n and let us denote
its frame bundle by F . Let ∇ be a connection on TM . Fix f ∈ F . Then, for each Lie
subgroup H ⊂ GL(n,R), there exists a H-structure Q on M which is compatible with ∇
(that is, ∇ is an H-connection) which contains f if and only if Holf (∇) ⊆ H ⊆ GL(n,R).
If such a Q exists, then it is unique. In general, there is a 1-1 correspondence between
H-stuctures equipped with a H-connection ∇ but not necessarily containing f and the
homogeneous space H \ {a ∈ GL(n,R) : aHolf (∇)a−1 ⊆ H}

Proof. If Q exists, then it must contain f . As it is closed under H, we get that it contains
h · f for each h ∈ H. As ∇ is an H-connection, any horizontal curve starting in Q must
remain in Q. Thus, if q ∈ Q and p ∈ F such that p ∼ q, then p ∈ Q, where ∼ is the
equivalence relation in Definition 3.3.1. Therefore, if p ∈ F and p ∼ h · f for any h ∈ H,
then p ∈ Q. But as M is connected, there exists a curve γ from π(p) to π(f) in M , where
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π is the projection from the frame bundle. It follows that the horizontal lift γ̃ of γ from p
ends at h · f for some h ∈ H. Hence, every p ∈ Q must satisfy p ∼ h · f for some h ∈ H.
Thus, if Q exists, Q must be {p ∈ F : p ∼ h · f for some h ∈ H}. This set is a principal
bundle over M and it has the subgroup of GL(n,R) generated by H and Holf (∇) as its
fibre. Therefore, Q exists if and only if Holf (∇) ⊆ H and if it exists, it is unique.

Now, if a ∈ GL(n,R), then we know that Hola·f (∇) = aHolf (∇)a−1. Thus, we get that
there is a unique H-structure Q containing a · f if and only if aHolf (∇)a−1 ⊆ H. But
H-structures containing a · f must contain (ha) · f for all h ∈ H. Therefore, we get the
1-1 correspondence of the H-structures with the set as claimed above.

3.4 Stabilized tensors

This section gives a characterisation of H-structures on manifolds in terms of their stabi-
lized tensors. Consider the canonical right-actions on Rn and (Rn)∗ by GL(n,R):

(g, v) 7→ g−1v

for g ∈ GL(n,R), v ∈ Rn and

(g, α) 7→ g∗α = α ◦ g

for α ∈ (Rn)∗. Let ξ0 ∈ T p,q(Rn) := (⊗pRn)⊗ (⊗q(Rn)∗) be a (p, q)-tensor. Then, denoting
the canonical basis on Rn as {ei} and the dual basis on (Rn)∗ as {ei}, we can represent ξ0
in terms of its components as

ξ0 = ξ
i1···ip
j1···jqei1 ⊗ · · · ⊗ eip ⊗ ej1 ⊗ · · · ⊗ ejq

where ξ
i1···ip
j1···jq = ξ0(e

i1 , . . . , eip , ej1 , . . . , ejq) ∈ R. Then, we extend the canonical actions
naturally onto tensors by

g · ξ0 = ξ
i1···ip
j1···jqg

−1ei1 ⊗ · · · ⊗ g−1eip ⊗ g∗ej1 ⊗ · · · ⊗ g∗ejq . (3.8)

The stabilizer of this action is denoted by

Stab(ξ0) = {g ∈ GL(n,R) : g · ξ0 = ξ0}

and if we have a finite collection of tensors (ξ0)i, then letting GL(n,R) act on ξ0 =
((ξ0)1, . . . , (ξ0)k) component wise, we have

Stab(ξ0) =
⋂
i

(Stab(ξ0)i).
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For example, if g0 := δije
i ⊗ ej is the standard Euclidean metric and µ0 is the standard

volume form, then they are stabilized by

Stab(g0, µ0) = Stab(g0) ∩ Stab(µ0) = O(n) ∩ SL(n,R) = SO(n).

Definition 3.4.1. Given an H-structure σ ∈ Γ(Fr(M)/H), we say that ξ ∈ Γ(T p,q(TM))
is stabilized by H if H ⊂ Stab(u−1 · ξ) for a frame u ∈ Qσ = π−1

H (σ(M)) ⊂ Fr(M), where

ux : TxM
∼=−→ Rn for all x ∈M and πH is the quotient map πH : Fr(M) → Fr(M)/H.

We want to studyH-structures that are completely characterised by their stabilised tensors.
That is, H ⊂ SO(n) is the stabilizer of a finite number of tensors on Rn. Hence,

H = Stab(ξ0)

for some ξ0 = ((ξ0)1, . . . , (ξ0)k) in an r-dimensional GL(n,R) submodule V ≤ ⊕T p,q(Rn),
where V = V1 ⊕ · · · ⊕ Vk with Vi ≤ T pi,qi(Rn). Then, let F ≤ ⊕T p,q(TM) be a rank
r subbundle with fibre V ∼= Rr. We then obtain a natural monomorphism of principal
bundles ρ : Fr(M) ↪→ Fr(F) given on the fibres as

ρ(ux) : Fx

∼=−→ V (3.9)

which identifies ux ∈ Fr(M)x at each point x ∈M with a frame on the fibre Fx.

Definition 3.4.2. A section ξ ∈ Γ(F) is a geometric structure modelled on a fixed
element ξ0 ∈ V ≤ T p,q(Rn), if for each x ∈M there exists a frame of TxM identifying ξ(x)
and ξ0.

Now, if we have H ⊂ SO(n) such that H = Stab(ξ0), then we can define the universal
section Ξ ∈ Γ(π∗F) as

Ξ(y) = y∗ξ0.

The universal section assigns to each H-class of frames y ∈ Fr(M)/H, the vector in Fπ(y)

whose coordinates are given by the model tensor ξ0 in the frame ρ(uπ(y)) as described in
(3.9). Therefore, it codifies all smooth H-structures.

Furthermore, to each homogeneous section σ ∈ Γ(Fr(M)/H) defining an H-structure, we
can associate a geometric structure ξ ∈ Γ(F) modelled on ξ0 by

ξσ := σ∗Ξ = Ξ ◦ σ. (3.10)
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And conversely, if ξ ∈ Γ(F) is a geometric structure stabilized by H we can associate with
it at each point x ∈M , the H-class of frames σ(x) ∈ π−1(x) such that

ξ(x) = σ(x)∗ξ0.

This correspondence allows us to talk about geometric structures, H-structures and ho-
mogeneous sections interchangeably. Now, let us give a brief overview of three well-known
examples of H-structures through this theoretical framework.

Example 3.4.3 (U(m)-structures). Let n = 2m ≥ 4 and take H = U(m) ⊂ SO(2m)
to be the unitary group. If J0 ∈ End(R2m) is the standard almost complex structure on

R2m = Rm ⊕ Rm given by J0 =

(
0 −Idn
Idn 0

)
then we have

U(m) = Stab(J0) ∩ Stab(g0) = StabSO(n)(J0).

A U(m)-structure (g, J) onM2m consists of a Riemannian metric g and a J ∈ Γ(End(TM))
such that J2 = −IdTM and g(J ·, J ·) = g, that is, an orthogonal almost complex struc-
ture. Compatible U(m)-structures are in one-to-one correspondence with sections of the
SO(2m)/U(m)-bundle π : Fr(M2m, g)/U(m) → M . Using the metric identification Λ2 ∼=
so(2m), we have that the U(m)-irreducible decomposition as in (3.1) is given as

Λ2 = Λ2
u(m) ⊕ Λ2

m

where Λ2
u(m)

∼= u(m) = {A ∈ so(2m) : J0A = AJ0} and Λ2
m
∼= m := u(m)⊥ = {A ∈ so(2m) :

J0A = −AJ0}.

Example 3.4.4 (G2-structures). Let n = 7 and take H = G2 ⊂ SO(7) (see Chapter 4 for
details). Then denoting the standard basis of (R7)∗ as (e1, . . . , e7), we define the standard
G2 structure φ0 ∈ Λ3(R7)∗ by

φ0 = e123 + e1 ∧ (e45 − e67) + e2 ∧ (e46 − e75) + e3 ∧ (e47 − e56)

where eijk = ei ∧ ej ∧ ek and eij = ei ∧ ej. Then, G2 = Stab(φ0) ⊂ SO(7). Furthermore,
φ0 induces the standard Euclidean metric g0 and the orientation µ0 through the non-linear
algebraic relation

(X ⌟φ0) ∧ (Y ⌟φ0) ∧ φ0 = −6g0(X, Y )µ0 (3.11)

for X, Y ∈ R7. Then a G2-structure on a smooth 7-manifold M7 is a 3-form φ which can
be identified pointwise with φ0 through a linear isomorphism. We call such a structure

25



a positive 3-form φ ∈ P3M . It then follows from (3.11) that φ induces a metric g and
orientation µg on M

7 satisfying the condition

(X ⌟φ) ∧ (Y ⌟φ) ∧ φ = −6g(X, Y )µg.

The compatible G2 structures on (M7, g) are in one-to-one correspondence with the sections
of the fibre bundle π : Fr(M7, g)/G2 → M with fibre SO(7)/G2

∼= RP7. Using the metric
identification Λ2 ∼= so(7), we have that the G2-irreducible decomposition as in (3.1) is given
as

Λ2 = Λ2
g2
⊕ Λ2

m

where Λ2
g2

= {ω : ∗(ω ∧ φ) = ω} = {ω : ω ∧ ∗φ = 0} ∼= g2 and Λ2
m = {ω : ∗(ω ∧ φ) =

−2ω} = {u ⌟φ : u ∈ R7} ∼= m.

We will explore these structures in detail in Chapter 4.

Example 3.4.5 (Spin(7)-structures). Let n = 8 and take H = Spin(7) ⊂ SO(8). Denot-
ing the standard basis of (R8)∗ = (R)∗ ⊕ (R7)∗ as (e0, e1, . . . , e7), we define the structure
Φ0 ∈ Λ4(R8)∗ as

Φ0 = e0 ∧ φ0 + ∗R7φ0.

Then a Spin(7)-structure on (M8, g) is a 4-form Φ which can be identified pointwise with
Φ0 through a linear isomorphism. The compatible Spin(7) structures on (M8, g) are in one-
to-one correspondence with the sections of the fibre bundle π : Fr(M8, g)/ Spin(7) → M
with fibre SO(8)/ Spin(7) ∼= RP7. Using the metric identification Λ2 ∼= so(8), we have that
the Spin(7)-irreducible decomposition as in (3.1) is given as

Λ2 = Λ2
spin(7) ⊕ Λ2

m

where Λ2
spin(7) = {ω : ∗(ω∧Φ) = ω} ∼= spin(7) = so(7) and Λ2

m = {ω : ∗(ω∧Φ) = −3ω} ∼= m.
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Chapter 4

G2-structures

In Chapter 3, we briefly discussed G2-structures as examples of H-structures when H =
G2 ⊂ SO(7). In this chapter, we will first study the structures on the imaginary part of
normed division algebras from which the canonical G2-structure on R7 arises. Next, we
describe how we can equip the tangent spaces of 7-dimensional Riemannian manifolds with
that structure. We will describe how the space of k-forms on such manifolds decomposes
and finally, we give an alternate formulation of the torsion of a G2-structure. The main
references for this chapter include [Kar08], [Kar20], [DGK23] and [Joy00].

4.1 Structures on normed division algebras

Let us equip A := Rn with the standard Euclidean inner product ⟨·, ·⟩ and we denote the
norm induced from ⟨·, ·⟩ by ∥ · ∥.

Definition 4.1.1. If A is an algebra over R with multiplicative identity 1 ̸= 0 such that

∥ab∥ = ∥a∥∥b∥ (4.1)

for all a, b ∈ A, then we say that A is a normed division algebra.

That is, for a normed division algebra, the inner product and the algebra structure on A
are compatible through equation (4.1). We define the real part of A to be the span of the
multiplicative identity 1 ∈ A over R and denote it by ReA and we define the imaginary
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part of A to be the orthogonal complement of ReA with respect to ⟨·, ·⟩, denoting it by
ImA. Thus, we have an orthogonal decomposition

A = ReA⊕ ImA

Notice that ImA = (ReA)⊥ ∼= Rn−1. For a ∈ A, we define the conjugate of a, which we
denote by a to be

a = Re a− Im a, (4.2)

where Re a ∈ ReA and Im a ∈ ImA.

Normed division algebras were classified by Hurwitz in 1898. Up to isomorphism, there
are exactly four possibilities which are given by the following table:

n = dimA 1 2 4 8
Symbol R C ∼= R2 H ∼= R4 O ∼= R8

Name Real numbers Complex numbers Quaternions Octonions

Table 4.1: Classification of normed division algebras

Note that as the dimension increases, the algebras in the table are subalgebras of the larger
algebras. Furthermore, in the progression R → C → H → O, some algebraic property is
lost at each step. From R to C, we lose the natural ordering. From C to H we lose
commutativity. And from H to O we lose associativity. For the next section, the object of
our focus would be the octonions O, which allows us to define the canonical G2-structure
on R7.

