C&O 355 Mathematical Programming Fall 2010 Lecture 4

N. Harvey

Outline

- Solvability of Linear Equalities & Inequalities
- Farkas' Lemma
- Fourier-Motzkin Elimination
- Proof of Farkas' Lemma
- Proof of Strong LP Duality

Strong Duality

Primal LP:
$$\max_{\mathbf{s.t.}} c^\mathsf{T} x$$

$$\sup_{\mathbf{s.t.}} Ax \le b$$

$$\max_{\mathbf{s.t.}} A^\mathsf{T} y = c$$

$$y \ge 0$$

Strong Duality Theorem:

Primal has an opt. solution $x \Leftrightarrow Dual$ has an opt. solution y. Furthermore, optimal values are same: $c^Tx = b^Ty$.

Our Goals:

- Understand when Primal and Dual have optimal solutions
- Compute those optimal solutions

Combining Primal & Dual into a System of Inequalities:

x is optimal for Primal and y is optimal for Dual

⇔ x and y are solutions to these inequalities:

$$Ax \le b$$
 $A^\mathsf{T} y = c$ $y \ge 0$ $c^\mathsf{T} x \ge b^\mathsf{T} y$

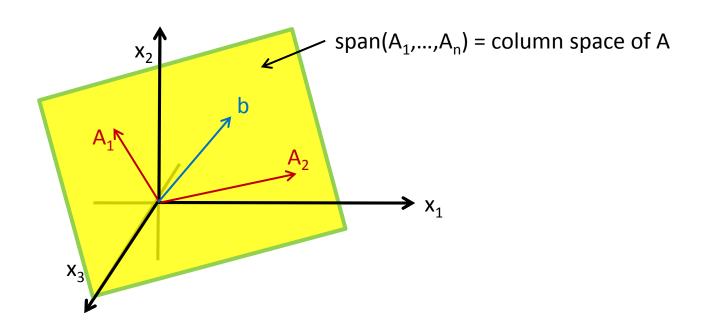
Can we characterize when systems of inequalities are solvable?

Systems of **Eq**ualities

- Lemma: Exactly one of the following holds:
 - There exists x satisfying Ax=b

(b is in column space of A)

- There exists y satisfying $y^TA=0$ and $y^Tb>0$
- Geometrically...



Systems of **Eq**ualities

- Lemma: Exactly one of the following holds:
 - There exists x satisfying Ax=b

(b is in column space of A)

- There exists y satisfying $y^TA=0$ and $y^Tb>0$

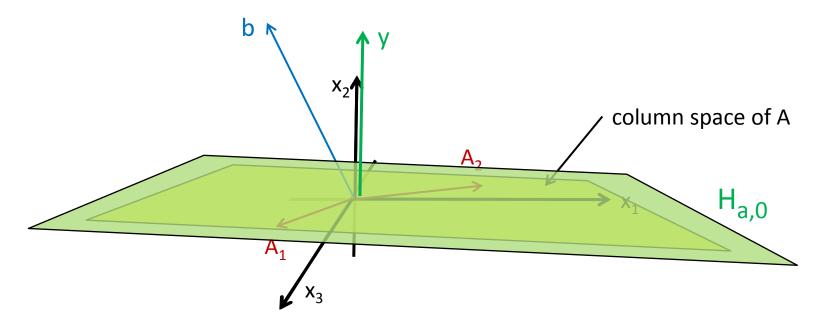
(or it is not)

• **Geometrically...** col-space(A) $\subseteq H_{v,0}$ but $b \in H_{v,0}^{++}$

Hyperplane

$$H_{a,b} = \left\{ x \in \mathbb{R}^n : a^{\mathsf{T}} x = b \right\}$$

Positive open halfspace
$$H_{a,b}^{++} = \{ x \in \mathbb{R}^n : a^\mathsf{T} x > b \}$$