From the compatibility condition (4.1), the following lemmas and identities (the proofs can
be found in [Kar20, Section 3.1]) follow:

Lemma 4.1.2. Let a, b, c ∈ A. Then we have

⟨ac, bc⟩ = ⟨ca, cb⟩ = ⟨a, b⟩∥c∥2, (4.3)

⟨a, bc⟩ = ⟨ac, b⟩, ⟨a, cb⟩ = ⟨ca, b⟩. (4.4)

and

ab = ba (4.5)
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Lemma 4.1.3. Let a, b ∈ A. Then

⟨a, b⟩ = Re(ab) = Re(ba) = Re(ba) = Re(ab) (4.6)

and

∥a∥2 = aa = aa (4.7)

which gives us that a2 = aa is real if and only if a is either real or imaginary.

Lemma 4.1.4. Let a, b ∈ A. Then, we have

(ab)b = a(bb) = ∥b∥2a = a(bb) = (ab)b,

a(ab) = (aa)b = ∥a∥2b = (aa)b = a(ab).
(4.8)

Now, we will define two A-valued multilinear maps on A which induce the associative and
coassociative forms on ImA.

Definition 4.1.5. For a, b ∈ A, we define a bilinear map [·, ·] : A2 → A by

[a, b] = ab− ba (4.9)

and we call the map [·, ·] the commutator of A. For a, b, c ∈ A we define a trilinear map
[·, ·, ·] : A3 → A by

[a, b, c] = (ab)c− a(bc) (4.10)

and we call the map [·, ·, ·] the associator of A.

We now use the above identities and lemmas to prove some characteristic properties of the
commutator and the associator.

Proposition 4.1.6. The commutator and associator are both totally skew-symmetric (al-
ternating) in their arguments.

Proof. From the definition of the commutator, it is clear that it is skew-symmetric. As
A is an algebra over R, in particular it is a vector space over R and thus if any of the
arguments of the associator are in ReA, the associator vanishes. Hence, as the associator
is trilinear, it is enough to show that it is alternating when all the arguments are imaginary.
Let a, b ∈ ImA. Then, a = −a and b = −b. From (4.8), we have

−[a, a, b] = [a, a, b] = (aa)b− a(ab) = 0
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and

−[a, b, b] = [a, b, b] = (ab)b− a(bb) = 0.

We thus have that [·, ·, ·] is alternating in the first two arguments and the last two ar-
guments. Therefore, we also have [a, b, a] = −[a, a, b] = 0 which shows that it is also
alternating in the first and last argument.

The next property that we will prove will show that the commutator and the associator
restrict to ImA-valued maps on ImA.

Lemma 4.1.7. Let a, b, c ∈ ImA. Then [a, b] ∈ ImA and [a, b, c] ∈ ImA.

Proof. To show that [a, b], [a, b, c] ∈ ImA it suffices to show that they are orthogonal to
every element in ReA = {t1 : t ∈ R}. That is, we need to show that [a, b] and [a, b, c] are
orthogonal to 1. As a = −a, from the identity (4.4), we have

⟨[a, b], 1⟩ = ⟨ab− ba, 1⟩ = ⟨b, a⟩ − ⟨a, b⟩
= −⟨b, a⟩+ ⟨a, b⟩ = 0.

Similarly, as b = −b, c = −c, from (4.5) we have bc = cb = (−c)(−b) = cb and thus we get

⟨[a, b, c], 1⟩ = ⟨(ab)c− a(bc), 1⟩ = ⟨ab, c⟩ − ⟨bc, a⟩
= −⟨ab, c⟩+ ⟨bc, a⟩
= −⟨a, cb⟩+ ⟨bc, a⟩
= ⟨a, cb+ bc⟩ = ⟨a, bc+ bc⟩ = 2⟨a,Re(bc)⟩ = 0,

as desired.

As the next proposition shows, it turns out that we get multilinear alternating forms on A
by combining the commutator and the associator with the inner product.

Lemma 4.1.8. For a, b, c, d ∈ A, the expressions ⟨a, [b, c]⟩ and ⟨a, [b, c, d]⟩ are both totally
skew-symmetric in their arguments.

Proof. From Lemma 4.1.6, we know that the associator and the commutator are totally
skew-symmetric. Therefore, it suffices to show that ⟨a, [a, b]⟩ = 0 and ⟨a, [a, b, c]⟩ = 0.
From (4.3) we have

⟨a, [a, b]⟩ = ⟨a, ab− ba⟩ = ∥a∥2⟨1, b⟩ − ∥a∥2⟨1, b⟩ = 0
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and for the associator, using (4.3) and (4.4) we have

⟨a, [a, b, c]⟩ = ⟨a, (ab)c− a(bc)⟩ = ⟨ac̄, ab⟩ − ∥a∥2⟨1, bc⟩
= ∥a∥2⟨c̄, b⟩ − ∥a∥2⟨c̄, b⟩ = 0

as desired.

Definition 4.1.9. Define a 3-form φ and 4-form ψ on ImA as follows:

φ(a, b, c) =
1

2
⟨a, [b, c]⟩ = 1

2
⟨[a, b], c⟩, (4.11)

ψ(a, b, c, d) =
1

2
⟨a, [b, c, d]⟩ = −1

2
⟨[a, b, c], d⟩, (4.12)

for a, b, c, d ∈ ImA. We call the form φ ∈ Λ3(ImA)∗ the associative 3-form and the form
ψ ∈ Λ4(ImA)∗ the coassociative 4-form.

We can also define a cross-product on ImA which generalizes the cross-product on R3.

Definition 4.1.10. The vector cross product on ImA is the bilinear map × : ImA ×
ImA → ImA given as

a× b = Im(ab) (4.13)

for all a, b ∈ ImA.

From the above identities and lemmas it follows easily that this vector cross product
satisfies properties similar to the usual cross product on R3 such as the following:

Lemma 4.1.11. For a, b ∈ ImA we have

a× b = −b× a, (4.14)

⟨a× b, a⟩ = 0, (4.15)

Re(ab) = −⟨a, b⟩1. (4.16)

Proof. As a = −a and b = −b and as Re v = 1
2
(v + v), Im v = 1

2
(v − v) for v ∈ A, from

(4.5), we get

2a× b = ab− ab = ab− ba = [a, b]. (4.17)
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Hence, a × b = −b × a. As a ∈ ImA, from the definition of the vector product (4.13) we
have

⟨a× b, a⟩ = ⟨Im(ab), a⟩ = ⟨ab, a⟩.

Then, using (4.3) we have

⟨a× b, a⟩ = ⟨ab, a⟩ = ⟨ab, a1⟩ = ∥a∥2⟨b, 1⟩ = 0

as b ∈ ImA is orthogonal to 1 ∈ ReA. Finally, as b = −b, from (4.6) we get

⟨a, b⟩1 = Re(ab) = −Re(ab).

From (4.16) and (4.13) we have that for ab ∈ A the decomposition into real and imaginary
parts is given as

ab = −⟨a, b⟩1 + a× b. (4.18)

Therefore, from (4.17) and (4.11) it follows that for a, b, c ∈ ImA

φ(a, b, c) = ⟨a× b, c⟩. (4.19)

Furthermore as from (4.18) we know that a× b− ab is real, we have

φ(a, b, c) = ⟨ab, c⟩. (4.20)

Hence, we have an elegant relation between the vector cross product and the associative
3-form φ.

4.2 Canonical G2-structure on R7

The previous section defined the associative 3-form, coassociate 4-form and the vector
cross product on ImA. In this section, we will take A = O and describe the canonical
G2-structure on R7 ∼= ImO. Let us denote the standard Euclidean metric on R7 ∼= ImO
by g0, the associated orthonormal basis by e1, . . . , e7, standard volume form associated
to g0 and the standard orientation by vol0 = e1 ∧ · · · ∧ e7, the associative 3-form by φ0,
the co-associative 4-form by ψ0 and finally the cross-product by ×0. We call the tuple
(g0, vol0, φ0, ψ0,×0) the standard G2-package on R7.
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Let e1, . . . , e7 denote the standard dual basis on (R7)∗, let eijk = ei ∧ ej ∧ ek and eijkl =
ei ∧ ej ∧ ek ∧ el. Then, from the octonion multiplication table it follows that

φ0 = e123 − e167 − e527 − e563 − e415 − e426 − e437, (4.21)

ψ0 = e4567 − e4523 − e4163 − e4127 − e2637 − e1537 − e1526. (4.22)

From these representations, it follows that

ψ0 = ⋆0φ0

where ⋆0 is the Hodge star operator induced from (g0, vol0). Now, we use the standard
G2-package on R7 to define the G2-group.

Definition 4.2.1. We define the group G2 < GL(7,R) as
G2 = {A ∈ GL(7,R) : A∗g0 = g0, A

∗ vol0 = vol0, A
∗φ0 = φ0}. (4.23)

That is, G2 preserves the standard G2-package on R7.

Notice that as A ∈ G2 preserves the standard metric and orientation on R7, it follows that
G2 is a subgroup of SO(7). Also, note that in the above definition, we are missing the cross
product ×0 and the coassociative form ψ0 which are part of the standard G2-package on
R7. Since g0 and vol0 determine ⋆0 and as ψ0 = ⋆0φ0, it determines ψ0. Furthermore, we
know from (4.19) that g0 and φ0 determine ×0. Therefore, any A ∈ G2 preserves ×0 and
ψ0 as well. In fact, the following theorem from [Bry87] shows that the definition of the G2

group only requires the 3-form φ0:

Theorem 4.2.2. Let G = {A ∈ GL(7,R) : A∗φ0 = φ0}. Then G2 = G. That is, if
A ∈ GL(7,R) preserves φ0, then it preserves g0 and vol0 as well.

Proof. From the explicit formula for φ0 in (4.21), from direct computation it follows that

(a ⌟φ0) ∧ (b ⌟φ0) ∧ φ0 = −6g0(a, b) vol0 (4.24)

where a, b ∈ R7. Then, if A∗φ0 = φ0, applying A
∗ on both sides of the equation we have

g0(a, b)(detA) vol0 = g0(a, b)A
∗ vol0

= −1

6
A∗(a ⌟φ0) ∧ A∗(b ⌟φ0) ∧ A∗φ0

= −1

6
(A−1a ⌟A∗φ0) ∧ (A−1b ⌟A∗φ0) ∧ A∗φ0

= −1

6
(A−1a ⌟φ0) ∧ (A−1b ⌟φ0) ∧ φ0

= g0(A
−1a,A−1b) vol0

= (A−1)∗g0(a, b) vol0

(4.25)

33



which implies that (detA)g0(Aa,Ab) = g0(a, b). In terms of matrices, this means g0 =
(detA)ATg0A. Taking determinants of both sides, we get det g0 = (detA)9 det g0. This
gives us detA = 1 and A∗g0 = g0. Furthermore, from (4.25) we have A∗ vol0 = vol0.

4.3 G2-manifolds

In this section, we want to associate the G2-package on R7 to each tangent space of an
orientable 7-manifold.

Let M be an oriented 7-manifold. For each point p ∈ M , let us define P3
pM to be the

subset of 3-forms φ such that there exists an oriented isomorphism between TpM and R7

which identifies φ and the associative 3-form φ0 on R7. Since from Theorem 4.2.2 we know
that φ0 has symmetry group G2, we get P3

pM
∼= GL+(7,R)/G2.

Note that dimGL+(7,R) = 49 and dimG2 = 14 so dimGL+(7,R)/G2 = 49−14 = 35 which
is the same as dimΛ3T ∗

pM =
(
7
3

)
= 35 and hence P3

pM is an open subset of Λ3T ∗
pM . Let

P3M be the bundle over M with fibre P3
pM over each p ∈ M . Then P3M is an open

subbundle of Λ3T ∗M . We say that a 3-form φ on M is positive if φp ∈ P3
pM for each

p ∈M .

Definition 4.3.1. Let M be an oriented 7-manifold. A G2-structure on M is a positive
3-form φ.

As φ0 determines g0 and vol0, a G2-structure φ on M induces a Riemannian metric gφ and
an associated Riemannian volume form volφ, which then induce a Hodge star operator ⋆φ
and dual 4-form ψ = ⋆φφ.

Note that if φ is a G2-structure, and if we let Q be the subset of the frame bundle Fr(M)
consisting of isomorphisms between TpM amd R7 which idenitfy φ and φ0, then it can
be shown that Q is a principal subbundle of Fr(M) with fibre G2. That is, Q is a G2-
structure as in Chapter 3. Therefore, the existence of a G2-structure depends completely
on the topology of the manifold. The next theorem whose proof can be found in [LM89]
characterizes topologically which manifolds admit a G2-structure.

Theorem 4.3.2. An orientable 7-dimensional manifold M admits a G2-structure if and
only if M is spinnable. That is, if and only if its first and second Stiefel-Whitney classes
w1(M) and w2(M) vanish.

Let M be a 7-manifold equipped with a G2-structure φ and let g be the induced metric.
If ∇ is the Levi-Civita connection of g, then we call ∇φ the torsion of φ and we say that
φ is torsion-free if ∇φ = 0.
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Definition 4.3.3. Let M be a 7-manifold. We say that (M,φ) is a G2-manifold if φ is
a torsion-free G2-structure.

Later in this thesis, we will be using some contractions relating φ, ψ and g. We list these
identities in the next few lemmas. The proofs of these lemmas can be found in [Kar08].

Lemma 4.3.4 (Contractions of φ with itself). With respect to a local orthonormal
frame on M , the following identities hold

φijkφijk = 42, (4.26)

φijkφajk = 6gia, (4.27)

φijkφabk = giagjb − gibgja − ψijab. (4.28)

Lemma 4.3.5 (Contractions of φ with ψ). With respect to a local orthonormal frame
on M , the following identities hold

φijkψaijk = 0, (4.29)

φijkψabjk = −4φiab, (4.30)

φijkψabck = giaφjbc + gibφajc + gicφabj

− gajφibc − gbjφaic − gcjφabi.
(4.31)

Lemma 4.3.6 (Contractions of ψ with itself). With respect to a local orthonormal
frame on M , the following identities hold

ψijklψijkl = 168, (4.32)

ψijklψajkl = 24gia, (4.33)

ψijklψabkl = 4giagjb − 4gibgja − 2ψijab, (4.34)

ψijklψabcl = −φajkφibc − φiakφjbc − φijaφkbc

+ giagjbgkc + gibgjcgka + gicgjagkb

− giagjcgkb − gibgjagkc − gicgjbgka

− giaψjkbc − gjaψkibc − gkaψijbc

+ gabψijkc − gacψijkb.

(4.35)

4.4 Decomposition of the space of forms on a manifold

with G2-structure

Similar to how complex-valued differential forms on an almost complex manifold decompose
into forms of type (p, q), if M is a manifold with a G2-structure φ on a manifold M , where
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φ is not necessarily torsion-free, the space of differential forms Ωk on M decomposes into
irreducible representations of G2. The characterization of these decompositions given in
this section will be useful to simplify our computations involving these differential forms
in the later chapters.

When k = 2, 3 the decomposition is given as

Ω2 = Ω2
7 ⊕ Ω2

14, (4.36)

Ω3 = Ω3
1 ⊕ Ω3

7 ⊕ Ω3
27, (4.37)

where Ωk
l has pointwise dimension l and the decomposition is orthogonal with respect to

the metric g. Furthermore, since the Hodge star ⋆ is an isometry and Ωk
l = ⋆(Ω7−k

l ), we
have

Ω5 = Ω5
7 ⊕ Ω5

14, (4.38)

Ω4 = Ω4
1 ⊕ Ω4

7 ⊕ Ω4
27. (4.39)

In the next two subsections, we will describe some characterizations of these subspaces.

4.4.1 The decomposition of Ω2

Let P : Ω2 → Ω2 be the map

Pβ = 2 ⋆ (φ ∧ β) (4.40)

for β ∈ Ω2. If β = 1
2
βijei ∧ ej in terms of a local orthonormal frame, then using (1.4),

Pβ =
1

2
(Pβ)ijei ∧ ej = βij ⋆ (ei ∧ ej ∧ φ)

= βijei ⌟ ⋆(ej ∧ φ) = −βijei ⌟ ej ⌟ ⋆φ

= −1

2
βijψjiabea ∧ eb.

Hence, we have

(Pβ)ab = βijψijab = ψabijβij (4.41)

Direct computation yields

⟨Pβ, µ⟩ = ψijabβijµab = ⟨β,Pµ⟩. (4.42)
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That is, P is pointwise self-adjoint and hence it is orthogonally diagonalizable with real
eigenvalues. Furthermore, we have

(P2β)ab = ψabij(Pβ)ij = ψabijψijpqβpq

= βij(4giagjb − 4gibgja − 2ψijab)

= 4βab − 4βba − 2βijψijab

= 8βab − 2(Pβ)ab.

Therefore,

P2 = 8I− 2P

where I : Ω2 → Ω2 is the identity operator. It follows that (P + 4I)(P − 2I) = 0 and thus
the eigenvalues of P are −4 and +2. Hence, we get a decomposition of Ω2 into the two
eigenspaces. The following theorem gives an alternate description of the decomposition of
Ω2.

Theorem 4.4.1. We have

Ω2 = Ω2
7 ⊕ Ω2

14

where

Ω2
7 = {β ∈ Ω2 | Pβ = −4β} (4.43)

= {X ⌟φ | X ∈ X} (4.44)

and

Ω2
14 = {β ∈ Ω2 | Pβ = 2β} (4.45)

= {β ∈ Ω2 | β ∧ ψ = 0}. (4.46)

Proof. If βij = Xkφkij ∈ Ω2 for some vector field X, then from (4.31) we have

(Pβ)ab = ψabijXkφkij = −4Xkφkab = −4βab.

Conversely, let βijψijkl = −4βkl. Then, if X is a vector field defined by Xm = 1
6
βklφmkl,

from (4.28) we get

(X ⌟φ)ij = Xmφmij =
1

6
βklφmklφmij =

1

6
βkl(gikgjl − gilgjk − ψijkl)

=
1

6
βij −

1

6
βji +

4

6
βij = βij.
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Now, let β ∧ ψ = 0. Then, from (1.3) we have

0 =
1

2
βijdx

i ∧ dxj ∧ ψ = −1

2
βij ⋆ (∂i ⌟ ⋆(dx

j ∧ ψ))

= −1

2
βij ⋆ (∂i ⌟ ∂j ⌟ ⋆ψ) = −1

2
⋆ (βij∂i ⌟ ∂j ⌟φ).

As the Hodge star operator is an isomorphism, we have that the above condition is equiv-
alent to βijφijk = 0. On the other hand, if Pβ = 2β, as the eigenspace decomposition is
orthogonal, we have that for each vector field X,

0 = ⟨β,X ⌟φ⟩ = βijXkφkij.

Hence, βijφijk = 0. Finally, if βijφijk = 0, then

βijψijab = βij(giagjb − gibgja − φijkφabk) = βab − βba = 2βab.

Let β = 1
6
X ⌟φ. That is, in a local orthonormal frame, βij = 1

6
Xkφkij. Then it follows

from (4.27) that βijφijp = Xp. Therefore,

βab =
1

6
Xlφlab ⇐⇒ Xk = βabφabk. (4.47)

Furthermore, we have (
1

6
Xkφkij

)(
1

6
Ylφlij

)
=

1

6
XkYk (4.48)

which can be written invariantly as

⟨X ⌟φ, Y ⌟φ⟩ = 6⟨X, Y ⟩. (4.49)

Now, we define a map V : T 2 → Ω1 by

(VA)k = Aijφijk (4.50)

for A ∈ T 2. From the previous proof we know that

β ∈ Ω2
14 ⇐⇒ βijφijk = 0. (4.51)

It follows that kerV = S2 ⊕ Ω2
14, where S2 are the symmetric 2-tensors. Thus, only the

Ω2
7 part of A contributes to VA and it is called the vector part of A. Thus we can write

(4.47) as

A7 =
1

6
(VA) ⌟φ, V(X ⌟φ) = 6X (4.52)
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and (4.49) becomes

⟨VA,VB⟩ = 6⟨A7, B7⟩

for A,B ∈ T 2. Finally, let π7 and π14 denote the orthogonal projections to Ω2
7 and Ω2

14

respectively. Let us write β7 = π7β and β14 = π14β. Then, we have that

Pβ = −4β7 + 2β14 (4.53)

which gives us

β7 =
1

6
(2β − Pβ), β14 =

1

6
(4β + Pβ). (4.54)

4.4.2 The decomposition of Ω3 and Ω4

For σ ∈ Ωk and A = Aijdx
i ⊗ dxj ∈ T 2, we define

(A ⋄ σ)i1i2···ik = Ai1pσpi2···ik + Ai2pσi1pi3···ik + · · ·+ Aikpσi1i2···ik−1p. (4.55)

If we take A = g in the above equation, we get

g ⋄ σ = kσ. (4.56)

Then from (4.36) and (1.11), we have the decomposition

T 2 ∼= Ω0 ⊕ S2
0 ⊕ Ω2

7 ⊕ Ω2
14 (4.57)

which allows us to write A ∈ T 2 as

A =
1

7
(trA)g + A27 + A7 + A14 (4.58)

where A27 is the traceless symmetric part of A. Then, we can extend P to be a map on all
of T 2 by defining

(PA)ab = Aijψijab. (4.59)

Clearly, ker P = S and hence

PA = P

(
1

7
(trA)g + A27 + A7 + A14

)
= −4A7 + 2A14. (4.60)
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From (4.55), we have linear maps T 2 → Ωk for k = 3, 4 given as

A 7→ A ⋄ φ,
A 7→ A ⋄ ψ,

where in a local orthonormal frame,

(A ⋄ φ)ijk = Aipφpjk + Ajpφipk + Akpφijp, (4.61)

(A ⋄ ψ)ijkl = Aipψpjkl + Ajpψipkl + Akpψijpl + Alpψijkp. (4.62)

A direct computation using the identities in this subsection along with the contraction
identities, gives us the following proposition.

Proposition 4.4.2. For A,B ∈ T 2, with respect to the decomposition (4.58), we have

⟨A ⋄ φ,B ⋄ φ⟩ = 54

7
(trA)(trB) + 12⟨A27, B27⟩+ 36⟨A7, B7⟩, (4.63)

⟨A ⋄ ψ,B ⋄ ψ⟩ = 384

7
(trA)(trB) + 48⟨A27, B27⟩+ 144⟨A7, B7⟩. (4.64)

We use this proposition to give a characterization of tensors in Ω2
14 in terms of the diamond

operator.

Corollary 4.4.3. Let A ∈ T 2. Then

A ∈ Ω2
14 ⇐⇒ A ⋄ φ = 0 ⇐⇒ A ⋄ ψ = 0. (4.65)

Furthermore, the maps A 7→ A ⋄ φ and A 7→ A ⋄ ψ when restricted to S2 ⊕ Ω2
7 ⊂ T 2

which forms the orthogonal complement of Ω2
14, are linear isomorphisms onto Ω3 and Ω4

respectively.

Proof. Taking A = B in (4.63) we have

|A ⋄ φ|2 = 54

7
(trA)2 + 12|A27|2 + 36|A7|2.

Thus, we have A ⋄ φ = 0 ⇐⇒ A = A14, and as we can use the same argument for A ⋄ ψ
by taking A = B in (4.64), it proves the first part of the corollary.

If A14 = 0, then from above, we get that A⋄φ = 0 ⇐⇒ A = 0. Thus, the map A 7→ A⋄φ
is injective on the orthogonal complement of Ω2

14. Counting the dimensions, as both sides
are 35-dimensional, the map is a linear isomorphism. Similarly, the map A 7→ A ⋄ψ is also
a linear isomorphism.
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Due to the above corollary, in a local orthonormal frame we have

Aij ∈ Ω2
14 ⇐⇒ Aipφpjk + Ajpφipk + Akpφijp = 0

⇐⇒ Aipψpjkl + Ajpψipkl + Akpψijpl + Alpψijkp = 0.
(4.66)

Therefore, we have obtained the decompositions

Ω3 = Ω3
1 ⊕ Ω3

7 ⊕ Ω3
27,

Ω4 = Ω4
1 ⊕ Ω4

7 ⊕ Ω4
27.

Moreover, using (4.56), we get the following explicit descriptions

Ω3
1 = {fφ | f ∈ Ω0}, Ω4

1 = {fψ | f ∈ Ω0},
Ω3

7 = {A ⋄ φ | A ∈ Ω2
7}, Ω4

7 = {A ⋄ ψ | A ∈ Ω2
7},

Ω3
27 = {A ⋄ φ | A ∈ S2

0}, Ω4
27 = {A ⋄ ψ | A ∈ S2

0}.
(4.67)

The next corollary gives us the inverses of the isomorphisms S2 ⊕ Ω2
7

∼=−→ Ωk, where k = 3
or k = 4.

Corollary 4.4.4. Let γ ∈ Ω3 and let η ∈ Ω4. Then, from above, γ = A ⋄φ and η = B ⋄ψ
for some A = 1

7
(trA)g + A27 + A7 and B = 1

7
(trB)g + B27 + B7 in S2 ⊕ Ω2

7. We define
2-tensors γφ and ηψ as

γφia = γijkφajk, ηψia = ηijklψajkl.

Then, we have

trA =
1

18
tr γφ, A27 =

1

4
γφ27, A7 =

1

12
γφ7 , (4.68)

and

trB =
1

96
tr ηψ, B27 =

1

12
ηψ27, B7 =

1

36
ηψ7 . (4.69)

Proof. Let C = 1
7
(trC)g + C27 + C7 ∈ S2 ⊕ Ω2

7. From (4.63), we get

⟨A ⋄ φ,C ⋄ φ⟩ = 54

7
(trA)(trC) + 12⟨A27, C27⟩+ 36⟨A7, C7⟩. (4.70)
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Then,

⟨γ, C ⋄ φ⟩ = γijk(Cipφpjk + Cjpφipk + Ckpφijp)

= 3γijkCipφpjk = 3γφipCip = 3⟨γφ, C⟩

= 3⟨1
7
(tr γφ)g + γφ27 + γφ7 ),

1

7
(trC)g + C27 + C7⟩

=
3

7
(tr γφ)(trC) + 3⟨γφ27, C27⟩+ 3⟨γφ7 , C7⟩.