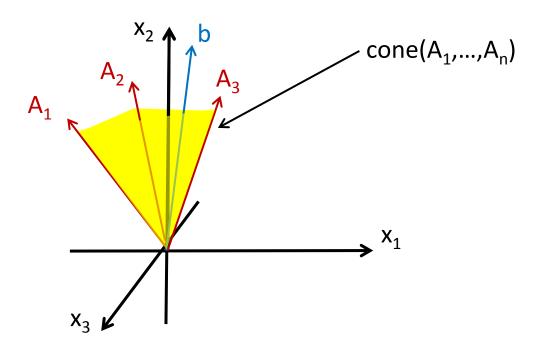
Systems of Inequalities

- Lemma: Exactly one of the following holds:
 - −There exists $x \ge 0$ satisfying Ax = b

(b is in cone($A_1,...,A_n$))

- -There exists y satisfying $y^TA \ge 0$ and $y^Tb < 0$
- Geometrically...

Let cone(
$$A_1,...,A_n$$
) = { $\Sigma_i \times_i A_i : x \ge 0$ } "cone generated by $A_1,...,A_n$ " (Here A_i is the ith column of A)



Systems of Inequalities

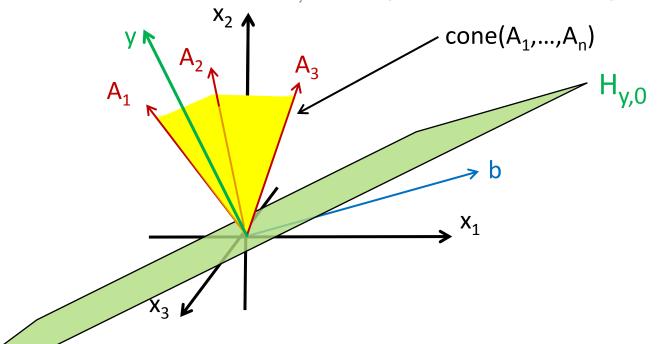
- Lemma: Exactly one of the following holds:
 - −There exists $x \ge 0$ satisfying Ax = b

(b is in cone($A_1,...,A_n$))

- -There exists y satisfying $y^TA \ge 0$ and $y^Tb < 0$ (y gives a separating hyperplane)
- **Geometrically...** cone($A_1,...,A_n$) $\in H_{y,0}^+$ but $b\in H_{y,0}^-$

Positive closed halfspace $H_{a,b}^+ = \{ x \in \mathbb{R}^n : a^\mathsf{T} x \ge b \}$

Negative open halfspace $H_{a,b}^{--} = \{ x \in \mathbb{R}^n : a^\mathsf{T} x < b \}$



Systems of Inequalities

- Lemma: Exactly one of the following holds:
 - −There exists $x \ge 0$ satisfying Ax = b

(b is in cone($A_1,...,A_n$))

- There exists y satisfying $y^TA \ge 0$ and $y^Tb < 0$ (y gives a "separating hyperplane")
- This is called "Farkas' Lemma"
 - It has many interesting proofs.
 - There are 3 proofs in Ch. 6 of Matousek-Gartner
 - It is "equivalent" to strong duality for LP.
 - There are several "equivalent" versions of it.

Gyula Farkas

Variants of Farkas' Lemma

Gyula Farkas

The System	$Ax \leq b$	Ax = b
has no solution x≥ 0 iff	$\exists y \geq 0$, $A^T y \geq 0$, $b^T y < 0$	$\exists y \in \mathbb{R}^n$, $A^T y \ge 0$, $b^T y < 0$
has no solution $x \in \mathbb{R}^n$ iff	$\exists y \geq 0$, $A^Ty=0$, $b^Ty<0$	$\exists y \in \mathbb{R}^n$, $A^T y = 0$, $b^T y < 0$

These are all "equivalent"