Comparing the two expressions, from nondegeneracy it follows

54 trA = 3 tr γφ, 12A27 = 3γφ27, 36A7 = 3γφ7 . (4.71)

Similarly, we get (4.69) from (4.64).

Finally, we present an alternate way of expressing 3-forms involving vector fields and ψ.

Corollary 4.4.5. For 3-forms γ = X ⌟ψ, where X is a vector field, we can define A =
−1

3
X ⌟φ ∈ Ω2

7 such that γ = A ⋄ φ. This gives us −3X ⌟ψ = (X ⌟φ) ⋄ φ.

Proof. Since γijk = Xmψmijk, we have

γφia = γijkφajk = Xmψmijkφajk = −4Xmφmia.

Thus, from Theorem 4.4.1, we have that γφia ∈ Ω3
7 and hence from Corollary 4.4.4 it follows

that γ = A ⋄ φ for A = A7 ∈ Ω2
7 where

(A7)ia =
1

12
γφia = −1

3
Xmφmia.

4.5 Torsion of a G2-structure

Recall that in section 4.3, we defined the torsion of a G2-structure on a manifold M to
be ∇φ where ∇ is the Levi-Civita connection on M . The next lemma gives us a way to
express the torsion in an alternate way.

Lemma 4.5.1. The 3-form ∇Xφ lies in Ω3
7 for all vector fields X.
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Proof. From Corollary 4.4.4, it suffices to show that for γ = ∇mφ, we have that γφia =
γijkφajk is skew-symmetric. Hence, using (4.27) we have

γφia = ∇mφijkφajk = ∇m(φijkφajk)− φijk∇mφajk

= ∇m(6gia)− φijkγajk

= −γφai.

Therefore, from Corollary 4.4.5 we know that there exists a 2-tensor T such that

∇mφijk = Tmpψpijk (4.72)

and from now on, we will call this 2-tensor the torsion of the G2-structure. From the
contractions in Lemma 4.3.6, we get the expression

Tpq =
1

24
∇pφjklψqjkl (4.73)

which shows that T = 0 ⇐⇒ ∇φ = 0. That is, φ is torsion-free if and only if T = 0.
Differentiating (4.26) and using (4.72) and (4.31), we get the following expression for ∇ψ
in terms of T

∇pψijkl = −Tpiφjkl + Tpjφikl − Tpkφijl + Tplφijk. (4.74)

As the torsion lies in T 2, from the decomposition (4.57), we get

T = T1 + T27 + T7 + T14 (4.75)

where T1 =
1
7
(trT )g. Furthermore, from (4.53) we get

PT = −4T7 + 2T14. (4.76)

Using all these new tools, we can present an alternate proof of the classical theorem by
Fernández and Gray [FG82].

Proposition 4.5.2. A G2-structure φ on M is torsion-free if and only if dφ = 0 and
d∗φ = 0

Proof. From (4.72), we have

(dφ)ijkl = ∇iφjkl −∇jφikl +∇kφijl −∇lφijk

= Tipψpjkl − Tjpψpikl + Tkpψpijl − Tlpψpijk

= Tipψpjkl + Tjpψipkl + Tkpψijpl + Tlpψijkp

= (T ⋄ ψ)ijkl.
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Using the decomposition (4.75), as T14 ⋄ ψ = 0 from Corollary 4.4.3, we have

dφ = (T1 + T27 + T7) ⋄ ψ. (4.77)

Similarly, using (4.72) again along with (4.76), we get

(d∗φ)jk = −∇iφijk = −Timψimjk = −(PT )jk = 4T7 − 2T14. (4.78)

The claim then follows from (4.77) and (4.78).

Remark 4.5.3. When φ is torsion-free, the decomposition for k-forms Ωk = ⊕iΩ
k
i induce

a splitting of the harmonic k-forms Hk = ⊕iHk
i . That is, the projections πi commute with

the Hodge Laplacian ∆d = d∗d+ d∗d. For more, see [Joy00, Section 3.5].

We conclude this section by giving an alternate way of packaging the torsion of a G2-
structure using the isomorphism Ω1 ∼= Ω2

7 which we get through (4.47). That is, we define

T̂ ∈ Γ(T ∗M ⊗ Λ2
7(T

∗M)) as

T̂pij = Tpqφqij, Tpq =
1

6
T̂pijφqij. (4.79)

For fixed p, T̂pij lies in Ω2
7 in i, j. Therefore, from (4.44) we have

T̂pijψijkl = −4T̂pkl. (4.80)

Via the pairing (T̂ (X))ij = XpT̂pij, we can think of T̂ as a 1-form on M with values in

Λ2
7(T

∗M). The following lemma gives us a way to express ∇φ and ∇ψ in terms of T̂ .

Lemma 4.5.4. Let us fix p ∈ {1, . . . , 7}. At the point x ∈M , we can write T̂p = T̂pijei⊗ej
as an element of Λ2

7(T
∗
xM). Then, we get

∇pφabc = −1

3
(T̂p ⋄ φ)abc, ∇pψabcd = −1

3
(T̂p ⋄ ψ)abcd. (4.81)

Proof. From (4.72) and (4.79), we obtain

∇pφabc = Tpqψqabc = −1

6
T̂pijφijqψabcq

= −1

6
T̂pij(giaφjbc + gibφajc + gicφabj − gjaφibc − gjbφaic − gjcφabi).
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As T̂pij is skew in i, j, the above becomes

∇pφabc = −1

3
T̂pij(giaφjbc + gibφajc + gicφabj)

= −1

3
(T̂pajφjbc + T̂pbjφajc + T̂pcjφabj),

which proves the first claim. The second formula can be derived by differentiating the
identity in (4.28) and then using the formula we derived for ∇pφabc and (4.28) again.

4.6 The G2-Bianchi identity

In this section we will prove the G2-Bianchi identity, which gives us a relation between a
G2-structure φ, the Riemann curvature Rm of gφ, the torision T of φ and its covariant
derivative ∇T .

Proposition 4.6.1. The G2-Bianchi identity is given as

∇iTjk −∇jTik = TipTjqφpqk +
1

2
Rijpqφpqk. (4.82)

Proof. Taking the covariant derivative of (4.73) and substituting (4.74), we get

∇m∇pφijk = ∇mTpqψqijk + Tpq∇mψqijk

= ∇mTpqψqijk + Tpq(−Tmqφijk + Tmiφqjk − Tmjφqik + Tmkφqij).

Let us interchange p and m and take the difference. Then, using the fact that TpqTmq is
symmetric in p,m, we obtain

∇m∇pφijk −∇p∇mφijk = (∇mTpq −∇pTmq)ψqijk

+ Tpq(Tmiφqjk − Tmjφqik + Tmkφqij)

− Tmq(Tpiφqjk − Tpjφqik + Tpkφqij).

Using the Ricci identity above, we have

−Rmpiqφqjk −Rmpjqφiqk −Rmpkqφijq = (∇mTpq −∇pTmq)ψqijk

+ Tpq(Tmiφqjk − Tmjφqik + Tmkφqij)

− Tmq(Tpiφqjk − Tpjφqik + Tpkφqij).
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Since the left hand side and each of three terms on the right hand side are totally skew in
i, j, k, contracting on both sides by ψlijk yields

−3Rmpiqφqjkψlijk = (∇mTpq −∇pTmq)ψqijkψlijk + 3TpqTmiφqjkψlijk − 3TmqTpiφqjkψlijk.

Using the contraction identities on the above expression, we have

12Rmpiqφqli = 24(∇mTpl −∇pTml)− 12TpqTmiφqli + 12TmqTpiφqli. (4.83)

Rearranging and reindexing the above expression, we get (4.82).
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Chapter 5

The family of compact torsion-free
G2-structures

In Chapter 4, we got familiar with various properties of G2-structures. It is then natural
to wonder what properties would the moduli space of these structures, that is, the “set of
all possible G2-structures”, modulo a reasonable notion of equivalence, satisfy. The aim of
this chapter is to present a proof given in [Joy00] which shows that the moduli space of
torsion-free G2-structures for a compact 7-manifold forms a non-singular smooth manifold.
We will prove some technical results in the first section using techniques from [Kar08] and
[DGK23], before moving on to prove the main theorem in the second section.

5.1 Computations with differential forms on G2-manifolds

In this section, we will carry out some useful computations with differential forms on a
G2-manifold which we will need in the next section. Let us start with the following lemma.

Lemma 5.1.1. Let (M,φ) be a compact G2-manifold and η a 2-form on M . Then we have

π7(d
∗dη) = 0 ⇐⇒ d∗π1(dη) = d∗π7(dη) = 0. (5.1)

Proof. (⇒) Let π7(d
∗dη) = 0. From Hodge theory, we know that there exists a unique

d∗-exact 2-form ξ on M such that dξ = dη. Then, as d∗ξ = 0, we get that

π7((dd
∗ + d∗d)ξ) = π7(d

∗dη) = 0.
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From Remark 4.5.3, we get

(dd∗ + d∗d)(π7(ξ)) = 0

and hence π7(ξ) ∈ H2
7. As ξ is d∗-exact, it is L2-orthogonal to H2

7 from the Hodge de-
composition theorem (Theorem 1.2.1), which means that π7(ξ) = 0. Thus, from (4.46),
we know that ξ ∧ ψ = 0 and as dψ = 0 since φ is torsion-free, we have that dξ ∧ ψ = 0.
Furthermore, using the Hodge isomorphism and the description of Ω3

1 in (4.67), we have

dξ ∧ ψ ∼= π1(dξ).

This along with the fact that dξ = dη shows that π1(dη) = 0.

From (4.40) and (4.45), it follows that ξ∧φ = −⋆ ξ and as ξ is d∗-exact, we have d⋆ ξ = 0.
Thus, as dφ = 0, we get dξ ∧ φ = 0. Finally, as dη = dξ and as dη ∧ φ ∼= π7(dη) from
Corollary 4.4.5, we have π7(dη) = 0. Therefore, we have d∗π1(dη) = d∗π7(dη) = 0 as
desired.

(⇐) The converse follows from

π7(d
∗dη) = c1π7(d

∗π1(dη)) + c2π7(d
∗π7(dη)),

which appears in [Joy00] without proof. We will now prove that π7(d
∗dη) can be expressed

as a linear combination of π7(d
∗π1(dη)) and π7(d

∗π7(dη)) and find the explicit values for c1
and c2 in the above statement. From (4.67), we know that π1(dη) = fφ for some f ∈ Ω0.
Then, from (4.26), we have

⟨π1(dη), φ⟩ = ⟨fφ, φ⟩ = 42f.

In addition, from (4.56) and (4.63) we obtain

⟨π1(dη), φ⟩ = ⟨dη, φ⟩ = (dη)ijkφijk = (∇iηjk +∇jηki +∇kηij)φijk

= 3∇iηjkφijk.

Thus, we have that

f =
1

14
(∇iηjk)φijk.

This gives us

(d∗(π1dη))ab = −∇p(π1(dη))pab = −∇p(fφpab) = −(∇pf)φpab

= − 1

14
(∇p∇iηjk)φijkφpab,
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which when contracted with φ on two indices and using (4.27) yields

(d∗(π1(dη)))abφabm = − 1

14
(∇p∇iηjk)φijkφpabφabm = −3

7
(∇m∇iηjk)φijk. (5.2)

From Corollary 4.4.5, it follows that there exists Y ∈ X such that π7(dη) = Y ⌟ψ and
hence from (4.33),

⟨π7(dη), ep ⌟ψ⟩ = ⟨Y ⌟ψ, ep ⌟ψ⟩ = Yiψiabcψpabc = 24Yp.

But we also have that

⟨π7(dη), ep ⌟ψ⟩ = ⟨dη, ep ⌟ψ⟩ = (∇iηjk +∇jηki +∇kηij)ψpijk = 3∇iηjkψpijk.

Therefore,

Yp =
1

8
∇iηjkψpijk.

Substituting the above into the original equation, we have

(π7(dη))qab = Ypψpqab =
1

8
(∇iηjk)ψpijkψpqab,

and thus

(d∗(π7(dη)))ab = −∇q(π7(dη))qab = −1

8
(∇q∇iηjk)ψpijkψpqab.