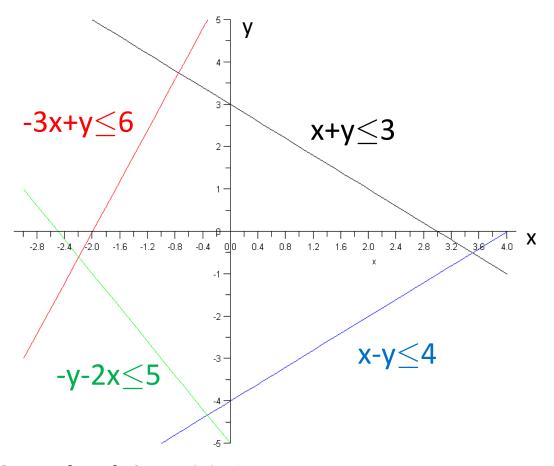
(each can be proved using another)

This is the simple lemma on systems of equalities

2D System of Inequalities

Consider the polyhedron

Q = {
$$(x,y) : -3x+y \le 6$$
,
 $x+y \le 3$,
 $-y-2x \le 5$,
 $x-y \le 4$ }

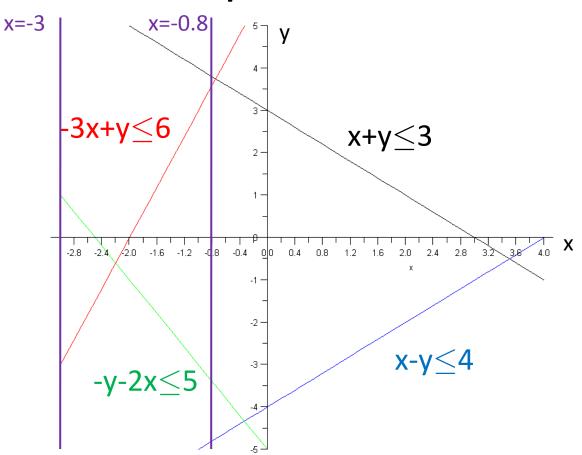


- Given x, for what values of y is (x,y) feasible?
 - Need: $y \le 3x+6$, $y \le -x+3$, $y \ge -2x-5$, and $y \ge x-4$

2D System of Inequalities

Consider the polyhedron

Q = {
$$(x,y) : -3x+y \le 6$$
,
 $x+y \le 3$,
 $-y-2x \le 5$,
 $x-y < 4$ }



- Given x, for what values of y is (x,y) feasible?
 - i.e., $y \le min\{3x+6, -x+3\}$ and $y \ge max\{-2x-5, x-4\}$
 - For x=-0.8, (x,y) feasible if $y \le min\{3.6,3.8\}$ and $y \ge max\{-3.4,-4.8\}$
 - For x=-3, (x,y) feasible if $y \le \min\{-3,6\}$ and $y \ge \max\{1,-7\}$ Impossible!

2D System of Inequalities

Consider the set

Q = {
$$(x,y) : -3x+y \le 6$$
, $x+y \le 3$, $-y-2x \le 5$, $x-y \le 4$ }

- Given x, for what values of y is (x,y) feasible?
 - i.e., $y \le min\{3x+6, -x+3\}$ and $y \ge max\{-2x-5, x-4\}$
 - Such a y exists \Leftrightarrow max{-2x-5, x-4} < min{3x+6, -x+3} ⇔ the following inequalities are solvable

Fivery "lower" constraint is
$$\leq$$
 every "upper" constraint $x-4 \leq 3x+6$ $x-4 \leq -x+3$ $= Q' = \begin{cases} -5x \leq 11 \\ x : -2x \leq 10 \\ -2x-5 \leq -x+3 \\ x-4 \leq -x+3 \end{cases} = \begin{cases} x \geq -11/5 \\ x : x \geq -5 \\ x \geq -8 \\ x \leq 7/2 \end{cases}$

- **Conclusion:** Q is non-empty \Leftrightarrow Q' is non-empty.
- This is easy to decide because Q' involves only 1 variable!