Then, we have from (4.30) and (4.31) that

(d∗(π7(dη)))abφabm = −1

8
(∇q∇iηjk)ψpijkψpqabφabm

=
1

2
(∇q∇iηjk)φmqpψijkp

=
1

2
∇q∇iηjk(gmiφqjk + gmjφiqk + gmkφijq

− gqiφmjk − gqjφimk − gqkφijm)

=
1

2
(∇q∇mηjk)φqjk −

1

2
(∇i∇iηjk)φmjk

+ (∇q∇iηmk)φiqk − (∇j∇iηjk)φimk.
(5.3)
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Now, we have

(d∗dη)ab = −∇p(dη)pab = −∇p(∇pηab +∇aηbp +∇bηpa),

which gives us

(d∗dη)abφabm = −∇p∇pηabφabm − 2∇p∇aηbpφabm. (5.4)

To eliminate the Laplacian term, let us compute (5.4)− 2(5.3). We obtain

(d∗dη)abφabm − 2(d∗(π7(dη)))abφabm = −∇p∇pηabφabm − 2∇p∇aηbpφabm

−∇q∇mηjkφqjk +∇i∇iηjkφmjk

− 2∇q∇iηmkφiqk + 2∇j∇iηjkφimk

= −∇q∇mηjkφqjk − (∇q∇i −∇i∇q)ηmkφiqk

= −∇q∇mηjkφqjk − (−Rqimlηlk −Rqiklηml)φiqk

= −∇q∇mηjkφqjk +Rqimlηlkφiqk = −∇q∇mηjkφqjk,

where the second to last equality follows from the Bianchi identity as

Rqikl +Rikql +Rkqil = 0 =⇒ 3Rqiklφiqk = 0

and the last equality follows from the G2-Bianchi identity (4.82) as φ is torsion-free.

Then, computing (5.4)− 2(5.3)− 7
3
(5.2), we have

(d∗dη)abφabm − 2(d∗(π7(dη)))ab −
7

3
(d∗(π1(dη)))abφabm = −∇q∇mηjkφqjk +∇m∇qηjkφqjk

= −(∇q∇m −∇m∇q)ηjkφqjk

= −(−Rqmjlηlk −Rqmklηjl)φqjk.

But note that from (4.82),

−(−Rqmjlηlk −Rqmklηjl)φqjk = 2Rqmjlηlkφqjk = 2(−Rmjql −Rjqml)ηlkφqjk = −2Rmjqlηlkφqjk

= −2Rmqjlηlkφjqk

= −2Rqmjlηlkφqjk.

Therefore, as 2Rqmjlηlkφqjk = −2Rqmjlηlkφqjk = 0, we have from (4.51)

π7(d
∗dη) = 2π7(d

∗π7(dη)) +
7

3
π7(d

∗π1(dη)). (5.5)

Thus, if d∗π1(dη) = d∗π7(dη) = 0, we have π7(d
∗dη) = 0.
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For the rest of the results in this section, we will need G2-structures φ̃ close to a given
G2-structure φ in a specific way, which we will describe in the following definition.

Definition 5.1.2. Let ϵ1 > 0 be a universal constant such that whenever φ is a G2-
structure on a 7-manifold M , then

(i) If φ̃ ∈ Ω3(M) and ∥φ̃ − φ∥C0 ≤ ϵ1, then we have φ̃ ∈ Γ(P3M). That is, φ̃ is a
G2-structure on M . Let us denote the corresponding splitting on 5-forms as Ω5 ∼=
Ω̃5

7 ⊕ Ω̃5
14. Then, for each ξ ∈ Ω̃5

14, we have |π7(ξ)| ≤ |π14(ξ)|, where π7, π14 and | · |
are with respect to φ.

(ii) If χ ∈ Ω4(M) and ∥χ−ψ∥C0 ≤ ϵ1, then for all 1-forms λ onM , we have |π14(λ∧χ)| ≤
1
4
|π7(λ ∧ χ)|.

If we take ϵ1 to be sufficiently small, both the conditions hold. Intuitively, the first condition
tells us that when ϵ1 is small, Ω̃2

14 is close to Ω2
14, so if ξ ∈ Ω̃2

14 then π7(ξ) is small compared
to π14(ξ). And the second condition tells that since χ is close to ψ and as λ∧ψ ∈ Ω5

7 from
taking the Hodge star of (4.44), we have that λ ∧ χ is close to Ω5

7 and hence π14(λ ∧ χ) is
small compared to π7(λ ∧ χ).

Note that the Hodge star ⋆ depends on the metric g which itself depends on the G2-structure
φ. To emphasize this point, we define a map Θ : P3M → P4M by

Θ(φ) = ⋆φφ = ψ. (5.6)

Notice that Θ depends solely on M and its orientation and it is a non-linear map. Hence-
forth, when we write ψ̃, we mean that it is the 4-form associated to φ̃. That is, ψ̃ = ⋆φ̃φ̃.

The following proposition says if φ̃ is a 3-form close to a closed G2-structure φ in the
sense of Definition 5.1.2, then given that φ̃ satisfies some additional conditions, φ̃ defines
a torsion-free G2-structure on M .

Proposition 5.1.3. Let ϵ1 > 0 be as in Definition 5.1.2 and letM be a compact 7-manifold.
Let φ be a G2-structure, f a real function, α a 1-form, φ̃ a 3-form and χ a 4-form on M
satisfying ∥φ̃− φ∥C0 ≤ ϵ1, ∥χ− ψ∥C0 ≤ ϵ1 and the equations

dφ = dφ̃ = dχ = 0 and dψ̃ = df ∧ χ+ dα ∧ φ. (5.7)

Then, we have dψ = 0, df = 0 and dα = 0. Therefore, φ̃ is a torsion-free G2-structure on
M .
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Proof. Let us define x7, y7, z7 ∈ Ω5
7 and x14, y14, z14 ∈ Ω5

14 as

x7 = π7(dψ̃), y7 = π7(df ∧ χ), z7 = π7(dα ∧ φ),
x14 = π14(dψ̃), y14 = π14(df ∧ χ), z14 = π14(dα ∧ φ).

(5.8)

Then, taking π7 and π14 of the second equation in (5.7), we have

x7 = y7 + z7 and x14 = y14 + z14. (5.9)

As dφ̃ = 0, from (4.77) and (4.78), it follows that dψ̃ ∈ Ω̃5
14. Thus, from (5.8) and (i) of

Definition 5.1.2, we get that |x7| ≤ |x14|. In addition, making the substitution λ = df in
(ii) of Definition 5.1.2, from (5.8), we obtain |y14| ≤ 1

4
|y7|. Squaring these two inequalities

and integrating over M yields the following two L2-norm inequalities

∥x7∥L2 ≤ ∥x14∥L2 and ∥y14∥L2 ≤ 1

4
∥y7∥L2 . (5.10)

Since φ is closed, dα ∧ dα ∧ φ is exact and thus
∫
M
dα ∧ dα ∧ φ = 0 by Stokes’ Theorem.

Then, from (4.40), (4.43) and (4.45) we get

π7(dα) = −1

2
⋆ z7 and π14(dα) = ⋆z14

and

dα ∧ dα ∧ φ = (−2|π7(dα)|2 + |π14(dα)|2) volg,

from which we obtain

dα ∧ dα ∧ φ =

(
−1

2
|z7|2 + |z14|2

)
volg .

Thus integrating over M gives us −1
2
∥z7∥2L2 + ∥z14∥2L2 = 0. and hence

∥z7∥L2 =
√
2∥z14∥L2 . (5.11)

Similarly, we have ∫
M

dψ̃ ∧ dα =

∫
M

(x7 + x14) ∧ (−1

2
⋆ z7 + ⋆z14) = 0
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which gives us

⟨x7, z7⟩L2 = 2⟨x14, z14⟩L2 . (5.12)

Thus, from (5.9), (5.10), (5.11) and (5.12), we have

∥x14 − z14∥L2 = ∥y14∥L2 ≤ 1

4
∥y7∥L2 ≤ 1

4
(∥x7∥L2 + ∥z7∥L2)

≤
√
2

4
(∥x14∥L2 + ∥z14∥L2).

(5.13)

Squaring the above and using Cauchy-Schwarz, we have

∥x14∥2L2 + ∥z14∥2L2 − 2⟨x14, z14⟩L2 ≤ 2

16
(∥x14∥2L2 + ∥z14∥2L2 + 2∥x14∥L2∥z14∥L2)

=⇒ 14∥x14∥2L2 + 14∥z14∥2L2 ≤ 32⟨x14, z14⟩L2 + 4∥x14∥L2∥z14∥L2

=⇒ ∥x14∥2L2 + ∥z14∥2L2 ≤
18

7
∥x14∥L2∥z14∥L2 .

Then, since ∥x14∥2L2 + ∥z14∥2L2 ≥ 2∥x14∥L2∥z14∥L2 , we get

2∥x14∥L2∥z14∥L2 − 2⟨x14, z14⟩L2 ≤ 2

16
(∥x14∥2L2 + ∥z14∥2L2 + 2∥x14∥L2∥z14∥L2)

≤ 2

16

(
18

7
∥x14∥L2∥z14∥L2 + 2∥x14∥L2∥z14∥L2

)
=

4

7
∥x14∥L2∥z14∥L2

=⇒ ⟨x14, z14⟩L2 ≥ 5

7
∥x14∥L2∥z14∥L2 .

Hence, (5.10), (5.11) and (5.12) give us

∥x7∥L2∥z7∥L2 ≥ ⟨x7, z7⟩L2 = 2⟨x14, z14⟩L2 ≥ 10

7
∥x14∥L2∥z14∥L2 ≥ 5

√
2

7
∥x7∥L2∥z7∥L2 .

As 5
√
2

7
> 1, we must have ∥x7∥L2 = 0 or ∥z7∥L2 = 0. Thus, x7 = 0 or z7 = 0.

If z7 = 0 then from (5.11) we have z14 = 0, which will give us x7 = y7 and x14 = y14. But
as

∥x7∥2L2 ≤ ∥x14∥2L2 = ∥y14∥2L2 ≤
1

4
∥y7∥2L2 =

1

4
∥x7∥2L2 ,
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we have ∥x7∥L2 = 0 and hence x7 = x14 = y7 = y14 = 0.

If x7 = 0, then y7 = −z7 and thus we have ∥y14∥L2 ≤ 1
4
∥y7∥L2 = 1

4
∥z7∥L2 =

√
2
4
∥z14∥L2 . If

z14 ̸= 0, then we have ∥y14∥L2 < ∥z14∥L2 so that

⟨x14, z14⟩ = ⟨y14, z14⟩+ ∥z14∥2 ≥ −∥z14∥L2∥y14∥L2 + ∥z14∥2L2 > 0

since x14 = y14+ z14. But this gives us ⟨x7, z7⟩L2 > 0, which contradicts x7 = 0. Therefore,
we get z14 = 0 which gives us z7 = 0 as before. Thus, in both cases we have x7 = y7 = z7 = 0
and x14 = y14 = z14 = 0, which gives dψ̃ = df = dα = 0 as claimed.

Now, we give a way to estimate the function Θ in (5.6).

Proposition 5.1.4. Let ϵ1 be as in Definition 5.1.2. Suppose M is a 7-manifold and φ is
a G2-structure on M . Let χ ∈ Ω3(M) with |χ| < ϵ1. Then φ+χ ∈ Γ(P3M) and Θ(φ+χ)
is given by

Θ(φ+ χ) = ψ +
4

3
⋆ π1(χ) + ⋆π7(χ)− ⋆π27(χ)− F (χ)

= ψ +
7

3
⋆ π1(χ) + 2 ⋆ π7(χ)− ⋆χ− F (χ),

(5.14)

where F is a smooth function from the closed ball of radius ϵ1 in Λ3T ∗M to Λ4T ∗M with
F (0) = 0.

Proof. Since χ is a small 3-form we can think of computing the Taylor expansion of Θ(φ+χ)
which we can see as expanding G(t) = Θ(φ+ tη), where χ = tη for some 3-form η, about
t = 0. Thus,

G(t) = G(0) + tG′(0)− F (χ),

where F (χ) represents the remainder of the terms in the Taylor expansion and hence its
principal part is quadratic in χ. Thus, F is a smooth function on the closed ball of radius
ϵ1 in Λ3T ∗M with F (0) = 0. Now, note that G(0) = Θ(φ) = ψ and

d

dt

∣∣∣∣
t=0

(φ+ tη) = η = π1(η) + π7(η) + π27(η).

Then, from [Kar08, Remark 3.6], we know that

G′(0) =
d

dt

∣∣∣∣
t=0

Θ(φ+ tη) =
4

3
⋆ π1(η) + ⋆π7(η)− ⋆π27(η).
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Thus, we have

Θ(φ+ χ) = ψ +
4

3
⋆ π1(tη) + ⋆π7(tη)− ⋆π27(tη)− F (χ)

= ψ +
7

3
⋆ π1(χ) + 2 ⋆ π7(χ)− ⋆χ− F (χ).

Now, we will use the technical results above to prove the main theorem of this section. The
theorem shows that the torsion-free conditions for φ̃, given as dφ̃ = dψ̃ = 0, along with
the “gauge-fixing” condition π7(d

∗φ̃) = 0, are equivalent to the equation (dd∗ + d∗d)η =
⋆d(F (ξ + dη)), which is a nonlinear elliptic PDE upon the 2-form η. We will use this
theorem to study the family of torsion-free G2-structures on a compact 7-manifold in the
next section.

Theorem 5.1.5. Let (M,φ) be a compact G2-manifold. Then, let ξ ∈ H3 and η be a
2-form on M such that ∥ξ + dη∥C0 ≤ ϵ1. Let φ̃ = φ+ ξ + dη. Note that dφ̃ = 0. Then, we
have

(dd∗ + d∗d)η = ⋆d(F (ξ + dη)) ⇐⇒ d∗η = π7(d
∗φ̃) = dψ̃ = 0. (5.15)

Proof. Let (dd∗+d∗d)η = ⋆d(F (ξ+dη)). AsM is compact, from the Hodge decomposition
theorem (Theorem 1.2.1) we know that Im d and Im d∗ are L2-orthogonal. Therefore, as
d∗ = − ⋆ d⋆ on Λ3T ∗M , we have dd∗η = −d∗dη − d∗(⋆F (ξ + dη)), which means that we
must have dd∗η = 0 and hence d∗η = 0. Thus, d∗dη = ⋆d(F (ξ+dη)), from which we obtain

d ⋆ dη + d(F (ξ + dη)) = 0. (5.16)

Substituting χ = ξ + dη in (5.14), as ξ ∈ H3, we have that ⋆π1(ξ), ⋆π7(ξ) and ⋆π27(ξ) are
closed, which along with (5.16) and the fact that the projections commute with ∆d, gives
us

dψ̃ =
7

3
d ⋆ π1(dη) + 2d ⋆ π7(dη)− d ⋆ dη − d(F (ξ + dη))

=
7

3
d ⋆ π1(dη) + 2d ⋆ π7(dη).

(5.17)

Taking f and α such that fφ = 7
3
π1(dη) and α ∧ φ = ∗(2π7(dη)), which we know exist

from the descriptions in Corollary 4.4.5 and (4.67), in Proposition 5.1.3, we get

dψ̃ = d ⋆ π1(dη) = d ⋆ π7(dη) = 0. (5.18)
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Therefore, d∗π1(dη) = d∗π7(dη) = 0, which implies that π7(d
∗dη) = 0 from Lemma 5.1.1.

As d∗dη = d∗φ̃ from the statement of the theorem, this finishes the proof of the forward
direction.

Conversely, suppose d∗η = π7(d
∗φ̃) = dψ̃ = 0. Then, from Lemma 5.1.1, we have that

d∗π1(dη) = d∗π7(dη) = 0 which gives us

dψ̃ =
7

3
d ⋆ π1(dη) + 2d ⋆ π7(dη) = 0

and thus from the first line of (5.17) we have that d ⋆ dη + dF (dη) = 0. As d∗η = 0, this
gives us (dd∗ + d∗d)η = ⋆d(F (ξ + dη)) as desired.

5.2 The moduli space of compact torsion-free G2-structures

Let M be a compact, oriented 7-manifold. Then, let X be the set of positive 3-forms on
M which correspond to torsion-free G2-structures. That is,

X = {φ ∈ Γ(P3M) : dφ = dψ = 0}. (5.19)

Let D be the group of all diffeomorphisms Ψ which are isotopic to the identity. That is,
each Ψ is connected to the identity map on M by a continuous path on the space Diff of
diffeomorphisms of M . Thus, D is the connected component of the identity in Diff. Then,
we have a natural action of D on Γ(P3M) and X given by

φ
Ψ7−→ Ψ∗(φ).

The reason why we consider D instead of the entire space Diff is because it acts trivially
on cohomology. To see this, let [α] ∈ Hk(M,R) and let Ψ ∈ D. We then claim that
[Ψ∗α] = [α]. Let Ψt be a continuous path in Diff with Ψ0 = IdM and Ψ1 = Ψ given by the
flow of the vector field Xt on M . As α is a closed form, we get

Ψ∗α− α =

∫ 1

0

d

dt
(Ψ∗

tα) =

∫ 1

0

LXtα =

∫ 1

0

(d(Xt ⌟α) +Xt ⌟ dα) =
∫ 1

0

d(Xt ⌟α)

= d

(∫ 1

0

Xt ⌟α

)
,

and hence Ψ∗α− α is exact, as desired.
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We define the moduli space of torsion-free G2-structures on M as M = X/D. It
turns out, as we will show, that M is a non-singular, smooth manifold with dimension
b3(M). We will prove this fact by constructing a “slice” for the action of D on X . A slice
Sφ for φ ∈ X is a submanifold of X containing φ that is locally transverse to the orbits
of D near φ. That is, all the nearby orbits of D each intersect Sφ at exactly one point.
If we find such a slice, M = X/D is locally homeomorphic to Sφ in a neighbourhood of
[φ]M ∈ M. Hence, as φ ∈ X is arbitrary, we get that M has the structure of a manifold.
For more on slices, see [CK21].

The following theorem from [Joy00] which is based on Ebin’s Slice Theorem [Ebi70] for the
moduli space of Riemannian metrics gives us a slice for the postive 3-forms on a 7-manifold:

Theorem 5.2.1. Let (M,φ) be a compact G2-manifold. Consider the action of D on
Γ(P3M). Let Iφ be the stabilizer subgroup of φ in D with respect to this action. Define

Lφ = {φ̃ ∈ Γ(P3M) : π7(d
∗φ̃) = 0}, (5.20)

where π7 and d∗ are with respect to φ. Then, there exists an open neighbourhood Sφ
containing φ in Lφ which is invariant under Iφ such that the natural projection from Sφ/Iφ
to Γ(P3M)/D induces a homeomorphism between Sφ/Iφ and a neighbourhood of φD in
Γ(P3M)/D.

Let us see why it makes sense for the condition π7(d
∗φ̃) = 0 to be in (5.20). The natural

choice for the slice at φ for the action of D on Γ(P3M) would be the L2-orthogonal
subspace to the orbit φD of D at φ as it would ensure local transversality for φ̃ close to
φ. Consider the tangent vectors at φ to the orbit φD of D. They are given by

d

dt

∣∣∣∣
t=0

h∗tφ = LXφ = d(X ⌟φ),

where ht is the flow of a smooth vector field X on M . As from (4.44) we know that the
tangent space at φ of the orbit φD is the space d(Ω2

7), the natural choice for the slice is

Lφ = {φ̃ ∈ Γ(P3M) : ⟨φ̃− φ, d(X ⌟φ)⟩L2 = 0 ∀ X ∈ Γ(TM)}. (5.21)

Since φ is torsion-free, we have d∗φ = 0 and hence from integration of parts we get that
(5.20) is equivalent to (5.21). Now, applying Theorem 5.2.1 to the set of torsion-free
G2-structures X , we have:
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Corollary 5.2.2. Let M be a compact 7-manifold and M = X/D the moduli space of
torsion-free G2-structures on M . Let φD ∈ M, where φ is a torsion-free G2-structure on
M and let Iφ be the stabilizer subgroup of φ in D with respect to this action. Define

L′
φ = {φ̃ ∈ Γ(P3M) : dφ̃ = dψ̃ = 0 and π7(d

∗φ̃) = 0}, (5.22)

where π7 and d∗ are with respect to φ. Then, there exists an open neighbourhood S ′
φ

containing φ in L′
φ which is invariant under Iφ such that the natural projection from S ′

φ/Iφ
to M induces a homeomorphism between S ′

φ/Iφ and a neighbourhood of φD in M.

Now, we use Theorem 5.1.5 to find a condition equivalent to the ones in (5.22).

Proposition 5.2.3. Let (M,φ) be a compact G2-manifold and φ̃ a closed 3-form on M
such that ∥φ̃ − φ∥C0 ≤ ϵ1. Then, there exist ξ ∈ H3 and a d∗-exact 2-form η such that
φ̃ = φ+ξ+dη uniquely. Furthermore, φ̃ lies in L′

φ from (5.22) if and only if (dd∗+d∗d)η =
⋆d(F (ξ + dη)).

Proof. Let [φ], [φ̃] be the deRham cohomology classes of φ, φ̃. As H3 ∼= H3(M,R), there
exists a unique ξ ∈ H3 such that [ξ] = [φ̃] − [φ]. Thus, as [φ̃ − φ − ξ] = 0 in H3(M,R),
φ̃− φ− ξ is an exact 3-form. Then, we know by Hodge theory that there exists a unique
d∗-exact 2-form η on M such that dη = φ̃− φ− ξ. Thus, φ̃ = φ+ ξ + dη as claimed.

Now, we have that d∗η = 0 as η is d∗-exact and ∥φ̃ − φ∥C0 ≤ ϵ1 from our assumption.
Thus, from Theorem 5.1.5, we have that (dd∗ + d∗d)η = ⋆d(F (ξ + dη)) if and only if

dψ̃ = 0 and π7(d
∗φ̃) = 0. Therefore, from (5.22) we have that φ ∈ L′

φ if and only if
(dd∗ + d∗d)η = ⋆d(F (ξ + dη)).

Now, we will present a proof of the main result of this chapter.

Theorem 5.2.4. Let M be a compact 7-manifold. The moduli space of torsion-free G2-
structures M = X/D on M is a smooth manifold of dimension b3(M) = dimH3(M,R).
Furthermore, the natural projection π : M → H3(M,R) which takes an equivalence class
[φ]M in the quotient space X/D to the deRham cohomology class [φ] is a local diffeomor-
phism.

Proof. Let φ be a torsion-free G2-structure on M . For k ≥ 0 and α ∈ (0, 1), let us define
V k,α to be the Banach space of 2-forms given as

V k,α = {η ∈ Ck,α(Λ2T ∗M) : η is L2-orthogonal to H2}.
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Then, define an open set Uk+2,α ⊂ H3 × V k+2,α by

Uk+2,α = {(ξ, η) ∈ H3 × V k+2,α : ∥ξ + dη∥C0 < ϵ1}

and a map Φ : Uk+2,α → V k,α by

Φ(ξ, η) = (dd∗ + d∗d)η − ⋆d(F (ξ + dη)).

Since M is compact, and each harmonic form is closed and co-closed, Φ is well-defined as
Φ(ξ, η) is L2-orthogonal to harmonic 2-forms for each (ξ, η) ∈ Uk+2,α. Furthermore, it is a
smooth and non-linear map of Banach spaces.

From Proposition 5.1.4, we know that F (ξ + dη) is atleast quadratic in ξ + dη and hence
the first derivative dΦ|(0,0) : H3 × V k+2,α → V k,α is given by

dΦ|(0,0)(ξ, η) = (dd∗ + d∗d)η.

Note that dd∗ + d∗d is a self-adjoint elliptic operator on 2-forms with kernel and cokernel
H2. Thus, from the Fredholm alternative (Theorem 1.2.4), it follows that dd∗ + d∗d :
V k+2,α → V k,α is an isomorphism. Therefore, dΦ|(0,0) : H3 × V k+2,α → V k,α is surjective
with kernel H3.

Hence by the Implicit Mapping Theorem (Theorem 1.2.3), we have that Φ−1(0) is a mani-
fold of dimension b3(M) in a neighbourhood of (0, 0) and the projection (ξ, η) 7→ ξ induces
a diffeomorphism between neighbourhoods of (0, 0) in Φ−1(0) and 0 in H3. Note that
for small ∥ξ + dη∥C0 , any solution η to the equation Φ(ξ, η) = 0 is smooth rather than
just Ck+2,α by elliptic regularity since Φ(ξ, η) = 0 is a non-linear elliptic equation when
∥ξ + dη∥C0 is small.

Then from Proposition 5.2.3, the slice L′
φ from (5.22) is locally isomorphic to the set

{(ξ, η) ∈ H3 × Γ(Λ2T ∗M) : η is L2-orthogonal to H2,

∥ξ + dη∥C0 < ϵ1 and (dd∗ + d∗d)η = ⋆d(F (ξ + dη))}.

From above, it follows that this set is a manifold of dimension b3(M) near (0, 0) and the
projection to H3 is a diffeomorphism. Therefore, L′

φ is a smooth manifold of dimension
b3(M) in a neighbourhood of φ and the projection L′

φ → H3(M,R) which maps φ̃ to
the deRham cohomology class [φ̃] induces a diffeomorphism between neighbourhoods of
φ ∈ L′

φ and [φ] ∈ H3(M,R).

From Corollary 5.2.2, we have that the moduli space M is homeomorphic near φD to
a neighbourhood of φIφ in L′

vp/Iφ, where Iφ is the stabilizer subgroup of D which fixes
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φ. Since Iφ is a group of diffeomorphisms of M which are isotopic to the identity, we
know from the discussion earlier in this section that Iφ acts trivially on the cohomology
H3(M,R). As L′

φ is isomorphic to H3(M,R) near φ, Iφ acts trivially on L′
φ near φ and

thus L′
φ/Iφ is locally isomorphic to L′

φ.

Therefore, as M is homeomorphic near φD to a neigbourhood of φ in L′
φ, it follows that

M is a smooth manifold of dimension b3(M) in a neighbourhood of φD and the projection
π : M → H3(M,R) which maps [φ̃]M to the deRham cohomology class [φ̃] induces a
diffeomorphism between neighbourhoods of φD ∈ M and [φ] ∈ H3(M,R). As φD ∈ M is
arbitrary, we have proved our desired result.

Note that the above theorem only tells us about the local structure of M and gives very
little information about the global geometry of M.
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Chapter 6

Gauge transformations on the space
of torsion-free G2-structures

In this chapter, we will use the techniques from [Kar20] to explore the action of gauge
transformations of the form etA where A ∈ T 2, on the space of torsion-free G2-structures.
In particular, we show that infinitesimally, the torsion-free condition almost exactly corre-
sponds to A⋄φ being harmonic (that is, closed and co-closed) when we add a “gauge-fixing”
condition. This closely matches with the results in [Joy00] that we presented in Chapter 5
but we use a different approach.