Fourier-Motzkin Elimination

Theodore Motzkin

Joseph Fourier

- **Generalization:** given a set $Q = \{ (x_1, ..., x_n) : Ax \le b \}$, we want to find set $Q' = \{ (x'_1, ..., x'_{n-1}) : A'x' \le b' \}$ satisfying $(x_1, ..., x_{n-1}) \in Q' \Leftrightarrow \exists x_n \text{ s.t. } (x_1, ..., x_{n-1}, x_n) \in Q$
- Q' is called a projection of Q (onto the first n-1 coordinates)
- Fourier-Motzkin Elimination is a procedure for producing Q' from Q
- Consequences:
 - An (inefficient!) algorithm for solving systems of inequalities, and hence for solving LPs too
 - A way of proving Farkas' Lemma by induction

- Lemma: Let $Q = \{ (x_1, ..., x_n) : Ax \le b \}$. We can construct
 - $Q' = \{ (x'_1, ..., x'_{n-1}) : A'x' \le b' \}$ satisfying
 - $(1) (x_1,...,x_{n-1}) \in \mathbf{Q}' \Leftrightarrow \exists x_n \text{ s.t. } (x_1,...,x_{n-1},x_n) \in \mathbf{Q}$
 - (2) Every inequality defining Q' is a non-negative linear combination of the inequalities defining Q.
- Proof: Put inequalities of Q in three groups:

$$(a_i = i^{th} \text{ row of A})$$

$$Z=\{i:a_{i,n}=0\}$$
 $P=\{j:a_{i,n}>0\}$

$$P = \{ j : a_{i,n} > 0 \}$$

$$N = \{ k : a_{k,n} < 0 \}$$

- WLOG, $a_{i,n}=1 \forall j \in P$ and $a_{k,n}=-1 \forall k \in N$
- For any $x \in \mathbb{R}^n$, let $x' \in \mathbb{R}^{n-1}$ be vector obtained by deleting coordinate x_n
- The constraints defining Q' are:
 - $a_i'x' \leq b_i \forall i \in Z$
 - $a_i'x'+a_k'x' \leq b_i+b_k \ \forall j \in P, \ \forall k \in N$

This is sum of jth and kth constraints of Q, because nth coordinate of a_i +a_k is zero!

- This proves (2).
- In fact, (2) implies the " \Leftarrow direction" of (1): For every $x \in \mathbb{Q}$, x' satisfies all inequalities defining \mathbb{Q}' .
- Why? Because every constraint of Q' is a non-negative lin. comb. of constraints from \mathbb{Q} , with n^{th} coordinate equal to 0.

• Lemma: Let $Q = \{ (x_1, ..., x_n) : Ax \le b \}$. We can construct

$$Q' = \{ (x'_1, ..., x'_{n-1}) : A'x' \le b' \}$$
 satisfying

- $(1) (x_1,...,x_{n-1}) \in Q' \Leftrightarrow \exists x_n \text{ s.t. } (x_1,...,x_{n-1},x_n) \in Q$
- (2) Every inequality defining Q' is a non-negative linear combination of the inequalities defining Q.
- **Proof:** Put inequalities of Q in three groups:

$$Z=\{i:a_{i,n}=0\}$$
 $P=\{j:a_{i,n}=1\}$

$$P=\{ j : a_{j,n}=1 \}$$

$$N = \{ k : a_{k,n} = -1 \}$$

- The constraints defining Q' are:
 - $a_i'x' \leq b_i \forall i \in Z$
 - $a_i'x'+a_k'x' \leq b_i+b_k \ \forall j \in P, \ \forall k \in N$
- It remains to prove the " \Rightarrow direction" of (1).
- Note that: $a_k'x'-b_k \leq b_i-a_i'x' \ \forall j \in P, \ \forall k \in N.$ \Rightarrow $\max_{k \in \mathbb{N}} \{ a_k' \mathbf{x'} - b_k \} \leq \min_{i \in \mathbb{P}} \{ b_i - a_i' \mathbf{x'} \}$

Let x_n be this value, and let $x = (x'_1, ..., x'_{n-1}, x_n)$.