6.1 The difference between connections under a gauge

transformation

Before focusing entirely on G2-manifolds, let us do the following computation on a general
Riemannian manifold. From this computation, we will obtain a tensor which will be needed
for our G2 computations.

Let (M, g) be a Riemannian manifold and let P be a gauge transformation on TM . That
is, P : TM → TM is an invertible bundle map. Then, consider another metric

g̃ = P ∗g

on M . With respect to an orthonormal frame with respect to g, we have

g̃ij = P k
i P

l
jgkl.
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Let ∇, ∇̃ be the the Levi-Civita connections of g and g̃ respectively. Then, since the differ-
ence between connections is tensorial, let us denote the difference between these connections
as

B(X, Y ) := ∇̃XY −∇XY

for X, Y ∈ X(M). Furthermore, as ∇, ∇̃ are torsion-free, we have

∇XY −∇YX = [X, Y ], ∇̃XY − ∇̃YX = [X, Y ],

which gives us

B(X, Y ) = [X, Y ] + ∇̃YX − [X, Y ]−∇YX = B(Y,X).

Thus, B is symmetric. Then, since the metric g̃ is compatible with ∇̃, for X, Y, Z ∈ X(M)

X(g̃(Y, Z)) = g̃(∇̃XY, Z) + g̃(Y, ∇̃XZ)

= g(P (∇XY +B(X, Y )), PZ) + g(PY, P (∇XZ +B(X,Z)),

and

X(g̃(Y, Z)) = X(g(PY, PZ))

= g(∇X(PY ), PZ) + g(PY,∇X(PZ))

= g(P (∇XY ), PZ) + g((∇XP )Y, PZ) + g(PY, P (∇XZ)) + g(PY, (∇XP )Z).

Combining the above two, we get

g(P (B(X, Y )), PZ) + g(PY, P (B(X,Z))) = g((∇XP )Y, PZ) + g((∇XP )Z, PY )

= g(PP−1(∇XP )Y, PZ) + g(PP−1(∇XP )Z, PY ),

which implies

g̃(B(X, Y ), Z) + g̃(B(X,Z), Y ) = g̃(P−1(∇XP )Y, Z) + g̃(P−1(∇XP )Z, Y ).

Permuting X, Y, Z, we get

g̃(B(X, Y ), Z) + g̃(B(X,Z), Y ) = g̃(P−1(∇XP )Y, Z) + g̃(P−1(∇XP )Z, Y ), (6.1)

g̃(B(Y, Z), X) + g̃(B(Y,X), Z) = g̃(P−1(∇Y P )Z,X) + g̃(P−1(∇Y P )X,Z), (6.2)

g̃(B(Z,X), Y ) + g̃(B(Z, Y ), X) = g̃(P−1(∇ZP )X, Y ) + g̃(P−1(∇ZP )Y,X). (6.3)
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Then, as B is symmetric, (6.1) + (6.2)− (6.3) gives us

2g̃(B(X, Y ), Z) = g̃(P−1(∇XP )Y, Z) + g̃(P−1(∇XP )Z, Y ) + g̃(P−1(∇Y P )Z,X)

+ g̃(P−1(∇Y P )X,Z)− g̃(P−1(∇ZP )X, Y )− g̃(P−1(∇ZP )Y,X).
(6.4)

Now, we want to get everything in terms of an inner product with Z so that we can get
an expression for B(X, Y ). So, with respect to a local frame, we start with defining

(C(X, Y ))m = (P−1(∇pP )Y )iXj g̃ij g̃
pm,

which gives us the term

g̃(C(X, Y ), Z) = g̃mn(C(X, Y ))mZn

= g̃mn(P
−1(∇pP )Y )iXj g̃ij g̃

pmZn

= δpng̃ij(P
−1(∇pP )Y )iXjZn

= g̃ijZ
p(P−1(∇pP )Y )iXj

= g̃ij(P
−1(∇ZP )Y )iXj

= g̃(P−1(∇ZP )Y,X).

And similarly we define

(C ′(X, Y ))m = g̃ij(P
−1)ia(∇XP )

a
b g̃
bmY j,

which gives us the term

g̃(C ′(X, Y ), Z) = g̃mng̃ij(P
−1)ia(∇XP )

a
b g̃
bmY jZn

= g̃mng̃
bmZng̃ij(P

−1)ia(∇XP )
a
bY

j

= g̃ijδ
b
nZ

n(P−1)ia(∇XP )
a
bY

j

= g̃ij(P
−1)ia(∇XP )

a
bZ

bY j

= g̃(P−1(∇XP )Z, Y ).

Therefore, we get

2g̃(B(X, Y ), Z) = g̃(P−1(∇XP )Y, Z) + g̃(C ′(X, Y ), Z) + g̃(C ′(Y,X), Z)

+ g̃(P−1(∇Y P )X,Z)− g̃(C(X, Y ), Z)− g̃(C(Y,X), Z),

and since Z is an arbitrary vector field, we have

B(X, Y ) =
1

2
(P−1(∇XP )Y + C ′(X, Y ) + C ′(Y,X)

+ P−1(∇Y P )X − C(X, Y )− C(Y,X)).
(6.5)
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6.2 Harmonicity of A ⋄ φ

In this section, we will find the necessary and sufficient conditions for a 3-form γ = A ⋄ φ
to be harmonic where A ∈ T 2. We will then show that these conditions correspond to the
linearization of the torsion-free condition modulo a gauge-fixing condition in Sections 6.3
and 6.4.

Proposition 6.2.1. Let (M,φ) be a compact G2-manifold. Suppose that γ = A ⋄ φ is a
3-form where A ∈ T 2. Then, γ is harmonic if and only if

∇iAipφpjk +∇iAjpφipk +∇iAkpφijp = 0

and

∇iApqφpqa +∇pAiqφpaq +∇jAkpφjkpgia −∇jAkaφijk −∇pAkpφaik −∇j(trA)φaji = 0.

Moreover, we have

(d∗γ)7 = 0 ⇐⇒ 2 divA+∇TrA− ⟨∇A,ψ⟩ = 0, (6.6)

(dγ)1 = 0 ⇐⇒ div(VA) = ∇aApqφpqa = 0, (6.7)

(dγ)7 = 0 ⇐⇒ 2 divAT − 2∇TrA+ ⟨∇A,ψ⟩ = 0, (6.8)

where ⟨∇A,ψ⟩m = ∇iApqψipqm.

Proof. SinceM is compact, using integration by parts (see [Joy00, Section 1.1.3]), we know
that

γ is harmonic ⇐⇒ dγ = 0 and d∗γ = 0. (6.9)

Looking at the co-closed condition first, we have

0 = (d∗γ)jk = −∇iγijk

= −∇i(Aipφpjk + Ajpφipk + Akpφijp)

= −∇iAipφpjk −∇iAjpφipk −∇iAkpφijp

= −(divA)pφpjk +Qjk −Qkj,
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where Qab = (∇iAap)φibp. From (4.28) and (4.53), it follows that

Qabφmab = −(∇iAap)φipbφmab

= (∇iAap)(giagpm − gimgpa − ψpima)

= (divA)m −∇m(Aapgpa) +∇iAapψapim.

Hence, using (4.27) and (4.51), for the Ω2
7 part of the co-closed condition, we get

π7((d
∗γ)jk) = 0 ⇐⇒ 0 = (d∗γ)jkφmjk

= −(divA)pφpjkφmjk +Qjkφmjk −Qkjφmjk

= −6(divA)m + 2Qjkφmjk

= −6(divA)m + 2((divA)m −∇m(Aapgpa) +∇iAapψapim)

= −4(divA)m − 2∇m(TrA) + 2⟨∇A,ψ⟩m.

Therefore, we get

(d∗γ)7 = 0 ⇐⇒ 2 divA+∇TrA− ⟨∇A,ψ⟩ = 0.

Next, consider the closed condition

0 = (dγ)ijkl = ∇iγjkl −∇jγikl +∇kγijl −∇lγijk. (6.10)

Let ηijkl = (dγ)ijkl. Using the same notation from Corollary 4.4.4, we have

ηψia = ηijklψajkl = ∇iγjklψajkl − 3∇jγiklψajkl,

as the last three terms of (6.10) are skew in j, k and l. Using the fact that γ = A ⋄ φ,
(4.30), (4.51) and (4.31), we have

∇iγjklψajkl − 3∇jγiklψajkl = ∇i(Ajpφpkl + Akpφjpl + Alpφjkp)ψajkl

− 3∇j((Aipφpkl + Akpφipl + Alpφikp)ψajkl)

= ∇i(−4Ajpφpaj + 2Akpφjplψajkl)

− 3∇j(−4Aipφpaj + 2Akpφiplψajkl)

= −4∇iApqφpqa + 2∇iAkp(−4φpak) + 12∇jAipφpaj

− 6(∇jAkp)(giaφpjk + gijφapk + gikφajp

− gpaφijk − gpjφaik − gpkφaji)

= −12∇iApqφpqa − 12∇pAiqφpaq − 6∇jAkpφjkpgia + 6∇iAkpφkpa

− 6∇jAipφajp + 6∇jAkaφijk + 6∇pAkpφaik + 6∇j(trA)φaji

= −6∇iApqφpqa − 6∇pAiqφpaq − 6∇jAkpφjkpgia

+ 6∇jAkaφijk + 6∇pAkpφaik + 6∇j(trA)φaji,
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which gives us

−1

6
ηψia = ∇iApqφpqa +∇pAiqφpaq +∇jAkpφjkpgia

−∇jAkaφijk −∇pAkpφaik −∇j(trA)φaji.
(6.11)

Thus, from Corollary 4.4.4, we obtain

(dγ)1 = 0 ⇐⇒ tr ηψ = 0

⇐⇒ div(VA) = ∇aApqφpqa = 0.

Furthermore, from (4.51), it follows that

π7(n
ψ
ia) = 0 ⇐⇒ ηψiaφiam = 0,

and using (4.27) and (4.28) yields

ηψiaφami = 0 ⇐⇒ 0 = (∇iApq)(gmpgiq − gmqgip − ψmipq)− (∇pAiq)(gmpgiq − gmqgip − ψmipq)

− (∇pAqa)(gapgmq − gaqgmp − ψampq) + 6∇pAmp − 6∇m(trA)

= 3⟨∇A,ψ⟩m + 6(divAT )m − 6∇m(trA)

Hence, we have

(dγ)7 = 0 ⇐⇒ 2 divAT − 2∇TrA+ ⟨∇A,ψ⟩,

which concludes our proof.

Remark 6.2.2. Recall that Corollary 4.4.3 tells us that A14 ⋄φ = 0 for any A ∈ T 2. This
agrees with the equations (6.6), (6.7) and (6.8), since they are satisfied for any A ∈ Ω2

14.
Indeed, for A ∈ Ω2

14, we have TrA = 0 and from (4.45), we get

⟨∇A,ψ⟩m = ∇iApqψipqm = 2∇iAim = 2(divA)m = −2(divAT )m,

which shows (6.6) and (6.8). In addition, from (4.51) we get Apqφpqm = 0, which shows
(6.7).

6.3 Linearization of the torsion-free condition

Now, let us take P = etA and denote φ̃ = P ∗φ = (etA)∗φ and g̃ = P ∗g = (etA)∗φ. Let ∇̃
be the Levi-Civita connection of g̃. We want to compute the linearization

d

dt

∣∣∣∣
t=0

∇̃φ̃. (6.12)
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For X, Y, Z,W ∈ X(M), we have

(∇̃Xφ̃)(Y, Z,W ) = X(φ̃(Y, Z,W ))− φ̃(∇̃XY, Z,W )− φ̃(Y, ∇̃XZ,W )− φ̃(Y, Z, ∇̃XW ),

and ∇Xφ = 0 gives us

X(φ(PY, PZ, PW )) = φ(∇X(PY ), PZ, PW ) + φ(PY,∇X(PZ), PW ) + φ(PY, PZ,∇X(PW )).

Taking B to be as in Section 6.1, expanding the above yields

(∇̃Xφ̃)(Y, Z,W ) = φ(∇X(PY ), PZ, PW ) + φ(PY,∇X(PZ), PW ) + φ(PY, PZ,∇X(PW ))

− φ(P (∇XY +B(X, Y )), PZ, PW )− φ(PY, P (∇XZ +B(X,Z)), PW )

− φ(PY, PZ, P (∇XW +B(X,W )))

= φ((∇XP )Y, PZ, PW ) + φ(PY, (∇XP )Z, PW ) + φ(PY, PZ, (∇XP )W )

− φ(P (B(X, Y )), PZ, PW )− φ(PY, P (B(X,Z)), PW )

− φ(PY, PZ, P (B(X,W ))),

and we can rewrite (6.4) as

g̃(B(X, Y ), Z) = g(P (B(X, Y )), PZ) =
1

2
(g((∇XP )Y, PZ) + g((∇XP )Z, PY ) + g((∇Y P )Z, PX)

+ g((∇Y P )X,PZ)− g((∇ZP )X,PY )− g((∇ZP )Y, PX)).