Then:
$$a_k x - b_k = a_k' x' - x_n - b_k \le 0 \quad \forall k \in \mathbb{N}$$

$$b_j - a_j x = b_j - a_j' x' - x_n \ge 0 \quad \forall j \in \mathbb{P}$$

$$a_i x = a_i' x' \le b_i \quad \forall i \in \mathbb{Z}$$

By definition of x, and since $a_{k,n} = -1$

By definition of x_n , $\int a_k' x' - b_k \leq x_n$

Variants of Farkas' Lemma

Gyula Farkas

The System	Ax ≤ b	Ax = b
has no solution x≥0 iff	$\exists y \geq 0, A^T y \geq 0, b^T y < 0$	$\exists y \in \mathbb{R}^n$, $A^T y \ge 0$, $b^T y < 0$
has no solution $x \in \mathbb{R}^n$ iff ($\exists y \geq 0$, $A^Ty=0$, $b^Ty<0$	$\exists y \in \mathbb{R}^n$, $A^T y = 0$, $b^T y < 0$

We'll prove this one

- Lemma: Exactly one of the following holds:
 - −There exists $x \in \mathbb{R}^n$ satisfying $Ax \le b$
 - There exists y≥0 satisfying $y^TA=0$ and $y^Tb<0$
- **Proof:** Suppose x exists. Need to show y cannot exist. Suppose y also exists. Then:

$$0 = 0x = y^{\mathsf{T}} A x \le y^{\mathsf{T}} b < 0$$

Contradiction! y cannot exist.

- Lemma: Exactly one of the following holds:
 - −There exists $x \in \mathbb{R}^n$ satisfying $Ax \le b$
 - There exists y≥0 satisfying $y^TA=0$ and $y^Tb<0$
- **Proof:** Suppose no solution x exists.

We use induction. Trivial for n=0, so let $n\ge 1$.

We use Fourier-Motzkin Elimination.

Get an **equivalent** system A'x'≤b' where

$$(A'|0)=MA$$
 $b'=Mb$

for some **non-negative matrix** M.

Lemma: Let $Q = \{ (x_1, ..., x_n) : Ax \le b \}$. We can construct

$$Q' = \{ (x_1, ..., x_{n-1}) : A'x' \le b' \}$$
 satisfying

- 1) Q is non-empty $\Leftrightarrow Q'$ is non-empty
- 2) Every inequality defining Q' is a **non-negative linear combination** of the inequalities defining Q.

(This statement is slightly simpler than our previous lemma)

- Lemma: Exactly one of the following holds:
 - −There exists $x \in \mathbb{R}^n$ satisfying $Ax \le b$
 - There exists y≥0 satisfying $y^TA=0$ and $y^Tb<0$

• Proof:

Get an equivalent system A'x'≤b' where

$$(A'|0)=MA$$
 $b'=Mb$

for some non-negative matrix M.

We assume $Ax \le b$ has no solution, so $A'x' \le b'$ has no solution.

By induction, $\exists y' \ge 0$ s.t. $y'^TA' = 0$ and $y'^Tb' < 0$.

Define $y=M^T y'$.

Then: $y \ge 0$, because $y' \ge 0$ and M non-negative

$$y^{T}A = y'^{T}MA = y'^{T}(A'|0) = 0$$

$$y^{T}b = y'^{T} Mb = y'^{T} b' < 0$$

Farkas' Lemma ⇒ Strong Duality

Primal LP:
$$\max_{s.t.} c^{\mathsf{T}} x$$

$$\sup_{s.t.} Ax \le b$$
 Dual LP:
$$\sup_{s.t.} A^{\mathsf{T}} y = c$$

$$y \ge 0$$

- By Asst 1 Q6, if x is feasible then either:
 - (1) x is not an optimal solution
 - (2) c is a non-negative lin. comb of the constraints tight at x
- More formally, (2) says: there exists $y \ge 0$ s.t. $y^T A = c^T$ and $y_i > 0$ only when $a_i^T x = b_i$ ($a_i = i^{th}$ row of A)
- Suppose x is optimal for Primal. (i.e., (1) doesn't hold)
- Then such a y exists. It is clearly feasible for Dual, and:

$$c^{\mathsf{T}}x = y^{\mathsf{T}}Ax = \sum_{i:y_i>0} y_i(Ax)_i = \sum_{i:y_i>0} y_ib_i = y^{\mathsf{T}}b$$

So x and y are both optimal