As d
dt
|t=0P = A and P |t=0 = I, we have

∇XP |t=0 = ∇XI = 0,
d

dt

∣∣∣∣
t=0

∇XP = ∇XA, B|t=0 = 0.

Thus, denoting Ḃ = d
dt
|t=0B, we get

g(Ḃ(X, Y ), Z) =
1

2
(g((∇XA)Y, Z) + g((∇XA)Z, Y ) + g((∇YA)Z,X) + g((∇YA)X,Z)

− g((∇ZA)X, Y )− g((∇ZA)Y,X)).
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Now, taking d
dt
|t=0 of (∇̃Xφ̃)(Y, Z,W ), from the relation between g and φ in (4.19), we

obtain

d

dt

∣∣∣∣
t=0

(∇̃Xφ̃)(Y, Z,W ) = φ((∇XA)Y, Z,W ) + φ(Y, (∇XA)Z,W ) + φ(Y, Z, (∇XA)W )

− φ(Ḃ(X, Y ), Z,W )− φ(Y, Ḃ(X,Z),W )− φ(Y, Z, Ḃ(X,W ))

= g((∇XA)Y, Z ×W )− 1

2
(g((∇XA)Y, Z ×W ) + g((∇XA)(Z ×W ), Y )

+ g((∇YA)(Z ×W ), X) + g((∇YA)X,Z ×W )− g((∇Z×WA)X, Y )

− g((∇Z×WA)Y,X)) + (cyclic terms Y → Z → W )

=
1

2
(g((∇XA)Y, Z ×W )− g((∇XA)(Z ×W ), Y )− g((∇YA)(Z ×W ), X)

− g((∇YA)X,Z ×W ) + g((∇Z×WA)X, Y ) + g((∇Z×WA)Y,X))
(6.13)

+ (cyclic terms Y → Z → W ).

Lemma 6.3.1. For any vector field X on M , KX = d
dt
|t=0∇̃Xφ̃ lies in Ω3

7 with respect to
the G2-structure φ.

Proof. From Lemma 4.5.1, we know that ∇̃Xφ̃ lies in Ω3
7 with respect to φ̃. To emphasize

the fact that the decomposition is with respect to φ̃, we write φ̃ ∈ Ω3
7(φ̃). The decompo-

sition in (4.37) tells us that its inner product with any 3-form in Ω3
1(φ̃) ⊕ Ω3

27(φ̃) is zero.
Furthermore, from Corollary 4.4.4, every ω ∈ Ω3

1(φ̃)⊕ Ω3
27(φ̃) is of the form ω = C ⋄ φ̃ for

some C ∈ S2. Combining these facts gives

g̃(∇̃Xφ̃, C ⋄ φ̃) = 0

for all C ∈ S2. Then, note that as

(∇̃Xφ̃)|t=0 = ∇Xφ = 0, φ̃|t=0 = φ,

we have

d

dt

∣∣∣∣
t=0

g̃(∇̃Xφ̃, C ⋄ φ̃) = 0 =⇒ g(KX , C ⋄ φ) = 0 =⇒ KX ∈ Ω3
7(φ).

From Lemma 6.3.1 and Corollary 4.4.5,

KX = K(X) ⌟ψ (6.14)

for some unique vector field K(X) ∈ X. Now, we will find the necessary and sufficient
conditions for the 2-tensor K to vanish.
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Proposition 6.3.2. Let K be the 2-tensor defined by the equation KX = K(X) ⌟ψ, where
KX = d

dt
|t=0∇̃Xφ̃.

Kia = 0 ⇐⇒ −∇iApqφapq +∇pAqiφpqa −∇pAiqφpaq = 0.

Moreover, we have

K7 = 0 ⇐⇒ −2 divAT + 2∇ trA− ⟨∇A,ψ⟩ = 0 (6.15)

and

K1 = 0 ⇐⇒ ∇aApqφapq = 0. (6.16)

Proof. Note that for an orthonormal frame ea, we have

ek × el = g(ek × el, em)em = φklmem.

Thus, taking X = ei, Y = ej, Z = ek,W = el in (6.13) gives us

Kijkl =
1

2
(φklm∇iAjm − φklm∇iAmj − φklm∇jAmi − φklm∇jAim + φklm∇mAij + φklm∇mAji)

+ (cyclic terms j → k → l).

Since from (6.14) we have that Kijkl = Kipψipkl, using the identity (4.33) gives us

Kψ
ia = Kijklψajkl = 24Kia.

Therefore, using the identity (4.30) yields

24Kia =
3

2
(φklm∇iAjm − φklm∇iAmj − φklm∇jAmi

− φklm∇jAim + φklm∇mAij + φklm∇mAji)ψajkl

=⇒ 16Kia = −4φajm(∇iAjm −∇iAmj −∇jAmi −∇jAim +∇mAij +∇mAji)

=⇒ 4Kia = −2φajm(∇iAjm −∇jAmi −∇jAim)

=⇒ 2Kia = −∇iApqφapq +∇pAqiφpqa −∇pAiqφpaq. (6.17)
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Contracting (6.17) with φ on two indices and using (4.28) and (4.53), we get

2Kiaφiam = −∇iApqφapqφiam +∇pAqiφpqaφiam −∇pAiqφpaqφiam

= ∇iApqφpqaφima −∇pAqiφpqaφima −∇pAiqφpqaφima

= ∇iApq(gpigqm − gpmgqi − ψpqim)−∇pAqi(gpigqm − gpmgqi − ψpqim)

−∇pAiq(gpigqm − gpmgqi − ψpqim)

= ∇iAim −∇iAmi − ⟨∇A,ψ⟩m −∇iAmi +∇m(trA)

+ ⟨∇A,ψ⟩m −∇iAim +∇m(trA)− ⟨∇A,ψ⟩m
= −2(divAT )m + 2∇m(trA)− ⟨∇A,ψ⟩m.

Hence, we have

K7 = 0 ⇐⇒ −2 divAT + 2∇ trA− ⟨∇A,ψ⟩ = 0,

Finally,

2Kiagai = −∇iApqφapqgai +∇pAqiφpqagai −∇pAiqφpaqgai

= −∇aApqφapq +∇pAqaφpqa −∇pAaqφpaq

= −∇a(VA)a +∇p(VA)p −∇p(VA)p

= −∇a(VA)a = − div(VA),

and thus

K1 = 0 ⇐⇒ ∇aApqφapq = 0.

Remark 6.3.3. Note that A14 does not contribute to K since using (4.51) and (1.5), the
equation (6.17) can be rewritten as

2Kia = −∇iA
7
pqφpqa + 2∇p(Asym)iqφpqa.

That is, K = 0 is always satisfied for any A of type 14. Therefore, any 14-part of A does
not contribute to the torsion at leading order, only at higher order.

6.4 Gauge-fixing and the main theorem

As in Section 5.2, we want tangent directions to our “slice” of torsion-free G2-structures
to be L2-orthogonal to the infinitesimal diffeomorphisms LWφ. That is, our gauge-fixing
condition is given as:

⟨A ⋄ φ,LWφ⟩L2 = 0. (6.18)
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Taking S = φ in (1.12), we get

(LWφ)ijk = Wp∇pφijk +∇iWpφpjk +∇jWpφipk +∇kWpφijp. (6.19)

Using (4.61) and (4.81), we can rewrite the above as

LWφ = −1

3
WpT̂p ⋄ φ+ (∇W ) ⋄ φ =

(
∇W − 1

3
T̂ (W )

)
⋄ φ. (6.20)

As φ is torsion-free, T̂ = 0 and thus the gauge-fixing condition is

⟨A ⋄ φ,∇W ⋄ φ⟩L2 = 0 (6.21)

for all W ∈ X(M).

Proposition 6.4.1. Let A ∈ T 2 and K be a 2-tensor defined by the equation KX =
K(X) ⌟ψ, where KX = d

dt
|t=0∇̃Xφ̃. Then, our gauge-fixing (G.F.) condition is given by

the equation

2 divA+∇ trA− ⟨∇A,ψ⟩ = 0. (6.22)

Proof. Using (4.61),(4.27), (4.28) and (4.53), we obtain

⟨A ⋄ φ,∇W ⋄ φ⟩L2 = (Aipφpjk + Ajpφipk + Akpφijp)(∇W ⋄ φ)ijk
= Aipφpjk(∇W ⋄ φ)ijk + 2Ajpφipk(∇W ⋄ φ)ijk
= Aipφpjk(∇iWqφqjk +∇jWqφiqk +∇kWqφijq)

+ 2Ajpφipk(∇iWqφqjk +∇jWqφiqk +∇kWqφijq)

= 6Aip∇iWp + 2Aip∇jWqφpjkφiqk + 2Ajp∇iWqφipkφqjk

+ 12Ajp∇jWp + 2Ajp∇kWqφipkφijq

= 18Aip∇iWp + 6Aip∇jWq(gpigjq − gpqgji − ψpjiq)

= 18Aip∇iWp + 6(trA)∇pWp − 6Aip∇iWp − 6⟨∇A,ψ⟩mWm

= 12Aip∇iWp + 6(trA)∇pWp − 6⟨∇A,ψ⟩mWm.

Using integration by parts on the above we obtain that for all W ∈ X(M),

⟨A ⋄ φ,∇W ⋄ φ⟩L2 = 0 ⇐⇒ −12⟨divA,W ⟩L2 − 6⟨∇ trA,W ⟩L2 + 6⟨⟨∇A,ψ⟩,W ⟩ = 0.

Since it is true for all W , we have that the gauge-fixing condition is given as

2 divA+∇ trA− ⟨∇A,ψ⟩ = 0.
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Theorem 6.4.2. Let A ∈ T 2 and K be a 2-tensor defined by the equation KX = K(X) ⌟ψ,
where KX = d

dt
|t=0∇̃Xφ̃. We have that

(dγ)1 = 0 ⇐⇒ K1 = 0

(d∗γ)7 = 0 ⇐⇒ G.F. condition = 0

(dγ)7 = 0 ⇐⇒ K7 = 0

(dγ)27 = 0 ⇐⇒ K27 = 0.

(6.23)

Proof. Note that the conditions for the vanishing of the 1-parts of K (6.16) and dγ (6.7)
are identical and the same is true for the 7-part of dγ (6.8) and 7-part of K (6.15). In
addition, the gauge-fixing condition (6.22) is the same as the vanishing of the 7-part of d∗γ
(6.6). All that remains to show to prove our claim is that

K27 = 0 ⇐⇒ (dγ)27 = 0. (6.24)

The symmetric part of K is given as

(Ksym)ia =
1

4
(−∇iApqφapq −∇aApqφipq +∇pAqiφpqa +∇pAqaφpqi

−∇pAiqφpaq −∇pAaqφpiq).
(6.25)

and the symmetric part of ηψ is given as

−1

6
(ηψsym)ia =

1

2
(∇iApqφpqa +∇aApqφpqi +∇pAiqφpaq +∇pAaqφpiq + 2∇jAkpφjkpgia

−∇pAqaφipq −∇pAqiφapq).

As ∇jAkpφjkpgia ∈ Ω0, from (6.25) we have that

π27(η
ψ
ia) = π27((η

ψ
sym)ia) = 3π27(−∇iApqφapq −∇aApqφipq +∇pAqiφpqa +∇pAqaφpqi

−∇pAiqφpaq −∇pAaqφpiq)

= 12π27(Ksym)ia

= 12π27(Kia),

which proves (6.24).

Remark 6.4.3. Note that if in the above theorem we could also show that

K14 = 0 ⇐⇒ (d∗γ)14 = 0,
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then we would have that

A ⋄ φ is harmonic ⇐⇒ (K = 0 + G.F. condition),

which would mean that infinitesimally the torsion-free condition (modulo gauge-fixing) is
equivalent to A⋄φ being harmonic. At the time of writing this document, it is not entirely
clear if this holds, and in fact our initial analysis appears to indicate that it is false in
general. This equivalence may require a further assumption, which could be related to
ambiguity (non-uniqueness) in the definition of A for φ̃ = (etA)∗φ. This is a question that
the author hopes to further study in the future.

6.5 Future questions and extensions

In this chapter, using the framework of gauge transformations etA acting on the torsion-
free G2-structures, we have shown that infinitesimally, being torsion-free and gauge-fixed
(except for the 14 part) is the same as A ⋄ φ being harmonic. One could explore if this
method can be used in the non-infinitesimal case to give an alternate proof of the fact that
the moduli space of G2-structures forms a non-singular smooth manifold.

Furthermore, it could prove fruitful to use this method to prove analogous results for the
moduli space formed by structures on manifolds with different holonomy groups such as
Spin(7) and U(m). In particular, we know from the fundamental work of Kodaira-Spencer
and Kuranishi [Kod05] that in general, there are obstructions to deform a complex structure
but in the Kähler case, if a particular deformation of complex structure is unobstructed,
then the deformation remains Kähler. Using this method, one could attempt to describe
these obstructions through a differential-geometric approach. Furthermore, this point of
view could give us a differential geometric explanation for why the Kähler moduli space is
not smooth in general.
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